MultiJava:
Modular Open Classes and Symmetric Multiple Dispatch
for Java

Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein

TR #00-06a
April 200Q Revised July 2000

An earlier version o this technicd report was titled “MultiJava: Moduar Symmetric Multiple Dispatch and
Extensible Classs for Java.”

Keywords. Open classs, open oljects, extensible classs, extensible external methods, external methodks,
multimethods, generic functions, object-oriented programming languages, single dispatch, multiple dispatch,
encapsulation, moduarity, static typedecking, subtyping, inheritance, Javalanguage, M ultiJava language, separate
compil ation.

1999 CR Categories: D.1.5 [Programming Techniques] Objed-oriented programming; D.3.2 [Programming
Languages] Language Classfications — object-oriented languages; D.3.3 [Programming Languages] Language
Constructs and Feaures — abstrad data types, classes and oljects, control structures, inheritance, modues,
padkages, patterns, procedures, functions, and subroutines; D.3.4 [Programming Languages] Processors —
compil ers; D.3.m [Programming Languages] Miscellaneous — open classes, multimethods, generic functions.

To appear in OOPSLA 2000, Minneapoli s, Minnesota, October 2000.

Copyright © ACM, 2000Permisson to make digital or hard copies of this work for personal or classroom useis
granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bea this naticeand the full citation on the first page. To copy otherwise, or republish, to post on severs or
to redistribute to lists, requires prior spedfic permisson and/or afee.

Department of Computer Science
226 Atanasoff Hall
lowa State University
Ames, lowa50013104Q USA



MultiJava:
Modular Open Classes and Symmetric Multiple Dispatch
for Java

Curtis Clifton and Gary T. Leavens
Department of Computer Science
lowa State University
226 Atanasoff Hall
Ames, 1A 50011-1040 USA

_ +1 515 294 1580
{cclifton, leavens}@cs.iastate.edu

ABSTRACT

We present MultiJava, a backward-compatible extension to Java
supporting open classes and symmetric multiple dispatch. Open
classes alow one to add to the set of methods that an existing class
supports without creaing distinct subclasses or editing existing
code. Unlike the “Visitor” design pettern, open classes do nd
require advance planning, and open classes preserve the ability to
add new subclasses modularly and safely. Multiple dispatch offers
several well-known advantages over the single dispatching o
conventional object-oriented languages, including a simple solution
to some kinds of “binary method’ problems. MultiJava's multiple
dispatch retains Java's existing classbased encapsulation
properties. We adapt previous theoreticd work to alow compil ation
units to be statically typechecked moduarly and safédly, ruling ou
any link-time or run-time type erors. We dso present a novel
compilation scheme that operates modularly and incurs
performance overhead only where open classes or multiple
dispatching are actually used.

1. INTRODUCTION

In this paper we introduce MultiJava, a backward-compatible
extension to Javall [Godling et al. 00, Arnold & Gosling 98] that
supports open classes and symmetric multiple dispatch. An open
classis one to which new methods can be added without editing the
classdirectly [Chambers 98, Millstein & Chambers 99]. An open
classallows clients to customize their interface to the needs of the
client's applicaion. Unlike austomization through subclasses, in-
place extension d classes does not require eisting code
referencing the class to be changed to use the rew subclass instead.
The “Visitor” design pattern [Gamma et al. 95, pp 331-344] also is
intended to allow new client-spedfic operations to be alded to an
existing family of classes, but unlike open classes, the Visitor
pattern requires class implementors to plan ahead and buld
infrastructure in the class with which clients can indirectly add
behavior to the class. Moreover, unlike open classes, use of the
Visitor pattern makes it difficult to add new subclasses modularly,
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since the eisting Visitor infrastructure must be edited to account
for the new subclasses. Open classes can be used to organize
“cross-cutting” operations separately from the dassesto which they
belong, a key feature of asped-oriented programming [Kiczales et
al. 97]. With open classes, object-oriented languages can support
the addition of both new subclasses and new methods to existing
classes, relieving the tension that has been observed by others
[Cook 90, Odersky & Wadler 97, Findler & Flatt 98] between these
forms of extension.

Multiple dispatch, found in Common Lisp [Steele 90, Pagicke 93],
Dylan [Shalit 97, Feinberg et al. 97], and Cecil [Chambers 92,
Chambers 95], dlows the method invoked by a message send to
depend on the run-time dasses of any subset of the agument
objects. A method that takes advantage of the multiple dispatch
mechanism is called a multimethod. In contrast, single dispatch,
foundin C++, Smalltak, and Java, selects the method invoked by a
message send based on the run-time dass of only the distinguished
recdver argument. In C++ and Java the static types of the
arguments influence method selection via static overload
resolution; the dynamic types of the aguments are not involved in
method dspatch. Multimethods provide a more uniform and
expressve approach to overload resolution. For example, they
support safe @variant overriding in the face of subtype
polymorphism, providing a natural solution to the “binary method”
problem [Bruce ¢ al. 95].

Multiple dispatch is symmetric if the rules for method lookup treat
all dispatched arguments identically. Asymmetric multiple dispatch
typically uses lexicographic ordering, where earlier arguments are
more important; a variant of this approach selects methods based
partly on the textua ordering of their declarations. We believe that
symmetric multiple dispatch is more intuitive and less error-prone,
reporting possible ambiguities rather than silently resolving them in
potentially unexpected ways. Symmetric multiple dispatch is used
in Cecil, Dylan, Kea [Mugridge et al. 91], the A&-calculus
[Castagna & da. 92, Castagna 97], ML, [Bourdoncle & Merz 97],
and Tuple [Leavens & Millstein 98].

A major obstacle to adding symmetric multimethods to an existing
statically-typed programming language has been their modularity
problem [Cook 90]: independently-developed modules, which
typecheck in isolation, may cause type errors when combined. In
contrast, object-oriented languages without multimethods do ot
suffer from this problem; for example, in Java, one can safely
typecheck each compilation urit in isolation. Because of the
multimethod moddarity problem, previous work on adding
multimethods to an existing staticdly-typed olject-oriented
languege has either forced globa typechecking [Leavens &



public class Wil eLoopNode extends Node {
protected Node condition, body;
/* o0 %
publ i c void accept (NodeVisitor v) {
v.VvisitWileLoop(this);

}

}

public class | fThenNode extends Node {
protected Node condition, thenBranch;
/* L. *

publ i ¢ void accept (NodeVisitor v) {
v.visitlfThen(this);

Node
accept(NodeVisitor v)

A

WhilelL oopNode IfThenNode
accept(NodeVisitor v) accept(NodeVisitor v)

public abstract class NodeVisitor {
/* */

pubi ic abstract void visitWil eLoop( Wi | eLoopNode n);
public abstract void visitlfThen(IfThenNode n);

publ i c class TypeCheckingVisitor extends NodeVisitor {
/* */

publ ic void visitWwil eLoop( Wi | eLoopNode n) { n.getCondition().accept(this); /*
o ¥}

public void visitlfThen(lfThenNode n) { /*

[}

Figure 1: Javacode for some participants in the Visitor design pattern

Millstein 98 or has employed asymmetric multiple dispatch in
order to ensure moduarity [Boyland & Castagna 97]. Open classes
can suffer from a similar modularity problem, if two unrelated
clients each add the same method to the same class.

Our MultiJava language supports both open classes and symmetric
multiple dispatch while retaining Java’'s modular encapsulation,
typechecking, and compilation model. In particular, no rew link-
time or run-time typechecking or compilation needs to be
performed. We ahieve this goal by adapting previous work on
modular static typechedking for open classes and multimethods in
Dubious, a small multimethod-based core language [Millstein &
Chambers 99]. One of our contributions is the extension o this
previous theoretical result to the much larger, more cmplicated,
and more practical Java language. A second contribution is a new
compilation scheme for open classes and multimethods that is
modular (each classor class extension can be compiled separately)
and efficient (additional run-time cost is incurred only when
multimethods or class extenson methods are adualy invoked).
MultiJava is a conservative extension to Java existing Java
programs are legal MultiJava programs and heve the same
meaning. MultiJava retains  backward-compatibility and
interoperability with existing Java source and bytecade.

In the next two sedions we present MultiJava's support for open
classes and multiple dispatch. In Sedion 4 we more predsely
describe MultiJava's moduar static type system, and in Section 5
we outline the compilation of MultiJava source code into Java
bytecode. In Section 6 we discuss an alternative language design
for adding multiple dispatching to Java. Section 7 disausses related
work and Section 8 concludes with several avenuesfor future work.

2. OPEN CLASSES

2.1 Motivation

Java dlows a new subclass to be added to an existing class in a
modular way—without requiring any modifications to existing

code. However, Java (along with al other single-dispatch languages
of which we are aware) does nat dlow a rew method to be alded to
an existing class in a modular way. Instead, the programmer is
forced to add the new method directly to the associated class
declaration, and then to retypecheck and recompile the dass. Of

course, this requires access to the class's source code. Additionally,

the new operation is then visible to all programs that use the class.

