Feature-Oriented Programming:
A Fresh Look at Objects

Christian Prehofer

Institut fiir Informatik, Technische Universitdt Miinchen,
80290 Miinchen, Germany, prehofer@informatik.tu-muenchen.de

Abstract. We propose a new model for flexible composition of objects
from a set of features. Features are similar to (abstract) subclasses, but
only provide the core functionality of a (sub)class. Overwriting other
methods is viewed as resolving feature interactions and is specified sep-
arately for two features at a time. This programming model allows to
compose features (almost) freely in a way which generalizes inheritance
and aggregation. For a set of n features, an exponential number of dif-
ferent feature combinations is possible, assuming a quadratic number of
interaction resolutions. We present the feature model as an extension
of Java and give two translations to Java, one via inheritance and the
other via aggregation. We further discuss parameterized features, which
work nicely with our feature model and can be translated into Pizza, an
extension of Java.

1 Introduction

A major contribution of object-oriented programming is reuse by inheritance or
subclassing. Its success and its extensive use have led to several approaches to
increase flexibility (mix-ins [18, 2], around-messages in Lisp [8], class refactoring
methods [12]) and to approaches using different composition techniques, such as
aggregation and (abstract) subclasses.

In this paper we propose a new model for object-oriented programming which
nicely generalizes inheritance and includes the above mentioned extensions and
new concepts. Instead of a rigid class structure, we propose writing features
which are composed appropriately when creating objects. Features are similar
to abstract subclasses or mixins [2]. The main difference is that we separate
the core functionality of a subclass from overwriting methods of the superclass.
We view overwriting more generally as a mechanism to resolve dependencies or
interactions between features, i.e. some feature must behave differently in the
presence of another one.

We resolve feature interactions by lifting functions of one feature to the con-
text of the other. Similar to inheritance, this is accomplished by method over-
writing, but lifters depend on two features and are separate entities used for
composition. In contrast, inheritance just overwrites methods of the superclass.

Our new model allows to compose objects from individual features (or ab-
stract subclasses) in a fully flexible and modular way. Its main advantage is that

Class A
- add instance variables
- add methods
- overwrite methods

Class B Class C
- add instance variables - add instance variables
- add methods - add methods
- overwrite methods - overwrite methods
Class D
- add instance variables
- add methods
- overwrite methods

Fig. 1. Typical Class Hierarchies

objects with individual services can be created just by selecting the desired fea-
tures, unlike object-oriented programming. Hence feature-oriented programming
is particularly useful in applications where a large variety of similar objects is
needed. The main novelty of this approach is a modular architecture for com-
posing features with the required interaction handling, yielding a full object.
Consider for instance an example modeling stacks with the following features:

Stack, providing push and pop operations on a stack.

Counter, which adds a local counter (used for the size of the stack).

Lock, adding a switch to allow/disallow modifications of an object (here used
for the stack).

Bound, which implements a range check, used for the stack elements.

Undo, adding an undo function, which restores the state as it was before the
last access to the object.

In an object-oriented language, one would extend a class of stacks by a counter
and similarly with the other features. Usually, a concrete class is added onto
another concrete class. We generalize this to independent features which can
be added to any object. For instance, we can run a counter object with or
without lock. Furthermore, it is easy to imagine variations of the features, for
instance different counters or a lock which not even permits read access. With
our approach, we show that it is easy to provide such a set of features with
interaction handling for simple reuse.

With feature-oriented programming, a feature repository replaces the rigid
structure of conventional class hierarchies. Both are illustrated in Figures 1
and 2. The composition of features in Figure 2 uses an architecture for adding
interaction resolution code (via overwriting) which is similar to constructing a
concrete class hierarchy. To construct an object, features are added one after an-
other in a particular order. (As we only compose objects, there is no real notion

Feature Repository

G @& & &

Lifters for Feature Interactions (Method Overwriting)

¢F_1,F_2 ¢F_1,F_3 ¢F_2,F_3 ¢F_2,F_4 ¢F_1,F_4

Objects/Classes composed from Features + Interactions

Fig. 2. Composing Objects in the Feature Model

of a class, which is hence often confused with the (type of) objects.) If a feature is
added to a combination of n features, we have to apply n lifters in order to adapt
the inner features. As we consider interactions of two features at a time, there
is only a quadratic number (}) = "22_ % of lifters, but an exponential number
(%),k =1,...,n of different feature combinations can be created. For instance,
in the above example, we have 5 features with 10 interactions and about 30
sensible feature combinations. This number grows if different implementations
or variations of features are considered (e.g. single- or multi-step undo). The
observation that most, but not all, interactions can be handled for two features
at a time is a major premise of this approach.

We show that feature-oriented programming generalizes object-oriented tech-
niques and gives a new conceptual model of objects and object composition. To
support this, we will show how to create Java [6] code for concrete feature se-
lections, first using inheritance and then using aggregation and delegation. This
shows the relations with known techniques and compares both techniques. In
fact, we will show two cases where aggregation is more expressive than inheri-
tance, refining earlier results [17].

To summarize, feature-oriented programming is advantageous for the follow-
ing reasons:

— It yields more flexibility, as objects with individual services can be composed
from a set of features. This is clearly desirable, if many different variations
of one software component are needed or if new functionality has to be
incorporated frequently.

