

Exploring the Design of an Intentional Naming Scheme
with an Automatic Constraint Analyzer

Sarfraz Khurshid and Daniel Jackson
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139
khurshid@lcs.mit.edu

Abstract

Lightweight formal modeling and automatic analysis

were used to explore the design of the Intentional Naming
System (INS), a new scheme for resource discovery in a
dynamic networked environment. We constructed a model
of INS in Alloy, a lightweight relational notation, and ana-
lyzed it with the Alloy Constraint Analyzer, a fully auto-
matic simulation and checking tool. In doing so, we ex-
posed several serious flaws in both the algorithm of INS
and the underlying naming semantics. We were able to
characterize the conditions under which the existing INS
scheme works correctly, and evaluate proposed fixes.

1. Introduction

Naming is a fundamental issue of growing importance in
distributed systems. As the number of directly accessible
systems and resources grows, it becomes increasingly dif-
ficult to discover the (names of) objects of interest. More-
over, in many distributed environments – especially those
involving mobile devices – applications do not know the
optimal network location providing the information or
functionality they require.

1.1. Intentional Naming

In an intentional naming and resolution architecture, ap-
plications describe their intent and specify what they are
looking for but not where it is situated. This shifts the bur-
den of resolving ‘what is desired’ to ‘where it is’ from the
user to the network infrastructure. It also allows applica-
tions to communicate seamlessly with end-nodes, despite
changes in the mapping from name to end-node addresses
during the session.

The Intentional Naming System (INS) [1] is a recently
developed framework that provides this functionality. It

comprises applications (clients and services) and inten-
tional name resolvers (INRs), which respond to queries
from clients.

Like IP routers or conventional name servers, name re-
solvers route requests from clients seeking services to ap-
propriate locations, using a database that maps service
descriptions to their physical network locations. But in a
name resolver, a service is described using a tree-like
structure of alternating levels of attributes and values
where an element at a certain level specializes the ones
above it.

A name resolver provides a few fundamental opera-
tions. When a service wants to advertise itself – because,
for example, it has come online after being down, or be-
cause its functionality has been extended – it calls the
Add-Name operation to register the service against an
advertisement describing it. Applications make queries by
calling the resolver’s Lookup-Name operation. There are
other operations used to disseminate information amongst
resolvers, for example. Here we focus on the most inter-
esting operation, Lookup-Name, accounting for calls to
Add-Name by characterizing legal configurations of the
resolver with an invariant.

1.2. Alloy Analysis

In this paper, we explain how we used Alloy [6], a light-
weight formal modelling notation, and the Alloy Con-
straint Analyzer [7,8], its automatic analyzer, to expose
flaws in INS and explore variants of its design. We used
the Alloy Constraint Analyzer interactively to refine our
model to only 50 lines of Alloy. In contrast, the code of
the operation is about 1400 lines of Java, does not express
the key properties directly, and is not amenable to exhaus-
tive analysis.

Our main contributions are as follows:

· We show how, by construction and analysis of a suc-
cinct model, we were able to expose a variety of flaws
in INS, some of which were not known to its designers.
We also evaluated claims made about the properties of
wildcards, and showed these to be false. In all these
cases, our tool generated counterexamples showing a
query and a database state that violate the expected
property.

· Also using the tool, we were able to establish condi-
tions under which the current INS algorithm for name
resolution returns correct results.

· We raise issues of naming semantics that arose from
our analysis and would be relevant to any intentional
naming scheme. We make an attempt to deduce the es-
sential properties of a general intentional naming
scheme from our simplified model.
Our study is significant for three reasons. First, it real-

izes the vision of Guttag and Horning [4], in which a for-
mal model is used interactively to explore the design of a
system. Second, it lays a formal foundation for analysis of
a class of systems that is likely to become increasingly
important. Third, this is not just a routine application of
model checking. Although there are many case studies for
model checking, very few have tried to automatically ana-
lyze complex data structures.

We believe that this kind of lightweight approach to
formal methods [15] has a promising future. The model
was completed in a week by a researcher (the first author)
who had no experience with Alloy or prior knowledge of
INS. The key leverage was provided by our tool, which
allowed us to gain confidence in our model, root out mod-
eling errors quickly, and check theorems, without the need
to construct proofs.

Our paper is organized as follows. Section 2 presents
an overview of INS as described in [1]. Section 3 presents
a formal Alloy model of INS, which we derived by simpli-
fying our earlier model. In section 4, we explain the analy-
sis we performed using the Alloy Constraint Analyzer, and
discuss the soundness conditions we established, and some
general issues of naming semantics. Section 5 evaluates
the cost of the case study, in the relative sizes of model to
code, and the performance of the tool. Section 6 discusses
related work, and section 7 summarizes and concludes.

2. Overview of INS

In INS, services are described using intentional names.
Clients and services use intentional names to form their
queries and advertisements, respectively. Intentional
names are implemented using an arrangement of alternat-
ing levels of attributes and values in a tree structure.