Adding operations that are specific to a particular program can thus
padllute the interface of the modified class, resulting in presaure to
keep such ancillary operations out of the dass. However, leavingan
operation out of the class forfeits the benefits of runtime
dispatching on different subclasses of the dass, and it causes such
“outside” methods to be invoked differently from methods declared
inside the class declaration.

One potential approach to adding a new method to an existing class
moduarly is to add the new methodin a new subclass of the class.
This does not require modificaion of the origina class declaration
and allows new code to creae instances of the new subclass and
then access the new operation onsubclass instances. However, it
does not work if existing code already credes instances of the old
class, or if a persistent database of old class instances is present. In
such cases, non-modular conversions of existing code and
databases to use the new subclass would be required, largely
defeating the purpose of introducing the subclass in the first place.
This approach will also work poaly if new subclass objects are
passed to and later returned from existing code, since the eisting
code will return something whose static type is the old class,
requiring an explicit downcast in order to acass the new operation.

A second approach is to use the Visitor design pattern, which was
developed specificdly to address the problem of adding new
functionality to existing classes in amodular way. The basic ideais
to reify each operation into a dass, thereby allowing operations to
be structured in their own hierachy.

For example, consider the Node class hierarchy in Figure 1.
Instances of these classes are used by a compiler to form abstract
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Figure 2: Syntax extensions for MultiJava open classes
The grammar extends the Java syntax given in The Java Language Specification [Gosling, et al. 00, 82.4]. For standard Java
nonterminalswejust list the rew productions for MultiJava and ind cate the existence of the other productionswith anellipses
(...). Existing Java nonterminals are annatated with the pertinent section numbers from The Java Language Syecification

syntax trees. The compiler might perform severa operations on
these abstract syntax trees, such as typechedking and code
generation. These operations are structured in their own class
hierarchy, each operation becoming a subclass of an abstract
NodeVi si t or class. The client of an operation on nodesinvokes
theaccept method of anode, passinga NodeVi si t or instance
representing the operation to perform:

r oot Node. accept (new TypeChecki ngVisitor(..))

The accept method d each kind o node then uses double-
dispatching [Ingals 86] to invoke the visitor object’'s method
appropriate for that type of node.

The main advantage of the Visitor patternisthat new operations can
be aded modularly, without needing to edit any of the Node
subclasses: the programmer simply defines anew NodeVi si t or
subclass containing methods for visiting each class in the Node
hierarchy. However, use of the Visitor pattern brings svera
drawbadks, including the following, listed in increasing
importance:

» The stylized double-dispatching code is tedious to write and
prone to error.

» The need for the Visitor pattern must be anticipated ahead of
time, when the Node class is first implemented. For example,
had the Node hierarchy na been written with an accept
method, which alows visits from the NodeVi sitor
hierarchy, it would not have been possible to add typedcheding
functiondlity in a modular way. Even with the accept method
included, only visitors that require no additional arguments and
that return no results can be programmed in a natural way;
unanticipated arguments or results can be handled only
clumsily through state stored in the NodeVi si t or subclass
instance.

* Although the Visitor pattern alows the addition of new
operations moduarly, in so ddng it gives up the aility to add
new subclasses to existing Node classes in a modular way. For
example, if a new Node subclass were introduced, the
NodeVi si tor class and al subclasses would have to be
modified to contain a method for visiting the new kind of node.
Proposal's have been advanced for deding with thiswell-known
limitation [Martin 98, Nordberg 98, Vlissides 99], but they
suffer from additional complexity (in the form of hand-coded
type-cases and more complex class hierarchies) that make them
even more difficult and error-prone to use.

2.2 Open Classesin MultiJava

2.2.1 Declaring and Invcking Top-Level Methods

The open class feature of MultiJava alows a programmer to add
new methods to existing classes without modifying existing code
and without breaking the encapsulation properties of Java. The key
new language feaure involved is the top-level method declaration,
whose syntax is specified in Figure 2. Using top-level methods, the
functionality of the typechecking visitor from Figure 1 can be
written as follows:

/| compilation unit “ typeCheck”
package oopsl a. exanpl es;

/1 Methods for typedhedking
publ i ¢ bool ean Node.typeCheck()
[* o0
publ i c bool ean Wil eLoopNode. t ypeCheck()
{1* ... *
publ i c bool ean |fThenNode.typeCheck()
7= ... %}
A program may contain severa top-level method declarations that
add methods to the same class Asin Java, the bodies of top-level
methods may uset hi s to referencethe receiver object.

Clients may invoke top-level methods exactly asthey would use the
class'sorigina methods. For example, the t ypeCheck method of
r oot Node isinvoked as follows:

r oot Node. t ypeCheck()

where r oot Node is an instance of Node or a subclass. This is
allowed even if r oot Node was created by code that did not have
access to the t ypeCheck methods, or was retrieved from a
persistent database. Code can create and manipulate instances of
classes without being aware of all top-level methods that may have
been added to the classes; only code wishing to invoke a perticular
top-level method needs to be aware of its declaration.

2.2.2 Generic Functions, External and Internal
It is helpful at this point to define some technical terms.

Conceptually, one can think of each method in the program
(whether top-level or declared within classes) as implicitly
belonging to a generic function, which is a wlledion of methods
consisting of atop method and all of the methods that (dynamically)
override it. For example, thet ypeCheck top-level methods above
introduce a single new generic function, providing implementations
for three receiver classes. Each message send site invokes the
methods of a particular, staticaly determined generic function.



More precisely, given a method declaration Mg, whose receiver is
of class or interface T, if there is a method declaration Mg, of the
same name, number of arguments, and static argument types as
Mg,b but whose receiver is of some proper supertype of T, then Mg,
belongs to the same generic function as Mg, hence Mgy, overrides
Mg, Otherwise, Mg, is the top method of a new generic function.
The top method may be abstract, for exampleif itis dedaredin an
interface.

We say that a classSis a subtype of atype T (equivaently, T isa
supertype of S) if one of the following holds:

* TisaclassandSiseither T or asubclassof T,
» Tisaninterface and Sis aclass thatimplementsT, or
* Tisaninterface and Sis an interface that extendsT.

We say that Sis aproper subtype of T if Sisasubtype of Tand Sis
not the same asT.

We cdl a method dedared via the top-level method declaration
syntax an external method if the class of its receiver is not declared
in the same compilation unit. (A Java compilation unit corresponds
to a single file in Java implementations based on file systems
[Gosling et al. 00, §7.6].) All other methods are internal. Besides
methods dedared in class declarations, this includes methods
dedared viathe top-level method declaration syntax whose receiver
class is declared in the same mpilation uwnit. Calling such
methods “interna” is sensible, since they can be aded to the
receiver’s class declaration by the compiler.

Analogously, a generic function is external if its top method is
external. All other generic functions are internal. Some methods of
an external generic function can be internal methods (see
Subsection 2.24).

2.2.3 Scoping of External Generic Functions

To invoke or override an externa gereric function, client codefirst
imports the generic function using an extension of Java's existing
import mechanism. For example,

i nport oopsl a. exanpl es. t ypeCheck;

will import the compilation unit typeCheck from the padkage
oopsl a. exanpl es, which in this case declares the
t ypeCheck generic function. Similarly

i nport oopsl a. exanpl es. *;

will implicitly import all the compilation urts in the padkage
oopsl a. exanpl es, which will make all types and generic
functions in that padage available for use. Each compilation unit
implicitly imports al the generic functions in its package.

The explicit importation o external generic functions erablesclient
code to manage the name spaces of the dasses they manipulate.
Only clients that import the typeCheck compilation unit will have
thet ypeCheck operation in the interface to Node. Other clients
will not have their interfaces to Node polluted with this generic
function. Furthermore, a compilation wnit that did not import the
typeCheck compilation unit could declare its own t ypeCheck
generic function withou conflict.

Java allows at most one public type (class or interface) declaration
in a compilation urit [Gosling et al. 00, §7.6].1 This concession
alows the implementation to find the file containing the coe for a
type based onits name. In MultiJava we extend this restriction in a
natural way: each file may contain either one public type with

1. Javd s restriction is ssmewhat more complex to account for its default
acassmodifier, which gives accessto al other classes in the padage.

associated internal methods, or the top method (and any number of
overriding methods) of one pulblic externa genreric function.

2.2.4 Subsuming the Visitor Pattern

A key benefit of open classes is that they obviate the need for the
Visitor pattern infrastructure; the Vi sit or class hierarchy and
accept methods of the Nodes are now unnecessary. Instead, the
client-spedfic operations to be performed can be written as top-
level methods of Node and its subclasses, outside of the class
declarations. Unlike with the Visitor pattern, there is no reed to
plan ahead for adding the new operations, i.e., new external generic
functions. Each new external generic function can define its own
argument types and result type, independently of other operations.
More importantly, this idiom still allows new Node subclasses to
be added to the program modularly, because there isno Vi si t or
hierarchy that needs to be updated. For example, a new subclass of
Node can be added without changing any existing code, asfollows:

i nport oopsl a. exanpl es. Node;
i nport oopsl a. exanpl es. t ypeCheck;
public class DoUntil Node extends Node {
[* o0 %]
publi ¢ bool ean typeCheck()
{7 ... %1}

}

MultiJava extends Jva's notion o method inheritance to open
classes. A client of DoUnt i | Node can invoke any visible Node
method o an instance of DoUnt i | Node, regardless of whether
that method was visiblein DoUnt i | Node’s compilation unit.