— As the core functionality is separated from interaction handling, it provides
more structure and clarifies dependencies between features. Hence it encour-
ages to write independent, reusable code, as in many cases subclasses should
be an independent entity, and not a subclass. This also makes class refac-

toring [12] much easier and sometimes unnecessary. The idea is similar to
abstract classes, but we also cover dependencies between features.

— We show that parameterized features (similar to templates) work nicely with
interactions and liftings (which replace inheritance). As we will see, there
can also occur type dependencies between two features, which can be clearly
specified in our setting.

— As we consider only liftings or interactions between two features at a time,
the model is as simple as possible. In case of dependencies between several
features, liftings between two features can still suffice, if we consider auxiliary
features (see Sec. 4.2).

The technical contributions and results in this paper are as follows:

— Translations of a feature-based language extension of Java into Java, one via
inheritance and one via aggregation and delegation.

— An analysis of parameterized features and type dependencies between fea-
tures, followed by a translation into Pizza [11], an extension of Java.

— The translations lead to a detailed comparison of aggregation and inheri-
tance. This unveils two cases where aggregation is more powerful than in-
heritance due to typing problems.

The origin of this idea of features in fact goes back to applications of monad
theory in functional programming, as discussed in [13, 14]. In this earlier pa-
per, composition of state monads was compared to inheritance and extended
to other monads in functional programming. The motivation for this work was
the recent development in telecommunication and multimedia software, where
feature interactions have recently attracted great attention [21, 3]. Examples for
feature-oriented programming in this area are discussed in [13, 15].

In the following section, we discuss the first three features of the stack exam-
ple. We define the feature-oriented extension of Java via translations in Section 3,
followed by an extension to parameterized features in Section 4. This section also
discusses the remaining two features, undo and bound. Examples in Section 5
and discussions of the approach in Section 6 and Section 7 conclude the paper.

2 A First Example for Feature-Oriented Programming

In this section, we introduce feature-oriented programming with the above ex-
ample modeling variations of stacks. (The undo and bound features are shown
later in Section 4.) For this purpose, we present an extension of Java in the
following.

Note that we only treat stacks over characters; parametric stacks will be
considered later. We first define interfaces for features. Although not strictly
needed for our ideas, they are useful if there are several implementations for one
interface. Furthermore, they ease translation into Java, as a class can implement
several interfaces in Java.

interface Stack {
void empty();
void push(char a);
void push2(char a);
void pop();
char topQ);

}

interface Counter {
void reset();
void inc();
void dec();
int size();

}

interface Lock {
void lock();
void unlock();

}

The code below provides base implementations of the individual features. The
notation feature SF defines a new feature named SF, which implements stacks.
Similar to class names in Java, SF is used as a new constructor. Using the other
two feature implementations, CF and LF,

new LF (CF (SF))

creates an object with all three features. For interaction handling, it is important
that features are composed in a particular order, e.g. the above first adds CF to
SF and then adds LF.

feature SF implements Stack {
String s = new String();
void empty() {s = ""; } // Use Java Strings ...
void push(char a) {s = String.valueOf(a).concat(s); };
void pop() {s = s.substring(1); } ;
char top() { return (s.charAt(0)); } ;
void push2(char a) {this.push(a) ; this.push(a); };
}
feature CF implements Counter {
int i = 0;
void reset() {i = 0; };
void inc() {i = i+1; 7};
void dec() {i = i-1; };
int size() {return i; };
}
feature LF implements Lock {
boolean 1 = true;
void lock() {1 = false;};

void unlock() {1 = true;};
boolean is_unlocked() {return 1;};

}

In addition to the base implementations, we need to provide lifters, which replace
method overwriting in subclasses. Such lifters are separate entities and always
handle two features at a time. In the following code, features (via interfaces)
are lifted over concrete feature implementations. For instance, the code below
feature CF lifts Stack adapts the functions of Stack to the context of CF,
i.e. the counter has to be updated accordingly. When composing features, this
lifter is used if CF is added to an object (type) with a feature with interface
Stack, and not just directly to a stack implementation. This is important for
flexible composition, as shown below.

feature CF lifts Stack {
void empty() {this.reset(); super.empty() ;};
void push(char a) {this.inc(); super.push(a) ;};
void pop() { this.dec(); super.pop() ;};

¥

feature LF 1lifts Stack {
void empty() {if (this.is_unlocked()) {super.empty();}};
void push(char a) {if (this.is_unlocked()) {super.push(a);}};
void pop() { if (this.is_unlocked()) {super.pop();}};

T

feature LF 1lifts Counter {
void reset() {if (this.is_unlocked()) {super.reset();}};
void inc() {if (this.is_unlocked()) {super.inc();}};
void dec() {if (this.is_unlocked()) {super.dec();}};

}

Methods which are unaffected by interactions are not explicitly lifted, e.g. top
and size. Note that the lifting to the lock feature is schematic. Hence it is
tempting to allow default lifters, as discussed in Section 7.

The modular specification of the three features, separated from their inter-
actions, allows the following object compositions:

— Stack with counter

— Stack with lock

— Stack with counter and lock
— Counter with lock

For all these combinations, the three lifters shown above adapt the features
to the combinations. The resulting objects behave as desired. In addition, we
can of course use each feature individually (even lock). With the remaining two
features, bound and undo (shown later), many more combinations are possible
in the same way.