In figure 1, hollow circles identify attributes and filled
circles identify values. Attributes represent categories in

which an object can be classified. Each attribute has a cor-
responding value that is the object’s classification within
that category. A wildcard may be used in place of a value
to show that any value is acceptable.

An attribute together with its value form an av-pair;
each av-pair has a set of child av-pairs that further de-
scribe the object. An av-pair that specializes another is a
descendant of it, and av-pairs that are orthogonal to each
other but specialize the same av-pair are siblings in the
tree. The query in figure 1, for example, consists of av-
pairs (building, NE-43) and (service, camera) and de-
scribes an object in building NE-43 that provides a camera
service.

An INR stores its information in a database that maps
names to records, which include the IP addresses of ser-
vices advertising the name. In a database, however, there
can be multiple values per attribute, and it can be viewed
as a superposition of all the service descriptions the INR
knows about.

A value in a database that corresponds to a leaf av-pair
of an advertisement also contains a pointer to the relevant
record. In figure 1 this is represented by broken arrows,
and the database shown stores two objects, one (i.e. N1)
that provides a camera service in NE-43 and the other one
(i.e. N2) that provides a printer service in the same build-
ing.

INRs interact with databases in two key ways: resolv-
ing queries to records and disseminating information about
advertisements amongst themselves. The records for an
advertisement are retrieved using the Lookup-Name opera-
tion. An algorithm for this operation is given in pseu-
docode in the published description of INS [1], and is rep-
licated in figure 2.

The Lookup-Name algorithm makes a series of recur-
sive calls, but does not backtrack. Each call reduces the set
of possible records by intersecting it with those contained
in matching leaf nodes. When it is invoked on the query

Figure 1. An illustration of Lookup-Name

Lookup-Name(database, query) = {N1}

query

building service

NE-43 camera printer

database

service

NE-43 camera

N1
N2

building

and
for
sec
is re

T
the
Our

3.

Our
of I
sitiv
of Z
it ta
foc
sion
theo

A
con
the
par
how
exp

A
whe

3.1. Basic components of Alloy

Domains. The domain paragraph introduces basic sets that
partition the universe of atoms. Alloy is strongly but im-
plicitly typed; there is a basic type associated with each
domain (which in Z would be declared explicitly as a
‘given type’). Attribute, and Value model respectively the
attributes and values that may appear in a query and a da-
tabase. Record models the set of records that exist in a
database. Unlike a given type, a domain is a set of atoms
that exist in a particular state and not a platonic set of pos-
sible atoms. So Record represents a set of records in a
particular configuration, not the set of all imaginable re-
cords.

Multiplicities and Mutabilities. The symbols + (one or
more), ! (exactly one) and ? (zero or one) are used in dec-
larations to constrain sets and relations. The declaration

r : S m -> T n
where m and n are multiplicity symbols, makes r a relation
from S to T that maps each S to n atoms of T, and maps m
atoms of S to each T. So recDB, for example, maps at least
one Value to each Record, which informally means that all
records appear in some value. Similarly, the declaration

S : T m
Lookup-Name(T,n)
 S ← the set of all possible records
 for each av-pair p := (na, nv) in n

 Ta ← the child of T such that
 Ta’s attribute = na’s attribute
 if Ta = null
 continue

 if nv = wildcard // wild card matching

 S’ ← φ
 for each Tv which is a child of Ta

 S’ ← S’ ∪ all of the records in the
 subtree rooted at Tv
 S ← S ∩ S’

 else // normal matching
 Tv ← the child of Ta such that
 Tv’s value = nv’s value
 if Tv is a leaf node or p is a leaf node
 S ← S ∩ the records of Tv
 else
 S ← S ∩ Lookup-Name(Tv, p)

 return S ∪ the records of T

Figure 2. Lookup-Name pseudocode from [1]
 database shown in figure 1, the first execution of the
loop sets S to be {N1,N2}, while the intersection in the
ond execution of the loop sets it equal to {N1}, which
turned as the result.
he inventors of INS claim [1] that in the execution of

algorithm ‘omitted attributes correspond to wildcards’.
 analysis establishes this to be false (Section 4.2).

 Modeling INS

 formalization of the core model of the naming scheme
NS is written in Alloy, a first-order notation with tran-
e closure, that attempts to combine the best of features
 [13] and UML [11]. From UML and its predecessors,
kes various declaration shorthands, navigations, and a

us on set-valued rather than relation-valued expres-
s; from Z, it takes schema structuring and a simple set-
retic semantics.
n Alloy model is built by layering properties using

junction, in contrast to operational languages in which
model is given by an abstract program. This allows

tial models to be built, in which constraints describe
 state components are related to one another, without

licit rules for how each component is updated.
 detailed rationale for Alloy’s design is given else-

re [6].

makes S a set of m atoms drawn from the set T. So Wild-
Card, for example, is a set of values with one element – ie,
a scalar. Omission of a multiplicity symbol implies no
constraint.

The keyword fixed introduces a mutability constraint. A
set S declared to be fixed is unchanging: an object cannot
be a member of S at one time and a non-member at an-
other. So the declaration of WildCard as fixed simply
means that the same value must be used consistently to
represent wildcards.

