Modular Object-Oriented Programming with Units and Mixins

Robert Bruce Findler

Matthew Flatt

Department of Computer Science*
Rice University
Houston, Texas 77005-1892

Abstract

Module and class systems have evolved to meet the demand
for reuseable software components. Considerable effort has
been invested in developing new module and class systems,
and in demonstrating how each promotes code reuse. How-
ever, relatively little has been said about the interaction of
these constructs, and how using modules and classes together
can improve programs. In this paper, we demonstrate the
synergy of a particular form of modules and classes—called
units and mixins, respectively—for solving complex reuse
problems in a natural manner.

1 Introduction

Module and class systems both promote code reuse. In the-
ory, many uses of classes can be simulated with modules,
and wvice versa. Experience shows, however, that program-
mers need both constructs because they serve different pur-
poses [43]. A module delineates boundaries for separate de-
velopment. A class permits fine-grained reuse via selective
inheritance and overriding.

Since modules and classes aid different patterns of reuse,
modern languages provide separate constructs for each. Un-
fortunately, the reuse allowed by conventional module and
class systems is limited. In these systems, modules and
classes are hard-wired to a specific context, i.e., to specific
modules or to a specific superclass.

In previous work, we separately described the novel mod-
ule and class systems in MzScheme [12]. MzScheme’s mod-
ules [13], called units, are roughly like Java packages, ex-
cept that units are linked through an external linking spec-
ification, instead of through a fixed internal specification.
MzScheme’s object language [14] provides mizins, which are
like Java classes except that a mixin is parameterized over
its superclass, so it can be applied multiple times to create
different derived classes from different base classes. The ad-
vantages of units and mixins over conventional module and

*This research was partially supported by a Lodieska Stockbridge
Vaughan Fellowship, NSF grants CCR-9619756, CDA-9713032, and
CCR-9708957, and a Texas ATP grant.

To appear: ICFP — Sept. 27-29 1998, Baltimore, MD

class languages follow from a single language design prin-
ciple: specify connections between modules or classes sepa-
rately from their definitions.

The shared principle of separating connections from def-
initions makes units and mixins synergistic. When units
and mixins are combined, a programmer can exploit the en-
capsulation and linking properties of units to control the
application of mixin extensions (e.g., to change the class
extended by a particular mixin).

In Section 5, we motivate in more detail the design be-
hind MzScheme’s units and mixins, but their synergy is best
demonstrated with an example. The bulk of this paper
therefore presents an in-depth example, showing how the
synergy of units and mixins solves an old extensibility prob-
lem [7, 40] in a natural manner. Section 2 describes the
extensibility problem, and Section 3 develops a rough solu-
tion the problem using conventional classes. Section 4 intro-
duces units and mixins to refine and complete the solution.
Sections 5 and 6 extract lessons from the example for the
design of modular object-oriented programming languages.
Finally, Section 7 relates our work to other research.

2 The Extensibility Problem

The following table summarizes the extensibility problem:

original variants extension

[m] @) ~>

original
operations)))
shrink |Ishrink(0) shrink((Q)! shrink(~+)

extension{ rotate| rotate(d) rotate(()) rotate(~+)

The portion of the table contained in the dotted box repre-
sents a program component that provides several operations,
draw and shrink, on a collection of data, geometric shapes
like squares and circles. A programmer may wish to use
such a component in three different contexts:

1. The programmer may wish to include the component
as is.

2. The programmer may wish to extend the datatype
with a variant, repositioned shapes, and adapt the col-
lection of operations accordingly.

3. The programmer may wish to add a new operation,
rotate.

(@)

‘(Chent)/ (Cliiant)

(a) Original Datatype

(b) New Variant

(c) New Operation

Figure 1: Extensible programming on datatypes

To avoid duplicate maintenance, or because the component
is acquired in object form, the component must be organized
so that programmers can add both new forms of data and
new operations without modifying or recompiling

e the original program component, or
e its existing clients.

Such a program organization dramatically increases the po-
tential for software reuse and enables the smooth integration
of proprietary modules.

Neither standard functional nor object-oriented strate-
gies offer a satisfactory way to implement the component
and its clients. In a functional language, the variants can be
implemented as a type, with the operations as functions on
the type. Using this approach, the set of operations is easily
extended, but adding a new variant requires modifying the
functions. In an object-oriented language, the variants can
be implemented as a collection of classes, with the opera-
tions as methods common to all of the classes. Using this
approach, the datatype is easily extended with a new vari-
ant, but adding a new operation is typically implemented
by modifying the classes.

The existing literature provides three solutions to the
problem. Kiihne’s [24] solution, which relies on generic pro-
cedures with double-dispatching, can interfere with the hi-
erarchical structure of the program. Palsberg and Jay’s [32]
solution is based on reflection operators and incurs a sub-
stantial run-time penalty. Krishnamurthi, Felleisen, and
Friedman [11, 23] propose an efficient solution that works
with standard class mechanisms, but it requires the imple-
mentation (and maintenance) of a complex programming
protocol. All of these solutions are partial because they do
not address the reuse of clients. In contrast, the combination
of units and mixins solves the problem simply and elegantly,
and it addresses the reuse of both the original component
and its clients.

3 Extensible Programming with Classes

Figure 1 outlines our solution to the extensibility problem:

e Diagram (a) represents the original component. The
rhombus stands for the datatype, and the rectangles
denote the datatype’s variants. The oval is a client of
the datatype component.

e Diagram (b) shows the datatype extended with a new
variant. The extension is contained in the right inner
dashed box. The solid box on the left represents the
unmodified datatype code from (a). The original client
is also preserved, and a new client of the datatype
exploits the variant extension.

e Diagram (c) shows extension in the other direction:
adding a new operation to the datatype. As before,
the extension is implemented by the inner dashed box
while the solid box represents the unmodified existing
implementation from (b). The new squares in the ex-
tension represent the implementation of the operation
for each variant. The existing clients have not been
modified, although they now refer to the extended vari-
ants.