The composition of lifters and features is shown in Figure 3 for an example
with three features. To compose stack, counter, and lock, we first add the counter

Environment

|

Lock: lock, unlock

Counter: size, inc, dec

i

| | |
Stack: empty, push, pop

Fig. 3. Composing features (rounded boxes) by lifters (boxes with arrows)

to the stack and lift the stack to the counter. Then the lock feature is added
and the inner two are lifted to lock. Hence the methods of the stack are adapted
again, using the lifter from stack to lock.

The composed object provides the functionality of all selected features to the
outside, but for composition we need an additional ordering. In particular, the
outermost feature is not lifted, similar to the lowest class in a class hierarchy,
whose functions are not overwritten.

Although inheritance can be used for such feature combinations, all needed
combinations, including feature interactions, have to be assembled manually.
In contrast, we can (re)use features by simply selecting the desired ones when
creating an object.

In the above example, each feature can be run independently. In other ex-
amples it is often needed to write a feature assuming that some other feature is
available. For this, a feature declaration may require other features, e.g. in the
following example:

feature DisplayAdapter assumes AsciiPrintable {
void show_window(...) { ... }

}

Consequently, an implementation may use the operations provided by the feature
AsciiPrintable in order to produce output on a window system.

In general, the base functionality of a new feature can rely on the functionality
of the required ones. This idea of assuming other features is a further difference to
usual abstract subclass concepts. (Note that the extended object can obviously
have more than just the required features.)

3 Translation to Java

To provide a precise definition of our Java extension, we show two translations
into Java. The first translation uses inheritance, while the second uses aggrega-

tion with delegation. Hence this also serves to compare the feature model with
both of these approaches and will highlight two cases where both differ.
We assume the following abstract program with

I; feature interfaces

— I;.tr, methods declared for interface I;

F; corresponding features

F;.vardecls declaration of instance variables
— F;.fx, code for methods I;.t,

— F; ; lifter for F}; to I;

— Fw-.f,ch code for lifting I;.ty;

interface I {
I .ty // method declarations

I gy

}

interface I, {

Im.tl;
Im-tkm;
feature F) implements [; assumes I{l, cen, I{" {
Fi.wardecls // variable declarations

Ity Fi.fu; // method implementations

Il-tkl Fl-fkﬁ

// lifters
feature Fj lifts I; {
Ity Fi ;. fi; // function redefinitions

Ij.tkj Fi,j-fka

For this schematic program, concrete object creations can be translated into Java
in two ways, reflecting two object-oriented programming techniques: aggregation
and inheritance. For both translations, the feature interfaces are preserved, while
the feature code is merged into concrete classes, as shown below.

For sake of presentation, the translation is simplified in order to make the
obtained code as explicit as possible. Therefore, we assume the following:

1. The names of (instance) variables as well as method names are distinct for
all features.

2. Assume that method calls to this are explicit, i.e. always this. fct(. . .) instead
of fet(...).

3. Variable declarations have no initializations.

3.1 Translation via Inheritance

For this translation, we create a concrete set of classes, one extending the other,
for each used feature combination Fj(Fa(F3(...(F,)...))). First a new class
Fy_F5_F5_...isintroduced, which extends F5_F3_. .., followed by a class F3_.. ..
The class F1_F>_F3_... adds the functionality for interface I3 and lifters for all
others.

Formally, an object creation

new Fi(F»...(F,)...)
translates to

new F_F;_..._F,

Furthermore, we need the following Java classes for i = 1,...,n:
class F;_F;y1_..._F, extends F;y;_..._F,_; implements [;,..., [, {
// Feature i implementation
F;.vardecls // variable declarations

I;.t1 F;. fa; // function implementations

Ii-tk,- Fi-fk,-;
// Lift Feature i+l to i
Livit1 Fiia.f1; // function redefinitions

Ii+l -tki+1 F"i,i—l—l 'fki+1 >

: // Lift Feature n to i
Int1 Fipn.f1; // function redefinitions

In-tkn Fi,n-fkn3
}

Observe that n — i lifters are needed, which may call methods of the super
class. The translation assumes that the features required for F; via assumes
are present in the extended class. Otherwise, undeclared identifies occur in the
translated code, which would only be allowed in a dynamically typed language.
This assumption is not needed for aggregation, which accounts for a small dif-
ference between the two translations. Another difference will be examined in the
following section on parameterized features.

For instance, our three features from the introduction translate into the fol-
lowing class hierarchy, if an object of type LF (CF (SF)) is used.

class SF implements Stack {
String s = new String();
void empty() { s = "";}
void push(char a) {s = String.valueOf(a).concat(s);};
void pop() {s = s.substring(1); } ;
char top() { return (s.charAt(0)); } ;
void push2(char a) {this.push(a) ; this.push(a); };

}

class CF_on_SF extends SF implements Counter, Stack {
int i = 0;
void reset() {i =
void inc() {i = i+
void dec() {i = i-
// 1lift SF to CF
void empty() {this.reset(); super.empty() ;};
void push(char a) {this.inc(); super.push(a) ;};
void pop() { this.dec(); super.pop() ;};

}

class LF_on_CF_on_SF extends CF_on_SF

implements Lock, Counter, Stack {

0; };
1; ¥
1; };

b

boolean 1 = true;
void lock() {1 = false;};
void unlock() {1 = true;};
boolean is_unlocked() {return 1 ;};
// 1lift CF to LF
void reset() {if (this.is_unlocked()) { super.reset(); }};
void inc() {if (this.is_unlocked()) { super.inc(); }};
void dec() {if (this.is_unlocked()) { super.dec(); }};
// lift SF to LF
void empty() {if (this.is_unlocked()) {super.empty(); 1}};
void push(char a) {if (this.is_unlocked()) {super.push(a);}}
void pop() { if (this.is_unlocked()) {super.pop();}};
}

In this example, the above code provides for most sensible combinations, except
for stack with lock only or counter with lock. In general, this translation intro-
duces intermediate classes, which may be reused for other feature combinations.