A subclass aso can override ay visible inherited (interna or
external) methods, as in the example above. (This example dso
illustrates that regular internal methods can be alded to externa
generic functions.)

The &ility to write external methods gives programmers more
flexibility in organizing their code. For example, the origina three
t ypeCheck methods can al be put in asingle file separate from
the compilation uwnits defining the dasses of the Node hierarchy.
Open classes also alow new methods to be alded to an existing
class even if the source mde of the dass is not available, for
exampleif the dassisin a Java library. New methods can even be
added to af i nal class without violating the property that the class
has no subclasses.

2.2.5 Encapsulation

MultiJava retains the same encapsulation properties as Jva
[Goding et al. 00, 86.6]. All Java privileged access modifiers are
allowed for externa methods. For example, a helper method for a
public external method may be declared pri vat e andincluded in
the same compilation unit as the public method. These modifiers
have the usual meaning for methods, with the exception that a
private external method may only be invoked or overridden from
within the compilation urit in which it is declared. (This differs
from Java because the context of an external method is a
compilation it instead of a dass.)?

Further, an external method may access:

* publ i ¢ members of itsreceiver class, and

* nonprivat e members of its receiver class if the externa
method is in the same package asthat class.

2. In Java, a protected method can be overridden within subclasses of its
receiver class In MultiJava one can aso define proteded externa
methods; these can be overridden both in subclasses and also within the
compilation unit in which they are introduced.



All other access to receiver class members is prohibited. In
particular, an external method does not have access to the private
members of its receiver class. A top-level internal method has the
same access privileges as a regular Java method, including the
ability to access private members of its receiver class

2.2.6 Restrictions for Modular Typechecking

As a consequence of MultiJava’'s modular typechecking scheme
discussed in Section 4, external methods may not be anndated as
abst ract, nor can they be alded to interfaces. Since mncrete
subclasses of the extended abstract class or interface can be
dedared in other compilation units, without knowledge of such an
abstract externa method and vice versa, purdy modular
typechecking could not guaranteethat the external generic function
was implemented for all concrete subclasses of the abstract class or
interface.

A second consequence of moduar typechecking is that a top-level
method must either belong to a generic function whose top method
is in the same cmpilation urit, or it must be a internal method.
Withou this restriction, it would be possible for independent
compilation uwnits to declare top-level methods in the same generic
function with the same receiver class, leading to a clash.

Both of these restrictions are discussed in Section 4.

2.2.7 Other Class Extensions

MultiJava currently allows only instance (non-st at i ¢) methods
to be added to existing classes. However, it should be
straightforward to extend ou work to allow top-level static
methods and even top-level static fields. Top-level instance fields
and top-level instance constructors would require more significant
extensions to aur compilation strategy.

3. MULTIPLE DISPATCH

3.1 Motivation

In Java, the method invoked by a message can depend onthe run-
time class of the receiver object, but it cannot depend onthe run-
time classes of any cother arguments. In some situations, this
restriction is unreturd and limiting. One cmmon example
involves binary methods. A binary method is a method that
operates on two or more objects of the same type [Bruce et al. 95].
In the Shape class below, the method for checking whether two
shapes intersect is a binary method.

public class Shape {
.o

/* ..

publ i ¢ bool ean intersect(Shape s) {
[

}

}

Now suppose that one wishes to create a tass Rect angl e as a
subclassof Shape. When comparing two rectangles, one @n use a
more efficient intersection algorithm than when comparing
arbitrary shapes. The first way one might attempt to add this
functiondlity in a Java program is as follows:

public class Rectangl e extends Shape {
[* o0
publ i c bool ean intersect(Rectangle r) {
/* efficient code for two Rectangles */

}
}
Unfortunately, this does not provide the desired semantics. In

particular, the new intersection method cannot be safely considered
to override the original intersection method, because it violates the

standard contravariant typechecking rule for functions [Cardelli
88]: the argument type cannot safely be changed to asubtypein the
overriding method. Suppaose the new method were nsidered to
override the intersection method from classShape. Then amethod
invocation sl1.intersect(s2) in Java would invoke the
overriding method whenever s1 is an instance of Rect angl e,
regardless of the runtime dass of s2. Therefore, it would be
possible to invoke the Rect angl e intersedion method when s2
is an arbitrary Shape, even though the method expects its
argument to be another Rect angl e. This could cause a run-time
type error, for example if Rect angl e’s method tries to access a
field initsargument r that is not inherited from Shape.

To handle this problem, Java, like C++, considers Rect angl e’s
i nt ersect method to datically overload Shape's method.
Statically overloaded methods belong to distinct generic functions,
just as if the methods had different names. Java uses the name,
number of arguments, and static argument types of a message send
to staticdly determine which generic function is invoked a each
message send site. In our example, because of the different static
argument types, the two i nt er sect methods belong to different
generic functions, and Java determines statically which generic
function isinvoked for each i nt er sect message send site based
on the satic type of the message agument expression. For
example, consider the following client code:

Rectangle rl, r2;
Shape s1, s2;

bool ean bl, b2, b3, b4;

rl = new Rectangle( /* ... */ );
r2 = new Rectangle( /* ... */ );
sl =rl;

s2 = r2;

bl = rl.intersect(r2);

b2 = rl.intersect(s2);

b3 = sl.intersect(r2);

b4 = sl.intersect(s2);

Although the objects passed as arguments in the four i nt er sect
message sends above are identical, these message sends do not all
invoke the same method. In fad, only the first message send will
invoke the Rect angl e intersecion method The other three
messages will invoke the Shape intersection method, because the
static types of these arguments cause Java to bind the messages to
the generic function introduced by the Shape i ntersect
method Likewise, the firs¢ message is datically bourd to the
generic function introduced by the Rect angl e i ntersect
method

In Java, one @n solve this problem by performing explicit run-time
type tests and associated casts; we call this coding pattern a type-
case. For example, one could implement the Rectangle
intersection method as follows:

public class Rectangl e extends Shape {
/* */

publi c bool ean intersect(Shape s) {
if (s instanceof Rectangle) {
Rectangle r = (Rectangle) s;
/'l efficient code for two Rectangles
} else {
super.intersect(s);

}
}

This version of the Rect angl e intersection method has the
desired semantics. In addition, since it takes an argument of type
Shape, this method can safely override Shape’s i nt er sect
method, and is part of the same generic function. All message sends
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in the example client code &ove will now invoke the Rect angl e
i ntersect method.

However, this “improved” code has sveral problems. First, the
programmer is explicitly coding the search for what intersection
algorithm to execute, which can be tedious and error-prone. In
addition, such code is not easily extensible. For example, suppose a
Tri angl e subclass of Shape is added to the program. If special
intersection behavior is required of a Rectangle and a
Tri angl e, the above method must be modified to add the new
case. In general, whenever a new Shape subclass is added, the
type-case of each existing hinary method of each existing Shape
subclass may need to be modified to add a new case for the new
Shape subclass.

A related solution to the binary method groblem in Java is the use
of double-dispatching, as in the accept methods of the Visitor
pattern (see Figure 1). With this technique, instead of using an
explicit i nst anceof test to find out the runtime type of the
argument s, as in the aove example, this information is obtained
by performing a second message send. This message is ®nt to the
argument s, but with the name of the message encoding the
dynamic dass of the original receiver. Double-dispatching avoids
the need for the i nt er sect method o every Shape subclass to
include an explicit type-case over al the possible argument shapes,
and it reuses the language' s built-in method dispatching mechanism
in place of user-written type-cases. However, dowle-dispatching is
even more tedious to implement by hand than type-casing. Finaly,
doube-dispatchingis till not completely modular, since it requires
a least the root class (Shape in ou example) to be modified
whenever anew subclassisto beadded.