Expressions. All expressions denote sets of atoms. The
conventional set operators are written in ASCII form: +
(union), & (intersection), - (difference). The navigation
expression e.r denotes the image of the set e under the
relation r: that is, the set of atoms obtained by ‘navigating’
along r from atoms in e. In e.+r, the image under the tran-
sitive closure of r is taken instead, while * and ~ denote
reflexive transitive closure and transpose. Scalars are
treated as singleton sets. This allows us to write naviga-
tions more uniformly, without converting between sets and
scalars or worrying about the difference between functions
and more general relations. So the expression

Root.attQ & Root.attDB
for example, denotes the set of attributes common to both
the query and the database at the top level.

Formulas. Alloy uses the standard logical operators,
written in programming-language form: && (and), || (or)
and not. There are two elementary formulas: s in t, which

says that the expression s denotes a subset of the expres-
sion t (or membership when s is a scalar), and s = t, which
says that the expressions denote the same set. Logical op-
erator -> denotes implication.

Quantifiers. The existential and universal quantifiers
are written some and all. Less conventionally, no x | F and
sole x | F mean that there is no x and at most one x that
satisfies F. Quantifiers are used in place of set constants,
so

no Root.attQ & Root.attDB
for example, says that there is no attribute in the intersec-
tion of Root.attQ and Root.attDB. Bounds of quantified
variables may optionally be omitted; in

all v | v.immFolQ = v.attQ.valQ
the variable v is inferred to belong to domain Value, and
could have been written equivalently as

all v : Value | v.immFolQ = v.attQ.valQ
Here, we have omitted most bounds for brevity’s sake,

but used variable names consistently to avoid confusion:
variables beginning with a, v, and r are used for attributes,
values, and records, respectively.

Paragraphs. An Alloy model is divided into paragraphs
much like Z schemas, but Alloy distinguishes different
kinds of constraints. An invariant (introduced by the key-
word inv) models a constraint in the world being modeled;
a definition (def) defines one variable in terms of others,
and can in principle always be eliminated along with the
variable being defined. An assertion (assert) is a putative
theorem to be checked. A condition (cond) is a constraint
whose consistency is to be checked, but unlike an invari-
ant is not required always to hold.

An operation (op) specifies transitions of the model
with constraints that relate pre-states and post-states, the
latter being referred to by priming the names of state com-
ponents.

3.2. Alloy model of INS

Our model of INS (Figure 3), based on the INS description
in [1], focuses on the abstract data structures representing
a query and a database, and the behavior of Lookup-Name.
We also capture the constraints imposed by valid additions
to the database.

The query is modeled as two relations, attQ and valQ,
and the database as three relations, attDB, valDB, and
recDB. Well-formedness constraints are expressed as Al-
loy invariants. Lookup-Name is modeled by a relation
lookup. (Alloy actually has operations, which we use later,
but they may not be recursive. Since the definition of this
operation is recursive, it is more convenient to model it as
a relation.)

In more detail, the components are:

· the domains Attribute, Value, Record, that represent the
sets of attributes, values, and records;

· WildCard, which is designated to be a special Value;
· Root, a unique Value that acts as both the root of the

query to resolve, and the database to search;
· valQ and attQ, relations that map an attribute to its

child value, and a value to its children attributes respec-
tively, in the query. The query of figure 1 is represented
by

attQ = {Root → {building, service}}

 valQ = {building → NE-43, service → camera};
· valDB and attDB, relations that similarly map an attrib-

ute to the possible values it can take and a value to its
descendant attributes respectively, but in the database.
The database of figure 1 would have

attDB = {Root → {building, service}}

 valDB = {building → {NE-43}, service → {camera,
printer}};

· recDB, a relation that maps a value to records. The da-
tabase of figure 1 would have

recDB = {NE-43 → {N1, N2}, camera → {N1},
printer → {N2}};

· immFolQ and immFolDB, defined relations that map a
value to possible values its children attributes can take
in a query and a database respectively;

· immPreDB, a defined relation that is the transpose of
immFolDB;

· lookup, the relation that models the Lookup-Name
method, and maps each value v to a set of records;
these records model the return value of Lookup-Name
when invoked on the av-pair containing the value v and
sub-database rooted at value v; thus Root.lookup is the
result of resolving the query in the database.
This completes the definition of the domain and state

and we now describe the constraints in our model.
Input database and query are non-null (NonEmpty).
WildCard does not appear in the database (WC1), and

no attribute specializes it in the query (WC2). Also, it does
not contain any records (WC3).

The structure of query is constrained by the following
invariants:

· no attribute maps to root under the valQ relation, i.e.
root has no ascendants (Q1);

· if a non-root value exists in the query, it has exactly
one ascendant (Q2);

· if an attribute exists in the query, it has exactly one de-
scendant value (Q3) and one ascendant value (Q4);

· the query data structure is acyclic (Q5); this is ex-
pressed using the transitive closure operator;

Similar invariants (DB1-5) also hold for validating the
database.