3.2 Translation via Aggregation

Aggregation is a common technique for composing objects from different classes
to a larger object. It is used in some object-based systems as a replacement for
inheritance.

This translation requires a set of base implementations and one new class for
each feature combination. The idea of the translation is to create a class, where,
for each selected feature, one instance variable of this type is used to delegate
the services, similar to [7]. We have to be careful with delegation and calls to
this, which should not be sent to the local object. Hence we have to supply the
delegate object with the right pointer to the enclosing object, which “replaces”
this. For this purpose, we create a base class for each feature implementation
with an extra variable which will point to the composed object. This construction
enables us to check the assumes clauses globally, i.e. wrt the newly created set
of features. With the inheritance translation we had to check these assumptions
for each newly added class wrt its superclass.

Unlike the first translation, we need a few further technical assumptions. For
all lifters, all methods are lifted explicitly, e.g.

int size() { return super.size(); };

is assumed to be present. Furthermore, we need to assume that instance variables
which are used in lifters are declared public.! Also, the name self may not be
used.

The main task of this translation is to compose the lifters, i.e. all lifters
for one method have to be merged at once here. This can lead to more dense
code, as all needed lifters are composed in one class, contrary to the inheritance
translation.

An object creation

new Fi(F»...(F,)...)
translates to
new F_F»_..._F,

For this, we first need the following base classes for each feature implementa-
tion Fj, i = 1...n. For the type of self in the code below, we use the class
Fy_F,_..._F,. If no assumes statements are used, then just I; is sufficient and
the class can be reused for other object creations. Alternatively, one can intro-
duce an intermediate class with just the needed interfaces I;, I} _... _If".
class F; implements I; {

(F1-F5_..._F,) self; // reference for delegation

F, (Fi_Fy_... F,s) {self =s;}; // constructor for this class

F;.vardecls

I; .ty OF.f1; // function implementations

Lty OF1. fr,;
}

! Note that public declarations are omitted throughout this presentation.

For delegation to work in the above, we need to apply a substitution § which
renames this to self:

6 = [this — self]

With the above base implementations we construct the class Fy_F5_..._F, via
aggregation.

class Fy_F5_..._F, implements I1,l5,...,I, {
Fy by = new Fy (this); // delegate objects

F, b, = new F,(this);
// now need to nest lifters
Ir.ty 02 F1 2. f1; // lift feature 2 to 1

Iz.tk2 (52F1,2-fk2 5

Iyt 6305.5F 1 5.f1; // lift feature 3 to 1
I3.tg, 63023 F1 3. fry;
Int1 0p0n—1nOn—2p ... 02 nF1n.f1; // lift feature n to 1

In -tkn 6n0n71,n0n72,n .. 02,nF1,n-fkn;
}

For simplicity, we only indicate the applications of nested lifters via unfolding
operators 6;, where 6; ; unfolds the lifter from j to ¢, sketched as

0;; = [super.f1 = F; ;.f1,...,super.fy, = F;.fr,],

and also passes the actual parameters. Unlike in the examples below, unfolding
is in general more involved for functions, as we cannot have local blocks with
return statements. Hence we also assume for simplicity that methods return
void.?

Furthermore, we have to delegate calls to super to the delegate objects. For
this purpose, d; shall rename the instance variables and method calls of methods
in I; to super correctly to the corresponding b;. For instance, super.pop() is
translated to sf.pop(), where sf is the name of the instance variable in the
following example. We show the translation for the combination of the three
introductory features. First, new base classes are introduced (with suffix _ag):

% This is no restriction, as in Java objects of primitive type can be “wrapped” into an
object in order to be passed as variable parameters.

class SF_ag implements Stack {
Stack self;
String s = new String();
SF_ag(Stack s) {self = s;};
void empty() { s = "";}
void push(char a) {s = String.valueOf(a).concat(s);};
// self replaces this for proper delegation!!
void push2(char a) { self.push(a); self.push(a);};
void pop() {s = s.substring(1); };
char top() { return (s.charAt(0)); };
}
class CF_ag implements Counter {
Counter self;
CF_ag (Counter s) {self = s;};
int i = 0;
void reset() {i = 0; };
void inc() {i = i+1; };
void dec() {i = i-1; };
int size() {return i; };
}
class LF_ag implements Lock {
Lock self;
LF_ag (Lock s) {self = s;};
boolean 1 = true;
void lock() {1 = false;};
void unlock() {1 = true;};
boolean is_unlocked() {return 1;};

}

A class for a composed object is shown below.

class LF_CF_SF implements Lock, Counter, Stack {
// delegate objects
SF_ag sf = new SF_ag(this);
CF_ag cf = new CF_ag(this);
LF_ag 1f = new LF_ag(this);
// delegate to lock
void lock() {1f.lock();};
void unlock() {1f.unlock();};
boolean is_unlocked() {return 1f.is_unlocked();};
// delegate to lock
void reset() {if (this.is_unlocked()) {cf.reset();}};
void inc() {if (this.is_unlocked()) {cf.inc();}};
void dec() {if (this.is_unlocked()) {cf.dec();}};
int size() {return cf.size();};
// delegate to stack
void empty()

{if (this.is_unlocked()) {this.reset(); sf.empty();1}};
void push(char a)
{if (this.is_unlocked()) {this.inc(); sf.push(a);}};
void push2(char a) {sf.push2(a);};
void pop() {if (this.is_unlocked()) {this.dec(); sf.pop(Q;1}};
char top() {return sf.top();};
}

Compared to the first translation, we need fewer classes here, as the base classes
can be reused. On the other hand, aggregation introduces another level of indi-
rection, which may affect efficiency.