3.2 Multiple Dispatch in MultiJava

3.2.1 Dedaring Multimethods

In part to provide acleanand modular solution to te binary method
problem, MultiJava dlows programmers to write multimethods,
which are methods that can dynamicdly dispatch on other
arguments in addition to the receiver objed. The syntax of our
multimethod extension is specified in Figure 3. Using
multimethods, the definition of the Rect angl e class can be
changed to the following:

public class Rectangl e extends Shape {
/* *

pubi i ¢ bool ean
i nt ersect (Shape@ectangle r)
/* efficient code for two Rectangles */

}
}

This code is identicd to the first solution attempt presented in
Subsection 3.1, except that the type dedaration of the formal
parameter r is Shape@Rectangle instead of simply
Rect angl e. The Shape part denotes the static type of the
argument r . Consequently, the revised Rect angl e i nt er sect
method belongs to the same generic function as the Shape
i nt er sect method, because the name, number of arguments, and
(static) argument types match. The @Rect angl e part indicates
that we wish to dynamically dispatch on theformal parameter r, in

addition to the recever. As with standard Java, the receiver is
always dispatched upon. So this i nt ersect method will be
invoked only if the dynamic class of the receiver isRect angl e or
a subclass (as with regular Java) and the dynamic class of the
argument r isRect angl e or asubclass

3.2.2 Message Dispatch Semartics

In a forma parameter dedaration, the dass after an @symbol is
referred to as the explicit specializer of the formal. For a given
method M, its tuple of specializers (Sp,....S) is auch that §yisM’s
receiver type and, for i O{1..n}, if M has an explicit spedalizer, U;,
at the ith position, then § is U;, otherwise § isthe static type of the
ith argument. Thusthe Shape class'si nt er sect method hasthe
tuple of specidizers (Shape, Shape) while the Rect angl e
class's method has (Rect angl e, Rect angl e).

The semantics of message dispatch in MultiJavais as follows. For a
message send Eg.I(Ey,...,E,), we evaluate each E; to some value v;,
extract the methods in the generic function being invoked
(determined statically based on the generic functions in scope
named | that are gpropriate for the static types of the E;
expressons), and then select and invoke the most-specific such
method applicableto the arguments (v,....vy,). Let (Cy,...,.Cy) be the
dynamic types of (Vg,...,V); if Vi isnot an object, let C; be its static
type. We extend the subtype relation defined in Subsection 2.22 to
primitive types, which are subtypes of themselves only. A method
with tuple of speddlizers (S,...,S,) is applicable to (vg,...,vy) if
(Cy,---,Cpy) pointwise subtypes from (S,...,S) (that is, for echi, C;
is a subtype of §). The most-specific applicable method is the
unique gplicable method whose tuple of specidizers (S,...Sn)
pointwise subtypes from the tuple of specializers of every
applicable method If there are no applicable methods, a message-
not-understood error occurs; we say a generic function is
incomplete if it can cause message-not-understood errors when
invoked. If there ae gplicable methods but no urique most-
specific one, a message-ambiguous error occurs; we say a generic
function is ambiguous if it can cause message-ambiguous errors
when invoked. (Static typechecking, described in Section 4, can
always deted and reject generic functions that are potentially
incomplete or ambiguous.)

Given this dispatching semantics, the @ove code indeed lvesthe
binary method problem. For example, consider an invocation
sl.intersect(s2),wheresl ands2 have static type Shape.
If at run time both arguments are instances of Rect angl e (or a
subclass of Rect angl e), then both the Shape and Rect angl e
i nt er sect methods are applicable. Of these applicable methods,
the Rect angl e method is the most specific, and therefore it will
be selected and invoked. Otherwise, only the Shape method is
applicable, and it will therefore be invoked.

MultiJava's dispatching semantics naturally generalizes Java's
dispatching semantics. If a MultiJava program uses no @argument
specializers, then dispatching occurs only on the receiver and the
behavior of the program isexadly asin regular Java. The semantics
of both dynamic dispatching and static overloading are unchanged.
The adition of @ argument specidizers extends Jva's norma
dynamic dispatching semantics to these alditional arguments.

3.2.3 Mixing Methods with Multimethods

Any subset of amethod's arguments can be specialized A class can
declare several methods with the same name and static agument
types, provided they have different argument specializers and no
ambiguities arise. For example, a G r ¢l e class could be defined
with a selection o intersection methods:



public class Circle extends Shape {
[* o0 ]
publ i ¢ bool ean
i nt ersect (Shape s) {
/* code for a Circle agai nst any Shape */

publ i ¢ bool ean
i nt ersect (Shape@rectangle r) {
/* efficient code agai nst a Rectangle */

publ i ¢ bool ean
i ntersect(Shape@ircle c) {
/* very efficient code for two Gircles */

}
}

All these methods have static argument type Shape, so they al are
in the same generic function (introduced by the i ntersect
method in the Shape class). However, they have different
combinations of specializers, causing them to apply to different
rurntime drcumstances. For example, consider again the
sl.intersect(s2) invocation, where s1 and s2 have static
type Shape. If at run time both arguments are instances of
Circl e, then the first and third of these methods are applicable,
aong with the Shape class's default i nt er sect method The
third Ci r cl e method is pointwise most specific, so it is invoked.
If slisaCircle buts2isaTriangle, then only the first
Ci rcl e method and the Shape method are gplicable, and the
first Ci r cl e method isinvoked. If s1 isaRect angl e ands2 is
a G rcl e, then only the Shape i nt ersect method remains
applicable.

In general, a generic function can include methods that specidize
on different subsets of arguments, as long as it is not ambiguaous.
(Ambiguity detedion is discussed in Sedion 4) Invocations of
generic functions use regular Java message syntax, and do no
depend on which arguments are spedalized. A regular Java method
can be overridden in a subclass with a multimethod, without
modifying the overridden class or any invocations of the method

3.2.4 Quper Sends

Java's super construct allows a method to invoke the method it
diredly overrides. Java aso alows such a super send to invoke a
method in a diff erent generic function, if the name of the messageis
different than the sender’'s name or if the aguments differ in
number or static type from the formal parameters of the sender.

For MultiJava, a multimethod may override some other method in
the same compilation unit. For example, the third Circle
intersect method above overrides the first Circle
i nt er sect method. MultiJava super sends should thus be able to
wak up the dhain of overriding methods, even within the same
compilation urit. However, MultiJava should also retain badkward
compatibility with Java in that super shoud be ale to invoke a
method from a different generic function than the sender.

Our solution is first to aticdly identify for each super send
whether it will invoke a method from the same generic function as
the sender. We do this based on the name of the message and the
number and static types of the arguments. If the target generic
function is the same as the senckr’s, then the semantics of the super
send is the same @ the semantics of a regular MultiJava message
send, except that the set of applicable methodsisfiltered to include
only methods that are overridden (directly or indirectly) by the

sending method. If, on the other hand, the target generic function is
different from the sender’s, then as in Java, MultiJava filters the set
of applicable methods to include only methods declared for or
inherited by the sender’s immediate superclass

To illustrate these semantics, consider an implementation of the
third G rcl e i nt er sect method that contains a super send to
i nt er sect with the same arguments:

publ i c bool ean intersect(Shape@ircle c) {
super.intersect(c) .

This invocation is known (staticaly) to invoke amethod in the
same generic function as the sender’s. Consequently, the set of
applicable methods are those whose receiver and argument
specializer types are pointwise supertypes of the run-time receiver
and argument classes, filtered to contain just those that are
overridden by thisi nt er sect method. In this case, the filtered
applicable methods are thefirst G r cl e i nt er sect method and
the i nt er sect method from Shape. The unique, most-specific
applicable method isthefirst Ci rcl e i nt er sect method—so it
isinvoked. If that method itself contains a super send d the same
form, then the only filtered applicable method would be Shape’s.
A super send d the same form in Shape’si nt er sect method
would lead to a static type aror, as there would be no applicable
methods.

Now consider an aternative implementation of the third G rcl e
i nt er sect method containing a diff erent super send:

public bool ean intersect(Shape@ircle c) {
super . speci al I ntersect (c) .

This invocation is direded to a different generic function than the
sender’s, and so the set of applicable methodsconsists of only those
applicable methods of thespeci al | nt er sect generic function
that are declared in or inherited by Shape, Ci r cl e’s immediate
superclass.

3.2.5 Other Uses of Multimethods

While binary methods are acommonly occurring situation where
multimethods are valuable, other situations can benefit from
multiple dispatching as well. For one example, consider a
di spl ayOn generic function defined over shapes and ouput
devices. Default di spl ayOn algorithms would be provided for
each shape, independent of the output device However, certain
combinations of a shape and an output device might allow more
efficient algorithms, for instance if the device provides hardware
support for rendering the shape. To implement this generic
function, the Shape class could introduce adi spl ay On method:

public class Shape {
[* o0 %]
public void di splayOn(QutputDevice d) {
/ * default display of shape */
}
}

Each subclass of Shape would be able to provide alditiond
overriding di spl ayOn multimethods for particular kinds of
output devices. For example, the Rect angl e class might provide
afew di spl ayOn multimethods:



public class Rectangle extends Shape {
[* o0

publ i ¢ voi d
di spl ayOn( Qut put Devi ce d) {
[ * default display of rectangle */

public void
di spl ayOn( Qut put Devi ce@W ndow d) {
[ * special display of rectangle on X Windows */

public void
di spl ayOn( Qut put Devi ce@ast Hardware d) {
/ * fast display of rectangle using hardware support */
}
}

Top-level methods added to open classes can a so be multimethods.
For example, the above di spl ayOn generic function could be
implemented as an externa generic function.

3.2.6 Restrictions for Modular Typechecking

When a multimethod is externd al the restrictions for open classes
apply; for example, external multimethods cannot be astrad.