The remainder of this section develops a concrete example,
an evolving shape program [11, 23]. Since Figure 1 can be
approximated using conventional classes, we first use only
language features available in a typical object-oriented lan-
guage. But, classes are not enough; Section 4 introduces
units and mixins to complete the solution.

3.1 Shape Datatype

Initially, our shape datatype consists of three variants and
one operation: rectangles, circles, and translated shapes for
drawing. The rectangle and circle variants contain numbers
that describe the dimensions of the shape. The translated
variant consists of two numbers, A; and A,, and another

(define Shape (interface () draw))

(define Rectangle
(class* null (Shape) (width height)
(public
[draw (lambda (window =z y) ...)])))

(define Circle
(class* null (Shape) (radius)
(public
[draw (lambda (window =z y) ...))]))

(define Translated
(class* null (Shape) (shape Az Ay)
(public
[draw (lambda (window = y)
(send shape draw

window (+ = Az) (+ y Ay))])))

Figure 2: Shape classes

(define display-shape
(lambda (shape)
(if (not (is-a? shape Shape))
(error “expected a Shape”))
(let ([window ...])
(send shape draw window 0 0))))

(display-shape (make-object Translated

(make-object Rectangle 50 100)
30 30))

Figure 3: Two shape clients

shape. For all variants, the drawing operation takes a des-
tination window and two numbers describing a position to
draw the shape.

The shape datatype is defined by the Shape interface and
implemented by three classes: Rectangle, Circle and Trans-
lated. Each subclass declares a draw method, which is re-
quired to implement the Shape interface. Figure 2 shows
the interface and class definitions using MzScheme’s class
system. (MzScheme’s class system is similar to Java’s; for
details, see the Appendix.)

Figure 3 contains clients for the shape datatype. The
function display-shape consumes a shape and draws it in
a new window. The final expression creates a shape and
displays it. As the shape datatype is extended, we consider
how these clients are affected.

(define Union
(class* null (Shape) (left right)
(public
[draw (lambda (window = y)
(send left draw window x y)
(send right draw window z y))])))

(display-shape
(make-object Union
(make-object Rectangle 10 30)
(make-object Translated
(make-object Circle 20) 30 30)))

Figure 4: Variant extension and a new client

(define BB-Shape (interface (Shape) bounding-boz))

(define BB-Rectangle
(class* Rectangle (BB-Shape) (width height)
(public
[bounding-box
(lambda () (make-object BB 0 0 width height))])
(sequence (super-init width height))))

(define BB-Circle
(class* Circle (BB-Shape) (radius)
(public
[bounding-box
(lambda () (make-object BB (- radius) (- radius)
radius radius))])
(sequence (super-init r))))

efine - I ranslate
define BB-T lated
(class* Translated (BB-Shape) (shape Az Ay)
(public
[bounding-boz (lambda () ...)])
(sequence (super-init shape Az Ay))))

define BB-Union
(
(class* Union (BB-Shape) (left right)
(public
[bounding-boz (lambda () ...)])
(sequence (super-init left right))))

(define BB
(class* null () (left top right bottom)

L))

(define display-shape
(lambda (shape)
(if (not (is-a? shape BB-Shape))
(error “expected a BB-Shape”))
(let™ ([bb (send shape bounding-boz)]

[window ...] [z - Jly. ..
(send shape draw window z y))))

Figure 5: Operation extension

3.2 Variant Extension

To create more interesting configurations of shapes, we ex-
tend the shape datatype with a new variant representing
the union of two shapes. Following the strategy suggested
in Figure 1 (b), we define a new Union class derived from
Shape. Figure 4 defines the Union class, and shows an ex-
pression that uses the new class.

The simplicity of the variant extension reflects the nat-
ural expressiveness of object-oriented programming. The
object-oriented approach also lets us add this variant with-
out modifying the original code or the existing clients in
Figure 3.

3.3 Operation Extension

Shapes look better when they are drawn centered in their
windows. We can support centered shapes by adding the
operation bounding-box, which computes the smallest rect-
angle enclosing a shape.

We add an operation to our shape datatype by defining
four new classes, each derived from the variants of Shape in
Section 3.2. Figure 5 defines the extended classes BB-Circle,
BB-Rectangle, BB-Translated, and BB-Union, each provid-
ing the bounding-bor method. It also defines the BB-Shape

(set! factory ...)

(display-shape (send factory make-union
(send factory make-rectangle 10 30)
(send factory make-translated
(send factory make-circle 20) 30 30)))

Figure 6: Revised clients using Abstract Factory

interface, which describes the extended shape type for the
bounding box classes just as Shape describes the type for
the original shape classes.

The new display-shape client in Figure 5 uses bounding
box information to center its shape in a window. Unfortu-
nately, we must also modify the clients so they create in-
stances of the new bounding box classes instead of the origi-
nal shape classes, including clients that do not use bounding
box information. Thus, the standard object-oriented archi-
tecture does not satisfy our original goal; it does not support
operation extensions to the shape datatype without modi-
fying existing clients.

Since object-oriented programming constructs do not ad-
dress this problem directly, we must resort to a programming
protocol or pattern. In this case, the Abstract Factory pat-
tern [15] and a mutable reference solves the problem. The
Abstract Factory pattern relies on one object, called the fac-
tory, to create instances of the shape classes. The factory
supplies one creation method for each variant of the shape,
and clients create shapes by calling these methods instead
of using make-object directly. To change the classes that are
instantiated by clients, it is only necessary to change the
factory, which is stored in the mutable reference. A revised
client, using the Abstract Factory, is shown in Figure 6.

