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Foreword

This volume of The 8.06 Physical Review collects term papers written by 8.06 students in
2013. Physics 8.06 is the last semester of a three-semester sequence of courses on quantum
mechanics offered at MIT. In 8.06, each student was required to write a paper on a topic
related to but going beyond the content of 8.06. The topic could be a physical effect,
a practical application, or further development of techniques and concepts of quantum
mechanics. The paper was written in the style and format of a brief Physical Review
article, aimed at fellow 8.06 students.

There are two main purposes for such a project. First, this gives our students the
opportunity to research topics in modern physics on their own. Toward the end of 8.06,
students should have the background and ability to understand many modern applications
of quantum mechanics by themselves. The process of selecting a topic, understanding it,
and then communicating it effectively to peers is a creative way of learning that effectively
complements classroom lectures. A practicing physicist goes through such a process in
his or her research.

Another important goal of the project is to help our students learn the art of effec-
tive technical writing. We expect later in life many of our students will often need to
write technical reports or articles. Writing for The 8.06 Physical Review should provide
a valuable starting point. Writing, editing, revising, and “publishing” skills are an in-
tegral part of the project. Each student was asked to choose another student to edit a
first draft and then prepared a final draft on the basis of the suggestions of his “peer
editor”. In addition, each student was assigned a graduate student “writing assistant.”
The writing assistant’s responsibilities include critiquing the proposal and the first draft
of the paper and providing any additional help a student may seek. Typically papers
improve enormously through this process. The quality of the papers collected here speak
for themselves.

This year, fifty-five 8.06 students have written on a wide variety of fascinating topics,
covering almost all major branches of modern physics, including astrophysics, condensed
matter, particle physics, nuclear physics, relativistic quantum mechanics and quantum
information. Some popular topics were addressed by more than one author, including,
for example, graphene, the Dirac equation and path integrals. Many papers collected here
were very well written and demonstrated clarity of thought and depth of understanding
of their authors. This volume embodies the unfailing enthusiasm in quantum physics of
8.06 students.
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Dressed atom approach to laser cooling: dipole forces and Sisyphus cooling

Kamphol Akkaravarawong
Department of Physics
(Dated: May 3, 2014)

Today laser cooling is an important tool in atomic, molecular, and optical physics. The cooling
mechanism can be explained by the interaction between an atom and an electromagnetic field. In
this paper, we will use the dressed atom picture to explain how to use a standing electromagnetic
wave to cool down atoms. In extremely small velocities regime, the resistive force is due to the
dipole force. On the other hand, for intermediate velocity, the atom is cooled down by the Sisyphus
mechanism.

I. INTRODUCTION

In 1997, the nobel prize was awarded to Steven Chu,
Claude Cohen-Tannoudji and William D. Phillips for
laser cooling. An important mechanism initially eluci-
dated was Sisyphus cooling. Sisyphus cooling and dipole
forces can be explained intuitively by using the dressed
atom picture where the atom and light are treated in a
coupled basis. This paper will focus on the scenario of a
standing wave of a single laser mode inside a cavity. The
formalism of the dressed atom picture will first be intro-
duced. Then, the dressed atom will be used to explain
the source of dipole forces in the extremely low velocity
regime and Sisyphus cooling in the intermediate velocity
regime.

II. DRESSED ATOM PICTURE

A. The Hamiltonian

Consider a system with a two-level atom in a standing
wave of a single mode radiation. The total Hamiltonian
of the system has three parts:

H = HA +HL + VAL (1)

where HA is the Hamiltonian of the atom, and HR is
the Hamiltonian of the radiation field, and VAL is the
atom-field coupling. HA is the sum of kinetic energy and
the internal energy. In calculation, because the atom is
considered at any given point, the kinetic energy term
P 2/2m can be omitted.

HA = h̄ωob
†b (2)

where h̄ωo is the energy gap between two levels. b† is
a raising operator and b is a lowering operator. If |e〉
and |g〉 are the ground and the excited levels of the atom
respectively, then the operators in this basis are

b† = |g〉 〈e| , b = |e〉 〈g| (3)

For the Hamiltonian of the radiation field, the laser will
be treated as a quantized field.[4] The zero-point energy

can be ignored without loss of generality. The Hamilto-
nian of the radiation field is then

HR = h̄ωLa
†a = h̄ωLN (4)

where a† and a are a raising and a lowering operator of
photons respectively, and N is a photon number opera-
tor.

In the absence of coupling, the eigenstates of the un-
coupled Hamiltonian or the bare states are simply a
ground or excited state with photons. For example, the
bare states can be labeled as |g,N〉. Considering a case
where the laser frequency is close to the atomic resonance
frequency, the detuning δ = ωL − ω0 � ω0, ωL. As a re-
sult, the bare state energy levels will be well-separated
into manifolds, and each manifold will contain two states,
see Fig. 1. The energy gap between two bare states in
the same manifold is Eg,N+1 − Ee,N = h̄δ. As a result,
the position of the two levels can be switched if the sign
of δ is changed. Later in this paper, the words mani-
fold and dressed level will be used interchangeably when
coupling is present.

The atom and the radiation field interact through the
dipole interaction. The coupling Hamiltonian is

VAL = −d · E(r) (5)

where d is the atomic electric dipole moment and E(r)
is the electric field at position r. The atom does not
have a dipole moment when it is in an energy eigenstate
i.e. 〈g| d |g〉 = 〈e| d |e〉 = 0. For a two-level system, the
dipole operator is purely non-diagonal. The Hermitian
dipole operator can be represented as [2]

d = deg(|g〉 〈e|+ |e〉 〈g|) = deg(b
† + b) (6)

where deg = 〈e| d |g〉 = 〈g| d |e〉. [? ] The quantized
electric field can be written as

E = εL(a+ a†) (7)

εL is product of the laser polarization and a scaling fac-
tor. Now the coupling Hamiltonian can be simplified,
because the field frequency is close to the atomic reso-
nance frequency. By moving from the Schrödinger pic-
ture into the interaction picture, the coupling Hamilto-
nian is evolved by a unitary operator of the atom and
field Hamiltonian.[5] The unitary operator is

U = ei(HA+HL)t/h̄ (8)

1



Dressed atom approach to laser cooling 2

FIG. 1: Left)In the absence of coupling, the bare states
are bunched into manifolds. Each manifold will contain two
states. Two manifold εN and εN−1 are shown here. When
δ > 0, state |g,N + 1〉 has a higher energy than state |e,N〉.
Right) In the presence of coupling, the new eigenstates still
form manifolds with two dressed states inside each Unlike the
bare state, the energy gap between two dressed state depends
on the electric field strength, and despite the change inδ’s
sign, the energy levels do not change.

Thus, the coupling Hamiltonian in the interaction picture
is

VAL(t)inter = UVALU
†

= g(bae−i(ωo+ωL)t + b†a†ei(ωo+ωL)t

+b†aei(ωo−ωL)t + ba†e−i(ωo−ωL)t) (9)

where g = −deg · εL. It follows that each term will os-
cillate with a frequency of either ωL + ω0 or ωL − ω0.
Because ωL ≈ ω0, the two frequencies are so different
that the quickly oscillating terms will destructively in-
terfere and cancel out when averaged, while the slowly
oscillating terms will accumulate and contribute to the
coupling Hamiltonian. Therefore, the quickly oscillating
terms can be ignored. This approximation is called the
rotating-wave approximation. The coupling Hamiltonian
is then transformed back into the Schrödinger picture and
combined with the atom and field Hamiltonian. The to-
tal Hamiltonian in the rotating wave approximation can
be written as

H = h̄ω0b
†b+ h̄ωLN + g(b†a+ ba†) (10)

B. Eigenenergies and eigenstates of dressed states

The coupling Hamiltonian, g(b†a+ba†), can either raise
the number of photons and de-excite the atom, or lower
the number of photons and excite the atom. Therefore,
the atom-laser coupling will only connect two states in
the same manifold i.e. |g,N + 1〉 ↔ |e,N〉.

2

h̄
〈e,N |VAL |g,N + 1〉 =

2

h̄
g
√
N + 1 = Ω1 (11)

Here the Rabi frequency, Ω1, is introduced. For the man-
ifold εN , the Hamiltonian in the matrix representation is

H = h̄ω0

[
1 0
0 0

]
+ h̄ωL

[
N 0
0 N + 1

]
+
h̄

2

[
0 Ω1

Ω1 0

]
(12)

where the basis vectors are |e,N〉 and |g,N + 1〉. After
diagonalizing the Hamiltonian matrix, the eigenenergies
for the manifold εN are

E1n(r) = (N + 1)h̄ωL −
h̄δ

2
+
h̄Ω(r)

2

E1n(r) = (N + 1)h̄ωL −
h̄δ

2
− h̄Ω(r)

2
(13)

where

Ω(r) = [Ω2
1(r) + δ2]1/2 (14)

and the corresponding eigenstates (dressed states) are

|1, N〉 = sin θ |g,N + 1〉+ cos θ |e,N〉
|2, N〉 = cos θ |g,N + 1〉 − sin θ |e,N〉 (15)

where the angle θ is defined by

cos 2θ =
−δ
Ω
, sin 2θ =

Ω1

Ω
(16)

Here the splitting between dressed states depends on
the laser frequency and and the magnitude of the electric
field. Notice that the energy levels of uncoupled states
outside the laser will be flipped when the sign of the
detuning, δ, changes, see Fig. 2.

III. SPONTANEOUS EMISSION

In the previous section, the system is a combination
of an atom and a radiation field. However, in quantum
field theory, the vacuum is not truly empty but has fluc-
tuation that can create electromagnetic waves that exists
for a small period of time. To take this into account, the
reservoir of empty modes, which is responsible for the
spontaneous emission of fluorescence photons, is intro-
duced. The coupling of the dressed atom with empty
modes will cause transitions between two adjacent man-
ifolds. The transitions between states are connected by
the dipole operator d.

2 Dressed atom approach to laser cooling
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FIG. 2: This diagram represents the energy level of the mani-
fold εN in a standing wave. At the middle of the diagram, the
atom is in an anti-node of the laser where the field strength
is maximal. The atom and the field are coupled here, so the
eigenstates are the dressed states. On the other hand, at the
laser node, the electric field vanished and there is no coupling.
As a result, the eigenstates are bare states.

In the uncoupled basis the only transition is from |e,N〉
to |g,N〉. In the dressed atom basis, there are four al-
lowed transitions. Because the laser frequency is close
to the atomic resonance frequency, there are only three
corresponding frequencies, see Figure (3). Considering
transitions between manifold εN to εN−1, the transition
rate is proportional to the square of the dipole matrix
element dij . In the coupled basis, the matrix elements
and the rates are

dij = 〈i,N − 1| deg(b† + b) |j,N〉 (17)

Γi→j = Γij = Γ0|dij |2 (18)

Frequency Transition Transition rate

ωL 1→ 1, 2→ 2 Γ0 sin2 θ cos2 θ

ωL + Ω(r) 1→ 2 Γ0 cos4 θ

ωL − Ω(r) 2→ 1 Γ0 sin4 θ

where Γ0 is the transition rate of uncoupled states |e,N〉
and |g,N〉. If a strong-intensity laser beam is used, the
spectrum of the scattered light will form a triplet of lines,
called the Mollow triplet.

The dressed atom picture also provides a physical in-
terpretation of the radiative cascade where the dressed
atom successively transitions from εN → εN−1 → · · · In
dressed atom basis, when the dress atom emits a photon,
it can emit either on the carrier (ωL) or one of the side
bands (ωL±Ω(r)). If it emits on a side band, the dressed
atom will be in a different excitation of a lower manifold.
As a result, it cannot emit the same side band photon
successively.

FIG. 3: This diagram represents the allowed transition be-
tween two adjacent manifold or dressed levels. The transi-
tions correspond to three frequencies which from a triplet of
spectrum line call the Mollow triplet. [1]

IV. EQUILIBRIUM POPULATIONS

Because the top and the bottom dressed states have
different dynamics when interacting with the laser, it
is important to know the number of population in each
state.

Πi =
∑

N

〈i,N | ρ |i,N〉 (19)

where ρ is the density matrix of the system. Πi is the
total population of the state i in the dressed atom basis.
|1, N〉 is the top state, while |2, N〉 is the bottom state.
The rate equation for the total population is

Π̇1 = −Γ12Π1 + Γ21Π2

Π̇2 = Γ12Π1 − Γ21Π2 (20)

At the equilibrium Π̇1 = Π̇2 = 0. As a result, the steady-
state solution is

Πst
1 =

Γ12

Γ12 + Γ21
=

sin4 θ

sin4 θ + cos4 θ

Πst
2 =

Γ21

Γ12 + Γ21
=

cos4 θ

sin4 θ + cos4 θ
(21)

V. LASER COOLING

As an atom travels in a standing wave, it will experi-
ence radiation pressure and dipole forces. However, this
paper will focus only on dipole forces acting a atom with
an extremely small velocity or at rest. When a velocity is
no longer extremely small, an atom will be cooled down
by Sisyphus mechanism.

Dressed atom approach to laser cooling 3
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A. Mean dipole forces of an atom at rest

Assuming the atom is at rest at r and the laser has
strong intensity, the population is the steady-state solu-
tion. The splitting between dressed states in the same
manifold is ± h̄Ω

2 . The force can be obtained from the
negative of the gradient of the energy. The total force on
the atom from the top and the bottom states are

F stdip = −
∑

i

Πst
i ∇Ei = − h̄

2
(Π1 −Π2)∇Ω (22)

= −h̄δ Ω2
1

Ω2
1 + 2δ2

α (23)

with

α =
∇Ω1

Ω1
=

Ω

Ω2
1

∇Ω (24)

Notice that the forces of the two states have opposite
directions. Therefore, the total force depends on the dif-
ference in probability population of the two states.

The direction of the force of each state can be un-
derstood intuitively from the energy level diagram, see
Fig. 4. Because the atom tends to move to regions with
lower energies, the force of the top state will point to-
wards nodes of laser because among every position in the
top state, nodes have the lowest energy. With the same
reasoning, the force will point towards anti-nodes in the
bottom state.

The dressed states have unequal populations, because
of spontaneous emission from |e,N〉 in εN to |g,N〉 in
εN−1. Therefore, the dressed state that is more con-
taminated by |e,N〉 will be less populated due to more
spontaneous emission. The admixture of |e,N〉 in the
dressed states can be calculated from equation (15).

Alternatively the amount of admixture of |e,N〉 in each
dressed state can also be found from the state with which
the dressed states coincide in the absence of the electric
field. |e,N〉 and |g,N + 1〉 will flip their energy levels
if the detuning δ changes the sign. For blue detuned
light, δ > 0, the top coupled state |1, N〉 will coincide
with |g,N + 1〉 in the absence of the laser beam, so the
top state is less contaminated by |e,N〉 than the bottom
state. It follows that the bottom state |2, N〉, with more
|e,N〉, has more spontaneous emission than the top state.
Therefore, the top state has more population (Π1 > Π2)
and the force of the top state dominates (Fig.4)

In contrast, for red detuned laser, δ < 0, |1, N〉 will
coincide with |e,N〉 outside the laser beam, so it is more
contaminated by |e,N〉 than the bottom state. With the
same reasoning, the top state will have less population
and the force will be dominated by the bottom state. At
the resonance, the top and the bottom state are equally
populated (Π1 = Π2), therefore the total force vanishes.

FIG. 4: These diagrams represent the energy level of two
dressed states in the same manifold varying over a laser wave-
length. Here the electric field is maximal at the antinodes and
vanish at the nodes. The arrows represent the direction of the
forces. The sizes of the black dots represent the population
in each state. Left) for δ > 0, (Π1 > Π2) and the total force
points towards the node where there is no electric field. Right)
for δ < 0, (Π1 < Π2) and the total force points towards the
anti-node or the region with strong electric field.

B. Mean dipole forces at small velocity

When the atom is moving, the populations are no
longer in equilibrium. Here consider extremely small ve-
locities such that

vΓ−1 � λ (25)

where v is the velocity os the atom and Γ−1 is the spon-
taneous emission lifetime. In these conditions, the atom
travels a small distance (compared with the laser wave-
length) within its spontaneous emission lifetime. As a re-
sult, the population can reach the equilibrium before the
atom covers a wavelength and the force is determined by
local spontaneous transitions. At this limit, the Doppler
effect can also be neglected in these conditions. When
velocities are extremely small, the populations Πi for a
moving atom is approximately close to the steady state
values. The populations take time to reach the equilib-
rium, therefore the populations will be delayed by τrelax
in time or vτlag in space where

τlag(r) =
1

Γ(r)
= time lag (26)

Because the velocity is small, the population Πi can be
expressed in a power series of vτlag and only the first-
order term is kept.

Πi(r) = Πst
i (r − vτlag)

' Πst
i (r)− vτlag · ∇Πst

i (r) (27)

Substituting the approximated populations back into the
equation (23), the force is

Fdip(r, v) = F stdip(r)−
2h̄δ

Γ
(

Ω2
1

Ω2
1 + 2δ2

)3(α · v)α (28)

The first term of the force is the the same as when the
atom is at rest and only depends on the position. On the

4 Dressed atom approach to laser cooling
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other hand, the second term is proportional to the veloc-
ity of the atom. Here the atom is in a one dimensional
standing wave where Ω1(r) = Ω10 cos(2πr/λ). Therefore,
the first term of the force will vanish when averaged over
the wave length, because it is sysmetric. The averaged
force seen by the atom will become

< Fdip(r, v) >= −βv (29)

where β is the friction coefficient. In this case, the friction
force comes from the simple idea that the population will
lag behind when the atom travels. From equation(27),
the blue detuning δ > 0 will slow down the atom, while
the red detuning δ < 0 will heat up the atom. To un-
derstand this, the dressed atom can provide a physical
interpretation.

FIG. 5: The filled circles represent the populations at steady
state, while the unfilled circles represent the real population
of a moving atom. As an atom travels, the population will
lag behind. The difference in population between the steady-
state and the real population will create an extra resistive
force which will not vanish when averaged over wavelengths.

Consider an atom entering a blue detuned laser beam
i.e. δ = ωL − ω0 > 0. With the same argument pro-
vided in the case of the atom at rest, the top state
|1, N〉 coincides with |g,N + 1〉 in the absence of the laser
beam. |1, N〉 is then less contaminated by |e,N〉 than
|2, N〉. Therefore |1, N〉 is more populated than |2, N〉:
Πst

1 > Πst
2 . Furthermore, as the atom moves towards

the laser node, Ω1 and the admixture of |e,N〉 in |1, N〉
will also increase. It follows that the population of |1, N〉
decreases as the atom moves towards the laser beam or
Πst

1 (r−dr) > Πst
1 (r). Now consider an atom moving with

a velocity v. Because of time lag, the population Π1(r)
at r will be Π1(r − vτlag). It follows that

Π1(r) = Πst
1 (r − vτlag) > Πst

1 (r) (30)

The same argument gives

Π2(r) = Πst
2 (r − vτlag) < Πst

2 (r) (31)

Because of the shift in the populations, the top state is
more populated and the bottom state is less populated
than they would be in a steady state. As a result, there
will be an extra force in the direction opposite to the
movement, see Fig. 5. When the atom travels outwards
from the anti-node, the force also points outwards from
the anti-node. However, with the same argument, the
force on the moving atom will be smaller than it would
be if it were at rest, or there is an extra force resisting
the movement. As a result, the force is averaged over a
wavelength, only the extra force will accumulate and the
total force will be a damping force. On the contrary, if
a red detuned laser beam (δ < 0) is used, the laser will
heat up the atom instead of cooling it down.

VI. SISYPHUS COOLING

Now consider an atom in a high-intensity standing
wave where δ > 0 and the velocity is no longer extremely
small. The condition for velocities is

vΓ−1 ≥ λ (32)

This means that the atom covers several wavelengths
within its spontaneous emission lifetime. It follows that
the atom will have a small probability to emit fluores-
cence photons when it covers a wavelength, therefore the
population is no longer determined by local transitions or
the time lag mechanism as in the case of small velocities.
Instead, the population is determined by the transition
between dressed levels on average over wavelengths.

The physical interpretation of dipole forces can also
be derived from the dressed atom picture. Consider the
dressed atom in the |1, N + 1〉 state. The allowed tran-
sitions are |1, N + 1〉 → |1, N〉 and |1, N + 1〉 → |2, N〉.
We are more interred in the latter transition, because the
former transition just puts the dressed atom in the same
position of the lower manifold. Because the excited state
|e,N〉 is unstable and will make a spontaneous transition
to |g,N〉, the transition between dressed levels is most
likely to happen at the position where the dressed state
has the largest admixture of |e,N〉. With the blue de-
tuning δ > 0, anti-nodes of the laser beam are positions
where the atom have the largest admixture of the ex-
cited state, so transitions are most likely to happen at
anti-nodes or ”the top of the (potential) hill.”

After the transition, the dressed atom is in |2, N〉,
we are interested in the next transition from |2, N〉 to
|1, N − 1〉. At a node of a laser beam, the bottom dressed
state is in a pure excited state. With the same argument,
it follows that the transition from the bottom state is
most likely to happen at nodes of the laser beam. Inter-
estingly, the transitions are likely to happen at ”the top
of the hill” for transitions from both the top and the bot-
tom states. The cooling mechanism relies on the fact that
after falling on the bottom of the potential hill, the atom
will move up and down the hills before making a next
transition at the top of the hill. As a result, the atom
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FIG. 6: Interpretation of Sisyphus cooling for δ > 0. the
transitions are most likely happen at the top of the ”poten-
tial hill”. As a result, the atom travels ’uphill’ more than
”downhill. [1]”

will go ”uphill” more than ”downhill”. [6] The process
implies cooling, because as the dressed atom go ”uphill”
its kinetic energy is converted to potential energy which

is dissipated through spontaneous emissions.
The spontaneous emission can happen from the top

and the bottom state. The dissipation rate is approxi-
mately proportional the transitions rate and the kinetic
energy difference between the top and bottom of the
standing wave potential hill.

VII. CONCLUSION

The dressed states are eigenstate of the coupled Hamil-
tonian of an atom and an electric magnetic field. The
splitting and the admixtures of uncoupled states in the
dressed states are determined by the laser frequency and
the electric field strength.

When the atom is at small velocity, the cooling mech-
anism is the time lag which causes the populations in
dressed states to lag behind in space. As a result, the
shift in population will create an extra force proportional
to the velocity of the atom. The direction of the force
depends on the detuning δ. If δ > 0, the dipole force is
damping, while if δ < 0, the force is accelerating.

When the atom is at intermediate velocity, the cool-
ing is due to spontaneous emissions between dress levels.
Between two successive spontaneous emissions, the atom
will climb up and down the potential hill. On average, the
atom climb up more, so the kinetic energy will convert to
potential energy which is dissipated through spontaneous
emissions.
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In this paper we first consider the hexagonal honeycomb lattice structure of graphene to derive
its band structure, featuring linear dispersion and no band gap. Subsequently, we use the band
structure together with the WKB approximation and 2D Fermi-Dirac statistics to model photo-
induced tunneling through vertical graphene-hBN-graphene heterostructures. The results from our
simulations are consistent with the experimental data, suggesting a superlinear power law depen-
dence of tunneling current on laser power. Finally, we report on theoretical predictions of an abrupt
transition from tunneling to thermionic emission when reaching a certain temperature.

I. INTRODUCTION

Ever since graphene was discovered by Konstantin
Novoselov and Andre Geim in 2004 [1], this atomically
thin material has received much attention due to its wide
range of possible applications, including desalination fil-
ters [2], solar cells [3] and transistors [4]. Not only is
graphene the first ever discovered stable 2D material,
but it also exhibits a plethora of unprecedented optic
and electronic properties, mainly due to its linear disper-
sion relation and lack of band gap [5]. Recently, there
has been a major focus on graphene heterostructures,
which combine the properties of other materials with
those of graphene to reveal novel physical phenomena [6].
Vertical graphene-hexagonal Boron Nitride-graphene (gr-
hBN-gr) heterostructures have proven to be particularly
interesting, because electrons tunnel through them when
a bias voltage is applied [7]. While recent papers have
created models that agree well with experiments on this
phenomenon [8, 9], not much attention has been given
to photo-induced tunneling, in which a laser is used to
keep the electrons out of thermal equilibrium with the
surroundings. In this paper, we consider the quantum
physics behind this case, using the WKB approximation
and 2D Fermi-Dirac statistics to model the process. We
also compare our predictions with experimental data on
the dependence on laser power.

II. THE BAND STRUCTURE OF GRAPHENE

In order to understand the theory of tunneling in a ver-
tical graphene heterostructure, we first need to consider
the band structure of graphene, which arises from its hon-
eycomb lattice structure (fig.1). It is useful to consider
this hexagonal structure as a combination of two triangu-
lar sub-lattices (A (red) and B (blue)), shifted by a vec-

tor ∆~R relative to each other. In graphene, the carbon
atoms have three sp2-orbitals and one pz-orbital. The
former ones are used to form bonds in the plane of the
graphene sheet, so their electrons are not free to move
and can be ignored when deriving the band structure.
The pz-orbitals on the other hand, are out of the plane,
and have delocalized electrons. This means that the pz-

FIG. 1: The honeycomb lattice of graphene divided into its
two sub-lattices A (red) and B (blue). ~r+ and ~r− are the

lattice vectors, and ∆~R is the displacement between the two
lattices.

electrons are in a superposition of pz-states belonging to
multiple carbon atoms, and these electrons are those we

need to consider. We define
∣∣∣~R
〉

to be the pz-state of a

carbon atom at position ~R, and use a Hamiltonian based
on interactions between nearest neighbors only, which is
commonly referred to as the tight-binding model. As
can be seen from fig.1, this means that an electron in
sub-lattice A only “feels” the three closest electrons in
sub-lattice B. The Hamiltonian is then found from sum-
ming the three interaction terms at each carbon atom

position ~R:

H =− γ
∑

~R

∣∣∣~R
〉〈

~R+ ∆~R
∣∣∣

+
∣∣∣~R
〉〈

~R+ ∆~R+ ~r+

∣∣∣+
∣∣∣~R
〉〈

~R+ ∆~R+ ~r−
∣∣∣ (1)

where γ describes the strength of the interaction. Since
the potential is periodic, the Hamiltonian is invariant
under translation by ~r+ and ~r−. Thus, we introduce the

translation operator T~R such that T~Rψ(~r) = ψ(~r + ~R)

and observe that
[
H,T~r±

]
= 0, so H has the same

eigenstates as T~r+ and T~r− . Furthermore, we know that
T~r± is unitary since T~r± = exp(−i~p·~r±/h̄), so its eigen-
values must be complex exponentials. In other words,
|ψ(~r + ~r±)|2 = |ψ(~r)|2 for eigenstates ψ, which intu-
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FIG. 2: a) Band structure of graphene, showing energy as a function of wavevector ~k. b) Previous plot as seen from above,
showing the 6 K-points. c) Zooming in on one of the K-points shows the famous Dirac cones featuring linear dispersion and no
bandgap.

itively makes sense since we expect the probability den-
sity to be the same at two indistinguishable positions in
an infinitely big, periodic lattice. Treating first only sub-

lattice A and defining {~RA} as the positions of its carbon
atoms, we observe that:

T~r±
∑

~RA

ei
~k·~RA

∣∣∣~RA

〉
=
∑

~RA

ei
~k·~RA

∣∣∣~RA − ~r±
〉

=

ei
~k·~r±

∑

~RA

ei
~k·(~RA−~r±)

∣∣∣~RA − ~r±
〉

= ei
~k·~r±

∑

~RA

ei
~k·~RA

∣∣∣~RA

〉

(2)

This state is clearly an eigenstate of T~r± and therefore
of H as well. States on this form are commonly referred

to as Bloch states, with ~k being the crystal wave vector.
After doing the same for sub-lattice B, we have normal-
ized eigenstates for each sub-lattice:

∣∣∣~k,A
〉

= N−
1
2

∑

~RA

ei
~k·~RA

∣∣∣~RA

〉
(3)

∣∣∣~k,B
〉

= N−
1
2

∑

~RB

ei
~k·(~RB−∆~R)

∣∣∣~RB

〉
(4)

Note that the extra term −∆~R in the exponent of the
B-state only gives a phase, but makes our calculations
easier. We now consider the subspace of superpositions∣∣∣~k
〉

= α
∣∣∣~k,A

〉
+ β

∣∣∣~k,B
〉

for a specific wavevector ~k

and write it in the {
∣∣∣~k,A

〉
,
∣∣∣~k,B

〉
}-basis. The diagonal

terms of the Hamiltonian are then zero, since it shifts
all terms on sub-lattice A to B, and vice versa. The
off-diagonal terms, on the other hand, are easily found

using ~u ≡ ~RB − ~RA −∆~R:

〈
~k,A

∣∣∣H
∣∣∣~k,B

〉
=

N−1
∑

~RA, ~RB

ei
~k·(~RB−~RA−∆~R)

〈
~RA

∣∣∣H
∣∣∣~RB

〉
=

−N−1
∑

~RA, ~RB

ei
~k·~u· γ

(
δ~u,~0 + δ~u,~r+ + δ~u,~r−

)
=

− γ(1 + ei
~k·~r+ + ei

~k·~r−) (5)

Using r = |~r+| = |~r−| and ~k·~r± = (
√

3
2 kx ± 1

2ky)r, it is
now evident that the eigenvalues are

E± = ±
∣∣∣γ(1 + ei

~k·~r+ + ei
~k·~r−)

∣∣∣ =

±

√

1 + 4 cos(

√
3

2
kxr) cos(

1

2
kyr) + 4 cos2(

1

2
kyr) (6)

Fig.2a plots this expression as a function of ~k, and shows
that the energy becomes zero when |k| = 4π

3r and its angle

to the x-axis is (2n+1)π
6 (fig.2b). These are commonly

referred to as the K-points.

When we write ~k = ~K + ∆~k and expand the energy to
first order around a K point, we find that the Hamiltonian
is

H =

√
3

2
γr

(
0 ∆kx − i∆ky

∆kx + i∆ky 0

)
= vF~p·~σ (7)

where ~p = h̄∆~k is the momentum of the electron and
vF ≈ 106ms−1 is the Fermi velocity.
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FIG. 3: a) Laser injected on vertical heterostructure. b) Potential V (z) together with graphene band structure showing
occupancy and a photo-excited electron. The right (z > 0) graphene electrode is grounded, and the barrier is slanted due to
the applied bias voltage. Note that neither V0 nor the z-axis are drawn to scale, so in reality, V0 is significantly smaller, and
the regions outside the barrier are much shorter (thickness of graphene).

Interestingly, this Hamiltonian is reminiscent of the ki-
netic term in the relativistic Dirac equation in that it con-
tains ~p·~σ rather than p2. This has exotic consequences,
including the fact that the effective electron mass m∗ ≡
h̄2
(
∂2E
∂k2

)−1

is zero [5], and also that graphene can be

used to realize unimpeded tunneling (Klein paradox) [10].
More important to us, however, is that such a Hamil-
tonian gives a band structure with a linear dispersion
and no band gap, as depicted in fig.2c. The upper and
lower cones correspond to the conduction and valence
bands, respectively, and the point where they meet is
referred to as the Dirac point. Since there is no band
gap in graphene, all electron energies are allowed. This
allows graphene to absorb all wavelengths because there
will always be a vertical transition in the band structure
that corresponds to the photon energy. Note that photo-
induced transitions are vertical since the photons carry
very little momentum (relative to its energy, in the sense

that
(
∂E
∂p

)
photon

= c >> vF =
(
∂E
∂p

)
electron

). Broadband

absorption makes graphene an interesting alternative to
silicon in photodetection devices, since the latter can only
absorb photons with energies higher than its band gap of
∼1.1 eV, which corresponds to a wavelength of ∼1100
nm.

III. TUNNELING EXPERIMENTS

We are now prepared to consider photo-induced tun-
neling in vertical gr-hBN-gr heterostructures. Simply
put, this involves applying a bias voltage V0 between
the top and bottom layers of a gr-hBN-gr “sandwich”,

shining a laser beam on it, and measuring the current of
electrons tunneling through the sandwich (fig.3a). Since
hBN is an insulator, it works as a tunneling barrier, which
is slanted due to the applied electric field, resulting in the
following potential profile (fig.3b):

V (z) =




V0 z < −d2
VhBN + V0

d · (d/2− z) |z| < d
2

0 z > d
2

where VhBN is the barrier height when no bias voltage is
applied. Interestingly, the difference between the Dirac
point energies (EDP) of the graphene sheets is smaller
than the applied bias potential (fig.3b), since the chemi-
cal potentials are shifted to account for the charge build-
up that we expect in a capacitor. Fig.4 shows the tun-
neling current as a function of laser power. The linear
log-log plot supports a power law relationship, and the
slope of ∼ 3.3 > 1 suggests a superlinear dependence on
laser power. Interestingly, when using a laser to drive
current along a graphene sheet rather than through a
sandwich, one rather observes a sublinear relationship
(slope< 1) [11]. In order to understand the difference
between these two cases, we need to consider the quan-
tum physics of the tunneling process, and we start by
using the WKB approximation to find the transmission
coefficient. Since the applied voltage V0 is very small
compared to VhBN (∼ 0.1%), very few electrons will have
energies that intersect the slanted region of the barrier
and travel through parts of the barrier classically. Thus,
we only need to consider turning points at ±d/2 [18],

Tunneling Electrons in Graphene Heterostructures 9
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FIG. 4: Tunneling current vs. laser power plotted in log-log
scale with linear fit (green). Linearity supports power law
dependence, and the slope suggests an exponent of ∼ 3.3.

which gives the transmission coefficient:

T (E) = exp

[
−
∫ d/2

−d/2

2

h̄

√
2m∗(V (z)− E)dz

]
=

exp

[
−4d
√

2m∗

3V0h̄

[
(V − E)3/2

]V0+VhBN

VhBN

]
≈

exp

[
−2d

h̄

√
2m∗(VhBN − E)

]
(8)

where the last approximation simply comes from Taylor
expanding (VhBN + V0 −E)3/2 since V0 is small, and m∗

is the effective electron mass in hBN. The above expres-
sion provides us with some important insight; the trans-
mission rate depends exponentially on the square root
of the electron energy and is independent of the bias
voltage at low V0. We now need to combine this with
the Fermi-Dirac statistics of the system to further un-
derstand the observed superlinear dependence on power.
When an electron is excited, it will quickly cool through
electron-electron interactions and optical phonon emis-
sion [13, 14], which reestablish a Fermi-Dirac distribu-
tion (F-D), although at a higher temperature than the
surroundings. Subsequently, slower cooling processes
(acoustic phonon emission) will bring the F-D distribu-
tion towards the surrounding temperature [15, 16]. Two-
pulse correlation measurements have shown that the tun-
neling time scale (∼ 1 ps) is much longer than that of the
initial cooling mechanism (∼ 10 fs), and we can there-
fore use a F-D distribution to further model the tunnel-
ing. Intuitively, the rate of tunneling from layer 1 to
2 of electrons with energy E is expected to be propor-
tional to 1) the tunneling probability, 2) the number of
electrons of energy E in layer 1, and 3) the number of
available states at energy E in layer 2. Together, this
gives T (E)· ρ1(E)f1(E)· ρ2(E)(1− f2(E)) where T is the
transmission coefficient, ρ is the density of states and f is

the Fermi-Dirac distribution function. Note that we need
the factor ρ2(E)(1− f2(E)) to account for the fact that
electrons are fermions and can thus only tunnel to avail-
able states in layer 2. The shifts of chemical potential
and band structure are here included in the subscripts
(1 and 2), giving individual functions for each graphene
sheet. The linear dispersion gives ρ ∝ |E − EDP| where
EDP is the Dirac point energy. We now use three known
relations to find an expression for EDP of each sheet:

1. The chemical potential of a graphene sheet at po-
sition z is equal to the potential applied there:
µ = V (z)

2. 2D Fermi-Dirac statistics relate the chemical po-
tential to the charge density n through: µ−EDP ∝
n1/2

3. Looking upon the device as a capacitor allows us
to relate the difference between the Dirac points to
n: ∆EDP ∝ n

These together give a quadratic equation involving
multiple device parameters that we can solve to find EDP

of each sheet. We can then sum the contributions from
tunneling in both directions and integrate over all ener-
gies to get the total transmission rate:

rT ∝
∫ ∞

−∞
T (E)ρ1(E)ρ2(E)(f1(E)− f2(E))dE ∝

∫ ∞

−∞
exp

[
−2d

h̄

√
2m∗(VhBN − E)

]
|E − EDP,1| ·

|E − EDP,2| · (f(E,µ = V0)− f(E,µ = 0)) dE (9)

In order to gain more intuition, we again assume that
V0 << VhBN which gives EDP,1 = EDP,2 = 0 and

f(E,µ = V0) − f(E,µ = 0) ≈ V0
df
dE |µ=0. Then, we

simply have:

rT ∝
∫ ∞

−∞
exp

[
−2d

h̄

√
2m∗(VhBN − E)

]
βV0E

2eβE

(1 + eβE)
2 dE =

∫ ∞

−∞

βV0E
2e−ξ

√
VhBN−E+βE

(1 + eβE)
2 dE (10)

where ξ = 2d
h̄

√
2m∗ and β = (kT )−1.

As can be seen from fig.5d, simulations predict that the
tunneling current is superlinear in T , as expected. How-
ever, further modeling of how T depends on laser power is
needed to connect this completely to the observed power
dependence in fig.4. Interestingly, the integral exhibits
an abrupt transition as we increase T (fig.5d). At low
temperatures, the decay rate of the F-D distribution with
energy is higher than the exponential growth rate of the
WKB transition probability, so the tunneling contribu-
tion from electrons with high energies (close to VhBN, so
almost classically allowed) is strongly suppressed (fig.5a).
However, when we increase the temperature, the WKB
term becomes dominant and the F-D statistics is not able
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FIG. 5: a) Normalized contribution to tunneling from electrons with energy E at low temperature. Clearly, the main contribu-
tion comes from electrons at low energies, and there are two extrema for E ∈ (0, VhBN) (maximum at E ≈ 0 and minimum at
E close to VhBN). b) Same as previous plot, but at the transition temperature. The max and min points merge into a saddle
point. c) Tunneling current contributions at high temperature. There are zero extrema for E ∈ (0, VhBN), and the dominant
contribution comes from electrons with energies above VhBN, which can move through the barrier classically. d) Log-log plot of
the total tunneling current (integrated over all energies) vs. temperature. The former is normalized by the maximum value in
the plot. An abrupt transition is observed around 2000 K. e) Graphical solution of the transcendental equation governing the
transition from tunneling to classical transmission (thermionic emission). The solid red line only gives one solution and thus
corresponds to the transition temperature.

to prevent high-energy electrons from moving through
the barrier classically (fig.5c). The latter is referred to
as thermionic emission [17] and means that at high T ,
the main contribution to current through the heterostruc-
ture actually comes from electrons that are not tunneling.
Note that we have here used T (E) = 1 for E > VhBN.
We now move on to finding the transition temperature
by differentiating the integrand and solving for T such
that it has exactly one zero in the interval E ∈ (0, VhBN).
From fig.5a-c, one can see that this corresponds to the
transition temperature. After simplifying the derivative,
it is evident that this is equivalent to only having one
solution to the transcendental equation:

2βE tanh
βE

2
=

ξE√
VhBN − E

+ 4 (11)

We illustrate in fig.5e how the number of solutions to this
equation goes from two to zero, and that there is a transi-
tion temperature at which there is exactly one solution.
Below this temperature, the major contribution to in-
terlayer current comes from tunneling, while thermionic
emission dominates at higher T .

IV. CONCLUSION

In this paper, we used the honeycomb lattice structure
of graphene to derive its famous Dirac cone band struc-
ture, exhibiting linear dispersion and lack of band gap.
This dispersion relation was then used together with 2D
Fermi-Dirac statistics to predict how tunneling through
gr-hBN-gr heterostructures depends on electronic tem-
perature, based on a WKB tunneling probability. Sim-
ulations suggested a superlinear dependence on temper-
ature T , supporting the experimentally observed behav-
ior with laser power P . However, a connection between
T and P must be established to completely determine
whether our model is consistent with the experimental
data. We also predicted a transition from tunneling
to thermionic emission as we enter a high-temperature
regime, which has yet to be experimentally verified. Fi-
nally, we showed that the transition temperature can be
found from a transcendental equation that is based on the
observation that the number of extrema in the tunneling
contribution function changes in the transition.
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We describe Monte Carlo methods for classical problems and a Quantum variant, the Diffusion
Monte Carlo, for finding ground state energies of quantum many-body systems. We discuss the
algorithm both with and without importance sampling. We go on to describe the problems that
arise when calculating the ground state energy of a many-body fermion systems and the excited
state energies for any many-body system. We then briefly discuss a few past applications of the
Diffusion Monte Carlo.

I. INTRODUCTION

Finding exact values for the ground state energies of
n-body quantum systems becomes nigh on impossible as
n becomes very large. This is to be expected because the
dimension of the Hilbert Space scales exponentially in
n. For instance, representing 30 spin- 1

2 particles requires

a basis in 230 (or roughly ∼ 109) dimensions to fully
specify the system.1 However, do not fret! This seemingly
large obstacle can easily be surmounted with the help of
various numerical methods. In this paper we will discuss
in detail one such method, the Diffusion Monte Carlo.

A. A Brief History of Monte Carlo Methods

The first algorithm similar to today’s Monte Carlo was
formulated in 1777 by the French naturalist Georges-
Louis Leclerc, Comte de Buffon, in his imagined needle-
throwing experiment to estimate the value of π. Then in
the 1940’s, Enrico Fermi postulated that the Schrödinger
equation could be written in a form similar to the dif-
fusion equation, establishing the basis for the Diffusion
Monte Carlo.2 Fermi did not publish his work on Monte
Carlo methods for neutron diffusion, and so in 1947, John
von Neumann and Stan Ulam proposed the same method,
and thus the Monte Carlo method was born (officially).3

B. Monte Carlo Background

1. Direct Sampling

This section will follow the discussions in Refs. 2 and
5. Imagine you were on the beach and you and your
friend got into an argument about the correct value for
the area of the continental United States. You’ve been
laying in the sun for quite a while so neither of you think
to just look up the answer on a smartphone, but your
friend just so happens to have a photographic memory
for maps and you just got out of a lecture covering
Monte Carlo methods. You tell him to draw the outline
of the continental United States in the sand bounded by
a box of known area (he can remember the scale of the

maps too). He draws something like Fig. 1:

16
86

 m
ile

s

2825 miles

FIG. 1: Continental United States with bounding box of
total area 4,762,950 miles2

As he is drawing you go and find N coconuts, where
N is large. You come back and explain to him how you
will calculate, almost exactly, the area. You both ran-
domly throw coconuts so that the x and y coordinates of
the throw act as random variables evenly distributed over
the bounding box. After you are done, you go and count
how many coconuts landed within the US, divide it by
the total number thrown, and then multiply it by the area
of the bounding box. This approach should seem fairly
intuitive; we are randomly sampling a known probability
distribution (the map) N times. We have a function f
that maps samples inside the distribution to 1 and those
outside to 0. To approximate the area in the map, we
calculate the expectation of f , < f >, over the known
distribution and multiplying it by the area of the bound-
ing box. After N samples, some Nin coconuts will have
landed inside the US. Thus

areaUS =
Nin
N
∗ areaboundingbox (1)

One can see in Fig. 2 that as N increases so does the
accuracy of our estimate.
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N = 8 N = 136 N = Large

FIG. 2: Three different random samplings with varying N .

The actual area of the continental US is 3,095,993
miles2.4 In the first snapshot Nin

N = 3
8 → areaUS =

1, 786, 106 miles2 which gives an error of 42.3%. In
the second, Nin

N = 61
136 → areaUS = 2, 136, 323 miles2,

which is better with an error of 30.9%. For the last
snapshot, Nin

N ∼ 64% → areaUS = 3, 048, 288 miles2,
which is much better with an error of 1.5%. Because
we are randomly sampling over a constant distribution,
limN→∞ error = 0, or more precisely error ∝ 1

N2 . The
process we have just described is the Monte Carlo 2-d in-
tegral. The n-d version is performed in the same way but
with n random variables; however, the error attenuates
more slowly as n increases.2

2. Markov-Chain Sampling

Direct sampling, though simple, is computationally ex-
pensive in many cases. Consider the Boltzmann distri-
bution,

p(E) =
e
− E
kBT

Z
, Z =

∞∑

i=0

e
− Ei
kbT (2)

To directly sample p(E) in order to approximate < E >,
we would first have to calculate the partition function, Z,
which could be extremely expensive if there is no efficient
way of computing each Ei. If, however, we were sampling
based on the relative probability between two states, then
we would never have to explicitly calculate Z.

p(Ej)

p(Ek)
= e
−Ej−EkkBT (3)

We do just this in Markov-Chain sampling; each step is
dependent only on the previous state. More generally, if
we are trying to sample over some distribution π(R),
then direct sampling requires full knowledge of π(R),
whereas Markov-Chain sampling does not have this re-
quirement and will converge to π(R) in the long time
limit.5 For this reason Markov-Chain sampling is used for
complex problems, such as high dimensional integrals.

Markov-Chain sampling is defined in the following way.
Imagine that instead of randomly throwing rocks into the
map with your friend, you recruit 50 friends to come help.
Each person receives a bag of coconuts and starts in a
sparse distribution inside the bounding box. Each throws
a coconut to a random point (x, y) where ∆x and ∆y are
picked randomly from the even distribution [−δ, δ]. If
the point (x, y) is in the bounding box, then the thrower

walks to the coconut. If (x, y) is not in the bounding
box, then the person puts a coconut down where they
are standing (now there is a stack of two or more co-
conuts at this point) and disregards the out-of-bounds
coconut. After each walker repeats this process N times,
the distribution of coconuts should look similar to that
of the direct sampling approach (in the large N limit).
To compute areaUS, we simply reuse Eq. (1).

To rationalize dropping a coconut down in the out-of-
bounds case, just think on what we are trying to accom-
plish. We are essentially trying to integrate the area of
the United States using random sampling, so if we simply
disregard throws out of the bounding box, the density of
coconuts will be larger in the center of the box than near
the edges. By having the random walker put a coconut
down in this case, we are ensuring that the distribution
of coconuts over the map be even for a large number of
steps. In the Metropolis Algorithm, this step ensures we
are satisfying the detailed balance condition; see Refs. 3,
5, and 6, for a more detailed description.

Furthermore, δ must be chosen very carefully. If δ
is chosen too large, too many samples will land out-
side the bounding box and the walkers will never leave
their original location, making the final distribution very

skewed. Likewise if δ is small compared to range(xi)
N ,

where range(xi) is the range of a random variable and
N the number of steps, then the walker may never reach
the other end of the space (in our example the map).5

At this point, one may wonder why we went through
the trouble of introducing random variables into prob-
lems that could be easily solved by sampling over a reg-
ular array of points. For the US map example, we could
certainly use a regular array of sample points as we were
only doing a 2-d integral. However, the number of sample
points we need to store goes up exponentially in dimen-
sion of the problem, making the use random variables
necessary.6,7

3. Monte Carlo For Finding Minimums

Now imagine how we might modify the above method
to, instead of integrating, find the minimum of some
f(x1, . . . , xn). Assume that f only has one minimum.
We will begin with the same sparse distribution of walk-
ers and amplify walkers that are nearing the center, i.e. if
f(S′) < f(S) we should add a few walkers located at S’. If
the opposite is true, i.e. if f(S′) > f(S), then we should
remove the walker. Thus, as N increases, we will expect
more and more walkers to approach the minimum. To
retrieve our estimate of the minimum, we simply average
over all final Sj ’s, where subscript j represents the jth

walker. This modified algorithm resembles the Diffusion
Monte Carlo at a very basic level, as we shall discover in
the following sections.

The runtime of the algorithm outlined above for finding
a minimum in f is attenuated from both the use random
variables and the use of a Markov-Chain-like sampling,
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which minimizes necessary data storage by ensuring that
each iteration only depends on the previous state.

C. Diffusion Background

Processes that involve random walks, such as the min-
imization method in the previous section, can often be
modeled with the diffusion equation and vice versa. The
diffusion equation can be used to describe particles or
heat dispersing in a material and takes the form

∂p(R, t)

∂t
= D∇2

Rp(R, t) , (4)

where ∇2
R =

n∑
i=1

∇2
i , R describes the position of each

particle, p(R, t) is the probability of the particles being in
position R at time t, and D is defined as the diffusivity,
a constant that depends on the geometry and physical
properties of the system.12 If we introduce a spatially
dependent force term, F(R), then the diffusion equation
becomes the Focker-Planck equation,13

∂p(R, t)

∂t
= −∇R[F(R)p(R, t)] +D∇2

Rp(R, t) . (5)

In the long time limit, the state for which p(R, t) is max-
imum is the equilibrium state, or the state with lowest
energy.

Diffusion processes describe the average motion result-
ing from an astronomical amount of small collisions (a
single particle in a fluid experiences roughly 1020 colli-
sions per second). Because it would be impossible to
simulate all of these collisions, the motion of a particle
can be modeled by a random walk where the distance
and direction of displacement are picked from a Gaus-
sian distribution with variance 2Dt.14

II. DIFFUSION MONTE CARLO FOR n-BODY
BOSON SYSTEMS

A. Algorithm Summary

To find the ground state energy of an n-boson sys-
tem, we will initialize N starting states (each with de-
fined particle positions) which we shall call snapshots.
We will evolve each particle in each snapshot randomly.
As with the algorithm for finding a minimum in some f ,
we will amplify the snapshots that “moved” closer toward
the ground state and delete those that “moved” farther
away.7

B. Diffusion Monte Carlo Without Importance
Sampling

In this section we will follow the arguments made in
Refs. 6 and 7. As Fermi postulated in the 1940’s, when

utilizing the Schrödinger equation in imaginary time it
resembles the diffusion equation. Let it

h̄ → τ and the
Schrödinger equation for n particles gives

−∂Ψ(R, τ)

∂τ
= [−D∇2

R + V (R)]Ψ(R, τ) , (6)

where diffusion constant D ≡ h̄2

2m . The particles will have
some interaction potential given most generally by

V (R) =
∑

i 6=j
V (ri, rj) . (7)

Writing Ψ(R, 0) as a superposition of eigenstates of our
Hamiltonian gives us

Ψ(R, 0) =
∑

i

ciφi(R) , (8)

for i ≥ 0 where

Ĥφi(R) = Eiφi(R) . (9)

We will assume that Ĥ is time independent, which is a
reasonable assumption because we are only dealing with
particle-particle interactions. We can therefore write

Ψ(R, τ) =
∑

i

cie
−Eiτφi(R) . (10)

Notice that because we are working in imaginary time,
e−Eiτ is real valued, meaning that solutions to the
Schrödinger equation will be growing or decaying expo-
nentials. With this knowledge, we introduce a test energy
into the Hamiltonian, shifting the the eigenvalues by ET .
Now

−∂Ψ(R, τ)

∂τ
= (Ĥ − ET )Ψ(R, τ) , (11)

which has solutions of the form

Ψ(R, τ) =
∑

i

cie
−(Ei−ET )τφi(R) . (12)

All elements φi(R) in Ψ(R, τ) with Ei < ET will ex-
ponentially grow in amplitude with time and those with
Ei > ET will decay in time. Thus if we choose ET ≈ E0

and 〈Ψ(R, 0)|φ0(R)〉 6= 0, then

lim
τ→+∞

Ψ(R, τ) = φ0(R) . (13)

Because we rewrote the Schrödinger equation in imag-
inary time, the portion of Ψ(R, τ) in the ground state
will always have the most positive decay constant, i.e.
(E0 − ET ) < (Ei − ET ) ∀i. For this reason, the φ0(R)
portion of Ψ(R, 0) will always have the largest amplitude
in the long time limit. In the full Diffusion Monte Carlo
(DMC) we will update ET to approach E0.2

Now you may be wondering how we will actually go
about evolving Ψ(R, 0) as we know little of φi(R) and

The Diffusion Monte Carlo Method 15
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Ei. Here we shall define our time evolution operator, the
Green’s function

Ĝ = e−(Ĥ−ET )τ . (14)

Our goal is to evolve Ψ(R, 0) to some Ψ(R′, τ); therefore
we are interested the coordinate space representation of
Ĝ,

G(R′,R, τ) =
〈
R′
∣∣ e−(Ĥ−ET )τ |R〉 . (15)

For the Hamiltonian given in Eq. (11), our time evolution
Green’s function is the solution to

−∂G(R′,R, τ)

∂τ
= [−D∇2

R + V (R)− ET ]G(R′,R, τ) .

(16)

Now you may wonder why we chose to define
G(R′,R, τ) at all because solving Eq. (16) looks no
better than solving the original Schrödinger equation in
Eq. (6). In general the kinetic energy and potential en-
ergy components of the Hamiltonian do not commute,
i.e. [V (R),∇2

R] 6= 0, but for small enough time steps we
may ignore this for the price of O(τ2) error. Thus we de-

fine ĜT ≡ e−T̂ τ where T̂ = D∇2
R and ĜV ≡ e−(V̂−ET )τ

where

Ĝ ≈ ĜT ĜV , for τ → 0 . (17)

Each Ψ(R, 0) has a unique set of V (ri, rj), thus V (R) 6=
V (R′). Therefore V̂ is diagonal and we can write

〈
R′
∣∣ ĜV |R〉 = GV (R′,R, τ) = e−(V (R)−ET )τδ(R′ −R) .

(18)

The elements of ĜT are unfortunately not diagonal. This
can be explained by imagining a free particle in one di-
mension with some average kinetic energy p. If we evolve
the particle by some time t, it will move from < x̂ >= x
to < x̂ >= x′. Because there is no potential, Ĥ = T̂
and the particle will have the same < p̂ > as before, in-

dicating 〈x′| e−T̂ |x〉 6= 0. Solving for GT (R′,R, τ) by
inserting the identity twice we find

GT (R′,R, τ)

=
〈
R′
∣∣ e−T̂ τ |R〉

=
〈
R′
∣∣ e−Dτ∇2

R |R〉

=

∫∫
dKdK′

〈
R′|K′

〉 〈
K′
∣∣ e−Dτ∇2

R |K〉 〈K|R〉

=

∫∫
dKdK′e−iR

′·K′ 〈K′
∣∣ e−Dτ∇2

R |K〉 eiR·K

=

∫∫
dKdK′e−iR

′·K′e−DτK
2

δ(K′ −K)eiR·K

=

∫
dKeiK·(R−R

′)e−DτK
2

= (4πDτ)−3n/2e−
(R−R′)2

4Dτ (19)

Each of the n particle represented in R takes 3 spa-
cial dimensions to specify, (x1, x2, x3), meaning that
GT (R′,R, τ) is a 3n dimensional Gaussian distribution
with variance 2Dτ . Now that we have solutions to both
the rate and diffusion equations we can write

G(R′,R, τ) = (4πDτ)−3n/2e−
(R−R′)2

4Dτ e−(V (R)−ET )+O(τ2) ,
(20)

which is our coordinate space representation of the evo-
lution operator Ĝ for small τ , or more formally called the
propagator.

Now given some Ψ(R, 0) we can calculate Ψ(R′, τ) as
in Ref. 11. We want to find the overlap of some

∣∣R′
〉

with |Ψ(R, τ)〉. If

|Ψ(R, τ)〉 = e−(Ĥ−ET )τ |Ψ(R, 0)〉 , (21)

then
〈
R′|Ψ(R, τ)

〉
=
〈
R′
∣∣ e−(Ĥ−ET )τ |Ψ(R, 0)〉

=

∫
dR
〈
R′
∣∣ e−(Ĥ−ET )τ |R〉 〈R|Ψ(R, 0)〉

=

∫
dRG(R′,R, τ) 〈R|Ψ(R, 0)〉 . (22)

Dim(R) = 3n, making this a very complex integral for
large n. Thus we will employ the Markov-Chain Sam-
pling Monte Carlo method outlined in Sec. I.B.2. to
update the wave function from one time step to the next.

Now that we have laid the ground work, we are ready
to run the algorithm. We start with an ensemble of N
snapshots, or starting configurations, of the system each
with n bosons (n random walkers) and pick an initial ET .
We calculate V (R) for each snapshot and then make NC
copies of each snapshot where

NC = int[e−τ(V (R)−ET ) + ζ] , (23)

where int[∗] is the integer portion of ∗ and random vari-
able ζ ∈ [0, 1]. Next we evolve Ψ(R, 0) to Ψ(R′, τ) in the
diffusion step by moving each of the n walkers according
to

ri → ri + ηi , (24)

where ηi is a 3-dimensional random variable sampled
from GT (R′,R, τ), a Gaussian with variance 2Dτ . We
then update ET based on whether we had a net gain or
net loss in the total number of snapshots and on our cur-
rent guess on E0. If we gained snapshots then we lower
ET and vice versa.

C. Diffusion Monte Carlo With Importance
Sampling

The DMC as described above is not optimal; in fact it
is rarely used as it has a major flaw. If the potential en-
ergy becomes very large and negative, as it may with an
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electron moving very close to the nucleus (an electron is
a fermion but we give this example out of accessibility),
then our simulation in its current state will create an in-
ordinate amount of snapshots because e−τ(V (R)−ET ) will
be huge. To prevent walkers from moving towards areas
where V (R) → ∞ we introduce the method of impor-
tance sampling, which alters the underlying probability
distribution in a way that pushes walkers away from dan-
gerous regions.

Instead of solving for Ψ(R, τ) we would like to solve
for

f(R, τ) = ϕ(R)Ψ(R, τ) , (25)

where ϕ(R) is an approximate ground state wave func-
tion (from a Hartree-Fock calculation for example) and
will push our walkers away from unphysical regions.7

Substituting f(R,τ)
ϕ(R) → Ψ(R, τ), the Schrödinger equa-

tion reads

− 1

ϕ(R)

∂f(R, τ)

∂τ
= [−D∇2

R+V (R)−ET ]
f(R, τ)

ϕ(R)
. (26)

Reorganizing this equation2 we have

−∂f(R, τ)

∂τ
= −D∇2

Rf(R, τ) +D∇R · [F(R)f(R, τ)]

+[EL(R)− ET ]f(R, τ) , (27)

where the drift force

F(R) ≡ ∇Rln|ϕ(R)|2 = 2
∇Rϕ(R)

ϕ(R)
, (28)

and the local energy

EL(R) ≡ ϕ(R)−1Ĥϕ(R) . (29)

One usually calculates F(R) and EL(R) analytically be-
fore running the simulation. By doing this we can write a
G(R′,R, τ) that is independent of V (R); we rely on the
drift force and local energy to guide the snapshot away
from problematic regions. Thus,

G(R′,R, τ) = (4πDτ)−3n/2e−
(R−R′−F(R)Dτ)2

4Dτ e−(EL(R)−ET )

+O(τ2) (30)

is one possible propagator and should look familiar as it
is a modified version of Eq. (20). It is not unique because
we do not know whether to diffuse the walkers or drift
the walkers first, i.e. do we use F(R) or F(R′)? Remem-
ber that diffusing the walkers corresponds to sampling
over GT (R′,R, τ) from the previous section. We will
disregard this point and take the ordering of drift then
diffusion for our algorithm. We can now describe one
possible procedure for the DMC:2

1. Initialize N configurations of our system where the
n walkers are distributed according to |ϕ(R)|2. We
try to create a diverse ensemble of snapshots, so
that at least some will remain after the first time
step.

2. Update the ith walker in each snapshot according
to

r′i = ri +DτF(R) + ηi , (31)

where ηi, as before, is a 3-d random variable sam-
pled from a Gaussian with variance 2Dτ.

3. Accept/reject step via a Metropolis question. This
step essentially makes sure we are sampling the cor-
rect distribution by verifying that the step satisfies
the detailed balance condition. Refer to Refs. 3,5,
and 6 for more information.

4. Take each snapshot and make NC copies where

NC = int[e−τ(EL(R)−ET ) + ζ] , (32)

where once again the random variable ζ ∈ [0, 1]. If
NC = 0 we kill the state.

5. Estimate E0 by averaging EL over all snapshots.

6. Adjust ET so that it satisfies

ET = E0 + κ ln
(N(0)

N(τ)

)
, (33)

where κ is a positive parameter small enough to
avoid introducing bias into the calculation and
N(τ) is the number of snapshots at time τ . A large
κ would introduce bias because we would be updat-
ing based on a non-random process, which would
cause more systemic error in our approximation.

III. DISCUSSION AND APPLICATIONS

A. Bosons vs. Fermions

You may have wondered why we limited our discus-
sion to the ground state of an n-body boson system.
Bosons are indistinguishable particles meaning that their
wave functions are even. We can choose the ground state
|φ0(R)〉 > 0 ∀ R . Thus we can also choose our approxi-
mate ground state |ϕ(R)〉 > 0 ∀ R. We therefore do not
have to take into account any nodes in the wave func-
tion. Fermions, however, are distinguishable and have
antisymmetric wave functions, meaning that when we
choose |ϕ(R)〉, we must also choose a location for the
node. Because we don’t update |ϕ(R)〉 during the simu-
lation, the accuracy of the result would be highly depen-
dent on the choice of this node. Simulations of excited
boson states suffer the same issue.

There are a couple methods, the fixed node and re-
leased node methods, for dealing with these problems as
is discussed in Refs. 2 and 7. In both methods we replace
ϕ(R) with |ϕ(R)| so that the drift term gives a correctly
signed output. The fixed node method has exactly the
problems mentioned above. We choose some ϕ(R) and
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do not change the node locations. If the node locations
of φ0(R) and ϕ(R) differ, we will be under sampling re-
gions of φ0(R) near the true nodes. If, in some snapshot,
a walker passed the approximated node, we reject this
path and delete the snapshot; this rejection is reasonable
because F(R), in Eq. (28), will push walkers away from
nodes. In fact, F(R) is infinite at the node location so,
under the fixed node approximation, it would be unphys-
ical for the walker to pass this point. However, this leads
to a highly biased result that’s accuracy is reliant on the
choice of ϕ(R). The released node method allows walkers
to pass nodes. The walkers essentially “pull” the node
along with them (by a small amount as a one of n walk-
ers in one of N snapshots does not have great statistical
significance).

Neither of these methods are perfect. In fact, it has
been speculated that these problems belong to the set
of NP-Hard computational problems because the “sign
problem” belongs to this class in complexity theory.9 As
such, DMC methods for fermions and excited states of
bosons are still under investigation.

B. Applications

DMC results have been shown to agree with experi-
mental findings for many important systems. The list
includes:

1. Calculating the ground state of a homogeneous
Bose gas. Giorgini, Boronat, and Casulleras, veri-
fied that the energy per particle in a uniform gas of
bosons can be expanded in powers of

√
na3, where

n is the density and a the s-wave scattering length,
i.e. that

E

N
= 4πna3

×
[
1 +

128

15
√
π

√
na3

+
8(4π − 3

√
3)

3
na3ln(na3) + . . .

]
. (34)

This result is import because it verifies that at bo-
son densities conducive to Bose-Einstein conden-
sate magnetic trapping, the energy correction term
to the mean field approximation is only dependent
on na3. Thus, future precision experiments may be
able to infer na3 from the measured energy of the
Bose-Einstein condensate.8,10

2. Computing various properties of circular quantum
dots. Production of quantum dots small enough to

have atom-like properties is now feasible. It is pos-
sible to do exact diagonalization for dots with less
than 8 free electrons, but these computations are
only accurate up to N = 3, where N is the num-
ber of free electrons. Using the fixed node approx-
imation, Pederiva, Umrigar, and Lipparini, found
that the DMC results give better bounds on ground
state energy, excitation energies, electronic correla-
tion energy, chemical potential from addition of an
electron into the dot, and spin density, for dots with
N ≤ 13.15

3. Computing the properties of a helium 0-
temperature liquid. Whitlock et al. used the
Lennard-Jones interaction potential of the form

V (rij) = 4ε
[( σ
rij

)12

−
( σ
rij

)6]
(35)

where ε = 10.22◦K and σ = 2.556Å. They reported
an error of less than 1% for the DMC energy calcu-
lation and increases in accuracy for computations
of equation of state and face-centered cubic crystal
phase.16

4. Computing the electron configuration of the He
atom ground state using a Hamiltonian of the form

Ĥ = −1

2
∇2

1 −
1

2
∇2

2 −
2

r1
− 2

r2
+

1

r12
, (36)

where the nucleus is approximated to have infinite
mass and is placed at the origin. ri refers to the
distance of the ith electron from the nucleus and r12

refers the to the distance between the two electrons.
Apaja chooses the trial wave function that of the 1S
orbital. His calculation is used mostly as a tool to
demonstrate the time step error in DMC’s, which
which is linear in τ for small τ .2

IV. CONCLUSION

In conclusion, the Diffusion Monte Carlo is a fast and
simple way to calculate the ground state energies of n-
body boson systems and an adequate way to approximate
energy eigenvalues of n-fermion systems. Because the
dimensionality of these systems scales exponentially in
n, finding approximate solutions in time polynomial in n
using the Diffusion Monte Carlo is extraordinary.
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The Energetic Spectra of Rotational and Vibrational Modes in Diatomic Molecules
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In this paper, we determine the energetic spectra of rotational and vibrational modes in diatomic
molecules. First, we use separation of variables and matrix methods, in addition to the alternative,
simplifying method of transforming to center-of-mass coordinates, to determine the energies of the
two modes in the most basic case. Then, we examine the effect of considering an anharmonic poten-
tial in the calculation of vibrational energies. Finally, we discuss the relevance of our calculations
to the field of spectroscopy by looking at the total spectrum formed as the composite of those for
rotations and vibrations.