Whether a multimethod is internal or external, default
implementations must be provided for arguments that have non-
concrete datic types. For example, assuming that the
Qut put Devi ce class above is abstract, the first di spl ayOn
method for the Rectangl e class provides this default
implementation for the agument tuple (Rectangl e,
Qut put Devi ce). Wediscussthisrestriction further in Subsection
4.2.2.

4. TYPECHECKING

In this sedtion we describe how to extend Java's static type system
to accommodate MultiJava's extensions. We present the overall
structure of our moddar type system in Subsection 41. In
Subsection 4.2 we describe sveral chalenges that open classesand
multimethods pose for modular typechecking, and we discuss the
restrictions we impose in MultiJava to meet those dhallenges.

4.1 Overall Approach

The MultiJava type system ensures statically that no message-not-
understood or message-ambiguous errors can occur at run time.
Ruling ou these @arors involves complementary client-side
checking of message sends and implementation-side checking of
methods [Chambers & Leavens 95]. We begin by describing what
we mean by modular typechedking, and then discuss the two kinds
of checks.

4.1.1 Modular Typechecking

Modular typechecking requires that each compilation urit can be
successfully typechecked only considering static type information
from the compilation urits that it imports. If all compilation urits
separately pass their static typechecks, then every combination o
compilation urits (that pass the regular Java link-time checks) is
safe: there is no pcssibility of a message-not-understood o
message-ambiguous error at run time.

We say that atypeisvisiblein acompilation unit U if it is declared
in or referred to in U, or if the type is a primitive type. A tuple of
types is visible if each component type is visible. A method is
visble in a compilation urit U if it is declared in U, declared in a
type T that is visible in U, or is an external method declared in a
compilation unit that is imported by U. A modular typechedking
strategy only needs to consider visible typesand visible methods to
determine whether a ompilation unit is type-corred.

4.1.2 Client-side Typechecking

Client-side checks are loca checks for type mrrectness of each
message send expression. For each message send expression
Eq.1(Ey,....Ep) in the program, let T; be the static type of Ej. Then
there must exist a unique generic function in scope named | whose
top method hes a tuple of argument types (Tg',...,T,) that is a
pointwise supertype of (Tg,..., Tp). This check is already performed
in standard Java. In our extension, however, external generic
functions that are imported must be checked aong with regular
classand interface declarations

For a send whose receiver is super, the typechecker must
additionally ensure that there exists a unique, most-specific, non-
abstract method invoked by the send. This check extends the
checking on super sends that Java performs already.

4.1.3 Implementation-side Typechecking
Implementation-side chedks ensure that each generic function is
fully and urembiguowsly implemented. These cecks have two
parts.

4.1.3.1 Checks on Individual Method Declarations
The first part applies to each method declaration M inisolation:

» For each of M's explicit specidizers, S, the associated static
type must be a proper supertype of S, and Smust be a ¢ass.

e If M is an oweriding method then its privileged access
modifiers must satisfy the following:

- If M overrides a method M, of the same @mpilation unit
with the same receiver, then M must have the same access
level as M.

- If M belongs to an external generic function, then it must
have the same access level as the generic function's top
method

- Otherwise, the standard Java rules for privil eged access and
overriding apply [Gosling et al. 00, §88.4.6.3].

Requiring an explicit specidizer to be a proper subtype of the
associated static type ensures that the specializer will affect
dynamic dispatching. If the speciaizer were a supertype of the
associated static type, then the specializer would be applicable to
every legal message send of the generic function, which is
equivalent to not spedalizing at that argument position.
Furthermore, if the specializer were unrelated to the associated
static type, then the specializer would be gplicable to no legd
message sends of the generic function, so the method would never
be invoked. The eplicit specidizers are required to be classes
rather than interfaces because the form of multiple inheritance
supported by interfaces can create ambiguities that elude modular
static detedion [Millstein & Chambers 99).

The restrictions on privileged access level for overriding methods
are intended to simplify the compilation scheme. For example, the
restrictions ensure that the set of methods in a compilation unit that
are part of the same generic function have the same privileged
access modifiers. Therefore, these methods can be compiled into a
single Java method. We leave exploring ways to relax these
restrictions as future work.

4,1.3.2 Checks on Entire Generic Functions

The second part of the implementation-side checks treats all the
visible multimethods in a visible generic function as a group.
Consider a generic function whose top method hes argument types
(To.--- Tp)- A tuple of types (C,...,Cp) is alegal argument tuple of
the generic function if (T,...,Ty) IS a pointwise supertype of
(Cgy,---,Cpy) and each C; is concrete. We say that atype is concrete if



it is a primitive type or if it is a class that is not declared
abstract . Abstract classes and interfaces are non-concrete.The
checks are that for each visible generic function, each visible legal
argument tuple has a visible, most-spedfic applicable method to
invoke. This part of implementation-side typechedking is critical
for ruling aut ambiguities between multimethods and for ensuring
that abstract top methods are overridden with non-abstract methods
for all combinations of concrete aguments.

For example, consider implementation-side ceds on the
i ntersect generic function, from the perspective of a
compilation unit containing orly the Rect angl e class as defined
in Subsection 32. From this compilation unit, Shape and
Rect angl e are the only visible Shape subclasses (Circl e is
not visible, because it is not referenced by the Rect angl e class).
The intersect generic function is visible, as are two
i nt ersect methods (one ech in Shape and Rect angl e).
There are four visible legal argument tuples: all pairs of Shapes
and Rectangles. The intersect method in class
Rect angl e is the most specific gplicable method for the
(Rect angl e, Rect angl e) tuple whilethei nt er sect method
in class Shape is the most spedfic applicable method for the other
three tuples. Conceptualy, this checking involves an enumeration
of all combinations of visible lega argument tuples, but more
efficient algorithms exist that only ched the “interesting” subset of
tuples [Chambers & Leavens 95, Castagna 97].

4.2 Redtrictionsfor Modular Type Safety

Unfortunately, the typechedking approach described above can miss
message-not-understood or message-ambiguows errors that may
occur a run time, caused by interactions between unrelated
compilation urits [Millstein & Chambers 99]. In the rest of this
subsedion, we describe the kinds of errors that can occur, and
explain the restrictions we impose in M ultiJava to rule them ouit.

4.2.1 Abgtract Classes and Open Classes

As mentioned previously in Subsedion 22.6, abstract external
methods can lead to message-not-understood errors. This is
illustrated in Figure 4. The JPEG class is a mncrete
implementation of the &stract Pi ct ure class. The externa
method declaration in the draw compilation unit adds a new
abstract method, dr aw, to the astrad Pi ct ur e class. The draw
compilation unit passes the implementation-side typechecks
because the JPEG class is not visible. However, if a dient ever
invokes dr aw on a JPEG, a message-not-understood error will
occur.

To rule out this problem, we impose restriction R1:

(R1) Implementation-side typechecks of a locd, externa
generic function must consider any nortlocal, non-concrete
visible subtypes of its recelver type to be mncrete & the
recever position.

A type or method islocal if it is declared in the current compilation
unit, and otherwise it is nonlocal. A generic function is local if its
top method is local, and otherwise it isnonlocal.

In Figure 4, the externa dr aw method in the compil ation unit draw
introduces a new generic function with the non-locd, non-concrete
receiver Picture. By restricion R1, implementation-side
typechecks must consider Pi ct ur e to be corcrete, thereby finding
an incompleteness for the legal argument tuple (Picture).
Therefore, the draw compilation unit must provide &
implementation for drawing Pi ctures, which resolves the
incompleteness for the unseen JPEG class

/1 compilation unit “ Picture’

package oopsl a;

public abstract class Picture {
/* ... nodrawmethod... */

}

/1 compilation unit “ JPEG”

i nport oopsl a. Pi cture;

public class JPEG extends Picture {
/* ... nodrawmethod... */

}

/1 compilation unit “ draw”
i mport oopsl a. Pi cture;
public abstract void Picture.draw);

Figur e 4: Incompletenessproblem with
abstract classes and open classes

/1 compilation unit “ Picture”
package oopsl a;
public abstract class Picture {
public abstract boolean simlar(Picture p);

/| compilation unit “ JPEG”
i mport oopsl a. Pi cture;
public class JPEG extends Picture {
public bool ean simlar(Picture@PEG j)
{/* ... =

/' compilation unit “ GIF”
i mport oopsl a. Picture;
public class G F extends Picture {
pu{bl/i ¢ bool e/an simlar(Picture@ F g)
* *

Figure5: Incompletenessproblem with
abstract classes and multimethods

/1 compilation unit “ intersect”

i nport oopsl a. Shape;

i nport oopsl a. Rect angl €;

publi ¢ bool ean
Shape. i nt er sect (Shape@rect angl e r)
{ 1> ... *}

/' compilation unit “ Triangle”

i nport oopsl a. Shape;

public class Triangl e extends Shape {
publ i c bool ean intersect(Shape s) {

[* o0 %

Figure 6: Ambiguity problem with
unrestricted multimethods

As a mnsequence of restriction R1, it is useless to declare an
external method abst ract, since the restriction will force the
recaver class to be treated as concrete anyway. For the same
reason, M ultiJava cannat suppart open interfaces, i.e., the ability to
add method signatures to interfaces.