The Abstract Factory pattern implements a simple dy-
namic linker, where set! installs the link.! It separates the
definition of shapes and clients so that a specific shape im-
plementation can be selected at a later time, rather than
hard-wiring a reference to a particular implementation into
the client. However, using a construct like set! for linking
obscures this intent both to other programmers and to the
compiler. A more robust solution is to improve the module
language.

4 Better Reuse through Units and Mixins

In the previous section, we developed the Shape datatype
and its collection of operations, and we showed how object-
oriented programming supports new variants and operations
in separately developed extensions. In this section, we make
the separate development explicit using MzScheme’s mod-
ule system; the basic definitions, the extensions, and the
clients are all defined in separate modules. MzScheme sup-
ports separate compilation for these modules, and provides
a flexible language for linking them. Indeed, the linking im-
plemented with an Abstract Factory in the previous section
can be more naturally defined through module linking. Fi-
nally, we show how MzScheme’s class-module combination
provides new opportunities for reuse that are not available
in conventional object-oriented languages.

Factory Method is a related pattern where an extra operation in
the datatype is used to create instances instead of a separate factory
object. Factory Method applies to an interesting special case: the
datatype client and the datatype implementation are the same, thus
making the datatype implementation extensible.

(define BAsIC-SHAFES
(unit (import)

(export Shape Rectangle Circle Translated)
define Shape (interface ...)) ; see Figure 2
define Rectangle (class* null (Shape) ...))
define Circle (class* null (Shape) ...))
define Translated (class* null (Shape) ...))))

P

Figure 7: Creating Units

(define Gul
(unit (import Shape)
(export display-shape)
(define display-shape ...))) ; see Figure 3

(define PICTURE
(unit (import Rectangle Circle Translated display-shape)
(export)
(display-shape (make-object ...)))) ; see Figure 3

Figure 8: Unitized shape clients

4.1 Unitizing the Basic Shapes

A module in MzScheme is called a unit. Figure 7 shows the
basic shape classes encapsulated in a BASIC-SHAPES unit.
This unit imports nothing and exports all of the basic shape
classes. The body of the unit contains the class definitions
exactly as they appear in Figure 2.

In general, the shape of a unit expression is

(unit (import variable - -)

(export wvariable - -)
unit-body-ezpr - - -)

(centered ellipses indicate repeated syntactic patterns). The
unit-body-exprs have the same form as top-level Scheme ex-
pressions, allowing a mixture of expressions and definitions,
but define within a unit expression creates a unit-local vari-
able instead of a top-level variable. The unit’s imported vari-
ables are bound within the unit-body-exprs. Each exported
variable must be defined by some wunit-body-expr. Unex-
ported variables that are defined in the unit-body-exprs are
private to the unit.

Figure 8 defines two client units of BASIC-SHAPES: GUI
and PicTURE. The GUI unit provides the function display-
shape (the same as in Figure 3). Since it only depends on
the functionality in the Shape type, not the specific variants,
it only imports Shape. The PICTURE unit imports all of the
shape variants—so it can construct instances—as well as
the display-shape function, and it exports nothing. When
PICTURE is invoked as part of a program, it constructs a
shape and displays it.

A unit is an unevaluated bundle of code, much like a
“.0” object file created by compiling a traditional language.
At the point where BAasic-SHAPES, GUI, and PICTURE are
defined as units, no shape classes have been defined, no in-
stances have been created, and no drawing window has been
opened. Each unit encapsulates its definitions and expres-
sions without evaluating them until the unit is invoked, just
like a procedure encapsulates expressions until it is applied.
However, none of the units in Figures 7 and 8 can be invoked
directly because each unit requires imports. The units must
first be linked together to form a program.

(define Basic-PROGRAM
(compound-unit
(import)
(link [S (BAasIC-SHAPES)]
[G (Gu1 (S Shape))]
[P (PicTURE (S Rectangle) (S Circle) (S Translated)
(G display-shape))])
(export)))

(invoke-unit Basic-PROGRAM)

Figure 9: Linking basic shape program

4.2 Linking the Shape and Client Units

Units are linked together with the compound-unit form.
Figure 9 shows how to link the units of the previous sub-
section into a complete program: BAsic-PROGRAM. The
PICTURE unit’s imports are not a priori associated with
the classes in Basic-SHAPES. This association is estab-
lished only by the compound-unit expression, and it is
established only in the context of Basic-PROGRAM. The
PICTURE unit can be reused with different Shape classes in
other compound units.

The compound-unit form links several units, called
constituent units, into one new compound unit. The link-
ing process matches imported variables in each constituent
unit with either variables exported by other constituents, or
variables imported into the compound unit. The compound
unit can then re-export some of the variables exported by
the constituents. Thus, BASIC-PROGRAM is a unit with im-
ports and exports, just like BAsic-SHAPES or Gul, and no
evaluation of the unit bodies has occurred. But, unlike the
BAsic-SHAPES and GuUI units, BASIC-PROGRAM is a com-
plete program because it has no imports.

FEach compound-unit expression

(compound-unit (import variable - -)
(link [tag: (ezpri linkspecy ---)]

ttagn (expryn linkspecy, - - -)])
(export (tag variable) ---))

has three parts:

o The import clause lists variables that are imported
into the compound unit. These imported variables can
be linked to the constituent unit’s imports.

o The link clause specifies how the compound unit is cre-
ated from the constituent units. Each constituent unit
is specified via an ezpr and identified with a unique
tag. Following the ezpr, a link specification linkspec
is provided for each of the constituent’s imports. Link
specifications have two forms:

— A linkspec of the form wariable links the con-
stituent’s import to the corresponding import of
the compound unit.

— A linkspec of the form (tag variable) links the con-
stituent’s import to wvariable as exported by the
tag constituent.

e The export clause re-exports variables from the com-
pound unit that are exported from the constituents.
The tag indicates the constituent and variable is the
variable exported by that constituent.