I. INTRODUCTION

Diatomic molecules offer a contained environment in
which to study molecular rotational and vibrational
modes. Finding the energetic spectra of the two modes
admits the use of elementary methods, such as diagonal-
ization and separation of variables, as well as transfor-
mation to center-of-mass coordinates.

This problem serves as a stepping-stone to more com-
plex phenomenology, such as the behavior of the spec-
tra in the presence of external electromagnetic fields, as
well as the spectra of larger polyatomic molecules. Ad-
ditionally, while we begin with the usual harmonic ap-
proximation because it has a simple, exact solution, we
can also analyze the system using the Morse potential,
which quite accurately represents the observed potential
and still has an analytic solution that is relatively easy
to find.

We first solve the Schrödinger equations for rotation
and vibration individually, in Sections II and III. Then
in Section IV, we find the new vibrational energy lev-
els in the Morse potential. In Section V, we look at the
resulting spectra when rotations and vibrations are con-
sidered together. Finally, in Section VI we discuss what
we have learned in the context of experimental results in
spectroscopy.

II. ROTATION

To consider rotation alone, we assume that the
molecule is a rigid rotor. This allows us to treat the
problem, in the center-of-mass frame, as the movement
of a single particle of mass

µ =
m1m2

m1 +m2
(2.1)

on a sphere of radius r0. We use the Hamiltonian in
spherical coordinates [2]

− h̄2

2µ

[
1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)

+
1

r2 sin2 θ

(
∂2ψ

∂φ2

)]
+ V ψ = Eψ (2.2)

and, as usual, look for solutions that separate into purely
radial and purely angular components:

ψ(r, θ, φ) = R(r)Y (θ, φ). (2.3)

But as stipulated above, R(r) = r0, and since the rota-
tion is free, V = 0, so we end up with

− h̄2

2µr2
0

[
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

(
∂2ψ

∂φ2

)]
= Eψ.

(2.4)
The solutions to this Hamiltonian are the spherical har-
monics Yjm [1], with energies

Ej =
h̄2

2µr2
0

j(j + 1). (2.5)

The energy Ej has degeneracy 2j + 1.
Thus the calculation of the rotational spectrum sim-

plifies through a change of coordinates to a well known
problem. Because of the dependence on reduced mass µ
rather than individual masses, this result applies to the
heteronuclear case as well as the homonuclear one. Thus
we find that in general, the rotational spectra depend
only on µ and r0, or, more concisely, on the molecule’s
moment of inertia I = µr2

0 about an axis perpendicular
to the bonding direction.

III. VIBRATION

We start with the simplest model: two equal masses
m connected by a spring of spring constant k. The val-
ues of these constants are enough to distinguish diatomic
molecules from each other. The Schrödinger equation for
this system is

H = T + V

=
p2

1

2m
+

p2
2

2m
+
k

2
(x1 − x2)

2
.

(3.1)

In order to find the eigenenergies of this system, we want
to diagonalize H, so we start by diagonalizing V . Given
that V = k

2 (x1 − x2)2, we can rewrite it as a quadratic
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form:

V = ~xTK~x =
(
x1 x2

)
K

(
x1

x2

)
(3.2)

where K =
k

2

(
1 −1
−1 1

)
.

This matrix K is easily diagonalizable; it has eigenvectors

(yet unnormalized)

(
1
1

)
and

(
1
−1

)
, with eigenvalues

0 and k, respectively. Using this knowledge, we construct
the rotation matrix

R =
1√
2

(
1 1
−1 1

)
(3.3)

and use it to diagonalize K, so that

RTKR = k

(
1 0
0 0

)
. (3.4)

Now we finish diagonalizing H. If we write T as a
quadratic form, i.e.

T = ~pTS~p (3.5)

where ~p =

(
p1

p2

)
and S =

1

2m
I,

we note that S is proportional to the identity, so RTSR =
S. So, by rotating our coordinates into new momenta
~q = RT ~p and new positions ~y = RT~x, we find that

H =
q2
1

2m
+

q2
2

2m
+ ky2

1 (3.6)

or, rearranging and grouping,

H =

(
q2
1

2m
+ ky2

1

)
+

q2
2

2m
. (3.7)

Now we immediately see that this equation separates into
the Hamiltonian of a simple harmonic oscillator of fre-

quency ω =
√

2k
m , and that of a free particle.

Of course, although our Hamiltonian takes into ac-
count all the possible modes of the system, we only care
about the vibrational mode. Thus, we have our answer:
the vibrational spectrum, when treated alone, is that of
a harmonic oscillator, with energies

En = h̄ω

(
n+

1

2

)
(3.8)

where ω =

√
2k

m
.

While this method is illuminating and simple enough,
there is another that is still simpler: we can employ the
change of coordinates that we did for studying rotations.

Another Approach to Vibrational Modes

We know from classical mechanics that by transform-
ing to center-of-mass coordinates, we can treat the prob-
lem as that of a single particle of reduced mass µ (as
defined in Eq. (2.1)) attached to a hard wall by a spring
of constant k. We then know that the fundamental fre-
quency is

ω =

√
k

µ
, (3.9)

which is consistent with our result above, in the homonu-
clear case where µ = m

2 .

This simplification works because we are dealing with
the problem of only two atoms, which easily contracts
with classical arguments into that of a single atom. And
we have learned something else along the way: by con-
sidering the reduced mass of the two atoms, we now do
not have to assume that they have the same mass and
can apply our result to heteronuclear diatomic molecules.
Subject to our harmonic-oscillator approximation, the vi-
brational energies depend only on the reduced mass of the
two atoms and the spring coefficient k of their bond.

However, the matrix method can also be used for atoms
of differing mass and remains useful for molecules com-
prising more than two atoms.

IV. VIBRATIONS IN AN ANHARMONIC
POTENTIAL

In all of our preceding treatment of vibrations, we
approximated the potential between the two atoms as
quadratic. A quadratic potential, however, goes to infin-
ity for large separation x, while a Coulomb potential does
not. A rather egregious result of our simplification is that
we have bound states with unbounded energies (from the
celebrated “ladder” of the harmonic oscillator). But this
cannot be the case—if the vibrational energy were more
than the dissociation energy of the molecule, it would
break apart!

This inaccuracy suggests that we might improve our
results if we choose a potential that behaves more like
the Coulomb potential. However, we still want analytic
solutions, which is why we chose the harmonic simplifi-
cation in the first place. Luckily, there exists a potential
that both is accurate for large x and admits (simple) an-
alytic solutions to the Schrödinger equation. This is the
Morse potential (Fig. 1)[3]:

V (x) = De

(
1− e−α(x−xe)

)2

. (4.1)

Here De is the dissociation energy relative to the bottom
of the potential, xe is the equilibrium separation of the
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FIG. 1: The Morse potential. xe is the equilibrium separation,
De is the dissociation energy from the bottom of the well,
and D0 is the dissociation energy from the ground state. The
horizontal axis marks separation distance of the two atoms,
and the vertical axis marks the resulting potential energy of
the system.[1]

two atoms, and

α =

√
k

2De
, (4.2)

where k =

(
d2V

dx2

)

x=xe

is defined in analogy to the quadratic potential. We now
calculate the eigenenergies in the Morse potential. Our
method is adapted from Morse’s.[3]

The Schrödinger equation that we must solve is (again
in center-of-mass coordinates)

− h̄
2

2µ

d2ψ

dx2
+De

(
1− e−α(x−xe)

)2

ψ = Eψ. (4.3)

First we make the substitution α(x− xe) = y, so that

− h̄
2α2

2µ

d2ψ

dy2
+De

(
1− e−y

)2
ψ = Eψ. (4.4)

Now define

δ2 =
2µDe

h̄2α2
and ε =

2µE

h̄2α2
, (4.5)

so that by rearranging, we end up with

d2ψ

dy2
+
(
ε− δ2

(
1− e−y

))2
ψ = 0. (4.6)

Now we make another substitution u = e−y, yielding the
new equation

u2 d
2ψ

du2
+ u

dψ

du
+
(
ε− δ2 + 2δ2u− δ2u2

)
ψ = 0 (4.7)

Now that we have simplified the presentation of the
equation, we make a guess, following Morse, about the
dependence of ψ on u:

ψ(u) = e−δu(2δu)b/2f(u), (4.8)

for some function f(u) and some number b. Making this
substitution, we arrive at the new equation in f :

e−δu(2δu)
b
2−2
(

(2δu)2 d
2f

du2
+ 2δ(2δu)(b+ 1− 2δu)

df

du

+ δ2
(
b2 + 4

(
ε− δ2

)
− 2(2δu)(b+ 1− 2δ)

)
f
)

= 0.

(4.9)

Since u 6= 0, we can cancel out the prefactors. Ad-
ditionally, we now find that imposing a condition on b
simplifies this equation, namely

b2 = −4
(
ε− δ2

)
, (4.10)

giving

(2δu)2 d
2f

du2
+ 2δ(2δu)(b+ 1− 2δu)

df

du

− 2δ2(2δu)(b+ 1− 2δ)f = 0. (4.11)

Next we let z = 2δu and cancel out an extra z present in
each term to give us

4δ2z
d2f

dz2
+4δ2(b+1−z) df

dz
−2δ2(b+1−2δ)f = 0, (4.12)

or, dividing out 4δ2,

z
d2f

dz2
+ (b+ 1− z) df

dz
− (

b

2
+

1

2
− δ)f = 0. (4.13)

We now consider power-series solutions f(z) =∑∞
m=0 amz

m to Eq. (4.13). In order for such a solution to
be meaningful, it must be normalizable, and so it must
terminate. Plugging this form for f into Eq. (4.13), we
find the recurrence relation

am+1(m+b+1)(m+1) = am

(
m+

b

2
+

1

2
− δ
)
. (4.14)

In order for the power series to terminate, then, we need

n+
b

2
+

1

2
− δ = 0 (4.15)

under the condition 2δ ≥ 1. Solving for b and plugging
the result into our earlier condition (4.10), we find

ε = δ2 − (2δ − 2n− 1)
2

4

= δ2 −
(
δ − n− 1

2

)2

= 2δ

(
n+

1

2

)
−
(
n+

1

2

)2

. (4.16)
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We want to return dimensions to these quantities to
know the energy levels we have calculated. First, combine
Eqs (3.9) and (4.2) to find

2µ

h̄2α2
=

4De

h̄2ω2
. (4.17)

(Note that our use of ω here is still general, because of its
definition in terms of k, which in turn is defined generally
in Eq. (4.2).) Then by dividing Eq. (4.16) by this factor,
we arrive at our final result for the energy levels in the
Morse potential:

En = h̄ω

(
n+

1

2

)
− (h̄ω)2

4De

(
n+

1

2

)2

. (4.18)

The quadratic “correction term” in the Morse energies
(4.18) is of order h̄ω

De
relative to the harmonic oscillator

energies. For the H2 molecule, since the bond energy
D0 ≈ De, this is about (values from [1])

hν

D0
=

(
6.626× 10−34

) (
8.29× 1014

)

7.24× 10−19
≈ 0.121, (4.19)

quite significant!
In this paper, we are primarily concerned with the

eigenenergies of the Morse potential, but for some more
context, we can note here that the eigenfunctions of f are
the generalized Laguerre polynomials.[6] Knowing this,
we can construct the bound-state wavefunctions by re-
verting all of our substitutions.

When we first introduced the Morse potential, we re-
marked that we did not want bound states with arbitrar-
ily high energy. In the Morse potential, the quadratic
term serves to limit the number of possible states, so that
we not only have all states bounded in energy, but we also
have only a finite number of such states. To see this, note
that in order to exist as a bound state in this potential,
a state must have energy satisfying 0 ≤ En ≤ De. This
translates into the condition

0 ≤ n ≤ 4De

h̄ω
− 1

2
. (4.20)

Due to the quadratic term in (4.18), we can calculate
that the maximum energy is achieved by the state with
n that best approximates

n ≈ 2De

h̄ω
− 1

2
(4.21)

with energy

Emax ≤ De (4.22)

with equality if n actually makes (4.21) exact.
The Morse potential offers a remarkably accurate ap-

proximation to real, observed potentials, and as a re-
sult, its eigenenergies also closely match the observed
quantities.[3] However, from here we no longer require its
level of precision, so we will return to using the harmonic-
oscillator potential by default.

V. COMBINED ROTATIONAL-VIBRATIONAL
SPECTRA

Now that we have calculated the spectra for rota-
tions and vibrations each individually, we seek to com-
bine them. At first glance, this is quite a difficult task,
in which we must solve the Schrödinger equation for
the Hamiltonian that incorporates both the harmonic-
oscillator potential and the potential caused by the cen-
trifugal force from rotation.

H =
p2

2µ
+
k

2
r2 +

h̄2

2µr2
j(j + 1). (5.1)

The Schrödinger equation for this Hamiltonian is not
solved easily, and in fact it cannot be done exactly[4].
However, we can make a fairly accurate approximation.

Let us compare, using our models from Sec. II and
III, the energy spacing between the two lowest rotational
states with the spacing between the two lowest vibra-
tional states (indeed, the spacing between any two adja-
cent harmonic-oscillator states):

∆Ej
∆En

=
h̄2/µr2

0

h̄
√
k/µ

=
h̄

r2
0

√
µk
. (5.2)

This number is quite small, usually of order 10−2.[4] It is
also known that the eigenfunctions for this Hamiltonian
have the same form as those for the Hamiltonian in which
the rotational term is neglected.[5] So, as a preliminary
approximation, valid for small values of j, we regard the
new term as constant:

δH =
h̄2

2µr2
0

j(j + 1). (5.3)

With this constant perturbation to the Hamiltonian,
we can simply add the rotational energies to each vibra-
tional energy level, resulting in a nested double-spectrum
(Fig. 2)

Enj = h̄ω

(
n+

1

2

)
+

h̄2

2µr2
0

j(j + 1). (5.4)

To be more general, we could treat the new rotation
term as a non-constant perturbation. The first order
correction to the energy of state n would then be, for each
j (that is small enough to be treated as a perturbation),

E1
n =

h̄2

2µ
j(j + 1) 〈n| 1

r2
|n〉 . (5.5)

But this inner product causes problems because of the
divergence of 1

r2 as r → 0. Instead, the standard ap-
proach is to expand the denominator in a Taylor series
around the equilibrium separation. Any terms of degree
less than or equal to 2 can be combined with the exist-
ing harmonic-oscillator potential for exact results. Any
higher-order terms can then be treated as perturbations,
whose matrix elements may then be computed.[4]
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FIG. 2: The rotational energy levels, superimposed on each
vibrational energy level.[1]

VI. APPLICATION: INFRARED
SPECTROSCOPY

We can observe the energy levels of rotational and vi-
brational modes by studying light absorption and emis-
sion from diatomic molecules. A photon can be absorbed
only if it imparts to the molecule exactly enough energy
for the molecule to transition to another one of its dis-
crete energy levels. So the absorption spectrum can tell
us certain physical parameters of the molecule under ob-
servation, based on the spacing between absorbed fre-
quencies.

Let us consider the restrictions on allowed transitions
(called “selection rules”) upon absorption of a photon.
The probability of transition from state n to state m
is nonzero only if the transition dipole moment in the
direction of the electric field

µmnx = 〈ψm(x)|µx(x) |ψn(x)〉 =

∫
ψ∗m(x)µx(x)ψn(x)dx

(6.1)
is nonzero [1], where x is the spatial coordinate in the
direction of the field and µx(x) is the dipole moment in
the same direction. Taking into account the molecule’s
vibration, we can expand the dipole moment in a Taylor
series around the equilibrium bond length. To first order
in x, which represents the displacement from equilibrium,

µx(x) = µx(0) + x

(
dµx
dx

)

x=0

. (6.2)

Taking m and n as distinct states, the inner product with
the constant term µx(0) disappears, as different eigen-
states are orthogonal. Thus with this Taylor approxima-
tion, we find that the selection rule depends only on the
“dynamic dipole moment,” i.e. the coefficient to the first-
order term in the Taylor expansion (6.2). Homonuclear
diatomic molecules like H2 do not have a dynamic dipole
moment, so their vibrational modes are not excited by

photons. But we can consider heteronuclear molecules
like HCl, which do have a dynamic dipole moment. For
these molecules, the same Taylor approximation gives us
∆n = +1 for absorption.[1]

Now that we have found the selection rule for tran-
sitions between vibrational states, it remains to con-
sider transitions between rotational states. We recall
that a photon carries one quantum of angular momen-
tum. It follows that absorption of a photon changes the
molecule’s quantum number of angular momentum by 1,
i.e. ∆j = ±1.

What are the energies corresponding to these selection
rules? For the vibrational states, as we know well from
studying the simple harmonic oscillator, the energy levels
are equally spaced by h̄ω, so

∆En = h̄ω. (6.3)

For the rotational states, ∆j = +1 yields

∆Ej+ =
h̄2

2µr2
0

(j + 1)(j + 2)− h̄2

2µr2
0

j(j + 1)

=
h̄2

µr2
0

(j + 1),

(6.4)

and ∆j = −1 yields

∆Ej− =
h̄2

2µr2
0

(j)(j − 1)− h̄2

2µr2
0

j(j + 1)

= − h̄2

µr2
0

j.

(6.5)

As we should expect from the quadratic dependence of
Ej on j, the energy differences are not equal. But re-
call from Eq. (5.2) that the rotational energy differences
are relatively small, compared to the vibrational energy
differences. Knowing this, we can expect that the ab-
sorption spectrum will look like a comb centered around
the fundamental frequency ω, with spacing between the
comb teeth equal to h̄

µr20
(Fig. 3). The left branch, called

the “P branch,” corresponds to ∆j = −1, while the right
branch, the “R branch,” corresponds to ∆j = +1. There
is, of course, a gap between the two branches, as a tooth
there would correspond to ∆j = 0, which is disallowed.

FIG. 3: The rotational-vibrational spectrum of HCl.[4]

It is worth calculating ∆En for the energy levels of the
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Morse oscillator.

∆En = h̄ω − (h̄ω)2

4De

(
n2 + 3n+

9

4
− n2 − n− 1

4

)

= h̄ω − (h̄ω)2

4De
(2n+ 2)

= h̄ω − (h̄ω)2

2De
(n+ 1). (6.6)

VII. DISCUSSION

The diatomic molecule offers a simple system in which
to study molecular vibrations and rotations, and due to
the prevalence of such molecules, this study lends itself to
multiple applications. The characteristic spectra of dif-
ferent diatomics can be used to identify the composition
of various astronomical substances, such as planetary and
stellar atmospheres. Additionally, from our work in Sec.
VI, we know that homonuclear diatomics, such as H2, O2,
and N2, which compose the great majority of the Earth’s
atmosphere (99.93

The methods and results we learn from diatomic

molecules can sometimes be applied to molecules with
more atoms. For example, in order to study vibrational
spectra, we can often treat pairs of bonded atoms in poly-
atomic molecules as if they were each separate diatomic
molecules. The covalent bond between the two atoms
is strong enough compared to non-bonding interactions
with other nearby atoms in the molecule that such two-
atom systems can be isolated as if they were diatomic
molecules.[1]

In much the same way as one can use elementary
methods to simplify the analysis of modes in diatomic
molecules, diatomic molecules themselves can serve to
simplify more complex problems in quantum chemistry.
Thus they are a useful analytical tool, both as a means
to study further problems and as an end in themselves.
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This paper describes the basics of nuclear magnetic resonance, and delves into the influence of
dipole-dipole interactions on nuclear magnetic resonance spectroscopy. The dipole-dipole coupling
interaction is first treated as a time-independent perturbation, through first order perturbation
theory and can be used to determine internuclear distances. Time-dependence of dipolar coupling
in liquids is then used to describe transition rates. Using first order kinetics, population dynamics
of the states and the Overhauser e↵ect is explained.

I. INTRODUCTION

Nuclear Magnetic Resonance (NMR) is a powerful tool
that probes the energy gap between nuclear spin levels.
In biology and chemistry NMR is often used for structure
determination of both molecular and extended systems,
including organic molecules, proteins [1], and synthetic
polymers [2]. A standard NMR experiment probes the
local electronic environment of NMR-active nuclei via ap-
plication of an oscillating radiofrequency pulse in the xy-
plane to a sample experiencing a strong magnetic field
in the z-direction. This tips some of the spin into the
xy-plane, which precess about the z-axis at a frequency
that is related to the chemical environment, known as the
Larmor frequency, which is then measured, appearing as
a frequency peak in the spectra.

One complication to traditional NMR spectroscopy is
the inclusion of dipole-dipole interactions between two
nuclei or between electrons and nuclei [3]. This paper
will describe the theory behind NMR and the results
of including dipolar interactions in the nuclear Hamilto-
nian to first order in perturbation theory, which is used
to study internuclear distances in the solid state. I will
then explore transitions induced by dipolar interactions
in liquid NMR, and use kinetic arguments to heuristically
describe decoherence. This connects to the Overhauser
e↵ect, which describes the transfer of spin polarization
from one spin-1/2 particle to another [4]. The Over-
hauser e↵ect is utilized in a number of advanced NMR
techniques, which will be explored briefly [4].

II. GENERAL NMR

In this section, the basics behind NMR spectroscopy,
will be described to form a basis for future discussions of
dipolar coupling in NMR.

A. The Constant Magnetic Field

Given a collection of identical, noninteracting nuclear
spins, a constant magnetic field in the z-direction, Bo is
applied. Depending on the electronic environment, nuclei

are partially shielded from the applied magnetic field [5].
Rather than experiencing the full field, nuclei experience

Beff = Bo

p
1� � (1)

where � is the shielding constant and is dependent on the
local chemical environment. One complication is that the
value of � often spans a relatively small range; therefore
a NMR spectra of complex species are likely to have a
number of overlapping peaks, impeding structure deter-
mination [5].The resulting Hamiltonian (only including
the Zeeman e↵ect) is

Ho = ��BeffIz = !oIz

!o = ��Beff (2)

where � is the gyromagnetic ratio, !o is the Larmor fre-
quency and Iz is the spin projection along the z-axis,
with the corresponding quantum number being mI [6].
After a su�ciently long time, the spins can be described
via a thermal density matrix [6]

⇢th =
e��Ho

tr[e��Ho ]
(3)

where � = 1
kT , and kT is the thermal energy. For a

typical NMR experiment the di↵erence in populations of
the thermal state is one spin in 10,000 or less, due to
the small energy splittings of the nuclear spin states [7].
Because of the small energy splitting, ⇢th is approximated
to first order in its taylor expansion.

⇢th ⇡
1

2
(I� �Ho) (4)

Using the approximation in (4), the magnetization along
the z-axis (also known as the longitudinal magnetization)
can be determined

⌦
Ith
z

↵
= tr [Iz⇢th] =

h̄2

4
��Beff (5)

B. A Transverse Magnetic Field Induces
Transitions

A small oscillating magnetic field transverse to the
static field is then applied to the sample. The Hamil-

26



The Dipolar Interaction in NMR 2

tonian, H1, that describes this perturbation is

H1 = �2�B1Ixcos(!et) = 2!1Ixcos(!et)

!1 = ��B1 (6)

where B1 indicates the strength of the magnetic field,
and Ix is the nuclear spin projection along the x-axis [5].
I can then move into the rotating frame of the interaction
picture. If the system is on resonance, which means |!e|+
!o = 0, H1 in the interaction picture is

Hint
1 = U†

R(t)H1UR(t) (7)

where

UR(t) = exp

⇢�iHot

h̄

�
= exp {�i!ot�z} (8)

and �i corresponds to the ith Pauli matrix.The matrices

UR(t) and U†
R(t) rotate H1 into the interaction picture.

Applying these two rotation operators yields

Hint
1 = !1{Ix + Ixcos(2!e)� Iysin(2!et)} (9)

The latter two terms in (9) can be neglected, since they
involve a larger frequency scale, which will time average
to zero during the course of the NMR experiment [5].
After applying H1 for a time t, the density matrix in (4)
evolves to

⇢R(t) = U(t)U †
R(t)⇢thUR(t)U†(t) (10)

with UR(t) defined in (8) and

U(t) = exp{�iHint
1 t

h̄
} = exp{�i!1t�x}

UR(t) and U †
R(t) rotate the density matrix into the in-

teraction picture, as they did for H1. U(t) and U†(t)
describe the time evolution with respect to Hint

1 . Since
the approximation for ⇢th given in (3) commutes with
UR(t), ⇢R(t) is simple to compute. For a so-called ⇡

2
pulse, which is designed to tip the maximum magnetiza-
tion into the xy-plane, t⇤ = � ⇡

2!o
and

⇢R(t⇤) =
1

2

✓
I� �h̄!o


cos2(

⇡

2

!1

!o
)�z + sin(⇡

!1

!o
)

�◆

(11)
Transitioning back to the stationary frame, and neglect-
ing terms that are second order in !1,

⇢(t⇤) =
1

2

✓
I� �h̄!o


�z � ⇡

!1

!o
�y

�◆
(12)

After the ⇡
2 pulse, H1 is removed. The spin then pre-

cesses at the Larmor frequency, !o. The signal in NMR
comes from the spin in the xy plane. At t = t⇤ the spin
is along the y-axis so the spin in the xy-plane is

hIyi = tr[Iy⇢(t
⇤)] (13)

which is proportional to �h̄!1. Since this value is much
less than one, typical NMR signals are extremely weak.
This is another major source of di�culty in NMR exper-
iments.

Another representation of the interaction with the
tranverse magnetic field in NMR is the absorption of ra-
diation model. In this case,the average transition rate,
Wfi, from initial state |ii to final state |fi is given by
Fermi’s golden rule [8],

Wfi =
1

T

1

h̄2

�����

Z T/2

�T/2

hf | H1(t
0) |ii e i

h̄ (Ef�Ei)t
0
dt0
�����

2

(14)

where Ef and Ei are the corresponding energies.The in-
tegral over T is over a period of the potential, in order
to accurately average the transition rate. subsituting (6)
simplifies (14) to

Wfi =
2⇡

h̄

��hf | Ht.i
1 |ii

��2 �(Ef � Ei � h̄!e) (15)

where Ht.i
1 is time independent, and does not include

the cos(!et) dependence. Therefore, a transition is al-
lowed in NMR if

|hf |!1Ix |ii| 6= 0 (16)

and if the applied transverse field matches the energy
di↵erence between the two mI levels. For NMR of
non-interacting spin-1/2 nuclei, transitions are allowed
if �mI = ±1.

After considering NMR from a general perspective, the
dipolar coupling Hamiltonian and its e↵ects on NMR will
be examined.

III. THE DIPOLAR COUPLING
HAMILTONIAN

Classically, the energy of the dipole-dipole interaction
between two magnetic point dipoles ~µ1 and ~µ2 takes the
form

E12 =
µo

4⇡

✓
~µ1 · ~µ2

r3
12

� (~µ1 · ~r12) (~µ2 · ~r12)

r5
12

◆
(17)

where ~r12 is the vector between dipole 1 and 2, and µo is
the vacuum permeability [7]. In quantum mechanics, this
interaction can be decomposed into the so-called alpha-
betic decomposition of the Hamiltonian. For simplicity,
spin operators Iz and Sz are defined such that Iz acts on
dipole 1, and Sz acts on dipole 2, with �1 and �2 as their
respective gyromagnetic ratios.

Hd = d(A + B + C + D + E + F ) (18)
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where

A =IzSz(1� 3cos2(✓))

B =� 1

4
(1� 3cos2(✓))(I+S� + I�S+)

C = D⇤ =� 3

2
sin(✓)cos(✓)e�i�(IzS+ + SzI+)

E + F ⇤ =� 3

4
sin2(✓)e�2i�(I+S+)

d =
µo�1�2

4⇡r3
12

(19)

where I± = Ix ± Iy and the analog is true for the second
spin [7]. Here, ✓ and � refer to the polar and azimuthal
angles of ~r12. A is a classically familiar term that de-
scribes the e↵ect of a magnetic dipole interacting with a
local field created by a neighboring dipole [7]. B is known
colloquially as the “flip-flop” term and switches the spin
for each nuclei, which means �M ⌘ mI + mS = 0 [5].
For the C and D terms �M = ±1, and for terms E and
F �M = ±2.

IV. THE DIPOLAR INTERACTION AND
DISTANCE DETERMINATION

In the solid state, when two nuclei are coupled via
the dipolar coupling interaction, the initial NMR peaks
are split into doublets. The energy di↵erence between
the two peaks in the doublet is directly related to the
distance between the two nuclei in the sample. Using
dipole-dipole interactions to determine internuclear dis-
tances is of particular interest for materials which are
not crystalline but have short-range order such as glasses,
proteins, and polymers [7]. Since information about the
structure of such species is almost impossible to get via
di↵raction techniques, dipolar interactions in NMR can
be used to probe the structure. One example of this is
an NMR study that used dipolar couplings to determine
relevant structures in a membrane-bound protein [9].

To describe this e↵ect, the dipolar interaction can be
treated to first order in perturbation theory. The first
order dipolar splitting will be derived for two identical
spins and for two di↵erent spins.

A. Two Non-Identical Spins

For two non-identical spins, the Hamiltonian is the
same Hamiltonian as (18), with �1 6= �2. For two spins
with the same nuclei but di↵erent chemical environments,
the � parameter implicitly includes the chemical shield-
ing parameter,

p
1� �. Using the basis,

|++i = |1; +i ⌦ |2; +i
|+�i = |1; +i ⌦ |2;�i
|�+i = |1;�i ⌦ |2; +i
|��i = |1;�i ⌦ |2;�i (20)

where |1; ±i represents the ± 1
2 eigenstate of Iz and |2; ±i

is the same for Sz, the Zeeman Hamiltonian is

HZ =
h̄

2

0
BBB@

!
(1)
o + !

(2)
o 0 0 0

0 !
(1)
o � !

(2)
o 0 0

0 0 �!
(1)
o + !

(2)
o 0

0 0 0 �!
(1)
o � !

(2)
0

1
CCCA

(21)

with !
(1)
o corresponding to the Larmor frequency of the

first dipole, and !
(2)
o the Larmor frequency of the second

dipole. Since there are no degenerate states, only the on-
diagonal terms of the dipolar Hamiltonian give a nonzero
first order perturbation. This is only the A term. The
first order dipolar perturbation is then [7],

Hd =
dh̄2

4
Y

0
B@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

1
CA (22)

where Y = (1 � 3cos2(✓)). Allowed transitions among
this manifold of states are those for which (15) holds. In
the case of two spins, H1 a↵ects each spin. Therefore,

H1 = �2B1(�1Ix + �2Sx)cos(!et) (23)

Substituting (23) into (15) and neglecting constants
yields

|hf | � �1Ix � �2Sx |ii| 6= 0 (24)

The allowed transitions and their energies are

|++i , |+�i E = �h̄!(2)
o � h̄2d

2
Y

|++i , |�+i E = �h̄!(1)
o � h̄2d

2
Y

|+�i , |��i E = �h̄!(1)
o +

h̄2d

2
Y

|�+i , |��i E = �h̄!(2)
o +

h̄2d

2
Y

This corresponds to two doublets, centered around

�h̄!
(1)
o and �h̄!

(2)
o , with a splitting of h̄2d, thus allow-

ing the distance between nuclei to be determined, as d
is related to r12, given by (19). Additionally, as the two
correlated spins have the same energy splitting for their
NMR peaks, the peak splitting can be used to determine
which spins are near each other. One complication is the
fact that the orientation with respect to the magnetic
field does influence the splitting. This can be resolved
by using a single crystal in a fixed orientation. However,
for a number of the species being studied a single crystal
is impractical if not impossible to make. In this case, a
powder average will be present, as all possible values of
✓ are integrated. This results in broadening and a more
complex pattern, but still can be used to determine in-
ternuclear distances [5].
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B. Two Identical Spins

For two identical spin-1/2 particles, the dipolar Hamil-
tonian is (18), with �1 = �2. The Zeeman Hamiltonian
in the basis given by (20) is

HZ = h̄!o

0
B@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 �1

1
CA (25)

This is slightly more complicated than the case with two
di↵erent spins, as E+� = E�+. To treat this system to
first order in perturbation theory, terms that introduce
interactions between the |+�i and |�+i must also be
included. The term from the alphabetic decomposition
that inolves this interaction is the B term. The resulting
first-order dipolar Hamiltonian is

HD =
dh̄2

4
Y

0
B@

1 0 0 0
0 �1 �1 0
0 �1 �1 0
0 0 0 1

1
CA (26)

Diagonalizing the sum of (25) and (26) gives

HZ+D =
dh̄2

4
Y

0
BB@

h̄!o + dh̄2

4 Y 0 0 0

0 �dh̄2

2 Y 0 0
0 0 0 0

0 0 0 �h̄!o + dh̄2

4 Y

1
CCA

(27)
The basis states in this representation are

|1i = |1; +i ⌦ |2, +i

|2i =
1p
2
(|1; +i ⌦ |2;�i+ |1;�i ⌦ |2; +i)

|3i =
1p
2
(|1; +i ⌦ |2;�i � |1;�i ⌦ |2; +i)

|4i = |1;�i ⌦ |2;�i (28)

The basis in (28) has a triplet manifold of states (|1i,
|2i, and |4i) and a singlet state (|3i). For this reason,
the problem is treated as that for a spin-1 particle, as
the singlet state does not interact with the magnetic field
[7]. Allowed transitions are those for which the transition
rate is nonzero, given by (24). Since �1 = �2, allowed
transitions occur only for states for which

|hf | Ix + Sx |ii| 6= 0 (29)

The allowed transitions and corresponding energies are

|1i , |2i E12 = �
✓

3dh̄2

4
Y + h̄!o

◆

|2i , |4i E24 = �h̄!o +
3dh̄2

4
Y

This yields a doublet centered at the Zeeman splitting

energy of �h̄!o and split by 3dh̄2

2 Y , which is again re-
lated to the internuclear distance. This again has the
dependence on ✓, addressed previously.

V. DIPOLE-DIPOLE EFFECTS IN DOUBLE
RESONANCE

In a liquid sample, the molecules are free to translate
and rotate. H1 must then be treated as a time-dependent
perturbation to the spin system, as r, ✓, and� are implic-
itly functions of time due to molecular motion [10]. For
a time-dependent perturbation to the Zeeman Hamilto-
nian, (14) can be used to calculate transition rates. From
these transition rates, first order kinetics can be used
to model decoherence and spin population transfer [10].
This population transfer occurs without applying any
transverse magnetic field, di↵ering from the solid-state
case. One note is that this treatment does not consider
the energy splitting due to dipolar coupling from the A
term, which broadens the peaks.

A. Transition Rates

The e↵ects of terms B through F from the dipolar cou-
pling Hamiltonian will now be described. For a set of two
di↵erent spins, these terms induce transitions between
spin states. They are collected into a transition Hamil-
tonian matrix in (30), which only includes o↵-diagonal
elements, in the same basis given in (20).

Htrans
dd =

0
B@

0 w1 w0
1 w2

w⇤
1 0 w0 w1

w0⇤
1 w0 0 w0

1

w⇤
2 w⇤

1 w0⇤
1 0

1
CA (30)

where

w0 =� h̄2d
1

4
(1� 3cos2(✓))

w1 = w0
1 =� h̄2d

3

4
sin(✓)cos(✓)e�i�

w2 =� h̄2d
3

4
sin2(✓)e�2i�

These transitions are also shown in fig. 1. (14) can be

FIG. 1: Energy levels and transition rates for the dipole-
dipole coupling Hamiltonian perturbation. Adapted from [11]

used to calculate the transition rates, substituting the im-
plicitly time-dependent Hamiltonian of (18) for H1. To
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complete this calculation, the physics of random molecu-
lar motion is necessary, which is beyond the scope of this
paper. Interested readers can consult [10] for the full
derivation. After performing the necessary calculations,
the resulting transition rates are

W0 =
h̄2d2

10
⌧cJ(!I � !S)

W1 =
3h̄2d2

20
⌧cJ(!I)

W 0
1 =

3h̄2d2

20
⌧cJ(!S)

W2 =
3h̄2d2

5
⌧cJ(!I + !S) (31)

where ⌧c is the correlation time, which is describes the
rotational time scale, and J(!x) = (1 + ⌧2

c !
2
x)�1 is the

correlation function. W0 corresponds to the transition
probability of flipping both spins such that �M = 0,
resulting from the B term in (19). Similarly W1 and
W 0

1 correspond to �M = ±1, from the C and D terms
and W2 to �M = ±2 from the E and F terms in (19).
These equations simplify greatly in the regime in which
⌧c!x ⌧ 1, where molecules rotate quickly compared to
their Larmor frequencies, as J(!x) ⇡ 1. Assuming this
approximation is valid, (31) simplifies to

W0 =
h̄2d2

10
⌧c

W1 = W 0
1 =

3h̄2d2

20
⌧c

W2 =
3h̄2d2

5
⌧c (32)

Included implicitly in (31) and (32) is the time average
over the distance between dipoles, because hd2i /

⌦
1
r6

↵
.

The transition rates for all first-order transitions have
now been determined. This information can now be used
to derive the rates of longitudinal decoherence.

B. Population Kinetics and the Overhauser E↵ect

Using the rates derived in the previous section, spin
relaxation processes along the z-axis can be determined.
This can then be used to describe the Overhauser e↵ect.
The subsequent derivation is simplified by defining

k =
(h̄d)2

20
⌧c (33)

This simplifies (32) to

W0 = 2k

W1 = W 0
1 = 3k

W2 = 12k (34)

The relaxation is derivated assuming first order kinetics
for the populations, which means that for a given tran-
sition the rate of change is proportional to the initial

state population. Analyzing the spin states by taking
into account decreases in populations due transitions to
all other states, and increases in population due to tran-
sitions from all other states yields

dN++

dt
= �(3k + 3k + 12k)N++ + 3k(N+� + N�+ + 12kN��) + c++

dN+�
dt

= �(3k + 3k + 2k)N+� + 3k(N�� + N++) + 2k(N�+) + c+�

dN�+

dt
= �(3k + 3k + 2k)N�+ + 3k(N�� + N++) + 2k(N+�) + c�+

dN��
dt

= �(3k + 3k + 12k)N�� + 3k(N+� + N�+ + 12kN++) + c��

(35)

where the various N represent the population of a given
state. The average longitudinal spin for each dipole is

The spin population of the first dipole and the popula-
tion of the second dipole can be evaluated independently,
as the Larmor frequencies for the two spins are di↵erent.
The average spin component for each dipole can be de-
scribed as

hIzi =
h̄

2
[N++ + N+� �N�+ �N��]

hSzi =
h̄

2
[N++ + N�+ �N+� �N��] (36)

Di↵erentiating (36) with respect to time, and substitut-
ing (35) gives

⌧
dIz

dt

�
= �20khIzi � 10khSzi+ c

⌧
dSz

dt

�
= �20khSzi � 10khIzi+ c (37)

Noting that the constants in (35) reflect the final, ther-
malized state of the system, (37) becomes

⌧
dIz

dt

�
= �20k

�
hIzi � hIth

z i
�
� 10k

�
hSzi � hSth

z i
�

⌧
dSz

dt

�
= �20k

�
hSzi � hSth

z i
�
� 10k

�
hIzi � hIth

z i
�

(38)

where hIth
z i and hSth

z i represent the average longitudinal
spin of the thermal states for dipole 1 and dipole 2. Note
that the decay of these spins is a biexponential decay,
not a simple exponential decay as is assumed in Bloch’s
equations.

One limit to consider is the homonuclear case, where
the two dipoles are the same. In this case, it is impossible
to measure hIzi and hSzi separately, as both have the
same Larmor frequency. Only the sum can be measured.

⌧
dIz

dt
+

dSz

dt

�
= �30k

�
hIz + Szi � hIth

z i � hSth
z i
�

(39)

This recovers the standard exponential decay of the mag-
netization, as described in Bloch’s equations [7]. The
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parameter T1 measures the exponential decay of the lon-
gitudinal magnetization. In this situation

T1 =
1

30k

A second limit to consider is that of a nucleus coupling
to an electron. Electrons can relax via a number of path-
ways in addition to dipolar coupling, at a much faster
rate than nuclei [7]. Since this is the case, it is assumed
that the electron spin, defined here to be SZ is at its
thermal state, hSth

z i. In this case, (38) simplifies to

⌧
dIz

dt

�
= �20k(hIzi �

⌦
Ith
z

↵
)

⌧
dSz

dt

�
= 0 (40)

Again, a simple exponential decay is recovered. However,
in this situation

T1 =
1

20k

The derived rates of population change will now be used
to explain the steady-state Overhauser e↵ect. The first
step to observe the Overhauser e↵ect is to apply an oscil-
lating radiofrequency field to saturate one of the spins, Sz

in this case, such that the populations of the |2; +i and
|2;�i states are equal [12]. This means that hSzi = 0 [12].
Substituting this into (38) and recognizing that at steady
state the change in populations are 0 results in,

0 = �20k(hIzi �
⌦
Ith
z

↵
) + 10k

⌦
Sth

z

↵
(41)

Solving for hIzi gives

hIzi =
⌦
Ith
z

↵
+

1

2

⌦
Sth

z

↵
(42)

Since, at the steady state, without polarization transfer,
hIzi =

⌦
Ith
z

↵
, a fractional polarization enhancement of I

due to S is defined as

fI [S] =
hIzi �

⌦
Ith
z

↵

hIth
z i

(43)

Since
⌦
Ith
z

↵
and

⌦
Sth

z

↵
can be approximated using (5)

(implicitly including the chemical shielding term in �),
the relationship between the two expectation values is

⌦
Ith
z

↵
=
�1

�2

⌦
Sth

z

↵
(44)

. Substituting (44) into (43) yields

fI [S] =
1

2

�2

�1
(45)

The fractional enhancement can be very large depend-
ing on the ratio between the gamma values. One tech-
nique that takes of advantage of the Overhauser e↵ect

is cross-polarization from protons to carbon-13 nuclei.
Carbon-13 NMR, if the sample has not been enriched,
su↵ers from the limited elemental abundance of carbon-
13 [11]. To increase intensity, spin from the protons is
transferred to carbon-13 nuclei via an Overhauser e↵ect.
The theoretical limit is approximately a two-fold increase
in polarization, corresponding to a four-fold increase in
signal intensity [11]. Another technique that applies the
Overhauser e↵ect is 2D Nuclear Overhauser E↵ect Spec-
troscopy (NOESY). In NOESY, transfer of polarization
from one nuclei to another via dipolar interactions is used
to determine the proximity of the nuclei to each other.
This is useful in elucidating structural information from
very complicated systems, such as proteins [1].

VI. CONCLUSION

One major di�culty with using NMR for structure de-
termination is its small signals, attributable to the very
small energy splitting between mI states in the nuclei.
It is cleary shown in section II in the density matrix for-
mulation of NMR that the component of the spin in the
xy-plane, which is what NMR measures, depends linearly
on �h̄!1, which is much less than one. This indicates that
the xy-plane component of the spin is quite small, high-
lighting this di�culty. An additional issue is the small
range of chemical shfits, resulting in overlapping peaks.

The dipolar coupling Hamiltonian can be used to ame-
liorate both of these issues, as well as to provide new in-
formation. In the solid state, the dipolar coupling Hamil-
tonian is time-independent. Treating this Hamiltonian
as a perturbation to first order in time-independent per-
turbation theory yields information about internuclear
distances, as shown in section IV.

Dipolar interactions in liquids are time-dependent, as
the molecules in solution are free to rotate and translate.
For this reason, the dipolar coupling Hamiltonian induces
transitions between states. Using Fermi’s Golden Rule,
the transition rates can be derived. From these rates, us-
ing first order kinetic arguments, the change in the longi-
tudinal spin is examined. It is shown that dipolar inter-
actions in liquids can be tailored in order to maximize po-
larization transfer between two spin species, via the Over-
hauser e↵ect. This solves the problem of small signals
in NMR. 2D spectroscopy techniques, such as NOESY,
take advantage of the Overhauser e↵ect to help deter-
mine which peaks correspond to close nuclei, increasing
the information from the spectrum and partially resolv-
ing the problem of overlapping chemical peaks. Dipolar
interactions serve as very welcome perturbation in NMR,
as they have significant uses in structure determination.
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I. INTRODUCTION

Coherent light one photon formulation, in the focus of
optics and the statistics of the fields, has been in the lit-
erature since Glauber’s paper Coherent and Incoherent
states of the Radiation Field [1] in 1963. By 1963, Quan-
tum electrodynamic theory [QED] had been developed
but its usefulness absent to physicists who dealt with op-
tics. This is due to QED’s inherent limitation in describ-
ing many stationary states of the field (photon states)
to only a few before computations become prohibitively
difficult. Glauber describes an approach using a basis
which “arises in a natural way in the discussion of cor-
relation and coherence properties of fields.” [1] Glauber
calls these states coherent states whose formulation has
become invaluable to the experimental physics and the
electrical engineering communities in recent decades in
a regimen where one must worry about approaching the
quantum mechanical limit.

In 1976, Yuen, an electrical engineer at the Mas-
sachusetts Institute of Technology, published a paper
[2] describing two photon coherent states and how their
counting statistics could be shown to display character-
istics of the one photon states that we now call squeezed
states. The paper was not highly appreciated until Caves
published his formalism [3][4] for two photon quantum
optics. We will proceed to entertain this formalization in
Sec. III.

II. SINGLE PHOTON COHERENT AND
SQUEEZED LIGHT

Here I present a overview of single photon coherent
and squeezed light formulation.

A. Coherent Light

The traditional approach to describing the electromag-
netic radiation field is to treat the field as a continu-
ous distribution of harmonic oscillators with different fre-
quencies ω. Each ω we will call a particular mode of the
electromagnetic field. To get a description of the field
you then integrate over the frequency bandwidth you are
interested in.[3] We then write the mode of the electric
field as

E(t) = x cos(wt) + p sin(wt) (1)

keeping with the convention used by Teich [5]. Teich uses
units where h̄=1, but we will keep explicit our h̄.

FIG. 1: Polar and
quadrature-component
representations of
the electric field for
monochromatic classi-
cal light. Figure from
Teich [5]

FIG. 2: Quadrature-
component uncertain-
ties for the vacuum
state. Figure from Te-
ich [5].

We discussed in 8.05 [6] that the ground state of the
harmonic oscillator, which we will treat as the vacuum
state of the electromagnetic field for a particular mode ω,
satisfies the lower bound of the Heisenberg uncertainty
relation. It therefore has expectation value 0 for both
quadratures x and p, i.e.:

〈x〉 = 0, 〈p〉 = 0, σxσp =
h̄

2
(2)

These equations imply that the electromagnetic vacuum
field is inherently noisy; because the vacuum state has
nonzero energy, there are fluctuations in σx and σp. By
equation 1, E(t) is therefore also noisy. We call x and p
quadrature components because they differ by 90 degrees.

We can analyse this noise in the polar representation
of our uncertainties: the photon-number and phase rep-
resentation. In the ground state we have

〈n〉 = 0, 〈φ〉 = undef, σnσφ = h̄ (3)

We can construct excited states by attaching them to a
phasor with amplitude |α| =

√
〈n〉 and phase e−iwt.

When in a excited coherent state it is important to
notice that the uncertainties are time independent and
independent of uncertainties at different frequencies.

B. Squeezed Light

There are two types of squeezed light that I
will address: quadrature-squeezed and photon-number-
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FIG. 3:
Quadrature-
component
and number-
pase uncer-
tainties for
the coherent
state. Figure
from Teich
[5].

squeezed.

A quadrature-squeezed state is when one of the
quadratures has an uncertainty that is less than

√
h̄/2.

We can ’squeeze’ one quadrature at the expense of the
other, thereby still satisfying the uncertainty principle
but perhaps giving us experimental advantages.

A photon-number-squeezed state is when σn is be-
low
√
h̄, the photon-number uncertainty in the coher-

ent state. Squeezing the photon-number means that the
associated uncertainty in phase must increase. Photon-
number-squeezed light is sometimes called amplitude
squeezed light and when the phase uncertainty wraps
around the whole graph, as on the right side of (b),
the state is called a number state because σn = 0 and
σφ = ∞.[5] (Not to be confused with the excited levels
of the harmonic oscillator.)

C. Examples of states of light

Now imagine we are able to alter the two quadra-
ture components of E(t), we will see some methods that
do so in Sec. IV. We then affect a change: Es(t) =
xe−γeiζ cos(wt) + peγ sin(wt), where γ is the squeezing
parameter.[5] γ is similar to γ in [6] but it is not defined
according to two different harmonic oscillator potentials.
Here γ is a given parameter, which depends on the non-
linear elements in the system that provide squeezed light.
(See references [7] [8]) Our eiζ is only present for conve-
nience. It allows us to affect a change e−γσx and eγσp in
the uncertainties of x and p, effectively ’squeezing’ them.
See figures 5 and 6 for illustrations.

We must be careful as the statistics of our vacuum
state have changed[5]:

FIG. 4: (a) Quadrature squeezed state. (b)Right: partially
squeezed photon-number-squeezed state; Left: fully squeezed
photon-number-squeezed state.

〈n〉 = sinh2(r) > 0 (4)

σ2
n = 2h̄(〈n〉+ 〈n〉2) (5)

Our state no longer has zero average photon number and
its variance is no longer Poisson.

The coherent state changes accordingly. [5]

〈n〉 = |α|2 + sinh2(r) (6)

If we look at figure 6 we expect that σn will be largest
when θ is integer multiples of π and it will be smallest
when θ equals odd integer multiples of π/2. Where θ
is the angle between the major axis of the squeezing el-
lipse and the phasor, α. We can change θ by changing ζ
relative to 6 α.[5] The expression when |α|2 � e2γ is:

σ2
n = 〈n〉(e2γ cos2(θ) + e−2γ sin2(θ) (7)

See figure 7 for a plot of the magnitude of σ2
n when θ is

varied for a given γ.

Now let’s turn to a concrete example taken from Teich
[5]. Assume you have a 50/50 beamsplitter and you input
coherent light on one end and leave the other input port
open. We can model this system as the unused open
port inputing a vacuum state which is combined with
a coherent state from an ideal gas laser. Since the two
states are uncorrelated their means and variances add.
The beamsplitter has a transmission coefficient T = 1/2
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FIG. 5: Comparison of quadrature-component uncertainties
for the vacuum and squeezed vacuum states: (a) vacuum
state, (b) squeezed vacuum state. Figure from Teich, [5].

FIG. 6: Comparison of quadrature-component uncertainties
for the coherent and squeezed coherent states: (a) coherent
state, (b) squeezed coherent state. Figure from Teich, [5].

and transmittance t = 1/
√

2 so we get the following.

〈x〉 = 〈xc〉t+ 〈xv〉t (8)

〈p〉 = 〈pc〉t+ 〈pv〉t (9)

σ2
x = σ2

xcT + σxvT (10)

σ2
p = σ2

pcT + σ2
pvT (11)

Where the subscripts c and v stand for coherent and
vacuum states. For the regular vacuum state, whose
〈xv〉, 〈pv〉 = 0 and σxv, σpv =

√
h̄/2, we get

〈x〉 = 〈xc〉/
√

2 (12)

〈p〉 = 〈pc〉/
√

2 (13)

σ2
x =

√
h̄

2
(14)

σ2
p =

√
h̄

2
(15)

So for unsqueezed vacuum input into the unused port
we get coherent light of reduced mean. The mean is

FIG. 7: Dependence of the squeezed coherent state photon-
number variance, σ2

n, on the angle θ. The light is super- or
sub-Poisson depending on θ. Figure from Teich, [5].

reduced because of losses to the other open output port
the beamsplitter.

Now let us imagine we squeeze the input vacuum state
somehow. (See Sec. IV) Our vacuum state now has
〈xv〉 = 〈pv〉 = 0 and σ2

xv = h̄e−2γ/2, σpv = h̄e2γ/2 so
we get

〈x〉 = 〈xc〉/
√

2 (16)

〈p〉 = 〈pc〉/
√

2 (17)

σ2
x =

h̄

4
(1 + e−2γ) (18)

σ2
p =

h̄

4
(1 + e2γ) (19)

In the end, we have squeezed light whose mean is the
same as the unsqueezed case. This has been illustrated
in Figure 8.

An interesting thought experiment is to change t to
a larger value. We then have an output amplitude of
A =

√
Tav +

√
1− Tac. As T increases, the amount of

squeezing picked up by our coherent state increases at
the expense of a decrease in α; to get a coherent state
squeezed as much as our squeezed vacuum state would
require an arbitrarily large ac.

III. TWO PHOTON FORMULATION

Here I present the traditional two photon formulation
as discussed by Caves. [3]

We denote the annihilation operators for the two
modes as a+ and a− which satisfy the commutation re-
lations.

[a+, a−] = [a+, a
†
−] = 0 (20)

[a+, a
†
+] = [a−, a

†
−] = 1 (21)

The free Hamiltonian is

Ho = (Ω + ε)a†+a+ + (Ω− ε)a†−a− (22)
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FIG. 8: Quadrature-component uncertainties for the super-
position of a coherent field with unsqueezed and squeezed
vacuum fields at a 50/50 beamsplitter. Figure from Teich,
[5].

We can create our two-mode coherent states by displacing
each mode using our two-mode displacement operator,
a combination of two one-mode displacement operators
from 8.05.

D(a+, α+)D(a−, α−) = e(α+a
†
+−α?+a++α−a

†
−−α?−a−)

(23)
Here I have adapted somewhat the notation of Caves,
instead of using µ± I am using α for the eigenvalue as we
did in 8.05.

To introduce the two-mode squeezing operator S we
will consider the Hamiltonian for an ideal two photon
process

H = Ho + iκ(t)[a+a−e
−2i(φ−Ωt) − a†+a†−e2i(φ−Ωt)] (24)

Where κ is any real time dependent function. The inter-
action part, given by the operators, creates or destroys a
pair of photons in the two modes we are considering, and
never only one. The unitary time evolution operator for
eq. 24 is

U(t, 0) = e−iHotS(ζ, φ) = S(ζ, φ− Ωt)e−iHot (25)

where

ζ ≡
∫ t

0

κ(t′)dt′ (26)

S(r, φ) ≡ exp[γ(a+a−e
−2iφ − a†+a†−e2iφ)] (27)

Where γ is the squeeze factor introduced in 8.05. A key
feature of S is that

S(γ, φ)a±S
†(γ, φ) = cosh(r)a± + a†∓e

2iφsinh(r) (28)

The two photon formulation can readily be ported to
our single photon formulation if you consider the sum
of the two photons to act as one (see figure 9), but the
formulation is still important to understanding two pho-
ton devices. Two photon devices in general create two
photons at different frequencies but ones that are never-
theless correlated. This is an indicator that we must in
part abandon the one photon picture because it relies on
the independence of the modes of the electric field from
each other.

FIG. 9: Combination of the two photon modes. From Caves.
[3]

IV. METHODS OF PRODUCING SQUEEZED
LIGHT

Coherent light is the light emitted from an ideal one
photon laser while squeezed light usually is from two-
photon processes. The mathematical descriptions of the
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two photon processes that create squeezed light require
a inherent non-linearity between, usually, two modes of
the electric field and for this reason it will be too in-
volved for analysis in this paper. Those interested can
read the general literature on quantum optics. (See [7]
[8]) I will proceed to present two typical systems that
create squeezed light: one type of crystal squeezing and
ponderomotive squeezing.

Crystal squeezing is a type of squeezing where you pass
high intensity light through a nonlinear medium in a cav-
ity to create a coupling between two quadratures. One
method is parametric down conversion. This method
takes light from one mode Ω and converts it into two
correlated modes usually centred around ωc = Ω/2. Giv-
ing:

ωnew = ωc ± ε (29)

Where ε � ωc. These two new modes are created in a
squeezed state due to actions of the nonlinear element.
[9]

Ponderomotive squeezing is where one uses a spring
to couple two quadratures together. Normally an op-
tical spring is used versus a mechanical one due to its
high resonant frequency and decreased susceptibility to
introduce thermal noise into the spectrum, which would
swamp the squeezing. To create an optical spring, one op-
erates a cavity with dynamic mirrors on the side of a res-
onance. By changing the mirrors, the intra-cavity power,
and therefore force from radiation pressure, changes ap-
proximately linearly in position. Just like a spring. Be-
cause the test mass motion creates a phase shift of the
reflected light dependent on the intensity fluctuations we
have a coupling between radiation pressure and phase.
This coupling is used to squeeze the radiation pressure
noise versus phase noise. [15]

V. APPLICATIONS OF SQUEEZED LIGHT

Possible applications of quadrature-squeezed and
photon-number-squeezed light include areas of spec-
troscopy, interferometry[16], precision measurement, and
communications [10][11][12].

A particular case of squeezing in interferometry is
the Laser Interferometer Gravitational-wave Observatory
[LIGO]. LIGO is a large observatory that measures the

positions of end mirrors on a interferometer very pre-
cisely. They are attempting to detect passing fluctua-
tions of space caused by gravity waves. In many parts
of the noise spectrum they are dominated by quantum
limits and squeezed state injection is one way they hope
to increase their sensitivity.

Squeezed vacuum state is injected into an unused port
of the beamsplitter. This reduces noise in one quadra-
ture at the expense of additional noise in the orthogonal
quadrature. The squeeze angle, the orientation of the
major axis of the squeezing ellipse, is rotated at the in-
put to adjust for differences in the interferometer over
time, such as temperature fluctuations, that change the
squeeze angle.[13] For LIGO the interested quadratures
are the phase and amplitude (number) quadratures. The
phase is inherently responsible for shot noise while the
amplitude quadrature is inherently connected to radia-
tion pressure noise. Radiation pressure noise taints the
measurement of the end mirror positions. At low frequen-
cies (e.g. 100Hz for LIGO) the noise attributed to radi-
ation pressure dominates while at higher frequencies the
shot noise dominates. Squeezing seems tobe a promising
adaptation to the system to increase sensitivity. There
are many other ways that LIGO reduces their quantum
limited measurements, such as using power recycling cav-
ities, but inputting squeezed vacuum has been studied
vigorously over the past couple of years and will be im-
plemented in the next upgrades to the observatory under
the AdvancedLIGO project, a testament to its viability.

VI. CONCLUSION

We have seen that fluctuations in each mode of the
electric field are independent of each other and that two
photon processes, in general, do not follow this rule. We
then discussed a new formulation that can explain these
phenomenon and in some cases can be simplified to the
one photon characterization. This two photon represen-
tation was provided by Caves.

There are many methods of producing squeezed light,
each having different effects in different regimes, and hav-
ing an even more variety of applications. It is important
to understand these standard quantum mechanical limi-
tations to measuring accurately the electric field and its
implications for increasing precision in experiments.
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We present a formalism for describing quantum noise and quantifying its effects. We introduce
classical linear error correction, and present a procedure for using classical codes to create quantum
error correction codes. In particular we discussed the codes developed by Calderbank, Shor, and
Steane.

I. INTRODUCTION

Over the last two decades quantum computation has
become a research field of high interest. Following Shor’s
publication of a quantum algorithm capable of factoring
large prime numbers in polynomial time, it became un-
derstood that the quantum effects of superposition and
interference could be exploited to carry out certain calcu-
lations exponentially faster than conventional computers.

One of the challenges when dealing with any kind of
signal is the introduction of noise. In the last century
effective error correcting techniques have been developed
in order to alleviate this issue in classical systems. After
Shor’s publication, one of the biggest problems facing the
prospect of practical quantum computation was quantum
noise. Due to the seeming complexity of this kind of noise
it was initially thought that no protocols could be devel-
oped to remedy it. Further research showed that this
noise admitted a simple description, and thus error cor-
recting techniques could be developed to handle quantum
noise. In this paper we introduce the idea of quantum
noise, different measures of the fidelity of quantum infor-
mation after being corrupted, and introduce a formalism
for deriving quantum error correction codes from classi-
cal ones.

II. CLASSICAL LINEAR CODING AND ERROR
CORRECTION

Suppose we have a classical bit 0, and we wish to trans-
mit it over some signal line. Furthermore, suppose that
there is some probability p that an error will occur and
this bit will be flipped to 1. We would like to come up
with a scheme that reduces this error.

Consider the following proposition. Rather than send-
ing a single bit we send three bits, two of them contain-
ing redundant information. So, for example, rather than
sending 0 we would send 000. If the string contains no
errors the receiver leaves the string as is, and if one of
the bits differs from the others the receiver assumes the
value of the remaining two was the intended message and
corrects the error by flipping the erroneous bit. Assum-
ing that the errors on different bits occur independently
of each other and with sufficiently small probability this
scheme is sensible, since it is much more likely that no
error or a single error would occur in the bit string rather

than two or three.
Given that this is our protocol for transmitting infor-

mation, the receiver will only receive the wrong message
when two or three bits are flipped. This occurs with
probability:

(
3

2

)
p2(1− p) + p3 = 3p2 − 2p3 (1)

Since the probability of error without error correction
is p we see that this error correction code improves the
fidelity of our information transfer when p < 1/2.

This idea of redundancy of information can be general-
ized into what are called classical linear error correction
codes. In the theory of classical linear codes we represent
strings of k bits as k-dimensional vectors with entries in
the integers modulo 2. The value of each entry in one
of this vectors is equal to the value of the corresponding
bit. Thus for example, for five bits:

10010→
[

1 0 0 1 0
]T

(2)

In order to protect such strings of k bits from noise we
map, or encode, the k-dimensional basis that spans all
such strings to the k-dimensional basis of a subspace of
an n-dimensional bit string vector space. We call such a
subspace C an [n, k] code. Since k < n, C carries redun-
dant information about our original bit string. We call
the n×k matrix G that maps our original bit string x to
the encoded bit string Gx the generator matrix for the
code. Thus, for example, the generator matrix mapping
our single bit (k = 1) from the previous example to the
three bit encoding is:

G =




1
1
1


 (3)

It is easy to see that this matrix maps 0 and 1 to
[0, 0, 0]T and [1, 1, 1]T respectively. The generator char-
acterization of a code is very intuitive when dealing with
transforming the bit strings we wish to encode to their
encoded versions. However, for the purpose of carrying
out error correction it is easier to characterize a code by
its parity check matrix. If H is the parity check matrix
of some [n, k] code C, we define the code to be the set of
n-dimensional vectors x such that:
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Hx = 0 (4)

Here H is an n − k × n matrix. It can be shown [1]
that we can convert between generator matrices and par-
ity check matrices, and vice-versa. Thus the two char-
acterizations are equivalent. In the case of our previous
example the parity check matrix is:

H =

[
1 1 0
0 1 1

]
(5)

It can be shown that the unique vectors satisfying
Hx = 0 for this equation are [0, 0, 0]T and [1, 1, 1]T .

In order to develop the classical linear theory of er-
ror correction we must first introduce the concept of the
Hamming distance d(x, y) between two bit strings x and
y. This is defined to be the number of places where the
entries of the two bit strings differ. For a code C, de-
fine d(C) to be the smallest distance between any two
different codewords in the code:

d(C) = min
x,y∈C,x 6=y

d(x, y) (6)

Error detection is accomplished as follows [1]. Recall
that any n-dimensional bit string x contained in the code
C obeys Eq. 4. Suppose that as we transmit the bit string
x it incurs some errors, so that the bit string x′ is received
at the other end of the channel. Define e = x′−x to be the
error vector of the transmission, which tells us the places
at which the original and final bit strings differ. If the
probability of error on each bit is assumed to be small and
independent, then with very high probability e will not lie
in C so if the receiver applies H on the received bit string
he will get a non-zero answer Hx′ = Hx+He = He.

A code with d(C) ≤ 2t + 1 can correct up to t errors
on a bit string. This condition guarantees that for any
errorneous bit string x′ with up to t errors there exists a
unique codeword x such that d(x′, x) < t. The erroneous
bit string x′ is corrected by transforming it back to x.
The receiver can then map the codeword back to the
original k-dimensional bit string.

III. QUANTUM NOISE

When describing quantum noise we use the language of
density operators and quantum operations. For a review
of density matrices and their properties please refer to
[2].

Although most of the qubit systems we treat theoreti-
cally are in isolation, the systems we encounter in reality
are far from isolated. They are often coupled to an ex-
ternal system, which we call the environment, whose de-
tailed properties we are ignorant about. Such a system is

called an open system, and systems in isolation are called
closed.

If our qubits are in isolation we can evolve their state
by multiplying their initial state vector by a unitary op-
erator U . However if the qubits are in contact with some
environment we cannot in general evolve them separately
with a unitary operator. What we can do is make the
open qubit system closed by adjoining the environment
to our description. For example, if our qubits and the
environment are initially in the uncoupled states ρ and
ρe respectively, we can describe the full closed initial sys-
tem as ρ ⊗ ρe. We can then evolve this closed system
with some unitary operator U .

In quantum computation we can think of the sources
of noise as the environment of the qubits. We can then
characterize the effect of the environment on our qubit
over time by evolving the full qubit-environment state,
and then taking the partial trace over the environment
to get the ensemble describing only the qubits. The final
state resulting from the noise is thus:

E(ρ) = tre[U(ρ⊗ ρe)U†] (7)

The map E is a quantum operator. Mathematically,
a general quantum operation E is a completely positive,
convex linear map from density matrices to density ma-
trices such that 0 ≤ tr[E(ρ)] ≤ 1[i]. This particular quan-
tum operation describes the effect of noise of a system of
qubits ρ.