4.2.2 Abstract Classes and Multi methods

Abstract classes couped with multimethods can also lead to
message-not-understood errors. Consider the example in Figure 5.
Since the Pi ct ure class is dedared abstract, it need not
implement the si m | ar method. Implementation-side checks of



the JPEG compilation unit verify that the single visible legal
argument tuple, (JPEG, JPEG), has a most-specific si mi | ar
method, and similarly for the GIF compilation unit. However, at
run time, a message-not-understood error will occur if the
si m | ar messageis sent tooneJPEGandoned F.

To rule out this problem, we impose restriction R2:

(R2) For each nonreceiver argument position,
implementation-side typechecks of a generic function must
consider all norrconcrete visible subtypes of its static type to
be concreteat that argument pasition.

In Figure 5, since Picture is abstract, by restricion R2
implementation-side typechecks on the si mi | ar generic function
from JPEGs compilation unit must consider Pi cture to be
concrete on the non-receiver argument position. Therefore, these
checks will find an incompleteness for the lega argument tuple
(JPEG, Pi ct ur e), requiring the JPEG class to include a method
handling this case, which therefore also handles the (JPEG, Gl F)
argument tuple. Similarly, the Gl F class will be forced to add a
simlar method handing (@ F, Picture). In generd,
restriction R2 forces the aeation of method implementations to
handle abstract classes on non-receiver aguments of multimethods.
This ensures that appropriate method implementations exist to
handle any unseen concrete subclasses of the abstract classes.

Restriction R1 complements R2, addressing the case of abstract
classes at the receiver position. As in R2, the eistence of
appropriate method implementations to handle the abstract classes
is ensured. However, restriction R1 applies only to external generic
functions, so interna generic functions may safely use abstract
classs in the receiver position. This permits all the uses of abstract
classes and methods allowed by standard Java, aswell as some uses
with multimethods. For example, in Figure 5 the abstract Pi ct ur e
classmay safely omit an implementation of the internal si mi | ar

generic function.

4.2.3 Unrestricted Method Overriding

Message-ambiguous errors that elude static detection can occur if
arbitrary methods can be added to a generic function by any
compilation wnit. These errors can occur without multiple dispatch
(as mentioned in Subsection 22.6). In this section we give an
example that uses multiple dispatch.

Consider the example in Figure 6, assuming the Shape class from
Subsection 3.1 and Rect angl e class from Subsection 32. The
external method ceclaration in compilation urit intersect overrides
the default Shape i nt ersect method for arguments whose
dynamic dass is Rect angl e. Shapes and Rect angl es are
visible in the intersect compilation unit, and every pair of these
classes has a most-specific applicable method Similarly, Shapes
and Tr i angl es are visible in the Triangle compilation unit, and
its implementation-side checks also succeed. However, at run time,
anintersect message send with ore Tri angl e instance and
one Rect angl e instance will cause a message-ambiguaus error to
occur, because neither method in the example is more spedfic than
the other.

Oneway to partially solve this problem is to break the symmetry of
the dispatching semantics. For example, if we linearized the
specificity of argument positions, comparing specidizers
lexicographicaly left-to-right (rather than pointwise) as is done in
Common Lisp [Stede 90, Pagacke 93] and Polyglot [Agrawd et al.
91], then the method in Triangle would be strictly more specific
than the method in intersect. However, one of our maor design
goalsisto retain the symmetric multimethod dispatching semantics.
Furthermore, unrestricted external methods would allow one to
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crege two methods with identical type signatures; breaking the
symmetry of dispatching cannot solve this part of the problem.

Our solutionis to impose restriction R3:

(R3) An external method must belong to a local generic
function.

In Figure 6, the external method dedaration in the intersect
compilation unit violates restriction R3. In particular, the associated
i nt er sect method does not belongto a locd generic function;
thei nt er sect generic function's top method is in the non-loca
Shape class. Therefore, by restriction R3, the only lega locdion
for the declaration of an i ntersect method with tuple of
specializers (Shape, Rect angl e) iswithin the same compilation
unit as the Shape class. In that case, the method declaration and
the Rect angl e classwould bevisible to the Triangle compilation
unit, which would therefore check for a most-specific goplicable
method for the argument tuple (Tri angl e, Rectangl e),
statically deteding the ambiguity. To resolve this ambiguity one
must write a method that dispatches on the (Triangl e,
Rect angl e) tuple.

As aresult of restriction R3, each method declaration M must be in
the same @mpilation urit as either the receiver’'s class or the
associated gereric function’'s top method. In either case, any unseen
method M, of the same generic function must have a different
receiver than M, or M, would be in violation of restriction R3.
Therefore, method M cannot be ambiguous with any unseen
method M, so the moduar implementation-side typedhecks are
enoughto rule out any potential ambiguities

In Java, one can dedare that amethodis f i nal , which preventsit
from being overridden. Similarly, the MultiJava type system can
prevent a method M that is dedared to be final from being
overridden, in the sense that there can be no aher method in the
same generic function whose tuple of specializers is a pointwise
subtype of M’s. Restriction R3 alows this condtion to be eaily
checked. That is, R3 ensures that the methods that a particular
method M overrides are dl available when M’s compilation urit is
typechecked.

5. COMPILATION

We have developed a compilation strategy from MultiJava into
standard Java bytecode that retains the modular compilation and
efficient single dispatch of existing Java code while supporting the
new features of open classes and multiple dispatching. Additiond
run-time st for these new features is incurred orly where such
features are used; code that does not make use of multiple
dispatching or external generic functions compiles and runs exactly
asin regular Java. MultiJava code can interoperate seamlessy with
existing Java wde. MultiJava mde @n invoke regular Java mde,
including all the standard Java libraries. Additionally, subclasses of
regular Java dasses can be defined in MultiJava, and regular Java
methods can be overridden with multimethods in MultiJava
subclasses. Client source code and compiled bytecoce is insensitive
to whether the invoked method is a regular Java method a a
MultiJava multimethod. Aside from the need to import external
generic functions, client source code is also insensitive to whether
the invoked method isinternal or external.

However, internal and external generic functions require different
styles of compilation. (Recall that an external generic function is
one which has an external top method.) An internal generic
function can be cmpiled as if it were aregular Java method
declared inside its receiver class or interface. Internal generic
functions are invoked using the same calling sequence & a regular



public class Square extends Rectangle {
/* */

pubi i ¢ bool ean
i nt ersect (Shape@ectangle r) {
/* method 1 body */

publ i ¢ bool ean
i nt ersect (Shape@quare s) {
/* method 2 body */
}
}

Figure 7: Internal generic functions

public class Square extends Rectangle {
[* oo
/1 the“intersed” dispatch method
publ i ¢ bool ean intersect(Shape r) {
if (r instanceof Square)
Square s_ (Square) r;
/* method 2 body, substitutings_ for s */
} else if (r instanceof Rectangle) {
Rectangle r_ = (Rectangle) r;
/* method 1 body, substitutingr _ forr */
} else {
return super.intersect(r);

}
}

Figure8: Translation of internal generic functions

Java method An external generic function must be compiled
separately from its receiver class or interface. An external generic
function uses a different implementation strategy and cdling
convention than an internal one.

When compiling code that refers to a generic function (either code
that adds a method to it or invokes it), the compiler can always tell
whether or not the generic function is internal. The compiler has
enough information because the code must have imported both the
compilation uwnit declaring the generic function and the one
dedaring the generic function's receiver type. The generic function
is internal if and only if these compilation urits are one and the
same.

The next subsedion describes how declarations and invocations of
internal generic functions are compiled. Subsection 52 describes
the same for external generic functions. Subsection 5.3 describes
compilation o super sends. Although compilation is directly to
Java bytecode, to simplify discussion we will generaly describe
compilation asif going to Java source. However, in some situations
we need to exploit the additional flexibility of compiling directly to
the Java virtual machine.

5.1 Internal Generic Functions

All the multimethods of an internal generic function with the same
receiver class are compiled as a unit into asingle Java method that
we cal a dispatch method. Consider the set of i ntersect

methods in Figure 7. For such a set of multimethods, the MultiJava
compiler produces a dispatch method within the receiver class that
contains the bodies of all multimethods in the set. Figure 8 shows
the result of translating the MultiJava code from Figure 7.3 In the
translation, the dispatch method has the same name & the generic
function (i ntersect in this case), and has the same static

3. Of course the compiler must be areful to avoid variable capture.
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argument types as all the generic function's methods. The dispatch
method internally does the necessary checks on the non-recever
arguments with explicit specializers to select the best of the
applicable multimethods from the set. This is implemented using
cascaded sequences of i nstanceof tests. If multiple paths
through these sequences lead to the same method bod, got o
bytecodes could be exploited to avoid the code dugicaion that
would arise in a straightforward compilation to Java source.
Alternatively one could compile such a method body into a static
method and use astatic method call instead of a got o. In lieu of
cascaded sequencesof i nst anceof tests, there are other efficient
dispatching schemes that could be exploited [Chambers & Chen
99].