Add-Name is safely abstracted by modeling the con-
straints it imposes on the database. Add1 just requires that
no service satisfies all demands. Add2 says that a value not
appearing in the database does not contain any records.
When an advertisement is added to a database, its leaf
nodes contain the corresponding record (Add3). Moreover,
since only leaf nodes contain that record any ascendant
nodes do not contain it (Add4). Finally, since each attrib-
ute has exactly one corresponding value in an advertise-
ment, sibling values do not share a record (Add5).

Lookup-Name is modeled by three mutually exclusive
invariants. Lookup1-2 handle the case without wild cards,
while Lookup3 adds the functionality for handling them.

Lookup1 says that if v corresponds to a leaf value in the
database or to a leaf av-pair in the query, then v.lookup is
just the records contained in that value. This does imply
that Lookup-Name may return records even if the database
is less specific than the query. This is so because missing
attributes are treated as wildcards by INS inventors.

Lookup2 is more subtle and uses the auxiliary condition
indexedSubset, which provides the functionality of taking
the intersection over a collection of sets. It uses the simple
mathematical equivalence that a set, S, equals the intersec-
tion of an indexed collection of sets Si if and only if S is a
subset of each Si and addition of any new element to S
violates some subset constraint. Lookup3 is similar, and
makes use of indexedSuperset, which behaves as a dual to
indexedSubset.

4. Analyzing the model

We analyzed our model using the Alloy Constraint Ana-
lyzer. The Alloy Constraint Analyzer [7,8] is a tool for
analyzing object models with a variety of uses. At one
end, it acts as a support tool for object model diagrams,
checking for consistencies of multiplicities and generating
sample snapshots. At the other end, it embodies a light-
weight formal method in which subtle properties of behav-
ior can be investigated. Its input language Alloy supports a
declarative description of state and behavioral properties,
by conjoining constraints. An Alloy model can, therefore,

Figure 3. Alloy model of INS name resolution

model INS {
 domain {Attribute, Value, Record}
 state{ disjoint Root, WildCard : fixed Value!

valQ : Attribute? -> Value?
 attQ : Value? -> Attribute
 valDB : Attribute? -> Value
 attDB : Value? -> Attribute
 recDB : Value+ -> Record
 immFolQ : Value -> Value
 immFolDB (~immPreDB): Value -> Value
 lookup : Value -> Record}
 inv NonEmpty {some Root.attQ && some Root.attDB}

 inv WC1 {no a | WildCard in a.valDB}
 inv WC2 {no WildCard.attQ}
 inv WC3 {no WildCard.recDB}

 def immFolQ {all v | v.immFolQ = v.attQ.valQ}
 inv Q1 {no Root.~valQ}
 inv Q2 {all v : Value - Root | some v.attQ -> some v.~valQ}
 inv Q3 {all a | some a.~attQ -> some a.valQ}
 inv Q4 {all a | some a.valQ
 -> (one a.valQ && one v | a in v.attQ)}
 inv Q5 {no v | v in v.+immFolQ}

 def immFolDB {all v | v.immFolDB = v.attDB.valDB}
 inv DB1 {no Root.~valDB}
 inv DB2 {all v : Value - Root | some v.attDB -> some v.~valDB}

 inv DB3 {all a | some a.~attDB -> some a.valDB}
 inv DB4 {all a | some a.valDB -> one v | a in v.attDB}
 inv DB5 {no v | v in v.+immFolDB}

 inv Add1 {no Root.recDB}
 inv Add2 {all v | no v.~valDB -> no v.recDB}
 inv Add3 {all v | some v.~valDB && no v.attDB -> some v.recDB}
 inv Add4 {all v | all r: v.recDB | no v1: v.+immPreDB | r in v1.recDB}
 inv Add5 {no v1,v2 | v1 != v2 && (some v1.recDB & v2.recDB) &&
 some v1p:v1.*immPreDB, v2p:v2.*immPreDB |
 v1p != v2p && v1p.~valDB = v2p.~valDB}

 cond indexedSubset(r:Record,v:Value)
 {all a : v.attQ & v.attDB, v1 : a.valQ & a.valDB |
 r in v1.lookup + v.recDB}
 cond indexedSuperset (r : Record, v:Value)
 {all v1 : v.immFolDB | v1.recDB + v.recDB in r}

 inv Lookup1 {all v:Value - WildCard |
 (no v.attQ || no v.attDB) -> v.lookup = v.recDB}
 inv Lookup2 {all v:Value - WildCard |
 (some v.attQ && some v.attDB)
 -> (indexedSubset(v.lookup,v) &&
 no r : Record - v.lookup | indexedSubset(v.lookup+r,v))}
 inv Lookup3 {all v:WildCard | some v.~valQ.valDB
 -> (indexedSuperset(v.~immFolQ.lookup, v.~immFolQ) &&
 no r : v.~immFolQ.lookup |
 indexedSuperset(v.~immFolQ.lookup - r, v.~immFolQ))}}

be developed incrementally, with the Alloy Constraint
Analyzer investigating whatever has been developed so
far.