Though this representation of the noise quantum op-
erator is physically intuitive, it is not the most useful for
computation. For that purpose we use the operator-sum
representation of this quantum operator. This can be de-
rived from Eq. 7 as follows. Let {|ek〉} be a basis for the
environment state space. Without loss of generality[ii]

assume that the environment starts in a pure state so
that ρe = |e0〉 〈e0|. Then Eq. 7 reduces to:

∑

k

〈ek|U(ρ⊗ |e0〉 〈e0|)U† |ek〉 =
∑

k

EkρE
†
k (8)

Here Ek = 〈ek|U |ek〉 is an operator on the state space
of ρ, which in general obeys:

∑

k

EkE
†
k ≤ 1 (9)

This is equivalent to the condition on the trace of E(ρ),
with equality occurring under the same circumstances.
Thus we can use 8 along with some set of {Ek} to describe

[i] The inequality is due to the fact that in general quantum oper-
ators can describe the process of measurement. When no mea-
surement is done we simply have the equality tr[E(ρ)] = 1.

[ii] See section 2.5 of [3].

40 Quantum Noise and Error Correction



Quantum Error Correction 3

the effect of any kind of noise on quantum bits. The Ek’s
are called the operation elements for the noise operation
E .

For concreteness we present an example of noise. An-
other term for an environment that introduces noise into
a qubit system is a noise channel. Consider a single
qubit. Since the state of a quantum bit can be deter-
mined by two numbers on the unit sphere we can think
of it as having a particular direction, that is, a particular
polarization. We say the qubit is depolarized when it has
equal probability to point in any direction. We also call
this state the maximally mixed state. The noise channel
with probability p of depolarizing some quantum state
and probability (1 − p) of leaving it alone is called the
depolarizing channel. Its noise operation can be written
as:

E(ρ) =
pI

2
+ (1− p)ρ (10)

In the formalism of density matrices this equation is
the statement that the resulting state E(ρ) is equal to
the maximally mixed state I/2 with probability p, and
equal to the input state ρ with probability 1 − p. This
operation can be re-expressed as:

E(ρ) = (1− p)ρ+
p

3
(σxρσx + σyρσy + σzρσz) (11)

Here the σi’s are the Pauli spin matrices. Thus in the
operator sum representation the E has operation elements
{I, σx, σy, σz}.

IV. FIDELITY

When considering classical information we used the
Hamming distance to quantify the differences between
two different bit strings. We would like to like to have an
analogous construction for quantum information. Unfor-
tunately because of the probabilistic nature of quantum
mechanics the concept of the Hamming distance does not
extend naturally into the field of quantum information.

In probability theory there exist different measures to
quantify the difference between two probability distribu-
tions. One of these is called the fidelity. Suppose p and
q are probability distributions for discrete random vari-
ables. The fidelity of p and q is defined as:

F (p, q) =
∑

x

√
pxqx (12)

Here we sum over all values of the random variables.
Note that when the two probability distributions p and
q are equal then the fidelity equals 1, and zero when the
distributions are non-zero exclusively on different values
of x. Geometrically, we can think of

√
p and

√
q as unit

vectors, and we can interpret F (p, q) to be their inner

product. Thus the arccosine of the fidelity measures the
angular separation of these two vectors along the unit
sphere.

The definition of fidelity commonly used in quantum
information theory is motivated by Eq. (12). Given two
density matrices ρ and σ describing a quantum system
we define their fidelity to be [3]:

F (ρ, σ) = tr
√
ρ1/2σρ1/2 (13)

Here ρ1/2 is the matrix square root of ρ. That is, ρ1/2 is
a matrix such that ρ1/2ρ1/2 = ρ. Though it is not appar-
ent from the above definition, the fidelity is symmetric
in its entries and its values range between 0 and 1. A
value of 1 is obtained when ρ = σ. The quantum fidelity
also has a geometric interpretation as the inner product
of state vectors on the unit sphere. This interpretation,
however, requires some rigorous motivation[iii].

We can use the fidelity to measure to what extent a
noise channel corrupts quantum information. For exam-
ple, let ρ = |ψ〉 〈ψ| and consider the effect of the depo-
larization operator on this state. Note that (|ψ〉 〈ψ|)2 =
|ψ〉 〈ψ| so ρ1/2 = |ψ〉 〈ψ|. Let:

σ =(1− p) |ψ〉 〈ψ|+ p

3
σx |ψ〉 〈ψ|σx (14)

+
p

3
σy |ψ〉 〈ψ|σy +

p

3
σz |ψ〉 〈ψ|σz

Then:

F (|ψ〉 , E(|ψ〉)) = F (|ψ〉 〈ψ| , E(|ψ〉 〈ψ|)) (15)

=

√
(1− p) +

p

3

∑

i

| 〈ψ|σi |ψ〉 |2

=

√
1− 2

3
p

So as the probability of the noise occurring increases,
the agreement between the initial and final states de-
creases.

V. QUANTUM ERROR CORRECTION

A. The Shor 9-Qubit Code

Now that we have a formalism for describing noise and
a means of quantifying the magnitude of the effect of
noise on a state we can consider protocols for correcting
quantum errors and their effectiveness.

[iii] See section 9.2.2 of [3], in particular the proof of Uhlmann’s
theorem.
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Early in the study of quantum noise it was thought
that creating a quantum error correction scheme would
be impossible. This is because of the large set of values a
quantum bit can take on. As opposed to a classical digital
bit, which can take on only two values, a quantum bit has
an infinite set of states, which can be parametrized by the
coordinates of the unit sphere. There can be no physical
error correction scheme that could correct for an infinite
set of possible errors in finite time.

However, it was eventually realized that although
qubits can take on an infinity of states, the errors that
a particular qubit can undergo admit a discrete, finite
description after error detection has occurred. We illus-
trate how this is accomplished by considering the Shor
9-qubit code [4], which is capable of correcting an ar-
bitary error on a single qubit. Consider a generic pure
state α |0〉+ β |1〉, and the encoding:

|0〉 → |0L〉 =
∣∣a+
〉⊗3

(16)

|1〉 → |1L〉 =
∣∣a−
〉⊗3

Here |ψ〉⊗n denotes the tensor product of |ψ〉 with itself
n times, and:

∣∣a±
〉

=
(|000〉 ± |111〉)√

2
(17)

∣∣b±
〉

=
(|100〉 ± |011〉)√

2

The space spanned by the orthonormal vectors |0L〉
and |1L〉 is our quantum code C. Note that just like
the classical codes, this quantum error correction code
relies on the use of redundant qubits. Suppose a single
error occurs on the first qubit. Any operation on a single
quantum bit can be written as a linear combination of
Pauli matrices with some complex coefficients:

E1 = e0I
1 + e1σ

1
x + e2σ

1
y + e3σ

1
z (18)

The upper index 1 denotes that these operators are
acting on the first qubit. The error E1 maps the state
α |0L〉+ β |1L〉 to:

E1(α |0L〉+ β |1L〉) (19)

= α
(
e0
∣∣a+
〉

+ e1
∣∣a−
〉

+ ie2
∣∣b−
〉

+ e3
∣∣b+
〉) ∣∣a+

〉⊗2

+ β
(
e0
∣∣a−
〉

+ e1
∣∣a+
〉

+ ie2
∣∣b+
〉

+ e3
∣∣b−
〉) ∣∣a−

〉⊗2

For brevity we have suppresed the tensor product sym-
bols that should be written between the superposition in
parathensis and the tensored states to the right of them.
Note that:

σ1
xσ

2
xσ

3
x

∣∣a±
〉

= ±1
∣∣a±
〉
, σ1

xσ
2
xσ

3
x

∣∣b±
〉

= ±1
∣∣b±
〉

(20)

σ1
zσ

2
z

∣∣a±
〉

= +1
∣∣a±
〉
, σ1

zσ
2
z

∣∣b±
〉

= −1
∣∣b±
〉

As examination of the equations above shows, mea-
surement of the operator σ1

zσ
2
z tells us whether the first

and second qubits match. If we measure +1, then the
superposition collapses to a state in which the first two
qubits match, and thus in effect no bit flip error occurred:

E1(α |0L〉+ β |1L〉) (21)

→ α
(
e0
∣∣a+
〉

+ e1
∣∣a−
〉) ∣∣a+

〉⊗2

+ β
(
e0
∣∣a−
〉

+ e1
∣∣a+
〉) ∣∣a−

〉⊗2

On the other hand, if we measure −1 then the super-
position collapses to a state in which the first two qubits
differ, and thus in effect a bit flip did occur:

E1(α |0L〉+ β |1L〉) (22)

→ α
(
ie2
∣∣b−
〉

+ e3
∣∣b+
〉) ∣∣a+

〉⊗2

+ β
(
ie2
∣∣b+
〉

+ e3
∣∣b−
〉) ∣∣a−

〉⊗2

In this sense we can think of the act of measurement
determining which error occurs, and given the knowledge
of what error this is we can correct it. In the first case
no action is necessary, and in the second case application
of σ1

x to the state will correct the bit flip error.
Suppose we have detected any bit flip errors and cor-

rected them, so the problem reduces to consideration of
state in Eq. (21). Inspection of Eq. (20) reveals that
measurement of the operator σ1

xσ
2
xσ

3
xσ

4
xσ

5
xσ

6
x compares

the first two kets in the tensor product of state (21)[iv].
If measurement of this operator yields +1 the first two
kets are the same. On the other hand, if the measurement
yields −1 the two kets are opposite. Thus, for example,
|a+〉 |a+〉 |a+〉 has eigenvalue +1 with respect to this op-
erator, and |a−〉 |a+〉 |a+〉 has eigenvalue −1.

For example, assume we measure σ1
xσ

2
xσ

3
xσ

4
xσ

5
xσ

6
x for

(21) and the measurement yields −1. Then the superpo-
sition collapses to:

→ αe1
∣∣a−
〉 ∣∣a+

〉⊗2
+ βe1

∣∣a+
〉 ∣∣a−

〉⊗2
(23)

If we eliminate the e1 factor by renormalizing and ap-
ply σ1

z to flip the sign of the first state in the tensor
product we arrive at the state:

→ α
∣∣a+
〉⊗3

+ β
∣∣a−
〉⊗3

= α |0L〉+ β |1L〉 (24)

Thus after detecting and correcting as necessary we
have returned to the original state. The procedure we

[iv] In fact this operator compares the relative sign between the
terms implicit in this two states. Thus, the state

∣∣b+
〉 ∣∣a+

〉 ∣∣a−
〉

has eigenvalue +1 with respect to this operator, and the state∣∣a+
〉 ∣∣b−

〉 ∣∣a−
〉

has eigenvalue −1.
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followed is not particular to our assumption that an error
occurred on the first qubit, it can be carried out for other
qubits by carrying out an analogous set of measurements.
Also, we chose to consider a pure state for the sake of
simplicity, but the same analysis can be carried out for
ensembles described by density matrices. The only key
assumption we made was that an error occurred on a
single qubit. Hence the Shor code is capable of remedying
any single qubit error.

Note that the error operator E1 has four complex de-
grees of freedom so the image of α |0L〉 + β |1L〉 under
it is an infinite set. However, the process of measuring
the operators σ1

zσ
2
z and σ1

xσ
2
xσ

3
xσ

4
xσ

5
xσ

6
x eliminates these

degrees of freedom, reducing the set of all possible errors
to a single element. It is this fact which makes quantum
error correction possible.

B. Calderbank-Shor-Steane Codes

As can be seen from consideration of the effect of σz,
qubits can suffer from bit flip errors just like classical bits.
However, qubits can also suffer from phase flip errors.
This kind of error is described by the action of σz, and
is unique to quantum information channels[v]. Given the
added complexity of quantum errors it is perhaps a sur-
prising result that classical error correction codes can be
used to create quantum error correction codes. The class
of quantum error correction codes created in this man-
ner are named Calderbank-Shor-Steane Codes (or CSS
codes) after their inventors. In order to understand how
these codes are constructed we must first introduce some
mathematical definitions.

1. Mathematical Background

The following are some definitions and theorems from
group theory:

Definition 1: We define a group to be a set G along with
an operation · which combines two elements of the group
to produce a third. A group must obey the following
axioms:

• Closure: If a and b are elements of G, then a·b must
be an element of G.

• Associativity: For every a, b, and c in G, (a · b) · c =
a · (b · c).

[v] Note that the action of σy on qubits can be described as a joint
bit flip and phase flip, since σy = iσzσx. Thus all quantum
errors can be described as a combination of these two types of
errors.

• Identity Element: There exists an element 1 in G
such that for each a in G we have that 1 ·a = a ·1 =
a.

• Inverse Element: For each element a in G there
exists an element a−1 in G such that a · a−1 =
a−1 · a = 1

Definition 2: Suppose G is a group with operation ·.
We say a subset H ⊂ G is a subgroup of G if H along with
the operation · obeys the axioms above.

It can be seen from the definitions above that vector
spaces are a particular kind of group, with the commuta-
tive operation +. Thus the above definitions and any the-
orems about groups are applicable to the Hilbert spaces
we work with in quantum mechanics. We will be taking
+ as our group operation in the remainder of this paper,
denoting its inverse by − as is conventional. We will also
need the following definitions:

Definition 3: Suppose G is a group, H is a subgroup of
G, and a is an element of G. We define the coset of H in
G with respect to a to be the set:

a+H = {a+ h | h is an element of H}

Definition 4: Suppose C is a subspace of some larger
vector space V. We define C⊥ to be the orthogonal space
to C, that is, the subspace of all vectors orthogonal to
the subspace C:

C⊥ = {v in V | v · x = 0 for every x in C}

When V is some Hilbert space and C is a code in V then
we call C⊥ the code dual to C. If C has generator matrix
G and parity check matrix H, then C⊥ has generator
matrix HT and parity check matrix GT . Furthermore, if
the dimension of V is n and the dimension of C is k then
the dimension of C⊥ is n− k.

We state the following theorem without proof. The
proof of this theorem can be found in [5].

Theorem 1 (Lagrange’s Theorem): Let G be a group
and let H be a subgroup of G. Let |G| and |H| denote
the number of elements in G and H respectively. If |G|
is finite and [G : H] denotes the number of unique left
cosets of H in G then the following equality holds:

|G| = [G : H]|H|

It can be shown that the number of left cosets is equal to
the number of right cosets, so the above equation holds
for right cosets as well. We call [G : H] the index of H in
G. We will also use the following theorems:

Theorem 2: Suppose G is a group and H is a subgroup
of G. Suppose a and b are elements of G. Then b − a is
an element of H if and only if a+H = b+H.
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Proof: Suppose that a+H = b+H, then each element
of a+H is equal to some element of b+H. This implies
that for some h and h′ in H we must have that a+ h′ =
b + h and thus b − a = h′ − h. Since H is a subgroup
h′ − h is an element of H, so b− a is an element of H.

Conversely suppose that b − a = h′ for some element
h of H. Then b = a+ h so by associativity:

b+H = {b+ h | h is an element of H}
= {a+ h′ + h | h is an element of H}
= {a · h′′ | h′′ is an element of H}
= a+H

�

Theorem 3 Suppose G is a group and H is a subgroup
of G. Suppose a and b are elements of G. Then a and
b belong to different cosets, that is a + H 6= b + H, if
and only if the cosets a+H and b+H do not share any
elements in common.

Proof: For ease we prove the contrapositive statements,
which are logically equivalent. Suppose a+H and b+H
share an element in common, then by definition 3 there
must exist elements h and h′ ofH such that a+h′ = b+h.
By Theorem 2 it then follows that a+H = b+H.

Conversely, suppose that a +H = b +H, then clearly
they share every element in common.

�

2. The CSS Procedure

We can now construct the CSS codes. The following
discussion is based on the derivation from [3]. Suppose C1
is a [n, k1] classical code, that is, C1 is a k1-dimensional
subspace of n-dimensional Hilbert space. Suppose C2 is
a [n, k2] classical code such that C2 ⊂ C1. Furthermore,
suppose C1 and C⊥2 correct up to t errors. Define for each
element x of C1:

|x+ C2〉 ≡
1√
|C2|

∑

y∈C2
|x+ y〉 (25)

The set of vectors |x+ C2〉 define the CSS code of C1
over C2, CSS(C1, C2). Note that the elements of the sum
(24) are exactly the elements of the coset x+ C2.

Now, notice that if x′ is an element of C1 such that
x′ − x is an element of C2, then it follows from Theorem
2 that x+ C2 = x′ + C2 and thus the states |x+ C2〉 and
|x′ + C2〉 are equal. Furthermore, note that if x and x′

belong to different cosets then it follows from Theorem 3
that x+C2 6= x′+C2. This implies that if x and x′ are in
different cosets then |x+ C2〉 and |x′ + C2〉 are orthogonal
to each other. By Lagrange’s Theorem there are,

|C1|
|C2|

=
2k1

2k2
= 2k1−k2 (26)

cosets of C2 with respect to C1 and thus Eq. (25) de-
fines 2k1−k2 orthonormal vectors. These vectors define a
2k1−k2-dimensional space so the CSS code CSS(C1, C2) is
a [n, k1 − k2] quantum code.

We now demonstrate how the error correction proce-
dure works. Suppose that our original state is |x+ C2〉
and this state undergoes an error. We can describe the
bit flip error and the phase flip error respectively by the
n-dimensional bit vectors e1 and e2

[vii]. For example, if
the nth bit of the code underwent a bit flip the nth entry
of e1 would be a 1. We can write erroneous state as:

1√
|C2|

∑

y∈C2
(−1)(x+y)·e2 |x+ y + e1〉 (27)

Here · denotes the usual vector dot product, modulo 2.
We can attach a “blank” extra qubit to this state, called
an ancilla,

1√
|C2|

∑

y∈C2
(−1)(x+y)·e2 |x+ y + e1〉 |0〉 (28)

and then apply a quantum operation to this joint state
such that:

|x+ y + e1〉 |0〉 → |x+ y + e1〉 |H1(x+ y + e1)〉 (29)

= |x+ y + e1〉 |H1e1〉

Here H1 is the parity check matrix for the code C1,
and thus since x + y is an element of C1 it follows that
H1(x+y) = 0. After applying this operation on the state
from Eq. (28) we end up with the state:

1√
|C2|

∑

y∈C2
(−1)(x+y)·e2 |x+ y + e1〉 |H1e1〉 (30)

Thus when we measure the ancilla qubit we will retrieve
the vector He1. Since the classical code C1 can correct
up to t errors then as long as less than t bit flip errors oc-
curred the vector H1e1 will determine exactly on which
qubits the errors occured. We can apply σx to the er-
roneous qubits to eliminate all the bit flip errors. This
yields the state:

[vii] Recall that the phase flip noise operation on a single qubit is
described by the action of σz . The dot product (x + y) · e2
counts the number of times that a |1〉 in the qubit string |x+ y〉
gets acted on by a σz noise operator, that is the number of single
qubit phase flips that occur due to the noise.

44 Quantum Noise and Error Correction



Quantum Error Correction 7

1√
|C2|

∑

y∈C2
(−1)(x+y)·e2 |x+ y〉 (31)

Note that we have discarded the ancilla after measur-
ing it. It remains to correct the phase flip error e2. In or-
der to accomplish this we introduce the operator known
as the Hadamard gate. This operator acts on a single
qubit, and is defined by the following equations:

F |0〉 = |+〉 , F |1〉 = |−〉 , F 2 = 1 (32)

Applying F to every qubit in state (30) and redefining
dummy variables we get the state:

1√
2n|C2|

∑

z∈C1

∑

y∈C2
(−1)(x+y)·z |z + e2〉 (33)

Now, consider the dot product y · z. Since y is an
element of C2 then if z is in C⊥2 we have that y · z = 0 so:

∑

y∈C2
(−1)y·z =

∑

y∈C2
1 = |C2|, if z ∈ C⊥2 (34)

On the other hand if z is an element of C2 then for each
y such that y · z = 0 there exists a y′ such that y′ · z = 1
so when we sum over all y we find that:

∑

y∈C2
(−1)y·z = 0, if z /∈ C⊥2 (35)

The vector space C1 is the direct sum of C2 and C⊥2 so
combining Eqs. (34) and (35) with Eq. (33) we can write
the latter as,

1√
2n/|C2|

∑

z∈C⊥2

(−1)x·z |z + e2〉 (36)

and thus we have returned to the case of the bit flip error
we encountered in Eq. (27). Using the same procedure
we used in that case, with the parity check matrix H2 for
the classical code C⊥2 instead of H1 we can eliminate this
bit flip to arrive at the state:

1√
2n/|C2|

∑

z∈C⊥2

(−1)x·z |z〉 (37)

Inverting the effect of the Hadamard operations by ap-
plying them once more we finally arrive at the state:

1√
|C2|

∑

y∈C2
|x+ y〉 (38)

Thus we have returned to the original encoded state.
We can see that the CSS procedure works in two steps:
First it corrects qubit bit flip errors by exploiting the bit
flip correction properties of the classical code C1. It then
uses the Hadamard operation to traslate the remaining
phase flip errors into bit flip errors, and uses the bit flip
correction properties of the classical code C⊥2 to correct
these errors. Since both C1 and C⊥2 can correct up to t
errors, CSS(C1, C2) can correct t qubit errors.

VI. DISCUSSION

We have introduced the formalism for describing quan-
tum noise and its effects, and we have showed that clas-
sical linear error correcting codes can be used to create
quantum error correction codes. The CSS codes can be
used to prove interesting bounds of the number of en-
coding qubits necessary in order to tolerate a particu-
lar number of errors. Furthermore, since we know good
classical error correction codes exist, the CSS procedure
shows that good quantum error correction codes also ex-
ist.

The 9-qubit code and the CSS codes we have intro-
duced are a subset of a class of codes called stabilizer
codes. These codes are derived from a very powerful for-
malism called the stabilizer formalism, which can be used
to show that some quantum information operations can
be simulated efficiently (i.e. in polynomial time) on a
classical computer. We encourage the curious reader to
refer to section 10.5 of [3] to learn more about this formal-
ism. For those interested in even further reading about
quantum error correction, [3] provides a thourough list
of important literature on the subject in section 10.6.

In our discussion of error correction we did not consider
the possibility that the application of the very operations
we used to detect and correct noise might itself induce
some noise. This is in fact something that we gener-
ally expect to occur in physical systems. Although this
does pose an extra complication, it can be shown that if
the noise induced by these operations is below a certain
threshold then quantum computation to a desireable de-
gree of precision is achievable. We state this result by
saying that quantum computation can be made fault tol-
erant. For some discussion on this subject please refer to
[3].
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In this discussion we investigate the problems that arise in considering relativistic quantum me-
chanical systems. These problems are investigated in the context of the Schrodinger equation,
Klein-Gordon equation, and Dirac Equation. We also present a resolution to the issues discussed
by investigating the second quantization of the above equations.

I. INTRODUCTION

A. Overview

This discussion will open with a brief overview of es-
sential concepts in special relativity and quantum me-
chanics. After developing these concepts, it delves into
the problems with integrating special relativity into the
Schrodinger equation. We proceed by developing the
problems with the Klein-Gordon Equation, Dirac Equa-
tion, Scattering, and continue on to the general tensions
between quantum mechanics and relativity present in all
of these equations. Finally, the paper concludes with a
brief introduction to the second quantization, and de-
scribes how quantum field theory successfully integrates
special relativity into its framework.

B. Special Relativity and Spacetime

In 1905, Albert Einstein developed a theory known
as special relativity which unifies space and time.When
Einstein developed the theory of special relativity, he
based it on two fundamental postulates: That the laws of
physics are a constant to observers in any inertial frame
of reference, and that all inertial observers measure the
speed of light to be the same velocity, independent of
their frame. Out of these two postulates, Einstein devel-
oped a mathematical framework for spacetime called an
event space. This event space contains a metric to mea-
sure the distance between these events. This event space
takes the form of a flat four dimensional space known
as Minkowski space. In Minkowski space, the metric
for measuring the distance between two events takes the
form of:

ds2 = −(cdt)2 + dx2 + dy2 + dz2 (1)

Examining the above equation, one can see the mea-
sure of distance between events, ds, contains the nor-
mal spatial seperation between two points in three space,
dx2 +dy2 +dz2. However, Einstein also incorporated the
dimension of time into his metric, but with a minus sign
and an overall factor of c, the speed of light. Thus, the
speed of light serves as a fundamental constant in the
form of a velocity, that relates space and time. In our
discussion, the significance of Einstein’s theory lies in its
observation that space and time are fundamentally the

same thing; they are both just ways of measuring the
distance between two events.

C. Quantum Mechanics

In the early 1900s, experiments such as the Photo-
electric Effect and Double-Slit experiment nessecitated
the development of a new framework to describe parti-
cles. Thus, quantum mechanics was born in an effort to
understand phenomenon such as the wave-particle du-
ality exhibited by particles such as electrons and pho-
tons. By describing a particle with a mathematical object
known as a wavefunction, physicists created an entirely
new non-classical framework for defining particles. The
wave-function describes the probabilistic state of a sys-
tem, giving us only probabilities of finding a particle at
a particular place, or having a particlar momentum. In
fact, quantum mechanics postulates limits on our knowl-
edge of a system in the form of the Heisenberg uncer-
tainty principle. It which arises from the fact that cer-
tain observables in quantum mechanics, such as position
and momemtum, fail to commute.

Quantum mechanics differs from the mathematical
framework of classical mechanics in its use of operators.
Rather than functioning as a paramater like in classi-
cal mechanics, position in quantum mechanics takes the
form of an operator in the form of an infinite dimensional
matrix in a Hilbert space. The act of determining the po-
sition of a particle in quantum mechanics involves acting
the position operator, x̂, on the wavefunction, which can
always be expressed as a superposition of position eigen-
functions. Acting the operator on the wavefunction ψ,
changes ψ, causing it to ”collapse” into a position eigen-
state. Thus, if one subsequently measures the position by
acting the operator again, one will consistently obtain the
same position eigenvalue, ignoring decoherence.

II. THE SCHRODINGER EQUATION

Schrodinger’s equation can be understood from the
postulation that particles can be described by a wave-

function ψ(x, t) =
∞∑
n=0

Cne
i(knx−ωnt), where the particle’s

energy is given by h̄ω and its momentum given by h̄k.
In order to produce these eigenvalues, we construct an

47



The Problems with Relativistic Quantum Mechanics 2

energy operator, Ê = −i ∂∂t , and similarly, a momentum

operator p̂ = i ∂∂x . Using the fact from classical mechanics
that the Hamiltonian of a system, which gives its energy,

is given by the kinetic energy p2

2m plus its potential en-
ergy V, we obtain the Schrodinger equation by promoting
the classical parameters for momentum and energy into
operators:

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) (2)

The above equation forms the core of much of what
has been accomplished in quantum mechanics, and suc-
cessfully describes many significant systems such as the
hydrogen atom with great precision.

A. Some Problems with the Relativistic
Schrodinger Equation

Now we can finally investigate some of the conflicts
with relativity and quantum mechanics as seen in the
Schrodinger equation. The Schrodinger equation is man-
ifestly non-relativistic for a few reasons. Just looking at
the equation, its most glaring violation lies in the fact
that it is clearly not Lorentz-invariant. When boosting
to a new frame in relativity, coordinates in spacetime
are transformed by applying lorentz transformations to
the spatial and time coordinates in the system. The
Schrodinger equation takes a single derivative in time,
but two derivatives in space. This unequal treatement of
space and time means that the physics of the Schrodinger
equation changes as one changes frames, as only one
Lorentz transformation acts on the time derivative half
of the Schrodinger equation, but two act on the spatial
derivative portion. This violates a fundamental posulate
of special relativity, that the physical laws of a system
are indepedent of the frame of reference it is viewed in.

III. THE KLEIN-GORDON EQUATION

An answer to the glaring lack of Lorentz invariance
in the Schrodinger equation was later postulated in the
form of the Klein-Gordon Equation. The Klein-Gordon
equation takes full advantage of the relativistic disper-
sion relation for particles, and observes that the quantity
pµpµ = −m2c2 is a Lorentz scalar, and thus Lorentz in-
variant. Defined by this relation, the free Klein-Gordon
equation reads:

1

c2
∂2ψ(x, t)

∂t2
−∇2ψ(x, t) +

m2c2

h̄2
ψ(x, t) = 0 (3)

The above equation solves the Schrodinger equation’s
unequal orders of spatial and temporal derivatives, and
uses a completely relativistic dispersion relation. [5]

A. Problems with the Klein-Gordon Equation

Even though the Klein-Gordon equation solves some
of the most glaring problems of the Schrodinger equation
in a relativistic context, it also carries some non-physical
results. Let us investigate this by deriving the proba-
bility current in the Klein-Gordon equation. To begin,
let us look at the definition of probability density in the
Schrodinger equation, ρ = |ψ|2.

We define the probability current as the gradient of the
probability density, or:

~J =
∇(ψψ∗)

2mi
=
ψ∗∇ψ − ψ∇ψ∗

2mi
(4)

Taking a time derivative of the probability density, we
obtain:

∂tρ = ψ∂tψ
∗ + ψ∗∂tψ (5)

Which, when combined with the definition of ∂tψ from
the Schrodinger equation, yields:

∂tρ =
i

2m
∇(ψ∗∇ψ − ψ∇ψ∗) = −∇ ~J (6)

Where in the last line, ~J is the probability current[2].
Using this same technique, we again define the proba-

bility current:

~J =
ψ∗∇ψ − ψ∇ψ∗

2mi
(7)

In order to keep a consistent definition of current, we
must now redefine our probability density ρ as:

ρ =
i

2m
(ψ∗∂tψ − ψ∂tψ∗) (8)

Which is the natural definiton of a probability density
in the second-order Klein-Gordon equation[2], as one can
see by proceeding to take its time deritative to obtain a
probability current:

∂tρ =
i

2m
(ψ∗∂2t ψ − ψ∂2t ψ∗) (9)

=
i

2m
(ψ∗∇2ψ − ψ∇2ψ∗) = −∇ ~J (10)

The problem with this expression lies in the fact that
ρ = i

2m (ψ∗∂tψ − ψ∂tψ∗), fails to be a positive definite
quantity, and thus is not a physical probability density[2].
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B. Solutions to the Klein-Gordon Equation

Another problem with the Klein-Gordon equation lies
in its solutions. We define a free particle using a wave-
funtion of the form:

ψ(x) = Nei(kx−ωt) (11)

Which is more concisely expressed in terms of four-
vectors as:

ψ(x) = Neikµx
µ

(12)

Using the Klein-Gordon equation, the solutions for the
energies of these particles, k0, are[5]:

k0 = ±
√
k2 +

m2c2

h̄2
(13)

The problem with these solutions is that one set is
not only negative, but unbounded below. This possi-
bility represents an unphysical result, as all particles
would rapidly decay to the infinitely negative energy
state. Later in the discussion of the Dirac equation, there
will be further elaboration on the problematic nature of
these negative energy solutions.

IV. THE DIRAC EQUATION

After the failure of the Klein-Gordon equation to be
completely physical because of its negative energy solu-
tions and non positive-definite probability current, Dirac
set out to create another quantum mechanical equation
which would be fully relativistic and resolve these issues.
Dirac’s equation differs from the Klein Gordon equation
in a few important ways. Below is the Dirac equation[1]:

ih̄γµ∂µψ −mcψ = 0 (14)

Most importantly, the Dirac equation is first order in
both spatial derivatives and time derivatives. This, like
the Klein-Gordon equation, achieves an equal treatment
of space and time in the order of their derivatives. How-
ever, in order to accomplish this form, Dirac had to re-
place the wavefunction ψ, with a more complicated math-
ematical object–a spinor. Moreover, the γu term is a ten-
sor of 4x4 matrices whose entries contain combinations
of the Pauli matrices and the 2x2 identity.

A. Probability Current and Solutions of the Dirac
Equation

Like for the Schrodinger and Klein-Gordon equations,
we can derive a probability current in the Dirac equation.
We take

ψ̄ = ψ∗γ0 (15)

And take the conjugate of the Dirac equation, which
gives us:

−ih̄γµ∂µψ̄ −mcψ̄ = 0 (16)

Adding the Dirac equation and its conjugate, the mass
terms cancel, and we are left with:

∂µ(ψ̄γuψ) = 0 (17)

Since for a probability current we want conservation,
or ∂µj

µ = 0.[1] Thus, by this definition, our probability
current is:

jµ = ψ̄γuψ (18)

This probability current is an improvement on the
probability current in the Klein-Gordon equation, as its
zereoth component, j0 can always be taken to be positive
definite. However, the solutions of the Dirac equation for
the energy of a free particle yield:

E = ±
√
p2c2 +m2c4 (19)

Thus, we are plagued with the same sea of negative
energy solutions as the Klein-Gordon equation. Dirac
attempted to reconcile this by observing that his equa-
tion describes only fermionic particles, and that because
of the Pauli-exclusion principle all of the negative energy
solutions are saturated with fermions, and could thus cre-
ate a stable vacuum[1]. However, this explanation fails to
account for bosonic particles such as photons existing in
the vacuum. Eventually, it was recognized that the nega-
tive energy solutions in the Dirac equation could be elim-
inated by quantizing it in a new way, and imposing anti-
commutation relations between its operators. However,
when one does this, while only positive energy solutions
are recovered, one sacrifices the positivity of the proba-
bility current, j0. An approach to solving this problem
quantum field theory (which this paper will not discuss),
is to recognize j0 not as a quantum mechanical proba-
bility density, but rather a charge Q =

∫
d3xj0, where

the new negative charge can be associated with an anti-
particle[4].

V. AN UNPHYSICAL SCATTERING

All of the previously discussed examples of problems
with relativistic quantum mechanics have focused on ill
defined probability densities, negative energy solutions,
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etc. The following is an example of an unphysical re-
sult arising out of a scattering problem using the Klein-
Gordon equation:

Suppose we have a step function potential V (x) which
is 0 for x < 0 and is V0 for x > 0. Now let us consider a
particle scattering off of this potential, with a relativis-
tic energy E >> mc2.[6] Solving this scattering problem
using the Klein-Gordon equation, we find the reflection
rate R:

R =

∣∣∣∣
(E2 −m2c4)1/2 ∓ ((E − V0)2 −m2c4)1/2

(E2 −m2c4)1/2 ± ((E − V0)2 −m2c4)1/2

∣∣∣∣
2

(20)

And of course, the transmission rate T = 1−R. Taking
V0 to be small compared to the energy of the particle, the
transmission rate approaches 1. For a potential V0 that
satisfies the constraint E − mc2 < V0 < E + mc2, we
get full reflection, and no transmission. However, the
trouble occurs if we consider a strong potential, where
V0 > E+mc2. For example, say we take V0 = E+ 5mc2.
If we then take the set of solutions to R with the plus
sign on top, and the negative on the bottom, we get a
solution for R that looks like the following:

R =

∣∣∣∣
(E2 −m2c4)1/2 + ((E − E − 5mc2)2 −m2c4)1/2

(E2 −m2c4)1/2 − ((E − E − 5mc2)2 −m2c4)1/2

∣∣∣∣
2

(21)

After some cancellation, we end up with:

R =

∣∣∣∣
(E2 −m2c4)1/2 + (24)1/2mc2

(E2 −m2c4)1/2 − (24)1/2mc2

∣∣∣∣
2

(22)

Redefining (E2 −m2c4)1/2 as k, and (24)1/2mc2 as q,
our solution takes the form:

R =

∣∣∣∣
k + q

k − q

∣∣∣∣
2

(23)

Where k and q are both positive quantities. This equa-
tion illustrates that our reflection coefficient can exceed
1 in the limit of a relativistic energy E > mc2 and a
strong potential V0 > E + mc2. This clearly represents
a problem, as it is inconsistent with the definition of
probability to have a reflection coefficient greater than
1. One can treat this solution as physically representing
an anti-particle. Essentially, for a strong enough field,
anti-particle particle creation can occur, and the creation
of the anti-particle accounts for the reflection exceeding
1, and the negative transmission. Effectively, a hole is
transmitted, which is the equivalent of negative trans-
mission. [7]

VI. FUNDAMENTAL TENSIONS BETWEEN
QUANTUM MECHANICS AND SPECIAL

RELATIVITY

The failure of quantum mechanics to integrate special
relativity is a consequence of some universal problems
in the mathematical framework of quantum mechanics.
Solving the Schrodinger equation for the wavefunction,
one finds that its time evolution is governed by the uni-
tary operator:

U(t) = e
−iHt
h̄ (24)

This time evolution operator tells us the way the wave-
function evolves naturally given that we know its Hamil-
tonian. An important thing to observe about this oper-
ator, is that it uses time, t, as a parameter governing its
evolution. This use of t reveals a problem at the heart of
quantum mechanics. Time is a parameter, but position,
x̂, is an operator. These are two fundamentally different
mathematical objects. Thus, the efforts to balance the
order of time and spacial derivatives in the Klein-Gordon
and Dirac equations cannot balance space and time, as
space and time are treated as different mathematical ob-
jects.

Another tension between quantum mechanics and rel-
ativity comes from their radically different interpreta-
tion of the nature of time and events in the universe.
Relativity uses events as the fundamental objects that
build the universe–which consists of space-time. Quan-
tum mechanics on the other hand chooses to make
the wavefunction–a mathematical object describing a
particle–its fundamental object of study. The tension
between these views is a consequence of what they say
about how physics works. A relativistic universe is a fully
deterministic one. The space-time manifold contains all
events, and our perception of time merely reflects a path
we take through the manifold of events. Alternatively,
quantum mechanics tells us that the universe follows a
less deterministic set of rules, and places a fundamental
limit on how much we can deterministically know about it
through the uncertainty principle. Even though the time
evolution of the wavefunction is deterministic, the infor-
mation the wavefunction gives us is inherently probabilis-
tic. A symmetry problem manifests itself because of these
two different interpretations. Relativitiy treats time like
the spacial dimensions, and is completely consistent in a
world where time is reversed. Quantum mechanics on the
other hand relies on time running only in one direction.
In our direction of time, quantum mechanics tells us that
when an event occurs and we make a measurement, that
a wavefunction collapses into an eigenstate. However,
running time backwards, we see something completely
different, where the same event causes the once localized
wavefunction to delocalize.
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VII. THE SOLUTION

Today, we have a theory in physics that unifies the ob-
servations that lead us to form quantum mechanics, and
the theory of special relativity. This theory is Relativistic
Quantum Field Theory. What quantum field theory does
to resolve the problems between quantum mechanics and
special relativity is something called the second quanti-
zation[? ]. Take the Klein-Gordon equation for instance.
In quantum mechanics, the Klein-Gordon equation reads:

1

c2
∂2ψ(x, t)

∂t2
−∇2ψ(x, t) +

m2c2

h̄2
ψ(x, t) = 0 (25)

What the second quantization does, is it throws away

ψ(x, t), the wavefunction, and replaces it with φ̂(x, t), a
field operator dependent on space-time. The new Klein-
Gordon equation thus reads:

1

c2
∂2φ̂(x, t)

∂t2
−∇2φ̂(x, t) +

m2c2

h̄2
φ̂(x, t) = 0 (26)

φ̂(x, t) is a fundamentally different object than the
wavefunction ψ(x, t).[1] It is a field operator. In our
case let us consider it to be a scalar field. This field
permeates all of space and time, and takes some value
at each space-time coordinate. Space and time are now
both parameters, and give a value to this field operator.
The beauty of this field lies in it not only treating both
space and time as parameters, but that it respects the
speed of light through something known as the principle
of locality[1]. Basically, the value of the field at two coor-
dinates seperated by space-like distances must commute
with each other. In addition to resolving issues with rela-
tivity, the field also explains some facts taken for granted

in quantum mechanics, such as the idea of indistinguish-
able particles. What the field tells us, is that it is but one
object, and what we call particles are just excitations of
the field. Thus, two photons of the same frequency and
polarization are indistinguishable, as they are both just
completely equivalent excitations of the electromagnetic
field. It makes as much sense to try and distiniguish
two equivalent electric fields as to try and distiniguish
two electrons, or photons, or any other indistinguishable
particle.
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The correspondence principle requires that the predictions of quantum mechanics ultimately re-
duce to those of classical mechanics, in the limit of macroscopic systems. Now the behavior of
quantum systems is already sufficiently described by the Schrodinger equation; however, by ap-
pealing to its expected classical behavior in the macroscopic limit, one can take advantage of the
correspondence principle to calculate some properties of the system, in particular its energy spec-
trum. This paper seeks to explore a couple of important semiclassical approximation schemes that
can be used to determine the energy states of a system, and demonstrates their applications to some
familiar systems.

I. INTRODUCTION

What it often means to understand the behavior of a
physical system is to have a model that allows one to
accurately make predictions about the state of the sys-
tem at a future time, given an initial state. In quan-
tum systems, the state of the system comes in the form
of a wavefunction ψ(x, t), whose behavior is modelled
(at least in nonrelativistic situations) by the Scrödinger
equation. Now the linearity of the Schrödinger equation
in the state ψ is an extremely important feature, because
it allows one to find a general solution by breaking the
problem into easily solvable parts, solving each of these
individually, then combining these solutions to obtain the
overall solution. In practice, this is performed simply
by solving for the eigensystem of the time-independent
Schödinger equation, from which one can obtain the over-
all behavior from a given initial state as a sum of the
(easily obtainable) time evolved values of its components
in the eigenbasis.

In fact, even knowledge of just the eigenvalues alone
provides plenty of useful information. The eigenvalues to
the time-independent Schrödinger equation are the en-
ergy values of states that are almost stationary, evolv-
ing only an overall phase over time. Knowledge of the
energy spectrum would allow one to make a variety of
predictions about phenomena like the emission spectra,
electrical conductivity and chemical properties of sub-
stances. Often, the energy eigenvalues are found by in-
voking the boundary conditions of a system, without hav-
ing to solve for the corresponding eigenstates beforehand.
This makes the process of solving for just the eigenvalues
alone a key approach to analyzing quantum systems.

However, the straightforward procedure we have de-
scribed for obtaining solutions from the eigensystem does
not come for free; one must still pay for overcoming the
complexity of solving for the behavior of quantum sys-
tems, except this time in finding the eigensystem itself.
This can generally be very difficult for most quantum sys-
tems, especially those with multiple particles or a compli-
cated Hamiltonian. Nevertheless, there are approxima-
tion techniques that can help one obtain a close estimate
of the eigenvalue spectrum. If there are sufficient parti-
cles, one could use a stochastic approach [9] to obtain a

statistical description of their properties. If the Hamil-
tonian is different from that of a solvable system only by
a slight correction, then perturbative methods could be
used to find the eigensystem of the former in terms of
corrections to that of the latter [6].

In this paper, we explore a class of approximation
methods that apply to a different regime: relatively high
energies and momenta. At the limit where typical ener-
gies overwhelm the energy eigenvalue spacings, and the
de Broglie wavelengths of particles become very much
smaller than the characteristic spatial dimensions of the
system, the behavior of the system approaches that of lo-
calized classical particles with a continuous energy spec-
trum, as the correspondence principle requires. This al-
lows one to motivate some useful assumptions, based on
a classical intuition, that simplify the process of calcu-
lating1 the eigensystem.

We divide these various quantization methods into two
categories: the first consists of those that involve impos-
ing constraints on the action or wavefunction of the sys-
tem, according to the boundary conditions, that allow
only specific orbits to be supported. The second consists
of those that do not directly find the energy eigenvalues,
but instead calculate the density of such energy states at
a given energy level.

II. CONSTRAINT QUANTIZATION

The methods in this category involve the identification
of energy values for which a solution to the Schrödinger
equation, that also satisfies the boundary conditions, ex-
ists. In many cases, this is done while attempting to solve
directly for the wavefunction. The classic example of a
one-dimensional infinite square well has discrete energy
levels that can be found by imposing the condition of a
zero wavefunction at the endpoints. This required that

1 We refer to these methods of determining the energy eigenvalue
spectrum of a system as quantization methods, although they are
really just part of a broader transition to a quantum description
of the system.
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the generic sinusoidal form of the wavefunction be found
first. For other cases, solving for the generic form for the
wavefunction might be too difficult to do analytically. In-
stead, a semiclassical approximation may be employed to
obtain a simplified expression for the wavefunction, and
the constraints are imposed as before.

Sometimes, one could further invoke the semiclassical
approximation by considering that the eigenstate solu-
tions would simulate periodic classical orbits, each with
a defined action over a period. The boundary conditions
can be translated into a constraint on the action, which
one can impose directly to solve for the energy eigenval-
ues without having to find the wavefunctions first. The
antiquated Bohr-Sommerfeld quantization of old quan-
tum theory (where the action is simply assumed to be in
multiples of 2π~) is one such method [2], but will not be
discussed here because the WKB quantization serves as
a more rigorous and adequately motivated generalization
in its place.

A. Semiclassical Approximation

The limit to classical energies and momenta is mathe-
matically equivalent to taking the limit of ~→ 0, since ~
characterizes the energy level spacing and the de Broglie
wavelengths of particles in a system. At the latter limit,
the de Broglie wavelength λ ∼ ~

p becomes much smaller

than the length scale over which the potential varies.
This means that we may make the following ansatz that
the wavefunction always retains a functional dependence
locally like that of a plane wave travelling in the direction
of the classical trajectory. This is of the form

ψ(x, t) = A(x, t) exp

(
i

~
S(x, t)

)
(1)

for phase S(x, t) and slowly varying amplitude A(x, t),
both real valued. This is known as the Wentzel-Kramers-
Brillouin (WKB) ansatz. Applying the Schrödinger equa-
tion for a potential V (x),

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m
∇2 + V (x)

)
ψ(x, t) (2)

and separating the real and imaginary parts, we eventu-
ally obtain the following coupled differential equations,

∂S

∂t
+

(∇S)2

2m
+

(
V − ~2

2m

∇2A

A

)
= 0 (3a)

∂A2

∂t
+∇ ·

(
A2

(
1

m
∇S
))

= 0 (3b)

Eq (3a) is essentially a classical Hamilton-Jacobi equa-
tion where

• the Hamilton principle function is S, and

• the Hamiltonian is Heff(x,p) = p2

2m + Veff(x, t)

where Veff is V with an additional − ~2

2m
∇2A
A correction

known as the Bohmian or quantum potential. The ∇2A
in the latter is small by our semiclassical assumption
that A varies slowly, so we may neglect this correction
altogether and solve the Hamilton-Jacobi equation for

H = p2

2m + V (x) as would classically be done. This is
“classical” part of the name “semiclassical”.

Since the phase S(x, t) is identified as the Hamilton
principle function, we can identify p = ∇S as the mo-
mentum. Then

dS(x, t)

dt
=
∂S(x, t)

∂t
+ ẋ · ∇S(x, t)

= −H(x,p) + ẋ · p = L(x, ẋ) (4)

is the Lagrangian, so we can identify S as the action∫
Ldt.

B. Density Flow

We now turn our attention to eq (3b), which one might
notice to be in the form of a continuity equation for a
flow with “density” A2 and “velocity field” 1

m∇S. If we

interpret A as a probability amplitude density and 1
m∇S

as a velocity field, then indeed, A2 would be a probability
density, while A2

(
1
m∇S

)
would be a probability current.

Since this flow is incompressible, the enclosed probability
in a region V0 at time t = 0 is conserved as the region
flows over a time t into a new region V , or

∫

V0

A(x0, 0)2 dnx0 =

∫

V

A(x, t)2 dnx

=

∫

V0

A(x, t)2 det (J(x,x0, t)) d
nx0 (5)

where n is the number of spatial dimensions and
J(x,x0, t) is the Jacobian matrix with (i, j)-th element
∂xi(x0,t)
∂(x0)j

, encoding information about the classical trajec-

tory x(x0, t) following the velocity field 1
m∇S from each

initial point x0. Since the equation holds for any V0, we
may conclude that

A(x, t) =
1√

det (J(x,x0, t))
A(x0, 0) (6)

Now in many systems, for a given energy there may be
regions where the potential rises above this value. These
regions are classically forbidden, so the classical trajec-
tories will have turning points at their boundaries. This
introduces a few issues:

• A collection of neighboring trajectories forms a
manifold embedded in space. When the mani-
fold encounters the boundary of a classically for-
bidden region, the trajectories turn away, lead-
ing to a “fold” in the manifold. This changes
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the orientation of the manifold, which effectively
leads to a sign change in the Jacobian determinant
det (J(x,x0, t)).

• The turning of a classical trajectory, possibly back
over itself, would produce points associated with
multiple velocities depending on how far along the
trajectory the particle has gone. The 1

m∇S ceases
to be a (single-valued) velocity field.

To account for these issues, a few modifications have to
be made to the solution in eq (6). Firstly, it is helpful
to show the sign change of the Jacobian determinant ex-
plicitly, by introducing an extra phase exp

(
− iπ2 ν(x0, t)

)
,

where ν(x0, t) is the Maslov index, or the number of
folds (and thus sign changes to the Jacobian determi-
nant) throughout the trajectory from the initial point
x0.

Secondly, for each point x and time t, there may be
multiple initial points x0 that have trajectories leading
from them to x in time t. The contributions from all these
amplitudes superpose to form the overall amplitude A, so
we must sum over all these contributions. This gives us

A(x, t) =
∑

k

exp
(
− iπ2 ν

(
x,x

(k)
0 , t

))

√∣∣∣det
(
J
(
x,x

(k)
0 , t

))∣∣∣
A
(
x

(k)
0 , 0

)
(7)

where k indexes all initial points x
(k)
0 that have a classical

trajectory to x in time t.

C. WKB Approximation in 1D

The classical trajectories for a multidimensional sys-
tem are in general very difficult to compute, so to illus-
trate the application of the methods discussed, we focus
our study on one-dimensional systems. We first solve the
Hamiltonian-Jacobi equations that we obtained earlier
at eq (3a). If the Hamiltonian is not explicitly time-
dependent, we may separate out time-dependence in the
Hamilton-Jacobi equation by letting

S(x, t) = W (x)− Et (8)

for some constant E, which turns out to be the energy.
Then by the discussed approximation of eqn (3a) neglect-
ing the Bohmian correction,

E = −∂S
∂t

=
1

2m

(
∂S

∂x

)2

+ V

=⇒ p(x) =
∂S

∂x
=
√

2m(E − V (x)) (9)

so we can solve for

S(x, t) =

∫ x

x0

p(x′) dx′ − Et

=

∫ x

x0

√
2m(E − V (x′)) dx′ − Et (10)

Given that the velocity field is 1
m
∂S
∂x = p(x)

m , one can

show that the Jacobian determinant is ∂x
∂x0

= p(x)
p(x0) , so

combining eqs (1), (7) and (10), one obtains the overall
wavefunction for an energy eigenstate

ψ(x, t) =
∑

k

A
(k)
0

√√√√√

∣∣∣∣∣∣

p
(
x

(k)
0

)

p(x)

∣∣∣∣∣∣

× exp

(
iΦ(k)(x)− iπ

2
ν(k)(x, t)− iEt

~

)
(11)

where we have used the abbreviations A
(k)
0 = A

(
x

(k)
0 , 0

)
,

Φ(k)(x) = 1
~
∫ x
x
(k)
0
p(x′) dx′, and ν(k)(x, t) = ν

(
x, x

(k)
0 , t

)
.

As intended, this approximates the behavior of a classical
trajectory, which for bound states in one dimension can
only be that of a particle bouncing back and forth. By
invoking the periodicity condition of the wavefunction
over one cycle of the trajectory, one obtains

i

~

∮
p(x′) dx′ − iπνc

2
= 2inπ

where νc is the Maslov index over a cycle, so the action
over a cycle is constrained to be

I =

∮
p(x′) dx′ =

(
2n+

νc
2

)
π~ (12)

1. Example: 1D harmonic oscillator

The one-dimensional harmonic oscillator with Hamil-
tonian H = p2

2m+ 1
2mω

2x2 is a simple example of a system
where trajectories are bound by νc = 2 classical turning

points. Letting x0 =
√

2E
mω2 , and invoking the constraint

in eq (12) on the action,

I =

∮
p(x) dx = 4mω

∫ x0

0

√
x2

0 − x2 dx

= πmωx2
0 =

2πE

ω
= (2n+ 1)π~

=⇒ E =

(
n+

1

2

)
~ω

which is the exact solution. In effect, each classical turn-
ing point contributes to a π

4 phase shift, which is as ex-
pected from a calculation using the Airy function solu-
tions of approximately linear potentials to derive connec-
tion formulas across a smooth turning point [6].

III. DENSITY QUANTIZATION

The next category of quantization methods do not pro-
vide an expression of the energy eigenvalues of a system
in terms of an index, but instead the distribution of the
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energy spectrum in the energy representation. This is
still useful since the semiclassical approximation applies
in situations where the energies are already much greater
than the energy level separation, so the energy level den-
sity is a more practical way to encode information about
the energy spectrum of the system.

We first begin by an overview of how the energy level
density may in principle be obtained without any approx-
imations, by finding the trace of a Green’s function. The
semiclassical approximation may then be invoked and the
procedure repeated to obtain an expression of the energy
level density with the approximation built into it. It
turns out that the expression depends just on the clas-
sical periodic orbits of the system, so knowledge of the
classical behavior of the system can actually be used to
predict its quantum properties.

A. Preliminaries

Consider a system with time-independent nondegen-
erate Hamiltonian Ĥ, and let {|n〉} be its complete, or-

thonormal eigenbasis. This means that Ĥ |n〉 = En |n〉
for each n, where 〈n|m〉 = δnm, and

∑
n |n〉 〈n| = 1. In

general the time evolution of any wavefunction is con-
trolled by the Schrödinger equation

i~∂t |ψ(t)〉 = Ĥ |ψ(t)〉 , (13)

so it can then be expressed in terms of its initial state
|ψ(0)〉 as

|ψ(t)〉 = exp

(
− iĤt

~

)(∑

n

|n〉 〈n|
)
|ψ(0)〉

=

(∑

n

exp

(
− iEnt

~

)
|n〉 〈n|

)
|ψ(0)〉

= Û(t) |ψ(0)〉 (14)

for time evolution operator Û(t) on the second line in
parentheses. Taking its Fourier transform over t ≥ 0 into
the energy representation, we obtain (for E ∈ R)

Ĝ(E) = − i
~

∫ ∞

0

Û(t) exp

(
iEt

~

)
dt

=
∑

n

|n〉 〈n|
∫ ∞

0

− i
~

exp

(
i(E − En)t

~

)
dt

This is not a generally convergent integral, but we can
evaluate it in the upper half of the complex plane, ob-
taining at Ẽ = E + iε (with 0 < ε ∈ R),

Ĝ(Ẽ) =
∑

n

|n〉 〈n|
[
−exp (i(E − En + iε)t/~)

E − En + iε

]∞

0

=
∑

n

|n〉 〈n|
E − En + iε

(15)

which is known as the Green’s function for the operator
Ẽ − Ĥ, because

(
Ẽ − Ĥ

)
Ĝ(Ẽ) =

∑

n

(Ẽ − En) |n〉
Ẽ − En

〈n| = 1 (16)

Now we note the fact that

lim
ε→0+

∫ x2

x1

dx

x− x′ + iε
=

1

2

∮

Γ

dz

z − x′

= −πi
∫ x2

x1

δ(x− x′) dx

for any x1, x2 ∈ R, where Γ is a rectangle in the complex
plane cutting the real axis upwards at x1 and downwards
at x2. Using this, we can find the density of energy eigen-
states, expressed as

D(E) =
∑

n

δ(E − En) =
i

π
lim
ε→0+

(∑

n

1

E − En + iε

)

=
i

π
lim
ε→0+

(
tr Ĝ(E + iε)

)
(17)

in terms of the trace of the Green’s function, since
tr (|n〉 〈n|) = 1 for each n.

B. Semiclassical Approximation

Consider the following matrix element of the time evo-
lution operator in the position eigenbasis

K(x,x1, t) = 〈x| Û(t) |x1〉

=
∑

n

exp

(
− iEnt

~

)
ψn(x, 0)ψ∗n(x1, 0) (18)

where ψn(x, t) is the wavefunction of the nth eigenstate.
This can be interpreted as the probability amplitude den-
sity that a particle localized at an initial position x1 could
travel in time t to the current location x, and is referred
to as the quantum mechanical propagator, because the
position eigenstates form a complete basis, so the wave-
function after time t of any state with initial wavefunction
ψ(x1, 0) is

ψ(x, t) =

∫
K(x,x1, t)ψ(x1, 0) dnx1 (19)

in analogy to eq (14). The derivation of D(E) in the pre-
vious section could have been expressed in terms of the
propagator rather than the time evolution operator, if we
had simply written each equation in terms of their ma-
trix elements in the position eigenbasis (or equivalently,
written the states as wavefunctions ψ(x, t) rather than
as kets |ψ〉).
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Now we note that since i~∂tÛ(t) = ĤÛ(t),

i~
∂

∂t
K(x,x1, t) = 〈x| i~∂tU(t) |x1〉 = 〈x| ĤU(t) |x1〉

=

(
− ~2

2m
∇2
x + V (x)

)
K(x,x1, t)

and so K(x,x1, t) satisfies the Schrödinger equation as
well. But this means that we may apply the semiclassical
approximation via a similar technique as before, express-
ing the propagator as

Ks(x,x1, t) = A(x,x1, t) exp

(
i

~
S(x,x1, t)

)
. (20)

However, we must first be careful to distinguish the posi-
tion variable x1 of the initial wavefunction ψ(x1, 0) that
the propagator integrates over all space in eq (19), from

the initial position x
(k)
0 of each classical trajectory that

is summed over in eq (7). When applying the results of
eq (7) here, one must keep in mind that the sum over
classical trajectories is no longer a sum over their initial

positions x
(k)
0 , since we are considering only trajectories

that begin at x1. Instead, it is now a sum over their

initial momenta p
(k)
0 .

Hence, the Jacobian matrix in eq (7) has to be replaced

by Jp (x,x1,p0, t) with (i, j)-th element ∂xi(x1,p0,t)
∂(p0)j

. The

propagator is then

Ks(x,x1, t) =

∑

k

A
(k)
0

exp
(
i
~S(x,x1, t)− iπ

2 ν
(k)(x,x1, t)

)
√∣∣∣det

(
Jp

(
x,x1,p

(k)
0 , t

))∣∣∣
(21)

where we use the abbreviations A
(k)
0 = A(k) (x,x1, 0) and

ν(k)(x,x1, t) = ν
(
x,x1,p

(k)
0 , t

)
.

Now for very short intervals of time where t → 0, one
can regard the velocity field as uniform so

p

m
=

1

m
∇xS ≈

x− x1

t
=⇒ S(x,x1, t) ≈

m(x− x1)2

2t

and

p1 ≈ ∇x1

(
x− x1

t

)
= −∇x

(
x− x1

t

)
≈ −p

=⇒ ∂xi
∂(p1)j

= −∂xi
∂pj

= − t

m
δij .

We may also assume in the limit t → 0 that there is
only a single trajectory to consider, since the chance of
trajectories overlapping in a fold should vanish. Then for
n spatial dimensions,

Ks(x,x0, t)→
A(x,x0, 0)√∣∣(− t

m

)n∣∣
exp

(
im(x− x0)2

2~t

)
(22)

which is the form of a gaussian with width σ2 = − ~t
im .

In this limit, the time evolution operator Û(t) → 1 so
the propagator should approximate 〈x|x1〉 = δ(x − x1).
This means that we must normalize the propagator, by
setting the constant

A(x,x0, 0) =

(
1

2πi~

)n
2

so that

Ks(x,x1, t) =

∑

k

(
1

2πi~

)n
2 exp

(
i
~S(x,x1, t)− iπ

2 ν
(k)(x,x1, t)

)
√∣∣∣det

(
Jp

(
x,x1,p

(k)
0 , t

))∣∣∣
.

(23)

This is known as the semiclassical or Van-Vleck propa-
gator. If one has knowledge about the classical trajecto-
ries permitted by the system, then one could use this to
make predictions about the time evolution of any given
wavefunction via eq (19).

The process of obtaining a Green’s function for the
Van-Vleck propagator and then computing a formula for
its trace is rather involved, and will not be explored in
this paper. However, the key ideas can already be seen
through the analogous steps for the exact case. The final
Gutzwiller trace formula, from which the density of states
D(E) can be obtained via eq (17), is expressed in terms
of a sum over the classical periodic orbits of the system,
as has been encountered numerous times above.

Interestingly, there are alternative ways of deriving the
trace formula. Gutzwiller himself first used the Feynman
integral formulation [8], and there have been proofs of it
using coherent states [10].

IV. DISCUSSION

We have explored two main approaches in implement-
ing a semiclassical approximation in the process of solv-
ing for the energy eigenvalues of a quantum system. The
methods which provide constraints on the action provide
the conceptual simplicity that was found in the rough
quantization methods of old quantum theory, where one
could still be rather successful in making predictions
about the spectra in systems like the hydrogen atom,
with very simple calculations.

On the other hand, the density quantization methods
take much more work to derive, but they provide an im-
portant insight into the link between the quantum and
classical realms. By expressing the quantum energy lev-
els of a system in terms of its classical orbits, they provide
a heuristic way to understand the behavior of a quantum
system without having to first persist through the tedium
of solving the Schrodinger equation directly. This means
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that our classical intuitions are not worthless after all,
we just need to be careful about how we apply them.

The methods described above do not provide a descrip-
tion for a completely general physical system, because
we have made many assumptions like non-degeneracy or
integrability of the classical trajectories. There are mod-
ifications [2] to these methods that improve their gener-
ality, including even some that make a connection with
the zeros of the Riemann zeta function. Nevertheless, it
must also be noted that even though the semiclassical
approximation methods presented here may give the im-

pression of “simplifying” quantum systems by a reduction
to classical problems, the complexity in studying quan-
tum systems does not just go away, because the problem
of solving for classical trajectories can be an extremely
difficult one by itself, especially in systems that display
chaotic behavior.

In practice, semiclassical methods still serve as one of a
range of types of approximation tools that can be used in
solving otherwise intractable quantum systems. As with
any tool, it is up to the user’s discernment on the right
situation to use it.
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Graphene is a one atom thick monolayer of graphite and is an important research topic in the field
of condensed matter physics. The carbons in graphene form sp2 hybridized bonds, which lead to
a hexagonal honeycomb lattice structure. The honeycomb lattice structure contains two sublattice
structures, which give rise to an additional spin-like degree of freedom, pseudospin. Because of pseu-
dospin, the energy-momentum relation for graphene is linear, which is characteristic of relativistic
systems. We see that charge carriers in graphene indeed behave like massless relativistic particles.
As an example of relativistic quantum phenomena, we discuss Klein tunneling in graphene.

I. INTRODUCTION

Graphene is a monolayer of graphite with a two-
dimensional (2D) honeycomb lattice. For a long time,
physicists believed that 2D crystal structures did not
exist because it would be thermodynamically unstable
[1][2]. Graphene was thought to be only a theoretical ma-
terial. However, in 2004, graphene was experimentally
proven to stably exist and since then, many physicists
and engineers have done research on interesting prop-
erties of this material [3]. Many interesting properties
of graphene are due to its honeycomb structure. This
structure gives rise to the linear relation between en-
ergy and momentum, as in relativistic systems [4]. In
this paper, we will explore the structure of graphene in
more detail and derive its Dirac-like Hamiltonian and
energy-momentum dispersion relation. We will show how
graphene’s structure gives rise to one of its unusual prop-
erties, pseudospin. As an example of the consequences of
pseudospin, we then discuss Klein tunneling.

II. STRUCTURE OF GRAPHENE

A. Chemical Structure

Carbons in graphene form sp2 hybridization between
one s orbital and two p orbitals, which leads to the for-
mation of a trigonal planar structure [5]. This generates
a hexagonal honeycomb structure as a whole as shown
in Figure 1. The remaining p orbital, which we label
as pz, is perpendicular to the plane formed by the sp2

bonds. While the electrons forming sp2 bonds are bound
to keep the hexagonal structure, those in the pz orbital
are relatively free to move around and form π band with
neighboring carbon atoms [5]. It is the electrons in the pz
orbital that lead to overlapping of orbitals and electron
hopping.

B. Sublattice Structure

As we discussed, the crystal structure of graphene
forms repetitions of hexagons. In crystalline solids, the

periodically repeated identical groups of atoms are called
bases, and the set of points attached to the basis is called
the lattice [6]. Thus, graphene has a honeycomb lattice
structure.

FIG. 1: The honeycomb lattice of graphene (left) and its first
Brillouin zone (right). Blue and yellow color in the left figure
indicate the two different sublattices, labeled as A and B. In
the Brillouin zone, the vertices of the hexagon are named K
and K′ points alternatively, and the center of the hexagon is
called Γ point. This figure is taken from Castro Neto et al.
(2009) [5].

The honeycomb lattice structure has two different
bases. We indicate a relative coordinate from each start-
ing yellow or blue point with a two-dimensional vector
(x, y). All yellow points are connected to their nearest

neighbors in the (−1, 0), (1/2,
√

3/2) and (1/2,−
√

3/2)
directions while all blue points are connected to their
nearest neighbors in the (1, 0), (−1/2,

√
3/2) and

(−1/2,−
√

3/2) directions. Therefore, the yellow points
are indistinguishable from each other, but they are distin-
guishable from blue points. In other words, translating
the system between yellow points will not change the sys-
tem. Whereas translating from a yellow point to a blue
point will change the system because how the points are
connected to the neighbors is different. We can visualize
two distinct lattice structures within a bigger structure;
yellow vertices of the hexagons are said to form a sublat-
tice structure and blue vertices form another sublattice
structure. As indicated in Figure 1, we refer to the sub-
lattice of blue points as sublattice A and the sublattice
of yellow points as sublattice B.