For the set of multimethods compiled into a dispatch method, the
dynamic dispatch tests are ordered to ensure that the most-specific
multimethod is found. If one of the multimethods in the set is
applicable to some argument tuple, then the typechecking
restrictions ensure that there will always be asingle most-specific
check which succeeds. Moreover, the multimethod body selected
by this chedk will be more specific than any applicable superclass
method, so there is no need to chedk superclass multimethods
before dispatching to alocal multimethod.

If every multimethod compiled into a dispatch method has an
explicit specializer on some argument position, then it is possible
that none of the checks will match the run-time arguments. In this
case, a fina clause passes the dispatch on to the superclass by
making a super cal. Eventually a dass must be reached that
includes a method that does not dispatch on any of its arguments;
the modular typechecking rules ensure the existence of such a
method when checking completeness of the generic function. In
this case, the fina clause will be the body of this “default” method.

Compiling regular Java singly dispatched methodsiis just a special
case of these rules. Such a method does not dispatch on any
arguments and has no other loca multimethods overriding it, and so
its body performs no run-time type dispatch on any arguments; it
reduces to just the original method bodly.

Aninvocation of aninternal generic function is compiledjust like a
regular Java singly dispatched invocation. Clients are insensitive to
whether or not the invoked generic function performs any multiple
dispatching. The set of arguments on which a method dispatches
can be changed withou needing to retypecheck or recompile
clients.

There is no efficiency penalty for regular Java code compiled with
the MultiJava cmpiler. Only methods that dispatch on multiple
arguments get compiled with typecases. A Java program would
likely use typecases whenever a MultiJava program would use
multimethods anyway, so there shoud be little performance
difference. If a Java program used double-dispatching to simulate
multimethods, then it might be possible to generate more efficient
code than MultiJava (two constant-time dispatches, plus perhaps
some forwarding if inheritance is needed on the second argument),
but double-dispatching sacrifices the ability to add new subclasses
moduarly.

5.2 External Generic Functions

An externd generic function must have been introduced by an
external method declaration. Since the generic function's receiver
class has dready been compiled separately, the externa generic
function cannot be alded as a method of that class. Instead, we
generate aseparate class, cdled an anchor class, to represent the
external generic function.
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Figure 9: Objects used in the compilation of externa generic functions

[ * compilation unit “ rotate” */

publi ¢ Shape Shape.rotate(float a) {
/* method 3body */

}
publi ¢ Shape Rectangle.rotate( float a) {
/* method 4body */

}

publi ¢ Shape Square.rotate(float a) {
/* method 5body */

}

Figure 10: A compilation unit defining an aternal gereric function

public interface rotate$rotate$d {
Shape appl y(Shape this_, float a);

public class rotate$rotate$anchor {
public static rotate$rotate$d function
/1 aninner classimplementing a dispatcher objed

/'] type of a dispatcher object in this example

/1 ananchor class

new r ot at e$r ot at e$di spat cher ();

private class rotate$rotate$di spatcher inpl enments rotate$rotate$d {

publi ¢ Shape apply(Shape this_, float a)
if (this_ instanceof Square) {
Square this2_ = (Square) this_;

{

/ * method 5body, substitutingt hi s2_ for this */

} else if (this_ instanceof Rectangle)
Rectangle this2_ = (Rectangle) this_;

{

/* method 4body, substitutingt hi s2_ for this */

el se {
[ * method 3body, substitutingt his_ forthis */

Figure 11: Translation of Figure 10

Figure 9 shows the objeds generated in the compilation of external
generic functions. An anchor classinstance has a single static field,
functi on, containing a dispatcher objed. During an invocation
of the generic function, the dispatcher object is responsible for
running one of the generic function's methods based on the
dynamic types of the aguments. A dispatcher objed is the Java
version o a first-class function. It contains all the methods of a
particular generic function that are declared in a single compil ation
unit.

As an example, Figure 10 introduces ther ot at e external generic
function and its first three methods. Figure 11 shows the results of
compiling it. The privileged aacess level of the top method
determines the privileged access level of the anchor class, its
functi on field, and the dispatcher interface. The names for the
anchor class and generic function interface ae formed by
concatenating the name of the mmpilation wnit containing the top
method with the generic function name and the gpropriate suffix
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(anchor or d respectively.) Thus in this example, the anchor class
isnamedr ot at e$r ot at eSanchor and the dispatcher interface
isnamedr ot at e$r ot at e$d. Aswithinternal generic functions,
dispatching is performed using cascaded i nst anceof teds; the
same optimizations apply.

To invoke an externa generic function, the client loads the
dispatcher objed from the anchor class's functi on field and
invokes its appl y method on al the arguments to the generic
function, including the receiver. So the following MultiJava code:

Shape sl new Rect angl e();
Shape s2 new Square();
if (sl.intersect(s2)) {
s2 = s2.rotate(90.0);
}

istrandated to:



anchor object
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funct i on f|dd app' y method

dispatcher object

ol d_function fied
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Figure 12: Objeds used when adding methods to non-local external gereric functions

/1 compilation unit “ Oval”
public class Oval extends Shape {
/* */

pubiii: Shape rotate(float a) { /* method6body */ }

Figure 13: Adding a multimethod to an external generic function

public class Oval

/] staticinitializer:
{ rotate$rotate$anchor.function

ext ends Shape {

new Oval $rot at e$di spat cher (r ot at e$r ot at e$anchor . f uncti on);

/* */

/1 aninner classimplementing a dispatcher objed
private class Oval $rot at e$di spat cher
public rotate$rotate$d ol dFuncti on;

publi ¢ Oval $rot at e$di spatcher (rotate$rotate$d ol dF) { ol dFuncti on

publi ¢ Shape apply(Shape this_, float a)
if (this_ instanceof Oval) {

{

}

i npl ements rotate$rotatedd {

ol dF; }

Figure 14: Translation of Figure 13

Oval this2_ = (Oval) this_;
/ * method 6body, substitutingt hi s2_ for this */
} else {
return ol dFunction.apply(this_, a);
}
}
}
Shape s1 = new Rectangl e();
Shape s2 = new Square();

if (sl.intersect(s2)) {
s2 r ot at e$r ot at eSanchor
.function.apply(s2,90.0);
}

Aswith internal generic functions, clientsinvoking external generic
functions are insensitive to whether or not the generic function
performs any multiple dispatching. Once again the set of arguments
on which a method dispatches can be changed without needing to
retypecheck or recompile dients.

Next we consider the compilation d methods that add to a non-
local external generic function. These alditional methods are
defined in the same compilation unit as their receiver classes, as
required by typechedking restriction R3. There could be several
such receiver classes in the same compilation unit. For each of
these recsiver classes, the translation creates a new dispatcher
object to contain the set of the generic function's methods with that
receiver class

Figure 12 shows a new dispatcher object creaed for such a set of
methods. The anchor class's f uncti on field from Figure 9 is
updated to reference this new dispatcher object. In turn, the new
dispatcher object contains an ol d_functi on field that
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references the original dispatcher object. When the generic function
is invoked, the apply method d the new dispatcher objed is
cdled. It checks if any of its methods are applicable. If none are, it
cdlstheappl y method of the original dispatcher object (using the
ol d_f uncti on field).

For example, Figure 13 shows aclass, Oval , containing a method
that is added to the non-local external generic function, r ot at e.
Figure 14 shows the results of compiling this class. A new
dispatcher class, Oval $r ot at e$di spatcher, is defined
whose appl y method checks whether the runtime arguments
should dispatch to the loca rot at e method The static dass
initidlizationfor Oval creates an instance of this dispatcher object
and sets the dispatcher’s ol d_f uncti on field to the previous
dispatcher object (using the dispatcher’s constructor). Next the rew
dispatcher objed isassgned to thef uncti on fidd.

When invoked, the dispatcher object checks whether the receiver
object is an Oval . If so, then Oval 'sr ot at e method is run. If
nat, then dspatching continues by invoking the appl y method of
the previous dispatcher objed (as in the Chain of Responsibility
pattern [Gamma et al. 95, pp. 223-232]). This may be from some
other class that also added methods to the r ot at e generic
function. Eventually dispatching either finds a function with an



applicable method that was added to the chain, or the search ends at
theinitial dispatcher object installed when the generic function was
created. Completeness cheding ensures that this last dispatcher
object includes a default method that handles all arguments,
guaranteeing that dispatching terminates successully. While
potentially slow, this Chain of Responsibility pattern is only used
for compiling external generic functions, which cannot be written
in standard Java. Thereisnoefficiency penaty for methods that can
be written in standard Java*

The order in which dispatcher objects are checked depends on the
order in which they are put into the chain referenced by
rot at e$r ot at eSanchor 'sf unct i on fied. Javaensuresthat
superclasses are initialized before subclasses [Goding et al. 00,
812.4], so dispatcher objects for superclasses will be put onto the
chain earlier than subclass dispatchers, causing subclass dispatchers
to be checked before superclass dispatchers, as desired. Unrelated
classes can have their dispatchers put onto the chain in either order,
but this is fine because modular typechecking has ensured that the
multimethods of such urrelated classes are gplicable to disjoint
sets of legal argument tuples, so a most one class's multimethods
could apply to a given invocation

As noted in Subsection 22, internal methods that are part of
external generic functions are granted access to the private data of
their receiver class. To achieve this, the dispatcher object for these
methods is compiled as an inner class nested in the arresponding
receiver class[Gosling et al. 00, §6.6.2].