(define UNION-SHAPE
(unit (import Shape)
(export Union)
(define Union (class® null (Shape) ...)))) ; see Figure 4
(deﬁne Basic4+UNION-SHAPES
(compound-unit
(import)
(link [S (BasIc-SHAPES)]
[US (UNION-SHAFPE (S Shape))])
(export (S Shape)
(S Rectangle)
(S Circle)
(S Translated)
(US Union))))

Figure 10: Variant extension in a unit

To evaluate a compound-unit expression, the ezprs in
the link clause are evaluated to determine the compound
unit’s constituents. For each constituent, the number of
variables it imports must match the number of linkspecs
provided; otherwise, an exception is raised. Each linkspec
is matched to an imported variable by position.> Each con-
stituent must also export the variables that are referenced
by link and export clauses using the constituent’s fag.

Once a compound unit’s constituents are linked, the com-
pound unit is indistinguishable from an atomic unit. Con-
ceptually, linking creates a new unit by merging the inter-
nal expressions and definitions from all the constituent units.
During this merge, variables are renamed as necessary to im-
plement linking between constituents and to avoid name col-
lisions between unrelated variables. The merged unit-body-
exprs are ordered to match the order of the constituents in
the compound-unit’s link clause.’

4.3 Invoking Unit Programs

The Basic-PROGRAM unit from Figure 9 is a complete pro-
gram, analogous to a conventional application, but the pro-
gram still has not been executed. In most languages with
module systems, a complete program is executed through
commands outside the language. In MzScheme, a program
unit is executed directly with the invoke-unit form:

(invoke-unit ezpr)

The value of expr must be a unit. Invocation evaluates
the unit’s definitions and expressions, and the result of the
last expression in the unit is the result of the invoke-unit
expression. Hence, to run BAsic-PROGRAM, evaluate

(invoke-unit BAsic-PROGRAM)

4.4 New Units for a New Variant

To extend Shape with a Union variant, we define the exten-
sion in its own unit, UNION-SHAPE, as shown in Figure 10.

2In MzScheme’s extended unit language with signatures, linking
matches variables by name rather than by position. When the number
of imports is small, linking by position is simpler because it avoids
complex machinery for renaming variables.

3The implementation of linking is equivalent to this reduction,
but far more efficient. In particular, it is not necessary to extract
expressions from the constituent units, which would break separate
compilation.

(define UNION-PICTURE
(unit (import Rectangle Circle Translated Union
display-shape)
(export)
(display-shape (make-object ...)))) ; see Figure 4

(define UNION-PROGRAM
(compound-unit
(import)
(link [S (Basic+UNION-SHAPES)]
[G (Gur (S Shape))]
[P (PicTURE (S Rectangle) (S Circle) (S Translated)
(G display-shape))]
[UP (UNION-PICTURE (S Rectangle)
(S Circle)
(S Translated)
(S Union)
(G display-shape))])
(export)))

(invoke-unit UNION-PROGRAM)

Figure 11: New client and the extended program

The Shape class is imported into UNION-SHAPE, and the new
Union class is exported. In terms of Figure 1 (b), UNION-
SHAPE corresponds to the smaller dashed box, drawn around
the new variant class. The solid box is the original unmod-
ified BASIC-SHAPES unit, and the outer dashed box in (b)
is BAasic4+UNION-SHAPES, a compound unit linking UNION-
SHAPE together with BASIC-SHAPES.

Since the Basic+ UNION-SHAPES unit exports the vari-
ants defined by both BAsic-SHAPES and UNION-SHAPE, it
can serve as a replacement for the original BASIC-SHAPES
unit, yet it can also provide more functionality for new
clients. The UNION-PROGRAM unit in Figure 11 demon-
strates both of these uses. In this new program, the Guil
and PICTURE clients are reused intact from the original pro-
gram, but they are now linked to BaAsic4+UNION-SHAPES
instead of BAsIc-SHAPES. An additional client unit, UNTON-
PicTURE, takes advantage of the shape extension to draw a
superimposed rectangle and circle picture.

4.5 New Units and Mixins for a New Operation

To extend Shape with a bounding-box operation, we define
the BB-SHAPES unit in Figure 12. This unit corresponds to
the smaller dashed box in Figure 1 (c).

The BB-SHAPES unit is the first example to rely on mix-
ins. The BB-Rectangle class is derived from an imported
Rectangle class, which is not determined until the unit is
linked—Ilong after the unit is compiled. Thus, BB-Rectangle
defines a mizin, a class extension that is parameterized over
its superclass.

The compound unit Basic+UNioN+BB-SHAPES links
the BAstc+UNION-SHAPES unit from the previous section
with the new bounding-box unit, then exports the bounding-
box classes. As the bounding-box classes are exported, they
are renamed to match the original class names,* i.e., BB-
Rectangle is renamed to Rectangle, and so on. This renam-
ing does not affect the linking within Basic+UNioN+BB-
SHAPES; it only affects the way that Basic+Union+BB-
SHAPES is linked with other units.

*The simplified description of compound-unit in Section 4.2 did
not cover the syntax for renaming exports. For a complete description
of compound-unit, see the MzScheme manual [12].

(define BB-SHAFES
(unit (import Shape Rectangle Circle Translated Union)
(export BB-Shape BB-Rectangle BB-Circle
BB-Translated BB-Union BB)

(define BB-Shape (interface (Shape) ...)) ; see Figure 5
(define BB-Rectangle (class* Rectangle ...))
(define BB-Circle (class* Circle ...))
(define BB-Translated (class* Translated ...))
(define BB-Union (class* Union ...))
(define BB ...)))