A primitive unit cell is defined as the smallest unit
that fills up the space without overlapping the neighbor-
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ing primitive unit cells and without any voids [7]. The
primitive unit cell of graphene contains one lattice point
from sublattice A and one from sublattice B. Therefore,
electronic states in graphene have components belong-
ing to two sublattices. An index indicating sublattices A
and B becomes necessary. This index, or an additional
degree of freedom, is analogous to the spin up and spin
down index and is therefore referred to as pseudospin [4],
which we will discuss in more detail in Section III.

C. The Reciprocal Lattice

We have thusfar examined the structure of graphene
in real space. It is often more useful to represent the
structure in momentum space, or k-space, because this
leads to the derivation of the energy-momentum relation.
The transformation from real space to k-space is through
the Fourier transform [6].

The reciprocal lattice is a counterpart of the lattice in
real space, or the direct lattice. It is a set of wave vectors

that satisfy the mathematical relation ei
~K·(~r+~R) = ei

~K·~r,
where ~K are wave vectors in the reciprocal lattice, ~r is

any position in real space and ~R is a point in the di-
rect lattice [7]. A lattice is spanned by primitive vectors.
From the relation between the reciprocal and direct lat-
tices, primitive vectors that span the reciprocal lattice
are calculated from those that span the direct lattice. In

Figure 1, ~bi is the primitive vector for the reciprocal lat-
tice while ~ai is the primitive vector for the direct lattice.
Linear combination of primitive vectors forms the lattice
vector and the reciprocal lattice vector.

The Wigner-Seitz primitive cell of a lattice point is
the region of space that is closer to that point than to
any other lattice point [7]. One can get Wigner-Seitz cell
by bisecting the lines connecting the point in which we
are interested with its nearest neighbors. The first Bril-
louin zone (BZ) is defined as the Wigner-Seitz primitive
cell of the reciprocal lattice. There are higher-order Bril-
louin zones, but we need only the first for our purpose.
As shown in Figure 1, BZ of a hexagonal lattice is also
hexagonal. Since sublattice A and sublattice B are not
equivalent, K point and K ′ point in BZ are not equiva-
lent for the same reason and thus labeled separately. K
and K ′ points are also called Dirac points for the reason
that will be discussed in Section III.

III. DIRAC-LIKE HAMILTONIAN

We will now derive pseudospin more rigorously by us-
ing the tight-binding approximation for graphene. The
tight-binding method used in this section follows steps
from McCann (2012) [8] and Castro Neto et al. (2009)
[5].

A. Bloch’s Theorem

In solids like graphene, electrons are under a periodic

potential, which can be expressed as U(~r + ~R) = U(~r).
Bloch’s theorem states that the eigenstates of such a sys-

tem can be chosen to have a form ψn,~k(~r) = ei
~k·~run,~k(~r),

where un,~k(~r + ~R) = un,~k(~r) and the eigenstates are la-

beled by both energy level n and wave vector ~k [7]. This
implies that

ψn,~k(~r + ~R) = ei
~k·~rψn,~k(~r) (1)

ψn,~k(~r) is called a Bloch function or a Bloch wave. We

assume that eigenstates of graphene have this form.

B. The Tight-binding Approximation

When atoms are closely packed together, their atomic
orbital overlaps and the energy levels are affected by the
overlap. Therefore, corrections to the Hamiltonian are
needed, and the tight-binding method is one widely used
approximation. The wave function is approximated as
the superposition of wave functions of isolated atoms.
As its name suggests, the tight-binding approximation is
used for a tightly bound system of atoms in a solid where
interaction between the states is limited to nearby atoms.
Therefore, the resulting wave function is similar to that
of an isolated atom [7]. Here the periodic potential is ap-
proximated as the potential energy between the nucleus
of a fixed atom of the solid and an incoming electron.

Since we are dealing with a periodic potential, by
Bloch’s theorem, Bloch functions are used as the eigen-
states. Then the wave function is expressed as the super-
position of such eigenstates. Each entry of the Hamilto-
nian represents the transition or ‘hopping’ of electrons
from one lattice point to another. The diagonal entries
of the Hamiltonian show the hopping within the same
sublattice while the off-diagonal entries show the hopping
between different sublattices. By using the tight-binding
approximation, we will derive the form of Hamiltonian of
graphene and verify the energy dispersion relation.

C. The Tight-binding Approximation for Graphene

By Bloch’s theorem, the wave function ψA at sublattice
A can be expressed as

ψA =
1√
N

N∑

i=1

ei
~k·~RA,iφA(~r − ~RA,i) (2)

where ~r is the position, ~RA,i is the position of the orbital

in sublattice A of the ith unit cell, and ~k is the wave
vector. This system is assumed to have N unit cells.
The wave function at sublattice B is identical to Eq 2
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except that the index of sublattice is B instead of A.
Here, as mentioned earlier, electrons that are likely to
interact with neighboring electrons are in the 2pz orbital.
Therefore, we consider only this orbital.

The diagonal entry of the Hamiltonian HAA =
〈ψA|H |ψA〉 is expressed as

HAA =
1

N

N∑

i=1

N∑

j=1

ei
~k·(~RA,j−~RA,i)

×
〈
φA(~r − ~RA,i)

∣∣∣H
∣∣∣φA(~r − ~RA,j)

〉
(3)

HBB can also be expressed in the same way. We can
assume that the dominant term is when i = j since it is
difficult to hop to a far lattice point, for example from
a yellow vertex to another yellow vertex in Figure 1 [8].
Then Eq 3 is simplified to have only i as the index of sum-

mation. Defining ε ≡
〈
φA(~r − ~RA,i)

∣∣∣H
∣∣∣φA(~r − ~RA,i)

〉
,

we find HAA ≈ ε, which is independent of lattice points.
This result was predictable since the lattice points within
the same sublattice are indistinguishable from each other.
Moreover, HAA = HBB since the structure of sublattice
B is the same as the structure of sublattice A, except
that it is rotated [8].

In a similar way, the off-diagonal term of the Hamil-
tonian is obtained. The off-diagonal term describes
the hopping between the two different sublattices such

as from sublattice A to sublattice B. Replacing ~RA,j
with ~RB,j and |φA〉 with |φB〉 in Eq 3 gives the ex-
pression for the off-diagonal entry HAB . In this case,
the expression is simplified as j goes from 1 to 3, in-
stead of from 1 to N since it is highly unlikely to ob-
serve hopping of an electron to a point farther than its
nearest neighbors, and there are three nearest neigh-
bors to each point, as shown in Figure 1. We define

−t ≡
〈
φA(~r − ~RA,i)

∣∣∣H
∣∣∣φB(~r − ~RB,j)

〉
, where t > 0.

The evaluated value is defined as −t since the potential
energy is negative and thus the whole integral is neg-

taive. Also, the phase difference ~RB,j − ~RA,i in the ex-
pression for the off-diagonal entry of Hamiltonian indi-
cates the vector from each point to its neighbor, which
is δj in Figure 1 where j = 1, 2, 3. Then the off-

diagonal term is simplified as HAB ≈ − t
N

N∑

i=1

3∑

j=1

ei
~k·~δj .

By defining f(~k) ≡
3∑

j=1

ei
~k·~δj , it is further simplified as

HAB ≈ −tf(~k). From Figure 1, we know that

~δ1 =
a

2
(1,
√

3), ~δ2 =
a

2
(1,−

√
3), ~δ3 = −a(1, 0) (4)

setting the lattice point as the origin, where a is the
carbon-carbon distance, or the distance between two con-
nected yellow and blue points in Figure 1. By substitut-

ing Eq 4 to the definition of f(~k), we get the value of

f(~k) and thus HAB and HBA.

Collecting the diagonal terms and the off-diagonal
terms, the Hamiltonian of the system is expressed as

H =

(
ε −tf(~k)

−tf∗(~k) ε

)
(5)

Solving the eigenvalue problem for Eq 5 gives the en-
ergies

E± = ε± t|f(~k)| (6)

Figure 2 is the plot of Eq 6 as a function of ~k. The
diagonal terms of Hamiltonian are taken to be zero since
they are constant. As there are two values of energies
(Eq 6), the plot shows two layers of energies. This range
of energies where electron orbitals can exist is called a
band structure. The conduction band is the upper en-
ergy in the band structure, and the valence band is the
lower energy [6]. The distance between the conduction
band and the valence band is called a gap, and metals
usually have a nonzero gap between the bands. However,
as shown in Figure 2, the band structure of graphene does
not have a gap.

This plot has actually taken into account the hopping
to not only the nearest neighbors but also the next near-
est neighbors [5]. However, near the point where two
bands meet, which is called the Dirac point, our approx-
imation of only considering the hopping to the nearest
neighbors is valid, and this is the regime where we are
interested in.

FIG. 2: The band structure of graphene. It is gapless and
conical near the Dirac points. This figure is taken from Castro
Neto et al. (2009) [5].

Note that as shown in the zoomed figure in Figure 2,
near the Dirac point, the band structure is conical. This
reflects the linear dispersion relation between energy and
momentum, which is discussed more in the next section.

D. Energy at the vicinity of K point

As shown in Figure 3, two bands of graphene meet at
K points and K ′ points of BZ of graphene. The position
of K and K ′ points in k-space are

~K = (
2π

3a
,

2π

3
√

3a
), ~K ′ = (

2π

3a
,− 2π

3
√

3a
) (7)
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Using the definition of f(~k) and Eq 4, we can check that

|f( ~K)| = 0. Thus both E±( ~K) = ε = 0 as expected in
Figure 2.

If ~k 6= ~K, but ~k ≈ ~K, then ~k = ~K + ~q where

|~q| � | ~K|. We rewrite our expression in terms of ~q, so
f(~q) ≈ − 3a

2 (qx− iqy). Thus the Hamiltonian for hopping

FIG. 3: The band structure and Brillouin zone of graphene.
Two bands meet at K and K′ points, or Dirac points. This
figure is taken from McCann (2012) [8].

between different sublattices becomes

H = h̄vF

(
0 qx − iqy

qx + iqy 0

)
= h̄vF~σ · ~q (8)

where vF = 3at/2h̄ and ~σ are the 2D Pauli matrices
(σx, σy). vF is Fermi velocity, which is the velocity as-
sociated with Fermi energy, the highest energy electrons
can occupy in the solid at 0 K. In our case, vF does
not depend on the value of k and its numerical value is
vF ≈ c/300, where c is speed of light [4].

The Hamiltonian in Eq 8 is a Dirac-like Hamiltonian,
which is the 2D Dirac equation with Fermi velocity vF
instead of speed of light c [4]. The Dirac equation
deals with relativistic quantum systems so its Hamilto-
nian is different from the Hamiltonian usually used in
the Schrödinger equation [9] [10]. A particle traveling in
graphene is called a quasiparticle, not an electron, be-
cause its complex interaction with neighbors makes it
behave as if it were a different particle with different
mass. The Dirac-like Hamiltonian from Eq 8 implies that
quasiparticles in graphene behave as massless relativistic
particles or massless Dirac fermions [11].

The relation Hψ = Eψ gives the following results

E±(~q) = ±h̄vF |~q|, ψ±, ~K(~q) =
1√
2

(
e−iθ~q/2

±eiθ~q/2
)

(9)

where ± refers to the conduction band and the valence
band respectively, and the phase refers to the polar angle

of momentum in k-space, θ~q = arctan(qx/qy) [5]. The
wave function around the K ′ point is also derived in
the same way and the result is the complex conjugate
of Eq 9. The linear dispersion relation shown in Eq 9,
as opposed to the usual parabolic dispersion in metals,
also shows that the quasiparticles in graphene are rela-
tivistic. This is from the equation for energy in relativ-

ity E =
√
p2c2 +m2c4 [12]. When m = 0, it becomes

E = pc where p = h̄k for quantum particles. This implies
the linear dispersion relation in a relativistic system.

Here we have already derived pseudospin. Pauli ma-
trices in Hamiltonian are usually related to spin states.
However, ~σ in Eq 8 refers to pseudospin, not the real
spin that we are familiar with [4]. More explicitly, the
wavefunction ψ±, ~K in Eq 9 is two-dimensional and looks

similar to spin states, but this is not spin since ψ is the
superposition of Bloch functions (Eq 2). The state ψ
gives the relative amplitude between the Bloch wave in
sublattice A and sublattice B. This additional degree
of freedom indicating the relative amplitude between the
sublattices is pseudospin [8]. For example, pseudospin
‘up’ state describes that all the electron density is located
in sublattice A while pseudospin ‘down’ state describes
that all the electron density is located in sublattice B.

IV. KLEIN TUNNELING

Pseudospin gives rise to the relativistic properties of
quasiparticles in graphene. Therefore, it shows unusual
behaviors that are not observed in other materials and
enables physicists to set up experiments to explicitly ob-
serve physical phenomena that have been only theoreti-
cally discussed like Klein tunneling, or the Klein paradox.

The Klein paradox refers to the counterintuitive rela-
tivistic process in which an incoming electron penetrates
an energy barrier higher than its rest energy with the
probability of transmission (T ) nearly being one [13]. As
the energy barrier gets bigger and approaches to infinity,
T approaches to one. This is counterintuitive because
nonrelativistic quantum mechanics predicts that T de-
creases exponentially as the energy barrier increases [14].

The setup that was used in Klein’s original paper was
a step function with V (x) = V for x > 0 and V (x) = 0
for x < 0 [13] [15]. By using the Dirac equation, it has
been found

T =
4k

(1 + k)2
, k =

√
(V − E +m)(E +m)

(V − E −m)(E −m)
(10)

where E is energy of the incoming particle, V is the po-
tential barrier and m is the rest energy [15]. Here one
can see that as V →∞, T → 1. Klein paradox still holds
in a finite square barrier. Although the exact formula for
T is different, the tendency of T → 1 as V → ∞ still
holds [15].

Let’s see the Klein paradox observed in graphene. Fig-
ure 4 shows the setup of the problem. The potential is
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a square finite barrier which does not depend on y for
simplicity, and V (x) = V0 at 0 < x < D and V (x) = 0
elsewhere. The calculation for this section involves the

FIG. 4: Schematic of Klein tunneling. The upper figure shows
energy as a function of x while the lower figure is the view
on xy-plane. φ is the incident angle and θ is the refraction
angle of the wave. This figure is taken from Castro Neto et
al. (2009) [11].

Dirac equation and relativistic quantum physics. For our
purpose, the results from Katsnelson et al.(2006) [11] and
Castro Neto et al.(2009) [5] are cited.

In region I of Figure 4, the wave function has an in-
coming wave and a reflected wave. Therefore, we can
write the wave function as

ψ1(~r) =
1√
2

(
1
seiφ

)
ei(kxx+kyy)

+
r√
2

(
1

sei(π−φ)

)
ei(−kxx+kyy) (11)

where φ = arctan(ky/kx). In region II, the wave function
is

ψ2(~r) =
a√
2

(
1

s′eiθ

)
ei(qxx+kyy)

+
b√
2

(
1

s′ei(π−θ)

)
ei(−qxx+kyy) (12)

where θ = arctan(ky/qx) and qx satisfies V0 − E =

h̄vF
√
q2x + k2y. In region III, there is only a transmitted

wave, so

ψ3(~r) =
t√
2

(
1
seiφ

)
ei(kxx+kyy) (13)

Here, s = sgn(E) and s′ = sgn(E − V0) [5]. Bound-
ary conditions are ψ1(x = 0, y) = ψ2(x = 0, y) and

ψ2(x = D, y) = ψ3(x = D, y) since wave functions have
to be continuous [14]. The coefficients r, a, b, t are ob-
tained with this boundary conditions. Unlike the non-
relativistic case, the derivative of wave functions are not
matched up [5].

The probability of transmission is obtained by T =
|t|2 = 1 − |r|2. We are interested in the case of large
energy barrier. Taking |V0| � |E| gives

T =
cos2 φ

1− cos2 qxD sin2 φ
(14)

According to Eq 14, T = 1 when qxD = πn where
n = 0,±1, .... This condition is called the resonance
conditions [11]. More remarkably, T = 1 when φ = 0,
which is directly related to the Klein paradox. The rea-
son for the perfect transparency at normal incidence is
the conservation of pseudospin [11]. Let’s see how this
conservation works.

FIG. 5: The band structure of graphene showing the origin
of the linear spectrum. The red and green curves are each
associated with sublattices A and B. This figure is taken
from Katsnelson et al. (2006) [11].

Electrons in the conduction band are electrons as
usual. However, when Fermi energy is below the Dirac
point, and thus the valence band has a void of an elec-
tron, we can think the absense of an electron as a posi-
tively charged particle. This quasiparticle is called a hole
[6]. Note that holes are not positrons; they are not anti-
particles. But it is often more convenient to deal with
holes than electrons.

Let’s look at the red curve in Figure 5. Electrons and
holes in the same branch, which is the red curve in this
case, have pseudospin σ (Eq 5) in the same direction be-
cause they originate from the same sublattice. As shown
in Figure 5, electrons in the conduction band are propa-
gating in the positive direction, or the outward direction
from the cone, while holes in the valence band are prop-
agating in the negative direction, or the inward direction
to the cone. This shows that the direction of σ is par-
allel to the momentum of electrons while antiparallel to
the momentum of holes, which gives rise to chirality [11].
Chirality is formally a projection of ~σ on the direction of

propagation ~k [4].
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Because of the conservation of pseudospin, charge car-
riers from the red branch do not get scattered into the
green branch. Due to chirality, electrons which were orig-
inally moving to the right are scattered as either right-
moving electrons or left-moving holes, but not as left-
moving electrons nor right-moving holes. Matching the
boundary conditions for directions of σ inside and out-
side the energy barrier gives T = 1, which is the result
of Klein tunneling [11]. Klein tunneling in graphene was
experimentally observed in 2008 [16].

V. CONCLUSION

Graphene is an unusual 2D material because charge
carriers in graphene behave like massless relativistic par-
ticles. This property originates from the honeycomb
structure of graphene, which contains two sublattice
structures. This gives an additional degree of freedom

called pseudospin. It gives rise to the linear dispersion
relation between energy and momentum near the Dirac
point, which is characteristic of a relativitistic system.
This means that graphene is expected to show relativistic
phenomena like Klein tunneling. Indeed, when a charge
carrier is normally incident on a large energy barrier,
the probability of transmission is 1, resulting in perfect
tunneling. In conclusion, graphene is an exciting sub-
ject that will bring both interesting theoretical models
and experimental observations for the study of relativis-
tic quantum physics.
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The quantization of fields leads to the presence of physical forces from the vacuum in a variety of
circumstances. These phenomena are collectively known as the “Casimir effect.” We provide semi-
classical intuition for the Casimir effect, and then derive the vacuum forces between two parallel
conducting plates using quantum field theory. During the calculation, we use analytic continuations
to tame the infinities that arise, and provide the necessary background in complex analysis. The
discussion concludes with a derivation of Casimir forces in a uniform gravitational field.

I. INTRODUCTION

It is counter-intuitive to think that “empty space” has
non-zero energy. Surprisingly, quantum field theory pre-
dicts that empty space has divergent energy density at
every point in spacetime. It is tempting to ignore the di-
vergent term in the energy density calculation by writing
it off as non-physical, but doing so is not without conse-
quence. In fact, boundary conditions on regions of empty
space can yield differently divergent energy densities and
it is valid to reason about the relative difference between
two divergent densities.

In 1948, Hendrik Casimir showed that in certain in-
stances, the difference between two divergent energy den-
sities is finite, which generates forces from the vacuum
[1,2]. The eponymous Casimir effect was first observed
in 1997 [3], and its theoretical and experimental implica-
tions continue to be an active field of research. In this pa-
per, we will explore several instantiations of the Casimir
effect which range from semi-classical analysis to quan-
tum field theory in curved spacetime.

II. CASIMIR EFFECT FOR A LOADED STRING

We begin with a semi-classical derivation of the
Casimir effect in a loaded one-dimensional string. This
derivation is based on the argument of [4]. The derivation
will provide intuition for the essence of Casimir’s argu-
ment because it will not be obscured by the mathematical
machinery required for dealing with quantum field the-
ory. Consider a massless string of length L, clamped at
both ends, with N equally-spaced point masses of mass
m. The masses divide the string into N + 1 equal seg-
ments of length L/(N + 1). We will further assume that
the string is under uniform tension T , and is constrained
to move in one transverse direction.

For the moment, consider N to be large, but finite.
Thus, it is reasonable to consider the average linear mass
density of the string, which we will write as µ = Nm/L.
Note that in the continuum limit as N →∞ and m→ 0
in such a manner that Nm approaches some finite con-
stant, µ becomes exactly the linear mass density of the
string. In this limit, transverse waves on the string will
propagate with velocity v =

√
T/µ. For convenience, we

will utilize the variables µ and v in the discrete case.
Our string with N masses has N vibrational modes

with frequencies

ωk =
2v

d
sin

(
kπ

2N + 1

)
(1)

for k = 1, ..., N . Treating each vibrational mode as a
quantum harmonic oscillator, the quantum-mechanical
ground state energy of our system is

Egs =
N∑

k=1

~ωk = Im

[
2v~
d

N∑

k=1

(
exp

(
iπ

2N + 1

))k ]
(2)

Noting that the sum in Eq. (2) is a geometric series, we
can evaluate it explicitly to get

Egs =
~v
2d

(
cot

(
4d

2L

)
− 1

)
(3)

In the continuum limit as N → ∞, m → 0 and thus
d = L/(N + 1)→ 0, we find that

Egs = ~v
[

2L

πd2
− 1

2d
− π

24L

]
+O(d2) (4)

which diverges as ∼ 1/d2. This divergence is expected
since we are summing over the non-zero ground state
energies of infinitely many quantum harmonic oscillators.
We can think of Egs as a function of the length of the
rope, and so we will denote it by Egs(L). If we clamp our
rope of length L so that it is divided into two segments of
length a and L− a respectively, since the clamp imposes
a fixed boundary condition we find that the new ground
state energy is Egs(a) +Egs(L−a) which is just the sum
of the ground state energies of each of the two segments.
Note that Egs(a) and Egs(L − a) both diverge to +∞,
and likewise so does their sum. Explicitly, we have that
the sum of Egs(a) and Egs(L− a) is

~v
[

2L

πd2
− 1

d
− π

24

(
1

a
+

1

L− a

)]
+O(d2) (5)

Let us denote Eq. (5) by Etot(a) which we treat as a
function of a since a can be varied as the clamp is moved.

We have not computed the ground state ψ of our
clamped string, but we know from quantum mechanics
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that 〈H〉ψ = 〈T 〉ψ + 〈U〉ψ where H is the hamiltonian
of the system, T is the kinetic energy operator, and U is
the potential energy operator. Since ψ is an eigenstate
of H, we have that 〈H〉ψ = Egs(a). Additionally, since
the ground state of a single quantum harmonic oscillator
has zero expectation for its kinetic energy, by the linear-
ity of expectation 〈T 〉ψ = 0 and thus 〈U〉ψ = Egs(a).
Therefore, the expected force experienced by the sys-
tem in its ground state by varying the parameter a is
〈F 〉ψ = − ∂

∂a 〈U〉ψ = − ∂
∂aEgs(a), and so utilizing Eq. (5)

we obtain

〈F 〉ψ = − ~vπ
24a2

(6)

which is non-zero. The above result is finite since it is
independent of d. Therefore, the string will experience
an expected longitudinal force of −~vπ/24a2 if the clamp
is at position a. We see that the different energies of the
ground states of the two segments of the string have gen-
erated a Casimir force. As pointed out in [4], for a string
the propagation velocity v can be at most on the order
of the speed of sound, and so the Casimir force is way
too small to measure in any practical way since ~ is very
small. When we repeat this calculation for electromag-
netic waves, the analog of v will be the speed of light,
and the corresponding Casimir force is large enough to
be measurable.

Before proceeding to the quantum field theory case,
we make a brief mathematical digression. You might
think that it seems reckless to treat the divergent terms
in Eq. (5) as “infinite constants” so that they vanish
when we take the derivative with respect to a. How-
ever, the problem is more subtle, since we could have first
taken the derivative with respect to a in the discrete ap-
proximation, and then taken the limit to the continuum
approximation. Therefore, the real question is whether
the derivative of a limit is the limit of a derivative. For-
mally, one is allowed to make such an interchange only if
the limit of the ground state energy converges uniformly,
which in our case it does not since Eq. (5) is divergent.

Since there is no mathematically rigorous way in which
Eq. (5) can be differentiated with respect to a, we can
instead define its derivative with respect to a as the con-
tinuum limit of the expected force experienced by the
ground state of the discrete system. This definition is
not useful for mathematicians because it does not aid in
formal proofs, but it is useful for physicists, being physi-
cally well-motivated in our present context. In particular,
perfectly continuous strings do not exist in our physical
world and likewise continuum descriptions of nature such
as quantum field theories do not hold at arbitrarily small
length scales.

We will experience an analogous but more difficult
mathematical dilemma when we utilize quantum field
theory to do a similar calculation of Casimir forces. In
the next section, we devlop the mathematical machinery
to resolve this dilemma.

III. MATHEMATICAL INTERLUDE

In the calculation of the Casimir force between two
conducting plates, we are going to encounter divergent
sums and integrals which are hard to make sense of.
Therefore, we briefly develop the mathematical appara-
tus necessary to deal with these divergences. As a moti-
vating example, consider the power series

f(x) =

∞∑

n=0

xn (7)

which converges to 1/(1−x) on [0, 1). Let us inquire what
it means to evaluate f(x) at x = 2. We will get the sum∑∞
n=0 2n which diverges. But what if we wanted to assign

a value to f(2) that is finite? One idea is to consider the
formula 1/(1 − x) which is only equal to f(x) for x in
[0, 1), and then define f(2) = 1/(1 − 2) = −1. This
procedure is perfectly reasonable, and works as long as
x 6= 1. However, it seems very arbitrary, because it does
not appear that there is anything preventing someone
from defining f(2) = 10 or f(2) = −π.

Nevertheless, there is a surprising fact: the only rea-
sonable value to assign f(2) is −1. This fact is by no
means obvious, but in this section we will show it is cor-
rect. In general, we will be able to show that many di-
vergent sums and integrals can be assigned an essentially
unique finite value, which will be useful in future calcu-
lations.

The required tool is complex analysis. The derivative
of a complex function f(z) is defined by

f ′(z) := lim
ε→0

f(z + ε)− f(z)

ε
(8)

for complex ε. Alternatively, we can write this as

f ′(x+ iy) = lim
(ε1,ε2)→(0,0)

f(x+ iy + ε1 + iε2)− f(x+ iy)

ε1 + iε2
(9)

which is just a standard multivariable limit. The limit
may not exist in which case the derivative does not ex-
ist, but for our purposes we will assume that all of the
complex functions we encounter are differentiable.

One of the most remarkable facts about complex func-
tions is if a complex function is once differentiable, then
it is infinitely differentiable. Let us sketch a proof of this
fact. First, let Cr be a circle of radius r in the complex
plane centered around some point a and parameterized
counter-clockwise. Consider the following contour inte-
gral:

˛

Cr

1

z − a dz (10)

Changing variables by letting z = reiθ + a, the above
integral becomes

ˆ 2π

0

1

reiθ
ireiθ dθ = 2πi (11)
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and thus

1

2πi

˛

Cr

1

z − a dz = 1 (12)

Now, if f(z) is a complex differentiable function, then for
some small real number ε > 0, we have

1

2πi

˛

Cε

f(z)

z − a dz =
1

2πi

˛

Cε

[
f(z)− f(a)

z − a +
f(a)

z − a

]
dz

(13)

=
1

2πi

˛

Cε

f(z)− f(a)

z − a dz + f(a) (14)

≈ 1

2πi

˛

Cε

f ′(a) dz + f(a) (15)

≈ 1

2πi
(2πε)f ′(a) + f(a) (16)

−→ 0 + f(a) as ε→ 0 (17)

Therefore

f(a) = lim
ε→0

1

2πi

˛

Cε

f(z)

z − a dz (18)

which holds if f is differentiable. If we differentiate both
sides of Eq. (18) n times with respect to a we find that

f (n)(a) = lim
ε→0

n!

2πi

˛

Cε

f(z)

(z − a)n+1
dz (19)

which likewise holds if f is differentiable. Thus, if f is
differentiable, it is infinitely differentiable as we claimed.

There is actually an even stronger statement that we
can prove: if a complex function is once differentiable,
then it is analytic, meaning that it can be written as a
power series. The argument is as follows [5]:

f(z) = lim
ε→0

1

2πi

˛

Cε

f(w)

w − z dw (20)

= lim
ε→0

1

2πi

˛

Cε

f(w)

(w − a)− (z − a)
dw (21)

= lim
ε→0

1

2πi

˛

Cε

1

w − a ·
1

1− z−a
w−a

dw (22)

= lim
ε→0

1

2πi

˛

Cε

1

w − a ·
∞∑

n=0

(
z − a
w − a

)n
dw (23)

=

∞∑

n=0

1

n!
(z − a)n

[
lim
ε→0

n!

2πi

˛

Cε

f(w)

(w − a)n+1
dw

]

(24)

=

∞∑

n=0

1

n!
f (n)(a)(z − a)n (25)

The upshot of all of our work thus far is that we can
now discuss analytic continuation. Let us reconsider the
function f from Eq. (7), but this time we define it over
the complex numbers so that f(z) =

∑∞
n=0 z

n. Since

f can be expressed as a power series for |z| < 1, it is
analytic for |z| < 1. If we want to extend f(z) so that it
is defined for |z| > 1, then we want to find an analytic
function F that agrees with f(z) on |z| < 1, but that is
also defined for |z| > 1, such as at z = 2. One analytic
function that does the job is 1/(1− z) which agrees with
f(z) if |z| < 1 and is also defined for |z| > 1. Note that
1/(1−z) is analytic for |z| < 1 and |z| > 1 since it is once
differential for |z| < 1 and |z| > 1, which is a sufficient
condition. We can now ask if there are any other analytic
functions which agree with f(z) if |z| < 1 and which are
also defined for |z| > 1. The answer is actually no, and
1/(1−z) is the unique analytic function that satisfies the
necessary conditions. We call this function the analytic
extension of f(z).

The general statement is this: if a complex function f
is analytic on some region U of the complex plane and
has an analytic extension F to the entire complex plane
such that F agrees with f on U , then F is the unique
extension [5]. To prove this, say that F1 and F2 are both
analytic extensions of f . Then F1−F2 is zero on U , along
with all of its derivatives. This implies that the power
series expansions of F1 and F2 are the same, and thus
they are the same function.

From this point forward, if we encounter a divergent
integral or sum which depends an a complex parameter,
we will evaluate its corresponding unique analytic exten-
sion in the hope that we will get a finite answer. It is an
interesting question as to why the laws of nature should
abide by analytic extensions. In other words, why do
we expect our mathematical trickery to yield physically
correct answers? One compelling reason is that since an-
alytic extensions are unique, if nature is going to provide
us with a non-divergent observable, then analytic exten-
sions appear to be the only possibility. A more heuristic
approach is to let experiments tell us if analytic exten-
sions are justified in our calculations. Interestingly, the
answer is yes in many circumstances, including for the
calculations in the following section.

IV. CASIMIR FORCES BETWEEN NEUTRAL
CONDUCTING PLATES

We will derive the Casimir force between two neutral
conducting plates, based on the derivations in [6,7,8,9].
So consider two identical perfectly conducting parallel
plates, each with surface area S which we take to be very
large. Furthermore, say that the two plates are a distance
a apart, and are in vacuum. From classical electromag-
netism, we know that the component of the electric field
parallel to the plates must disappear on the boundary of
each plate, and that the component of the magnetic field
orthogonal to the plates also disappears on the boundary
of each plate.

With these boundary conditions in mind, we can treat
the electromagnetic field between the plates as infinitely
many quantum harmonic oscillators with frequencies
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ωk = c|k|. To satisfy the boundary conditions, we must
have that k = (k1, k2, πn/a) = (k⊥, πn/a) where n is
an integer and k⊥ is an element of R2. Therefore, the
frequencies take the form

ωk⊥,n = c

√
k21 + k22 +

(πn
a

)2
(26)

Noting that each mode corresponds to a quantum har-
monic oscillator with ground state energy 1

2~ωk⊥,n, we
can determine the ground state energy of the vacuum
between the plates as a function of a by

Egs(a) =
~
2

¨

R2

dk1dk2
(2π)2

( ∞∑

n=−∞
ωk⊥,n

)
S (27)

Let us rewrite this integral in the form

Egs(a, δ) =
~
2

¨

R2

dk1dk2
(2π)2

( ∞∑

n=−∞
ω1−2δ
k⊥,n

)
S (28)

where by construction limδ→0Egs(a, δ) = Egs(a) for a
complex variable δ. Now we change variables twice,
switching to polar coordinates (r, φ) by letting r2 =
k21 + k22 and then integrating out over φ, followed by let-
ting y = ar/nπ. The end result is

Egs(a, δ) =
~c
2π

ˆ ∞

0

dy y(y2 + 1)
1
2−δ

( ∞∑

n=1

(nπ
a

)3−2δ
)
S

(29)
Evaluating the integral, we find that
ˆ ∞

0

dy y(y2 + 1)
1
2−δ = −1

2

ˆ ∞

0

du (u+ 1)
1
2−δ (30)

= −1

2

(
1

3/2− δ

)
(31)

which is defined only if the real part of δ is greater than
3/2. The reason is that the integral in Eq. (30) only
converges if Re(δ) > 3/2. However, letting Eq. (31)
be the analytic extension of the integral, we can justify
evaluating the integral in the limit δ → 0 by evaluating
the extension at δ = 0. Factoring out constants, Eq. (29)
becomes

Egs(a, δ) = −S ~cπ2

6a3

∞∑

n=1

1

n2δ−3
(32)

which we rewrite as

Egs(a, δ) = −S ~cπ2

6a3
ζ(2δ − 3) (33)

where we have introduced the Riemann zeta function ζ(s)
which is defined by ζ(s) =

∑∞
n=1

1
ns . Since ζ(s) has a

unique analytic extension to s = −3 where ζ(−3) = 1
120 ,

we can take the limit of Eq. (33) as δ → 0 to obtain

Egs(a) = −S ~cπ2

720a3
(34)

The Casimir force is thus −∂Egs(a)/∂a, and dividing
this by the surface area S of the plates, we find that
the Casimir pressure is

Pcas = − ~cπ2

240a4
(35)

To obtain a pressure on the order of micropascals, the
distance a between the plates needs to be on the order
of micrometers. Fortunately, it is possible to measure
pressures on this scale.

In the last twenty years, there have been numerous
experimental realizations of the Casimir effect between
conducting bodies. The earliest conclusive results were
obtained by Lamoreaux in 1997, in which he examined
the Casimir pressure between a conducting sphere and
plate using a sophisticated torsion pendulum [3]. Lam-
oreaux used a sphere and a plate instead of two parallel
plates to simplify the task of alignment. In particular, it
is much easier to make a plate lie nearly tangential to a
sphere than to align two parallel plates with high preci-
sion. Since a sphere has non-zero curvature, the formula
for the Casimir pressure in Eq. (35) must be modified by
a multiplicative factor of 2πR where R is the radius of
the sphere. With separations on the order of microme-
ters, Lamoreaux measured pressures that agree with the
theory to within five percent [3].

Soon after Lamoreaux’s experiment, Mohideen and
Roy performed a more precise variation using an atomic
force microscope to measure the force between a con-
ducting sphere and plate with separations on the order of
tenths of micrometers [10]. Their measured forces agree
with the theory to within one percent [10]. Despite the
relative ease of the sphere and plate setup, the parallel
plate setup was ultimately instantiated by Bressi et. al.
[11]. With separations on the order of micrometers, they
were able to measure Casimir forces that agree with the
theory to within fifteen percent [11].

There is current interest in the physics community
in performing measurements of the Casimir effect with
more complex boundary conditions because such mea-
surements provide a unique probe of the quantum vac-
uum [9]. Additionally, recent provocative work attempts
to use measurements of the Casimir effect to constrain
the possibilities for extra dimensions of spacetime [9].

V. CASIMIR FORCES IN A UNIFORM
GRAVITATIONAL FIELD

The unification of quantum field theory with general
relativity is an old and difficult program. While there
is no complete theory of quantum gravity, we can still
perform quantum field theoretic calculations in curved
spacetime, where we treat the gravitational field as clas-
sical. Consider a gravitational field with metric ten-
sor gµν which defines the infinitesimal distance element
ds2 = gµνdx

µdxν . We will now derive the redshift of a
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photon in a gravitational field [12,13]. For our analysis,
we will use the ηµν = diag(−1, 1, 1, 1) sign convention.

Say we have a clock which ticks every ∆t seconds in
the absence of gravity. In our gravitational field, the
space-time interval between ticks satisfies

c∆t = (−gµνdxµdxν)
1
2 (36)

Taking the inverse of both sides, multiplying by dt and
rearranging terms, we find that if the clock has 4-velocity
dxµ/dt then

c dt = ∆t

(
−gµν

dxµ

dt

dxν

dt

)− 1
2

(37)

where dt is the time between ticks of the clock. If the
clock is at rest, then dxµ/dt = (c, 0, 0, 0) and so Eq. (36)
reduces to

dt = ∆t(−g00)−
1
2 (38)

On Earth, our local gravitational field is best described
by the weak field metric

gµν =



−(1 + 2gz/c2) 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


 (39)

where g ≈ 9.8m/s2 is the average gravitational accelera-
tion at sea level and the coordinate z is the height above
the ground. Note that the metric in Eq. (39) is not time
dependent which will simplify our argument.

Now, consider an atom at rest at z = 0 which emits a
photon of frequency ν1 in the positive z-direction due to
an atomic transition. Also, say that we are on a crane
exactly above the atom at z = a. Since our gravitational
field is time-independent, the crest of a wave from the
electromagnetic radiation will take the same amount of
time to reach us no matter when we perform the exper-
iment. Therefore, the amount of time that we observe
between crests of the electromagnetic radiation is

dt1 = ∆t (−g00(z = 0))−
1
2 (40)

where ∆t is the time between crests in the absence of
gravity. However, if we observed the same atomic tran-
sition from an identical atom at the top of our crane,
then we would measure the time between the crests of
the electromagnetic radiation to be

dt2 = ∆t (−g00(z = a))−
1
2 (41)

Taking the ratio of Eq.’s (40) and (41), we find that the
ratio between the angular frequency of the photon emit-
ted from the atom in the crane and the angular frequency
of the photon emitted from the atom on the ground is

ωground
ωcrane

=

(
g00(z = 0)

g00(z = a)

) 1
2

=
1

(1 + 2ga/c2)
1
2

(42)

We see from the above equation that the photon from
the ground was redshifted as it climbed the gravitational
potential. In other words, if the initial frequency of the
photon when emitted from the ground is ωground, then
the frequency of the photon at height z tales the form
ωground(1 + gz/c2) to first order in z. Therefore, if the
photon emitted from the ground has a uniform proba-
bility of being anywhere in the region 0 ≤ z ≤ a, we
can say that to first order in a it has an average angular
frequency

ωavg =
1

a

ˆ a

0

ω0

(
1 +

gz

c2

)
dz =

(
1 +

ga

2c2

)
ω0 (43)

Let us recall our two identical perfectly conducting par-
allel plates in vacuum. We will impose the weak field
metric on the vacuum, place one of the plates in the
z = 0 plane, and the other plate parallel in the z = a
plane. If there was no gravitational field, then as in
Section IV, we could integrate and sum over all of the
photon modes between the plates, treating each one as a
quantum harmonic oscillator with frequency of the form
ωk⊥,n = c

√
k21 + k22 + (πn/a)2 as in Eq. (26). But in

the gravitational field, the story is slightly different. In-
spired by Eq. (43), we should treat each photon mode
as a quantum harmonic oscillator with average frequency
approximately of the form

ωk⊥,n,avg =
(

1 +
ga

2c2

)
c

√
k21 + k22 +

(πn
a

)2
(44)

Since we have just changed the form of our frequencies
by a constant factor from the non-gravitational case, the
calculation is identical to the one in Section IV, but with
an overall factor of (1 + ga/2c2). Thus, we find that for
the weak field metric, the Casimir energy between our
parallel plates is approximately

Egs,grav = −
(

1 +
ga

2c2

)
S

~cπ2

720a3
(45)

and the Casimir pressure is approximately

Pcas,grav = − g

2c2
~2cπ2

720a3
−
(

1 +
ga

2c2

) ~cπ2

240a4
(46)

which are the analogs of Eq.’s (34) and (35). While our
calculation agrees with other theoretical calculations [14],
we do not yet know if it agrees with experiment. To
understand how difficult it is to observe this effect ex-
perimentally, we calculate the percent difference between
Pcas,grav in Eq. (46) and Pcas in Eq. (35) to get

|Pcas − Pcas,grav|
Pcas

= a
2g

3c2
≈ a · (7.27 · 10−17m−1) (47)

Therefore, for any reasonable a, the effect will be impos-
sible to measure with current technology. Nonetheless,
our result predicts that the Casimir energy is different in
curved spacetime, which is a far-reaching theoretical re-
sult. If instead we had chosen a more intricate geometry
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for our spacetime, the result implies that an experimenter
would measure different values for the Casimir energy de-
pending on where he is in spacetime. This complication
is one of the central themes of quantum field theory in
curved spacetime, and in general makes calculations very
difficult.

VI. CONCLUSION

The Casimir effect exemplifies the counter-intuitive na-
ture of the quantum vacuum, and the divergences in its
calculation emphasize the necessity for a more mathe-
matically rigorous theory of quantum fields. In the mean
time, techniques like analytic continuation suffice to pro-

vide what so far have been experimentally correct re-
sults. The calculation of the Casimir effect in curved
spacetimes hints at the beauty and complexity of quan-
tum gravity. A deeper understanding of the interplay
between the quantum vacuum energy and the curvature
of spacetime is a step in the right direction towards re-
solving the greatest unsolved problem in physics.
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In this paper we present a derivation of the energy level splittings in an external magnetic field. The
results for the energy level splittings are presented in the form of a Breit-Rabi diagram, using Rb87

S1/2 manifold of states. Using the Breit-Rabi diagram, we show how to decide which states can be
captured in a magnetic trap, and which trap strength should be chosen for particular transitions to
be magnetic field independent.

I. INTRODUCTION

Quantum physics was initially developed in order to
better explain the structure and behavior of atoms, and
atoms still remain its central focus because they display
a variety of different quantum phenomena. A central
question in the atomic physics is precise determination
of the atomic energy levels and their dependence on the
external effects. The goal of this paper is to examine the
behavior of energy levels of atoms in an external mag-
netic field. While this problem may seem rudimentary,
it reveals many interesting aspects of quantum physics,
particularly the solutions to non-diagonal Hamiltonians.
The presented results have many interesting experimen-
tal applications, some of which will be explored in this
paper.

The exploration of atomic energy levels begins with
solving the Schrodinger equation in the Coulomb poten-

tial, V (r) = − e2r . The well-known solutions reveal the
quantization of energy levels which defer with respect to
their main quantum number n, but are degenerate with
respect to the orbital quantum number L, spin quantum
number S, as well as their projections on the quantiza-
tion axis, Lz and Sz. If we modify the Coulomb poten-
tial so that it includes higher order contributions, some
of these degeneracies are broken. In order to understand
the effects of magnetic field, we need to first discuss the
relevant correction terms to the Coulomb Hamiltonian
(the fine and hyperfine structure) and how they relate to
the choice of basis for eigenstates in a magnetic field.

II. CORRECTIONS TO COULOMB
HAMILTONIAN

A. Choice of basis

In order to determine energy eigenstates of the
Coulomb Hamiltonian H0 and additional terms, we need
to simultaneously diagonalize them. This problem can
be solved by a suitable choice of basis which contains a
complete set of commuting observables (CSCO)[7]. The
problem of finding a CSCO usually reduces to an angular
momenta addition problem, as it will be described in the
following example.

Assume we have two different angular momenta, ~J and

~K, which commute with H0. That means that the CSCO
for this problem contains H0, K2, J2, Jz and Kz. If we

now introduce a coupling term proportional to ~J · ~K,
the new term does not commute with the initial CSCO
since ~J · ~K = JxKx + JyKy + JzKz and [JxKx, Jz] =
[Jx, Jz] 6= 0. Therefore, in order to make a new CSCO
which will account for all the terms in the Hamiltonian,
we need to reparametrize the Hamiltonian. We do this

by introducing a new angular momentum operator, ~F =
~J + ~K. If we square both sides of this expression, we get

F 2 = J2 + K2 + 2 ~J · ~K, from where we can express the

new term in the Hamiltonian as F 2−J2−K2

2 . Therefore,

the new CSCO should include the operator F 2. However,
since [F 2, Jz] 6= 0 and [F 2,Kz] 6= 0, we have to exclude
Jz and Fz from CSCO. In order to complete the CSCO,
we then add Fz = Jz + Kz to it. Therefore, the new
CSCO for H0 alongside with a coupling term is CSCO =
{H,K2, J2, F 2, Fz}.

B. Fine structure

The first correction to the Coulomb potential is the
fine structure correction, which includes several contribu-
tions. These are the relativistic second order contribution
to the electron kinetic energy, spin-orbit coupling and
the so-called Darwin term, which describes the changes
to the Coulomb potential due to the fluctuations in the
electron position [3]. The spin-orbit coupling comes from
the fact that electrons have intrinsic angular momenta
or spins, which tend to align with the external magnetic
field. From the electron frame of reference, the protons
are moving around them and thus creating a magnetic
field due to their charge. Therefore, the electronic spins
will interact with that field, and the interaction Hamil-

tonian is proportional to the term ~L · ~S, where ~L is the

electron orbital angular momentum and ~S its spin angu-
lar momentum. If we define the total electron angular

momentum as ~J = ~L + ~S, the total fine structure cor-
rection splits the energy levels with different values of J
(the convention used throughout this paper is that an

angular momentum operator ~X has an associated eigen-
value X such that X2 |X,mX〉 = h̄2X(X + 1) |X,mX〉).
If we use the spectroscopic notation for electron energy
levels, LJ , the fine structure interaction would split the
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first excited state of an alkali atom into S1/2, P1/2 and
P3/2. From the previous discussion about the CSCO,
it is clear that the CSCO for the Coulomb potential
alongside with fine structure should be CSCO(FS) =
{H +Hfs, L

2, S2, J2, Jz}.

C. Hyperfine structure

While the fine structure takes into account the elec-
tronic spin and motion, the hypefine correction takes into
account the internal structure of the nucleus, namely its
multipole moments (there are also corrections due to the
nuclear finite mass and volume called the “mass shift”
and the “volume shift”, but we will not consider them in
this paper)[1, 2]. Permanent nuclear multipole moments
are defined as non-zero expectation values of multipole
operators in the nuclear energy eigenstates [3]. For ex-
ample, permanent magnetic dipole moment of a nucleus
in its ground state |Ψgs〉 is non-zero if 〈Ψgs| ~µ |Ψgs〉 6= 0.
Multipole moments can in general be marked by their
order l (e.g. l = 0 monopole, l = 1 dipole). The nu-
clear multipole moments of order l come from the nu-
clear angular momentum, and are proportional to spher-
ical harmonics Yl,m [3]. The allowed permanent nuclear
multipole moments with the nuclear angular momentum
I obey the following selection rules:

• l ≤ 2I

• electric multipoles can have even values of l

• magnetic multipoles can have odd values of l

The last two rules come from parity considerations - an
electric monopole l has a parity (−1)l, and thus only
when (−1)l = 1 the monopole has a non-vanishing ex-
pectation value in an eigenstate. The opposite is true for
magnetic monopoles l - their parity is (−1)l+1, so only
the odd values of l produce non-vanishing expectation
values.

Therefore, the nuclei are allowed to have odd electric
dipole moments (monopole, quadrupole etc) and even
magnetic dipole moments (dipole, octopole etc). The
electric monopole is the dominant term which is ac-
counted for in the Coulomb interaction. The next domi-
nant term is the magnetic dipole moment, which we will
consider in this paper.

The magnetic dipole moment of a nucleus can be ex-
pressed as

~µI = gIµB
me

M

~I

h̄
(1)

where µB is the Bohr magneton, me electron mass, M
mass of the nucleus, gI the nuclear gyromagnetic ratio

and ~I the nuclear spin [3]. From here we can see that the
nuclear dipole moment is about 2000 times smaller than
the electric dipole moments due to the mass ratio in the
expression.

The nuclear magnetic moment couples to the magnetic
field produced by the electrons at the core through the
Hamiltonian HHFS = −µI ·BJ . Since the magnetic field
BJ is proportional to the total angular momentum of the

electron, ~J , we can rewrite the hyperfine Hamiltonian as:

HHFS =
C

h̄2
~I · ~J (2)

where C is the hyperfine coupling constant which ab-
sorbed the constants from BJ and µI [1, 2]. If we define

the total atomic angular momentum to be ~F = ~I + ~J ,
HHFS can be rewritten as:

HHFS =
C

2h̄2 (F 2 − I2 − J2) (3)

Therefore, for a given I and J the hyperfine structure
splits the energy levels with different values of quan-
tum number F . The CSCO for the hyperfine structure
added to the fine structure and Coulomb potential is
CSCO(HFS) = {H +Hfs +Hhfs, L

2, S2, J2, I2, F 2, Fz}.

D. External magnetic field

If we put an atom in an external magnetic field ~B, the
total atomic magnetic moment will couple to the external
field as

HB = −~µ · ~B = −(~µJ + ~µI) · ~B (4)

Since µJ = gJµB
~J
h̄ , µI is given by the equation 1 and

gI 6= gJ , we cannot in general express HB in terms of
~F . Therefore, the CSCO for HB is CSCO(HB) = {H +
Hfs +HB , L

2, S2, J2, I2, Iz, Jz}.
In order to estimate the energy levels of an atom in

an external magnetic field, we need to include energy
contributions coming from HHFS and HB . The magni-
tude of contribution from HB depends on the strength
of magnetic field, B, so for low values of B, energy con-
tribution from HHFS is dominant and thus cannot be
neglected. Moreover, the energy contribution from HB

can be divided into the nuclear spin contribution, −µIB,
and the electron contribution, −µJB. The electron con-
tribution is around 2000 times bigger than the nuclear
spin contribution due to the proton-electron mass ratio
(as explained in the section II.C). Based on the relative
magnitudes of contributions of HHFS and parts of HB ,
we can divide the problem of finding energy levels into
three regimes [3]:

1. Weak field: Weak field regime is defined as the
range of values of B for which HHFS � HB , or in
terms of energy

C

2
(F (F + 1)− I(I + 1)− J(J + 1))�

µBB(gJJz − gIIz)
(5)

We therefore treat the weak field regime in the
CSCO(HFS).
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2. Intermediate field: Intermediate field regime
corresponds to values of B for which electron con-
tribution of HB is bigger than the HHFS , but the
nuclear spin contribution is still negligible. This
translates into energy condition:

µBBgJJz >
C

2
(F (F + 1)− I(I + 1)− J(J + 1))�

µBBgIIz
(6)

Since the most dominant contribution comes from
HB , we treat this regime in CSCO(HB).

3. Strong field: Strong field regime is defined as the
range of values of B for which both parts of HB are
much bigger than HHFS , which translates into an
energy condition opposite from the one presented in
equation 5. We treat the strong field regime in the
CSCO(HB), same as the intermediate field regime.

Since L, S, J and I are suitable quantum numbers for all
the regimes, we will exclude them from the notation of
the energy eigenstates with the underlying assumptions
that they are known.

III. WEAK FIELD LIMIT

As already explained, in the weak field limit the suit-
able CSCO is CSCO(HFS). We can then rewrite the
Hamiltonian H ′w = HHFS +HB as

H ′w =
C

2h̄2 (F 2 − I2 − J2) + gFµB
~F

h̄
· ~B (7)

where gF is the composite Lande g factor derived in the
following subsection. The derivation of the Lande gF
factor assumes that our total Hamiltonian is diagonal in
the F basis, an approximation which we use in the weak

field limit. If we assume that ~B = B~ez, we can rewrite
the H ′w as

H ′w =
C

2h̄2 (F 2 − I2 − J2) + gFµB
Fz
h̄
B

The shift of the energy eigenvalues due to H ′w can be
found as ∆Ew = 〈F, Fz|H ′w |F, Fz〉, or

∆Ew =
C

2
(F (F+1)−I(I+1)−J(J+1))+gFµBFzB (8)

A. Lande g factors

In general, the magnetic moment ~µX is proportional

to ~X with the constant of proportionality

~µX
~X

=
µBgX
h̄

(9)

where µB is the Bohr magneton and gX is the Landè

g factor associated with the angular momentum ~X [2].
Therefore, the g factor should encode dependence of the
Hamiltonian, and therefore energy splittings, on different
quantum numbers relevant to the problem. For electrons,
the gL factor for orbital angular momentum equals 1,
whereas the gS factor for spin angular momentum equals
2. The g factors for coupled angular momenta can be
found by combining the coupling contributions. How-
ever, in combining the contributions we assume that the
Hamiltonian is diagonal in the basis of quantum numbers
we use.

1. Spin ~S and orbital ~L angular momenta

If we are considering both the spin and the orbital
angular momentum of an electron, we can write the total
magnetic moment using the formula 9 as:

~µ =
µB
h̄

(gL~L+ gS ~S) (10)

Our goal is to express ~µ in terms of only one angular mo-
mentum and its associated g factor. Since gL 6= gS , we
cannot factor them out from the equation 10 and express

only in terms of ~J . Therefore, we have to add them as

vectors, keeping in mind that both ~L and ~S have an or-

thogonal and a colinear component to ~J . This addition is

graphically described in the figure 1. Since both ~L, ~S and

therefore ~J precess around the magnetic field, the motion

of ~L and ~S can be split into a component that precesses

around ~J and a component that is colinear with ~J . The
contribution of the precessing component averages out to

zero [2], so to get ~J , we should take the projections of ~L

and ~S onto it:

~µJ =
µB
h̄

(gLL cos(α) + gSS cos(β)) (11)

The angles α and β can be obtained from the figure

1 using the law of cosine as cos(α) = J2+L2−S2

2|J||L| and

cos(β) = J2+S2−L2

2|J||S| . Substituting these expressions into

the equation 11, using that gJ = µJ h̄
µB |J| , and noting that

the eigenvalues of a general angular momentum operator
X2 are h̄2X(X + 1), we can write gJ as:

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(12)

where in this notation J , S and L are quantum numbers

associated with operators ~J ,~S and ~L.

2. Nuclear ~I, spin ~S and orbital ~L angular momenta

In the case when we do not want to neglect nuclear

angular momentum ~I and the Hamiltonian describing the
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FIG. 1: Addition of ~L and ~S. The precessing components
perpendicular to ~J average out to zero, whereas the colinear
components contribute in proportion to cos(α) and cos(β).
Adapted from [2]

system depends on it, we can define a new total angular

momentum of the system to be ~F = ~J + ~I. The process
of deriving gF is completely analogous to the process of

obtaining gJ described before if we substitute ~L and ~S

with ~J and ~I. The equation 11 now becomes

~µF =
µB
h̄

(gJJ cos(α′) + gII cos(β′))

We can make a simplification here by noting that the
nuclear magnetic moment µI is much smaller than µJ as
a consequence of formula 1, so we can neglect the second
term. The expression for gF simplifies then to

gF = gJ
F 2 + J2 − I2

2F 2

After we substitute squares of angular momenta opera-
tors with their eigenvalues, we can rewrite gF as

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
(13)

where gJ is given by equation 12.

Since this paper will use Rb87 S1/2 level to exemplify
the dependence of the energy level splitting on the exter-
nal magnetic field, it is useful to calculate the possible
values of gJ and gF for this state. Since the nuclear spin
of Rb87 is I = 3/2, and S = 1/2 for electrons in general,
we can narrow down the possible values of the quantum
numbers F ,J and L to those in the table I. The possible
values of J (and analogously F ) can be found from the
angular momentum addition rule, |L− S| ≤ J ≤ |L+ S|
[7].

I L |L− 1
2
| ≤ J ≤ |L+ 1

2
| gJ |J − I| ≤ F ≤ |J + I| gF

3
2

0 1
2

2
1 − 1

2

2 1
2

TABLE I: The g factors for I = 3/2 ground state.

IV. INTERMEDIATE AND STRONG FIELD
LIMIT

According to the previous definitions, the energy con-
tribution ofHB dominates over the contribution ofHHFS

in both the intermediate and the strong field limit. Since
both the electron and the nuclear spin part of HB have
CSCO(HB), we will treat the strong and intermediate
regime together in this basis. In that case, the equa-
tion 7 is no longer valid since the gF factor cannot be
defined. The suitable eigenbasis becomes the uncoupled
basis, |Iz, Jz〉 [3]. Due to the angular momentum addition
rule, these quantum numbers are related as Fz = Iz+Jz.
The Hamiltonian in the uncoupled basis becomes

H ′s =
C

h̄2
~I · ~J +

µB
h̄

(gJ ~J − gI~I) · ~B (14)

If we again assume that ~B = B~ez, we can rewrite the
Hamiltonian as

H ′s =
C

h̄2
~I · ~J +

µB
h̄
B(gJJz − gIIz)

The Hamiltonian H ′s cannot be further simplified and
therefore cannot be diagonalized in the |Iz, Jz〉 basis due

to the coupled term ~I · ~J . For arbitrary I and J , we
would have to find the eigenvalues of the non-diagonal
Hamiltonian by evaluating 〈Iz, Jz|H ′s |Iz, Jz〉. The sec-
ond term in the equation 14 is diagonal in this basis and
therefore its evaluation is straight-forward. In order to

evaluate the first term, we have to express ~I · ~J in terms
of the raising and lowering operators I± and J±. That
can be done in the following way:

~I · ~J =
1

2
(I+J− + I−J+) + IzJz (15)

However, even after evaluating the matrix elements of
H ′s, we cannot always analytically find the eigenvalues
of an N × N matrix. In order to show an example of
an analytic derivation of the eigenvalues of H ′s, in this
paper we will further explore S1/2 level of Rb87 which
has I = 3/2. The goal of this calculation is to express
the energy eigenvalues of H ′s as a function of magnetic
field strength and quantum number Fz, which is a suit-
able parameter since it appears in the weak field limit as
well. We define a dimensionless magnetic field strength

parameter δ = (gI+gJ )µBB
2C . Assuming Fz is known, we

can express Iz = Fz − Jz. Since Jz has two possible val-
ues of ±1/2, the eigenbasis for the Rb87 ground state then
becomes two-dimensional, with eigenvectors

∣∣Fz − 1
2 ,

1
2

〉

and
∣∣Fz + 1

2 ,− 1
2

〉
[4].
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We can solve for the eigenvalues of a two-by-two matrix
representing H ′s using any of the standard algorithms.
The result of this calculation, with I = 3/2, is

∆E± = −C
4
− gIµBFzB ± C

√
δ2 + δFz + 1 (16)

The equation 16 is known as the Breit-Rabi equation for
the energy level shifts of I = 3/2 S1/2 atomic energy
state in an external magnetic filed [6]. It is expressed in
terms of a dimensionless parameter δ which characterizes
the magnetic field strength.

In order to check for the consistency of results in the
weak and strong field limits, we can set B = 0 and calcu-
late the energy eigenvalues in both cases. Using formula
16 for the strong field limit, and setting B = δ = 0,
we get ∆E ∈ (− 5

4C,
3
4C). On the other hand, the en-

ergy separation in the weak field limit with B = 0 and
F ∈ (1, 2) as given by formula 8 is ∆E ∈ (− 5

4C,
3
4C),

which reproduces the zero field result of the strong field
expression.

A. Breit-Rabi diagrams

Using equation 16 for strong and intermediate mag-
netic field, and equation 8 for weak magnetic field, we
can plot the behavior of the energy levels of Rb87 S1/2

at different values of B. The energy level diagram cor-
responding to the dependence of the energy splitting on
the magnetic field magnitude which uses the Breit-Rabi
formula is known as the Breit-Rabi diagram [3].

First thing to note for a Breit-Rabi diagram is that a
line which corresponds to an energy level does not cor-
respond to a well-defined energy eigenstate in either the
|F, Fz〉 or the |Iz, Jz〉 basis. For weak magnetic fields,
the energy eigenstates are well approximated by the ba-
sis |F, Fz〉, but this is still an approximation since we are
assuming that the HB term in the Hamiltonian is diag-
onal in this basis. Furthermore, since the Hamiltonian
H ′s is not diagonal in the |Iz, Jz〉 basis, its eigenstates
are in general a linear combination of the basis states,
whose coefficients change with B. Therefore, the eigen-
states are continuously mixing between the coupled and
the uncoupled basis as we increase B.

Some of the key features of the Breit-Rabi diagram for
Rb87 S1/2 shown in the figure 2 are:

• Weak magnetic field: Since the energy splittings
are now described by the formula 8, we can see that
holding J and I fixed, energies will split according
to different values of F and gFFz. According to the
table I, the allowed values of F are 1 and 2, so we
expect two groups of splitting, with F = 1 group
below the F = 2 group. Within the group F = 1,
gF = −1/2 so the levels with positive Fz will be
below the levels with negative Fz. We therefore
get the ordering: |2, 1〉 < |2, 0〉 < |2,−1〉. In the
F = 2 group, gF = 1/2 so the ordering will be
reversed: |2,−2〉 < |2,−1〉 < |2, 0〉 < |2, 1〉 < |2, 2〉.

FIG. 2: Breit-Rabi diagram for Rb87 S1/2, adapted from [5].
The energy splitting between different eigenstates is expressed
in terms of frequency, using the formula E = hν.

• Intermediate magnetic field: According to the
previous definitions, the energy contribution of nu-
clear spin is still negligible in the intermediate
field regime. The Hamiltonian then has dominant
contributions on the order of gJµBJzB + CIzJz.
The eigenstate ordering is still divided into two
groups of lines, as shown in the figure 2, with
the eigenstates with Jz = 1/2 being in the up-
per group, while the ones with Jz = −1/2 in the
lower group. Within the Jz groups, Iz ordering
goes from highest(3/2) having the highest energy
to lowest (−3/2) having the lowest energy in the
upper group. In the lower group, the ordering of Iz
values is reversed due to the sign change in multi-
plication with −1/2.

• Strong magnetic field: In the strong magnetic
field regime, even nuclear spin energy contributes
more to the energy splittings than the hyperfine in-
teraction. The main contributions to the Hamilto-
nian are then on the order of gJµBJzB−gIµBIzB.
The groups of lines are still split according to Jz as
in the intermediate magnetic field, but the order-
ing of Iz is now reversed: Iz = −3/2 is the highest
energy state in the upper group while Iz = 3/2 is
the lower energy state in the lower group etc.

V. FIRST ORDER FIELD-INDEPENDENT
TRANSITIONS AND TRAPPABLE STATES

According to the previous discussion, we can conclude
that different atomic energy eigenstates have different en-
ergy values when they are in an external magnetic field.
Conversely, if an electron makes a transition from one en-
ergy level to another while in a magnetic field, the atom
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will gain or lose energy by a different amount than it
would without an external field. This effect is exploited
for trapping neutral atoms in a magnetic field by prepar-
ing them in the states whose energy is an increasing func-
tion of the magnetic field [2–4]. Since atoms, as every-
thing else in nature, tend to minimized their energy, they
will stay confined in the part of the space where the mag-
netic field is lower.

On the other hand, if we would do experiments on
atoms trapped in this way, we would not want them to
change their energy abruptly since then they would fall
out from the trap. Therefore, if we would do a precision
measurement of a resonant frequency of one of the transi-
tions in a trapped atom, we should choose one which is as
little dependent on the magnetic field as possible. These
transitions are called first order field-independent transi-
tions since their dependence of the energy change ∆E on
the external field parameter δ is of the order O(δ2) [4].
We will now apply the aforementioned criteria to deter-
mine which field independent trappable atomic states we
can choose from the S1/2 Rubidium manifold previously
explored.

In order to magnetically trap an atomic state, as al-
ready mentioned, its energy has to be an increasing func-
tion of the magnetic field. By looking at the figure 2, we
can see that the only state in the F = 1 group which has
such property is |1,−1〉 for weak fields (it slopes down for
stronger fields). If we consider the electric dipole selec-
tion rule that ∆Fz = 0,±1 for a single photon transition,
the allowed transitions from this state are to |2, 0〉, |2,−1〉
and |2,−2〉. The states |2,−1〉 and |2,−2〉 have, however,
a decreasing energy with magnetic field, so they cannot
be trapped. The only remaining transition is from |1,−1〉
to |2, 0〉

We now want to see which field strength we need in
order to have a first-order magnetic field independent
transition between these two states. We will express the
energy of that transition using the formula 16 and sub-
stituting the appropriate values for Fz and I. The nor-

malized energy difference, E(|2,0〉)−E(|1,−1〉)
2C is equal to

E(|2, 0〉)− E(|1,−1〉)
2C

=

−2δ
gI

gI + gJ
+

1

2
(
√
δ2 + 1 +

√
δ2 − δ + 1)

(17)

Since we are in the weak field regime, δ is very small and
we can therefore expand the previous expression to the

second order in δ. The transition energy then simplifies
to

E(|2, 0〉)− E(|1,−1〉)
2C

= −2δ
gI

gI + gJ
+ 1− δ

4
+

7δ2

16

Since the requirement for the desired transition is that
the transition energy is insensitive to the first order in
B and therefore δ, we take the first derivative of the
previous expression and set it to zero to determine the
optimal value of δ:

1

2C

∂(E(|2, 0〉)− E(|1,−1〉))
∂δ

= −2
gI

gI + gJ
− 1

4
+

7

4
δ = 0

from where we get

δ =
1

7
+

8

7

gI
gI + gJ

Therefore, using the derived results for the energy split-
tings in the magnetic field, we can decide which states
could be trapped magnetically, and we can derive the
value of the magnetic field needed for making the transi-
tions between them field insensitive.