4 Parametric Features

In order to write reusable code, it is often desirable to parameterize a class by
a type. In this section, we introduce parametric features, which are very similar
to parametric classes. Due to the flexible composition concepts for features, we
also need expressive type concepts for composition. For Java, parametric classes
have just recently been proposed and implemented in the language Pizza [11],
which will be the target language for our translations. Apart from other nice
extensions, which are also used in some examples here, Pizza introduces a rather
powerful extension for type safe parameterization. The notation for type pa-
rameters is similar to C++ templates [19]. A typical example is a stack feature
parameterized by a type A as follows:

interface Stack<A> {
void empty();
void push(A a);
void push2(A a);

void pop();
A top();
}
feature SF<A> implements Stack<A> {
List<A> s = List.Nil; // Use Pizza’s List data type
void empty() { s = List.Nil;};
void push(A a) {s = List.Cons(a,s);};
void push2(A a) { this.push(a) ; this.push(a);};
void pop() {s = s.tail();};
A top() { return s.head();};
}

Stacks over type char with a counter are then created via
new CF (SF<char>);

Note that it is sometimes useful to make assumptions on the parameter for
providing operations, e.g.

interface Matrix<A implements Number> {
void multiply_matrix(...);

¥

Such an assumption is different from assumptions via assumes, as it refers to a
parameter and not to the inner feature combination. The difference is that this
kind of parameterization is not subject to liftings.

For translating parameterization into Java we refer to [11]. We here only aim
at translating into Pizza. As we mostly use basic concepts, it is not necessary to
go into the details of the Pizza type system.

4.1 Type Dependencies

For parameterized features new and interesting specification problems occur
when combining features. Not only can features depend on each other, but the
parameter types can also depend on each other. This gets even more complicated
if more than two features are involved, as shown below. For instance, we may
want to combine Stack<A> with a feature which only allows elements within
a certain range. Its implementation maintains two variables of type A used for
filtering. This feature Bound is parameterized by a numeric type:

interface Bound<A> { boolean check_bounds(A el); }

feature BF<A implements Number> implements Bound<A> {
A min, max;
BF(A mi, A ma) { min = mi; max = ma;};
boolean check_bounds(A el) {...};

}

Clearly, we can only combine the two features when both are supplied with the
same type. This can be expressed by liftings:

feature BF<A> lifts Stack<A> { ... }

Another example for such a dependency will be shown in Section 5. Note that in
feature implementations, assumes conditions can also express type dependencies
in the same way.

4.2 Multi-Feature Interactions and Type Interactions

In the following, we discuss multi-feature interactions and type interactions using
the undo example. This will lead to a new aspect of lifting features, i.e. that
lifting may change the type parameter.

The implementation of the undo feature is simple: save the local state of
the object each time a function of the other features is applied (e.g. push, pop).
Undo depends essentially on all “inner” features, since it has to know the internal

state of the composed object. As we work in a typed environment, the type of
the state to be saved has to be known. This multi-feature interaction is solved by
an extra feature, called Store, which allows to read and write the local state of
a composed object. (The motivation for store is similar to the Memento pattern
in [5].)

We introduce the following interface for Store:

interface Store<A> {
void put_s(A a);
A get_sQ;

}

Note that the parameter type depends on the types of all instance variables
of the used features. Consider for instance adding this feature to a stack with
counter. Then for both features the local variables have to be accessed.

With the Store feature, we reduce the multi-feature interaction to a type
interaction problem. This means that the parameter type of a feature has to
change when a feature is lifted. The following solution makes these type depen-
dencies explicit. We use the Pizza class Pair<A, B>, providing for polymorphic
pairs, for type composition. In the following lifter, we state that the inner fea-
ture combination supports feature Store<A> for some type A. For this, we need
a new syntactic construct, namely assumes inner. As feature stack ST adds
an instance variable of type List, we can support the store feature with
parameter Pair<List,A>.

feature ST lifts Store<Pair<List,A>>
assumes inner Store<A> {
Pair<List,A> get_s()

{ return Pair.Pair(s, // local state
super.get_s()); } // inner state
void get_s(Pair<List,A>s) { ... }

}

The assumes inner however has some constraints. The lifted feature may not
have instance variables or calls to self where the changed type parameter type
is used. (This can be allowed if the type change is a specialization, which this is
not the case in this example.)