Alloy is not a decidable language, so its constraint ana-
lyzer cannot provide a sound and complete analysis. In-
stead, it conducts a search within a finite scope chosen by
the user that bounds the number of elements in each primi-
tive type. Here, for example, an analysis of a theorem
about Lookup-Name for a scope of 4 would account for
every possible lookup in which the query and database are
constructed from at most 4 attributes, 4 values and 4 re-
cords. Needless to say, this is a huge space that could not
be covered by traditional simulation methods.

The Alloy Constraint Analyzer’s output is either an in-
stance – a particular state or transition – or a message that
no instance was found in the given scope. When checking
an assertion, an instance is a counterexample to the theo-
rem. When exercising an invariant or operation, an in-
stance is a demonstration of consistency.

Theoretically, when no instance is found, the user is not
entitled to infer anything. However, in practice, if an in-
stance exists, there is one usually in small scope. So when
none is found, it is quite likely that an assertion holds, or
that an invariant is inconsistent.

The Alloy Constraint Analyzer works by translating the
problem to be analyzed into a (usually huge) Boolean
formula. This formula is handed to a SAT solver, and the
solution is translated back by the Alloy Constraint Ana-
lyzer into the language of the model. The algorithm is de-
scribed in [7].

The Alloy Constraint Analyzer comes with a suite of
public domain SAT solvers including SATO [14] and

RelSAT [3], whose parameters can be adjusted within the
Alloy Constraint Analyzer itself.

4.1. When INS works

We check the validity of 3 theorems (Figure 4) concerning
the soundness of INS using the Alloy Constraint Analyzer.
First of all we assume that the intentional name being re-
solved is added to the database using the Add-Name opera-
tion, and it exists in the database at the time of resolution.
Then we check:

· that Lookup-Name returns at least some record (Looku-
pOK1);

· that all records returned by Lookup-Name are valid
(LookupOK2);

· that all valid records are returned by Lookup-Name
(LookupOK3).

cond QExistsDB {all a,v | a.valQ= v
 -> (a.valDB = v && a.~attQ = a.~attDB)}
 cond AlreadyAdded
 {QExistsDB &&
 some r | all v | some v.~valQ && no v.attQ -> r in v.recDB}
 cond IsLeafAVPair(a:Attribute, v:Value){a.valQ=v && no v.attQ}
 cond IsValidRecord(r:Record)
 {all a,v | IsLeafAVPair(a,v) ->
 r in v.recDB + v.+immPreDB.recDB}
 cond SomeRecordReturned {some Root.lookup}
 cond AllRecordsReturnedAreValid
 {all r | r in Root.lookup -> IsValidRecord(r)}
 cond AllValidRecordsAreReturned
 {all r | IsValidRecord(r) -> r in Root.lookup}

 assert LookupOK1 {AlreadyAdded -> SomeRecordReturned}
 assert LookupOK2 {AlreadyAdded -> AllRecordsReturnedAreValid}
 assert LookupOK3 {AlreadyAdded -> AllValidRecordsAreReturned}

Figure 4. Three basic theorems

 assert LookupOK4 {no Root.attDB & Root.attQ -> no Root.lookup}

 cond NoRecordOnAVMismatch
 {all a,r | (a in Root.attQ & Root.attDB && no a.valQ & a.valDB
 && r in a.valDB.recDB && not a.valQ=WildCard)
 -> not r in Root.lookup}
 assert LookupOK5 {NoRecordOnAVMismatch}

 cond SomeCommonAV
 {some a | a in Root.attQ & Root.attDB && some a.valQ & a.valDB}
 assert LookupOK6{SomeCommonAV -> NoRecordOnAVMismatch}

 cond QMatchesDB {QExistsDB && all a | some a.~attQ & a.~attDB}
 assert LookupOK7 {QMatchesDB -> some Root.lookup}

 cond RConformsQ (r:Record)
 {all a,v | IsLeafAVPair(a,v)
 -> some v1 | r in v1.recDB && v in v1 + v1.immPreDB}
 assert LookupOK8
 {all r | QExistsDB && RConformsQ(r) -> r in Root.lookup}

 op RemoveWildCard {
 all a | a.valQ != WildCard -> a.valQ' = a.valQ
 all a | a.valQ = WildCard -> no a.valQ'
 all v | all a:v.attQ | a.valQ = WildCard -> v.attQ' = v.attQ - a
 all v | all a:v.attQ | a.valQ != WildCard -> v.attQ' = v.attQ
 all v | no v.attQ -> no v.attQ'
 all v | v.attDB' = v.attDB && v.recDB' = v.recDB &&
 v.immFolDB' = v.immFolDB && v.immPreDB' = v.immPreDB
 all a | a.valDB' = a.valDB
 }
 assert LookupOK9 {RemoveWildCard -> Root.lookup= Root.lookup'}

Figure 5. More theorems

For now, we consider a record to be valid if and only if
it is included in the set of records of all leaf values, that
match those of the query, or their parents. A more general
treatment is presented in Section 4.3, where we argue that
the validity semantics in INS need a reexamination to
make the naming more versatile.

