Specifying a
Real-Time Kernel

This case study of an
embedded real-time
kernel shows that
mathematical
techniques have

an important role to
play in documenting
systems and avoiding
design flaws.

September 1990

J. Michael Spivey, Tektronix

mbedded systems are commonly
Ebuilt around a small operating-sys-

tem kernel that provides process-
scheduling and interrupt-handling facili-
ties. This article reports on a case study I
made, using the Z notation,'? a mathe-
matical specification language, to specify
the kernel for a diagnostic X-ray machine.

Beginning with the documentation and
source code of an existing implementa-
tion, I constructed a mathematical model,
expressed in Z, of the states that the kernel
could occupy and the events that could take
it from one state to another. My goal was a
precise specification that could be used as
a basis for a new implementation on dif-
ferent hardware.

This case study in specification had a
surprising by-product, because in study-
ing one of the kernel’s operations, I dis-
covered that it could sometimes lead to
deadlock: The kernel would disable inter-
rupts and enter a tight loop, vainly search-
ing for a process ready to run.

0740-7459/90/0900/0021/$01.00 © 1990 IEEE

This flaw in the kernel’s design was re-
flected directly in a mathematical prop-
erty of its specification, demonstrating
how formal techniques can help avoid de-
sign errors. This help should be especially
welcome in embedded systems, which are
notoriously difficult to test effectively.

A conversation with the kernel designer
later revealed that, for two reasons, the de-
sign error did not in fact endanger pa-
tients using the X-ray machine. First, the
actual control software happened to avoid
the circumstances that could lead to dead-
lock. Second, there was a hardware time-
out that protected against hardware or
software failure in the machine. Neverthe-
less, the error seriously affected the X-ray
machine’s robustness and reliability be-
cause later enhancements to the control-
ling software might reveal the problem
with deadlock that had been hidden be-
fore.

I have simplified the specification pre-
sented in this article by making less use of

21

Interrupt level 1
——

Port

sesse
X
vesses

Interrupf level 6
e

-

Active process

Processes under
interrupt contro!

Processes under
scheduler control

Figure 1. Kemel data structures: Processes, shown as ovals, are linked in a ring. The
processes above the horizontal dotted line are the interrupt handlers, and those below it
are background processes. The ready flag for each process is shown as a small square.

the schema calculus, a way of structuring
Z specifications. This has made the specifi-
cation a little longer and more repetitive
but perhaps alittle easier to follow without
knowledge of Z.

About the kernel

The kernel supports both background
processes and interrupt handlers. There
may be several background processes, and
one may be marked as current. This pro-
cess runs whenever no interrupts are ac-
tive, and it remains current until it explic-
itly releases the processor; the kernel may
then select another process to be current.
Each background process has a ready flag,
and the kernel chooses the new current
process from among those with a ready
flag set to true.

When interrupts are active, the kernel
chooses the most urgent according to a
numerical priority, and the interrupt han-
dler for that priority runs. An interrupt
may become active if it has a higher prior-
ity than those already active, and it be-
comes inactive again when its handler sig-
nals that it has finished. A background
process may become an interrupt handler
by registering itself as the handler for a
certain priority.

Documentation

Figures 1 and 2 are diagrams from the
existing kernel documentation, typical of
the ones used to describe kernelslike this.
Figure 1 shows the kernel data structures.
Figure 2 shows the states that a single pro-
cess may occupy and the possible transi-
tions between them, caused either by a

22

kernel call from the process itself or by
some other event.

Although diagrams like these are fairly
common, they convey little information
that a programmer can use in developing
programs to run under the kernel, and
they contain much thatisirrelevant or dis-
tracting. For example, Figure 1 shows that
interrupt handlers are linked into the
ring with the background processes and
that they have a ready flag. These are facts
that a programmer cannot detect.

The fact that a scheduling ring exists at
all, so background processes run in a fixed
order, is one that programmers using the
kernel should =of exploit if their pro-
grams are to be robust. Also, because the
diagram shows just one possible state of
the kernel, it can be misleading. For ex-
ample, the interrupt handlers are shown
as occupying consecutive places in the
ring, although this need not be true.

In a way, Figure 2 is a partial specifica-
tion of the kernel as a set of finite-state
machines, one for each process. However,
it gives no explicit information about the
interactions between processes — the
very thing the kernel is required to man-
age. Also, it fails to show several possible
states of a process. For example, the cur-
rent background process may not be
ready if it has setits own ready flag to false,
but the state “current but not ready” is not
shown in the diagram. Correcting this de-
fectwould require adding two more states
and seven more transitions. This high-
lights another deficiency of state diagrams
like this: Their size tends to grow expo-
nentially as system complexity increases.