This inner condition is implicit in other lifters and is only needed if the type
parameters change. The lifting

feature F lifts Fi<A> { ... }
can be seen as an abbreviation for

feature F lifts F1<A>
assumes inner Fi<A> { ... }

We show below how this change of parameters affects the two translations
schemes of Section 3. Continuing with the example, we express that the counter
CF adds an integer and LF a boolean variable with the following lifters:

feature CF lifts Store<Pair<A, int>>
assumes inner Store<A> {

}
feature LF lifts Store<Pair<A, Boolean>>
assumes inner Store<A> {

}

With the above lifters, we can assure that the store feature works correctly
and with the correct type for any feature combination. All we need to add is
a base implementation for store. As the base implementation cannot store any-
thing useful, we introduce a Pizza type/class Void, which has just one element,
void_el.

class Void { case void_el; }

feature ST implements Store<Void> { // base implementation
void put_s(Void a) {};
Void get_s() {return Void.void_el; };

}

With the store feature, we can now write the generic undo feature, which can
be plugged into any other feature combination. It is important that the store
feature fixes the type of the state of the composed object. The undo feature can
then have an instance variable of this type. Recall that this is not possible for
store, as the type parameter of store changes under liftings.

The undo feature consists of two parts: storing the state before every change
and retrieving it upon an undo call. The latter is the core functionality of undo,
whereas the former will be fixed for each function with affects the state via
liftings. First consider the undo feature and its implementation, which uses a
variable backup to store the old state. Since there may not be an old state, we
use the algebraic (Pizza) type Option<A>, which contains the elements None or
Some (a) for all elements a of type A.

interface Undo<A> {
void undo();
}
class Option<A> {
case None;
case Some(A value);
}
feature UF<A> implements Undo<A> assumes Store<A> {
Option<A> backup = None;
void undo() {
switch ((Option) backup) {
case Some(A a):

put_s(a);
}r 3

An alternative version of undo may store several or all old states. Due to our
flexible setup, we can just exchange such variations.

For each of the other features, we have to lift all functions which update the
internal state. As for lock, this lifting is canonical, e.g. for push:

void push(A a) {
backup = Option.Some(get_s());
super.push(a); };

Note that there is an interesting interaction between lock and undo: shall
undo reverse the locking or shall lock disable undo as well? We chose the latter
for simplicity and hence add lock after undo. Lifting undo to lock is canonical
and not shown here. As an example, we can create an integer stack with undo
and lock as follows:

new LF (UF<Pair<int,Void>> (SF<int> (ST)))

4.3 Translation into Pizza

We show in the following how to translate the above extensions into Pizza. This
will reveal another difference between aggregation and inheritance: for inheri-
tance, we cannot cope with the change of parameters. Otherwise, the translation
to Pizza is quite simple.

For aggregation, additional inner statements just translate into types of the
instance variables of class generated for a combination. This is shown in the
following code for a class generated for a composed object with both stack and
store features. We first introduce a class SF_ag<A> for parametric stacks. As we
do not allow calls to self for features whose type parameter changes during lifting,
we do not use the usual delegation mechanism in the above class. Hence we use
just ST. The class SF_ST<A> exports the interface Store<Pair<List<A>,Void>>,
but uses a delegate object with interface Store<Void>.

class SF_ag<A> implements Stack<A> {
Stack<A> self ;
SF_ag(Stack<A> s) {self = s;};
List<A> s = List.Nil;
void empty()
}
class SF_ST<A> implements Stack<A>,Store<Pair<List<A>,Void>>{
SF_ag<A> sf = new SF_ag(this);
Store<Void> st = new ST();
Pair<List<A>,Void> get_s()
{return Pair.Pair(sf.s, st.get_s()) ; };

A further detail to observe is that all type variables have to be considered
for the translation. This means that for the new class introduced, all type vari-
ables which appear as parameters in the desired set of features have to appear
as parameters. For instance, for the combination F<A>(G), we need a class
F_G<A,B>.

For inheritance, an inner statement is an assumption on the extended class. If
the parameter changes, this amounts to specialization for parameterized classes,
which is problematic in typed imperative languages, as discussed in [11]. In Pizza,
the problem in this example is that subtyping does extend through constructors
such as List. For instance, we cannot translate the above feature combination
to the following (illegal) code:

// illegal ! Type conflict!
class ST_SF<B,A> extends ST<A>
implements Stack,Store<Pair<List,A>> {
Pair<List,A> get_s() {
Pair.Pair(s, // local state
super.get_s()); // inner state

}

If the parameters do not change, the translation is straightforward.

5 Examples

In the following, we sketch a few more typical applications for feature-based pro-
gramming. Some examples are freely taken from standard literature on design
patterns [5]. We argue that for many of these typical programming schemata,
feature-based implementations provide high flexibility and the desired reusabil-
ity. This is particularly important if several features or design patterns are com-
bined.

5.1 Adding a Cache

Consider implementing some functional entity, e.g. sets, where caching of the
results of operations is a viable option. In the lines of [5], this can be viewed
as a Proxy pattern. Clearly, a cache is an independent feature, and there exist
many variations of caching. For instance, considering the data structures used
and the replacement strategy. And it furthermore may depend on appropriate
hash functions, which could also be provided via features.

When writing a reusable set of caching modules, the various cache implemen-
tations just implement the data structures and the access functions. Interaction
resolution in turn modifies the access operations for the object to be cached and
determines the type dependencies.

Consider writing this with classical object oriented languages: for each needed
combination of a cached object, a cache, and a hashing function, a new (sub-
)class has to be implemented.