(define Basic+UNION+BB-SHAPES
(compound-unit
(import)
(link [S (Basic+UNION-SHAPES)]
[BS (BB-SHAPES (S Shape)

(S Rectangle)
(S Circle)
(S Translated)
(S Union))])
(export (S Shape)
(BS BB-Shape) (BS BB)

; rename BS’s BB-Rectangle to Rectangle, etc.:
(BS (BB-Rectangle Rectangle))

(BS (BB-Circle Circle))

(BS (BB-Translated Translated))

(BS (BB-Union Union)))))

Figure 12: Operation extension in a unit

(define BB-Gul
(unit (import BB-Shape BB)
(export display-shape)
(define display-shape
(lambda (shape)
(if (not (is-a? shape BB-Shape))
..) ; see Figure 5

)

(define BB-PROGRAM
(compound-unit
(import)
(link [S (Basic+UNION+BB-SHAPES)]
[BG (BB-GuI (S BB-Shape) (S BB))]
[P (PicTURE (S Rectangle) (S Circle) (S Translated)
(BG display-shape))]
[UP (UNION-PICTURE (S Rectangle) (S Circle)
(S Translated) (S Union)
(BG display-shape))])
(export)))

(invoke-unit BB-PROGRAM)

Figure 13: Program with the operation extension

As before, the Basic+UNION+BB-SHAPES unit serves
as areplacement for either BAs1c-SHAPES or BAsic+ UNION-
SHAPES, and also provides new functionality for new clients.
One new client is BB-GUI (see Figure 13), which provides
a display-shape that exploits bounding box information to
center a shape in a window. The BB-Gu1 unit replaces Gur,
but we reuse P1IcTURE and UNION-PICTURE without modify-
ing them. An Abstract Factory is unnecessary because units
already permit us to vary the connection between the shape-
creating clients and the instantiated classes. Putting every-
thing together produces the new program BB-PROGRAM at
the bottom of Figure 13.

(define COLOR-SHAPE
(unit (import Shape)
(export C-Shape)
(define C-Shape
(class* Shape () args
(rename
[super-draw draw])
(public
[color “black™]
[change-color
(lambda (c)
(set! color c))]
[draw
(lambda (window z y)
(send window set-color color)
(super-draw window z y))])
(sequence
(apply super-init args))))))

(deﬁne Basic+UNioN+BB+COLOR-SHAFPES

(compound-unit

(import)

(link [S (Basic+UNION+BB-SHAPES)]
CR (CoOLOR-SHAFPE (S Rectangle))]
CoLOR-SHAFE (S Circle))]
COLOR-SHAFE (S Translated))]
COLOR-SHAFE (S Union))])
Shape)

BB-Shape)

[

[C
[C
[c

C-Shape Rectangle))
C-Shape Circle))
C-Shape Translated))

C

T

U
(export (
(

(

(

E

(C-Shape Union)))))

P

Figure 14: Reusing a class extension

4.6 Synergy at Work

The shape example demonstrates the synergy of units and
mixins. Units, by separating the definition and linking of
modules, support the reuse of PICTURE and UNION-PICTURE
as the shape representation evolves. Mixins, by abstracting
a class expression over an imported class, enable the encap-
sulation of each extension in its own unit. The combination
of units and mixins thus enables a direct translation of the
ideal program structure from Figure 1 into a working pro-
gram.

We have achieved the complete reuse of existing code at
every stage in the extension of Shape, but even more reuse
is possible. The code in Figure 14 illustrates how units and
mixins combine to allow the use of one extension multiple
times. The COLOR-SHAPE unit imports a Shape class and
extends it to handle colors. With this single unit containing
a single mixin, we can extend all four of the shape variants:
Rectangle, Circle, Translated, and Union. The compound unit
Basic+UNnioN+BB+COLOR-SHAPES in Figure 14 uses the
COLOR-SHAPE unit four times to obtain the set of color
shape classes.

The code in Figure 14 uses a few features that are not
described in this paper (the rename clause in a class* ex-
pression, and the use of args to stand for multiple argu-
ments, passed on to super-init with apply). These details are
covered in the MzScheme reference manual [12]. The point
here is that units and mixins open new avenues for reuse on
a large scale.

5 The Moral of the Story

We have demonstrated how units and mixins apply to a
specific example, but a general principle is at work: specify-
ing connections between modules or classes separately from
their definitions. This principle is the key to making units
and mixins succeed together without conflating the distinct
purposes of module and class systems.

A module system serves two key purposes:

e Separate Development: A module encapsulates a
set of definitions, clearly delineating the interface be-
tween the module and the rest of the program. Each
module can be developed in isolation and distributed
to clients in a compiled form.

e Linking: Modules are linked together to form a pro-
gram. Linking connects the definitions in one module
with those in another, but a module cannot interfere
with the internal structure of any other module.

In contrast, a class system supports three different key ser-
vices:

o Extensible Types: Aninterface defines an extensible
type, and a class implements such a type.

e Selective Reuse: A class can selectively refine the
implementation of its superclass, preserving some in-
herited definitions and overriding others with its own
definitions.

e Instantiation: A class is instantiated to create an ob-
ject, a first-class value that encapsulates the methods
and instance variables of the class.

To serve their distinct purposes, modules and classes re-
quire distinct constructs in a programming language, but
these constructs interact. In our example program, the col-
lection of geometric shapes is naturally implemented as a set
of Shape classes. The implementation of the shape classes
and the client code that uses them are defined in separate
modules. Using classes to represent shapes makes it easy to
extend the shape classes without modifying the basic defi-
nition of a shape. Separating the definition of shapes from
their use in different modules makes it easy to replace the
original shape classes with new classes without modifying
the client. This is precisely how modular object-oriented
code is supposed to work.

Unfortunately, the existing module-class combinations
do not support this sort of modular object-oriented pro-
gramming. In Java, for example, if the Rectangle class is ex-
tended, then a client module that creates Rectangle instances
must be modified to refer to the new, extended class. The
root of this problem, both in Java and many other object-
oriented languages, is that the connections between mod-
ules are hard-wired within the modules. For example, client
modules declare that they import the shape module instead
of importing a shape module.