Kernel state

Like most Z specifications, the kernel
model begins with a description of the
state space: the collection of variables that
determine what state the kernel is in and
the invariant relationships that always
hold between these variables’ values.

In this article, I describe the kernel state
space in several parts, corresponding to
the background processes, the interrupt
handlers, and the state of the processor
on which the kernel runs. Each piece is
described by a schema, the basic unit of
specification in Z. (The box on p. 25 de-
scribes the Z notation used in this article.)
I obtain the state space of the whole ker-
nel by putting together these pieces and
adding more invariants, among them the
static policy for allocating the processor to
a background process or interrupt han-
dler.

Processes are named in the kernel by
process identifiers. In the implemented ker-
nel, these are the addresses of process-
control blocks, but this detail is irrelevant
to a programmer using the kernel, so I in-
troduce them as a basic type PID:

[PID)

This declaration introduces PID as the
name of a set, without giving any informa-
tion about its members. From the specifi-
cation’s point of view, the members are
simply atomic objects.

For convenience, I introduced also the
fictitious process identifier none, which is
not the name of any genuine process.
When the processor is idle, the current
process is none. The set PID; contains all
process identifiers except none:

none: PID
PID,:P PID

PID, = PID\ {nond

The part of the kernel state concerned
with background processes is described by
this schema:

——Schedul
background: P PID,
ready: P PID,
current: PID

ready C background
current € background U {none

|IEEE Software

Like all schemas, this one declares some
typed variables and states a relationship
between them. Above the horizontal di-
viding line, in the declaration part, the
three variables background, ready, and
current are declared:

® Background is the set of processes
under control of the scheduler.

* Ready is the set of processes that may
be selected for execution when the pro-
cessor becomes free.

¢ Current is the process selected for exe-
cution in the background.

Below the line, in the predicate part, the
schema states two relationships that al-
ways hold. The set ready is always a subset
of background, and current is either a
member of background or the fictitious
process none. This schema lets the cur-
rent process be not ready, because no rela-
tionship between current and ready is
specified.

This schema does not reflect the full sig-
nificance of the set ready, but its real
meaning will be shown later in the Select
operation, where it forms the pool from
which a new current process is chosen.

Interrupts are identified by their prior-
ity levels, which are small positive integers.
The finite set ILEVEL includes all the prior-
ities:

ILEVEL:FN

0¢ ILEVEL

Zero is not one of the interrupt priority
levels, but it is the priority associated with
background processes.

The state space for the interrupt-han-
dling part of the kernel is described like
this:

——IntHandler

handler: ILEVEL —~—>PID,
enabled, active: P ILEVEL

enabled U active < dom handler

This schema declares the three variables
handler, enabled, and active:

® Handler is a function that associates
certain priority levels with processes, the
interrupt handlers for those priorities.

® Enabled is the set of priority levels that
are enabled, so an interrupt can happen
at that priority.

e Active is the set of priority levels for

September 1990

Higher level
Interrupt

1Wait or
1Exit

Interrupt

Detach
or [Enter

Process under
interrupt control

|Enter

IWait
or 1Exit

Interrupt

Process under
scheduler control

Key:

————=Forced transition (triggered by other processes)
——— Self-transition (performed by the active process)

Figure 2. The states that a single process may occupy and the possible transitions be-
tween them, caused either by akernel call from the process itself (thin arrows) or by some

other event (thick arrows).

which an interrupt is being handled.

The predicate part of this schema says
that each priority level that is either en-
abled or active must be associated with a
handler. An interrupt may be active with-
out being enabled if, for example, it has
been disabled by the handler itself since
becoming active.

The declaration

handler: ILEVEL ~+>PID,

declares handler to be a partial injection.
It is partial in that not every priority level
need be associated with an interrupt han-
dler, and it is an injection in that no two
distinct priority levels may share the same
handler.

Information like this — that interrupts
may be active without being enabled and
that different priority levels may not share
a handler — is vital to understanding how
the kernel works. It is especially valuable
because it is static information about the
states the kernel may occupy, rather than
about what happens as the system moves
from state to state. Such static information
is often absent from the text of the pro-
gram, which consists mostly of dynamic,
executable code.