VI. CONCLUSION

In this paper we presented a derivation of the energy
level splittings in the external magnetic field, taking into
consideration the fine and hyperfine atomic structure.
The main challenge in the derivation was how to treat
different parts of Hamiltonian which cannot be diago-
nalized simultaneously. That challenge was overcome by
considering the relative importance of different terms in
the Hamiltonian, and choosing to work in the basis of
the dominant terms. In the case of the external mag-
netic field, this results in mixing of the states with dif-
ferent quantum numbers at different values of magnetic
fields. In order to visualize how the energies of the quan-
tum states change with the changing field, we introduced
the Breit-Rabi diagrams, and showed their properties on
the example of Rb87 S1/2 state. Finally, we showed how
the energy level diagrams can be used to deduce which
states can be captured in a magnetic trap, and which
trap strength should be chosen in order to make selected
electronic transitions first order field-insensitive.
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The concept of a quantum walk is introduced and is motivated by the classical problem of a
random walk. Two specific examples of quantum walks, one between two glued binary trees and
another to calculate the output of a NAND tree are discussed along with the universality of quantum
walks and their presence in nature.

1. INTRODUCTION

1.1. Graph Fomalism

In the field of classical computation, one of the most
fundamental abstract data types is a graph. Graphs are
defined by a set of vertices, and a set of edges, where the
edges connect the vertices. For the purposes of this paper
I will be discussing undirected graphs. In an undirected
graph, edges do not have a specified direction.

1 2

3

4

FIG. 1: A simple undirected graph

Figure 1 illustrates a very simple undirected graph.
The vertices that define this graph are V =
{1, 2, 3, 4}, and the edges are given by a set of un-
ordered pairs connecting the vertices as shown: E =
{{1, 2}, {2, 3}, {2, 4}, {3, 4}}.

An alternate representation of a graph is given by an
adjacency matrix. Two vertices are said to be adjacent
if they are connected by an edge. An adjacency matrix
is a v × v matrix where v is the number of vertices. The
matrix element Aij = 1 if the vertices are connected by
an edge, and 0 otherwise. The adjacency matrix of the
graph in Figure 1 is given by the following matrix:

A =




0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0




Its important to note that the matrix is symmetric. This
reflects the undirected nature of the graph because if
there is an edge connecting vertices i and j, then there
is an edge connecting vertices j and i.

∗Electronic address: sfine@mit.edu

1.2. The Quantum Analog of Random Walks

One common application of a graph is a random walk.
In a random walk an agent starts at a specific vertex and
has a certain probability of moving to any given adjacent
vertex at the next time step. After a certain amount of
time, the possible locations of the agent will be repre-
sented by a probability distribution over the vertices of
the graph.

In analogy to the classical random walk, we can con-
struct a quantum walk. For the purposes of this pa-
per I will discuss continuous-time quantum walks, where
time is treated as a continuous variable (as opposed
to discrete time quantum walks). We will define the
Hilbert space of our continuous-time quantum walk to
be H = span{|v〉} ∀ v ∈ V , where we previously defined
V to be the set of vertices in the graph. Each vertex
v ∈ V defines a basis state which we will refer to as |v〉.
The Hamiltonian of a particular graph is given by the
negative of the adjacency matrix: H = −A. [1] This is
justified because the off diagonal terms of the Hamilto-
nian represent the coupling between states. Therefore,
in the Hamiltonian when you have 〈i|H |j〉 = −1, there
must be an edge connecting vertex i and vertex j.

In order to determine the time evolution of our quan-
tum walk, we need to solve the Schrödinger equation,
given by:

i
∂ |Ψ〉
∂t

= H |Ψ〉 (1)

For most systems, since our graph is not changing in
time, the solution to the Schrödinger equation is given
by:

|Ψ(t)〉 = e−iHt |Ψ(t = 0)〉 (2)

2. QUANTUM WALK ON GLUED BINARY
TREES

2.1. An Exponential Speedup Over Random Walks

Quantum walks are an interesting topic of study be-
cause some quantum walks exhibit highly different be-
havior from their classical counterparts. In this section
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I will discuss the traversal of two binary trees that are
said to be “glued” together (Shown in Figure 2). This
graph shows two trees that each have depth 4, but we
can imagine them being of arbitrary depth.

Consider the classical problem. An agent starts at the
vertex on the left and wants to end up at the vertex on its
right. However, at each position, the agent has an equal
probability of moving to any adjacent vertex. During the
first time step, the agent will move either to the left or
the right, but no matter which way it goes, it will get
closer to the destination. During every future time step,
as long as the agent is in the left half of the tree, there are
two vertices it can move to that will bring it closer to its
destination, and one vertex that brings it farther away.
This means that the agent always has a probability of 2/3
of moving forwards and a probability of 1/3 of moving
backwards.

FIG. 2: Binary Trees ”Glued” Together (Taken From [3])

The problem arises when the agent makes its way to
the right half of the tree. Because the right binary tree
is identical, but reversed, the agent now has a higher
probability of moving back towards the middle of the
tree, than to its destination. Therefore, the probability
of reaching its destination after any number of steps is
smaller than 1

2n , where n is the depth of each tree. [2]
In the quantum analog, if an agent were to traverse

this graph such that its behavior is defined by a quan-
tum walk, there is an exponential speedup in the traversal
time of the agent. The reason for the quantum mechan-
ical speedup is due to a symmetry in the graph that re-
stricts the evolution to a lower dimensional subspace of
the Hilbert space defined by our graph. We will define
the set of states,

|col j〉 =
1√
Nj

Σ
α∈col j

|α〉 (3)

where each |col j〉 represents all the nodes that are of
equal depth in the graph. The original Hilbert space was

a 2n+1+2n−2-dimensional space, where n is the depth of
each tree. The new space consists of 2n− 1 basis states.
[2] The key feature of these states is that applying the
Hamiltonian to any individual state |col j〉, puts the sys-
tem in a uniform superposition of its neighboring states
|col j-1〉, |col j+1〉, which can be seen in Equation 4.

H |col j〉 ∝ − |col j-1〉 − |col j+1〉 (4)

Considering our graph in terms of the column states
that we have constructed, the quantum walk on this
graph can be reduced to a much simpler problem. The
action of the Hamiltonian on our states |col j〉 is identi-
cal to the action of the Hamiltonian of a finite line graph
(Figure 3) on the basis states |v〉, where v are the vertices
of the finite line graph.

1 2 3 4 5 6 7 8 9

FIG. 3: Finite Line Graph

Given the transformation to this new problem, there is
a substantial probability of measuring that an agent that
started at the leftmost vertex is at the rightmost vertex
after a time on order n. [2] This is exponentially faster
than the classical time.

2.2. A Slowdown Compared To Random Walks

The traversal of the graph using the quantum walk for-
malism is exponentially faster than the classical random
walk. However, in order to restrict our problem to the
Hilbert space given by H = span{|col j〉} and achieve the
exponential speedup, we must have started in one of the
|col j〉 states. But what if our agent started at a different
node? Would we see the same exponential speedup over
the random walk?

It has been shown that if the agent starts at the top-
most vertex of the glued binary tree as depicted in Figure
2, the probability of reaching the bottom vertex is actu-
ally much smaller than for a classical random walk. [4]

3. A QUANTUM WALK ON A NAND TREE

The next application of quantum walks that I will dis-
cuss is the efficient evaluation of a NAND tree. I follow
the treatment by Farhi et al. [5] A NAND gate is a de-
vice that takes in two classical bits as input and returns
one classical bit as output: it outputs 0 if both inputs
are 1, and 1 otherwise. We define a NAND tree to be a
binary tree where each leaf (top vertex) is given an in-
put of a 0 or 1. We can recursively define the output of
each sub-NAND tree to be the NAND gate computation
of the output of its two input NAND trees. We will say
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that the output of a leaf is the initial input to that leaf.
This can be seen in Figure 4. The goal of this problem
is to determine the output of the tree.

FIG. 4: A Sample NAND Tree (Taken From [5])

Classically, the brute force method of solving this prob-
lem is to fill in the NAND tree, one vertex at a time,
which takes O(N) if there are N leaves, because there
are 2N-1 vertices in the tree. There is a probabilistic
algorithm that is O(N.753) [6], but using the quantum
walk walk formalism the output of a NAND tree can be
calculated in O(

√
N).

The basic setup is to take the binary tree that is the
same shape as the NAND tree, and connect it to a long
runway of vertices that connects to the root node of the
tree. The inputs of the NAND tree are set to 1 if there
is an additional vertex that is connected to that leaf. If
the additional vertex is not connected to the leaf, then
that leaf will behave as a 0. The graph that represents
the the NAND tree in Figure 4 is shown in Figure 5. The
output of the NAND tree can be determined by sending
in a wave packet from the left. If the packet transmits to
the right side of the tree, the output of the tree can be
shown to be a 1, otherwise it is a 0.

FIG. 5: A Sample NAND Graph For a Quantum Walk (Taken
From [5])

The first thing to realize is that while on the runway
applying the Hamiltonian to a state |r〉, where r is the
position on the runway, puts the state into a superposi-
tion of the neighboring states,

H |r〉 = − |r + 1〉 − |r − 1〉 (5)

Therefore, in the position basis the energy eigenstates
are of the form e+irθ and e−irθ which we will call 〈r| E〉.
Applying the Hamiltonian to the e+irθ, which refers to a
wave moving to the right gives,

Heirθ = −ei(1+r)θ − ei(−1+r)θ = −2 cos θeirθ (6)

The e−irθ state has the same eigenvalue, which refers
to a left moving wave. Since our initial wave is a right
moving wave our state is of the form,

〈r| E〉 =

{
eirθ +R(E)e−irθ : r ≤ 0
T (E)eirθ : r ≥ 0

where 1 + R(E) = T (E) by plugging in to r = 0.
Applying the Hamiltonian to |r = 0〉,

H |r = 0〉 = − |r = −1〉 − |r = 1〉 − |root〉 (7)

where |root〉 is the root of the NAND tree. Taking the
inner product with |E〉 gives,

T (E) =
2i sin θ

2i sin θ + y(E)
(8)

where y(E) = 〈root|E〉
〈r=0|E〉 .

The remainder of the discussion is to show that y(0) =
0 if the NAND tree evaluates to 1, and y(0) = −∞ if
the NAND tree evaluates to 0. A wave packet with E =
0 cannot be constructed precisely, but in [5] they show
that you can build a wave packet that is close enough to
E = 0, so that T (E) is very close to T (0). Here we will
assume that the wave packet has a near 0 energy, but
positive.

Other than the root vertex and the leaves of the NAND
tree, all vertices are surrounded by exactly three other
vertices, 1 parent and 2 children, as shown in Figure 6.

FIG. 6: The Vertices Surrounding a Local Vertex (a)

Applying the Hamiltonian to the vertex a, puts the
system in the state,

Ea = −b− c− d (9)

This can be rewritten as,

Y =
−1

E + Y ′ + Y ′′
(10)

where Y = a
d , Y ′ = b

a , Y ′′ = c
a . In this setup, y(E) is

equal to Y in the case where (a) is equal to |root〉 and
(d) is equal to |r = 0〉.
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FIG. 7: The Possible Inputs To The NAND Tree

At the leaves of the NAND tree there are 3 possible
inputs as shown in Figure 7. Calculating the value of Y
at the level of the arrow on the left you find that if the
leaf does not have the extra connection Y = − 1

E , and

if it has the extra connection, Y = E
1−E2 . This can be

found by applying the Hamiltonian to the different nodes
in the tree. Plugging in for E = 0 gives that when the
leaf of the NAND tree was designated a 1 by the extra
connection, we have that Y = 0, otherwise Y = −∞.
This yields precisely the NAND gate. Looking at the
recursion relationship in equation 12, we can see that
Y = 0 if either Y ′ or Y ′′ are -∞, and Y = −∞ only
if Y ′ = Y ′′ = 0. This is a NAND gate where Y =
0 corresponds to a 1, and Y = −∞ corresponds to a
0. Therefore, if the output of the NAND tree is a 1,
y(0) = 0, and if the output of the NAND tree is a 0,
y(0) = −∞. This means that if we measure the wave at
positive r, then the NAND tree outputs a 1, because the
transmission amplitude, T (0) was roughly equal to 1. If
we don’t measure the wave, then the NAND tree outputs

a 0, because the T (0) ≈ 0. In Farhi et al. [5] they show

that the wave starting with E ≈ 0 takes O(
√

N) time to
either propagate to the right side or get reflected.

4. DISCUSSION

In this paper I have introduced the concept of a quan-
tum walk motivated from the classical random walk. I
would like to expand a little on broader applications of
quantum walks. First there are a lot of resources that
discuss the theoretical possibility that mechanism of en-
ergy transport in photosynthesis is a quantum walk. [7]
When a photosynthetic cell absorbs a photon it produces
an exciton that must travel to the reaction center of the
cell. There is a much higher efficiency of energy absorp-
tion than would be expected from any classical model,
and can be predicted by models that resemble quantum
walks. Additionally, it has been shown that a generalized
quantum walk is universal for any quantum computation.
[8] The presence of quantum walks in nature, and their
universality make them a particularly interesting topic of
study.
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This report outlines the logical progression from the desire to simulate physics with computers
through cellular automata, computability, Turing machines, quantum-dot cellular automata, quan-
tum Turing machines and finally quantum cellular automata. Modeling large-scale quantum me-
chanical systems in the natural world will require an increase in localized parallel computing power
which quantum cellular automata seem, at first glance, to be ideal candidates for. However, as
this paper introduces, the concept of universality in computing systems means that the theoretical
computing constraints which apply to Turing machines apply to cellular automata too, although
the spatial distribution of the computing may be more physical or efficient. Quantum computing
can provide advances in efficiency due to the possibility of simultaneous exploration of multiple
entangled states, but the limits of unitary time evolution constrain the types of quantum computers
which can be explored.

I. INTRODUCTION

There are are two major approaches to simulating
physics: building a model system which replicates the
original by obeying the same physical rules (analogue)
or programming a computer to estimate the properties
of the system at discrete intervals following certain laws
(digital) [1]. This paper will explore the second of those
two options, specifically as applied to quantum mechan-
ical computing systems. For a treatment of the first op-
tion, see A. Ireland’s report in this volume.

In his formative 1981 lecture titled Simulating Physics
with Computers, Richard Feynman introduces two
physically-motivated goals for simulation of the natural
world [1]. The first is that the algorithms which the com-
puter carries out should be local: updates to a part of the
system being modeled should be made based on the state
of nearby regions only. This condition reflects the natu-
ral world under the limitations of the speed of light, but
is not mirrored in the archetypical universal computer,
the Turing machine. Instead, it suggests exploration of a
computational system based on cellular automata, which
will be explored at length in this paper.

Feynman’s second condition is that the size of the
model should be proportional to the space-time volume of
the system, so that the model can be scaled up comfort-
ably with the size of the system. Consider, for example,
N numbered boxes each containing one of Schrödinger’s
famous cats. Classically, the system can be described by
N bits, a 1 if the cat inside the nth box is alive and a 0
if it is dead. If the size of the system were doubled, 2N
bits would be needed and Feynman’s condition would be
unproblematic. However, in a quantum mechanical sit-
uation, classical variables cannot describe the system as
succinctly. Not only could a ‘cat’ be in a superposition
of alive or dead states within the box, the system could
be in an entangled state where the aliveness of each cat
depends on the state the measured for the other cats.
When recorded classically, the model would then have to
keep track of 2N complex numbers for N cats and (2N )2

if the number of boxes were doubled, defying Feynman’s

condition. Recording the system in quantum bits, qubits,
which singly can be in a superposition of state 0 and 1
or which as a group can be in an entangled state, is the
natural computing extension which makes models of the
quantum world tractable.

In this report we will explore computing systems which
have the potential to fulfill both of these conditions.
Starting from a theoretical discussion of classical Cellu-
lar Automata (CA) in Section II and the theory of com-
putability in Section III, we explore a brief example of a
quantum mechanical system used to implement a classi-
cal CA (Sec IV). In Section V we then introduce Quan-
tum Turing Machines (QTM) and discuss the difficulties
in combining the concepts of QTM and CA into Quan-
tum Cellular Automata (QCA). Specifically we examine
the case of 1D Partitioned Watrous Quantum Cellular
Automata (1d-QCA) in Section VI.

II. CLASSICAL CELLULAR AUTOMATA

Following the notation in Ref. [2], a classical deter-
ministic cellular automata consists of a lattice of cells
(L) each of which takes a state in the finite set Σ. Every
cell is updated simultaneously at discrete time intervals
according to some transition function or rule f : ΣN → Σ
where N defines the finite local neighborhood which each
lattice point evolution can depend on. The state at each
time point is some Ct ∈ ΣL which is absolutely deter-
mined by the starting configuration C0.

The simplest cellular automata are one-dimensional
periodic arrays, L = 1, 2, 3....n with neighborhoods re-
stricted to the current cell and the adjacent cell on either
side. There are therefore 23 possible triplet configura-
tions of 1 (black) and 0 (white) in the input space of
f and two choices of output for each input, leading to

22
3

= 256 possible rules, one of which is shown in Figure
1. As time proceeds, each new configuration of the 1D
lattice is printed on subsequent lines, showing the emer-
gence of large and complicated patterns from a simple
starting seed.
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FIG. 1: An example of an elementary cellular automata iden-
tified as Rule 110 due to the binary interpretation of the pro-
gram (the row of numbers above). In the figures, a pattern
is grown starting from a single black cell. The vertical direc-
tion shows discrete time steps on two different scales. Even
from this simple starting configuration, large scale structures
emerge which can interact and propagate through time, pro-
viding the basis for the construction of universal computers
based on this rule [3]. (Figure from [4])

This complexity is representative of the exciting poten-
tial of cellular automata. Although they are built from
simple update rules (like Hamiltonians in the physical
world), the interaction of many adjacent cells demonstra-
bly leads to complex behavior (like life in the physical
world). These complex rules are also the most compu-
tationally rich ones as the large scale structures which
emerge can interact with each other, annihilating or
changing in prototypes of NOT or OR gates [5]. It can

be shown that some cellular automata, such as the Rule
110 above, are capable of computations as complex as
any computer can perform (See Ref. [3] for details).

III. COMPUTABILITY

Proving that the computing capabilities of two systems
are equivalent requires demonstration that each is capa-
ble of running a simulation of the other. In computabil-
ity theory, the common benchmark for comparison is the
Turing Machine(TM), which also provides a definition of
what it means for a problem to be computable.

Developed in 1936 by Alan Turing, the Turing ma-
chine is a purely theoretical device designed to provide a
framework for answering the question of which types of
problems are solvable by computers [6]. A TM consists
of a semi-infinite tape with spaces in which characters
from a finite alphabet can be recorded and replaced. The
read/write head of the machine is found at any time step
over a certain space on the tape, although the absolute
position is not recorded. However, the machine can keep
track of another variable in the form of its state (as in
‘state of mind’), which must be drawn from a finite set
including a ‘halt’ state to be entered once a problem has
been solved. The program is then a set of rules for updat-
ing the machine’s internal state, replacing the character
on the tape and moving the reader left or right depend-
ing on the current state of the machine and the character
read on the current square of tape. A problem is then
defined to be computable if there exists a Turing machine
which will eventually solve any instance of the problem
and halt.

Church’s Thesis establishes that all computer systems
are limited by the bound of computability. Specifically,
there exist non-computable problems that no computer
can solve, such as the halting problem. To understand
this, suppose contrarily that there existed a machine, H,
that could compute whether or not any Turing Machine
T would ever halt when presented with a problem, S.
Now consider another machine H̃ which is defined such
that it runs H(T, S) and halts if and only if H(T, S) re-
turns ‘does not halt’, i.e. T running S does not ever halt.
The contradiction occurs when considering running H̃ on
itself: if it (the outer version of H̃) halts, it implies that
the inner version does not halt and vice versa. If you
arrange the machines so that they are both acting on a
string which represent themselves, this contradiction is
unresolvable and the halting problem has to be declared
non-computable [7]. This logic is similar to the diago-
nalization approach to proving the uncountably infinite
nature of the real numbers [7] or, more directly, to the
statement ‘this sentence is false’ [8].

Quantum computers are not thought to be able to
provide ways to compute non-computable problems, but
they are known to provide improvements in efficiency
when solving other problems. A program is efficient if,
given any instance of a problem which can be specified
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with n characters, it runs in polynomial time: t ∝ na

for some constant a. Problems which can be solved by
an efficient program are contained within the class P ,
which is contrasted with the class of NP (Nondetermin-
istic Polynomial-Time) problems, which can be checked
but not (we think) solved in polynomial time. In the
early 1970s, the theory of “NP-completeness” showed
that many of the NP problems are equivalently difficult
to each other; that is, given an algorithm that would solve
one, another could be solved in similar time. Examples
of NP-complete problems include finding the largest sub-
set of people who know each other in a group (the clique
problem) or deciding whether a certain map can be col-
ored with only three colors. Quantum computers have
not provided a method for solving NP-complete problems
efficiently, but they do give improvements on lesser non-
P problems, such as the factoring algorithm provided by
Shor [8]. The limit on the efficiency improvements quan-
tum computers might provide is an open question which
we will not seek to address further here.

IV. QUANTUM DOT CELLULAR AUTOMATA

At present, cellular automata computing systems are
almost exclusively being modeled on conventional com-
puters and not being used as computation tools in their
own right. However, circuits based on the classical cel-
lular automata but built out of quantum components
are currently being investigated for new generation small
computing systems. In modern computers, bits are en-
coded in current switches in a circuit which are probed
by sending voltages into the circuit. This means that
the size of the system is ultimately limited by the sta-
tistical fluctuations on the order of a charge quanta and
requires a constant power supply as the current flows to
ground [9]. The quantum-dot cellular automata (QDCA)
discussed here are a system for encoding classical bits in
the bistable ground states of quantum dot arrangements.
Note that although these QDCA are both ‘quantum’ and
‘cellular automata’, they are deterministic computational
systems and so not ‘quantum computers’ in the technical
sense.

A quantum dot is a small finite well potential in which
individual units of charge can be confined at discrete en-
ergy levels. Since the essential behavior of quantum dots
relies only on the small size and electric properties of
electrons, they can be constructed in many systems: in
small metal regions in an insulating matrix, in areas of
molecules which can accept electrons without reacting
and in wells drawn by current-carrying wires onto semi-
conductors [9]. Recall the form of the energy levels in an
infinite square well potential [10]:

Enxnynz =
~2π2

2m

(
n2x + n2y + n2z

a2

)

where E is the energy, nx, ny, nz index the energy lev-
els in the x, y, z directions, m is the mass of the electron

and a is the size of the potential well. By reducing a the
energy of the ground state of the well can be increased.
Although, by the Pauli exclusion principle, up to two
electrons can fill the ground state energy level, Coulomb
forces introduce an interaction term into the Hamiltonian
which increases the energy penalty for adding a second
electron to the same dot. By ensuring that the chemical
potential of the surroundings is sufficiently low, it is pos-
sible to ensure that each well will have an expectation
number of electrons between 0 and 1.

A second well placed spatially close to the first will
be accessible to the electron via tunneling, which can be
tuned by the manufacturer by changing the spacing or the
height of the potential step between wells. This allows a
configuration of nearby quantum dots to update itself to
find the distribution of electrons which minimizes energy
without external prompting.

FIG. 2: A diagram of the simple four-dot cell used in QDCA.
In (a) each site, 1-4, represents an identical 3D finite well
potential with barriers between that can be tunneled through.
When two electrons (shaded black) are added to the system
there will be two degenerate ground states as shown in (b)
due to the electrostatic repulsion between electrons. Alone,
a single cell will adopt a superposition of both ground states,
but if driven by an external electrostatic potential (such as an
adjacent cell) one configuration will be favored, allowing each
cell to behave like a classical bit. In this model, electrons may
not tunnel out of the four-dot cell. (Image from Ref. [11])

Quantum dot cellular automata present a possible way
to use this fact to build fast, low energy computing gates.
The basic unit cell consists of four quantum dots, ar-
ranged in a square in two dimensions (see Figure 2, a)
and containing two electrons. The tunneling barrier be-
tween adjacent cells is large enough that the electrons
cannot escape and so they localize into dots across the
diagonal from each other to reduce electrostatic energy,
as in Figure 2 (b). Without external interactions, the
stable configuration will be a superposition P = 1 and
P = −1, but when two such cells are placed next to
each other, the electrostatic repulsive term will act be-
tween the cells, resolving the degeneracy in favor of the
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bistable diagonal configuration causing the cell to adopt a
determined polarization corresponding to a classical bit.

FIG. 3: Four possible components which can be built out
of adjacent quantum dot cells interacting through Coulomb
interactions. (Image from Ref. [11])

With only nearest-neighbor cell interactions and 2D
spatial organization, many logical components can be
built, as displayed in Figure 3. These components can
then be put together to construct at Turing-complete
computer, as capable as the theoretical Turing computer
discussed above.

Although the quantum dot cellular automata relies
heavily on quantum mechanical features of the system, it
does not allow superpositions of states in each bit - the
electrons are localized in a specific ground state paral-
lel to the adjacent cell state. To create a true quantum
cellular automata, we require the ability to have superpo-
sitions of multiple quantum states which in turn requires
careful redefining of quantum cellular automata.

V. QUANTUM TURING MACHINE

Like the classical TM discussed above, Quantum Tur-
ing Machines (QTM) are the central theoretical model
in quantum computation. Following the notation in
Ref. [12], a machine M can be described by a quintu-
ple (K,Σ, µ, k,A) where K is the finite set of states the
machine can adopt, Σ is the tape alphabet which repre-
sents the possible states each square on an infinite tape
can be in (including a blank state), µ is the local transi-
tion function which dictates the updates carried out at
each time step, k is the acceptance tape square, an inte-
ger indicating the current position of the machine, and
A ⊆ Σ is the set of accepting symbols.

Each configuration of the machine is then uniquely de-
scribed by a triple (k, h, c), with k ∈ K indicating the
current state of the machine, h ∈ Z the location of the
tape head and c : Z → Σ the contents of each cell on
the tape. The model requires that there be only a finite
number of non-blank squares on the tape in any config-
uration so that the set of all possible configurations is

countably infinite. While it is running, a quantum Tur-
ing machine will be in a superposition of some finite sub-
set of these states with complex amplitude determined
by µ. The set of possible configurations is akin to the
set {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} in the case of two entangled
spin-1/2 particles.

The program which the QTM executes is written into
the definition of the local transition function µ which is
a map

µ : K × Σ×K × Σ× (L,R) −→ C

which gives a complex amplitude µ(k, s, k′, s′, d) for the
transition of the machine from internal state k and cur-
rent tape state s to internal state k′, tape state s′ with
the head moving left or right. In contrast to the classical
Turing machine, rather than giving a deterministic pro-
gram for updating the tape, internal state and position,
all possible changes are explored in parallel with different
amplitudes. The probability of measuring the machine in
some final state will depend on the sum of the amplitudes
for all possible paths from the initial state to this final
state. A challenge for successful QTM algorithms is to
make the probability of measuring the ‘correct’ final state
as close to 1 as possible without losing the benefit of be-
ing in a superposition of multiple states in the middle of
the computation [12].

The essential condition for a well-formed quantum Tur-
ing machine is that the probability be conserved, that is
that the sum of the squares of the complex amplitudes as-
sociated with each possible configuration of the machine
be one at every time step. This puts limits on the types
of local transition functions µ which are allowed, which
can be found in Ref. [12].

VI. QUANTUM CELLULAR AUTOMATA

Unlike cellular automata, Turing machines and even
quantum Turing machines, there is not currently a strict
definition of the ideal n-dimensional quantum cellular au-
tomata (QCA). Over the past 20 years, many different
models have been suggested which have been rejected or
improved upon to make behavior more physical or more
representative of classical cellular automata. In this sec-
tion, we will explore the simplest universal quantum cel-
lular automata, the Partitioned Watrous QCA, though
many of the lessons carry forward to other models. For
a detailed outline of types of QCA, see Reference [2].

Much of the framework for a QCA is similar to that of
a QTM, except that there are no universal states and at
each time step every square is updated simultaneously,
as opposed to just the one at the read/write head. For-
mally [12], a (non partitioned) Watrous quantum cellular
automata M is defined by a quadruple (Q, δ, k,A) where
Q is the finite set of states each cell can take (including
a quiescent state, ε) and δ is the local transition function,
similar to µ above. The variable k indexes a certain cell
to be the acceptance cell and a configuration in which
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that cell contains an element of A ⊆ Q is in an accepting
configuration. The cellular automata is run on an infinite
1D lattice of cells with a neighborhood consisting of the
nearest neighbor on either side.

The algorithm for a cellular automata is encoded both
in the initial configuration and the update function δ. So
that there is only amplitude in a finite number of configu-
rations of the machine at any time and the overall state is
normalizable, the number of non-quiescent states in the
starting configuration must be finite and the update rule
must keep entirely quiescent neighborhoods quiescent. In
general, δ can then be any map

δ : Q4 −→ C

(which satisfies the quiescence condition) such that the
neighborhood (q1, q2, q3) maps the central square to q
with amplitude δ(q1, q2, q3, q). As in the case of the quan-
tum Turing machine, the machine evolves through many
configurations simultaneously by being in a superposition
of multiple configurations at every time after the starting
time, ideally reducing to one dominant configuration be-
fore measurement occurs, destroying the superposition.

As with the QTM, quantum cellular automata is only
well formed if the time-evolution rule is unitary, that is
if probability is conserved. Although there are only a
countably infinite number of normalized configurations,
characterizing maps EM between these states in terms of
update functions δ is non trivial in the non-partitioned
case, and so an arbitrary machine can not necessarily be
proven to be well formed.

The partitioned Watrous cellular automata simplifies
the conditions on δ for a well-formed machine. Just as
in the non-partitioned case, a machine M is described as
(Q, δ, k, a), except that each cell is subdivided into three
parts:

Q = Ql ×Qm ×Qr

such that |Q| = |Ql||Qc||Qr|. The update rule again
depends on the current cell q2 and the two cells on either
side q1 and q3, but through a more complicated update
rule:

δ(q1, q2, q3) = λ((l(q3),m(q2), r(q1)), q)

where λ : Q×Q −→ C maps one set of three subcells to
another with some complex probability amplitude. The
effect of this update rule is the composition of a rear-
rangement of subcells between neighboring cells σ and
the update λ applied to the new configuration. A dia-
gram of the rearrangement process applied to a configu-
ration a can be found in Figure 4.

It can be shown (see Ref. [12]) that a machine M is
a well-formed 1D partitioned quantum cellular automata
(1d-QCA) if and only if Λ, the |Q| × |Q| matrix with el-
ements Λij = λ(qi, qj) is unitary. This makes intuitive
sense since the well formed condition is that probability
be conserved which would be expected to be reflected

FIG. 4: A diagram of the first step of the Partitioned Watrous
QCA update in which the right subsection of one cell becomes
the right cell of the cell to its right and the left section of that
cell becomes the left section of the cell to its left. This step
is followed by an update to each newly defined cell via λ to
define a full QCA time step. (Figure from Ref. [12])

in the update rule in some form. Armed with this sim-
ple condition, it becomes possible to explicitly define a
M ∈ 1d−QCA which will simulate an arbitrary quantum
Turing machine with constant slow-down and a quantum
Turing machine which simulates a 1d−QCA with linear
slow down [12], proving that these 1D portioned Watrous
cellular automata are universal.

VII. CONCLUSIONS

Classical cellular automata provide a potentially pow-
erful computing system with locality which mirrors the
physical world, but extending their definitions to the
quantum realm is not straight-forward. There is much
room for further development exploring and enumerat-
ing new ways to design a theoretical quantum cellular
automata computing system which is consistent with the
requirements established by Feynman in 1981. Although
progress is being made quickly, the final goal of usable
quantum cellular automata computers is still a long way
off.

To understand the potential power of CA and QCA as
computational systems, the classical and quantum Tur-
ing machines must also be discussed. Although the com-
puting strategies in cellular automata and Turing ma-
chines are starkly different, they are capable of simu-
lating each other and therefore are in many ways the
same computer. However, returning to Feynman’s 1981
ministrations, there is something deeply elegant, if not
computationally valuable, to carrying out calculations in
a spatially distributed local computational system like
QCA.
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The path integral approach provides an alternate description of how particles “decide” to move
in space and time. In the Schrödinger formulation of quantum mechanics, the approach looks for
eigenstate solutions of the Hamiltonian operator describing a particular system. The time-dependent
Schrödinger equation then provides a means for calculating the time evolution of the system as time-
evolving superpositions of these states. If we imagine the wavefunction solutions in position space,
the equation describes the direction and infinitesimal distance a particle transits in an infinitesimal
amount of time. In the path integral approach, we will see that the equations of motion are arrived
at via a ”global” (i.e. integral) process rather than a infinitesimal (i.e. differential) one. The particle
in a sense explores all possible paths before deciding which particular path to take. This exploration
is encoded into the path integral equations of the formalism that determine the propagator of the
wavefunction and thus all the probabilistic information for a particle. In this paper, I demonstrate
the mathematics and applications of this approach.

I. INTRODUCTION

The goal of this paper is to demonstrate to the reader
the use and usefulness of the Feynman formulation of
quantum mechanics. The first half of the paper cov-
ers the formalism of the approach. I will discuss how
path integral techniques generalize from the least action
principles of Lagrangian mechanics. The mathematics of
path integrals will then be described both heuristically
and systematically. Then, in the second half, the appli-
cations section, I will motivate the use of this formulation
by describing how one may directly compute the expres-
sion for the unitary propagator, U(t), for problems with
a certain class of potentials. Finally, with the power of
the path integral formulation at hand, I wish to explore
the solution to problem of finding the propagator for the
harmonic oscillator potential.

II. FORMALISM

A. Principle of Least Action

Let us imagine a closed physical system of N par-
ticles with generalized positions q1, q2, ..., qN and their
corresponding velocities q̇1, q̇2, ..., q̇N . In classical sys-
tems, we know that, given a set of initial conditions
{qi(t = 0), q̇i(t = 0)}, the particles will travel along a
unique set of paths that satisfies the constraints of the
system. For each possible system, there is a function
L{qi, q̇i, t} called the “Lagrangian” of the system, which
characterizes its physical properties and introduces its
constraints. The Lagrangian is defined as the difference
in the kinetic and potential energy of the system,

L = K − V , (1)

which are themselves, in general, functions of position,
momentum, and time.

We obtain the classical equations of motion for a sys-
tem by extremizing the “action” of the system. The ac-
tion S is defined as

S =

∫ t2

t1

L{qi, q̇i, t} dt, (2)

where [t1, t2] is the time interval over which the system
has evolved. The action is minimized when L satisfies
the set of Euler-Lagrange equations:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0 (i = 1, 2, ..., N). (3)

After solving these N partial differential equations and
applying the 2N initial conditions, the classical problem
is fully solved. Thus, we find the equations of motion for
a system by requiring that the actual particle trajectories
produce the least action of all possible trajectories.

B. Generalization to Quantum Mechanics

It turns out that when h̄ 6= 0, deriving the equations
of motion for a quantum mechanical particle is not as
straightforward as solving the Euler-Lagrange equations
for a given L. Instead, we would like to find a unitary
function U , which evolves the wavefunction with respect
to time while preserving its normalization. In the lan-
guage of the Schrödinger formulation, this is the propa-
gator, in which the matrix elements 〈qb, tb| Û |qa, ta〉 give
the probability that the state originally in |qa〉 at time ta
will be found in the new state |qb〉 at time tb. However,
in the path integral approach we want to treat q and q̇
as variables, and not infinite vectors interrelated by in-
finite matrices representing linear operators. Therefore,
the propagator (now only a function of variables) will
ultimately give us, for our choice of (qb, tb; qa, ta), the
transmission amplitude (and thereby the probability) for
these transitions.
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The necessity for an approach differing from the sim-
ple Euler-Lagrange equations is best seen when we con-
sider the behavior of light waves and the generalization
of this behavior to massive particles (after all quantum
mechanics is based on the understanding that matter is
exhibits both wave-like and particle-like characteristics).
In the two-slit experiment, it is understood that in order
to get the proper interference relationship at the detec-
tor, one must add up the amplitude of the planes waves
ψn = exp (iωnt), i.e. one must use superposition. We
must do the same for massive particles if we are to believe
in the tenants of quantum mechanics. We can imagine
increasing the number of slits to a large value, N . We
must then add up all the contributions from each slit in
such a case. In the limit of an infinite number of slits,
N → ∞, we arrive at an infinite sum of plane waves.
This represents the case of a particle propagating in free
space. In this case, we see that we will need to compute
the sum of an infinite number of plane waves if we want
to determine the position of a particle in time.

What should represent the phase of the particle in this
plane wave picture is not immediately straightforward.
However, we know that the action of a particle plays a
fundamental role in how nature decides the trajectory of
particles as we saw with the Principle of Least Action.
It so happens that the units of action (Energy·Time) are
identical to the fundamental constant h̄ of the quantum
world. Using the ratio of the action to h̄ as an ansatz
for our mysterious particle phase factor, we’ll see that
this approach gives us a picture of quantum mechanics
equivalent to the one devised by Schrödinger.

Choosing to follow the Feynman approach, the story
of how a particle goes from one point to another is dras-
tically different. Here, the particle explores all possible
paths between two endpoints. In doing so, the particle
picks up a certain phase factor that evolves with posi-
tion and time in each trajectory. If one takes the sum
of all phase factors for each trajectory, a combination of
constructive and destructive interference occurs and the
path which adds most constructively has a higher proba-
bility of being the actual trajectory the system will take.
In the case of light propagation, the frequency, ω = E/h̄,
determines the where and when the interference will oc-
cur. For massive particles, we construct our phase factor
not directly using any particular ω of the particle, but
the action of the particle in the system divided by h̄. We
claim that

U(q, t; q0, t0) = A Σall pathse
iS[q(t)]/h̄, (4)

where A ∈ C is a normalization factor.
Here, the action is the argument of the phase factor

and the sum over all paths refers to a path integral from
[t0, q0] to [t, q], meaning we must integrate the phase con-
tributions of every path that may possibly link the two
endpoints. The exact mathematics of this will be intro-
duced shortly. It should be noted, however, that this
procedure for finding the propagator serves to simplify
only a certain class of potentials. Other potentials will

prove just as difficult in either the Schrödinger or path
integral approach. Fortunately, the class of potentials
that are simplified turn out to be of great use.

C. The Heuristic Approach to Evaluating the Path
Integral of the Free Particle

We now turn our attention to the evaluation of the
enigmatic right-hand side of equation (4) in the case of
a free particle. Instead of delving directly into a math-
ematical description of this path integral, we will take a
heuristic approach which will better highlight the inher-
ent physics as well as give a more intuitive description of
the path integral itself.

FIG. 1: Discrete set of paths connecting [t0, x0] to [t, x] in-
cluding the classical Newtonian path

We choose to work in cartesian coordinates and we
make the first simplification that instead of a contin-
uum of paths connecting [t0, x0] to [t, x] there exists only
a discrete set as shown in figure 1. Each path xi(t),
where i ranges from 0 to N , contributes an amount
Zi = eiS[xi(t)/h̄] to the summation.

Since each path contributes a different phase in the
summation, paths that exist far away from the classi-
cal path will tend to destructively interfere with each
other on average. Even though the classical path xcl
contributes just as much to the summation as the other
paths, the fact that the action is stationary for this path
(S = 0) means that it will not be washed out by the de-
structive interference with other paths. Paths that differ
greatly from the classical straight line trajectory in figure
1 will have kinetic energy terms in the action that differ
from the stationary value of the classical path. These
terms integrate to produce large values of S and rapidly
oscillating phase factors that will tend to cancel out paths
with similar deviations from the classical one. Only the
phases belonging to paths ”close” to the classical path
will constructively interfere.
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Here, we take ”close” to mean paths xi(t) that pro-
duce an action Si which differs from the classical action
S[xcl(t)] = Scl by less than h̄π. In this region, the sum
of Zi’s become large and is the dominant contribution to
the propagator U(x, t). The contributions of paths out-
side this area are taken to be negligible. Therefore, we
may limit our sum to paths within this region of con-
structive interference.

Our third simplification will be to assume that all Zi’s
within the coherent region contribute to the the sum the
same amount as the classical Zi value: Zcl = eiScl/h̄. We
can therefore write the propagator as

U(x, t) = A′ eiScl/h̄, (5)

where the new normalization factor A′ accounts for the
number of paths we have in our region of constructive
interference. We will now check that we can reproduce
the propagator U(x, t) for a free particle using equation
(5).

Straight-line motion defines the path of a classical free
particle with constant velocity v = x−x0

t−t0 such that

x′cl(t
′) =

x− x0

t− t0
(t′ − t0) + x0 (6)

where (t, x) is some point along the trajectory not equal
to (t0, x0). Since L = 1

2mv
2, and v = dx

dt , the action of
the particle is thus:

Scl =

∫ t

t0

1

2
m

(x− x0)2

(t− t0)2
dt′ =

1

2
m

(x− x0)2

t− t0
. (7)

This leaves us with

U(x, t) = A′ exp

[
im(x− x0)2

2h̄(t− t0)

]
, (8)

where A′ is found by noting that the propagator should
become a delta function in the limit (t, x)→ (t0, x0). We
know that a delta function is the limit of a gaussian as its
variance approaches zero and its height approaches infin-
ity. We are thus justified in taking equation (8) to be
a gaussian function with variance ∆2 = 2ih̄(t − t0)/m.
Proper normalization of the gaussian gives us our ex-
pression for A′ = 1

(π∆2)1/2
. Our final result, taken from

analyzing the delta function as a limit of a gaussian, is

U(x, t) =

[
m

2πh̄i(t− t0)

] 1
2

exp

[
im(x− x0)2

2h̄(t− t0)

]
, (9)

which is the known answer attained from the Schrödinger
formulation. The fact that we were able to find the ex-
act answer in spite of all the simplifications derives from
the fact that the free particle potential is a part of the
class of potentials who’s propagator may be attained by
direct computation of the action. We will analyze these
potentials in the applications section.

D. Systematic Approach to Evaluating Path
Integrals

The form of the right-hand side of equation (4) in exact
mathematical form is actually:

U(x, t) =

∫ x

x0

eiS[x(t)]/h̄D[x(t)], (10)

where
∫ x
x0
D[x(t)] is the instruction to integrate over all

paths connecting x0 and x in the interval [t0, t]. To per-
form this integral we first make a finite step approxima-
tion to it and then take the limit as the step size goes to
zero to arrive at the desired result.

As stated, we make a discrete approximation of all
paths x(t) connecting x0 and x. We break each path
into N + 1 time-steps of length ε, where tn = t0 + nε,
for n = 0, ..., N . Thus, the path is broken into points
evaluated at each time-step: x(t0), x(t1), ..., x(tN ). Each
point is interpolated by lines of constant slope: dx

dt =(
xn+1−xn

ε

)2

, where xn = x(tn). If we consider again the

free particle case, the action of the particle is now given
by

S =

∫ tN

t0

1

2
m

(
dx

dt

)2

dt =
N−1∑

n=0

m

2

(
xn+1 − xn

ε

)2

ε.

(11)
If we now take the limit that N → ∞, which implies

ε→ 0, equation (10) becomes

U(x, t) = lim
N→∞

A

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

[
i

h̄

m

2
×

N−1∑

n=0

(xi+1 − xn)2

ε

]
× dx1 · · · dxN−1, (12)

where the N−1 integrals are evaluated for all space since
we are considering a continuum of paths where x(t) may
take on any x value at any given point except at the
endpoints, which are fixed.

We can simplify the integrand by making the linear
substitution yi = ( m

2h̄ε )
1/2xi. The constant A is subse-

quently modified to include the proportionality constant
in the substitution dxi → dyi, A→ A′ = A( 2h̄ε

m )(N−1)/2.
The new expression is

U(x, t) = lim
N→∞

A′
∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞

exp

[
−
N−1∑

n=0

(yi+1 − yn)2

i

]
× dy1 · · · dyN−1.(13)

This complicated mess of integrals can be simplified by
examining the first integration:
∫ ∞

−∞
exp

{
−1

i

[
(y2 − y1)2 + (y1 − y0)2]

]}
dy1

=

(
iπ

2

)1/2

e−(y2−y0)2/2i,(14)
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which carries over to the next integration

(
iπ

2

)1/2 ∫ ∞

−∞
e−(y3−y2)2/i · e−(y2−y0)2/2idy2

=

[
(iπ)2

3

]1/2

e−(y3−y0)2/3i. (15)

If we iterate this N − 1 times we arrive at

(iπ)(N−1)/2

N1/2
e(yN−y0)2/Ni

=
(iπ)(N−1)/2

N1/2
e−m(xN−x0)2/2h̄εNi. (16)

We see that the only way that U may be normalized is if

A′ is unity or, equivalently, if A =
[

2πh̄εI
m

]−N/2 ≡ B−N .
Otherwise, the expression would blow up because of the
fact that there are constants raised to N , where N →∞.
Finally,

U(xN , tN ) =
( m

2πh̄iNε

)1/2

exp

[
im(xN − x0)2

2h̄Nε

]
, (17)

where Nε → tN − t0, thus providing the exact result as
given by equation (9).

This example has illustrated the exact meaning of the
path integral, which is

∫
D[x(t)] = lim

N→∞
1

B

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞

dx1

B

×dx2

B
· · · dxN−1

B
,(18)

where each N − 1 integration has a factor of 1/B associ-
ated with it and the remaining factor of 1/B is attributed
to the process as a whole. These factors exist to keep the
integration over infinite paths normalizable.

E. Equivalence to the Schrödinger Picture

As a brief aside, it should be mentioned that, although
we built up the path integral approach from a com-
pletely different starting point than the one from which
the Schrödinger picture begins, the two approaches are
mathematically the same at the end of the day. It turns
out one may derive the Schrödinger equation from this
formalism by solving for the time-evolved wavefunction
in the limit of a very small time step. Given a propa-
gator U(x, t) found through the path integral approach,
we can time evolve a generic wavefunction from its ini-
tial value, ψ(x, t0), over an arbitrarily small time interval
∆t = t−t0 = ε, while considering second-order variations
in space:

ψ(x, ε) =

∫ ∞

−∞
U(x, ε)ψ(x′, t0) dx′. (19)

For a generic potential V and an infinitesimal time slice
ε, one may easily show that in this limit U is simply

U(x, ε) =

(
m

2πh̄iε

)1/2

exp

[
im(x− x′)2

2εh̄

]

× exp

[
− iε
h̄
V

(
x+ x′

2
, 0

)]
.(20)

The second exponential term in the propagator can be
taylor expanded to first order in ε as 1− iε

h̄ V (x, 0)+O(ε2).
Paths that lie with a coherence range η are considered by
taking the second term inside the integral ψ(x′, t0) and
representing it as ψ(x + η, t0), where x′ = x + η. Ex-
panding ψ to second order in space we get ψ(x+ η, t0) =

ψ(x, t0) + η ∂ψ∂x + η2

2
∂2ψ
∂x2 . Plugging this all into equation

(19) gives us

ψ(x, t0 + ε) =

(
m

2πh̄iε

)1/2 ∫ ∞

−∞
exp

(
imη2

2h̄ε

)−1/2

×
[
ψ(x, t0)− iε

h̄
V (x, t0)ψ(x, t0) + η

∂ψ

∂x
+
η2

2

∂2ψ

∂x2

]
dη.(21)

Integrating, subtracting both sides by ψ(x, t0), and di-
viding through by ε leaves us with the relation

ψ(x, t0 + ε)− ψ(x, t0)

ε
= − i

h̄

[−h̄2

2m

∂2

∂x2
+V (x, t0)

]
ψ(x, t0)

(22)
In the limit where ε → 0, this returns the Schrödinger
equation.

III. APPLICATIONS

Now that we understand what path integration means,
we will now see how it applies to systems with non-trivial
potentials.

A. Potentials of the form V = a+ bx+ cx2 + dẋ+ exẋ

Suppose we have a physical system that corresponds
to a Lagrangian of the form

L =
1

2
mẋ2 − a− bx− cx2 − dẋ− exẋ. (23)

We may write every path between x0 and x in terms of
the classical path xcl and departures from it y, such that
x(t′) = xcl(t

′) + y(t′). After taking a time derivative
becomes ẋ(t′) = ẋcl(t

′) + ẏ(t′), where y(0) = y(t) = 0
such that the endpoints agree. As before, we slice the
path into N time-slices such that x(t′n) = xcl(t

′
i) + y(t′i).

Since xcl(t
′
n) is constant at any t′n, dxn = dyn holds, and

equation (18) simplifies to

∫ x

x0

D[x(t′)] =

∫ 0

0

D[y(t′)] (24)
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and equation (10) may be written as

U(x, t;x0, t0) =

∫ 0

0

exp

{
i

h̄
S[xcl(t

′) + y(t′)]

}

×D[y(t′)]. (25)

If we perform an expansion of the functional S around
xcl we get:

S[xcl + y] =

∫ t

0

L(xcl + y, ẋcl + ẏ) dt′

≡
∫ t

0

L(xcl, ẋcl) +

(
∂L
∂x
|xcly +

∂L
∂ẋ
|xcl ẏ

)
(26)

+
1

2

(
∂2L
∂x2
|xcly2 + 2

∂2L
∂x∂ẋ

|xclyẏ +
∂2L
∂ẋ2
|xcl ẏ2

)
dt′.

The expansion is only second order since L is only
quadratic in x and ẋ. Plugging in our Lagrangian from
equation (23) and noticing that the first term in the ex-
pansion evaluates to S[xcl], the propagator becomes

U(x, t;x0, t0) = exp

(
iScl
h̄

)∫ 0

0

exp

[
i

h̄

∫ t

t0

(
1

2
mẏ2

−cy2 − eyẏ
)
dt′
]
×D[y(t′)]. (27)

Note that the outer integral has no dependence on xcl and
only depends on t. Thus, the propagator is of the form
U(x, t) = eiScl/h̄f(t), where f(t) is unknown until the
exact system and therefore the Lagrangian is specified.
Since it is typically straightforward to find Scl, the heart
of the matter is finding f(t) for a given potential. So we
now turn our attention to finding f(t) for the harmonic
oscillator potential.

B. The Quantum Harmonic Oscillator

The harmonic oscillator potential V = 1
2mω

2x2 is
ubiquitous in physics since it may be used to approx-
imate an arbitrary potential for a particle near a po-
tential minimum. We notice that its Lagrangian, L =
1
2mẋ

2 − mω2

2 x2, is a special case of equation (23), with

a = b = d = e = 0 and c = 1
2mω

2.The classical action of
this system is found by evaluating (2) for a general path
x(t) = Acos(ωt) + Bsin(ωt). In order to evaluate the
integral, A and B are chosen such that x(0) = x1 and
x(T ) = x2. After integration, the parameters x2 → x
and T → t are allowed to vary, which leaves

Scl(x, t) =
mω

2sin(ωt)

[
(x2

1 + x2)cosωt− 2x1x
]

(28)

Plugging in the values of a,b,c,d, and e for the har-
monic oscillator potential into equation (27), the function

f(t) becomes:

f(t) =

∫ 0

0

exp

[
i

h̄

∫ t

0

1

2
m(ẏ2 − ω2y2)

]
dt′ D[y(t′)] (29)

To evaluate this expression we first represent the value of
the fluctuations of the trajectory y(t′) by a Fourier series:

y(t′) =
∑

n

ansin

(
nπt′

t

)
, (n = 1, 2, ..., N−1). (30)

Substituting this expression into the inner integral of
equation (29), the second term evaluates to

−mω2

2

∫ t

0

y(t′)2dt′ =
−mω2

2

∑

n,m

∫ t

0

anam sin

(
nπt′

t

)

× sin

(
mπt′

t

)
dt′ =

−mω2t

4

∑

n

a2
n. (31)

In the same fashion, the first term evaluates to
mπ2

4t Σnn
2a2
n. Note that the equivalent of integrating over

all possible values of y(t) is to integrate over all possible
values of an, which we now do. Using the finite step
approximation like before, the f(t) becomes

f(t) = lim
N→∞

G

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

[
imt

4h̄

×
N−1∑

n=1

(
n2π2

t2
− ω2

)
a2
n

]
da1 · · · daN−1, (32)

where G accounts for the constants produced during the
change of variables. The result is the product of de-
coupled Gaussian integrals, where each integral evalu-

ates to
(

4πih̄
mt

)1/2 ( t
nπ

) (
1−

(
ωt
nπ

)2)−1/2

. Using the iden-

tity limN→∞ΠN−1
n=1

(
1−

(
ωt
nπ

)2)
= sin(ωt)

ωt , the propaga-

tor becomes

U(x, t;x0, t0) = G′ exp

(
iScl
h̄

)(
ωt

sin(ωt)

)1/2

. (33)

We find G′ by considering the limit of the propagator
as ω → 0. In this limit, the Lagrangian represents a
free particle system since the potential V goes to zero,
and thus the propagator will be that for a free particle.

Therefore, we find that G′ =
(

m
2πih̄t

)1/2
, and the com-

plete expression for the propagator is

U(x, t;x0, t0) =
( m

2πih̄t

) 1
2

(
ωt

sin(ωt)

) 1
2

exp

(
iScl
h̄

)
.

(34)
Comparison to the propagator obtained through the
Schrödinger formulation shows that the two results agree.
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IV. CONCLUSION

The procedure by which we found the propagator of
the harmonic oscillator may be applied to a Lagrangian
with any value of the coefficient a, b, and c. For e and
f 6= 0, the procedure involves more advanced mathemat-
ical tools, but the end result will be the same: a set of
N − 1 decoupled Gaussian integrals that evaluate to give
an analytic function that, upon squaring, describes the
probability of a particle being at a position x at a time
t. Potentials that do not fall into this narrow range of
possible potentials maybe be approximated by these po-
tentials or treated using perturbation theory.

The ultimate goal of quantum mechanics is to find the

probability that an event will take place at a given time.
There are two ways to go about this. One may take
an approach where differential equations are used to de-
scribe the local trajectory a particle and how it evolves
over an infinitesimal amount of time. Alternatively, a
global approach may be used where a particle explores
all possible paths in a finite amount of time and the ac-
tual path is determined by consequence of which of these
minimizes how much“effort” the particle must put in to
travel it. We have shown how the latter approach may be
applied to physical systems, and, though it may be math-
ematically more involved for certain types of problems,
it gives us a different way of understanding the reality of
how motion plays out in the physical world.
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The Dirac Equation: Relativistic Electrons and Positrons

Cole Graham
Department of Mathematics, MIT, 77 Massachusetts Ave., Cambridge, MA 02139-4307

(Dated: May 2, 2014)

We develop the Dirac equation for the relativistic electron. We introduce the 4-component wave-
function of the electron, and determine the relativistic probability current. In the non-relativistic
limit we derive the magnetic moment of the electron, and find ge = 2. By cosidering negative energy
solutions to the Dirac equation, we deduce the existence of the electron antiparticle, the positron.

I. INTRODUCTION

In the most elementary form of quantum mechanics,
a particle is described by a scalar wavefunction ψ which
extends throughout three-dimensional space, and which
satisfies the famous Schrödinger Equation:

i~
∂ψ

∂t
=

[
− ~2

2m
∇2 + V

]
ψ, (1)

where V is the potential experienced by the particle and
m is the particle mass. Erwin Schrödinger published his
equation in 1926, and thereby neatly explained numer-
ous quantum effects. In particular, the equation predicts
the quantized energy levels of hydrogen, matching the
Rydberg formula. Unfortunately, the equation does not
exhibit the relativistic corrections to the hydrogen ener-
gies. Indeed, the Schrödinger equation is patently non-
relativistic, since it treats time and space asymmetrically:
the equation is first-order in time and second-order in
space. Schrödinger himself was aware of this inadequacy,
and only published equation (1) after failing to find a
relativistic wave equation consistent with experiment.

In 1928, Paul Dirac resolved the conflict between spe-
cial relativity and early quantum mechanics with a rel-
ativistic wave equation for the electron. To develop the
equation, Dirac was forced to abandon a scalar wave-
function for the electron, and instead introduced a 4-
component vector wavefunction. This vector wavefunc-
tion resolved another outstanding issue in contemporary
quantum mechanics: spin. The internal spin of the elec-
tron had been postulated by Pauli in 1924, but Dirac first
provided a natural mathematical explanation for the ex-
tra degree of freedom of the electron. In fact, only two de-
grees of freedom are necessary to describe spin using the
Pauli representation. The 4-component vector required
for the Dirac equation therefore has two extra degrees of
freedom. These extra components led Dirac to predict
the existence of a second particle, dual to the electron
but with opposite charge [4]. This particle, the positron,
was first observed in 1933 [1]. Dirac had combined rel-
ativity and quantum mechanics, described the electron
spin, and predicted antimatter all in one elegant wave
equation.

II. RELATIVISTIC FREE ELECTRONS

We begin by developing the Dirac equation for a free
electron, which experiences no potential. In this setting,
the Schrödinger equation (1) reduces to

i~
∂ψ

∂t
= − ~2

2m
∇2ψ. (2)

As written in (2), Schrödinger’s equation is a representa-

tion of the classical relation E = p2

2m . In non-relativistic
quantum mechanics, E and p are identified with the op-
erators i~ ∂

∂t and −i~ ∂
∂xi

, which act on a wavefunction
ψ.

To develop a relativistic theory, we must use the rela-

tivistic relation: E =
√
m2c4 + p2c2. To make this en-

ergy equation Lorentz-invariant, we form a momentum
4-vector p, whose contravariant components we denote
pµ for µ = 0, 1, 2, 3. The derivative with respect to con-
travariant coordinates xµ is covariant, so for the spatial
coordinates, pi = −i~∂i. Hence when we raise the index,
pi = −i~gij∂j = i~∂j . Finally, we introduce the new
variable p0 corresponding to the operator i~∂0. As the
timelike component in the momentum 4-vector, p0 must
represent energy (divided by c) [5]. We then have the full
contravariant momentum:

pµ = i~∂µ. (3)

Writing the relativistic energy formula as a wave equa-
tion, we have

p0ψ =
√
m2c2 + (pi)2 ψ, (4)

where i is summed over the spatial coordinates i = 1, 2, 3.
Although (4) is a relativistic equation, it is still not man-
ifestly symmetric between p0 and pi. It is entirely un-
clear how (4) will transform under the Lorentz group.
To recover the Lorentz-invariance of relativistic theory,
we write the energy formula as p · p = pµpµ = m2c2.
Then the wave equation (4) becomes

(pµpµ −m2c2)ψ = 0. (5)

Substituting pµ = −i~∂µ, and using x0 = ct, we obtain
the Klein-Gordon equation:

[
1

c2
∂2

∂t2
−∇2 +

m2c2

~2

]
ψ = 0. (6)
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This equation has finally attained the symmetry re-
quired in a Lorentz-invariant theory, since time and space
derivatives are both second-order. However, the second-
order nature of the Klein-Gordon equation is troubling,
as it implies that a state is not fully determined by its
initial value ψ|t=0 [5] . Rather, to fully specify the evolu-
tion of the wavefunction, we must provide both ψ|t=0 and
∂ψ
∂t |t=0. The extent of this issue becomes further appar-
ent when we consider the probability distribution arising
from (6) [8]. In non-relativistic quantum mechanics, the
probability density ρ for a particle is given by ρ = ψ∗ψ.
This density satisfies the conservation law

∂ρ

∂t
+∇ · J = 0, (7)

where J = − i~
2m (ψ∗∇ψ − ψ∇ψ∗) is the probability cur-

rent. To make these equations relativistic, we form the
4-vector current J given by Jµ = i~

2m (ψ∗∂µψ − ψ∂µψ∗).
The Klein-Gordon equation then implies that

∂µJ
µ = 0. (8)

The probability density has become the timelike coordi-
nate in a 4-vector:

ρ =
1

c
J0 =

i~
2mc2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
. (9)

However, because ψ|t=0 and ∂ψ
∂t |t=0 may be freely spec-

ified, (9) may be made negative. So ρ cannot be inter-
preted as a probability distribution. This entirely un-
dermines the physical interpretation of the Schrödinger
wavefunction [13].

These issues would be resolved if (6) were made first-
order in t. Lorentz symmetry then demands that the
equation be first order in pµ. To attain this goal, we
attempt to factor (5) into two terms, each linear in p:

pµpµ −m2c2 = (γκpκ +mc)(γλpλ −mc). (10)

Expanding this product, we see that the coefficients γκ

must satisfy pµpµ = γκγλpκpλ. Matching terms, we re-
quire

γκγλ + γλγκ = 2gκλ. (11)

That is, (γ0)2 = 1, (γi)2 = −1, and γκγλ + γλγκ = 0
when κ 6= λ [8]. These equations cannot be satisfied for
any complex numbers. Dirac brilliantly realized that the
equation (11) could be satisfied if each γµ is a matrix.
The requirement of 4 independent anticommuting matri-
ces cannot be satisfied by 2 × 2 matrices, for there are
only 3 independent Pauli matrices [3]. In fact, the matri-
ces γµ must be at least 4× 4 in size to satisfy (11). This
in turn demands that ψ have 4 components. Hence a
relativistic formulation of quantum mechanics demands
that electrons be described by 4-component wavefunc-
tions, not the simple scalar wavefunctions found in the
Schrödinger equation. There are a variety of 4×4 matrix

representations of γµ which satisfy the relations (11). We
choose the convention of Bjorken and Drell [2]. In block
form, the matrices are

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (12)

where σi denotes the 2 × 2 Pauli matrix. Having estab-
lished a representation for γµ, we select one factor from
(10) as our wave equation. Which factor is a matter of
convention—we use the standard choice of

γµpµ −mc = 0. (13)

If we represent pµ by the operator i~∂µ, we obtain the
Dirac equation for the wavefunction of a free electron [8]:

i~γµ∂µψ −mcψ = 0. (14)

To understand the relativistic behavior of the Dirac equa-
tion, we consider how ψ transforms under the Lorentz
group. Notably, although ψ has 4-components, it is not
a 4-vector. Rather, if we perform a boost in the xi-
direction by speed v, the transformation ψ 7→ ψ′ is given
by ψ′ = Sψ, where S is a 4× 4 matrix. In block form,

S =

(
a+ a−σi

a−σi a+

)
, (15)

where a± = ±
√

1
2 (γ ± 1) and γ =

(
1− v2

c2

)−1/2
. We

omit the derivation of (15); it is outlined in [8]. The
transformation matrix S is clearly not the usual Lorentz
boost matrix used to transform a 4-vector. More gener-
ally, any Lorentz transformation Λ acts on ψ as multipli-
cation by some matrix S(Λ). However, S(Λ) is not the
matrix describing the transformation of 4-vectors.

A. Probability Density

In contrast to the Klein-Gordon equation, the wave-
function in (14) corresponds to a probability distribution.
Since ψ has 4 components, we form ρ = ψ†ψ. Again we
expect a relativistic conservation law of the form (8). So
ρ should be the timelike component of a 4-vector proba-
bility current J. In particular, ρ is not Lorentz invariant
[14]. To find Jµ in terms of ψ, we define the Dirac ad-
joint:

ψ = ψ†γ0. (16)

Although it appears somewhat arbitrary, ψ is chosen to
reestablish the Lorentz invariance absent in ψ†ψ. We
do not show it here, but S†γ0S = γ0 [8]. Indeed, this
relation holds for any S(Λ) corresponding to an arbitrary
Lorentz transformation. We then have

ψ
′
ψ′ = (ψ′)†γ0ψ′ = ψ†S†γ0Sψ = ψ†γ0ψ = ψψ. (17)
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Hence ψψ is a Lorentz-invariant scalar, unlike ψ†ψ. Be-
cause (γ0)2 = 1, we may write

ρ = ψ†ψ = ψ†γ0γ0ψ = ψγ0ψ. (18)

This formulation suggests the following definition of the
4-vector J:

Jµ = ψγµψ. (19)

The fact that (19) describes the contravariant compo-
nents of a 4-vector is not as trivial as the notation sug-
gests. Indeed, γµ are not the contravariant component
of a 4-vector. The Dirac matrices are fixed mathematical
objects independent of physical coordinate transforma-
tions. In (19), the terms changed under a Lorentz trans-
formation are ψ and ψ. Nevertheless, it is straightforward
to verify that ψ and ψ transform in precisely the right
way to make J a 4-vector. For instance, if we consider a
boost in the x1 direction, the J0 and J1 components will
mix appropriately, while J2 and J3 will be unchanged.
These calculations reveal the power of the notation for
γµ and ψ. γµ are not contravariant components, and
ψ is not the usual Hermitian conjugate. Nevertheless,
ψψ is a Lorentz scalar, and ψγµψ are the contravariant
components of a Lorentz 4-vector [8].