The design of module and class constructs must encour-
age the interaction of the constructs. The Shape example
suggests a lesson for the design of modules:

Separate a module’s linking specification from its
encapsulated definitions.

In other words, a module should describe its imports with
enough detail to support separate compilation, but the mod-
ule should not specify the source of its imports. Instead, the

imports should be supplied externally by a linking expres-
sion.

A module system with external linking in turn constrains
the design of the class system. A module may encapsulate
a class definition with an imported superclass (e.g., BB-
Rectangle in Figure 12). Since module linking is specified
outside the module, the superclass is not determined until
the module is linked, so the class expression is de facto pa-
rameterized over its superclass. Such a parameterized class
is a mizin. Mixins tend to be computationally more expen-
sive than classes, but the cost is small [14]. In parallel to
the lesson for modules, the requirement to support mixins
can be stated as follows:

Separate a class’s superclass specification from its
extending definitions.

Mixins are valuable in their own right. While classes enable
reuse because each class can be extended and refined by
defining new subclasses, the reuse is one-sided: each class
can be extended in many different ways, but each extension
applies only to its superclass. A mixin is parameterized
with respect to its superclass, so it can add functionality to
many different classes. Thus, the reuse potential of a mixin
is greater than that of a class.

6 A Type Challenge

We have explored typed models of mixins [14] and units [13]
separately in previous work. In addition, we have antici-
pated an extension of the present work with types by in-
cluding is-a? safety tests in our examples, and by showing
how the Shape and BB-Shape interfaces are linked to clients
to enable those tests. Still, certain challenges remain for
bringing mixins and units together in a single typed model.
For mixins, the previously published type rules assume a
complete program and a single namespace for mixin names.
For units, the previously published language does not ex-
press the kind of type relationships necessary for importing
and exporting interface types (e.g., importing types A and
B where A must be a subtype of B).

Others have explored a similar combination of classes and
modules in a typed setting. The module systems in Objec-
tive Caml [28, 38] and OML [39] support externally specified
connections, and since a class can be defined within a mod-
ule, these languages also provide a form of mixins. However,
the modules and mixins in these languages fail to support
the synergy we have demonstrated for units and mixins. In
particular, they do not allow the operation extension demon-
strated in Section 4 because an imported class must match
the expected type exactly—no extra methods are allowed.
In our example, PICTURE is initially linked to the Rectangle
class and later linked to BB-Rectangle; since the latter has
more methods, neither Objective Caml nor OML would al-
low PICTURE to be reused in this way. Our example thus
suggests a third lesson for the design of module and class
type systems:

Allow subsumption for connections, including both
module linking and class extension.

7 Related Work

Much of the previous research on modules and classes fo-
cused on unifying the constructs. Lee and Friedman [26, 27]
investigated languages that work directly on variables and

bindings, which provides a theoretical foundation for im-
plementing both modules and classes. Similarly, Jagan-
nathan [21] and Miller and Rozas [29] proposed first-class
environments as a common mechanism. Bracha [3] has ex-
plored mixins for both modular and object-oriented pro-
gramming; Ancona and Zucca [1] provide a categorical treat-
ment of this view. Our work is complementary to all of the
above work, because we focus on designing the constructs
to be used by a programmer, rather than the method used
to implement those constructs.

Languages that have promoted modularization, includ-
ing Mesa [31], Modula-2 [45], and SML [30], provide no di-
rect support for object-oriented programming. Similarly,
early object-oriented languages, such as Simula 67 [9] and
Smalltalk [16], provide no module system. In contrast, lan-
guages such as Ada 95 [20], Common Lisp [42], Dylan [41],
Haskell [19], Java [17], and Modula-3 [18] provide both mod-
ules and classes. For Cecil [4], Chambers and Leavens [5] de-
signed a module system specifically to complement a class
system with multi-methods. Unfortunately, these module
and class systems do not support external connections—a
central principle of our design that is crucial to software
engineering (see Section 5).

Scheme [6] provides no specific mechanisms for modular
or object-oriented programming. Instead, Scheme supports
modular programming through lexical scope, and many im-
plementations provide separate compilation for top-level ex-
pressions. Programmers can regard top-level expressions as
“modules” that hide private definitions by using let or le-
trec. A number of Scheme systems have been developed
that codify the module-via-top-level idea [8, 10, 36, 35, 44],
but none of these satisfies the criteria in Section 5. In con-
trast, Kelsey’s proposed module system [22] captures many
of the same ideas as units. Scheme can also support object-
oriented programming by simulating objects with proce-
dures and classes with higher-order procedures [37]. Sev-
eral object-oriented extensions for Scheme have been devel-
oped [2, 34], including some that support mixins [25, 33].°
However, none of these systems provide complete languages
for both modular and object-oriented programming.

8 Conclusion

Units and mixins promote a synergistic integration of modu-
lar and object-oriented programming techniques. The com-
bination succeeds due to a consistent separation of defini-
tions (encapsulated in modules or classes) from connections
(between modules or classes) in both units and mixins.

The bulk of the paper explores the extensibility problem
because it highlights many of the advantages of units and
mixins. Strictly speaking, the problem can be solved using
conventional module and class systems and the Abstract
Factory pattern. Nevertheless, a straightforward datatype
implementation using units and mixins is more immediately
extensible. This natural bias towards reuse and extension is
the essential benefit of units and mixins.

For a complete version of the code presented here, see

WWW.cs.rice.edu/CS/PLT/Publications/#ifcp98-£ff

5Queinnec’s [33] system actually provides generic function exten-
sions that are parameterized over a generic function, rather than
parameterized class extensions. While the system does not provide
mixins per se, it follows the principle of separating connections from
definitions.

Acknowledgements

The authors would like to thank Matthias Felleisen, Corky
Cartwright, John Clements, Dan Friedman, Shriram Krish-
namurthi, Paul Steckler, and the anonymous reviewers.