The state space of the whole kernel
combines the background and interrupt
parts:

——Kernek

Scheduler
IntHandler

background M ran handler= <

The declarations Scheduler and Int-
Handler in this schema implicitly include
above the line all the declarations from
those schemas and implicitly include
below the line all their invariants. So the
schema Kernel has six variables: back-
ground, ready, and current from Sched-
uler, and handler, enabled, and active
from IntHandler.

I have added the additional invariant
that no process can be both a background
process and an interrupt handler at the
same time.

The main job of the kernelis to control
which process the processor runs and at
what priority, so I made the running pro-
cess and the processor priority part of the
state of the system. Here is a schema that
declares them:

CPU-
running: PID
prionity: ILEVEL U {0}

This schema has an empty predicate
part, so it places no restriction on the val-
ues of its variables, except that each must
be a member of its type. The variable run-
ning takes the value none when no pro-
cess is running.

Of course, there are many other parts of
the processor state, including the con-
tents of registers and memory, condition
codes, and so on, but they are irrelevant in
this context.

Because the kernel always uses the same
scheduling policy to select the running
process and the CPU priority, this policy is

23

another invariant of the system. It is stated
in the schema State, which combines the
kernel and CPU parts of the system state:

Stote

—State
Kernel

CPU

priority = max(active U {0})
priority=0 = running= currenl
priority>0 = running= handler(priority)

If any interrupts are active, the proces-
sor priority is the highest priority of an ac-
tive interrupt, and the processor runs the
interrupt handler for that priority. Other-
wise, the processor runs the current back-
ground process at priority zero.

The invariant part of this schema
uniquely determines priority and run-
ning in terms of active, current, and han-
dler, three variables of the schema Kernel.
I will exploit this fact when I describe
events that change the system state.

With the description of the kernel’sand
processor’s state space complete, the next
step is to look at the operations and events
that can change the state.

Background processing

Some kernel operations affect only the
background-processing part of the state
space. They start background processes,
set and clear their ready flags, let them re-
lease the processor temporarily or perma-
nently, and select a new process to run
when the processor is idle.

A process enters the control of the
scheduler through the operation Start,
described by this schema:

—Start
AState
PP PID,

p? & ran handler

background” = background L {p?}
ready = ready L {p?}

current’ = current

0IntHandler’ = ©IntHandler

Like all schemas describing operations,
this one includes the declaration AState,
which implicitly declares two copies of
each variable in the state space State, one
with a prime (') and one without. Vari-
ables like background and ready withouta
prime refer to the system state before the

24

operation has happened, and variables
like background” and ready’ with a prime
refer to the state afterward.

The declaration AState also implicitly
constrains these variables to obey the in-
variant relationships I documented in de-
fining the schema State — including the
scheduling policy — so they hold both be-
fore and after the operation.

In addition to these state variables, the
Start operation has an input p?, the identi-
fier of the process to be started. By con-
vention, inputs to operations are given
names thatendina?.

The predicate part of an operation
schema lists the precondition that must be
true when the operation is invoked and
postcondition that must be true after-
ward. In this case, the precondition is ex-

Some kernel operations
affect only the
background-processing
part of the state space.
They start background
processes, set and clear
their ready flags, let
them release the
processor, and select a
new process to run when
the processor is idle.

plicitly stated: that the process p? being
started must not be an interrupt handler
(because that would violate the invariant
that background processes are disjoint
from interrupt handlers).

In general, an operation’s precondition
is that a final state exists that satisfies the
predicates written in the schema. Part of
the precondition may be implicit in the
predicates that relate the initial and final
states. If an operation is specified by the
schema Op, its precondition can be calcu-
lated as

3 State» Op

If the precondition is true, the specifica-
tion requires that the operation should
terminate in a state satisfying the post
condition. On the other hand, if the pre-
condition is false when the operation is

invoked, the specification says nothing
about what happens. The operation may
fail to terminate, or the kernel may stop
working completely.

For the Start operation, the postcondi-
tion says that the new process is added to
the set of background processes and
marked as ready to run. The new process
does not start to run immediately, because
current is unchanged; instead, the proces-
sor continues to run the same process as
before.

The final equation in the postcondition

OIntHandler’ = 8 IntHandler

means that the part of the state described
by the schema IntHandler is the same
after the operation as before it.