We can now show that J satisfies the continuity equa-
tion (8) required of probability current. This procedure
is nearly identical to that used to derive (7) from the
Scrödinger equation. We first write the Dirac equation
for the Dirac adjoint. We take the Hermitian conjugate
of (14), and right multiply by γ0:

ψ†(−i~(γµ)† ~∂µ −mc)γ0 = 0, (20)

where the left arrow in ~∂µ indicates that the derivative
acts on the left. Now, (γ0)†γ0 = γ0γ0, while (γi)†γ0 =
−γiγ0 = γ0γi. So (γµ)†γ0 = γ0γµ. Hence the γ0 term
on the right moves through the operators in the middle,
yielding

ψ(−i~γµ ~∂µ −mc) = 0. (21)

In the bra-ket formalism, (14) is the Dirac equation for
kets, and (21) is the equation for bras. To obtain a scalar
equation, we multiply (14) on the left by ψ, and (21) on
the right by ψ. These operations yield:

i~ψγµ~∂µψ −mcψψ =0,

−i~ψγµ ~∂µψ −mcψψ =0, (22)

where the right arrow in ~∂µ indicates action on the right.
Subtracting the second equation from the first, we have
the conservation law:

ψγµ~∂µψ + ψγµ ~∂µψ = ∂µ
[
ψγµψ

]
= ∂µJ

µ = 0. (23)

The Dirac equation is therefore a Lorentz-compatible
wave equation for a 4-component wavefunction ψ, and
ψ corresponds to a conserved (non-negative) probability
density ψ†ψ = J0. In this sense, the wavefunction in the
Dirac equation has the same physical interpretation as
that in the Schrödinger equation.

III. ELECTROMAGNETIC POTENTIALS

We turn now to the Dirac equation for an electron mov-
ing in an electromagnetic potential. In relativity, the
electric scalar potential φ and the magnetic vector po-

tential ~A are assembled into a single 4-vector A, where

Aµ =
(
φ
c ,
~A
)

. We adapt the Hamiltonian for a free par-

ticle to an electromagnetic potential by replacing p by
the canonical momentum p− qA (in SI units) [12]. This
leads us to perform the same substitution in the Dirac
equation, with q = −e. Hence we have

γµ (i~∂µ + eAµ)ψ −mcψ = 0. (24)

An equation describing the interaction between an elec-
tron and a magnetic field should reveal the internal spin
of the electron. In fact, the usual Hamiltonian for an
electron in a magnetic field may be recovered from (24)
in the non-relativistic limit. To see this, we fix a refer-
ence frame, and consider the low velocity limit, in which(
v
c

)2 � 1. To isolate the effect of the magnetic field
alone, we take φ = 0. Changing from the operator form
to the momentum form of the Dirac equation, we have

γµ(pµ + eAµ)ψ −mcψ = 0. (25)

In our fixed reference frame, pµ =
(
E
c ,−~p

)
and Aµ =

(0,− ~A). Let ~π = ~p+e ~A denote the canonical momentum.
Using the block forms of γµ and multiplying by c, the
Dirac equation becomes

(
E −mc2 −c~π · ~σ
c~π · ~σ −E −mc2

)
ψ = 0. (26)

We now consider the first pair and second pair of com-
ponents of ψ separately. Let

ψ =

(
Θ
Ξ

)
, (27)

where Θ and Ξ are 2-component vectors. In this decom-
position, (26) separates into two equations [12]:

(mc2 − E)Θ + c~σ · ~π Ξ = 0 (28)

(mc2 + E)Ξ− c~σ · ~π Θ = 0. (29)

Now, in the low velocity limit, E ≈ ES+mc2, where ES is
the energy in the Schrödinger equation, and ES � mc2.
With this approximation, (29) reduces to

Ξ =
~σ · ~π
2mc

Θ. (30)

Note that ‖Ξ‖ ∝ v
c ‖Θ‖, so for low velocities, the term Ξ

is suppressed in ψ. Now, substituting (30) into (28), we
obtain the Pauli equation:

ESΘ = c~σ · ~π Ξ =
(~σ · ~π)(~σ · ~π)

2m
Θ. (31)
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We now recall the Pauli matrix formula:

(~σ · ~π)(~σ · ~π) = ~π · ~π + i~σ · (~π × ~π). (32)

Because ~p and ~A need not commute, we cannot simply
write ~π × ~π = 0. Instead,

~π × ~π = ~p× e ~A+ e ~A× ~p = −i~e[~∇× ~A+ ~A× ~∇]. (33)

To simplify this operator, we consider its action on a
scalar function ϕ:

[~∇× ~A+ ~A× ~∇]ϕ = ~∇× ( ~Aϕ) + ~A× (~∇ϕ)

= (~∇× ~A)ϕ+ (~∇ϕ)× ~A+ ~A× (~∇ϕ)

= ~Bϕ. (34)

Therefore ~π × ~π = −i~e ~B. With this, we write (31) in
full [3, 5, 12]:

ESΘ =

[
(~p+ e ~A)2

2m
+

e~
2m

~σ · ~B
]

Θ. (35)

The first term on the right hand side of (35) is the usual
kinetic term in the Schrödinger equation. The second
term corresponds to the magnetic moment of the elec-

tron. If we substitute ~S = ~
2~σ and µB = e~

2m , we have

ESΘ =

[
(~p+ e ~A)2

2m
+ 2µB

~S

~
· ~B
]

Θ. (36)

The factor of 2 in the spin term is the g-factor for the
electron. The Dirac equation therefore naturally exhibits
the internal spin of the electron, and (almost) correctly
calculates ge = 2. According to (36), Θ incorporates the
spin of the electron. As a 2-component wavefunction,
Θ effectively belongs in the tensor product of position
space with the 2-state spin space. In this formulation, the
components of Θ may be identified as the wavefunctions
of the spin up and down components of the electron.
An arbitrary Θ is a superposition of the up and down
wavefunctions.

The electron spin had been observed and described be-
fore the publication of the Dirac equation [7, 10]. How-
ever, Dirac was the first to provide a mathematical frame-
work in which spin emerged naturally as part of the fun-
damental theory. In this perspective, particle spin is a
consequence of the merger of relativity and quantum me-
chanics.

IV. THE POSITRON

Let us now return to the case of a free electron, so that
Aµ = 0. In the rest frame of the electron, pµ = 0, and
the Dirac equation (26) reduces to

(
E −mc2 0

0 −E −mc2
)
ψ = 0. (37)

This equation will have a normalizable solution ψ pre-
cisely when E = ±mc2. In the previous section we fol-
lowed non-quantum relativity, and assigned a rest en-
ergy E = +mc2 to the electron. However, the decoupled
equation (37) suggests that there is no physical reason to
prefer the positive energy solution to the negative energy
solution [12]. In the non-quantum theory, this sign am-
biguity has no physical significance. When considering a
(massive) particle, we are free to let the energy be mc2 in
the rest frame [15]. All changes in classical variables are
continuous, so the energy cannot discontinuously jump
to negative values. A particle with positive rest energy
invariably has positive energy, so the negative energy so-
lutions may be ignored as mathematical curiosities. This
simplification is impossible in quantum mechanics [3, 4].
Quantum mechanics admits discontinuous changes in en-
ergy: an electron initially in a positive energy state may,
through some perturbation of the electromagnetic field,
decay to a negative energy state.

In the low-velocity limit for negative energy solutions,
ES is negative, and E ≈ ES − mc2. With this substi-
tution, the roles of Θ and Ξ are reversed in (30) and
(31). At low velocities, the term Θ is suppressed in ψ,
and Ξ becomes the spin of a negative energy electron.
This observation finally establishes the physical signif-
icance of the 4 components of ψ. In the low velocity
limit, two components form the spin state of a positive
energy electron, and 2 components form the spin of a
negative energy electron. Of course at higher velocities
the components cannot be neatly separated in this man-
ner, but the need for 4 components is still clear. The
2-component wavefunction describing a spin- 12 particle is
called a spinor. The 4-component ψ is a composite of 2
spinors, and is called a Dirac spinor, or a bispinor [8].

At first glance, negative energy electron states consti-
tute a serious problem with the Dirac equation [3]. If
there are infinitely many negative energy states available
for the electron, the positive energy states should be un-
stable, liable to decay to a high-velocity negative energy
state. Evidently, physical electrons are observed to be
stable. Dirac suggested that the negative energy states
are in fact almost entirely occupied. Then the Pauli ex-
clusion principle prevents positive energy electrons from
decaying [4]. This model, now called the Dirac sea, re-
quires the vacuum to be populated by infinitely dense
yet unobservable negative energy electrons. In the ab-
solute vacuum, all negative energy states are occupied,
while all positive energy states are empty. Deviations
from this configuration can take two forms. A positive
energy state might be occupied, which would appear as a
standard electron. Alternatively, a negative energy state
might be unoccupied. Such a vacancy would imply the
absence of a negative energy, negatively charged particle.
In any physical observation, this absence would manifest
itself as a positive energy positively charged particle. The
electron “hole” would have the same mass as the elec-
tron. This particle was predicted by Dirac in 1929, and
observed in 1933 [1, 4].
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Such a hole is now called a positron, the antiparticle
of the electron. In this perspective, a Dirac spinor is
a composite wavefunction formed from the spinor of an
electron and the spinor of a positron. Familiar behaviors
of antiparticles can be neatly explained by the Dirac sea
model. When a positron and an electron meet, the pos-
itive energy electron state may decay to fill the negative
energy vacancy. This decay erases both the electron and
the positron from observable existence, and emits a burst
of radiation equal in energy to the sum of the energies
of the electron and positron [4]. This process is particle-
antiparticle annihilation. In the reverse process, a per-
turbing field may induce a negative energy electron to
spontaneously jump to a positive energy state. Energy
is absorbed from the perturbing electromagnetic field,
and an electron-positron pair is created. This process is
particle-antiparticle pair production.

Although this model is effective for fermions, it cannot
explain the antiparticles of bosons, which do not obey
the Pauli exclusion principle. An alternate explanation
for antiparticles was proposed by Feynman in 1949 [6].
In Feynman’s model, first suggested by Stückelberg, neg-
ative energy electrons travel backwards in time. For ob-
servers moving forward in time, the particles appear to
have positive energy and positive charge [12].

V. MODERN DEVELOPMENTS

Despite the explanatory and predictive power of the
Dirac equation, it is not the final word in physics. The
equation accurately describes all corrections to the hy-
drogen spectrum down to hyperfine splitting [12]. How-
ever, still finer perturbations to the hydrogen spectrum
are observed. Most prominently, the Lamb shift is not
explained by the relativistic quantum mechanics of the

Dirac equation. Instead, these finer perturbations are ef-
fects of quantum field theory [8]. The magnetic moment
of the electron also exhibits QFT effects. While the Dirac
equation predicts ge = 2, as in (36), field theory inter-
actions cause ge to deviate slightly from 2. In a modern
measurement [9]:

ge = 2.002319304(36).

QFT does not, however, simply jettison the Dirac equa-
tion. Instead the equation is adapted to describe particle
fields. This Dirac field equation governs fermionic fields.
In the field theory formulation, electrons and positrons
are field states governed by creation and annihilation
operators[11].

Although the QFT interpretation of electron-positron
production has replaced the Dirac sea model, the model
is not obsolete. It is currently used to describe the
behavior of electrons and electron holes in the solid state
physics of metals and semiconductors. In semiconduc-
tors the ground state can consist of a sea of electrons
occupying low energy states, separated from higher level
states by an energy band gap. When the semiconductor
is excited, an electron is promoted across the band gap,
yielding a negatively charged electron in the conduction
band and a positively charged hole in the valence band.
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We discuss isospin and the approximate computation of the matrix elements for example strong
interactions and decays.

I. INTRODUCTION

A particle can be in once of several spin states, which,
along with its electric charge, determines how it interacts
with the electromagnetic force. While it may be counter-
intuitive, it is perfectly valid to call each of those states a
different particle: e.g. there is an upelectron and a down-
electron and they are identical in every aspect except
for their spin. An electron with an indeterminate spin
is thus a superposition of upelectron and downelectron,
just as some particles are in a superposition of photon
and electron-positron pair or a superposition of electron
neutrino and muon neutrino. As the electron is a spin-
1/2 particle, there are two types of electron: the upelec-
tron and downelectron, which have ẑṡpin 1/2 and -1/2,
respectively.

The interaction of a particle with the electromagnetic
force is determined solely by its electric charge and spin.
To a first order approximation and considering only the
first generation of particles, a particle’s interaction with
the strong nuclear force is determined solely by its color
charge and its isospin (though conservation laws remain
in force). Color confinement prevents the direct obser-
vation of particles with color charge, so this paper will
focus on isospin.

Just as the upelectron and downelectron can be con-
sidered to be different states of the electron, the pro-
ton and neutron can be considered different states of the
isospin-1/2 ”nucleon” particle with ẑi̇sospin 1/2 and -
1/2, respectively. Because this approximation is only an
approximation, the two states of the nucleon have dif-
ferent masses, decay modes, and interactions with other
forces.

However, we know that the nucleons are composed of
quarks, with the proton begin composed of two up and
one down quarks and the neutron being composed of one
up and two down quarks. This seems to clash with the
preceding claims.

For the first part of this paper, we will consider only the
first-generation quarks: the up quark and down quark.

Quarks are (as far as we know) fundamental subatomic
particles with isospin 1/2. Baryons (including protons
and neutrons) are composed of three quarks, and mesons
are composed of a quark and an antiquark (tetra quarks
composed of two quarks and two antiquarks exist, but
will not be discussed in this paper). Protons and Neu-
trons are both composed only of first-generation quarks,
which can be in the up |u〉 state or the down |d〉 state.
In analogy with spin angular momentum, we choose a di-

rection along which to project the isospin to generate the
projection isospin I3 such that the up quark has I3 1/2
and the down -1/2). This means that the set of baryons
composed of first-generation quarks is in the isospin space
generated by 2⊗2⊗2=(2⊗2)⊗2=(3⊕1)⊗2=3⊗2⊕1⊗2=
4⊕2⊕2. The order-4 group is the delta baryons, a set
of four isospin-3/2 particles which have the four I3 states
3/2, 1/2, -1/2, and -3/2. The next two doublets describe
states composed of a down and two up quarks or an up
and two down quarks. However, the order-two lie group
consisting of bound states describing an up and two down
quarks only contains a single particle, as the following
nonrigorous argument will demonstrate.The derivation of
the wavefunction for the proton may also be performed
through a rigorous method, but such a derivation is com-
plicated enough that it is beyond the scope of this paper
and requires a substantial amount of quantum field the-
ory, unlike the symmetry argument which follows. Any
particle consisting of a bound state of three quarks must
be an eigenstate of the operator which permutes the iden-
tities of the individual quarks. Thus, all allowed states
must have an equal contribution from |uud〉 and |udu〉,
so for brevity all states will be shown aggregated by num-
ber of down quarks. However, this disallows the creation
of a singlet state, so there can be no difference between
the ∆+ baryon and the proton (both being |uud〉), which
does not agree with experiment. ”The quarks are indis-
tinguishable” does not match experiment, so the quarks
must be in some way distinguishable.

The first property that quarks have which comes
to mind is color- it seems plausible that the quarks
inside a proton are distinguished by their color,
and that this allows the existence of a singlet
state. A proton is color neutral, so it is plausi-
ble to suppose that the a proton could be something
like 1√

3
(|(ru)(bu)(gd))+|(ru)(gu)(bd))〉−|(bu)(gu)(rd)〉〉,

with (ru) representing a red up quark. However, trans-
forming red to blue, blue to green, and green to red must
not change the state- this color symmetry is an explicit
SU(3) symmetry of the strong force. This requires that
the proton state transform under a unitary transforma-
tion in color space as if it were a pure state, so the hadron
wave function must be the product of a color term and a
non-color term.

Quarks do have another property which allows them to
be distinguished- spin. It may be obvious in retrospect
that the proton has something odd going on inside with
spin, because protons are spin-1/2 yet they are composed
of three spin 1/2 particles. We began this paper with an
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analogy between isospin and spin- so the same problems
we are having in constructing isospin-1/2 nucleons out
of three indistinguishable isospin-1/2 quarks would also
occur in constructing spin-1/2 particles out of three indis-
tinguishable spin-1/2 particles. In addition, the nucleon
is spin-1/2 and there is no observed isospin-1/2 spin-3/2
particle, so there must be some kind of coupling between
isospin and spin. It is thus logical to try to construct a
state which is spin-1/2 and isospin-1/2 out of three first
generation quarks by entangling the quarks’ spin states
with their isospin states. Consider first a spin-up proton.
The two possibilities are that the down quark is spin
down and the up quarks are spin-up or that the down
quark is spin-up and the up quarks have opposite spins.
We now have |p↑〉= 1√

(A2+B2)
(A|u↑u↑d↓〉+B|u↑u↓d↑〉).

Undoing the symmetry contraction we did above, we get

|p↑〉= 1√
6
√
A2+B2

(A|u↑u↑d↓〉+A|u↑d↓u↑〉+A|d↓u↑u↑〉)

+B|u↑u↓d↑〉+B|u↑d↑u↓〉+B|d↑u↑u↓〉
+B|u↓u↑d↑〉+B|u↓d↑u↑〉+B|d↑u↓u↑〉)

It is necessary to note that 〈u↑u↑d↓|u↑u↑d↓〉=1/2 on
average- there are two orthogonal states with the rep-
resentation |u↑u↑d↓〉, so on average the inner product is
1/2 Symmetry would seem to suggest that each of these
states must be equally probable, and thus A=2Beıθ. If
the proton and the ∆+ baryon are to be distinct particles,
the dot product of |p〉 and

∣∣∆+↑
〉
=|uud〉⊗|↑↑↓〉= 1√

12
(2|u↑u↑d↓〉+2|u↑d↓u↑〉+2|d↓u↑u↑〉

+|u↑u↓d↑〉+|u↑d↑u↓〉+|d↑u↑u↓〉
+|u↓u↑d↑〉+|u↓d↑u↑〉+|d↑u↓u↑〉)

must be zero. This dot product is (A+2B)/
√

(2), so we
have A=-2B and |p↑〉= 1√

3
(2|u↑u↑d↓〉−|u↑u↓d↑〉)

We find experimentally that the projection isospin can
be calculated using the Gell-Mann-Nishijima formula I3=
Q− 1

2 (A+S) where Q is charge, A is baryon number, and
S is strangeness (which will be unimportant (zero) until
the later part of the paper where SU(3) is discussed). For
example, consider the delta baryons. They have isospins
3/2, 1/2, -1/2, and -3/2. They are baryons, so they have
baryon number 1. Being composed of first-generation
quarks, they have strangeness zero. This implies that
they have electric charges 2, 1, 0, and -1, respectively.
They are typically denoted ∆++,∆+,∆0,∆−.

While it is possible for matter and antimatter to
annihilate and create energy, this does not happen
instantaneously- if the matter and antimatter together
have momentum, mass, electric charge, isospin, or some-
thing else that is conserved the annihilation will result in
the creation of particles that carry away that conserved
quantity, which adds an energy barrier to the annihi-
lation and increases the particle pair’s half-life. Parity
inversion (the mapping between a particle and its an-
tiparticle) does not affect isopsin, though it inverts elec-
tric charge, thus the antiup quark ū has electric charge

-2/3 and projection isospin 1/2. Due to color confine-
ment, all quarks and antiquarks appear in bound states
consisting of three-quark or three-antiquark triplets and
quark-antiquark pairs. The first-generation hadrons are
the nucleons, the antinucleons, the deltas, the antideltas,
the pions, and presumably several tetraquarks. Pions
are mesons, particles consisting of a quark and an an-
tiquark. They should thus be in 2⊗2=3⊕1. However,
mesons are far less massive and interact far less read-
ily than baryons, because the mass-energy of a baryon
is thousands of times that of its components quarks due
to the highly energetic internal gluon field. Consisting
only of a quark-antiquark pair, mesons have much less
energetic internal gluon fields, zero baryon number, and
zero strangeness. They thus decay very readily through
non-strong-force interactions; and thus dividing the zero-
charge pion into the isospin-1 and isospin-0 superposi-
tions is not useful. The useful distinction is the division
by electric charge, because electric charge (unlike isospin)
is conserved in electroweak decays. This results in there
being three types of mesons rather than four: a posi-
tively charged meson, a negatively charged meson, and
a neutral meson that is some superposition of |1,0〉 and
|0,0〉, or in a different basis some superposition of

∣∣dd̄
〉

and |uū〉.

II. DELTA-DELTA INTERACTIONS

In considering interactions and decays mediated by
the strong force, we need only represent particles by
their representations in isospin space; i.e. a proton p
=
∣∣ 1

2
1
2

〉
. The probability of a specific decay is propor-

tional to the square of the absolute value of the expres-
sion 〈Ψf |A(i,f)|Ψi〉 where |Ψi〉 and |Ψf 〉 are the initial
and final states respectively of the system in isospin space
and A(i,f) is an isospin operator which is a function of
the initial and final total isospins. However, conserva-
tion of isospin demands that the initial and final total

isospins must be identical, or that A(i,f)=0 if ~i 6=~f , or
(because isospin vectors are two-dimensional) if (Ii 6=If
or I3i 6=I3f ). In addition, because the choice of a di-
rection along which to compute the projection isospin is
unphysical, A(i,f) and 〈Ψf |A(i,f)|Ψi〉 (which is observ-
able and physical) cannot depend on, and thus must de-
pend only on If=Ii. We thus denote A(i,f) as A(I). Let
pI=|〈I,I3f |A(I)|I,I3i〉|. We know that the interaction
probabilities are proportional to p2

I .
As an example, consider the interactions between

mesons and baryons of the first generation. We have
six categories of interaction: pion-pion, nucleon-nucleon,
delta-delta, delta-pion, delta-nucleon, and pion-nucleon.
The first two are largely uninteresting. The third serves
as a rarely-analyzed illustrative example for calculation
(though is not physically significant due to the short life-
times of the delta baryons and the difficulty in detecting
an interaction between two deltas), while analyses of the
last three may be easily found in other media. The al-
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lowed delta-delta interactions are:

a)∆+++∆++⇒∆+++∆++ b)∆+++∆+⇒∆+++∆+

c)∆+++∆0⇒∆+++∆0 d)∆+++∆0⇒∆++∆+

e)∆+++∆−⇒∆+++∆− f)∆+++∆−⇒∆++∆0

g)∆++∆+⇒∆++∆+ h)∆++∆+⇒∆+++∆0

i)∆++∆0⇒∆++∆0 j)∆++∆0⇒∆+++∆−

k)∆++∆−⇒∆++∆− l)∆++∆−⇒∆0+∆0

m)∆0+∆0⇒∆0+∆0 n)∆0+∆0⇒∆++∆−

o)∆0+∆−⇒∆0+∆− p)∆−+∆−⇒∆−+∆−

To begin the analysis, use the Clebsch-Gordon coeffi-
cients to compute the isospin vectors for each pair of
particles:

∆+++∆++:

∣∣∣∣
3

2

3

2

〉∣∣∣∣
3

2

3

2

〉
=|33〉

∆+++∆+:

∣∣∣∣
3

2

3

2

〉∣∣∣∣
3

2

1

2

〉
=

√
1

2
|32〉+

√
1

2
|22〉

∆+++∆0:

∣∣∣∣
3

2

3

2

〉∣∣∣∣
3

2
−1

2

〉
=

√
1

5
|31〉+

√
1

2
|21〉+

√
3

10
|11〉

∆+++∆−:

∣∣∣∣
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2

3

2
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3

2
−3

2

〉
=

√
1

20
|30〉+

√
1

4
|20〉+

√
9

20
|10〉+

√
1

4
|00〉

∆++∆+:

∣∣∣∣
3

2

1

2

〉∣∣∣∣
3

2

1

2

〉
=

√
3

5
|31〉−

√
2

5
|11〉

∆++∆0:

∣∣∣∣
3

2

1

2

〉∣∣∣∣
3

2
−1

2

〉
=

√
9

20
|30〉+

√
1

4
|20〉−

√
1

20
|10〉−

√
1

4
|00〉

∆++∆−:

∣∣∣∣
3

2

1

2
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3

2
−3

2

〉
=

√
1

5
|3−1〉−

√
1

2
|2−1〉+

√
3

10
|1−1〉

∆0+∆0:

∣∣∣∣
3

2
−1

2

〉∣∣∣∣
3

2
−1

2

〉
=

√
3

5
|3−1〉−

√
2

5
|1−1〉

∆0+∆−:

∣∣∣∣
3

2
−1

2

〉∣∣∣∣
3

2
−3

2

〉
=−
√

1

2
|3−2〉+

√
1

2
|2−2〉

∆−+∆−:

∣∣∣∣
3

2
−3

2

〉∣∣∣∣
3

2
−3

2

〉
=|3−3〉

It is immediately evident that pa=pp=p3. It is also not

difficult to perform the inner products to find that

pb=
1

2
p3+

1

2
p2

pc=
1

5
p3+

1

2
p2+

3

10
p1

pe=
1

20
p3+

1

4
p2+

9

20
p1+

1

4
p0

pg=
3

5
p3+

2

5
p1

pi=
9

20
p3+

1

4
p2+

1

20
p1+

1

4
p0

pk=
1

5
p3+

1

2
p2+

3

10
p1

pm=
1

20
p3+

1

4
p2+

9

20
p1+

1

4
p0

po=
1

2
p3+

1

2
p2

pd=

√
3

5
p3−
√

3

5
p1

pf=
3

20
p3+

1

4
p2−

3

20
p1−

1

4
p0

ph= pd

pj= pf

pl=

√
3

5
p3−
√

3

5
p1

pn= pl

III. DELTA BARYON DECAYS

As an example of strong decays, we consider the strong
decay of the first-generation hadrons. A delta baryon can
decay to a pion and a nucleon or a pion and a delta, a
pion can decay into two pions, and a nucleon can decay
into a nucleon and a pion. The latter three are disallowed
because the products have greater energy than the reac-
tants, so we consider the first: the decay of a delta into
a pion and a nucleon. The decays which conserve isospin
are:

a)∆++⇒π++N+

b)∆+⇒π++N0

c)∆+⇒π0+N+

d)∆0⇒π0+N0

e)∆0⇒π−+N+

f)∆−⇒π−+N0
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Computing Clebsch-Gordon coefficients:

π++N+:|11〉+
∣∣∣∣
1
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1
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〉
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〉
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〉
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〉
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〉

We thus have

pa=pf=p 3
2

pb=

√
1

3
p 1

2

pc=

√
2

3
p 1

2

pd=−
√

2

3
p 1

2

pe=−
√

1

3
p 1

2

Without even knowing the values of the matrix elements,
we now know that the ∆+ baryon is twice as likely to de-
cay into a proton and a neutral pion than into a neutron
and a positive pion, that the decays rates of ∆++ and
∆− baryons are equal, and that the decay rates of ∆+

and ∆0 baryons are equal. It turns out that theory also
predicts p 3

2
=p 1

2
so all the delta baryon decay rates should

be the same, which is observed experimentally.

IV. SUMMARY

Beginning by arguing that it is valid to treat spin-up
and spin-down electrons as different types of particles, we
draw the analogy to treating the proton and neutron as
isospin-up and isospin-down states of the nucleon. Using
this inexact symmetry, we calculate states for combina-
tions of delta baryons, pions, and nucleons. From even
the basic analysis in this paper, it is clear that nontriv-
ial and nonobvious results such as the relative probabili-
ties for the decay modes of the ∆+ and ∆0 baryons can
be obtained from simple calculations using isospin, even
though isospin symmetry is inexact. By improving the
approximation by adding additional terms, it is possible
to construct a relatively-high-accuracy model of many
strong force processes.
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This paper discusses the ground state corresponding to two distinguishable fermions inside a Double-
Well Potential using WKB and the Fermi-Hubbard Model. Given the nature of the particles, there
will be preferred accommodations inside the potential depending on the strength of the interaction
between them. The two most interesting states are those where the particles want to be in the
same well (attraction) and when the preference is to be in different wells (repulsion). The latter is
specially interesting because it defines a Mott-insulating state. This potential is a very interesting
tool to understand how the Fermi-Hubbard Model works in its most diluted form.

I. INTRODUCTION

In 1963, John Hubbard proposed a very simple Hamil-
tonian to describe the behavior of electrons inside a pe-
riodic potential at low temperatures; this Hamiltonian is
now known as the Fermi-Hubbard model [1]. This model
is used to describe an ensemble of fermions inside a pe-
riodic potential when only the lowest energy levels are
being filled. However its general solutions have not been
found yet. In an attempt to experimentally find a solu-
tion, ultracold Fermi-gases have been studied inside op-
tical lattices to gain a better understanding of the model
[2, 5, 7].

As often done in physics, in order to solve a hard
problem it is necessary to look first at its most simple
form. In the case of a lattice potential, this will be the
Double-Well Potential. This potential is in essence a one-
dimensional, double-site lattice and thus its most basic
states can be treated with the Fermi-Hubbard Model. In
this paper, I will demonstrate the complete solution for
the case of having two distinguishable fermions (one |↑〉
and one |↓〉) interacting inside a Double-Well Potential
using the Fermi-Hubbard model in order to gain insight
into the behavior of fermions in lattice potentials.

II. THEORY

A. WKB in a Double-Well Potential

First, I solve for the ground state and the first excited
state to better visualize the possible basis for the Fermi-
Hubbard Model. By applying the WKB method as in
Problem 8.15 of Griffiths [9, p. 348] it is possible to find a
numerically exact solution for the Double-Well Potential
as shown in [6].

Having a Double-well Potential that is symmetrical
about the y axis; I take into account just the well for
positive values of x. At a specific energy E, there are
two crossings with the potential of unknown form for the
moment; this divides the well into three different regions.
This is shown in Figure 1. By applying the WKB approx-
imation, it is then possible to express the eigenfunction

at energy E as:

|Ψ〉 =





A√
|p(x)|

e|P (x2,x)| x > x2
2A√
p(x)

sin (−P (x, x2)) + π
4

x1 < x < x2
A√
|p(x)|

(2 cos θe−|P (x,x1)| + sin θe|P (x,x1)|) 0 < x < x1

(1)

where p(x) =
√

2m(E − V (x)), P (a, b) = − 1
~
´ b

a
p(x)dx,

A is a normalization constant, and θ = 1
~
´ x2

x1
p(x)dx.

FIG. 1: Sample Double-Well Potential showing a potential
eigenvalue and the crossings of it with the potential itself.
Adapted from [10]

This is only half of the solution and it is known that
in a symetric potentia,l there can only be symmetric or
anti-symmetric solutions with respect to the central bar-
rier. Therefore, there are two sets of boundary condi-
tions: for symmetric solutions ∂

∂x |Ψ(0)〉 = 0; and for
anti-symmetric solutions |Ψ(0)〉 = 0. These conditions
take me to the final condition:

tan θ = ±2e−|P (−x1,x1)| = ±2eφ (2)

The regime where the Fermi-Hubbard Model applies
is that for which the temperature is low enough that the
maximum energy level is way smaller to the wall between
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the wells. Thus, eφ � 1 and there is a final condition on
the eigenstates:

θ =

(
n+

1

2

)
π ∓ e−φ (3)

For the rest of the paper, I will use only the lowest
possible energies of atoms in the potential and therefore
only the solutions for n = 0 are taken into account. The
symmetric (even) solution will be the ground state of this
basis |0〉 and the anti-symmetric (odd) solution the first
excited state |1〉. An example of these states’ forms is
shown in Figure 2 for two different types of Double-Well
Potential.

FIG. 2: Exact numerical solutions of the two lowest
states a Double-Well Potential. a) has the form V (x) =
Vmax
b2

(
|x− a

2
| − b

)2
. b) has the form Vmax

b4

(
(x− a

2
)2 − b2

)2
.

Adapted from [6]

Figure 2 serves only to show a visual representation
of the two lowest energy solutions in a Double-Well Po-
tential in order to better understand the change of basis
used in the solution of the Fermi-Hubbard Model.

Knowing the solution in the eigenbasis {|0〉 , |1〉} I de-
fine a different eigenbasis that is more useful for the rest
of the analysis: {|L〉 , |R〉}. This last eigenbasis corre-
sponds to the particle being on the left |L〉 or the right
|R〉 well and its relationship to the WKB solutions is:

|L〉 = 1√
2
(|0〉+ |1〉)

|R〉 = 1√
2
(|0〉 − |1〉) (4)

The basis {|0〉 , |1〉} is not used in the rest of the analy-
sis and its derivation is done just to show where the basis
comes from.

B. Hamiltonian of two atoms in a potential

When treating two particles instead of just one, there
has to be the addition of a term equal to the interaction

between them. Defining the Hamiltonian of only one
particle to be H0(x), we can define the Hamiltonian of
the two-particle system as:

H(x1, x2) = H0(x1) +H0(x2) + UV (|x1 − x2|) (5)

where U determines the strength and nature of the inter-
action between the particles and V (|x1−x2|) is a poten-
tial depending on their relative distance, which is often
regarded as a delta function due to particles being of
negligible size. The eigenstates of this Hamiltonian will
be superpositions of entangled states of the individual
particles.

C. The Fermi-Hubbard Model and Phase Diagram

1. Hamiltonian

As mentioned before, the Fermi-Hubbard Model de-
fines the behavior of fermions inside a lattice potential.
It is composed of two major parts: a tunneling term and
an interaction term. Its general form is[8]:

ĤFH = −J
∑

σ={↑,↓}

∑

〈i,j〉
ĉ†iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ (6)

where J is the tunneling factor, U is the interaction fac-
tor, ĉ is the creation operator, ĉ† is the annihilation op-
erator, and n̂ = ĉ†ĉ is the number operator. The sum-
mation over i and j represents the sum over the possible
lattice sites. It is very important to note that here, the
creation and annihilation operator refer to the second
quantization and therefore their action is actually creat-
ing or annihilating a particle from the lattice site they
are acting on.

There is an intuitive way to understand the Hamilto-
nian. The tunneling term is understood as the energy
lost as a particle tunnels from one site to the another
(annihilation in one site and creation in other site). The
interaction factor is the energy due to particles interact-
ing in the same single site (number of particles in each
site).

2. Phase Diagram

With the Hamiltonian form of the Fermi-Hubbard
Model, it is theoretically possible to tune both the tunnel-
ing and interactions of particles to find different phases
by defining values of J and U . Experimentally, the tun-
neling would be modified by changing the strength of the
walls in the lattice potential by modifying the power of
the laser used. The interaction would be modified using
a Feshback resonance; this is basically a resonance where
the scattering length has an asymptotic behavior at a
value that depends on an offset of the energy levels. The
offset of the energy levels can be achieved with a tunable
magnetic field for particles with spin.
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FIG. 3: Phase Diagram of the Fermi-Hubbard Model in
a 3D lattice. The abbreviations are: Bose-Einstein Con-
densate (BEC), Bardeen-Cooper-Schrieffer (BCS), and anti-
ferromagnetic phase (AFM). Adapted from [8]

A full Phase Diagram for a 3D lattice is found in Fig-
ure 3. As mentioned before, it is possible to tune the
scattering length experimentally. This allows to tune the
interaction between particles from a strongly attractive
interaction to a strongly repulsive interaction. The Phase
Diagram also shows the dependence on the Temperature
as it defines which states will be most probable to be
occupied.

In the cases with attractive interaction, the fermions
behave like a superfluid, which is the same as a super-
conductor (e.g. electrons in metal). The attraction first
creates Cooper pairs (bosons by sum of spin) in the BCS
regime (Bardeen-Cooper-Schrieffer) and with more at-
traction these pairs create a Bose-Einstein Condensate
(BEC). At higher temperatures not all particles will form
Cooper pairs so they cannot break full degeneracy and
thus they cannot act as a BEC.

In the cases of a repulsive interaction, the fermions
start separating by spin in a checkerboard manner (al-
ternating); therefore the net spin is zero. This alignment
of the fermions in the lattice is known as antiferromag-
netism (AFM). When the repulsion is high and the tem-
perature rises, the Mott Insulator phase appears. This
phase is very similar to AFM but shows a variety of unex-
plained properties that make it a very interesting area of
reasearch in Condensed Matter Physics and Ultra-Cold
Atoms [7]. This paper shows the transition of the ground
state to the Mott-Insulating phase when the interaction
is strongly repulsive.

III. MODEL DESCRIPTION

As mentioned above, this paper expects to show how
the building block of the Fermi-Hubbard Model behaves.
The model for that building block is that of a Double-

Well Potential with arbitrary form, which is perfectly
symmetric about its central barrier. A second condition
is that only the lowest states are being occupied as it
would be at very low temperatures. The third and fi-
nal condition is that the strength of the barrier is big
compared to the energy levels that are being occupied.

In the model, there is one |↑〉 fermion and one |↓〉
fermion interacting. The eigenbasis that these two
fermions are described by is the one from Equation 4.
The full basis to describe both fermions in the potential
is that of the possible entangled states (|↑↓〉). The basis
of states {|LL〉 , |LR〉 , |RL〉 , |RR〉} is the one which I use
for the reduced form of the Fermi-Hubbard model in the
Double-Well Potential.

IV. SOLVING OF THE FERMI-HUBBARD
MODEL

A. Matrix form and Eigenstates

In the Double-Well Potential, the Fermi-Hubbard
Hamiltonian from Equation 6 gets reduced to:

ĤFH = −J
(
ĉ†L↑ĉR↑ + ĉ†L↓ĉR↓ + ĉ†R↑ĉL↑ + ĉ†R↓ĉL↓

)

+U (n̂L↓n̂L↑ + n̂R↓n̂R↑)
(7)

For the basis {|LL〉 , |LR〉 , |RL〉 , |RR〉}, this Hamilto-
nian can be represented as a 4× 4 matrix of the form:

ĤFH =



U −J −J 0
−J 0 0 −J
−J 0 0 −J
0 −J −J U


 (8)

From this matrix I solve for the eigenstates and eigen-
values to get:

|Ψ1〉 =
1√
2

(|RL〉 − |LR〉);E1 = 0

|Ψ2〉 =
1√
2

(|RR〉 − |LL〉 ;E2 = U

|Ψ3,4〉 ∝ |LL〉+ |RR〉

+


 U

4J
∓
√

1 +

(
U

4J

)2

 (|LR〉+ |RL〉)

;E3,4 =
1

2

(
U ±

√
(4J)2 + U2

)

B. Tuning the Interaction

With these solutions being the eigenstates of the sys-
tem, the probability of both particles being in the same
well is defined as: Pi = P (|Ψi〉 = |LL〉)+P (|Ψi〉 = |LL〉),
where i denotes the eigenstate. From this relation, it
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should be obvious that for eigenstates 1 and 2 we have:
P1 = 0 and P2 = 1 since these states are superpositions
of different-well and same-well states respectively. In the
case of states 3 and 4, I need to first normalize |Ψ3,4〉 to
get the following:

P3,4 =
1

1 +

(
U
4J ∓

√
1 +

(
U
4J

)2
)2 (9)

Plots of the energy eigenvalues and the probabilities of
having double occupancy with respect to the interaction
parameter U

4J are shown in Figure 4.

FIG. 4: (a) Energy eigenvalues of the 4 eigenstates for the
Hamiltonian in Equation 8 for different interaction strength.
(b) Probability of having double occupancy in the Potential,
Di corresponds to the probability value. Adapted from [8]

C. Transition to a Mott-Insulator

As Figure 4 shows, the state |Ψ4〉 is the ground state
of the system as the energy is always the lowest for the
entire range of interactions. In the limit of very strong
attractive interactions (UJ � 0), the probability of dou-

ble occupacy goes to 1 as |Ψ4〉 → 1√
2
(|LL〉+ |RR〉) in the

paired/superfluid regime of the Phase Diagram in Figure
3. On the other hand, in the limit of very strong repul-
sive interactions (UJ � 0), the probability of double occu-
pancy goes to 0 as |Ψ4〉 → 1√

2
(|LR〉+ |RL〉) and the two

particles effectively transition to a Mott-Insulator state.
In this ground state, the particles will always be in dif-
ferent sites of the lattice and the tunneling probability
goes to zero.

V. CONCLUSION

Through the analysis performed above, I was able to
effectively solve the ground state for two distinguishable
fermions inside a Double-Well Potential. I used the WKB
approximations to first describe the states of a single par-
ticle in the potential and then applied the Fermi-Hubbard
model in its most basic form to solve the system. This
toy-model potential is important as it gives important
intuition for the yet generally unsolved Fermi-Hubbard
Model and its experimental realization [5] marks the be-
ginning of a far better understanding of any fermion on
a periodic potential.
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Systems with inter-particle interactions often exhibit complex behavior that cannot readily be ex-
plained. Herein we model a system of interacting N s = 1

2
particles in the presence of an external

magnetic field, and analytically solve it using operator techniques. The obtained eigenenergies are
employed to get a partition function, which is then used to predict the values of thermodynamic
observables. Finally, an interesting hypothetical material is considered, and the model is used to
predict its properties.

I. INTRODUCTION

To date, neither Quantum nor Classical Physics has
been able to provide an exact analytic solution to the
general N body problem (N ≥ 3) and yet there is a need
to explain macroscopic phenomena that involve particle
numbers of the order of 1023. This has led to a prolifera-
tion of somewhat unrealistic approximate models like the
ideal gas, where inter-particle interactions are completely
ignored. Though these simplified models are often rea-
sonable first approximations for many phenomena, they
completely fail to describe behavior where inter-particle
forces play a significant role, such as in phase transitions.

Facing this problem while studying the paramagnetic
to ferromagnetic transition, E. Ising came up with his
own model of particle interaction in 1925 [1]. He repre-

sented each atom as a s = 1
2 particle and proposed that

the potential energy of the interaction between particles i

and j is −J ~Si · ~Sj if they are nearest neighbors and 0 oth-
erwise. He then used statistical mechanics to solve the
case of a 1D chain of N s = 1

2 particles [1], and was able
to predict the behavior of linear magnetic chains. How-
ever, Ising’s model had two great flaws: it approached
the purely quantum phenomenon of spin from an essen-
tially classical perspective and it did not account for any
anisotropy.

The Heisenberg model was developed to be a quan-
tum mechanical generalization of the Ising model that
incorporated anisotropy. This took much longer to solve,
with exact solutions only being published by Lieb et.al.
in 1961[2] and Katsura in 1962 [3]. However, both had
ultimately found the complete Heisenberg model to be
too difficult to tackle, and had instead attacked a phys-
ically relevant special case called the XY model, where
interactions along one direction are neglected.

This paper intends to introduce the reader to Quan-
tum Statistical Mechanics, by using the approach of Lieb
et.al. and Katsura to solve the simplest model of in-
teracting particles in Quantum mechanics. In Sec. II,
we will present the notation employed in this paper and
discuss the exact mathematical form of the Heisenberg
and XY models. In Sec. III, we will convert the spin
operators into a more tractable form by using a set of
unitary transformations called the Jordan Wigner trans-

formations. In Sec. IV, we will partition the Hamiltonian
into two orthogonal subspaces, and discuss how it sim-
plifies the problem. In Sec. V, we will explicitly solve
for the eigenvalues in one subspace by means of a Fourier
Transform and a linear transform called the Boguliubov
transform. In Sec. VI, we will use the eigenenergies so
generated to calculate the partition function, which will
be employed to calculate thermodynamic quantities for
some particular cases of the problem, and check consis-
tency with earlier models (such as the Ising). We use
the thermodynamic data to examine properties of an un-
usual material of with both ferro-magnetic and antiferro-
magnetic coupling in Sec. VII. We conclude in Sec. VIII
by discussing the significance of the solutions to the XY
model.

II. PRELIMINARY DISCUSSIONS

A. Heisenberg model and Notation

The Heisenberg model incorporates anisotropy by
proposing that the interaction between nearest neighbors
i and j is −JxSxi Sxj − JyS

y
i S

y
j − JzSzi Szj , instead of the

−J ~Si · ~Sj used by Ising. Though it is possible to immedi-
ately write down the Heisenberg Hamiltonian in terms of

the operators Ŝ{x,y,z}, we choose to first introduce some
unconventional notation for convenience.

The motivation is simple: we are going to deal with a
system of N s = 1

2 particles, whose state space consists
of tensor products over N individual-particle subspaces.
The individual states are of the form |1〉 ⊗ |2〉 ⊗ . . . |N〉,
where |i〉 = c1 |+〉 + c2 |−〉 denotes the spin-state of the

ith particle. The terms of the Hamiltonian are also are
tensor products over N subspaces, like Ŝx⊗ Ŝx⊗I⊗ . . . I.
Tensor products are generally cumbersome, and therefore
we choose to use the simplified, condensed notation that
is described beneath.

We will represent a term like I ⊗ I ⊗ . . .︸ ︷︷ ︸
i−1 times

⊗Sx ⊗ Sx ⊗

I ⊗ . . . I︸ ︷︷ ︸
N−i−1 times

as Sxi S
x
i+1, which says that Sx operator is

acting on the ith and the i+ 1th particle, while Identity
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operators cause no change and are ignored. We generalize
this notation to account for any number of spin operators
(or Pauli matrices or any linear combinations thereof)
acting on any number of particles, with the subscript of
each operator depicting the particle it acts on.

It is to be kept in mind however, that this condensed
notation is not extended to any operator Ô, though we
can define operators Ôi in terms of these condensed forms
(with the implicit understanding that it is a tensor prod-
uct and need not act on particle i alone). For example:

F̂i ≡ σxi σxi+1σ
z
i+2 = I ⊗ I . . .︸ ︷︷ ︸

i−1 times

⊗σx⊗σx⊗σz⊗ I ⊗ . . . I︸ ︷︷ ︸
N−i−2 times

Having discarded the explicit tensor product notation,
we are now prepared to describe the Hamiltonian for the
system. There is a chain of N s = 1

2 particles in the

presence of an external magnetic field ~B = Bẑ. Inter-
particle interactions are assumed to obey the Heisenberg
model, giving the Hamiltonian:

H = −
N∑

i=1

(JxŜ
x
i Ŝ

x
i+1 + JyŜ

y
i Ŝ

y
i+1 + JzŜ

z
i Ŝ

z
i+1 +MŜzi )

(1)

~̂SN+1 = ~̂S1 (Periodic boundary condition) (2)

M =
gBq

2m
(q=charge, m=mass, g=Lande factor) (3)

Ji are coupling constants (possibly unequal) that give a
measure of spin-spin interaction.

Here we are using periodic boundary condition (2) to
simplify a great deal of mathematics later. This condition
is not unphysical as the periodic case converges to the
non-periodic in the limit of large N (which is what we are
interested in), as particles in the middle of the chain will
be essentially isolated from the boundary. Ising himself
had required these conditions to solve his model [1].

Also, this paper will use Pauli matrices instead of spin
operators, and so the Hamiltonian is converted to:

H = −
N∑

i=1

(jxσ
x
i σ

x
i+1 + jyσ

y
i σ

y
i+1 + jzσ

z
i σ

z
i+1 + hσzi )

(4)

jk = Jk
h̄2

4
(k ∈ {x, y, z}), h =

h̄

2
M =

h̄gBq

4m
(5)

B. The XY Model

The XY model is a special case of the Heisenberg model
where jz = 0. Therefore:

H = −
N∑

i=1

(jxσ
x
i σ

x
i+1 + jyσ

y
i σ

y
i+1 + hσzi ) (6)

This is the model which we will solve in this paper, as
the general Heisenberg model is too complex to tackle.

For most physical purposes though, it is sufficient to only
consider interactions transverse to the applied field (here
along the z direction), and so the XY model proves ade-
quate.

III. THE JORDAN-WIGNER
TRANSFORMATION

The first step in the process of diagonalizing the Hamil-
tonian is to convert the Pauli matrices into the more
useful form of ladder operators. In 1928, P. Jordan and
E. Wigner [4] had published a beautiful technique for
achieving this, and it is their approach that we will use.

We begin by defining the operators â and â†:

â ≡
(

0 1
0 0

)
⇐⇒ â† ≡

(
0 0
1 0

)
(7)

It thereby follows that:

σxi = âi + â†i (8)

σyi = i(â†i − âi) (9)

σzi = 1− 2â†iâi (10)

âi and â†i are linear combinations of σxi and σyi and thus
only act on particle i. Therefore, we are allowed to use
the condensed notation in Sec. II for {âi} as well.

{âi} and {â†i} look like the harmonic oscillator ladder
operators but:

[â, â†] =

(
1 0
0 −1

)
= σz 6= I (11)

That was not unexpected, as we are dealing with
fermions (s = 1

2 ) and fermionic ladder operators obey
the anti-commutation relations (not commutation like
that of bosonic operators):

{Â, B̂} = ÂB̂ + B̂Â = 1 ⇐⇒ Â = B̂† (12)

{Â, B̂} = 0 (otherwise) (13)

The problem is that {âi} do not satisfy (13). Within

the same subspace it does hold, {âi, âi} = {â†i , â
†
i} = 0

but not when we are working over different subspaces.
i 6= j ⇐⇒ {âi, âj} 6= 0 since âiâj = âj âi 6= 0. There-
fore, Jordan and Wigner used a unitary transformation
to construct new operators that obey both (12) and (13).

In order to achieve that, we first need to define the
operator:

n̂ ≡ â†â =

(
0 0
0 1

)
. (14)

It is evident that |+〉 and |−〉 are eigenvectors of n̂ , with
eigenvalues 0 and 1 respectively. We also see that:

eiπn̂ = I + iπn̂− 1

2
(πn̂)2 . . .

= I + n̂(−1 + cosπ + i sinπ) (as (n̂)2 = n̂)

= σz (15)
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We can now define the sign function:

ν̂i =

i−1∏

j=1

σzj = e
iπ
i−1∑
j=1

n̂j
(16)

as {n̂j} act on different particles and hence commute.

It is clear that the eigenvalues of ν̂i are ±1. It also has
the useful properties:

ν̂†i = ν̂i (17)

ν̂†i ν̂i = (ν̂i)
2 = I (18)

[ν̂i, âi] = [ν̂i, â
†
i ] = 0 (19)

The last property stems from the fact that âi acts on
the ith subspace while ν̂i acts on the preceding i − 1th

subspaces, making them independent.
We can then use ν̂i to do an unitary transform of âi

and â†i to define ĉi and ĉ†i :

ĉ†i ≡ ν̂iâ
†
i = e

iπ
i−1∑
j=1

n̂j
â†i = e

iπ
i−1∑
j=1

â
†
j âj

â†i (20)

ĉi ≡ âiν̂i = âie
iπ
i−1∑
j=1

n̂j
= âie

iπ
i−1∑
j=1

â
†
j âj

(21)

It immediately follows that ĉ†i ĉi = n̂i and therefore
we can multiply (20) and (21) by ν̂i from left and right
respectively to get:

â
†
i = ν̂iĉ

†
i = e

iπ
i−1∑
j=1

n̂j
ĉ
†
i = e

iπ
i−1∑
j=1

ĉ
†
j ĉj
ĉ
†
i (22)

âi = ĉiν̂i = âi = ĉie
iπ
i−1∑
j=1

n̂j
= ĉie

iπ
i−1∑
j=1

ĉ
†
j ĉj

(23)

This is a significant as {âi} were single particle opera-
tors which only acted on a single subspace, while {ĉi} are
multiparticle operators which act on the first i subspaces
and therefore their algebra is not as simple as that of
{âi}. We take advantage of this to calculate:

{ĉi, ĉ†i} = âiν̂iν̂iâ
†
i + ν̂iâ

†
i âiν̂i

= âiâ
†
i + â

†
i âi (using (18), (19))

= I,

(24)

and similarly:

{ĉi, ĉj} = {ĉ†i , ĉ
†
j} = 0 (25)

{ĉi,
ˆ
c†j} = 0 ⇐⇒ j 6= i (26)

making ĉi a purely fermionic ladder operator ((12), (13)).

It is also straightforward to show that:

ĉ
†
i ĉ
†
i+1 = ν̂iâ

†
i ν̂i+1â

†
i+1

= ν̂iâ
†
i ν̂iσ

z
i â
†
i+1 (from (16))

= (ν̂i)
2â†i â

†
i+1 (â†iσ

z
i = â†i -from (7))

= â
†
i â
†
i+1 (from (18))

(27)

And similarly

ĉ†i ĉi+1 = â†i âi+1 (28)

ĉ†i+1ĉi = â†i+1âi = âiâ
†
i+1 ({âi} commutes) (29)

ĉiĉi+1 = −âiâi+1 (âiσ
z
i = −âi) (30)

The periodic boundary condition (2) causes the bound-
ary behavior to be slightly different.

â†N â
†
N+1 = â†N â

†
1 (using(2))

= ν̂N ĉ
†
N ĉ
†
1 (from (22), ν1 = I)

= −ν̂N ĉ†1ĉ
†
N (from (25)) (31)

Similarly:

âN âN+1 = −ν̂N ĉ1ĉN (32)

âN â
†
N+1 = −ν̂N ĉ1ĉ†N (33)

â
†
N âN+1 = −ν̂N ĉ†1ĉN (34)

IV. PARTITION OF THE HAMILTONIAN

Armed with the Jordan Wigner Transformations, we
are now ready to try to simplify the XY model Hamilto-
nian, in the fashion shown by Katsura [3]. From (8)-(10),
(27)-(30) and (31)-(34), we get:

H = −
N∑

i=1

(jxσ
x
i σ

x
i+1 + jyσ

y
i σ

y
i+1 + hσzi )

= −
N−1∑

i=1

[
(jx + jy)(ĉ†i ĉi+1 + ĉ†i+1ĉi) + (jx − jy)(ĉ†i ĉ

†
i+1

− ĉiĉi+1)

]
+ ν̂N

[
(jx + jy)(ĉ1

† ˆcN + ĉ1 ˆcN
†) (35)

+ (jx − jy)(ĉ1
† ˆcN
† + ĉ1 ˆcN )

]
− h

N∑

i=1

(1− 2ĉ
†
i ĉi)

This looks rather complicated, especially on account of
the ν̂N containing boundary terms.

Fortunately, we can manipulate these terms to elimi-
nate ν̂N , which is aided by the fact that ν̂ is simply a
sign-function. We find that:

(ν̂N )(1± ν̂N ) = ±(1± ν̂N ) (using (18)) (36)
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(36) can be used to define projection operators
1±ν̂N

2 ,
which have the following properties:

1 + ν̂N
2

+
1− ν̂N

2
= 1 (Complete) (37)

(
1 + ν̂N

2

)(
1− ν̂N

2

)
= 0 (Orthogonal) (38)

(
1± ν̂N

2

)2

=
1± ν̂N

2
(Property of projection) (39)

We can then define H+ by:

(1 + ν̂N )H

= −(1 + ν̂N )
N−1∑

i=1

[
(jx + jy)ĉ†i ĉi+1 . . .

]
+ (1 + ν̂N )(ν̂N )

[
(jx + jy)ĉ1

† ˆcN . . .

]
− (1 + ν̂N )h

N∑

i=1

(1− 2ĉ†i ĉi)

= (1 + ν̂N )

[
−
N−1∑

i=1

(jx + jy)ĉ†i ĉi+1 . . .+ (jx + jy)ĉ1
† ˆcN . . .

− h
N∑

i=1

(1− 2ĉ†i ĉi)
]

(ν̂N (1 + ν̂N ) = (1 + ν̂N )from(36))

= (1 + ν̂N )H+ (40)

Similarly, we define H− by:

(1− ν̂N )H = (1− ν̂N )H−, (41)

where H± are given by (from (36), (40), (41)):

H± = −
N−1∑

i=1

[
(jx + jy)(ĉ†i ĉi+1 + ĉ†i+1ĉi) + (jx − jy)

(ĉ†i ĉ
†
i+1 − ĉiĉi+1)

]
±
[
(jx + jy)(ĉ1

† ˆcN + ĉ1 ˆcN
†)

+ (jx − jy)(ĉ1
† ˆcN
† + ĉ1 ˆcN )

]
− h

N∑

i=1

(1− 2ĉ
†
i ĉi)

(42)

Therefore, (40) and (41) allow us to split the Hamilto-
nian into two orthogonal subspaces:

H =
1 + ν̂N

2
H +

1− ν̂N
2

H =
1 + ν̂N

2
H+ +

1− ν̂N
2

H−

(43)
ν̂N has eigenvalues ±1 and therefore only one of the par-
titions of the Hamiltonian matter for any given case.
H+ and H− are easier to solve than H as the ν̂N term

has been eliminated. We simply need to choose solutions
with ν̂N = 1 out of the solutions of H+ (there must be
an even number of spins pointing down, (16)). Similarly,
an odd number of spins need to point down for a solution
from the space of H− to be acceptable. We simply need
to combine the acceptable solutions from both subspaces.

V. DIAGONALIZING THE PARTITIONS

H+ and H− are not yet diagonalized, and a Fourier
transform, followed by a simple linear transform called
the Boguliubov transform, is required to complete the
task. We will only explicitly solve H+, as H− can be
solved in a similar fashion.

For the Fourier transform, we first define Ak and A†k
to be the following:

Ak =
1√
N

N∑

l=1

cle
−iπ( kl

N
−1
4 ) ⇐⇒ A†k =

1√
N

N∑

l=1

c†l e
iπ( kl

N
−1
4 )

(44)

Therefore,

A†2k−1A2k−1 =
1

N

N∑

l=1

N∑

m=1

c†l cme
iπ

(2k−1)(l−m)
N (45)

and thus,

N∑

k=1

(
e
−iπ 2k−1

N A†2k−1A2k−1

)

=
1

N

N∑

l=1

N∑

m=1

c†l cm
N∑

k=1

e
iπ

(2k−1)(l−m−1)
N

=
1

N

N∑

l=1

N∑

m=1

c
†
l cm


e

2iπ
(l−m−1)

N (1− e2iπ(l−m−1))

1− e2iπ
(l−m−1)

N




(46)

We obtain (46) by summing the geometric series over
k. It is evident l − m − 1 is an integer, and therefore,

e2iπ(l−m−1) = 1.
Only the terms where the denominator goes to zero

(and hence prevents us from using the formula for sum-
ming geometric series) can have non-zero contributions.
l and m are both constrained between 1 and N, and so

−N ≤ l−m−1 ≤ N−2. However, e
2iπ

(l−m−1)
N = 1 ⇐⇒

l−m−1
N ∈ Z. Therefore, l = m + 1 or l = m + 1 − N .

Since l and m are individually constrained between 1 and
N, l = m+ 1,m ∈ {1, 2, . . . N − 1} and l = 1, m = N are
the only cases where the geometric series does not sum
to 0. Therefore,

N∑

k=1

(
e
−iπ 2k−1

N A†2k−1A2k−1

)

=
1

N

(
N−1∑

l=1

c†l cl−1
N∑

k=1

e0 + c†1cN
N∑

k=1

eiπ

)

=
N−1∑

l=1

c†l cl−1 − ˆcN
†ĉ1 (47)

Which is a term in the Hamiltonian H+. Even more
importantly, the opposite sign of the boundary term is
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beautifully accounted for by the algebra. We finally see
why it was important to impose periodic boundary con-
ditions, as the Fourier transform would have failed oth-
erwise.

Proceeding similarly with other terms, H+ reduces to:

H+ = −2

N/2∑

k=1

[
(−(jx + jy) cos

(2k − 1)π

N
+ h)(A

†
2k−1A2k−1

+A−2k+1A
†
−2k+1) + (jx − jy) sin

(2k − 1)π

N

(A†2k−1A
†
−2k+1 +A2k−1A−2k+1)− h

]
(48)

This may look exceedingly complicated, but in real-
ity we are almost done. Already we can see creation-
annihilation pairs over a single index. To eliminate the
pesky cross terms, we define the Boguliubov Transforma-
tion to be [5] [3]:

Let Ak = ukβk + vkβ
†
k, with uk and vk such that:

u2k + v2k = 1, uk = u−k & vk = −v−k (49)

and the coefficients of β†kβ
†
−k+βkβ−k in H+ vanish. The

final Hamiltonian then looks like:

H+ = 2

N/2∑

k=1

([
j2x + j2y + 2jxjy cos

(
2(2k − 1)π

N

)

− 2h(jx + jy) cos

(
(2k − 1)π

N

)
+ h2

]1/2

(β†kβk + β†−kβ−k − 1)

)
(50)

and we are done. The Hamiltonian has been converted
to a sum of fermionic creation and annihilation operators
after much effort, and thus has been diagonalized. The
Boguliubov transformation ensures that {βk} are anti-
commutating Fermionic ladder operators, and thus eigen-

values of β
†
kβk ∈ {0, 1}. Therefore, (β

†
kβk + β

†
−kβ−k − 1)

has eigenvalues 1 + 1− 1 = 1, 0 + 0− 1 = −1, 1 + 0− 1 =
0 + 1− 1 = 0 (0 is doubly degenerate)[3].

The energy eigenvalues are:

N/2−1∑

k=1

2sk

[
j2x + j2y + 2jxjy cos

(
2(2k − 1)π

N

)
− 2h(jx + jy)

cos

(
(2k − 1)π

N

)
+ h2

]1/2
, {sk} ∈ {−1, 0, 1}

(51)

Similarly solving H−, we find the eigenvalues to be:

N/2−1∑

k=1

2sk

[
j2x + j2y + 2jxjy cos

(
4kπ

N

)
− 2h(jx + jy)

cos

(
2kπ

N

)
+ h2

]1/2
, {sk} ∈ {−1, 0, 1} (52)

{sk} indicates which of the Boguliubov eigenvalues are
used for each k. sk = 0 is doubly degenerate in both (51)
and (52), while sk = ±1 are singly degenerate.

VI. PARTITION FUNCTION

We have done a lot of calculations and now it is time to
use Statistical mechanics to connect this quantum result
with the macroscopic world. We first find the partition
function Z, from which useful thermodynamic informa-
tion can be extracted.

As we tend to the continuum limit (large N), the differ-
ence between the eigenvalues of H+ and H− fades. The
selection rule of (43) demands that we only take some
specific eigenvalues out of both subspaces, but since the
values essentially become identical anyways, we can get
away with picking half of the values from the combined
space. Furthermore, we can simply ignore H+ and pick
only H− eigenvalues, as values become effectively iden-
tical. This allows us to define ωk = 2kπ

N (k spans all

integers from 0 to N
2 ). Then, allowed energies of every k

mode are approximately 2sk[j2x + j2y + 2jxjy cos(2ωk) −
2h(jx + jy) cos(ωk) + h2]1/2 , ωk ranges from 0 (k=0) to

π(k = N
2 ).

We can now calculate the partition function Z to be:

Z =
∑

e−βE
(
β =

1

kbT

)
(53)

=
∑

e−2βsk [j
2
x+j

2
y+2jxjy cos(2ωk)−2h(jx+jy) cos(ωk)+h2]1/2

=
∏

all ωk

(
∑

e−2skβ[j
2
x+j

2
y+2jxjy cos(2ωk)...]

=
∏

all ωk

(4 cosh2(β[j2x + j2y + 2jxjy cos(2ωk)

− 2h(jx + jy) cos(ωk) + h2]1/2)), (54)

lnZ = 2
∑

all ωk

ln(2 cosh(β[j2x + j2y + 2jxjy cos(2ωk)

− 2h(jx + jy) cos(ωk) + h2]1/2)) (55)

as sk=0 is doubly degenerate.

In the continuum limit, the sum can be replaced by an
integral, leaving:

lnZ = 2
N

2π

∫ π

0
dω ln(2 cosh(β[j2x + j2y + 2jxjy cos(2ω)

− 2h(jx + jy) cos(ω) + h2]1/2)) (56)

The factor of N
2π comes from the change of variables ω =

2kπ
N , as we were summing over all k previously.
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We can now switch over to Classical Thermodynamics
to get:

E = −∂ ln(Z)

∂β
= −N

π

∫ π

0
dω g(ω) tanh(βg(ω)) (57)

g(ω) = [j2x + j2y + 2jxjy cos 2ω − 2h(jx + jy) cosω + h2]1/2

The energy scales extensively (∝ N), as expected for
macroscopic systems.

Let us now look at some previously solved cases to see
if our solution is consistent with them. For the particular
case of the Ising Model of spin interaction, jy = 0 [3] and
using (57) gives:

E = −N
π

∫ π

0
dω u(ω) tanh(βu(ω)) (58)

(u(ω) = [j2x − 2hjx cosω + h2]1/2)

This integral is not analytically solvable, but one last
assumption brings us to a quantity we can actually cal-
culate, the case of the zero-field (h = 0):

E = −N
π

∫ π

0
dωjx tanh(βjx) = −Njx tanh(βjx) (59)

Which is exactly the same as the result obtained by clas-
sical methods [6],[1]. The specific heat is:

Ch = Nkb(βjx sechβjx)2 (60)

which again matches up with the classical result [6].
Furthermore, we can explore the case of non-

interacting spins (jx = jy = 0) and find:

E = −N
π

∫ π

0
dωh tanh(βh) = −Nh tanh(βh) (61)

which again matches up with the classical result [6].