References

[1]

[10]

[11]

[12]

[13]

[14]

[15]

Ancona, D. and E. Zucca. An algebraic approach
to mixins and modularity. In Hanus, M. and
M. Rodriguez-Artalejo, editors, Proc. Conference on
Algebraic and Logic Programming, Lecture Notes in
Computer Science 1139, pages 179-193, Berlin, 1996.
Springer Verlag.

Bartley, D. H. and J. C. Jensen. The implementation
of PC Scheme. In Proc. ACM Conference on Lisp and
Functional Programming, pages 86—93, 1986.

Bracha, G. The Programming Language Jigsaw: Mix-
ins, Modularity and Multiple Inheritance. Ph.D. thesis,
Dept. of Computer Science, University of Utah, March
1992.

Chambers, C. The Cecil Language Specification and
Rationale: Version 2.0, 1995.

Chambers, C. and G. T. Leavens. Typechecking and
modules for multi-methods. ACM Transactions on
Programming Languages and Systems, 17(6):805-843,
November 1995.

Clinger, W. and Rees, J. (Eds.). The revised* report on
the algorithmic language Scheme. ACM Lisp Pointers,
4(3), July 1991.

Cook, W. R. Object-oriented programming versus ab-
stract data types. In Foundations of Object-Oriented
Languages, pages 151-178, June 1990.

Curtis, P. and J. Rauen. A module system for Scheme.
In Proc. ACM Conference on Lisp and Functional Pro-
gramming, pages 13-28, 1990.

Dahl, O.-J., B. Myrhaug and K. Nygaard. SIMULA 67.
common base language. Technical Report Publ. No. S-
2, Norwegian Computing Center, Oslo, Norway, May
1968.

Feeley, M. Gambit-C, a portable Scheme implementa-
tion, 1996.
Felleisen, M. and D. P. Friedman. A Little Java, A Few

Patterns. The MIT Press, 1998.

Flatt, M. PLT MzScheme: Language manual. Technical
Report TR97-280, Rice University, 1997.

Flatt, M. and M. Felleisen. Units: Cool modules for
HOT languages. In Proc. ACM Conference on Pro-
gramming Language Design and Implementation, pages
236-248, 1998.

Flatt, M., S. Krishnamurthi and M. Felleisen. Classes
and mixins. In Proc. ACM Symposium on Principles of
Programming Languages, pages 171-183, 1998.

Gamma, E., R. Helm, R. Johnson and J. Vlissides. De-
stgn Patterns: Flements of Reusable Object-Oriented
Software. Addison Wesley, Massachusetts, 1994.

[16]

[17]

[18]
[19]

[20

[t

[21

[

[22

—

[23]

[24]

[25]

[26]

[28]

[29]

[30]

[31]

[32]

33]

Goldberg, A. and D. Robson. Smalltalk 80: The Lan-
guage. Addison-Wesley, Reading, 1989.

Gosling, J., B. Joy and G. Steele. The Java Language
Specification. The Java Series. Addison-Wesley, Read-
ing, MA, USA, June 1996.

Harbison, S. P. Modula-3. Prentice Hall, 1991.

Hudak, P. and Wadler, P. (Eds.). Report on the
programming language Haskell. Technical Report
YALE/DCS/RR777, Yale University, Department of
Computer Science, August 1991.

International Organization for Standardization. Ada
95 Reference Manual. The Language. The Standard Li-
braries, Janurary 1995.

Jagannathan, S. Metalevel building blocks for modu-
lar systems. ACM Transactions on Programming Lan-
guages and Systems, 16(3):456-492, May 1994.

Kelsey, R. A. Fully-parameterized modules or the miss-
ing link. Technical Report 97-3, NEC Research Insti-
tute, 1997.

Krishnamurthi, S., M. Felleisen and D. Friedman. Syn-
thesizing object-oriented and functional design to pro-
mote re-use. In Proc. Furopean Conference on Object-
Oriented Programming, 1998.

Kiithne, T. The translator pattern—external function-

ality with homomorphic mappings. In Proceedings of
TOOLS 23, USA, pages 4862, July 1997.

Lang, K. J. and B. A. Pearlmutter. Oaklisp: an object-
oriented dialect of Scheme. Lisp and Symbolic Com-
putation: An International Journal, 1(1):39-51, May
1988.

Lee, S.-D. and D. P. Friedman. Quasi-static scoping:
Sharing variable bindings across multiple lexical scopes.
In Proc. ACM Symposium on Principles of Program-
ming Languages, pages 479-492, 1993.

Lee, S.-D. and D. P. Friedman. Enriching the lambda
calculus with context toward a theory of incremental
program construction. In Proc. ACM International
Conference on Functional Programming, pages 239-
250, 1996.

Leroy, X. The Objective Caml system, 1996. URL:

http://pauillac.inria.fr/ocaml/.

Miller, J. and G. Rozas. Free variables and first-class
environments. Lisp and Symbolic Computation: An In-
ternational Journal, 3(4):107-141, 1991.

Milner, R., M. Tofte and R. Harper. The Definition
of Standard ML. The MIT Press, Cambridge, Mas-
sachusetts and London, England, 1990.

Mitchell, J. G., W. Mayberry and R. Sweet. Mesa Lan-
guage Manual, 1979.

Palsberg, J. and C. B. Jay. The essence of the Visitor
pattern. Technical Report 05, University of Technology,
Sydney, 1997.

Queinnec, C. Distributed generic functions. In Proc.
1997 France-Japan Workshop on Object- Based Parallel
and Distributed Computing, 1997.

[34] Queinnec, C. Meroon V3: A Small, Efficient, and En-
hanced Object System, 1997.

[35] Queinnec, C. and D. De Roure. Sharing code through

first-class envinroments. In Proc. ACM International

Conference on Functional Programming, pages 251—

261, 1996.