The equations in this schema deter-
mine the final values of the six variables in
the kernel state space in terms of their ini-
tial values and the input p?, but they say
nothing about the final values of the CPU
variables running and priority. These are
determined by the requirement, implicit
in the declaration AState, that the sched-
uling policy be obeyed after the operation
has finished. Because the values of active,
handler, and current do not change in the
operation, neither does the CPU state.

The current background process may
release the processor by calling the De-
tach operation, specified like this:

——Detach
AState

running € background

background’ = background
ready = ready
current’ = none

OIntHandler’ = 0 IntHandler

Again, this operation is described using
AState in terms of the values of state vari-
ables before and after the operation has
happened. The precondition is that the
processor is running a background pro-
cess. The only change specified in the

- postcondition is that the current process

changes to none, meaning that the pro-
cessor is now idle. The next event will be
either an interrupt or the selection of a
new background process to run.

After a call to Detach — and after other
operations I describe later — current has

IEEE Software

value none, indicating that no back-
ground process has been selected for exe-
cution. If no interrupts are active, the pro-
cessor is idle, and the Select operation
may happen spontaneously. It is specified
like this:

——Select
A State

TUNNING = none

background’ = background
ready = ready

current’ € ready
0IntHandler’ = 0IntHandler

Rather than a part of the interface be-
tween the kernel and an application, Se-
lect is an internal operation of the kernel
that can happen whenever its precondi-
tion is true. The precondition is

running=none A ready #<J

The processor must be idle, and at least
one background process must be ready to
run. The first part of this precondition is
stated explicitly, and the second partis im-
plicit in the predicate

current’ € ready

The new value of current is selected
from ready, but the specification does not
say how the choice is made — it is non-
deterministic. This nondeterminism lets
the specification say exactly what pro-
grammers may rely on the kernel to do:
There is no guarantee that processes will
be scheduled in a particular order.

In fact, the nondeterminism is a natural
consequence of the abstract view I have
taken in the specification. Although the
program that implements this specifica-
tion is deterministic — if started with the
ring of processes in a certain state, it will
always select the same process — it ap-
pears to be nondeterministic if you pay at-
tention only to the set of processes that are
ready, as I have done in the specification.

However the kernel selects the new cur-
rent process, the specification says that it
starts to run, because of the static schedul-
ing policy, which determines that after the
operation, running is current and priority
is zero.

A background process may terminate it-
self using the Stop operation:

September 1990

In Z, the schema Xis defined by the form

X

Summary of Z notation

Z notation is based on typed set theory and first-order logic. Z provides a construct, called
a schema, to describe a specification’s state space and operations. A schema groups vari-
able declarations with a list of predicates that constrain the variables’ possible values.

X

declarations

predicates

declarations

predicates

Global functions and constants are defined by the form

The declaration gives the type of the function or constant, while the predicate gives its value.
Here, | define only the Z symbols used in this article:

Sets:
S:PX Sisdeclaredas asetof X’s.
xeS8 xis amember of S.
xeS Xis not amember of S.
ScT Sis a subset of T: Every member of Sisalsoin T.
SuT The union of Sand T: It contains every member of Sor Tor both.
SnT The intersection of Sand T: It contains every member of both Sand T.
S\T The difference of Sand T: It contains every member of Sexcept those alsoin 7.
%) Empty set: It contains no members.
{x} Singleton set: It contains just x.
N The set of natural numbers 0, 1, 2,
S:FX Sis declared as a finite set of X’s.
max(S) The maximum of the nonempty set of numbers S.
Functions:
f: X>——Y f is declared as a partial injection from X to Y (described in the handler defini-
tion on p. 23).
dom f The domain of f: the set of values x for which f(x) is defined.
ran f The range of f: the set of values taken by f(x) as x varies over the domain of f.

f® {xt>y} Afunction that agrees with fexcept that xis mapped to y.

running € background

background’ = background \ {current)
ready = ready \ {current)

current’” = none

0IntHandler’ = 0IntHandler

For this operation to be permissible, the
processor must be running a background
process. This process is removed from
background and ready, and the current
process becomes none, so the next action
will be to select another process.

A final operation, SetReady, sets or
clears a process’s ready flag. It has two in-

{x}<f Afunction like f, except that xis removed from its domain.
Logic:

PAQ Pand Q: Itistrue if both Pand Qare true.

P=Q Pimplies Q: Itis true if either Qis true or Pis false.

6S’=6S Nocomponents of schema Schange in an operation.