In all three cases, the Alloy Constraint Analyzer com-
pletes its search without finding a counterexample. This
gives us confidence that INS’s resolution mechanism is
sound when the intentional name being resolved appears
exactly in the database due to an advertisement.

4.2. Problems with INS

We uncovered several flaws in the Lookup-Name algo-
rithm once we relaxed the condition that the intentional
name appear in its entirety (Figure 5). This came to us as a
surprise, since generality and expressiveness were two of
the primary concerns in the design of INS.

Our first test (LookupOK4) checks the claim that if the
database has no attributes in common with the query at the
top level, then Lookup-Name should return the empty set.
The Alloy Constraint Analyzer quickly generates a coun-
terexample. Figure 6 shows a graphical illustration of this
counterexample. As it happens, the INS algorithm returns
all records in the database if there are no matching attrib-
utes at the top level! This problem arises since the algo-
rithm tries to model missing attributes as being equivalent

to wild cards. As we see below, this putative correspon-
dence gives rise to several other flaws.

Our next assertion (LookupOK5) tests the case in which
there is some common top level attribute. Naturally, we
believed that if a value in the database had no matching
av-pair in the query, while its parent attribute had one,
then the records of this value would not appear in the re-
sult of Lookup-Name. The Alloy Constraint Analyzer pro-
duces a counterexample to this that appears in figure 7.

This flaw has serious implications, since a client asking
for a printer service could get back a camera! It arises be-
cause Lookup-Name does not handle a mismatch when
comparing values (see figure 2). For example, if a query
seeking a scanner service in building NE-43 is resolved in
the database shown in figure 1, both N1 and N2 would be
returned.

We then pose the same question under the assumption
that the database and the query have a common attribute at
top level and moreover one of the corresponding values
also match (LookupOK6).

This time, not surprisingly though, the Alloy Constraint
Analyzer disproves the assertion with the counterexample
illustrated in figure 8. The root of this bug is the same as
that illustrated by LookupOK5.

The published description of Lookup-Name [1] says:
This algorithm uses the assumption that omitted
attributes correspond to wildcards; this is true
for both queries and advertisements.

query

A1

V0

database

A0

V0
N0

Lookup-Name(database, query) = {N0}

Figure 6. Counterexample to LookupOK4

query

A0

V0

database

A0

V1
N0

Lookup-Name(database, query) = {N0}

Figure 7. Counterexample to LookupOK5

V0

query

A1 A0

V1 V2

database

A1 A0

V1

N1

Lookup-Name(database, query) = {N1}

Figure 8. Counterexample to LookupOK6
Lookup-Name(database, query) = {}

N1

V1

query

A0 A1

V0 V1

database

A0 A1

V0

N0

Figure 9. Counterexample to LookupOK7

We put this claim to the test in the case of queries as
follows. We defined an Alloy operation RemoveWildCard
that removes wildcards from a query. The operation mu-
tates the query by removing the av-pair(s) containing wild-
card(s), while maintaining the state of other av-pairs and
the original database. Our assertion, LookupOK9, says that
the effect of a lookup should be the same before and after
this mutation.

This assertion is not valid; a counterexample is shown
in Figure 10. Before mutation (ie, with wildcards) the
name records N0 and N1 are returned; after mutation (ie
with omission in place of wildcards), only N0 is returned.

For the case of advertisements, one of our analyses
(LookupOK7) already disproves the claim (Figure 9). It
also points out the difference between the intentional name
simply being ‘present’ in the database by virtue of a corre-
spondence in the data structures and it having been
‘added’ to the database by an advertisement. If the con-
tested equivalence were to hold, Root.lookup should be
{N0,N1}, but it is empty.

The problems exposed by LookupOK4, LookupOK5
were already known to the developers of INS. The other
problems were apparently not known, and represent bugs
not only in the description of INS but also in its imple-
mentation.

4.3. Naming Issues

It seems reasonable to treat a service that has no conflict-
ing functionality to what a client seeks, but specialises
some of the av-pairs in the query, as a valid result in re-
solving that query. For instance, if an application requires
a picture of the Whitehouse and does not care about any
particular area (or does not have sufficient information to
express that), a service that advertised as providing one in

the West Wing of the Whitehouse should certainly be
treated as valid.

A strong reason to allow such conformance is that it is
the service providers who have the exact details of the
services that they provide, whereas clients who are only
seeking services need some additional flexibility in form-
ing their queries.

We test the behavior of INS in such a situation by for-
mulating the assertion LookupOK8. RConformsQ defines a
record to conform to a query if it appears in the values in
the database corresponding to each leaf av-pair in the
query or one of their descendant values. LookupOK8 only
tests if all the records that conform to the query according
to this definition appear in the result of Lookup-Name. The
Alloy Constraint Analyzer generates a counterexample
(Figure 11) showing that such a record is not necessarily
returned.