VII. THE FERRO-ANTIFERROMAGNETIC
(FAF) MATERIAL

Now, slightly more confident about the accuracy of our
model, we explore the special case where j = jx = −jy >
0, where there is ferromagnetic coupling in the x direction
and antiferromagnetic coupling in the y (henceforth to be
referred as FAF).With 0 external field:

E = −N
π

∫ π

0
dω 2j sin

ω

2
tanh

(
2βj sin

ω

2

)
(62)

This is not analytic, but salient features of the system
can be seen. Firstly, the energy unchanged if we flip
the sign of j, as the system does not care if our defi-
nitions of x and y axes are exchanged. The integrand
is positive in the domain over which we are integrating,
making the energy negative. The negative energy im-
mediately tells us that the ferromagnetic coupling wins

over the anti-ferromagnetic. This can be contrasted with
the classical case, where it would be wrongly thought
the antiferromagnetic coupling and ferromagnetic cou-
pling exactly cancel each other. In fact, even at high
temperatures (β → 0), we get an energy of −2βj2, which
tells the asymptotic rate of decay of energy with rising
Temperature (Figure 1).

FIG. 1. Comparison between FAF coupling and Ising model
with change in T (same j for both). Even at high tempera-
tures, they have different asymptotic rate of decay.

Encouraged by this, we proceeded to numerically in-
tegrate (62) to compare how the FAF system compares
with the Ising, with change in temperature. The results
have been plotted in Figure 1. At low temperatures the
FAF model has energy-per-particle − 4

π jx, which is less
than the Ising value of −jx. This is indeed rather surpris-
ing, that destabilizing y interaction actually stabilizes the
system more than the case of no y interaction. This is a
consequence of the quantum-mechanical behavior of the
system, which could not be inferred from any classical
model.

Numerical evaluations can also tell us what happens
when the field is non-zero. Figure 2 depicts a graph
comparing how the energy of the FAF material, and the
classical Ising material vary with field strength. The
main takeaway are the slopes, which suggests that the
susceptibility is greater for the FAF than the Ising, an-
other counterintuitive result. FAF material therefore has
greater potential as magnets than what the word anti-
ferromagnetic might suggest.

Finally, we numerically evaluated zero-field specific
heat capacity at different temperatures, and a plot has
been given in Figure 3. The sharply peaked shape is
characteristic of systems like the XY model, which have
a finite number of energy levels.

Quantum Statistical Mechanics: A solution to a One Dimensional Chain of Interacting Spins 111



Quantum Statistical Mechanics: A solution to the One Dimensional Ising model of spin interaction 7

FIG. 2. Comparison between FAF coupling and Ising model
with change in field h (same j). β = j for this example.

FIG. 3. Specific heat of FAF and Ising models (same j) at
different Temperatures.

VIII. CONCLUSIONS

A solution to the general 1D XY model has been pre-
sented here, which is an immensely important theoretical
result in its own right. Even though this model (like the
1D Ising model) does not account for phase transition
on the account of there being only one path for spins to

communicate, it conveys other important results. The
mathematical framework developed here can be used to
solve for the 2D system [2], where it does predict phase
transitions and even the qualitative features of this so-
lution help predict what we might find in 2D and 3D
systems. Additionally, there has been considerable re-
search attention given to development of linear chains of
‘molecular’ magnets [7]. The XY model can be used to
predict behavior of such systems, making the 1D system
useful in its own right. Even though very few of the in-
tegrals are analytic, numerical evaluation is far less com-
putationally expensive than approximate methods like
variational wavefunction fitting, showing the importance
of the exact solution. This model is also robust enough
to explain the effects of a time-varying external magnetic
field [8]-which highlights its use in trying to predict the
dynamics of magnetic systems.

Uses aside, an analytic solution to a system of inter-
acting spins is valuable in its own right as a theoretical
result. Though this is a highly simplified system, it rep-
resents the first step towards proper Quantum Statistical
Mechanics, where we take interactions into account while
trying to predict system behavior. It is hoped that the
reader appreciates the mathematical complexity behind
solving even such a simple system of interacting parti-
cles, but at the same time appreciates the elegance with
which Lieb et.al. and Katsura had solved this problem
in an era before personal computers.
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A star generates energy through nuclear fusion. The particular fusion pathway depends on its
age and mass, but most stars spend the majority of their lifetimes fusing hydrogen nuclei to form
helium. This process cannot be understood without quantum mechanics, because in order to fuse,
two nuclei need to become close enough (≈1 fm) for the strong force to take hold. Classically,
two nuclei inside a stellar core do not have the energy to overcome the Coulomb potential barrier
separating them, and thus cannot fuse. In this paper, we use the WKB approximation to estimate
the tunneling rate for a sun-like star, calculate the temperature-dependence of the rate, and discuss
the physical implications of this relationship. In particular, we use the temperature-dependence to
show that lower-mass stars like our sun have convectively stable cores, whereas more massive stars
(M > 1.5M�) have convectively unstable cores.

I. OVERVIEW

In Section II, we begin with an introduction to stellar
structure and nuclear fusion, and show that our under-
standing of how stars shine was revolutionized by the
advent of quantum mechanics. In Section III, we use a
technique from quantum mechanics - the WKB approxi-
mation - to derive an estimate for the fusion reaction rate
in stellar cores and its power-law dependence on temper-
ature, and use this to explain why massive stars have
convective cores and low-mass stars have radiative cores.

II. AN INTRODUCTION TO STELLAR
STRUCTURE AND NUCLEAR FUSION

A. Before Quantum Mechanics

Since the universe became cool enough for protons
and electrons to combine into atoms, hydrogen has been
the most abundant element in the universe. Interstellar
clouds of gas and dust are thus primarily comprised of
hydrogen, and when these clouds collapse to form stars,
the resulting stars are primarily comprised of hydrogen.

Before the advent of quantum mechanics in the 1920s,
astronomers had measured the age and elemental com-
position of the sun but could only speculate about the
nature of its internal energy source. Based on age mea-
surements, they could infer that stars like our sun radiate
energy (“shine”) for billions of years while remaining sta-
ble, and understood that there must be an energy source
intrinsic to the star. Suggestions included gravitational
energy, atomic disintegration, and the mutual neutraliza-
tion of positive and negative electric charges, but none
of these hypotheses could properly account for all the
observables; in particular, when the age of the Sun was
accurately measured, the theory of gravitational energy
was ruled out simply because it could not support such
a long lifespan [1].

In 1920, Sir Arthur Eddington argued that subatomic

processes must be the source of this energy, and pointed
out that “the assemblage of four hydrogen nuclei and
two electrons to form the helium atom” would provide
the appropriate amount of energy to balance the energy
radiated away by the star. However, he acknowledged,
“we should say that the assemblage...was impossible if
we did not know that it had occurred.” [2].

Eddington’s impossibility was a classical impossibility.
In order to fuse, nuclei need to be close enough for the
strong nuclear force to dominate the Coulomb barrier.
The particle energies in a typical stellar core are on the
order of a keV, which is 1000 times smaller than what
would be needed to overcome the Coulomb potential bar-
rier and enter the regime of the strong force [9]. Thus,
without quantum mechanics, stellar nuclear fusion was
impossible.

B. With Quantum Mechanics

Less than a decade after Eddington’s 1920 paper,
quantum mechanics had revolutionized astronomy and
George Gamow demonstrated that nuclei could in fact
tunnel through the Coulomb barrier and get close enough
(≈ 1 fm) to fuse [7]. The process is still statistically un-
likely, but the vast number of collisions within stars still
results in a significant reaction rate. We now know that
the core of a star is the site of these thermonuclear re-
actions, that most stars spent their lives fusing hydrogen
nuclei to form helium, and that these nuclear reactions
balance the star’s energy radiation until the hydrogen
supply is exhausted. High-mass stars (M > 8M�) un-
dergo additional stages of fusion that form heavier ele-
ments such as iron, calcium, and magnesium: these ele-
ments are ultimately distributed to the rest of the uni-
verse when the star explodes in a supernova. However,
lower-mass stars like our Sun stop at helium, radiate
away their remaining energy, and become inert [4].

Thus, an understanding of quantum mechanics - in
particular, quantum tunneling - is critical to understand-
ing the life cycles of stars and where the heavy elements
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in our universe come from.

III. THE REACTION RATE OF STELLAR
NUCLEAR FUSION

The tools of quantum mechanics allow us to calculate
the probability that two nuclei will fuse when they collide:
as a function of their relative velocity, this is called the
reaction cross section σ. We perform this calculation
using the WKB approximation, then take the average
over the cross section velocity distribution to derive the
reactivity < σv >. From this, we calculate the reaction
rate. We will see that the reaction rate R has a power-
law dependence on temperature T . In other words, R ∝
T ν . We will show that the index ν of this power-law
relationship depends on the temperature inside the core
of the star.

A. Calculating the Reaction Cross Section

The cross section of a nuclear reaction σ is a measure
of the probability that two nuclei will fuse when they
collide, and is defined by the following equation:

σ(E) = Pt(E)
S(E)

E
(1)

This is evaluated in the particles’ center-of-mass frame.
E is the energy of their relative motion in this frame.
Pt(E) is the probability of tunneling across the Coulomb
barrier. S(E) is the probability of fusion itself given the
details of the nuclear reaction and has been precisely ex-
perimentally measured for a wide range of systems. It
peaks sharply in a narrow energy range, so it is reason-
able to take its value as a given for a particular energy.
Finally, the extra E−1 dependence is due to the finite
“size” of each particle involved in the collision. For in-
tuition: the cross section of a particle should be propor-
tional to its “area” which (approximating the particle as
a sphere) is proportional to λ2. In stellar core temper-
atures, we are dealing with a non-relativistic limit. In
this limit, the de Broglie wavelength is h√

2mE
, and thus

λ2 ∝ E−1 [8–10].
Next, we calculate Pt(E). The Coulomb barrier is rep-

resented by the following potential:

Vc(r) =
Z1Z2e

2

r
(2)

where Z1 and Z2 are the atomic numbers of each col-
liding particle respectively, e is the electric charge, and r
is the distance between the particles.

Clearly, the barrier is lower for smaller Z: this is an-
other reason why stars spend the majority of their life-
times burning hydrogen rather than heavier elements.

In the center-of-mass frame, µ is the reduced mass

µ =
m1m2

m1 +m2
(3)

and v∞ is the relative velocity of the two particles in
the limit in which they are too far apart to affect each
other. Thus the pre-fused state has an energy E defined
as follows:

E =
1

2
mv2∞ (4)

With these definitions, we can write the Schrodinger
equation that governs this system:

h̄2

2µ
52 ψ + [E − Vc(r)]ψ = 0 (5)

Note that here r is the radial coordinate, defined from
the center of a spherical potential, and thus takes on
values from 0 to ∞.

With the approximation that there is no relative an-
gular momentum between the two atoms, Equation (5)
simplifies to

h̄2

2µ

1

r2
∂

∂r
(r2

∂ψ

∂r
) + [E − Vc(r)]ψ = 0 (6)

To simplify this equation further, we define χ = rψ:

h̄2

2µ

∂2χ

∂r2
+ [E − Vc(r)]χ = 0 (7)

The setup can be visualized through Figure 1.
For a nucleus arriving from the right with energy E,

we would like to calculate the probability that it will tun-
nel from A (r = re) to B (r = r0) through the classically
forbidden region. Equation (7) is non-linear so we will es-
timate the tunneling rate using the WKB approximation.
For a more thorough discussion of this approximation, see
[11]. Briefly, the WKB approximation is valid in the limit
that the potential is slowly-varying (in this case, that the
barrier is tall and wide). In this limit, the wavefunction

assumes the general form χ(r) = e
iκ(r)
h̄ . The approxima-

tion consists of plugging this general form into Equation
(7) then expanding in a power series in h̄ and taking the
leading and first-order terms. Intuitively, in the limit
that h̄→ 0, the de Broglie wavelength also tends to zero
and thus any potential is relatively slowly-varying.

The WKB approximation states that the transmission
coefficient Pt is described by the following equation:

Pt ≈ eφ (8)

where
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FIG. 1: Setup of the problem. A nucleus enters from the right
with energy E, and would classically rebound from the barrier
at A. Quantum mechanically, there is some probability that
the nucleus will tunnel from r = re to r = r0 and “exit” the
barrier at point B.

φ = − 2

h̄

∫ re

r0

κ(r′)dr′ (9)

and κ(r) is defined as follows:

κ(r) =
√

2m(V (r)− E) (10)

E can be written in terms of re and V (r) can be written
in terms of a general r. Thus, φ can be rewritten:

φ = − 2

h̄

√
2µZ1Z2e2

rE

∫ re

r0

dr

√
re
r
− 1 (11)

We make the substitution x = r
re

:

φ = − 2

h̄
re
√

2µE

∫ 1

r0/re

dx

√
1

x
− 1 (12)

The result is approximately:

φ = − 2

h̄

π

2

Z1Z2e
2

E

√
2µE (13)

Thus, we have calculated an approximate transmission
probability: the probability that two nuclei will get close
together to fuse.

Pt ≈ e−π
Z1Z2e

2

h̄

√
2µ
E (14)

Pluging this value into the nuclear cross-section:

σ(E) =
S(E)

E
e−π

Z1Z2e
2

h̄

√
2µ
E (15)

B. Calculating the Thermonuclear Reaction Rate
using the Reaction Cross-Section

For reactant number densities n1 and n2, cross-section
σ, and relative velocity v, the thermonuclear reaction rate
is defined as follows:

R = n1n2 < σv > (16)

< σv > is called the reactivity. It is the average over
the velocity distribution that characterizes the cross sec-
tion.

In stellar cores, the relative velocities of nuclei obey
a Maxwellian thermal distribution. Mathematically, the
distribution is:

< σv >= (
8

πµ
)1/2

1

(kT )3/2

∫ ∞

0

Ee−E/kTσ(E)dE (17)

In the previous section, we calculated σ(E) and found
it to be

σ(E) =
S(E)

E
e−

√
Ẽ
E (18)

where

Ẽ ≡ 2µ(π
Z1Z2e

2

h̄
)2 (19)

We plug that into Equation 17 to get

< σv >= (
8

πµ
)1/2

1

(kT )3/2

∫ ∞

0

S(E)e−
√
Ẽ
E− E

kT dE (20)

The integral is dominated by the exponential. So, it is
convenient to define f(E) as

f(E) =

√
Ẽ

E
+

E

kT
(21)

and seek to find the value E0 of E that will maximize
f(E). Solving for f ′(E0) = 0 and expanding f(E) around
the minimum E = E0 we get

< σv >≈ (
8

πµ(kT )3
)1/2(

2π

f ′′(E0)
)1/2e−f(E0)S(E0) (22)

At this point, we essentially have the reaction rate.
The final rate value R is simply Equation (22) multiplied
by the product of the number densities of the participat-
ing nuclei.
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C. Temperature Dependence

We now use Equation (22) to determine the power-
law index ν of the rate’s dependence on temperature T .
Assume the following form, where the rate of reaction R
is proportional to < σv >:

R ∝< σv >∝ T ν (23)

Solving for the power-law index:

ν =
dln(< σv >)

dln(T )
(24)

To calculate the power law temperature dependence,
we use Equation (22) to calculate dlnR

dlnT . This gives

ln < σv >= −2

3
lnT + (

C

4kT
)1/3 (25)

where C is a measurable constant. Solving for the
power-law index,

ν = −2

3
+

C̃

4kT

1/3

(26)

where C̃ is another measurable constant.
There are two different pathways predominantly re-

sponsible for the fusion of hydrogen into helium in stellar
cores. For low-mass stars such as our Sun (M < M�) the
primary pathway is called the proton-proton (pp) chain.
For higher-mass stars (M > M�) the primary pathway
is called the carbon-nitrogen-oxygen (CNO) cycle.

For the pp chain, the bottleneck reaction is the follow-
ing:

p+ p→ d+ e+ + νe (27)

For this reaction, the constant C̃ has been experi-
mentally measured to be roughly 493 keV. Typical stel-
lar cores in stars of this mass range have temperature
T = 1.6 x 107 K. Thus the power law dependence is
ν = 3.8 [9].

For the CNO cycle, the bottleneck reaction is

14N + p→15 O + γ (28)

A similar calculation gives ν = 16.7 [9].
Clearly, the temperature dependence of the CNO cy-

cle is significantly steeper than that of the pp-chain. For
more advanced stages of burning, the dependence be-
comes even steeper: for helium burning, it is roughly
ν = 40 [9].

We can use these temperature dependences to under-
stand stellar structure and radiation mechanisms. Stars
like our sun have radiative cores, which means that they
dissipate energy primarily through radiation rather than
convection. Massive stars, though - those which fuse he-
lium through the CNO cycle - generate energy in a very
small central region where the temperature peaks. En-
ergy generation falls off much more steeply with radius
than it does in lower-mass stars. To maintain equilib-
rium, the star must channel energy away from its core
very efficiently. Simple photon diffusion - radiation - is
insufficient. These stars rely on convection to carry away
hot plasma [9, 10].

IV. CONCLUSION

Stellar structure and stellar energy balance cannot be
understood without quantum mechanics. In fact, with-
out quantum mechanics, stars could not generate enough
energy to replenish the supply that is radiated away.
With the simple model of two nucleons tunneling through
a barrier to fuse, we can draw conclusions about how stars
of different mass ranges maintain thermal equilibrium.
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We present the basic formalism of the supersymmetric method in non-relativistic quantum mechanics
and apply it to a particular problem of interest. Specifically, the method allows us to use our
knowledge of the infinite square well to immediately solve the obstensibly more complicated potential
V (x) ∼ sec2(x). We go on to sketch the relation between the supersymmetric method and the
concept of supersymmetry in particle physics.

I. INTRODUCTION

One of the most elegant algebraic solutions to a quantum
problem is that of the harmonic oscillator. Indeed, the
harmonic oscillator is one of the few systems we know
how to solve exactly in the context of non-relativistic
quantum mechanics. A common strategy to approach
more complicated potentials is to expand them around
local minima and treat them as if they were harmonic os-
cillators. Moreover, the elegance of the algebraic method
in the solution, due to Dirac, is of great aesthetic and
practical value. We use a similar method to algebraiclly
obtain the energy spectrum and eigenstates of the angu-
lar momentum Hamiltonian, and the same technique can
be used to solve Hydrogen.

The supersymmetric method in quantum mechanics ef-
fectively amounts to using the same strategy employed
in the algebraic solution to the harmonic oscillator—
namely, factoring Hamiltonians into a product of objects
that function as creation and annihilation operators—to
solve more complicated potentials than the harmonic os-
cillator.

We will first review the aforementioned algebraic so-
lution to the harmonic oscillator and then introduce the
basic structure of the supersymmetric method, drawing
analogies to the harmonic oscillator where applicable. We
will enumerate the key properties of the method and then
work through an illustrative example involving the infi-
nite square well. Finally, we will briefly examine the
relation of the supersymmetric method in quantum me-
chanics to the topic of supersymmetry as it appears in
quantum field theory.

II. THE HARMONIC OSCILLATOR

Let us quickly review the results of the harmonic oscil-
lator calculation, since they will be of fundamental im-
portance in understanding the more general factorization
method. For a more detailed derivation of the results in
this section, refer to Ref. 1. For further reading, refer to
Ref. 6, section 2.1 (p.21).

Our Hamiltonian takes the form

H =
P 2

2m
+

1

2
mω2X2. (1)

We can define unitless variables H, p, and x to simplify
this equation like so:

H = h̄ωH (2)

P = (2mh̄ω)1/2p (3)

X =

(
2h̄

mω

)1/2

x. (4)

Now our “reduced” Hamiltonian is

H = p2 + x2. (5)

We now define the creation and annihilation operates a†

and a, respectively

a† = x− ip (6)

a = x+ ip (7)

which satisfy the commutation relation

[a, a†] = 1. (8)

We can now rewrite the Hamiltonian as

H = a†a+
1

2
(9)

We define the ground state to be the unique state |0〉
annihilated by a: a|0〉 = 0. The excited states |n〉 of the
osciallator can be constructed with the creation operator
as

|n〉 =

√
1

n!
(a†)n|0〉 (10)

with associated energies

En = n+
1

2
(11)

(note that here En is the eigenvalue of H, the “reduced”
Hamiltonian, and that the actual energies have an extra
factor of h̄ω. Alternatively, we can think of this as a unit
system where h̄ = ω = 1).

Note the utility of the creation and annihilation opera-
tors in moving up and down the ladder of states, respec-
tively. The analogues of creation and annihilation oper-
ators in the supersymmetric method will play the same
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role. Note, too, how the null space of the annihilation
operator defines the ground state.

In the supersymmetric method, we consider Hamilto-
nians (Ref. [2]) of the form

H = A†A (12)

for some “creation” and “annihilation” operators

A† = − d

dx
+W (x) (13)

A =
d

dx
+W (x) (14)

where W (x) is assumed to be real and is called the su-
perpotential.

Problems of this form are particularly easy to solve
given our knowledge of the harmonic osciallator. We can
find the ground state of H by simply asserting that it is
annihilated by A, and subsequently build up the excited
states by repeatedly acting on the ground state with A†.
As we will see later, knowledge of such a system will
immediately give us the solution to a related system with
Hamiltonian H = AA†.

III. GENERAL FORMALISM

Both this section and the next follow the discussion in
Ref. 3. The Hamiltonians described in Eqn. 12 are
defined in terms of a single variable x, and therefore im-
plicitly assume that our system is one-dimensional. We
note, however, that the formalism applies equally well to
one-dimensional or three-dimensional problems–in three
dimensions the variable x would represent the radial co-
ordinate and would range from 0 to ∞.

We can now explicity construct the two partner Hamil-
tonians mentioned in the introduction:

H(1) = A†A = − d2

dx2
+W 2(x)−W ′(x) (15)

H(2) = AA† = − d2

dx2
+W 2(x) +W ′(x). (16)

Though we will not carry out the explicit calculation,
you can convince yourself these equations are correct by
acting on an arbitrary function f with each A†A or AA†.
From these expressions we arrive at the potentials

V (1) = W 2(x)−W ′(x) (17)

V (2) = W 2(x) +W ′(x). (18)

A. Key Properties

We now turn our attention to several important proper-
ties of the Hamiltonians described above.

1. All the energies E
(1)
n and E

(2)
n are non-

negative.

proof :

H(1)|φ(1)n 〉 = E(1)
n |φ(1)n 〉

E(1)
n = 〈φ(1)n |H(1)|φ(1)n 〉

= 〈φ(1)n |A†A|φ(1)n 〉
= 〈Aφ(1)n |Aφ(1)n 〉 ≥ 0 (19)

where the final inequality follows because the norm

of a vector is non-negative. Here |φ(1)n 〉 is the n-th
energy eigenstate of H(1). The proof for H(2) is
identical.

2. The zero energy eigenstate of H(1) is annihi-
lated by A, and the zero energy eigenstate
of H(2) is annihilated by A†

Note that neither of the Hamiltonians are guaran-
teed to have a zero-energy eigenstate by Eqn. (19).
However, since we know their spectra are strictly
non-negative, if a zero-energy eigenstate exists, it
is guaranteed to be the ground state.

This follows from the inequality (19) and the cor-
responding inequality for H(2). In symbols,

A|φ(1)0 〉 = 0 (20)

A†|φ(2)0 〉 = 0 (21)

3. The non-zero energy spectrum of H(1) and
H(2) are identical.

proof: Let |φ(1)n 〉 be an eigenstate of H(1) with

E
(1)
n 6= 0.

H(1)|φ(1)n 〉 = E(1)
n |φ(1)n 〉

A†A|φ(1)n 〉 = E(1)
n |φ(1)n 〉 (22)

Act from the left with A:

(AA†)(A|φ(1)n 〉) = E(1)
n (A|φ(1)n 〉)

= H(2)|φ(2)n 〉 = E(1)
n |φ(2)n 〉 (23)

where

|φ(2)n 〉 = A|φ(1)n 〉. (24)

Thus every non-zero energy eigenstate of H(1) cor-
responds to an eigenstate of H(2) with the same
energy upon action by A.

Similarly, if |φ(2)n 〉 is an eigenstate of H(2) with

E
(2)
n 6= 0,

H(2)|φ(2)n 〉 = E(2)
n |φ(2)n 〉

AA†|φ(2)n 〉 = E(2)
n |φ(2)n 〉 (25)
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Act from the left with A†:

(A†A)(A†|φ(2)n 〉) = E(2)
n (A†|φ(2)n 〉)

= H(1)|φ(1)n 〉 = E(2)
n |φ(1)n 〉 (26)

where

|φ(1)n 〉 = A†|φ(2)n 〉. (27)

So we get the analogous result that every non-zero
energy eigenstate of H(2) corresponds to an eigen-
state of H(1) with the same energy upon action by
A†.

The only uncertainty we have about the spectra of the
partner Hamiltonians at this point is whether they have
zero-engergy eigenstates. They cannot both have zero-
energy eigenstates because such a state would be anni-
hilated by both A and A†, which, as a quick calculation
will confirm, means the state must be zero everywhere.

Thus the possibilities can be enumerated as follows:

1. Neither Hamiltonian has a zero-energy eigenstate.
In this case we say the partner Hamiltonians exhibit
supersymmetry.

2. Either H(1) or H(2) has an zero-energy eigenstate,
but not both. In the case we say supersymmetry
has been broken.

IV. A SIMPLE EXAMPLE: W (x) = tan(x)

We will use the formalism derived above to examine the
case when W (x) = tan(x), restricted to the interval x =
[−π/2, π/2]. Though it is not obvious from the start,
the appeal of this case derives from the fact that one of
the partner Hamiltonians will end up being the infinite
square well, which we already know how to solve.

We begin by using Eqn.s (15) and (16) to calculate the
Hamiltonians.

W ′(x) = sec2(x) (28)

H(1) = − d2

dx2
+W 2(x)−W ′(x)

H(1) = − d2

dx2
+ tan2(x)− sec2(x)

H(1) = − d2

dx2
− 1. (29)

Where we used the identity sec2(x) − tan2(x) = 1. The
resulting potential is simply

V (1) = −1, x ∈ [−π/2, π/2] (30)

with infinite walls at x = ±π/2. This is the infinite
square well!

FIG. 1: The superpotential W (x) = tan(x).

Now let’s find H(2):

H(2) = − d2

dx2
+ tan2(x) + sec2(x)

H(2) = − d2

dx2
+ 2 sec2(x)− 1, (31)

so we conclude

V (2) = − 2

cos2(x)
− 1 (32)

FIG. 2: The partner potentials V (1) and V (2).
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We see from inspection that H(2) has no zero-energy
eigenstate, since the potential V (2) is everywhere greater
than zero.

We now solve explicity for the ground state of H(1)

starting from Eqn. (20):

A
∣∣∣φ(1)0

〉
= 0

d

dx
φ
(1)
0 + tan(x)φ

(1)
0 = 0 (33)

This differential equation is easily solved via separation
of variables.

φ
(1)
0 = N exp (−

∫ x

0

dx′, tan(x′))

= Neln cos x = N cosx (34)

For normalization over the interval we need the constant
N to be

√
2/π.

φ
(1)
0 =

√
2

π
cos(x) (35)

We can now check that the energy is indeed zero.

H(1)φ
(1)
0 = (− d2

dx2
− 1)φ

(1)
0

=

√
2

π
cosx−

√
2

π
cosx = 0. (36)

From our knowledge of the solution to the infinite square
well, we can write down the solution for the first excited
state:

φ
(1)
1 =

√
2

π
sin(2x) (37)

which vanishes at±π/2. We can now calculate the energy
of the state. This time, taking the second derivative of
the wavefunction will bring out two factors of 2 from the
argument of sin(2x) from the chain rule, and we see the
energy is

E
(1)
1 = 22 − 1 = 3. (38)

The general solution to the infinite well on the interval
−π/2 to π/2 is

φ(1)n =





√
2
π cos((n+ 1)x), n = 0, 2, 4, . . . .√
2
π sin((n+ 1)x), n = 1, 3, 5, . . . .

(39)

with associated energies

E(1)
n = (n+ 1)2 − 1, n = 0, 1, 2, . . . (40)

Having solved the problem for H(1), we can immedi-
ately write down the solutions for H(2) by simply acting
on them with the A operator, as per Eqn. (24)! Indeed,
we find

φ(2)n = Aφ(1)n = (
d

dx
+ tan(x))φ(1)n

= (
d

dx
+ tan(x))





√
2
π cos((n+ 1)x), n = 2, 4, . . . .√
2
π sin((n+ 1)x), n = 1, 3, 5, . . . .

where we have left out n = 0 since we know that H(2)

has no zero-energy eigenstate.
Recall, as well, that, with the exception of the ground

state energy, the energy spectrum for H(2) is identical to

that of H(1). Explicitly, the eigenstates
∣∣∣φ(2)n

〉
of H(2) =

2 sec2(x)− 1 enumerated above have associated energies
identical to the inifite square well:

E(2)
n = (n+ 1)2 − 1, n = 1, 2, . . . (41)

Though we will not delve into the details, it is worth
noting that a very closely related problem is important
in scattering theory because it allows scattering states
with zero reflection amplitude. Specifically, if we instead
had chosen W = tanh(x), we would have gotten a partner
Hamiltonian with a potential V (x) ∼ sech2(x). It is quite
a happy surprise that we can solve for its bound states
with minimal effort using our knowledge of the infinite
square well and the supersymmetric methods presented
above.

V. RELATION TO SUPERSYMMETRY

The concept of supersymmetry in particle physics says
that every fundamental particle has a supersymmetric
partner with identical properties except that its spin dif-
fers by 1/2. In this way it matches up fermions (particles
with half integer spin) with bosons (particles with inte-
ger spin). At first sight this idea does not appear to be
at all related to the above discussion about superpoten-
tials. The key is to turn our attention to a larger space,
in which the partner Hamiltonians H(1) and H(2) ap-
ply to subsystems. [6] Specifically, we combine the two
Hamiltonians into a “super-Hamiltonian” H as follows:

H =

(
H(1) 0

0 H(2)

)
(42)

States of the system take the form

Ψ(x) =

(
φ(x)
ψ(x)

)
(43)

Eigenstates of H(1) take the form

(
φ(x)

0

)
and are re-

ferred to as “boson” states. Similarly, eigenstates of H(2)

take the form

(
0

ψ(x)

)
and are referred to as “fermion”

states.
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We must define a “parity” operator (−1)F , which we
will take to simply be the Pauli matrix σ3:

(−1)F =

(
1 0
0 −1

)
. (44)

Under this definition, bosons and fermions are eigenstates
of the parity operator with eigenvalues 1 and -1, respec-
tively. The label F distinguishes between bosons and
fermions. If it is even, the particle is a boson (has eigen-
value 1), and if it is odd, the particle is a fermion (has
eigenvalue -1).

(−1)F |b〉 = |b〉 (45)

(−1)F |f〉 = − |f〉 (46)

We then define an antihermitian supersymmetry oper-
ator Q (sometimes referred to as the “super-charge”):

Q =

(
0 A†

−A 0

)
(47)

which will send bosons to fermions and fermions to
bosons. We see this explicitly as follows:

Q

(
φ
0

)
=

(
0 A†

−A 0

)(
φ
0

)

=

(
0
−Aφ

)
(48)

Q

(
0
ψ

)
=

(
0 A†

−A 0

)(
0
ψ

)

=

(
A†ψ

0

)
(49)

This result is a consequence of the fact that (−1)F and
Q anti-commute:

{(−1)F , Q} = {σ3, Q} = 0. (50)

A quick calculation confirms this property:

σ3Q =

(
1 0
0 −1

)(
0 A†

−A 0

)

=

(
0 A†

A 0

)

Qσ3 =

(
0 A†

−A 0

)(
1 0
0 −1

)

=

(
0 −A†

−A 0

)

= −σ3Q (51)

Armed with this knowledge, we see

(−1)F (Q |ψ〉) = −Q(−1)F |ψ〉 = −(−1)Fψ (Q |ψ〉 . (52)

Here (−1)Fψ represents the parity of the state |ψ〉–its
(−1)F eigenvalue. The conclusion we have drawn is

that the state Q |ψ〉 has the opposite parity as the state
|ψ〉. The supersymmetry operator Q turns bosons into
fermions, and fermions into bosons, as desired.

We now ask what is the square of the supersymmetry
operator, Q2.

QQ =

(
0 A†

−A 0

)(
0 A†

−A 0

)

=

(
−A†A 0

0 −AA†

)

= −H

We find that Q2 is simply minus the total Hamiltonian
of the system! Recall, also, that the adjoint of Q is simply
minus itself. In summary,

Q2 = −H (53)

Q† = −Q. (54)

Though it is beyond the level of our discussion, it is
worth noting that these operators form a closed super-
algebra called the Witten superalgebra, defined by the
following properties [4].

[Q,H] = [Q†] = 0 (55)

{Q,Q†} = 2H. (56)

Here {A,B} = AB +BA is the anti-commutator of A
and B.

We can now see clearly the positivity of the spectrum:

〈Ψ|H |Ψ〉 = −〈Ψ|QQ |Ψ〉
= 〈Ψ|Q†Q |Ψ〉
= 〈QΨ|QΨ〉 ≥ 0. (57)

We can also demonstrate that ground states with zero
energy are invariant under supersymmetry transforma-
tions. We know that, for such a zero-energy eigenstate
|Ψ0〉,

Q |Ψ0〉 = 0(
0 A†

−A 0

)(
φ
ψ

)
= 0

=⇒ A†ψ = 0 (58)

Aφ = 0 (59)

Eqn.s (58) and (59) are just the familiar conditions for
ground states that appear in Eqn.s (20) and (21).

Supersymmetry transformations are generated by a
unitary operator U = eεQ (recall Q is antihermitian).
A ground state |Ψ0〉 is invariant under the action of such
an operator:
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U |Ψ0〉 = eεQ |Ψ〉

= (I + εQ+
1

2
(εQ)2 + . . . ) |Ψ0〉

= |Ψ〉 . (60)

Colloquially, we say that “ground states are supersym-
metric.” For intuition, one can keep in mind, for exam-
ple, plane wave states ψ ∼ N eikx, which are invariant
under translations

T (x0)ψ = N eik(x+x0)

= N eikx0eikx

= N ′eikx (61)

where N ′ is the same normalizing constant up to a
overall phase. We say that these plane wave states have
translational symmetry.

Ground states of Hamiltonians in supersymmetric
problems[7] are invariant under a different kind of
transformation–a supersymmetric transformation–and
thus we say they are supersymmetric.

For further reading regarding supersymmetry refer to
the excellent discussion in Ref. 6.

VI. CONCLUSIONS

The above discussion was meant to provide a introduc-
tion to the subject of the supersymmetric method in
quantum mechanics and its relation to supersymmetry.

Due to their importance in the formulation of the su-
persymmetric method and their utility as a guide to our
intuition in our study of supersymmetry, we briefly re-
counted the main results of Dirac’s algebraic solution to
the harmonic oscillator potential. We later encountered
ladders of states akin to the spectrum of the harmonic os-
cillator in the formulation of the supersymmetric method.

The formalism of the supersymmetric method in quan-
tum mechanics was the main topic of our discussion.
We sketched derivations of the most important results

in the subject, which we summarize here. We considered
two partner Hamiltonians H(1) and H(2), related by a
super-potential W (x). We went on to show that both
Hamiltonians necessarily had strictly non-negative spec-
tra, which were identical up to the possibility of a single
lower energy state in one of the two spectra. Moreover,
we demonstrated that the zero-energy eigenstates of H(1)

and H(2) were annihilated by A and A†, respectively (if
they existed!).

We explicitly ran through one very simple application
of the method to the problem of the infinite square well,
and–somewhat surprisingly–we learned with minimal ef-
fort about the eigenstates and energy spectrum of the
potential V (x) ∼ sec2(x). A closely related problem tells
us about the potential V (x) ∼ sech2(x), which shows up
in investigations of one-dimensional scattering problems
that have no reflections. There are many other appli-
cations of the supersymmetric method in quantum me-
chanics that we neglect to discuss in this paper; for ex-
ample, when one of the partner Hamiltonians is that of
the hydrogen atom, similarly powerful results are found,
although the mathematics are somewhat more tedious.

We learned about the significance of supersymmetry in
quantum field theory. The subject centers around three
operators: the super-charge Q, its adjoint Q†, and the
super-Hamiltonian H. These operators form a closed su-
peralgebra called the Witten superalgebra. The parity
operator (−1)F also plays an important part in the the-
ory, particularly in relating bosons (fermions) to their
fermionic (bosonic) super-partners.
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Studying systems of many quantum particles has great relevance to many current areas of research,
but even today’s most powerful supercomputers are unable to simulate quantum systems with more
than around 30 atoms. Simulating quantum systems in other ways has therefore recently become
a field of great importance. Here we explore the current state of the field of quantum simulation,
and discuss what can be achieved in the future. Two examples of recent experiments are analysed,
chosen with the goal of capturing the key ideas of how one system can simulate another. The first
example is a simulation of a phase transition in an Ising chain of spins, using a tilted optical lattice.
The second shows how artificial gauge potentials can be simulated in condensates of neutral atoms.
Achieving controllable, scalable simulations of these types could lead to dramatic advances in our
understanding of quantum magnetism, superconductivity, and other poorly understood phenomena.

I. INTRODUCTION

The need for quantum simulators stems from the in-
tractability of modelling some types of quantum systems
with classical computers. The field has grown rapidly in
the last decade, after being first proposed by Feynman in
his 1982 talk [1]. The field has grown rapidly in the last
decade, and is already very broad, with simulators mak-
ing use of systems ranging from photons in a cavity to
quantum dots [2]. In this paper we focus on gases of cold
atoms, which have led to the some of the most successful
demonstrations of quantum simulation to date.

Some of the hardest problems in quantum mechanics
to solve using classical computation are those involving
many interacting particles. To understand the problem
with simulating such systems, consider how a classical
computer stores data: sequences of 1s and 0s encoded
in the states of transistors. The states of a quantum
system of many bodies are described by their wavefunc-
tions, which are in a vector space whose size grows ex-
ponentially with the size of the system: for example, for
a system of spin particles, for each particle put in, the
number of states will double. Hence for a system of N
spin − 1

2 particles, we would need 2N numbers, corre-
sponding to the coefficients of each of the basis states, to
fully describe the state of the system. Furthermore, to
calculate the time evolution of the quantum system, we
would have to exponentiate the Hamiltonian, which is a
2N×2N matrix. Therefore, simulating a general quantum
system is described as an ‘intractable’ problem for clas-
sical computers, and the amount of computation power
required for simulating any more than 20-30 particles is
well beyond the reach of todays classical computers, and
of those in the foreseeable future[3].

The subject is intimately linked with the development
of the quantum computer; Feynman conjectured that
we might use a Universal Quantum Computer for solv-
ing problems in quantum mechanics, as such a machine
would not suffer from the classical problem exponential
growth in computation time with increasing number of
degrees of freedom. Whereas a classical bit is either 0

or 1, a quantum bit can be a superposition of the two,
and so one can directly map a spin− 1

2 system with, say,
40 particles onto just 40 quantum bits. A quantum com-
puter is therefore ideal for simulating systems of interact-
ing quantum particles. In addition, whilst decoherence
of the states of the quantum computer leads to errors
in calculations such as factorizing large numbers, it has
been suggested that it could in fact be beneficial when
using the computer for simulation[3]. Decoherence in a
real quantum system is effected by characteristics of the
environment such as temperature, pressure, density, and
electric field strength. If the dependence of the quibits of
a quantum computer on these parameters is the same as
that of the system it is being used to simulate, then by
simply re-scaling the ‘Bloch Parameters’, such as the de-
coherence times T1 and T2, to match those of the real sys-
tem, we can transform the seemingly detrimental effect
of decoherence into an improvement of the simulation.

The universal quantum computer envisaged by Feyn-
man is referred to as a digital quantum simulator. Such
a simulator breaks down the time evolution of the sys-
tem into discrete time-steps, just as a classical com-
puter would do, and performs computations using pro-
grammable algorithms. This approach is beyond our cur-
rent capability: we are not yet able to control an array of
quantum bits reliably enough to perform this many calcu-
lations without error. A more promising approach, there-
fore, may be to use analogue quantum simulators. These
are used only for the specific systems for which they were
designed, and imitate that system directly rather than
performing calculations or running algorithms to simu-
late it. In the same way as an Orrery mimics the motion
of the planets in the solar system, quantum simulators
can reveal much about the basic behaviour of the system
they represent (just as the Orrery can show the relative
motions of the planets), but are able to get around the
problems that might be faced in studying the system di-
rectly. These simulators are systems of quantum particles
which have the capability to be initialized into a known
state, and then evolved with an artificial Hamiltonian
with parameters that can be varied by the experimenter.
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Implementing these simulators therefore requires that the
experimenter have a large degree of control over the sys-
tem, often with the capability to address the states of
individual particles. Quantum simulators will soon allow
us to both test the predictions of existing models, and
to generate new, unpredicted results that could not have
been classically simulated.

The remainder of this paper describes examples of ana-
logue quantum simulation. The systems presented here
were chosen because they demonstrate the key ideas be-
hind simulation in the context of two very different prob-
lems. In Sec. II we explore the use of an optical lattice to
simulate a chain of quantum spins in a phase transition.
In Sec. III we demonstrate how the adiabatic evolution
of the ‘dressed states’ of the Jaynes-Cummings Hamil-
tonian (for example, that of an atom-light interaction)
can lead to a geometric phase which can simulate gauge
potentials in a system of neutral atoms.

II. ANTIFERROMAGNETIC SPIN CHAINS
SIMULATED USING AN OPTICAL LATTICE

One example of a system specifically designed to simu-
late another is the case of a one dimensional Ising model
of a chain of spins simulated by cold atoms in an opti-
cal lattice, as carried out by Simon et al (2011). The
Ising chain of spins is at the heart of the field of quan-
tum magnetism, which is currently an area of great rel-
evance in condensed matter physics, with implications
for high-temperature superconductors, spintronic devices
and many more. However, simulating even a short chain
of quantum spins on a classical computer is complex, be-
cause of entanglement between the spins.

The Ising model is a simplistic model of a system of in-
teracting spins in a lattice, based on the assumption that
the spins only interact with their nearest neighbours. For
particles with both a spatial and a spin component of
their wavefunction, there is a different energy associated
with neighbouring spins being aligned or anti-aligned:
this is called the exchange energy, J . If the spin is in
an external magnetic field, then this will also contribute
to the energy. We can therefore write the Hamiltonian as
a sum over the exchange interactions with nearest neigh-
bours plus the total energy of the applied field with the
spins in the lattice:

H(si) = −J
∑

n.n

sisj − h
∑

i

si, (1)

where h represents the effect of the external field. Note
that in this simple model the spins cannot point in any di-
rection – they must be either aligned or anti-aligned with
the field. Because of the simplicity of the Ising model it
is found that many other quite different physical systems
may map onto it with a suitable choice of the parameters
J and h. The experiment described in this section makes
use of the isomorphism between the Ising model for a 1D

spin chain, and that of a one dimensional lattice of spin-
less bosons, mapping spin to lattice site occupancy. The
justification for the mapping that forms the basis for this
experiment is an advanced proof, and is treated in [5].

For an Ising chain of spins at zero temperature when
the external field dominates, the spins will align in the
direction of the applied field, behaving like a paramag-
net. However, as the interaction between neighbouring
spins becomes the dominant term, antiferromagnetism is
exhibited. The set-up used by Simon et al., described as
a ‘tilted lattice’, consisted of 87Rb atoms suspended in
an optical lattice designed such that the energy of each
lattice site decreases across the lattice in one direction,
as shown in Fig. 1. This tilting is achieved by applying
a magnetic field gradient across the lattice. In a Bose-
Einstein gas of 87Rb atoms, the Van der Waals inter-
action is observed to result in a repulsive force, which
translates to a positive energy of interaction, U, when
two atoms are in the same lattice site. The ‘tilt’ of the
lattice, E, is simply the difference in energy between ad-
jacent lattice sites. Unlike atoms in a crystal, which can
lose or gain energy with ease, those suspended in an op-
tical lattice have no means of giving up excess energy.
The consequence of this is that tunnelling to an adjacent
lattice site with a lower energy is not possible except
when E is tuned to be close to U: this way, the energy
an atom loses by tunnelling to a new site further down
the slope of the lattice is offset by its interaction with the
atom that already occupies the new site. The experiment
therefore involved gradually increasing E to simulate the
changing strength of an applied magnetic field: as the
tilt E approaches U, each atom becomes free to tunnel
to its neighbour, which is equivalent to the spins in the
simulated chain switching from aligned to anti-aligned —
the phase transition occurs at E = U. As E goes past U,
tunnelling is once again energetically forbidden.

FIG. 1: A schematic representation of three lattice sites when
E = U. The dotted red lines indicate the effective energy of
the site when taking into account the interaction energy, U,
between 87Rb atoms. As the atoms cannot lose or gain energy,
tunnelling can only occur when E = U.

The cloud of atoms was then imaged by a microscope
sensitive to the parity of the site occupation number, with
the result that lattice sites containing either two atoms
or no atoms show up dark, and those containing a single
atom appear bright[4]. The dark regions are therefore
those in which the phase transition to the antiferromag-
netic regime has occurred.

In this section we studied an example of simulation
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FIG. 2: The mapping between spins and lattice occupancy
that forms the basis of the simulation set up by Simon et al.
Here ∆ = E −U , the difference in energy between the lattice
tilt and the interaction energy of two atoms on the same site.
Figure reproduced from [4]

FIG. 3: (a) Images of the cloud of atoms as the system is
swept through the phase transition by changing the tilt of
the lattice, E. Figure a shows a snapshot of the whole sys-
tem whilst in the paramagnetic phase. Figure b shows a sec-
ond snapshot, taken in the antiferromagnetic phase. Figure
c shows several snapshots of rows of atoms taken at different
times throughout the transition. Figure reproduced from [4]

based on the mapping of the behavior of a lattice site
filling model onto an Ising model. In the next section,
we explore a simulation based on a different mathemat-
ical similarity: the close relation of Berry’s phase to the
mathematics of a quantum particle in a magnetic field.

III. ADIABATIC EVOLUTION OF A TWO
STATE ATOM

To see how an atom interacting with light can lead to
artificial magnetic fields, we start with a simplified ex-
ample which captures the essential physics: a single two-
state atom in a light field. The following calculation pro-
vides an outline of how the geometric phase, acquired by
the atom as a result of its adiabatic movement through
the light field, can enable us to write the Schrödinger
equation for the atom in a form identical to that of a
charged particle moving in a magnetic field. The two
states of the atom are denoted |g〉, for the ground state,
and |e〉, for the excited state. To derive the final re-
sult, we first need to find the basis states of the atom-

light interaction, known as ‘dressed states’. These are the
eigenstates of the Jaynes-Cummings Hamiltonian, which
is denoted by Htotal and describes the whole atom-light
system:

Htotal = Hatom +Hlight +Hint (2)

Hint is the term that describes the interaction, and is
given by

Hint =
h̄Ω

2
(|e〉 〈g| âe−i(ω−ωa)t − |g〉 〈e| â†ei(ω−ωa)t). (3)

Ω is the Rabi frequency of the system, ωa is the fre-
quency corresponding to the transition in the atom, and
ω is the frequency of the incident light.
Hatom and Hlight are given by

Hatom =
h̄ωa

2
(|e〉 〈e| − |g〉 〈g|) (4)

Hlight = h̄ωâ†â (5)

Using basis vectors |n+ 1, g〉 and |n, e〉, where |n〉 is the
nth eigenstate of â†â (corresponding to the state of the
light field), we can express the total Hamiltonian for the
atom-light interaction as a matrix U (calculation omit-
ted):

Û =
h̄Ω

2

[
cos θ e−iφ sin θ

eiφ sin θ − cos θ

]
. (6)

θ and φ are functions of the parameters of the system and,
importantly, can be spatially varied by the experimenter.
The eigenstates of the coupling matrix U are the ‘dressed
states’ we need to derive the result. They are found to
be

|χ1〉 =

[
cos θ2

eiφ sin θ
2

]
, |χ2〉 =

[
−e−iφ sin θ

2

cos θ2

]
. (7)

Now if we allow this atom to move in a potential V,
where V has no effect on the internal state of the atom,
the Hamiltonian becomes

H =
p̂2

2m
+ V̂ + Û (8)

We are now ready to explore the adiabatic evolution
of the atom, as the parameters of the system are tuned
slowly by the experimenter. As |χ1〉 and |χ2〉 are eigen-
states of U , solving the time dependent Schrödinger equa-
tion is as simple as calculating the action of p̂2 on the gen-
eral wavefunction. This wavefunction must have both a
spatially and temporally varying component ψj(~r, t), and
a component relating to the state of the atom and its in-
teraction with the light field, which we have shown to be
represented by the |χj〉. It is important to note that the
|χj〉 have ~r dependence, as the parameters of the light
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field, described by θ and φ, are not constant in space.
From here on we will highlight this position dependence
of the dressed states by writing them as |χj(~r)〉.

|Ψ〉 =

2∑

j=1

ψj(~r, t) |χj(~r)〉 (9)

In the following steps we apply the Schrödinger equa-
tion only to the dressed state component of the overall
wavefunction, with the goal of writing the equation in

terms of ψ(~r, t) only. We first apply p̂ = −ih̄~∇, which
gives

p̂ |Ψ〉 =

2∑

j=1

(−ih̄
∣∣∣~∇χj(~r)

〉
+ |χj(~r)〉 p̂)ψj(~r, t). (10)

Inserting a complete set of states:

p̂ |Ψ〉 =
2∑

j,k=1

[(−Ak,j + δk,j p̂)ψj(~r, t)] |χk(~r)〉 , (11)

where

Ak,j = ih̄
〈
χk(~r)|~∇χj(~r)

〉
. (12)

To calculate the action of p̂2, we apply p̂ once more.
What at first looks to be a tricky calculation is simpli-
fied by noting that we can use the product rule just as
when operating p̂ for the first time, but replacing ψj with
the expression [(−Ak,j + δk,j p̂)ψj(~r, t)]. Therefore, after
inserting a complete set of states |χl(~r)〉, we obtain

p̂2 |Ψ〉 =
2∑

j,k,l=1

[(−Al,k+δl,kp̂)(−Ak,j+δk,j p̂)ψj(~r, t)] |χl(~r)〉 .

(13)
If we now assert that the atom was prepared in state

|χ1〉, and we ensure that it moves adiabatically, then we
can set any terms involving ψ2(~r, t) equal to 0 in the
adiabatic approximation. Expanding the brackets, con-
tracting over k and setting j equal to 1 gives:

p̂2 |Ψ〉 =
2∑

l=1

[(δl,1p̂
2 +A2

l,1 −Al,1p̂− p̂Al,1)ψ1(~r, t)] |χl(~r)〉 .

(14)

Finally, writing the Schrödinger equation for |Ψ〉 =
ψ1(~r, t) |χ1(~r)〉 and right-multiplying by 〈χ1(~r)| gives us
an equation which looks just like that of a particle moving
in a B field[7]:

ih̄
∂ψ1(~r, t)

∂t
= [

(p̂−A1,1)2

2m
+A2

2,1 +
h̄Ω

2
+ V̂ ]ψ1(~r, t)

(15)

= [
(p̂−A)2

2m
+W +

h̄Ω

2
+ V̂ ]ψ1(~r, t) (16)

The terms A and W play the role of the gauge po-
tentials of real magnetic and electric fields respectively.
Using the dressed eigenstates, we calculate

A = ih̄ 〈χ1|∇χ1〉 (17)

=
h̄

2
(cos θ − 1)∇φ. (18)

and (19)

W = |A2,1|2 =
h̄2

2m
| 〈χ2|∇χ1〉 |2 (20)

=
h̄2

8m

[
(∇θ)2 + sin2 θ(∇φ)2

]
(21)

It is now apparent that A here is closely related to

Berry’s phase γ =
∮
i
〈
χ1(~r)|~∇χ1(~r)

〉
· ~dR[8]. Hence

the similarity between Berry’s phase and magnetic flux,
which is no more than a mathematical curiosity, can be
put to use in simulating the effects of a magnetic field.
These ‘psuedopotentials’ have arisen as a result of the
interaction of the internal states of the atom with a light
field that varies in space, which gives them the property
of being purely geometric (depending only on θ and φ,
quantities that vary in space only). They share this prop-
erty with the real gauge fields of the magnetic and scalar
potential in a system of charged particles. We have there-
fore shown that a system of neutral atoms can be used
to simulate systems of charged particles.

The physics described here was demonstrated by Lin
et al.[6], using a Bose-Einstein condensate of 87Rb atoms,
irradiated with laser light in such a way that θ and φ were
spatially varying. When superfluids of charged particles
are exposed to a real B field, a vortex lattice is produced
as the fluid expels magnetic flux everywhere except at
the centre of vortices, where thin lines of flux are able
to pass through. Importantly, the formation of a vortex
lattice was observed in the set-up with an artificial B field
applied using the technique described above.

FIG. 4: (a) Image of the cloud of 87Rb in the experiment
by Lin et al. On the left, there is no spatial variation in θ
and φ. On the right, spatial variation is introduced and the
vortices indicative of an artificial B field can be seen. Figure
reproduced from [6].
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IV. DISCUSSION

We have explored two different examples of quantum sim-
ulators. The first was a simulation of a 1D Ising chain
of quantum spins, simulated by a site-filling interaction
in an optical lattice of 87Rb atoms. This experiment was
intended as a proof of principle; the results it produced
could have been simulated on a classical computer, be-
cause of the short length of the spin chains involved. It
does however represent an important step on the way to
achieving a better understanding of quantum magnetism,
as further experiments using the same novel technique
may simulate more complex systems that would other-
wise be out of reach. The second simulation relied on
the geometric phase for a two-state atom moving in a
spatially varying light field. We showed how a Hamil-
tonian of this form can be rearranged to take the form
of the Hamiltonian of a system involving the magnetic
vector potential, and thereby showed that such a set-up
could be used to simulate a magnetic field in a system
of neutral atoms. The results of the experiment by Lin

et al show the effects of this simulation, which take the
form of a vortex lattice in a Bose-Einstein condensate
of 87Rb atoms. Having the ability to simulate charged
particles using neutral atoms in a condensate could in
the future allow us to simulate electrons moving in a
solid. Both of these experiments demonstrate the po-
tential that the field of quantum simulation has to make
significant progress towards closing the current gaps in
our knowledge about many quantum mechanical systems.
Although the universal quantum computer is still a long
way off, novel analogue simulation techniques such as
those detailed in this paper promise to make significant
progress on many important problems in the interim.
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A Brief Discussion on the Casimir Effect
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When two perfectly conducting plates are placed in vacuum, an attractive force will occur due to
the existence of vacuum energy. This phenomenon, known as the Casimir effect, shows that vacuum
energy has measurable consequences, and it has been confirmed by experiments. In this paper, the
Casimir effect is derived through various ways including Euler-Maclaurin formula, zeta regularization
and radiation pressure approach. The procedure of regularization as well as its physical meanings
are discussed, and some experimental results are briefly introduced.

I. INTRODUCTION

Quantum field theory states that all fundamental fields
are quantized at every point in space. Quantization of the
electromagnetic field requires that it must behave like a
harmonic oscillator. This analogy implies that the energy
of the electromagnetic field is (n+ 1

2 )h̄ω for a vibrational
mode of frequency ω, where n is a non-negative integer.
Therefore, even in vacuum, where the number eigenvalue
n is zero, there is still a nonzero ground state energy
1
2 h̄ω for each possible vibrational mode. The total energy∑

1
2 h̄ω is known as the vacuum energy, where the sum

runs over all possible frequencies.

When this vacuum energy was first known to physi-
cists, it was often treated as a background term and ig-
nored in calculations. In 1940, when Dutch physicist H.
Casimir consulted N. Bohr about his research on Van der
Waals force between two polarizable molecules and be-
tween a molecule and a metal plate [1], the suggestion
from Bohr was to consider the effects of vacuum ener-
gy. Casimir then discovered an attractive force between
two perfectly conducting parallel plates [2], which direct-
ly originates from the existence of vacuum energy. This
result, known as the Casimir effect, shows that vacuum
energy has measurable consequences, and this was later
confirmed by experiments [3][4]. The Casimir effect can
be further generated from perfectly conducting plates to
various other boundary conditions [8].

The basic idea of the Casimir effect is, when materials
are placed in vacuum, they will interact with the electro-
magnetic field. The boundary conditions select out only
the eigen-modes of electromagnetic vibration. Therefore
the total vacuum energy is altered. Typically this energy
changes from a continuous integral over all frequencies
to a discrete summation of eigen-frequencies. Both these
two energies diverge, but their difference is usually a fi-
nite value, which can be calculated by a procedure known
as regularization. In this article, the simplest version of
the Casimir effect, namely the double plates problem,
is considered. Euler-Maclaurin regularization and zeta
function regularization are discussed. This effect is also

∗Electronic address: yjjiang@mit.edu

derived in the viewpoint of pressure difference from ra-
diation on both sides of the plates. Further discussions
are made on the equivalence of different regularizations
as well as the physical views on regularization. Final-
ly, some experimental results and applications are men-
tioned.

II. THE DOUBLE PLATES PROBLEM

A. Physical Picture

Let us consider the scenario described by Casimir him-
self [2]. We have a cubic cavity of volume L3 bounded by
perfectly conducting walls. A perfectly conducting plate
is placed inside this box, parallel to one pair of the walls
(say, z = 0 and z = L). Suppose L is sufficiently large,
so that we can let the plate be far away from both z = 0
and z = L. Under this configuration, the boundaries are
so distant from each other that they hardly affect the vi-
brational modes of the electromagnetic field in vacuum.
Let us call this case I, with the corresponding vacuum en-
ergy EI =

∑
i

1
2 h̄ω

I
i . We then consider case II, where the

plate in the box is moved to z = a� L. Then the plate
and the z = 0 wall are close enough to affect the possible
modes between them. In this case, the vacuum energy
can be written as EII =

∑
i

1
2 h̄ω

II
i . The energy difference

in these two cases depends on the distance a, which re-
sults in a force between the two close plates. This is the
physical picture of the Casimir effect.

B. Vibrational Modes & Zero Point Energy

Classically, it is not hard to calculate the electric field
between the plates. The parallel components of the elec-
tric field must vanish at the boundaries.

Ex = Ex cos kxx sin kyy sin kzze
−iωt

Ey = Ey sin kxx cos kyy sin kzze
−iωt

Ez = Ez sin kxx sin kyy cos kzze
−iωt

where in case II, kx = π
Lnx, ky = π

Lny, kz = π
anz,

and ω = ωnx,ny,nz = c
√
k2
x + k2

y + k2
z , with nx, ny, nz =
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0, 1, 2, · · · . And in case I, we just use L to replace a in
kz. ∇ ·E = 0 gives

kxEx + kyEy + kzEz = 0

Therefore, when kx, ky, kz are fixed, there are general-
ly two linear independent solutions for Ex, Ey, Ez, cor-
responding to two independent polarizations. But when
one of kx, ky, kz is zero, there will be only one polariza-
tion left. For kx and ky, this is not important, for L is
so large that we can treat them as continuous variables,
and use integrals to replace discrete summations. But
for kz in case II, as we will see, this subtle difference in
polarization degrees of freedom does matter.

The vacuum energy in case II can be written as

EII=
πh̄c

2L

∫ ∞

0

∫ ∞

0

(√
n2
x + n2

y+2

∞∑

nz=1

√
n2
x + n2

y + n2
z

L2

a2

)
dnxdny

We can introduce polar coordinates in nx, ny plane to
simplify the integral. Let nx = r cos θ and ny = r sin θ,

EII =
π2h̄c

2L

∞∑

nz=0

′
∫ ∞

0

r

√
r2 + n2

z

L2

a2
dr (1)

where
∑′

means that the term with nz = 0 should have
a 1

2 coefficient.
In case I, the summation over nz (or kz) becomes an

integral. Replacing a by L, we get the total vacuum
energy inside the box,

EItot =
π2h̄c

2L

∫ ∞

0

dnz

∫ ∞

0

r
√
r2 + n2

zdr

The energy in the region between z = a and z = L can
be considered the same for the two cases since L� a. So
the difference comes merely from the thin layer between
z = 0 and z = a. A factor a

L is introduced to get the
energy in this region.

EI =
π2h̄ca

2L2

∫ ∞

0

dnz

∫ ∞

0

r
√
r2 + n2

zdr (2)

And the energy difference is given by

∆E = EII − EI

It is obvious that neither EI nor EII converges. Howev-
er, their difference is a finite value and can be calculated.

C. Dealing with Infinities

One useful method to deal with divergency is regu-
larization. The idea is to introduce a regulator with a
tunable parameter that forces the summation or integral
to converge. The correct physics is recovered then by
taking the limit of the tunable parameter and making

the regulator disappear. This is commonly used in quan-
tum field theory. Its physical meanings will be discussed
later.

There are different kinds of regularizations. Here, the
original regularization used by Casimir is applied [2]. Let
us first rewrite Equation (1) and (2) as:

EII =
π2h̄c

2L

∞∑

nz=0

′
∫ ∞

nz
L
a

w2dw (3)

EI =
π2h̄c

2L

∫ ∞

0

dnz

∫ ∞

nz
L
a

w2dw (4)

where nz is replaced by L
anz in EI , and w =

√
n2
z
L2

a2 + r2.

We introduce a general regulator f(εw) that has the
property f(0) = 1 and f(x) decays to 0 faster than x−3 as
x → ∞. This regularization can be removed afterwards
simply by taking ε → 0. The summand or integrand in
Equation (3) or (4) is now:

F (nz) =

∫ ∞

nz
L
a

w2f(εw)dw

Then it is easy to get

F (k)(∞) = 0 (k ≥ 0)

F (k)(0) = −(k − 1)(k − 2)εk−3

(
L

a

)k
f (k−3)(0) (k > 0)

(5)

Use the Euler-Maclaurin formula, which relates the dif-
ference of the summation and the corresponding integral
of a function to its derivatives on the boundaries:

n∑

i=m

F (i) =

∫ n

m

F (x)dx+
1

2
(F (n) + F (m))+

p∑

k=1

B2k

(2k)!

(
F (2k−1)(n)− F (2k−1)(m)

)
+Rp

(6)

where Bn are the Bernoulli numbers, B0 = 1, B1 = − 1
2 ,

B2 = 1
6 , B3 = 0, B4 = − 1

30 , · · · , and Rp is the error term
that vanishes when p is infinitely large. A mathematically
friendly proof of this formula was given by T. M. Apostol
[9]. Take the limit p → ∞, n → ∞ and let m = 0, and
notice that the 1

2F (0) term changes the summation
∑

into
∑′

:

∞∑

i=0

′F (nz)−
∫ ∞

0

F (nz)dnz = −
∞∑

k=1

B2k

(2k)!
F (2k−1)(0)

= − 1

12
F ′(0) +

1

720
F ′′′(0) + · · ·

The higher derivatives F (k)(0) are on the order of
O(εk−3). When k > 3, they will vanish as we finally
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take ε → 0. F ′(0) also vanishes by Equation (5). The

only nonzero term left is F ′′′(0) = −2L
3

a3 f(0) = − 2L3

a3 .
Finally, we obtain

∆E =
π2h̄cF ′′′(0)

1440L
= −π

2h̄cL2

720a3
(7)

D. The Casimir Force

The energy difference depends on the distance a be-
tween the two plates. This results in a nonzero pressure

P (a) = − 1

L2

∂∆E(a)

∂a
= − π2h̄c

240a4

This is the formula for the Casimir force. We see that
L drops out. This makes sense, for L is the size of our
auxiliary box, which should not appear in the final result.
The minus sign shows that it is attractive. Notice that
this force decays quickly by a−4.

Plugging in numerical values, we get

P (a) ≈ 0.013
1

a4
dyn/cm2 = 1.3× 10−3 1

a4
Pa

where a is measured in microns. If the two plates are one
microns apart, the inward pressure is about 1.3 × 10−8

atm. This small order of magnitude makes the effect hard
to be observed. However, this effect can be of importance
below the micron scale. For example, future very-large-
scale integration designers may have to take the Casimir
force into account.

III. ZETA REGULARIZATION

Besides the method described above, there are various
other ways of regularization that pulls out a finite val-
ue from infinities, among which I find the zeta function
regularization especially interesting.

A. Zeta Function

The Riemann zeta function is defined as

ζ(s) =
∞∑

n=1

n−s (8)

This sum converges when Re(s) > 1. But its analytic
continuation extends to the whole complex plane except
the single pole s = 1 (where the residue is 1), by the
reflection formula

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) (9)

A more understandable way to say it is, our zeta func-
tion is now defined by Equation (8) when Re(s) > 1, and

by Equation (9) when Re(s) < 1. For more details on
the zeta function, see [10]

Some special values of ζ(s) are listed below

ζ(−n) = −Bn+1

n+ 1
(n > 0)

ζ(2n) =
(−1)n+1B2n(2π)2n

2(2n)!
(n ≥ 0)

where Bn are the Bernoulli numbers.

B. Calculating Divergent Series

When an infinite series does not converge, we cannot
speak of its sum in the sense of the limit of its partial
sums. However, it makes sense to define a summation
method that assigns a value to the series. This value is
usually called the sum of the series when the summation
method is well-defined, that is to say, compatible with
the usual sum when applied to a convergent series.