——Stop puts, the process identifier and a flag,
AState

which takes one of the values set or
clear:

FILAG = set| clear

The SetReady operation is:

—SetReady
AState

p?: PID
flag: FLAG

p? € background

Slag? = set = ready = ready L {p?}
Sflag? = clear = ready = ready \ {p?)
background’ = background
current’ = current

OIntHandler’ = 0IntHandler

25

The precondition is that p? is a back-
ground process; according to the value of
flag?, it is either inserted in ready or re-
moved from it. The scheduling parame-
ters do not change, so there is no change
in the running process.

Interrupt handling

Other operations affect the kernel’s in-
terrupt-handling part. A background pro-
cess may register itself as the handler for a
certain priority level by calling the opera-
tion IEnter:

——IEnter

AState
i?. ILEVEL

running € background

background’ = background \ {current}
ready = ready \ {current}

current’ = none

handler’ = handler @ {i? —>current}
enabled’ = enabled L {i?}

active’ = active

This operation may be called only by a
background process. The operation re-
moves the calling process from back-
ground and ready, and the new value of
current is none, just as in the Stop opera-
tion. Also, the calling process becomes an
interrupt handler for the priority level ¢?,
given as an input to the operation, and
that priority level becomes enabled.

The expression

handler @ {i? —>current}

denotes a function identical to handler,
except that ? is mapped to current. This
functon is an injection, because current,
a background process, cannot already be
the handler for any other priority level.
The new handler supersedes any existing
handler for priority ¢ ?, which can never
run again unless restarted with the Start
operation.

Once a process hasregistered itselfasan
interrupt handler, the scheduler chooses
a new process to run in the background,
and the new interrupthandler waits for an
interrupt to happen:

Interrupt
AState
i?: ILEVEL

26

i?€ enabled A i?> prionity
0 Scheduler’ = 0 Scheduler
handler’ = handler

enabled’ = enabled

active’ = active U {1 ?}

The processor hardware ensures thatin-
terrupts happen only when they are en-
abled and have a priority greater than the
processor priority. If these conditions are
satisfied, the interrupt can happen and
the kernel then adds the interrupt to active.

The scheduling policy ensures that the
associated interrupt handler starts to run.

The processor hardware
ensures that interrupts
happen only when they
are enabled and have a
priority greater than the
processor priority.

If these are true, the
interrupt can happen and
the kemel then adds the
interrupt to active.

In this calculation of the new processor
priority, each step is justified by the com-
ment in brackets:
priority
= [scheduling policy]
max(active’ U {0})
= [postcondition]
max((active U {i?}) U 1{0})
= [Wassoc. and comm.}
max((active U {0}) U {i?})
= [max dist. over U]
max{max(active U {0}), i ?}
[scheduling policy]
max {priority, i?}
= [i?> priority]
i?

So priority’ = ¢? >0 and the other partof
the scheduling policy ensures that
running’ equals handler(:?).

After the interrupt handler has finished

the processing associated with the inter- -

rupt, it calls the kernel operation [Wait
and suspends itself until another inter-
rupt arrives. IWait is specified as

IWait
AState

priority>0
0Scheduler” = 0 Scheduler
handler’ = handler

enabled” = enabled
active’ = active \ {priority}

The precondition priority > 0 means
that the processor must be running an in-
terrupt handler. The current priority level
is removed from active, and as for the In-
terrupt operation, the scheduling policy
determines what happens next. If any
other interrupts are active, the processor
returns to the interrupt handler with the
next highest priority. Otherwise, it returns
to the current background process.

Another kernel operation, IExit, lets an
interrupt handler cancel its registration:
——IExit
AState

priority>0

background’ =

background Ulhandler(priority)}
ready = ready \U {handler(priority)}
current’ = current
handler’ = {priority} < handler
enabled’ = enabled \ {priority)
active’ = active \ {priority}

Again, the processor must be running
an interrupt handler. This handler leaves
the interrupt-handling part of the kernel
and becomes a background process
again, marked as ready to run. As with
IWait, the processor returns to the inter-
rupt handler with the next highest prior-
ity or to the current background process.
The process that called IWait is suspended
until the scheduler selects it for execu-
tion.

In this schema, the expression

{priorityt € handler

denotes a function identical to handler,
except that priority has been removed
from its domain; it is an injection pro-
vided that handler is one.

Two more kernel operations, Mask and
Unmask, let interrupt priorities be selec-
tively disabled and enabled. Their specifi-
cations are like SetReady, so I omitted
them from this article.