5.3 Super Sends

The compilation of super sends divides into two cases, depending
on whether the super send invokes a method that will be compiled
into a different Java (bytecode) method. If the target of the super
send will be compiled into a different Java method, then the super
send is compiled just as in regular Java, eventudly leading to an
i nvokespeci al bytecode. Thisimplementation strategy is even
applicable in the case of a super send from within the dispatcher
object of an external generic function, where the dass of the
dispatcher objed is not a subclass of the class referred to by
super.Thei nvokespeci al byteaode cen still beused because
this bytecode does nat require an inheritance relationship between
the caller and callee.

The other posshility is that the super send invokes a method that
will be compiled into the same Java (bytecode) method In this
case, the super send should have the dfed of one branch of the
compiled methodinvoking a different branch. To avoid duplicating
the ade of the alled branch, we compile such an intramethod
invocdion into aj sr bytecode along with suitable argument and
result shuffling code. The cdlee part shoud then end with ar et
bytecode and be invoked viaj sr from al points in the compiled
method where it is reached (both by normal dispatching and by
super sends).

6. AN ALTERNATIVE DESIGN

An ealy plan for adding multimethods to Java was to apply the
concept of multiple dispatch as dispatch on tuples [Leavens &
Millstein 98], leading to TupleJava. In TupleJava, al multimethods
would be external to classes. A multimethod that dispatched at two

4. One can imagine astrategy in which the static initializers that currently
add new multimethods to the Chain of Responsibility instead use
reflection to analyze the current generic function and then use dynamic
compilation to creae anew global dispatching method “on-the-fly”. The
load-time st of this grategy might be high, but run-time invocation costs
could be gredaly reduced.

14

Shape arguments and took an additiond non-dispatched Shape
argument would be declared like

publ i ¢ bool ean
(Shape g, Shape r). nearest(Shape s)
{ /= ... %}
and invoked like

(myShapel, nyShape2).near est (nyShape3)

Conceptually invocation is like sending a message to a tuple of
objects. TupleJava offers several advantages. The syntax of both
defining and invoking a method cleanly separates the dispatched
arguments (which occur in the tuple) from the non-dispatchedones
(which occur following the method identifier). This separation of
arguments maintains a clear parallel between the syntax and the
semantics. The tuple syntax aso clearly differentiates code that
takes advantage of multiple dispatch from standard Java @de,
which might ease the programmer’s transition from a single-
dispatch to a multiple-dispatch mind-set.

However, the separation of arguments into dispatched and nar-
dispatched sets also brings several problems. TupleJava does not
provide for robust client code. For example, suppose one wanted to
modify the example aboe to include the dynamic type of the third
argument in dispatching dedsions. The tuple method declaration
above would be rewritten as

publ i ¢ bool ean
(Shape q, Shape r, Shape s).nearest()
{ /= ... %}
Furthermore, adl method invocations in client code would need to
be dchanged to move the third argument into the tuple. Thus the
invocation above would become

(nyShapel, nyShape2, nyShape3).nearest ()

With MultiJava, such a modification requires editing the original
method, but al client source cde and compiled code can remain
unchanged, as such code is insensitive to the set of arguments
dispatched upon by the methods of a generic function.

TupleJava dso requires all multimethods of a given generic
function to dspatch on the same aguments. In particular, this
means that multimethods cannot be added to existing singly
dispatched methods, which includes al existing Java code.
MultiJava does not have this restriction. For example, in MultiJava
onecould overridetheequal s method of the Obj ect classto use
multiple dispatch as in the following:

public class Set extends Object {
[* o0 %]
publi ¢ bool ean equal s( Cbj ect @et s)
{7 ... %1}
}
With TupleJava the best one could do is the following:

publ i
{/
But this attempt would create a new equal s generic function,
completely distinct from the one for testing equality of Cbj ect s.
Thus, with TupleJava, the invocation in the code
Ooj ect obj1, obj2;
/* */

¢ bool ean (Set, Set).equals()

"obj 1. equal s(obj 2)

will never invoke the special equality operation for Set s, even if
both arguments have dynamic type Set .



A final argument in MultiJava's favor is that it is drictly more
expressive than TupleJava. Indeed, tuple-based method declarations
and invocations could be added as syntactic sugar in MultiJava, but
not vice-versa.

It remains to be seen whether the ease-of-learning advantages of
TupleJava outweigh the expressiveness and code maintenance
advantages of MultiJava. We plan to investigate this further once
we have ompleted the implementation of MultiJava

7.RELATED WORK

The typecheding restrictions for MultiJava ae derived from
previous work by two of us [Millstein & Chambers 99]. That work
presents Dubious, a simple core language based on multimethods
and open classes, and describes svera type systems for Dubious
that all achieve safe static typechecking with some degree of
modularity. The type systems differ in their trade-offs between
expressiveness, modularity of typechecking, and complexity. We
base our MultiJava type system on the simplest and most modular
of those systems, called System M.

Encapsulated multimethods [Castagna 95, Bruce et al. 95] are a
design for adding asymmetric multimethods to an existing singly
dispatched dbject-oriented language. Encapsulated multimethods
involve two levels of dispatch. The first level is just like regular
single dispatch to the class of the recever objed. The second level
of dispatch is performed within this class to find the best
multimethod applicable to the dynamic dasses of the remaining
arguments. The encapsulated style can lead to duplication of code,
since multimethods in a dass canna be inherited for use by
subclasses. Our compil ation strategy for internal generic functions
yields compiled code similar to what would arise from encapsul ated
multimethods, but we hide the asymmetry of dispatich from
programmers.

Boyland and Castagna demonstrated the aldition of asymmetric
multimethods to Java using “parasitic methods’ [Boyland &
Castagna 97]. To avoid the then-unsolved modularity problems
with symmetric multimethods, their implementation is based on the
idea of encapsulated multimethods. Parasitic methods overcome the
limitations of encapsulated multimethods by supporting anaotion of
multimethod inheritance ad owerriding. Parasitic methods are
allowed to spedalize on interfaces, causing a potential ambiguity
problem due to the form of multiple inheritance supported by
interfaces. To retain moduarity of typechecking, the dispatching
semantics of parasitic methods is complicated by rules based on the
textual order of multimethod dedarations. Additionally, overriding
parasitic methods must be declared as parasites, which in effect
adds @signs on all arguments, but without a dean ability to resolve
the ambiguities that can arise in the presence of Java's datic
overloading. By contrast, our approach offers purely symmetric
dispatching semantics and smooth interadions with static
overloading, along with modularity of typechecking and
compilation. Our approach aso supportsopen classes.

Aspect-oriented programming [Kiczales et al. 97] provides an
aternative to the traditional classbased structuring of object-
oriented programming. Among other things, an aspect may
introduce new methods to existing classes withou modifying those
classes, thus supporting open classes. However, aspects are not
typechecked or compiled moduarly. Instead, the whole program is
preprocessed as a unit to yield a version of the program where the
aspects have been inserted into the appropriate classes. Sourcecode
is required for al classs extended through aspects, and
recompilation o these dasses is required if aspects are changed.
MultiJava's open classtechnique does not require the source @mde
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for classes that are being extended. Indeed, a client of alibrary that
had no source ade access could till add new methods to the
classes of that library. MultiJava does not require source @de
access to the whole program because its gatic typechecking and
compilation are modular. On the other hand, because it cannot edit
the whole program’s surce code and because it does not have
pattern-based metaprogramming, MultiJava cannot handle cross-
cutting concerns as well as aspect-oriented progjamming.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have shown how to extend Java with openclasses
and multimethods. Moreover, we have shown that it is possible to
moduarly typecheck and efficiently compile these new feaures.
This work extends earlier work on modular typechecking of
multimethods [Millstein & Chambers 99] to function properly in a
richer programming language (including coping with the eisting
treatment of single dispatching, static overloading, and compilation
units). This extension aso supports super sends and compilation
that is efficient, modular, and interoperable with existing Java code.

There are several possible aeas for future work. Work continues on
the implementation of our MultiJava compiler. Extensions to
MultiJava to support top-level static methods, static fields, instance
fields, and instance constructors could be investigated. Some
straightforward extensions to Java's reflection APl could also be
considered, for example to answer queries on methods added via
the open class mechanism. Finally, further increases in MultiJava's
expresgveness could be studied. One area of interest is replacing
some of the static typechecking restrictions with static warnings,
backed up by link-time checking. Among other things, this change
could allow the declaration of abstract externd methods and the
declaration o top-level methods in arbitrary compilation units,
provided their use does not lead to incompleteness or ambiguity at
link time.
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