Treating missing attributes as wildcards is certainly one
way to add this flexibility but incorporating it correctly in
INS requires a significant alteration to the implementation
of Lookup-Name.

Table 1 summarizes the analyses we performed on INS.

5. Performance

An implementation of INS appears in [12]. The Java code
is about 2300 lines. About 900 of these lines constitute the
testing code. Our model of the core functionality of the
naming scheme of INS consists of 50 lines of Alloy. The
theorems that we tested consist of another 44 lines of Al-
loy code.

The counterexamples appearing in section 4.2 were
generated by the Alloy Constraint Analyzer in no more
than 6 sec and required at most 4 elements in any domain
with the exception of LookupOK6 that needed 5 elements
in the Value domain.

Moreover, the Alloy Constraint Analyzer analysis of
the three theorems in section 4.1 took between 14 sec and

Lookup-Name(database, query) = {N0, N1}
Lookup-Name(database, query’) = {N0}

query’

A0

V1

N1

database

A0

V1

A1

V0

N0

query

A0

V1

A1

*

Figure 10. Counterexample to LookupOK9

query

A1

V1

database

A1

V1

N0
Lookup-Name(database, query) = {}

A0

V0

Figure 11. Counterexample to LookupOK8

30 sec using a scope of 5 in each domain and generated no
counterexamples. It comes as no surprise that it is more
time consuming to check valid assertions since the entire
space within the specified scope must be exhausted.

 These results are tabulated in Tables 2 and 3. A 300
MHz Celeron processor with 128 MB of memory was
used to perform all analyses.

We were able to generate counterexamples without in-
corporating the wildcards, which were added when Re-
moveWildCard was introduced. This only emphasizes one
of the various uses of incremental modeling.

6. Related Work

The Alloy Constraint Analyzer has not been used previ-
ously for the analysis of a recursive algorithm of this sort.
We have recently recast a model of COM originally writ-
ten in Z into Alloy, and shown that its analysis can be
automated [9].

Many analysis tools are available, with varying degrees
of automation and coverage. They can be broadly divided
into the following categories:

· Model checkers such as SPIN [5] provide similar ex-
haustive search to the Alloy Constraint Analyzer. They
generally require the system to be described as an ab-
stract program and do not support partial, declarative
specification. In this study, for example, it would not
have been possible to analyze Lookup-Name in isola-
tion. The input languages of model checkers generally
provide only rudimentary data structures, and are not
designed for the kind of structural complexity of this
problem. Wing and Vaziri-Farahani [16] use SMV [17]
to verify cache coherence protocols by abstracting
away data structures.

· Theorem provers such as PVS [10] can, unlike the Al-
loy Constraint Analyzer, prove a theorem for all possi-
ble cases, thus offering greater confidence, but at
greater expense. Theorem provers tend not to fail
gracefully, and do not generally provide counterexam-

ples
part
proo

· Spe
tool
from
the
cati
tool
sear
the
We

tary to
might
straint
ples in

7. C

Constr
ing sc
design
its des
fact fal

Our
about 1
the Jav
quire w

Tabl

I
L
L
L
L
L
L

Asse

Looku
Every
Every
No rec
No rec
Recor
Missin
Missin
Table 2. Exhaustive search performance

Scope

Invariant

3

4

5

LookupOK1
LookupOK2
LookupOK3

1 s
1 s
0 s

3 s
2 s
4 s

17 s
14 s
30 s

e 3. Counterexample detection performance
Table 1. Summary of analyses

rtion checked Result
p-Name returns something Yes
 record returned is valid Yes
 valid record is returned Yes
ord if no attributes match No
ord if no values match No

d returned has matching value No
g attribute ~ wildcard (queries) No
g attribute ~ wildcard (advertisements) No
. They tend to require considerable expertise on the
 of the user, in the development of lemmas and
f strategies.

cification animation tools, such as IFAD’s VDM
 [2], allow an abstract specification to be executed
 given states. Executability is obtained by limiting

language, ruling out the kind of declarative specifi-
on that we used here. Also, like conventional testing
s, they generally do not perform an exhaustive
ch, but rather check cases specified explicitly by
user.
 view the Alloy Constraint Analyzer as complemen-
 these other tools. A theorem prover, for example,
be used to prove a theorem after the Alloy Con-
Analyzer analysis has failed to find counterexam-

 a reasonable scope.

onclusions and Future Work

ucting and analyzing a model of an intentional nam-
heme exposed a number of subtle problems in its
, and showed that one of the basic intuitions held by
igners that motivated aspects of the design was in
se.
 original model consisted of six domains and was
20 lines long. Its structure corresponded closely to
a implementation, which naturally leads us to in-
hether such a model might be extracted automati-

Scope

nvariant
Val Att Rec

Time

ookupOK4
ookupOK5
ookupOK6
ookupOK7
ookupOK8
ookupOK9

3
4
5
4
4
4

2
1
2
2
2
2

1
1
1
2
1
2

0 sec
0 sec
6 sec
1 sec
1 sec
4 sec

cally. Using our tool we succeeded in trimming it down to
three domains and less than half its original length. The
final model was about one twentieth of the size of the im-
plementation of the Lookup-Name operation and its test
drivers.