The kernel specification is now com-
plete.

|EEE Software

Debugging

A useful way to check specifications for
consistency is to compute the precondi-
tion of each operation and check that it
agrees with your intuitions. Itwas precisely
this technique that uncovered an error in
the kernel’s design.

The IEnter operation as it was imple-
mented was not quite as I specified it. In-
stead, the kernel designer had tried to
combine it with the Select operation that
always follows it, like this:

——IEnterl

AState
i?t ILEVEL

running € background

background’ = background \ {current}
ready = ready \ {current}

current’ € ready

handler’ = handler ® {i? —>current
enabled’ = enabled L (i ?}

active” = active

For efficiency, the kernel’s designer
combined the two operations, since it
made it possible to avoid allocating a spe-
cial stack area for the kernel itself. But the
consequences for the kernel’s safety are
disastrous. The precondition for the com-
bined operation can be calculated as

running € background A ready \ current#Q

In other words, the processor must be
running a background process and at
least one other background process must
be ready. If this precondition is not satis-
fied, the specification says nothing about
what happens; in fact, the kernel as imple-
mented goes into an infinite loop, search-
ing for a new process to run, but with all
interrupts disabled. Had the implementa-
tion kept IEnter and Select separate, in-
terrupt processing could have continued
while the scheduler searched for a process
torun in the background.

his formal specification documents

many important aspects of the real-

time kernel. Without delving into
details of implementation data structures,
it describes not only the events that may
happen in the execution of a single pro-
cess but also how, through these events, a
process can interact with other processes
and with external interrupts.

September 1990

But there are several important aspects
of the kernel that the specification does
not cover:

¢ It does not model the fact that pro-
cesses have a state, which must be saved
when the process releases the CPU and
restored when the process is scheduled
again.

¢ Although this is a real-time kernel, the
specification does not require events to
happen within any time limit.

¢]t does not state that processes must be
scheduled fairly.

The firstdeficiency is easily corrected by
adding new state variables to model the
states of processes and the CPU registers.
This makes the specification slightly more
complex, but the schema calculus of Z lets
the added complexity be separated from
the specification as I have presented it.

Fairness is not
a property that can be
expressed in terms of
single events, such as
single choices
of a process to run,
but it must be expressed
in terms of sequences —
in fact, infinite
sequences — of events.

The other two deficiencies are more dif-
ficult to correct. A superficial attempt to
add timing information might label each
operation with the maximum time it is al-
lowed to take, perhaps by incorporating a
clock-variable time and adding postcondi-
tions of the form

time’ < time+ 500 us

to each operation. Unfortunately, this
method does not really integrate the tim-
ings with the rest of the specification. Also,
it cannot express some of the most impor-
tant timing information about the kernel,
for example, the maximum time during
which interrupts are disabled. To include
such data, you would need to express the
specification at a much lower level of ab-

straction, losing much of the specifica-
tion’s clarity and simplicity.

The third deficiency is that the specifi-
cation says nothing about fairness. This
means that a kernel could satisfy the spec-
ification and yet never allocate the proces-
sor to a particular process, even though
the process was always ready. Such behav-
ior may or may not be acceptable in an
application, and in fact many kernels with
a priority scheme for background. pro-
cesses are not fair to those with lower pri-
orities.

Fairness is not a property that can be
expressed in terms of single events, such
as single choices of a process to run, but it
must be expressed in terms of sequences
— in fact, infinite sequences — of events.
The simplest way to specify that the kernel
be fair would be to give the Select opera-
tion a fixed scheduling order for pro-
cesses, but that would be tantamount to
making the scheduling ring part of the
specification, something I was reluctant to
do for other reasons.

A more abstract approach is to add an
oracle to the specification. For example,
the kernel state might include an infinite
sequence of process identifiers, with the
invariant that each identifier occurred in-
finitely often in the sequence. The Select
operation could then discard processes
from the oracle sequence until it found
one that was ready, and the result would
be a fair scheduler that need not have a
fixed scheduling order. Implementations
of this specification could be justified
using the upward refinement technique
ofHe, Hoare, and Sanders.?

While all three deficiencies can be cor-
rected, doing so forces changes in the
mathematical model behind the specifi-
cation, making it more complex and diffi-
cult to understand. Although the specifi-
cation as it stands does not express every
property required of an acceptable imple-
mentation, it nevertheless represents a
natural and useful model of what the ker-
nel should do.