A sketch of such an example is shown below. It shows how to add a cache to
the parametric features Set<A> and Dictionary<A, B>. The feature implemen-
tation CacheI<A,B> (whose interface Cache is not shown here) caches mappings
from A to B.

interface Set<A> {
void put(A a);
boolean contains(A a);
}
interface Dictionary<A, B> {
Option get(A key);
void put(A key, B value);
}

feature CacheI<A,B> implements Cache<A,B> {

void put_s(A a, Bb) {...} ;
boolean find_s(A a) {...};
B get_s(O {...};
}
feature CacheI<A,B> lifts Dictionary<A, B> {
// adapt access functions to cache
Option get (A key)
{ if find(key) return Option.Some(get_s());
else return super.get(); }

}

// second parameter is just boolean here
feature CachelI<A,boolean> lifts Set<A> {

¥

Note that the lifters express the type dependencies. For instance the set is viewed
as a mapping from A to boolean.

5.2 Adaptor Patterns

The adaptor design pattern [5] glues two incompatible modules together. This
design fits nicely in our setting, as adaptors should be reusable. Typically, there
is some core adaption functionality, e.g. some data conversion, which we model as
a feature. When adding this to another feature, we can just lift the incompatible
functions with help of the core functionality.

An example is converting big endian encoding of data to little endian. For
instance, if we output data on a (low-level) interface which needs big endian,

[Feature O]
Feature lockl Feature lock2
lock, unlock lock, unlock

Fig. 4. Alternative Feature Composition

but we work with little endian, such a conversion feature can just be added. The
adaptor feature provides the core functionality, here the data conversion, and
interaction resolution adapts the operations of the object.

The following features and lifters sketch the solution of pluggable adaptors
with features. The adaptor feature Big_to_little_endian adds a conversion
function, which is used in the lifter to provide the put method with big endian
data input.

feature Big_to_little_endian {
// convert to little endian
int big_to_little(int a) {...};
}
interface low_level_I0 { // assumes little_endian
void put(int a);
}
feature Big_to_little_endian lifts low_level_ IO {
void put(int a) {super.put(big_to_little(a)); };
}

6 A Note on Feature Composition

When introducing our model of features, there is one important design decision
for composing features: we assume that features are composed in a particular
order. Only from the outside interface it is possible to view an object as composed
of a set of features.

There are several reasons for this ordering. First, it is in the spirit of inher-
itance and it seems to be the simplest structure capturing the essential object-
oriented ideas like inheritance.

Secondly, there are problems when viewing features as unordered citizens.
We show in the following that, although intuitive, the idea of treating features
without order is difficult wrt. liftings or inheritance. The problem seems to be
similar to known problems with multiple inheritance.

Consider an example of an object integrating two unordered features, both
implementing a lock. Such a configuration with lockl and lock2, to which a fea-
ture O is added, is shown in Figure 4. The interaction is that closing lock1 should
also close lock2 and vice versa. Hence we need liftings from the two features to

feature O. The simple lifting model is to lift the functions of each feature to
O, e.g. by applying all lifters corresponding to the other present features. The
lifter of lockl shall call lock2.lock(); and similarly the lifter for lock2 calls
lockl.lock(); The problem is which version of lock should be called, the lifted
or the original of the feature? If original is called, then all other liftings are ig-
nored, e.g. if other features are involved. Or if the lifted version is called, then
the procedure diverges.

In cases where features are fully independent it is not needed to order them.
But still, there is no harm with an ordering in this case, and possibly a simple
syntactic extension may alleviate the problem.

6.1 Related Work

We briefly compare the feature model to other approaches. Apart from the de-
tailed comparison, we argue that the feature model provides maximal flexibility
(with static typing) and is as simple as possible.

— Mixins [2] have been proposed as a basic concept for modeling other in-
heritance concepts. The main difference is that we consider interactions and
separate a feature from interaction handling. If mixins are used also as lifters,
then the composition of the features and their quadratic number of lifters
has to be done manually in the appropriate order. Instead, we can just select
features here.

— Method combination with before, after and around messages in CLOS [§]
follows a similar idea as interactions. As with mixins, this does not consider
interactions between two classes/features and gives no architecture for com-
position of abstract subclasses. Such after or before messages can be viewed
as a particular class of interactions.

— Composition filters have been proposed in [1] to compose objects in layers,
similar to the feature order in our approach. Messages are handled from
outside in by each layer. The main difference is that we consider interactions
on an individual basis and separate a feature from interaction handling.

— Several other approaches allow to change class membership dynamically or
propose other compositions mechanisms [9, 20, 4, 16, 10]. Note that one of
the main ingredients for feature-oriented programming, lifting to a context,
can also be found in [16]. All of these do not consider a composition archi-
tecture as done here, and address other problems, such as name conflicts.
Clearly, the idea of features can also be applied to dynamic composition, but
this remains for future work.

7 Extensions

We discuss in the following a few extensions and issues which have not been
addressed so far. As we have focused on feature composition, several interesting
aspects have not been addressed.

— An aspect not yet considered is hiding. For instance, when adding the counter
to a stack, we may not want to inherit the inc and dec functions, as they
may turn the object into an inconsistent state. Such hidings can easily be
provided by adding an appropriate interface and by disabling the others.