Moreover, we were able to formulate the operation us-
ing just one parameter. This was so because the first call to
Lookup-Name only involves roots, and subsequent recur-
sive calls are always made on matching values. This sim-
plification could be carried over into the implementation.

One of the limitations of our new model is that it lacks
the capability of representing repeated values and attrib-
utes in the database or the query. So if the behavior of
some name resolution function is erratic only when multi-
ple nodes have the same value, it would go undetected in
the new model. Nonetheless, with this limitation we were
able to greatly expedite the Alloy Constraint Analyzer
analysis.

Formulation of Alloy invariants that capture the behav-
ior of Lookup-Name required some subtle analysis of the
algorithm since Alloy does not currently support sequen-
tial operations.

Another feature that we would like to add to Alloy is to
re-use constraints for similar data structures. For example,
in figure 3, despite the very similar representation of query
and database we required both invariants Q1–5 and DB1–
5.

This work was carried out when the counterexamples
produced by the Alloy Constraint Analyzer were textual.
That required tedious conversions for graphical illustra-
tions. However, the current version of our tool automati-
cally generates graphical counterexamples isomorphic to
those shown in this paper.

We believe that the use of this kind of lightweight
modeling has great benefits, and could result in consider-
able savings by detecting errors prior to implementation,
especially structural flaws that are particularly hard to
correct later.

The semantics of a naming scheme such as this is a
subtle issue. We believe we can extract necessary proper-
ties for the soundness of a general purpose intentional
naming scheme from our model, and we plan to pursue
this further.

Acknowledgements

We would like to thank William Adjie-Winoto for
explaining INS to us and giving us useful feedback.

References
[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan,

and Jeremy Lilley. The Design and Implementation of an

Intentional Naming System. Proc. 17th ACM SOSP, Kiawah
Island, SC. Dec. 1999.

[2] Sten Agerhold, and Peter Gorm Larsen. The IFAD VDM
Tools: Lightweight Formal Methods. FM-Trends 1998: 326-
329.

[3] R.J. Bayardo Jr., and R. C. Schrag. Using CSP look-back
techniques to solve real world SAT instances. Proc. 14th
National Conf. on Artificial Intelligence, 203–208, 1997.

[4] John V. Guttag and James J. Horning. Formal Specification
as a Design Tool. Proc. Conf. on Principles of
Programming Languages (POPL 80), Las Vegas, Nevada,
1980, pp. 251–261.

[5] Gerard J. Holzmann. The Model Checker Spin. IEEE
Transactions on Software Engineering, Special issue on
Formal Methods in Software Practice, Volume 23, Number
5, May 1997, 279-295.

[6] Daniel Jackson. Alloy: A Lightweight Object Modeling
Notation. Technical Report 797, MIT Laboratory for
Computer Science, Cambridge, MA, February 2000.

[7] Daniel Jackson. Automating First-Order Relational Logic.
To appear, Proc. Foundations of Software Engineering, San
Diego, California, November 2000.

[8] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa:
The Alloy Constraint Analyzer. Proc. International
Conference on Software Engineering, Limerick, Ireland,
June 2000.

[9] Daniel Jackson, and Kevin Sullivan. COM Revisited: Tool-
Assisted Modeling and Analysis of Software Structures. To
appear, Proc. Foundations of Software Engineering, San
Diego, California, November 2000.

[10] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich
von Henke. Formal verification for fault-tolerant
architectures: Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107-125,
February 1995.

[11] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison Wesley
Object Technology Series, 1998.

[12] Elliot Schwartz. Design and Implementation of Intentional
Names. S.M. Thesis, MIT Laboratory of Computer Science,
Cambridge, MA, June 1999.

[13] J. Michael Spivey. The Z Notation: A Reference Manual.
Second ed, Prentice Hall, 1992.

[14] Hantao Zhang. SATO: An Efficient Propositional Prover.
Proc. International Conference on Automated Deduction
(CADE-97).

[15] Daniel Jackson and Jeannette Wing. Lightweight Formal
Methods, IEEE Computer, April 1996.

[16] Jeanette Wing and Mandana Vaziri-Farahani. A Case Study
in Model Checking Software Systems. Technical Report
CMU-CS-96-124, Carnegie Mellon University, Pittsburgh,
PA.

[17] K. L. McMillan. Symbolic Model Checking: An Approach
to the State Explosion Problem. PhD Thesis, Carnegie
Mellon University, 1992. CMU-CS-92-131.

	Cambridge, MA 02139
	1. Introduction
	1.1. Intentional Naming
	1.2.	 Alloy Analysis

	2. Overview of INS
	3.	 Modeling INS
	3.1.	 Basic components of Alloy
	3.2.	 Alloy model of INS

	4. Analyzing the model
	4.1. When INS works
	4.2. Problems with INS
	4.3. Naming Issues

	5. Performance
	6.	 Related Work
	7.	 Conclusions and Future Work
	Acknowledgements
	References