This suggests that the idea of a formal
specification as a complete contract be-
tween implementer and user is not very
helpful. A completely watertight contract,
here as in the law, is bound to consist
mostly of fine print, which can impede the
shared understanding on which a healthy

27

Submit Your Eniry for the

1990 Gordon Bell Prize
for Outstandling Achievements in the Application of
Parallel Processing to Scientific and Engineering Problems

Deadline: January 2, 1991
Send entries to

For more information:
Karen Potes

IEEE Software 10662 Los Vaqueros Cir.
(714) 821-8380 PO Box 3014
soft.one@compmail.com Los Alamitos, CA 90720

Prizes of $1,000 each willbe Y awarded in two of three categories:

» Performance, based on megaflop rate on a machine with known performance
compared against similar applications.

« Price/Performance, based on performance divided by the computational engine's
cost. Entrants must submit output from a 100x100 Linpack benchmark
showing a speedup of at least 5 Mflops.

« Compiler parallelization, based on the most speedup obtained through the use
of automatic parallelization.

Entries are to consist of a brief (less than 25 pages) report of the application, its
implementation, and performance results. Performance must exceed that
achieved in previous years to be considered competitive.

@ > @
® INSTITUTE OF ELECTRICAL AND
IEEE COMPUTER SOCIETY ELECTRONICS ENGINEERS, INC.

Computer Scientists
Lawrence Livermore National Laboratory, one of the nation’s premier R&D

organizations, has a number of opportunities for individuals in our Applica-
tions Development Department.

Using state-of-the-art tools and supporting both classified and un-classified
scientific and engineering projects, your assignments include real-time soft-
ware development, image processing, simulation, hardware controlfinterfac-
ing, software development for celestial navigation, acquiring objects from
image data and tracking objects. Other areas include databases, network-
ing computer security, electronic commerce, and combat simulation. Re-
quirements include a BS or MS degree in Computer Science or comparabie
experience in a related field. Active DOE Q clearance is desired. Must have
ability to work well in a team-oriented environment with good verbal and writ-

ten communication skills. Familiarity with C and UNIX is desirable. Related
experience in celestial navigation, target acquisition and tracking, experimen-
tal hardware control, mathematical modeling, numerical methods, simula-
tion networking, databases, or Macintosh programming will be considered.

LLNL offers a highly competitive salary and benefits package including three
weeks vacation per year. The Laboratory is located in the Livermore Valley,
45 minutes southeast of San Francisco.

Interested applicants should send their resume to: Patricia Butler, Profes-
sional Employment, Lawrence Livermore National Laboratory, P.O. Box
808, Dept. A90320, Livermore, CA 94550. U.S. Citizenship required. Equal
Opportunity Employer.

University of California

u'_ Lawrence Livermore
National Laboratory

relationship between implementer and
user should be based.

If formal specifications have a benefit, it
is in raising the level of abstraction, so the
answers to important questions — such as
whether IEnter and Select may be safely
combined — are not obscured by a mass
of detail. Questions like this occur natu-
rally in the process of designing the ker-
nel, and reasoning about a formal specifi-
cation can help to answer them. <>

References

1. Specification Case Studies, 1.]. Hayes, ed.,
Prentice-Hall Int’'l, Hemel Hempstead,
England, UK, 1987.

2. J.M. Spivey, The Z Notation: A Reference
Manual, Prentice-Hall Int’l, Hemel Hemp-
stead, England, UK, 1989.

3. He]Jifeng, C.A.R. Hoare, and}.W. Sanders,
“Data Refinement Refined,” Proc. ESOPS6,
(Vol. 213, Lecture Notes in Computer
Science series), B. Robinet and R. Wil-
helm, eds., Springer-Verlag, Berlin, 1986,
pp. 187-196.

J. Michael Spivey is an Atlas fellow at the
Rutherford Appleton Laboratory in England
and is on leave at the Computer Research
Laboratory of Tektronix in Portland, Ore.,
where he is responsible for developing
embedded software for electronic instruments.
His research interest is programming.

Spivey received a BA in mathematics from
the University of Cambridge and a DPhil in
computing science from the University of Ox-
ford. He is a research fellow of Wolfson Col-
lege, Oxford.

Address questions about this article to the
author at Programming Research Group, Ox-
ford University Computing Lab, 11 Keble Rd.,
Oxford OX1 3QD, England, UK.

IEEE Software