— Generic liftings via higher-order functions are possible in Pizza. In the stacks
example it is easy to see that lifting to lock is schematic. It is natural to
express this by higher-order functions. Consider for instance the following
function for lifting lock, where () ->void is the Pizza notation for a function

type.

void 1lift_to_lock(()->void f)
{ if (this.is_unlocked()) { £ ;};}

It can be used e.g. with

void reset() { lift_to_lock(super.reset) ; };
// replaces
// void reset() {if (this.is_unlocked()) {super.reset();}};

This can be made to a default lifter, which is applied if no explicit lifters are
provided.

— Another extension is to consider exception handling as a feature which can be
added as needed. This is explored with (monadic) functional programming
in [13, 14] and with first examples in Java in [15].

8 Conclusions

Feature-oriented programming is an extension of the object-oriented program-
ming paradigm. Whereas object-oriented programming supports incremental de-
velopment by subclassing, feature-oriented programming enables compositional
programming, and overwriting as in inheritance is accomplished by resolving
feature interactions.

The recent interest in feature interactions, mostly stemming from multimedia
applications [21, 3], shows that there is a large demand for expressive composi-
tion concepts where objects with individual services can be created. It also shows
that our viewpoint of inheritance as interaction is a very natural concept.

Compared to classical object-oriented programming, feature-oriented pro-
gramming provides much higher modularity and flexibility. Reusability is sim-
plified, since for each feature, the functional core and the interactions are sep-
arated. This difference encourages to write independent, reusable features and
to make the dependencies to other features clear. In contrast, inheritance with
overwriting mixes both, which often leads to highly entangled (sub-)classes.

Compared to other extensions of inheritance, the feature model contributes
the following ideas:

— The core functionality is separated from the interaction resolution.
— It allows to create objects (or classes) freely by composing features.

— For the composition, we provide a composition architecture, which general-

izes inheritance.

Acknowledgments. The author is indebted to the ECOOP reviewers for their
helpful efforts to improve the paper. Also, M. Broy, B. Rumpe, and C. Klein
contributed comments on earlier versions of this paper. M. Odersky made this
paper possible by providing the Pizza compiler just in time.

References

1.

10.

11.

12.

13.

14.

15.

Lodewijk Bergmans and Mehmet Aksit. Composing synchronization and real-time
constraints. Journal of Parallel and Distributed Computing, 36(1):32-52, 10 July
1996.

Gilad Bracha and William Cook. Mixin-based inheritance. ACM SIGPLAN No-
tices, 25(10):303-311, October 1990. OOPSLA ECOOP ’90 Proceedings, N. Mey-
rowitz (editor).

K. E. Cheng and T. Ohta, editors. Feature Interactions in Telecommunications
III. 10S Press, Tokyo, Japan, Oct 1995.

H. J. Frohlich. Prototype of a run-time adaptable object-oriented system. In PST
’96 (Perspectives of System Informatics), Akademgorodok, 1996. Springer-LNCS.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Micro-
Architectures for Reusable Object-Oriented Design. Addison Wesley, Reading, MA,
1994.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, September 1996.

R. E. Johnson and J. M. Zweig. Delegation in C++. J. of Object-Oriented Pro-
gramming, 4(3), November 1991.

Jo A. Lawless and M. Molly. Understanding CLOS: the Common LISP object
system. Digital Press, Nashua, NH, 1991.

Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the BETA Programming Language. Addison-Wesley,
Reading, 1993.

Mira Mezini. Dynamic object modification without name collisions. In this volume,
1997.

Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into prac-
tice. In Proc. 24th ACM Symposium on Principles of Programming Languages,
January 1997.

W. F. Opdyke and R. J. Johnson. Refactoring: An Aid in Designing Application
Frameworks. In Proceedings of the Symposium on Object-Oriented Programming
emphasizing Practical Applications. ACM-SIGPLAN, September 1990.

Christian Prehofer. From inheritance to feature interaction. In Max Mihlhduser
et al., editor, Special Issues in Object-Oriented Programming. ECOOP 1996 Work-
shop on Composability Issues in Object-Orientation, Heidelberg, 1997. dpunkt-
Verlag.

Christian Prehofer. From inheritance to feature interaction or composing monads.
Technical report, TU Miinchen, 1997. to appear.

Christian Prehofer. An object-oriented approach to feature interaction. In Fourth
IEEE Workshop on Feature Interactions in Telecommunications networks and dis-
tributed systems, 1997. to appear.

16.

17.

18.

19.

20.

21.

Linda M. Seiter, Jens Palsberg, and Karl J. Lieberherr. Evolution of object behav-
ior using context relations. In David Garlan, editor, Symposium on Foundations
of Software Engineering, San Francisco, 1996. ACM Press.

Lynn A. Stein. Delegation is inheritance. ACM SIGPLAN Notices, 22(12):138—
146, December 1987.

Patrick Steyaert, Wim Codenie, Theo D’Hondt, Koen De Hondt, Carine Lucas,
and Marc Van Limberghen. Nested Mixin-Methods in Agora. In O. Nierstrasz,
editor, Proceedings of the ECOOP 93 European Conference on Object-oriented
Programming, LNCS 707, Kaiserslautern, Germany, July 1993. Springer-Verlag.
B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, 1991.
2nd edition.

David Ungar and Randall B. Smith. Self: The power of simplicity. Lisp and
symbolic computation, 3(3), 1991.

P. Zave. Feature interactions and formal specifications in telecommunications.
IEEE Computer, XXVI(8), August 1993.

This article was processed using the I#TEX macro package with LLNCS style