[36] Rees, J. Another module system for Scheme, 1994.

Scheme48 documentation.

[37] Rees, J. and N. Adams. Object-oriented programming

in Scheme. In Proc. ACM Conference on Lisp and

Functional Programming, pages 277-288, 1988.

[38] Rémy, D. and J. Vouillon. Objective ML: A simple
object-oriented extension of ML. In Proc. ACM Sym-
posium on Principles of Programming Languages, pages
40-53, Paris, France, 15-17 Janurary 1997.

[39] Reppy, J. and J. Riecke. Simple objects for Stan-
dard ML. In Proc. ACM Conference on Programming
Language Design and Implementation, pages 171-180,
1996.

[40

-

Reynolds, J. C. User-defined types and procedural data
structures as complementary approaches to data ab-
straction. In Schuman, S. A., editor, New Directions in
Algorithmic Languages, pages 157-168. IFIP Working
Group 2.1 on Algol, 1975.

Shalit, A. The Dylan Reference Manual.
Wesley, 1996.

[41] Addison-

[42

—

Steele Jr., G. L. Common Lisp: The Language. Digital
Press, second edition, 1990.

Szyperski, C. A. Import is not inheritance — why we
need both: Modules and classes. In Furopean Con-
ference on Object-Oriented Programming, volume 615
of Lecture Notes in Computer Science, pages 19-32.
Springer-Verlag, New York, N.Y., 1992.

Tung, S.-H. Interactive modular programming in
Scheme. In Proc. ACM Conference on Lisp and Func-
tional Programming, pages 86-95, 1992.

[43

=

[44]

[45] Wirth, N. Programming in Modula-2. Springer-Verlag,

1983.

10

Appendix: MzScheme Class and Interface Syntax

Classes
The shape of a MzScheme class declaration is:

(class*
superclass-ezpr (interface-ezpr - - -) (init-variable - -)
instance-variable-clause - - -)

(centered ellipses indicate repeated patterns). The expres-
sion superclass-expr determines the superclass for the new
class, and the interface-exprs specify the interfaces imple-
mented by the class. The init-variables receive instance-
specific initialization values when the class is instantiated
(like the arguments supplied with new in Java). Finally, the
instance-variable-clauses define the instance variables of the
class, plus expressions to be evaluated for each instance. For
example, a public clause declares public instance variables
and methods.
Thus, the definition

(define Rectangle
(class* null (Shape) (width height)
(public
[draw (lambda (window z y) ---)])))

introduces the base class Rectangle. The null indicates that
Rectangle is not derived from any class, (Shape) indicates
that it implements the Shape interface, and (width height)
indicates that two initialization arguments are consumed
for initializing an instance. There is one instance-variable-
clause that defines a public method: draw.

MzScheme’s object system does not distinguish between
instance variables and methods. Instead, procedure-valued
instance variables act like methods. The draw declaration in
Rectangle defines an instance variable, and (lambda (win-
dow z y) ...) is its initial value expression, evaluated once
per instance. When draw is called as the method of some
object, draw may refer to the object via this. In most object-
oriented languages, this is passed in as an implicit argument
to a method; in MzScheme, this is part of the environment
for evaluating initialization expression, so each “method” in
an object is a closure containing the correct value of this.®

An instance of Rectangle is created using the make-object
primitive. Along with the class to instantiate, make-object
takes any initialization arguments that are expected for the
class. In the case of Rectangle, two initialization arguments
specify the size of the shape:

(define rect (make-object Rectangle 50 100))

The value of an instance variable is extracted from an ob-
ject using ivar. The following expression calls the draw
“method” of rect by extracting the value of draw and ap-
plying it as a procedure:

((ivar rect draw) window 0 0)

Since method calls of this form are common, MzScheme pro-
vides a send macro. The following send expression is equiv-
alent to the above ivar expression:

(send rect draw window 0 0)

8MzScheme’s approach to methods avoids duplicating the func-
tionality of procedures with methods. However, this design incurs
a substantial cost in practice because each object record must pro-
vide a slot for every method in the class, and a closure is created for
each method per object. Adding true methods to the object system,
like methods in most object-oriented languages, would improve the
run-time performance of the object system and would not affect the
essence of our presentation.

Interfaces

An interface is declared in MzScheme using the interface
form:
(interface (superinterface-expr ---)
variable - -)

The superinterface-exprs specify all of the superinterfaces
for the new interface, and the wariables are the instance
variables required by the interface (in addition to variables
declared by the superinterfaces). For example, the definition

(define Shape (interface () draw))

creates an interface named Shape with one variable: draw.
Every class that implements Shape must declare a draw in-
stance variable. The definition

(define BB-Shape (interface (Shape) bounding-boz))

creates an interface named BB-Shape with two variables:
draw and bounding-box. Since Shape is the superinterface
of BB-Shape, every class that implements BB-Shape also im-
plements Shape.

A class implements an interface only when it specifically
declares the implementation (asin Java). Thus, the Rectan-
gle class in the previous section only implements the Shape
interface.

Derived Classes

The definition

(define BB-Rectangle
(class* Rectangle (BB-Shape) (width height)
(public [bounding-box - -])
(sequence (super-init width height))))

derives a BB-Rectangle class that implements BB-Shape. The
draw method, required to implement BB-Shape, is inherited
from Rectangle.

The BB-Rectangle class declares the new bounding-box
method. It also includes a sequence clause that calls super-
init. A sequence clause declares expressions to be evaluated
for each instance. It is commonly used to call the special
super-init procedure, which initializes the part of the instance
defined by the superclass (like calling super in a Java con-
structor); a derived class must call super-init exactly once for
every instance. In the case of BB-Rectangle, calling super-
init performs Rectangle’s initialization for the instance. BB-
Rectangle provides two arguments to super-init because the
Rectangle class consumes two initialization arguments.

11