The zeta function defines such a summation method
that assigns a value to a series of the type

∑
ns. For

example, it assigns value ζ(0) = − 1
2 to the infinite sum

S = 1+1+1+· · · , and ζ(−1) = − 1
12 to S = 1+2+3+· · · .

C. Zeta Regularization

Now let us go back to the Casimir effect. Define a reg-
ulator f(x; s) = x−s/2 (s > 3), which satisfies f(x; 0) = 1

and f(∞; s) = 0. Let x = r2 + n2
z
L2

a2 and put this regu-

lator into the expression of EII in Equation (1):

EII =
π2h̄c

2L

∞∑

nz=1

∫ ∞

0

r

(
r2 + n2

z

L2

a2

)(1−s)/2
dr (10)

=
π2h̄c

2L

∞∑

nz=1

1

s− 3

(
nz
L

a

)3−s

=
π2h̄cL2−s

2(s− 3)a3−s ζ(s− 3) (11)

Notice that we do not take into account the single po-
larization when kz = 0. This will be discussed later.

When we define the regulator, we set s > 3 in order
to make the integral (10) finite. When s < 3, the idea of
analytic continuation still allows us to write the result in
the form of Equation (11).

Take the limit s→ 0 to remove the regulator:

EII = −π
2h̄cL2

6a3
ζ(−3) = −π

2h̄cL2

720a3

This result is identical to ∆E in Equation (7). A finite
value appears without subtracting from EII the vacuum
energy of free space.

Zeta regularization never involves such a subtraction.
It pulls out a finite number directly from a divergent sum.
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The way to understand this is, there is a finite value left
when an infinite background is excluded from the series.
And zeta function defines the sum of the divergent series
to be exactly this finite value left.

The single polarization at kz = 0 plays an importan-
t role in those regularizations where subtraction of two
“regulated infinities” are involved. To be specific, it can-
cels out the term that blows up as regulation is taken
away after subtraction. Since zeta regularization does
not have this problem, it makes sense not to add kz = 0.
Again, this should be explained as, being a summation
method, zeta regularization has already excluded all the
divergence by defining a new sum.

Looking back at the Euler-Maclaurin approach dis-
cussed in the previous section, we can also regard E-
quation (6) as a summation method of divergent series,
defined by

∞∑

i=1

RF (i) := −1

2
F (0)−

∞∑

k=1

B2k

(2k)!
F (2k−1)(0)

This method, here denoted by a R symbol, is known
as the Ramanujan summation. Using this definition, we
can assign EII a finite value, without having to worry
about EI . Ramanujan summation can also derive things
like 1 + 1 + 1 + · · · = − 1

2 and 1 + 2 + 3 + · · · = − 1
12 .

But generally, different summation methods may assign
different values to the same series.

D. Why Does Zeta Regularization Work

We use the zeta function to assign a finite value to
a divergent series. It is astonishing that this value has
physical meanings. Terence Tao discussed this in his blog
[11]. I will briefly re-state it here.

Let us consider a pure mathematical question first.
The series

S =
∞∑

n=1

(−1)n−1 = 1− 1 + 1− 1 + · · ·

diverges, since its partial sum

SN =

N∑

n=1

(−1)n−1 =
1

2
+

1

2
(−1)N−1

jumps between −1 and 1. The discontinuity of the par-
tial sum sequence is troublesome, for we cannot stop at
some N to get an approximation of S. The solution is
to introduce a cutoff function η(x), which equals 1 at the
origin and vanishes when x ≥ 1. Suppose N is odd, we
can write

N∑

n=1

(−1)n−1η
( n
N

)

=
1

2
η

(
1

N

)
+

N−1
2∑

m=1

1

2
η

(
2m− 1

N

)
− η
(

2m

N

)
+

1

2
η

(
2m+ 1

N

)

There should be another 1
2η(1) term, but η(1) = 0

so it does not show up. If η(x) is twice continuously
differentiable, it can be Taylor expanded:

N∑

n=1

(−1)n−1η
( n
N

)
=

1

2
η(0) +

1

2
η′(0)

1

N
+O

(
N−2

)
+

N−1
2∑

m=1

1

N2
η′′(0) +

N−1
2∑

m=1

O
(
N−3

)

=
1

2
+O

(
N−1

)

Let N →∞, we can take the constant leading term 1
2

as the value of the sum S.

Similarly, we can apply the cutoff function to the zeta-
typed sum

∑
ns. The value assigned by the zeta function

is exactly the constant term of the asymptotic expansion
of the smoothed sum. The mathematical statements can
be found in Tao’s blog [11].

Now we go back to physics. We write EII = (EII −
EI) + EI = ∆E + EI . ∆E can be regarded as the con-
stant leading term, and EI is then the rest part of the
expansion. Only the leading term ∆E has physical mean-
ings and the zeta regularization exactly picks it out. This
explains why the value assigned by the zeta function gives
the correct physics.

IV. THE RADIATION PRESSURE APPROACH

Another derivation of the Casimir effect is the differ-
ence in radiation pressure inside and outside the plates
[12]. Suppose a plane wave with energy density E
bounces off a board elastically at incident angle θ. It
is not hard to see that the radiation pressure exerted on
the board is

P = 2E cos2 θ

Between the two Casimir plates, the energy density
for a monochromatic wave is E(ω) = h̄ω

2aL2 . Summing up
all possible wave modes, and use integration to replace
summation in x and y direction, we get the pressure on
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the inner side of the parallel plates:

P in =
h̄c

aL2

∑

kz

′
∫ ∞

0

L

π
dkx

∫ ∞

0

L

π
dky

k2
z√

k2
x + k2

y + k2
z

=
h̄c

a3

∞∑

nz=0

∫ ∞

0

dkx

∫ ∞

0

dky
n2
z√

k2
x + k2

y + n2
z
π2

a2

=
πh̄c

4a3

∞∑

nz=0

∫ ∞

0

n2
z√

u+ n2
z
π2

a2

du

=
π2h̄c

4a4

∞∑

nz=0

∫ ∞

0

n2
z√

v + n2
z

dv

=
π2h̄c

2a4

∞∑

nz=0

n2
z

∫ ∞

nz

dw

where I made a series of variable substitutions: u = k2
x+

k2
y, v = a2

π2u and w =
√
v + n2

z.
∑′

is replaced by
∑

since the term with kz = 0 equals zero.
The pressure on the outer side of the plates is similarly

derived by turning summation into integration over nz:

P out =
π2h̄c

2a4

∫ ∞

0

n2
zdnz

∫ ∞

nz

dw

The a dependence of the outer pressure seems confus-
ing, since the radiation outside the plates does not feel
the typical length scale a. In fact, since the vacuum en-
ergy diverges, it makes no sense to speak of the outer
pressure alone. The only thing that has physical mean-
ings is the pressure difference. If we regard P in as the
“infinite part” of P out, it is then natural to use the inner
distance a as a length scale of the outer pressure.

The finite pressure difference can be calculated using
various regularization methods. For example, we can in-
troduce a regulator e−εw and use Euler-Maclaurin for-
mula. Let F (x) = x2

∫∞
x
e−εxdx = 1

εx
2e−εx. It is easy

to get F (0) = 0, F ′(0) = 0 and F ′′′(0) = −6.

P in − P out = lim
ε→0

π2h̄c

2a4

( ∞∑

nz=0

′F (nz)−
∫ ∞

0

F (nz)dnz

)

= lim
ε→0

π2h̄c

2a4

(
− 1

12
F ′(0) +

1

720
F ′′′(0) +O(ε2)

)

= − π2h̄c

240a4

The negative sign means the pressure outside the plates
is larger. The value of the net inward pressure is identical
to the calculation based on vacuum energy.

We can see some correlations between the vacuum en-
ergy approach and the radiation approach to the Casimir
effect. The pressure can be thought of as being exerted by
reflection of “virtual photons”, which can be understood
as fluctuations of vacuum energy due to the time-energy
uncertainty principle.

V. DISCUSSIONS ON REGULARIZATION

A. Equivalence of Different Regularizations

So far, several different regularization methods are dis-
cussed. It is a surprising fact that they all lead to the
same result. The Casimir effect seems to be independent
of how the regulator suppresses the infinity. However,
this is generally not true, for there exist regulators that
fail to produce the correct result. A good regulator must
satisfy certain conditions, which are discussed in [5] and
[6].

B. Physical Views on Regularization

Regularization is not just a mathematical trick. It
makes sense physically. In the derivation of the Casimir
effect, divergence occurs because the frequencies that are
summed over reach infinity (thus, it is called ultraviolet
divergence). However, arbitrarily high frequencies bring
about physical problems. One thing to notice is that the
electrons inside the conducting plates cannot follow those
very fast oscillating modes. Thus the boundary condition
fails, and the plates become transparent. In other word-
s, there is a frequency range out of which new physics
appear and our theory breaks down.

To solve this problem, we can introduce a finite cutoff
Λ to replace the infinite upper limit. Mathematical im-
plementation of this cutoff is exactly the regulator that
kills the high frequencies. The divergent sum or integral
now becomes a finite but cutoff-dependent value. As is
discussed in A. Zee’s textbook [7], Λ should be regarded
as a parameter that characterizes “the threshold of our
ignorance”. Indeed, we know nothing about the physics
beyond Λ, and we do not know what value Λ itself is,
either. But it is fine for us to be ignorant about these if
we can remove Λ in the end.

The final result must be physically measurable. How-
ever, the vacuum energy itself is not such a quantity. It
is the energy difference that should appear in the answer.
This subtraction process is known as renormalization. By
doing this, Λ cancels out, and we are left with a cutoff-
independent energy difference. The cancellation of Λ is
related to the fact that electromagnetism is a renormal-
izable theory [7].

VI. EXPERIMENTAL RESULTS

The Casimir effect is so weak that measurement is not
an easy job. One of the first experimental tests was made
by M. J. Sparnaay in 1958 [3]. In his experiment, S-
parnaay designed a delicate lever system that converted
the distance between two parallel plates into capacitance,
which was much easier to measure. His result did not
show contradiction against Casimir’s prediction, but had
an effective uncertainty of about 100%.
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A much more accurate measurement was performed by
S. K. Lamoureaux in 1997 [4], whose experiment involved
a carefully designed electromechanical system based on a
torsion pendulum. His results agreed with the theory by
5%.

VII. CONCLUSIONS

The Casimir effect is an astonishing result of the quan-
tization of electromagnetic field and the existence of vac-
uum energy. It shows that vacuum energy is not just a
background that can be ignored or some auxiliary con-
cepts in theories, but something that is concrete and can
be experimentally observed. Results from labs further
confirmed the “reality” of vacuum energy. However, oth-

er explanations to the Casimir effect do exist [13].

The Casimir effect has many potential applications. In
2001, H. B. Chan designed a nonlinear Casimir oscillator,
which showed the possibility to use the Casimir effect to
detect some microscopic structures [14]. Recent progress
made by J. Zou et al demonstrated a possible way to
harness vacuum energy from the Casimir effect [15].
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The Hartree-Fock method forms the theoretical foundation for all of modern quantum chemistry,
specifically the theory of atomic and molecular orbitals. It provides a convenient approximate
computational framework to determine the orbitals of individual electrons in multi-electron systems
such as atoms, ions, and molecules. From these orbitals, a variety of other interesting quantities
such as ionization energies and the total system energy can be calculated. In this paper, we will
develop the theory of the Hartree-Fock method and apply it numerically to the helium atom.

I. INTRODUCTION

With the development of quantum theory came a great
interest in the theoretical study of the spectra of atoms.
While the hydrogen atom proved to be a tractable prob-
lem, with the energy of the nth level proportional to
1/n2, the multi-electron atoms presented great chal-
lenges. Even today there are no known exact analytic
solutions to even the simplest multi-electron atom, he-
lium. Many scientists resorted to ad hoc methods, such
as the introduction of additional empirical parameters
which were fit to known data. This approach has the
obvious disadvantage that it does not make new predic-
tions.

The Hartree-Fock method was developed as an ab ini-
tio technique for the study of multi-electron systems,
such as atoms and molecules. It will be shown later
in this paper that this method is in fact a mean field
theory of independent particles. In practice, this means
that each electron moves independently within the av-
erage potential that it experiences from the other elec-
trons. The Hartree-Fock method is sometimes, especially
in the older literature, referred to as the self-consistent
field theory [1, 2]. The reason for this is that an initial
configuration of the electrons within orbitals is assumed,
and then more accurate orbitals are found using iterative
optimization. At the end of the process, each electron is
in the lowest energy state that it can occupy within the
mean field of the other electrons. This implies that the
field is self-consistent.

A. History

The development of the Hartree-Fock method occurred
almost immediately following the discovery of the quan-
tum theory. In 1928, the English physicist Douglas
Hartree was working on a series of articles regarding the
wave mechanics of particles in a non-Coulomb central
field. In this work, Hartree first developed the basic the-
ory for his eponymous method. He made a variety of ap-
proximations in order to reduce the problem of a particle
in a non-Coulomb central field to an approximate prob-
lem which was more tractable. Although Hartree had
been motivated by the prospects of an ab initio method

free of empirical parameters, many physicists of the time
did not see or understand the theoretical basis for his
method and viewed it as just another ad hoc approach.

Within months, the American physicist John Slater
published an article discussing the validity of the approx-
imations by Hartree. His goal was to develop a strong
foundation upon which the self-consistent field theory
could be built. What he found was that some of the
approximations made by Hartree introduced error that
could not be neglected. For example, Hartree assumed
that all electron orbitals are spherical but this is clearly
not a good approximation for some electrons of heavy
elements. After fixing these mistakes, Hartree’s method
still did not agree well with experiment.

The reason for this disagreement was found indepen-
dently by Slater and a Soviet physicist, Vladimir Fock,
in 1930. They realized that the assumption made in
Hartree’s theory that a wave function could be written
as a product of orbitals implied that all electrons were
symmetric under exchange, while in reality it is known
that electrons with the same spin are anti-symmetric un-
der exchange. They proposed instead a trial wave func-
tion in which every electron was anti-symmetric under
exchange with every other electron. This trial wave func-
tion, known as a Slater determinant, can be used in place
of the Hartree product in Hartree’s theory. This im-
proved approach is known as the Hartree-Fock method.

B. Overview

In what follows the theory of the Hartree-Fock Method
will first be developed thoroughly, and further approxi-
mations will be introduced which aid computational work
within the Hartree-Fock framework. Then several appli-
cations will be explored including the helium atom.

II. THE THEORY OF THE HARTREE-FOCK
METHOD

A. The Hartree-Fock Equation

The derivation of the Hartree-Fock equation begins
from the non-relativistic time independent multi-electron
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Schrödinger equation with N electrons and M nuclei. Let
h̄ denote the reduced Planck constant, m denote the elec-
tron mass, and e the electron charge. The position of
electron i will be given as ri, and the position of nucleus
j will be given as Rj . The position of the nuclei are as-
sumed to be fixed and will be treated as a parameter.
This assumption that the position of the nuclei will be
treated as a parameter when solving the multi-electron
Schrödinger equation is known as the Born-Oppenheimer
approximation and represents an indispensable simpli-
fication in quantum chemical calculations. In order to
write this equation in a succinct form, one- and two-
electron operators will be introduced. The one-electron
operator is defined as

hi =
−h̄2
2m
∇2
i − e2

M∑

j=1

Zj
|Rj − ri|

(1)

where the first term is the kinetic energy of electron i, and
the second term is the Coulomb interaction of electron i
with each nucleus. Here we let Zj be the atomic number
of nucleus j. The two-electron operator is defined as

ki,j =
e2

|ri − rj |
. (2)

and determines the energy of electron i from its inter-
action with electron j. We also introduce the potential
energy from interactions between nuclei, which is given
by

V = e2
M∑

i=1

M∑

j=i+1

ZiZj
|Ri −Rj |

. (3)

Then it is clear that the non-relativistic time independent
multi-electron Schrödinger equation can be written as



N∑

i=1

hi +
N∑

i=1

N∑

j=i+1

ki,j + V


|Ψ〉 = E |Ψ〉 (4)

where it should be noted that while the nuclear positions
do not appear explicitly in the equation when written in
this form, both the energy eigenvalues E and the energy
eigenstates Ψ do depend on the nuclear positions.

All that has been done up to this point is to express
the Hamiltonian for the multi-electron system in a con-
venient form. Still, it is well known that this problem is
intractable so an approximation must be employed. Fol-
lowing in the footsteps of Slater and Fock, it is assumed
that the wave function is a single fully antisymmetric
function of individual spin orbitals, where the spin or-
bital for electron i, denoted by |i〉, is a function of the
position and spin of electron i only. This fully antisym-
metric function is known as a Slater determinant and can
be written as a sum over permutations

|Ψ〉 =
1√
N !

∑

σ∈SN
sgn(σ)

N⊗

i=1

|σ(i)〉 (5)

where the sign of a permutation is sgn(σ) = (−1)n with
n the number of transpositions, and σ(i) denotes the el-
ement in the ith position of σ. It is assumed without loss
of generality that the spin orbitals are orthonormal. Al-
though the spin is not written explicitly, it is important
to remember that it must be included in the calculation
of inner products. For example, given an operator A
which acts on only the spatial components of the wave
function and two spin orbitals |1〉 and |2〉, then

〈1|A |2〉 = 〈φ1|A |φ2〉 〈s1|s2〉

where φ1, φ2 are the spatial components of the spin or-
bitals and s1, s2 are the spin components of the spin or-
bitals. This result will be critical in the analysis to follow.

With this approximate wave function Ψ, the varia-
tional principle can now be employed to find the Hartree-
Fock energy as

EHF =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉

=
∑

α,β∈SN
sgn(α)sgn(β)

(
N⊗

i=1

〈α(i)|
)
H




N⊗

j=1

|β(j)〉




and it is known that E ≤ EHF from the variational
bound [3]. The above expression however is not very
useful or easy to work with, and so the goal is to simplify
it. Note that H is simply a linear combination of the one-
and two-electron operators. Therefore, we can simplify
the expression for EHF by simplifying inner products in-
volving the individual operators.

Let us begin with the one-electron operator hi. It is
apparent that hi acts only on the spatial components of
electron i. Then

(
N⊗

i=1

〈α(i)|
)
hl




N⊗

j=1

|β(j)〉




=




N∏

i6=l
〈α(i)|β(j)〉


 〈β(l)|hl |α(l)〉

=

{
〈α(l)|hl |α(l)〉 : α(i) = β(i)∀i
0 : otherwise

where the first equality follows from the properties of ten-
sor products. The second equality follows from the fact
that the spin orbitals are orthonormal, so the product
would be zero if α(i) 6= β(i) for some i 6= l. But then
since α and β are permutations which agree at all indices
but one, they must be the same permutation.

We now turn our attention to the two-electron operator
ki,j . It is again apparent that ki,j acts only on the spatial
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components of electrons i and j. Then

(
N⊗

i=1

〈α(i)|
)
kl,m




N⊗

j=1

|β(j)〉




=




N∏

i 6=l,m
〈α(i)|β(j)〉


〈α(l)α(m)| kl,m |β(l)β(m)〉

=

{
〈α(l)α(m)| kl,m |β(l)β(m)〉 : α(i) = β(i)∀i 6= l,m
0 : otherwise

where the first equality follows from the properties of ten-
sor products. The second equality follows from the fact
that the spin orbitals are orthonormal, so the product
would be zero if α(i) 6= β(i) for some i 6= l,m. But then
since α and β are permutations which agree at all indices
but two, the two permutations must either be the same
or have one relative transposition.

These two identities lead to a remarkable simplification
of the expression for the Hartree-Fock energy. By simply
expanding H and substituting the previous two results
concerning hi and ki,j into the expression for the Hartree-
Fock energy, it is found that

EHF = V +
N∑

i=1

〈i|h1 |i〉

+
1

2

N∑

i=1

N∑

j 6=i
[〈ij| k1,2 |ij〉 − 〈ii| k1,2 |jj〉] . (6)

It is important to note here that we have transitioned
from the notation hl to h1 and from kl,m to k1,2. We are
able to do this because of the fact that electrons are indis-
tinguishable. This implies that whether we discuss spin
orbital |i〉 described by xi or spin orbital |i〉 described by
x1 is entirely irrelevant.

The contributions to this energy cannot all be ex-
plained classically. The first term V can easily be traced
back to the energy which results from the Coulomb re-
pulsion between distinct nuclei. Each term of the form
〈i|h1 |i〉 is the contribution to the energy from the kinetic
energy of electron i and its Coulomb interaction with the
nuclei. Each term of the form 〈ii| k1,2 |jj〉 is the energy
contribution from the Coulomb interaction between elec-
trons i and j. However, the terms of the form 〈ij| k1,2 |ij〉
are not classical in nature. These terms are a result of
the anti-symmetry under exchange of electrons with the
same spin, and as such it is said that these terms corre-
spond to the exchange interaction.

It is worth noticing that when i = j, the Coulomb
interaction involving electrons i and j is equal to the
exchange interaction involving electrons i and j. This is
a purely mathematical statement as it is well known that
an electron does not experience Coulomb or exchange
interactions with itself. Still, this mathematical result

allows one to write

EHF = V +
N∑

i=1

〈i|h1 |i〉

+
1

2

N∑

i,j=1

(〈ij| k1,2 |ij〉 − 〈ij| k1,2 |ji〉) (7)

where the restriction that j 6= i has been removed
because the Coulomb and exchange interactions cancel
when i = j.

The reason the variational principle was employed was
that it would allow us to find good electron orbitals by
minimizing the Hartree-Fock energy. The goal then is to
minimize this energy with respect to any possible varia-
tion in each χi. However, the equations derived above are
valid only if the spin orbitals are orthonormal. Therefore,
we apply the technique of Lagrange multipliers to ensure
that the spin orbitals remain orthonormal through the
optimization procedure. To this end we introduce the
functional

L = EHF −
N∑

i=1

N∑

j=1

εi,j(〈i|j〉 − δi,j) (8)

with Lagrange multipliers εi,j . It follows that the func-
tional derivative of L with respect to |i〉 must be 0 for
each i. Evaluating each of these functional derivatives
is merely a mathematical exercise, and as such we state
the result without proof. Then if f denotes the arbitrary
test function, it is found

0 = 〈f |h1 |i〉 −
N∑

j=1

εi,j 〈f |j〉

+
N∑

j=1

(〈fj| k1,2 |ij〉 − 〈fj| k1,2 |jχi〉) (9)

for each i. Now applying the fundamental lemma of cal-
culus of variations leads to the integro-differential equa-
tion

(h1 + J −K) |i(x1)〉 =

N∑

j=1

εi,j |j(x1)〉 (10)

where J is the Coulomb operator defined by

J |i(x1)〉 = |i(x1)〉
N∑

j=1

〈j(x2)| k1,2 |j(x2)〉 (11)

and K is the exchange operator defined by

K |i(x1)〉 = |j(x1)〉
N∑

j=1

〈j(x2)| k1,2 |i(x2)〉 . (12)

We then define the Fock operator for electron i as

Fi = hi + J −K (13)
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so the integro-differential equation for the spin orbitals
can be written as

F1 |i(x1)〉 =
N∑

j=1

εi,j |j(x1)〉 . (14)

It should be noted that the Fock operator is Hermitian.
This can be seen because any linear combination of Her-
mitian operators is also Hermitian. As it is apparent by
inspection that hi is Hermitian, it remains to be shown
that J , and K are Hermitian. But it is similarly appar-
ent that ki,j is Hermitian as it is a simple function of the
coordinates. Then

〈i| J |j〉 =

N∑

k=1

〈ik| k1,2 |jk〉

=
N∑

k=1

〈jk| k1,2 |ik〉

= 〈j| J |i〉

where the second equality follows from the Hermiticity
of ki,j . Similarly,

〈i| K |j〉 =
N∑

k=1

〈ik| k1,2 |kj〉

=
N∑

k=1

〈kj| k1,2 |ik〉

= 〈j| K |i〉

which completes the argument.
At this point, the εi,j are still undetermined coeffi-

cients. It is easy to see then that the εi,j are simply the
matrix elements of the Fock operator in the spin orbital
basis. Then we write

εi,j = 〈j| F1 |i〉 (15)

and note that the set of integro-differential equations for
the spin orbitals is now

Fχ = χε (16)

where F is a vector of Fock operators, χ is a row vector of
spin orbitals, and ε is the matrix of Lagrange multipliers.
But due to the Hermiticity of the Fock operators, ε is
Hermitian and it admits a representation of the form ε =
Uε′U† where ε′ is a diagonal matrix and U is a unitary
matrix. Then

Fχ = χUε′U† (17)

which can alternatively be written as

FχU = χUε′. (18)

Finally we define χ′ = χU and note that this basis of
spin orbitals is orthogonal. Therefore it is just as good

of a choice of spin orbitals as our initial spin orbitals.
An important remark is that the Fock operators always
send a spin orbital to a linear combination of other spin
orbitals, so the ε matrix is unchanged under a unitary
transformation of the spin orbitals. Then we forget about
our initial basis, omit the primes in our notation, and find
that

F1 |i〉 = εi |i〉 (19)

This is known as the canonical Hartree-Fock equation
[4, 5], and the εi denotes the energy of orbital i.

It is here that it finally becomes apparent that the
Hartree-Fock method is a mean field theory of indepen-
dent particles. The Fock operator is a linear combination
of the Coulomb operator and exchange operator. These
operators represent the average potential generated by
all of the other electrons from the Coulomb and exchange
interactions, respectively. But none of the instantaneous
positions of electrons appear explicitly in this expression.
Therefore the assumption that the multi-electron wave-
function can be represented as a single Slater determinant
leads inevitably to the result that each electron approx-
imately experiences the average potential generated by
the other electrons.

While the Hartree-Fock equation appears to be an
eigenvalue problem, it is actually a highly nonlinear rela-
tionship between the spin orbitals. This can be seen by
observing that the Fock operators depend on the spin or-
bitals, which implies that the solution to the equation is
a complicated function of itself. Therefore the equation
is normally solved iteratively by guessing spin orbitals
and then solving for the resulting spin orbitals until they
approach a stationary solution. It is for this reason that
the Hartree-Fock equation is known as the self-consistent
field theory. When the solution ceases to change, the po-
tentials generated by the spin orbitals are consistent with
the potentials that they experience.

B. The Hartree-Fock-Roothaan Equation

As noted at the end of the previous section, the
Hartree-Fock equation is a nonlinear equation for the
spin orbitals. Unfortunately, the very compact notation
for the equation obscures the fact that it is actually a
nonlinear integro-differential equation. The prospect of
solving such an equation, even with great computer as-
sistance, is extremely daunting. Therefore, the Dutch
physicist Roothaan in 1951 made an additional approx-
imation which made the method better adapted to use
on computers. His approximation was simply to consider
a finite basis of functions for the spin orbitals [6]. This
allows one to transform the nonlinear integro-differential
equation into a nonlinear matrix equation which is much
more tractable.

The derivation of the Hartree-Fock-Roothaan equation
resumes where we ended in the previous section. It is
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assumed that a spin orbital can be written as a sum of
K basis states such as

|i〉 =

K∑

j=1

Cj,i |χ̃j〉 . (20)

Then the Hartree-Fock equation for such a state can be
written as

F1

K∑

j=1

Cj,i |χ̃j〉 = εi

K∑

j=1

Cj,i |χ̃j〉 . (21)

Taking the inner product of this equation with each χ̃k
yields

K∑

j=1

Cj,i 〈χ̃k| Fi |χ̃j〉 = εi

K∑

j=1

Cj,i 〈χ̃k|χ̃j〉 . (22)

After expanding the Fock operator and applying linear-
ity, it is found that

K∑

j=1

Cj,i〈χ̃k|(h1 + J −K)|χ̃j〉 = εi

K∑

j=1

Cj,i 〈χ̃k|χ̃j〉 . (23)

However, at this point it must be recalled that J and
K are themselves functions of the spin orbitals. Therefore
they can also be expanded in terms of the basis functions.
Then we consider

〈χ̃k| J |χ̃j〉 =
N∑

n=1

K∑

l,m=1

C∗l,nCm,n 〈χ̃kχ̃l| k1,2 |χ̃jχ̃m〉

where the first equality follows from expanding each spin
orbital in terms of the basis functions. We similarly find
that

〈χ̃k| K |χ̃j〉 =
N∑

n=1

K∑

l,m=1

C∗l,nCm,n 〈χ̃kχ̃l| k1,2 |χ̃mχ̃j〉

by using the same approach as was used for J . Sub-
stituting these two results into (23) leads to the matrix
equation

FC = SCε (24)

where F is the Fock matrix whose elements are

Fi,j = 〈χ̃i|h1 |χ̃i〉

+
K∑

l,m=1

(CC†)l,m(〈χ̃iχ̃l| k1,2 |χ̃jχ̃m〉 − 〈χ̃iχ̃l| k1,2 |χ̃mχ̃j〉)

and S is the overlap matrix whose elements are

Si,j = 〈χ̃i|χ̃j〉 .

This matrix equation is known as the Hartree-Fock-
Roothaan equation [4–6] and is used for finding approx-
imate numerical solutions to the Hartree-Fock equation.

C. Results of the Hartree-Fock Method

The first important step to making the Hartree-Fock
method more intuitive is to determine the Hartree-Fock
energy of the atomic or molecular system from the orbital
energies. Beginning from the Hartree-Fock equation, it
is known that

F1 |i〉 = εi |i〉

which, after taking the inner product with 〈i|, implies
that

εi = 〈i| F1 |i〉
= 〈i|h1 |i〉+ 〈i| J |i〉 − 〈i| K |i〉 . (25)

An expression for the Hartree-Fock energy was given
in (6) and can be expressed more compactly using the
Coulomb and exchange operators as

EHF = V +
N∑

i=1

[
〈i|hi |i〉+

1

2
〈i| (J −K) |i〉

]

= V +
N∑

i=1

εi −
1

2

N∑

i=1

〈i| (J −K) |i〉 (26)

where the second equality follows from direct substitu-
tion. This shows that adding the energies of the occupied
orbitals does not lead to the correct ground state energy
for the system. This is to be expected, as the energy of
each electron already contains contributions from the av-
erage potential of each other electron. Then adding the
orbital energies directly should lead to a double counting
of both Coulomb and exchange energies. It is apparent
that the above formula rectifies this double counting is-
sue.

But if the orbital energies do not directly correspond
to the ground state energy, then one might wonder what
they are. This question was answered elegantly by
Tjalling Koopmans, a Dutch-American mathematician
and economist who briefly studied theoretical physics.
Koopmans’ theorem, which we will subsequently prove,
states that the orbital energies are the ionization energies
of the system in the approximation that the orbitals of
the ion are identical to those of the neutral system. This
is sometimes referred to as the frozen orbital approxima-
tion [4].

Let EHF (N) denote the Hartree-Fock energy when
there are N electrons occupying orbitals. Suppose that
an electron is to be removed from orbital k. Then in
the frozen orbital approximation, the ionization energy
is given by

I = EHF (N − 1)− EHF (N)
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which can be readily written as

I =

N∑

i 6=k
〈i|h1 |i〉 −

N∑

i=1

〈i|h1 |i〉

+
1

2

N∑

i 6=k

N∑

j 6=k
[〈ij| k1,2 |ij〉 − 〈ii| k1,2 |jj〉]

− 1

2

N∑

i=1

N∑

j=1

[〈j| k1,2 |ij〉 − 〈ii| k1,2 |jj〉]

by using (6). But many terms in this complicated ex-
pression cancel, leaving

I = −〈k|h1 |k〉

−
N∑

i6=k
[〈ik| k1,2 |ik〉 − 〈ii| k1,2 |kk〉] .

Noting again that the Coulomb and exchange terms can-
cel when i = k, this expression can be converted to one
involving the Coulomb and exchange operators as

I = −〈k|h1 |k〉 − 〈k| J |k〉+ 〈k| K |k〉
= −εk (27)

which completes the proof of Koopmans’ theorem.
This is a powerful result that provides a lot of intuition

about which spin orbitals are occupied in an atomic or
molecular system. Specifically, by applying Koopmans’
theorem, one can see that the system would lose energy
if an electron transitioned from a spin orbital with higher
orbital energy to one with lower orbital energy. Therefore
it is expected that, in the ground state of the system, the
electrons will always occupy the lowest energy orbitals.
This is a very intuitive result, and it is a relief that or-
bital energy does indeed satisfy our expectation of energy
minimization.

III. APPLICATIONS OF THE HARTREE-FOCK
METHOD

The Hartree-Fock method is a computational tool. For
that reason, no discussion of it would be complete with-
out a simulation. The purpose of this will be to test
some of the predictions of the Hartree-Fock method and
compare them to accepted experimental values.

It should be noted at this point that most implemen-
tations of the Hartree-Fock method employ the Hartree-
Fock-Roothaan equation. This has been done in our im-
plementation as well. Furthermore, most implementa-
tions use Gaussian functions as the basis function for the
spatial components of their spin orbitals. This is done
to enable fast computation of one- and two-electron in-
tegrals. We chose instead to use the basis of hydrogen
type orbitals, as their physical interpretation is more nat-
ural. To be specific, the hydrogen type orbitals are the
orbitals of a single electron around a nucleus of known
atomic number.

FIG. 1: The electron density of the helium atom as a function
of radius in units of the Bohr radius.

A. Helium Atom

Let |n, l,m, s〉 denote an energy eigenstate of the he-
lium ion He+. Then we choose the basis functions for this
model of the helium atom to be |1, 0, 0, s〉, |2, 0, 0, s〉, and
|3, 0, 0, s〉 where s = ± 1

2 . For notational convenience,

we let + denote s = 1
2 and − denote s = − 1

2 . These
states were chosen for the basis functions because when
the helium atom is ionized, the energy eigenstates of the
remaining electron are the basis functions. This provides
us with a natural system in which one can explore Koop-
mans’ theorem and the frozen orbital approximation.

We began with the initial assumption that the orbitals
of He were the orbitals of He+. From this ansatz, the
Hartree-Fock-Roothaan equation was solved iteratively
using standard numerical methods for integration and
linear algebra. It was found that the ground state of
helium is approximately

|Φ〉 = (.93 |1, 0, 0,+〉 − .36 |2, 0, 0,+〉 − .10 |3, 0, 0,+〉)
⊗ (.93 |1, 0, 0,−〉 − .36 |2, 0, 0,−〉 − .10 |3, 0, 0,−〉) .

By applying (26), it was determined that this state
corresponds to a ground state energy of approximately
E0 = −76.43 eV. The accepted value of the ground state
energy is about E0 = −79.00 eV [7], which means that
the Hartree-Fock-Roothaan method with only three ba-
sis functions achieves a relative error of only 3.3%. This
relative error could be significantly reduced by increasing
the size of the set of basis functions.

The first ionization energy of helium was then found,
by applying Koopmans’ theorem, to be I1 = 24.44 eV.
The accepted value of this quantity is about I1 =
24.59 eV [7] which means that relative error of the
Hartree-Fock-Roothaan method with only three basis
functions is only 0.56%. This is a great success of the
theory, and it is generally true that the ionization en-
ergies predicted by the Hartee-Fock method agree well
with experiment. It is interesting that the prediction is
accurate even though the remaining electron should be

140 Quantum Chemistry and the Hartree-Fock Method



Quantum Chemistry and the Hartree-Fock Method 7

in its true spatial orbital, the |1, 0, 0〉 spatial state, about
86% of the time in the frozen orbital approximation.

IV. CONCLUSION

The Hartree-Fock method is a powerful ab initio tool to
make predictions about atomic and molecular systems. It
makes good predictions about the ground state energy of
a system and can accurately approximate the ionization
energy for electrons in different orbitals. The method also
makes it possible to accurately determine the shapes of
orbitals and the electron density which can be used to
predict chemical and electrical properties. Furthermore,
all of this can be done efficiently with the Hartree-Fock-
Roothaan equation when working in a particular basis of
functions such as the atom-centered Gaussian functions.

Despite these advantages of the Hartree-Fock method,
it is an approximate method. It sometimes fails by un-
derestimating the electron correlation. This leads to er-
rors in the energy of the system, which can present a
significant problem when considering certain molecular

systems. For example, in molecules which are extremely
unstable due to very low bond energies between certain
atoms, the Hartree-Fock method may predict that these
systems actually do not form.

In these cases, it is necessary to turn to even more pow-
erful methods. These methods, built upon the Hartree-
Fock method, are appropriately called post Hartree-Fock
methods. One popular method is known as Møller-
Plesset perturbation theory. It adds more electron cor-
relation to the Hartree-Fock method by introducing it as
a perturbation. There are many other techniques which
are used to enhance the Hartree-Fock method and they
present a rich area for further study.
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Optical Properties of Lateral Quantum Dots

Alex Kiefer
(Dated: May 2, 2014)

We provide a derivation of the eigenenergies for a single-particle quantum dot implemented as a
thin sample of a III/V compound between two barriers, using the radial Schrödinger equation. The
response of the QD to infrared radiation and allowed energy transitions are analyzed. Then we will
describe a multiple-particle QD with a sample interaction potential. Raising and lowering operators
are used to factorize the Hamiltonian and decompose it into center of mass and relative modes.
Finally, we demonstrate that the optical response is independent of the particle number.

I. INTRODUCTION

Advances in nanofabrication techniques have revealed
a myriad of structures with valuable electronic properties
and powerful applications. By arranging semiconductors
and metals in clever arrangments, we can trap particles
in nanometer-sized pockets. This was first done with the
quantum well, a two-dimensional electron gas suspended
between two semiconductor barriers. It wasn’t long until
the quantum wire (1-D) and quantum dot (0-D) were de-
veloped as well. Quantum dots (QDs) have been dubbed
“artificial atoms” because they have properties similar to
an atomic nucleus but on a much larger scale.

There are various ways to design a QD and sometimes
QDs appear spontaneously as a byproduct of other pro-
cesses. In this paper we will deal with the lateral QD,
a small conducting “island” of free electrons tens of nm
wide and a few nm tall. Fabrication begins with two
large semiconductor slabs separated by a quantum well
made of a III-V compound such as GaAs. A polymer
mask is applied everywhere on the top surface except the
desired location of the QD, like a photographic negative.
The whole top surface is etched with an ion beam, which
erodes the outer annulus and leaves behind only a cylin-
der (see Fig. 1). The small disk of GaAs left behind is
the quantum dot, with the electrons confined in all spa-
tial dimensions. Although there’s no way to measure the
potential experienced by the electrons, it has often been
modeled as a quadratic potential with good agreement
with experimental results. [9]

Much research is focused on the application of QDs
as photodetectors. As we will show, QDs are excellent at
absorbing light in a narrow frequency band. They can be
used in digital cameras, with different sized QDs used to
measure the incident light in different visible bands. In
astronmy, the QD can be tuned so its optical resonance
matches the phenomenon we wish to observe – for exam-
ple, the chemical reactions that accompany a red giant’s
transition to a white dwarf.

II. SINGLE ELECTRON

Here we will compute the energy eigenvalues for a QD
in a lateral confinement V (r, φ) = 1

2mω0r
2 and a mag-

netic field orthogonal to the plane of the quantum well.

FIG. 1: A lateral quantum dot and the potential well used to
model the confinement.

The potential is modeled as a harmonic oscillator with
strength ω0; this strength is inversely related to the size
of the QD, since a smaller disk binds the electrons more
tightly. The actual value of ω0 that gives the most ac-
curate predictions depends on the material used for the
QD. The magnetic field and magnetic potential are

B = Bẑ = ∇×A =

(
Aφ
r

+
∂Aφ
∂r
− 1

r

∂Ar
∂φ

)
ẑ

⇒ A =
B

2
rφ̂ (1)

The Hamiltonian with a magnetic potential A in
two dimensions can be derived from the Euler-Lagrange
Equation. Denoting the electron mass by m, electron
charge by e, the result is
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2

H =
1

2m

(
p +

e

c
A
)2

+
1

2
mω2

0r
2 (2)

=
p2

2m
+

e

2mc
(p ·A + A · p) +

e2

2mc2
A2 +

1

2
mω2

0r
2

= − h̄2

2m
∇2 − i eh̄

2mc
(∇ ·A + A · ∇)

+
e2

2mc2
A2 +

1

2
mω2

0r
2

(3)

The notation might be misleading; we must be careful
to treat both ∇ · A and A · ∇ as operators acting on
the wavefunction (∇ ·A is not a scalar). Since the elec-
tron is constrained to two dimensions, ψ = ψ(r, φ). The
Laplacian and gradient have the following forms in polar
coordinates:

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

∇ = r̂
∂

∂r
+ φ̂

1

r

∂

∂φ

so, ∇ ·A(ψ) =
1

r

∂

∂φ
(Aφψ) =

B

2

∂ψ

∂φ

A · ∇(ψ) = Aφ
1

r

∂

∂φ
=
B

2

∂ψ

∂φ

Substituting these into (3) and noting that A2 =
1
4B

2r2, we obtain for the time-independent Schrödinger
equation,

− h̄2

2m

(
∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂φ2

)
− ieBh̄

2mc

∂ψ

∂φ

+

((
e2B2

8mc2
+

1

2
mω2

0

)
r2 − E

)
ψ = 0

(4)

Now, assuming ψ is separable into functions of r and
φ, we express it as ψ(r, φ) = R(r)Φ(φ). It must also be
periodic in φ, so we may choose basis states

ψ(r, φ) = R(r)ei`φ (5)

where ` is the azimuthal quantum number. Defining
the cyclotron frequency ωc = eB/mc, we substitute (5)
into (4) to get

h̄2

2m

(
d2R

dr2
+

1

r

dR

dr
− `2

r2
R

)
− 1

2
h̄ωc`R

+

[
E − 1

2
m

(
ω2

0 +
(ωc

2

)2
)
r2

]
R = 0

(6)

Now we introduce the dimensionless variable u and fre-
quency Ω:

u =
mΩ

h̄
r2 (7)

Ω =

√
ω2

0 +
(ωc

2

)2

(8)

so (6) becomes

h̄2

2m

((
du

dr

)2
d2R

du2
+

(
d2u

dr2
+

1

r

du

dr

)
dR

du
− mΩ`2

h̄

R

u

)

+

(
E − 1

2
mΩ2r2 − 1

2
h̄ωc`

)
R

= h̄Ω

(
u
d2R

du2
+
dR

du
− `2

4u
R

)

+

(
E

2
− 1

4
h̄Ωu− 1

4
h̄ωc`

)
R = 0

Letting β = E
2h̄Ω − ωc`

4Ω , this simplifies to the radial
equation

u
d2R

du2
+
dR

du
+

(
β − u

4
− `2

4u

)
R = 0

This equation can be solved analytically, but the proof
is obscure and not very illustrative, so we will simply
quote the results. [3] The allowed eigenenergies for which
this equation has a solution are

En` = (2n+ 1 + |`|) h̄Ω− 1

2
`h̄ωc (9)

where n is the radial quantum number, analogous to
that of the hydrogen atom. These are graphed in Fig. 2.
When B = 0, the energies form the familiar ladder with
a spacing of h̄ω0 and degeneracy increasing by 1 with
each step. When B is large, ωc � ω0, and the energies
bunch together into nearly degenerate clusters separated
by h̄ωc, independent of the QD size. This means that
with a strong enough B field, we can override the QD’s
natural energy levels. But as ω0 increases, a larger B
is required to observe the clustering, so smaller QDs are
more resistant to this magnetic collapsing of energies.

III. OPTICAL EXCITATION

In order to examine the efficacy of QDs as photode-
tectors, suppose we have an electromagnetic wave of fre-
quency ω = 2πc/λ incident on the QD from the previous
section. We assume that the wavelength is much longer
than the size of the QD and we can safely ignore the
spatially varying part of the wave. This is known as
the far infrared regime (FIR). Under this condition, the
electric field is described by E = E0de

iωt, where d is
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FIG. 2: Eigenenergies as a function of magnetic field for sev-
eral values of (n, `).

the polarization vector. This adds a perturbation to the
Hamiltonian, which we model with the dipole operator,

δH = eE · r = eE0e
iωtd · r (10)

d · r = c1x̂+ c2ŷ = c+re
iφ + c−re

−iφ (11)

We can apply first-order perturbation theory to cal-
culate the probability amplitude of light causing a state
transition, using (5)

A(n′`′, n`) = 〈ψn′`′ | δH |ψn`〉
= eE0

〈
Rn′(r)ei`

′φ
∣∣∣ c±re±iφ

∣∣Rn(r)ei`φ
〉

∝
∫ 2π

0

ei(`−`
′±1)φ dφ

∫ ∞

0

R∗n′(r)Rn(r)r2 dr ∝ δ`−`′±1

The radial integral is beyond the scope of this paper,
but its value is 0 unless ` = 0 or n′ = n. [4] Thus, the only
allowed transitions are those with ∆n = 0 and ∆` = ±1.
Substituting into (9), the allowed transition energies are
then

∆E = h̄Ω± 1

2
h̄ωc (12)

If the incident light is near either frequency, an elec-
tron will absorb the incident photon and undergo a state
transition with the same change in energy. The detec-
tion is implemented by attaching electrodes to the QD,
so that the state transition shows up as a change in volt-
age across the electrodes.

IV. MULTIPLE INTERACTING ELECTRONS

The analysis becomes much trickier when we consider
more than one electron, so a typical approach is to diag-
onalize the Hamiltonian numerically. Here I will analyze

an interaction model which can actually be solved ana-
lytically, due to Johnson and Payne. [10] We will use this
model to examine the optical response and compare it
to the single-electron QD. Let us model the interaction
potential between electrons labeled i and j as

V (ri, rj) = V0 −
1

2
mα2|ri − rj |2 (13)

where α has units of frequency. The QD contains N
interacting electrons at locations {ri}. The maximum in-
teraction potential is when two electrons are in the same
spot (ri = rj), as expected for identically charged parti-
cles. Neglecting spin, the Hamiltonian is

H =
1

2m

N∑

i=1

(
pi +

e

c
Ai

)2

+

{
1

2
mω2

0

N∑

i=1

|ri|2 +
∑

i<j

V (ri, rj)

}

=
1

2m

∑

i

p2
i +

e

2mc

∑

i

Ai · pi +
e2

2mc2

∑

i

A2
i + Veff

=
1

2m

∑

i

p2
i +

eB

2mc

∑

i

Li,z +
e2B2

8mc2

∑

i

|ri|2 + Veff

H =
1

2m

∑

i

p2
i +

ωc
2

∑

i

Li,z +
1

2
mΩ2

∑

i

|ri|2

+
∑

i<j

(
V0 −

1

2
mα2|ri − rj |2

)
(14)

with ωc and Ω defined in eqs. (1) and (3), and the angu-
lar momentum operator Li,z = xipi,y−yipi,x. To simplify
this, we will adopt a new coordinate system based on cen-
ter of mass and relative coordinates between particles i
and j.

C.M. Position: R = Xx̂ + Y ŷ =
1

N

∑

i

ri (15)

C.M. Momentum: P = PX x̂ + PY ŷ =
∑

i

pi (16)

Relative position: rij = xijx̂ + yijŷ = ri − rj (17)

Relative momenutm: pij = pij,xx̂ + pij,yŷ = pi − pj
(18)

Now we make an analogy to the harmonic oscillator by
introducing center-of-mass and relative raising (+) and
lowering (−) operators:1

1 Compare these to the canonical raising and lowering operators
for the harmonic oscillator:

â± =

√
mω

2h̄

(
x̂± ip̂

mω

)
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A± =

√
NmΩ

4h̄

((
X ∓ iY

)
∓ i

NmΩ

(
PX ∓ iPY

))
(19)

B± =

√
NmΩ

4h̄

((
X ± iY

)
∓ i

NmΩ

(
PX ± iPY

))
(20)

a±ij =

√
mΩ0

4h̄

((
xij ∓ iyij

)
∓ i

mΩ0

(
pij,x ∓ ipij,y

))
(21)

b±ij =

√
mΩ0

4h̄

((
xij ± iyij

)
∓ i

mΩ0

(
pij,x ± ipij,y

))
(22)

where Ω2
0 = Ω2 −Nα2. In order to carry out this fac-

torization, we must have Ω >
√
Nα. Intuitively, as more

electrons are added to the QD, the combined strength of
the potential well and magnetic field must increase in or-
der to override the inter-particle repulsion. We can gain
some insight by investigating the commutators:

[X,PX ] = [Y, PY ] = ih̄ (23)

[xij , pkl,x] = [yij , pkl,y] = ih̄(δik + δjl − δil − δjk) (24)

All the other commutators between R, P, rij and pij
are zero. For the raising and lowering commutators, a
straightforward computation using (23) and (24) shows
that

[A−, A+] = [B−, B+] = 1 (25)

[a−ij , a
+
kl] = [b−ij , b

+
kl] = δik + δjl − δil − δjk (26)

and all other commutators are zero. Since (25) matches
the H.O. commutator ([â, â†] = 1), we anticipate that
the energies for the center of mass modes will form a
similar ladder structure to the H.O. However, (26) does
not have such a simple interpretation; the relative modes
affect the energies in a more convoluted way. Using this
factorization, the Hamiltonian can be decomposed into
center of mass and relative components:

H = HC.M. +Hrel (27)

HC.M. =
(
h̄Ω− h̄ωc

2

)
A+A− +

(
h̄Ω +

h̄ωc
2

)
B+B− + h̄Ω

(28)

Hrel =
1

N

(
h̄Ω0 −

1

2
h̄ωc

)∑

i<j

a+
ija
−
ij +

1

N

(
h̄Ω0 +

h̄ωc
2

)∑

i<j

b+ijb
−
ij + (N − 1)h̄Ω0 +

N(N − 1)

2
V0

(29)

To show that (27) is equivalent to (14), we begin by ex-
panding the operator products, applying (23) and (24):2

2 Note the similarity to the canonical number operator, N̂ = â†â.

A+A− =
NmΩ

4h̄
|R|2 +

1

4h̄NmΩ
P2

− 1

2h̄
(XPY − Y PX)− 1

2

(30)

a+
ija
−
ij =

mΩ0

4h̄
|rij |2 +

1

4h̄mΩ0
p2
ij

− 1

2h̄
(xijpij,y − yijpij,x)− 1

(31)

B+B− and b+ijb
−
ij are identical except for a sign change

in the third term. Substituting these into (28) and (29)
gives

HC.M. =
1

2
NmΩ2|R|2 +

1

2Nm
P2

+
ωc
2

(XPY − Y PX) (32)

Hrel =
mΩ2

0

2N

∑

i<j

|rij |2 +
1

2Nm

∑

i<j

p2
ij

+
ωc
2N

∑

i<j

(xijpij,y − yijpij,x) +
N(N − 1)

2
V0

Hrel =
mΩ2

2N

∑

i<j

|rij |2 −
1

2
mα2

∑

i<j

|rij |2 +
1

2Nm

∑

i<j

p2
ij

+
ωc
2N

∑

i<j

(xijpij,y − yijpij,x) +
N(N − 1)

2
V0 (33)

Matching up the C.M. and relative terms between (32)
and (33) and substituting in (15) – (18), we recover all
the terms in the original Hamiltonian (14):

1

2
NmΩ2|R|2 +

mΩ2

2N

∑

i<j

|rij |2 =
1

2
mΩ2

∑

i

|ri|2

1

2Nm
P2 +

1

2Nm

∑

i<j

p2
ij =

1

2m

∑

i

p2
i

ωc
2

(XPY − Y PX) +
ωc
2N

∑

i<j

(xijpij,y − yijpij,x) =
ωc
2

∑

i

Li,z

N(N − 1)

2
V0 =

∑

i<j

V0

− 1

2
mα2

∑

i<j

|rij |2 = −1

2
mα2

∑

i<j

|ri − rj |2

Summing all the R.H.S. terms above yields (14), so
the Hamiltonian in (27) is valid. This interpretation of
the Hamiltonian is well suited for describing the optical
properties of the multiple-electron QD. As in Section 3,
suppose there is radiation incident on the QD, so the
perturbation due to the electromagnetic field is
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δH = e
∑

j

E · rje−iωt = eE ·
(∑

j

rj

)
e−iωt

δH = QE ·Re−iωt (34)

where Q = Ne. Surprisingly, δH influences only the
center of mass mode, so the interaction between electrons
has no effect on the optical transitions of the QD! It turns
out the transition energies are the same as the single
particle case (12). To show this, we express (32) as

HC.M. =
1

2M
(P +

Q

c
A′)2 +

1

2
Mω2

0 |R|2 (35)

where A′ = 1
2B(−Xŷ + Y x̂) and M = Nm. This is

similar to (2), but we have replaced the operators with
their center of mass versions. Because [HC.M.,Hrel] =
0, there is no coupling between the C.M. and relative
modes. ωc has not changed since e/m = Q/M , so the
eigenvalues are still given by (9). Therefore the optical
transition energies are given by (12) regardless of the
number of electrons in the QD.

V. DISCUSSION

We began with one electron in parabolic confinement
and magnetic field orthogonal to the plane, and found
that the energies can be specified by the radial and az-
imuthal quantum numbers, similar to the hydrogen atom.

It’s peculiar that this atom-like dependence is exhibited
in a system that is orders of magnitude larger. A con-
venenient feature of the energies is that the level spac-
ing can be controlled simply by altering the size of the
dot. This tunes the optical resonace as well, since the
transition energies are closely linked to the level spacing.
This makes QDs very appealing for photodetection appli-
cations in fields such as astronomy, biomedical imaging
and spectroscopy where the light’s frequency indicates
the strength of a process we would like to measure.

Although the multiple-electron QD is much more com-
plex, it bears some striking resemblances to the one-
electron QD. The energies in the center of mass mode
form two ladders with spacing determined by the QD’s
size and applied magnetic field. In the ideal case, the op-
tical transition frequencies do not depend on the number
of particles. This is convenient for photodetection appli-
cations, since we don’t have to worry about leakage cur-
rent into or out of the dot. For very large particle num-
bers or large QDs, the model breaks down as it behaves
more like a plasma. However, the model has been veri-
fied within experimental error for up to 210 electrons by
Sikorski and Demel et al, using Fourier transform spec-
troscopy to measure how much light the QD absorbed at
a given frequency.[6, 13]
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Magnetic field sensing with high-precision has attracted multidisciplinary interest and is feasible
in solid-state quantum systems such as diamond nitrogen-vacancy centers. In particular, diamond
nitrogen-vacancy (NV) centers are systems that have gained attention for their ease of manipulation
and long-coherence times. This paper presents a method for sensing magnetic fields with very high
resolution by performing Ramsey interferometry on NV centers between two spin-1 sublevels that
form an effective spin-1/2 system. A protocol for performing the Ramsey interferometry is presented
and the final state expectation values are shown to be proportional to the external magnetic field
applied to the NV center. Attention is given to dephasing processes and how they impact the mea-
sured values of the magnetic field. Precise reconstruction of time-dependent fields is demonstrated
with controlled sequences of π-pulses that act as digital filters.

I. INTRODUCTION

Magnetic field sensing is a topic of growing inter-
est across the fields of biology, chemistry, materials sci-
ence, and physics. Applications are multidisciplinary and
range from sensing action-potentials in neurons to study-
ing magnetic phenomena in new superconducting mate-
rials [1] [2].

To perform accurate magnetometry, it is possible to
manipulate the spin degrees of freedom of a solid state
defect site. These defects are promising sensors because
they provide unparalleled measurement sensitivity, are
robust solid-state systems, and typically have energy lev-
els addressable via optical and microwave frequency light
[3]. In particular, the nitrogen-vacancy (NV) center in di-
amond is a popular topic of recent research in nanoscale
magnetometry [4] [5].

The diamond NV center consists of a substitutional ni-
trogen atom on a carbon site next to a carbon vacancy
in a diamond lattice [6]. The associated energy structure
may be seen in Figure 1. A magnetic field measurement
can be performed with an interferometry procedure be-
tween two of the triplet spin energy levels (ms = +1, 0
or ms = −1, 0) in one of the manifolds separated by
orbital angular momentum. The energy levels are Zee-
man shifted by a local magnetic field, which will result in
a post-interferometry population difference between the
two energy levels.

A. Background

The method of measuring the magnetic field is an ex-
tension of Ramsey’s original experiments with separated
oscillating fields [7]. First, the diamond NV center spins
are prepared in a low energy spin state (ms = 0) and
subjected to a strong magnetic field along the axis of
the nitrogen-vacancy bond (the z-axis) [8]. The “sep-
arated oscillating fields” are successive applications of
a rotating magnetic field with frequency tuned to the

FIG. 1. Image on the left depicts a nitrogen-vacancy (NV)
center in a diamond lattice with a red arrow denoting the
axis of the localized spin-1 system. Right hand image depicts
the NV center energy structure with ground (3A) and excited
(3E) orbital levels with each of their ms = ±1, 0 sublevels.
Images from Dobrovistky, et al [3].

Larmor frequency. This generates a transition between
the ms = 0 and ms = +1 energy levels (shown in Fig-
ure 1) and takes the system to a 50:50 superposition of
ms = 0,+1 states. The spins are rotated by π/2 in the
Bloch-sphere picture, so this procedure will be referred
to as a “π/2-pulse” (likewise, an oscillating field that ro-
tates spins by π will be referred to as a “π-pulse”). After
this the spins precess about the z-axis and accumulate a
phase proportional to the strength of the local magnetic
field. At some time τprecession after the first π/2-pulse a
second π/2-pulse is applied. This rotates the spins into
a state in which the ms = +1, 0 expectation values cor-
respond to the magnetic field strength along the z-axis.
The resulting state expectation values from this process
form “Ramsey Fringes”, shown in Figure 2 [9]. During
the time between the two π/2-pulses, inhomogeneities in
the magnetic field will dephase neighboring spins. Lastly,
time-dependent magnetic fields may be measured via ap-
plication of a sequence of π-pulses during the “precession
period” between the two π/2-pulses.
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FIG. 2. Characteristic “Ramsey fringes”, or expectation val-
ues of ms = +1, 0 spin states, after a π/2-pulse, spin preces-
sion for time τprecession = 2π ns, and then a final π/2-pulse.
The spins are initially prepared each in the ms = 0 state
and the frequency ω0 corresponds to the strength of the local
magnetic field.

II. ENERGY LEVELS

Within the large, 5.5 eV bandgap of diamond [6], the
NV center’s energy levels are divided into orbital ground
states and orbital excited states. The orbital ground
states are denoted the 3A states and the orbital excited
states are denoted the 3E states. Transitions between
manifolds with different orbital angular momentum are
optically addressable with a green laser, allowing for
easy manipulation of the NV centers [10]. The states
are further divided into three distinct spin-1 sub-levels
(ms = −1, 0,+1) addressable by microwave frequency
light [3]. In the following sections, the interferometry
is performed between two states in the spin-1 manifold
and contributions of orbital angular momentum will be
neglected from the Hamiltonian.

A. Hamiltonian

Studying the relevant components of the diamond NV
center Hamiltonian will provide an accurate model of the
system’s dynamics. Without the influence of external
fields, the Hamiltonian takes the form

H =∆S2
z − γeBzSz −

∑

n

γN ~B · ~gn(|Sz|) · ~In

+ (Hyperfine interaction) + (Crystal-field splitting)

+ (Dipolar interaction between nuclei)
(1)

where γe is the gyromagnetic ratio, the zero-field splitting
(first term) ∆ = 2.87GHz, and the second/third terms
correspond to the Zeeman interactions for the electron
and nuclei, respectively [11]. To simplify the analysis, the
nuclear Zeeman interaction and the last three terms will
be taken as small perturbations of a base Hamiltonian

H0 such that

H0 = ∆S2
z − γeBzSz (2)

where Sz is the spin-1 spin operator.
The interest of this paper is on electron spin dynam-

ics between two sub levels (ms = +1, 0), so it will be
assumed that transitions to the ms = −1 level are off-
resonant and negligible. The Hamiltonian in this 2 × 2
basis is

H0 =

(
∆~2 −Bzγe~ 0

0 0

)
= HS + (constant) (3)

and since constant energy shifts do not affect the dynam-
ics of the system, the Hamiltonian to be studied, HS ,
corresponds to a spin-1/2 system

HS = (∆~−Bzγe)Sz

=
~
2

(
∆~−Bzγe 0

0 Bzγe −∆~

)
(4)

where Sz is now the 2 × 2 spin-1/2 operator and the
constant term from Equation 3 is omitted.

III. THE SPIN-RAMSEY INTERFEROMETER

A general method of performing interferometry using
the diamond spin-1/2 system is presented and may be
readily adapted to other spin-1/2 systems. Spin-Ramsey
interferometry follows the method of separated oscilla-
tory fields and is traditionally used to sense a time-
independent, or DC magnetic field [7]. Later sections
will address applications of Ramsey interferometry in dia-
mond for time-independent field sensing, dephasing from
inhomogeneities in the magnetic field, and the use of π-
pulses to sense time-dependent magnetic fields.

A. Oscillating Fields

When the diamond system is subjected to an oscillat-
ing magnetic field

B(t) = Bxy(cos(ωt)x̂+ sin(ωt)ŷ) (5)

where Bxy is the magnitude of the field and ω the angular
frequency, the Hamiltonian takes the form

H(t) = −ω0Sz + γeBxy(cos(ωt)Sx + sin(ωt)Sy) (6)

where ω0 = Bzγe −∆~. We will consider a system that
is initially prepared in the ms = 0 state such that the
density operator ρ(t) takes the form

ρ(0) =

(
0 0
0 1

)
(7)
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This problem may be solved exactly by moving to the
frame that rotates with frequency ω. This transformation
results in a new rotated Hamiltonian HR,

HR = (ω − ω0)Sz − γeBxySx (8)

which is commonly seen in the analysis of nuclear mag-
netic resonance [12]. Assuming that ω = ω0, the spins
will rotate about the x-axis in the rotated frame and the
density operator will evolve according to

ρ(t) = U†(t)UR(t)ρ(0)U†R(t)U(t) (9)

where U(t) is a unitary transformation into the frame
rotating with frequency ω0 about the ẑ-axis and UR(t) is
the resulting time-evolution operator for the Hamiltonian
HR.

U(t) = exp

(
iω0tSz

~

)
(10a)

UR(t) = exp

(
iγeBxytSx

~

)
(10b)

To account for multiple applications of the oscillating
field separated by a finite amount of time, it is necessary
to develop time evolution operators for a field that has
been on for some previous time ti. From Equation 9, we
know the time evolution is

U†(ti + t)UR(ti + t)|ψ(0)〉 = U†(ti + t)UR(t)UR(ti)|ψ(0)〉
=U†(ti + t)UR(t)U(ti)U

†(ti)UR(ti)|ψ(0)〉
=U†(ti + t)UR(t)U(ti)|ψ(ti)〉
=Uosc(ti, t)|ψ(ti)〉

(11)
The above equation has the following interpretation:
|ψ(ti)〉 is the state immediately before the oscillating field
is turned back on and U†(t+ ti)UR(t)U(ti) describes the
time evolution given that the field has been on for a time
ti and the state is in a frame with some previously accu-
mulated phase.

B. Preparation of the spin-mixture via π/2-pulse

To prepare the initial system in a 50:50 superposition
of ms = +1, 0 states, we begin with ρ(0) completely in
the ms = 0 state (Equation 7). Now, a resonant oscillat-
ing field is applied for a time

τπ/2 =
π

2Bxyγe
(12)

such that the final state is

ρ(τπ/2) =U†(τπ/2)UR(τπ/2)ρ(0)U†R(τπ/2)U(τπ/2)

=

(
1
2

i
2e

iπω0
2Bxyγe

− i
2e
− iπω0

2Bxyγe 1
2

)
(13)

It is immediately clear that a 50:50 spin-mixture is
formed from the expectation values, or diagonal elements,
of the above density matrix.

C. Phase accumulation

After the first π/2-pulse, the oscillating magnetic field
is turned off. For a time τ the diamond NV center spins
will be subjected to the Hamiltonian in Equation 4. Since
these spins point in the x− y plane of the Bloch sphere,
they precess about the z-axis with angular frequency
ω0 = ∆~ − Bzγe. The corresponding time evolution op-
erator is

US = exp

(
− iHSτ

~

)
(14)

The state of the system after time t2 = τπ/2 + τ is
therefore given by

ρ(t2) = US(τ)ρ(τπ/2)U†S(τ)

=




1
2

i
2e

iω0(π+2Bxyγeτ)

2Bxyγe

− i
2e
− iω0(π+2Bxyγeτ)

2Bxyγe 1
2


 (15)

where the phases picked up by the diagonal elements of
ρ(t2) are proportional to the strength of the local mag-
netic field and the expectation values remain unchanged.

D. The second π/2-pulse

A second application of the oscillating field, or π/2-
pulse, will result in a system in the state ms = +1 with
unit probability if the precession time

τ =
2nπ

ω0
(16)

or the state ms = 0 with unit probability if

τ =
2nπ

ω0
+
π

2
(17)

where in both cases n ∈ Z. The resulting state of our
ensemble ρ(t3) (where t3 = t2 + τπ/2) is obtained via the
procedure outlined in Equation 11 on the state ρ(t2) with
ti = t = τπ/2

ρ(t3) =Uosc(τπ/2, τπ/2)ρ(t2)U†osc(τπ/2, τπ/2)

=

(
cos2( τω0

2 ) − 1
2 sin(τω0)e

iπω0
Bxyγe

− 1
2 sin(τω0)e

− iπω0
Bxyγe sin2( τω0

2 )

)

(18)
After this procedure, the final expectation values of the
ms = +1, 0 states have a cosine and sine squared depen-
dence on the strength of the magnetic field, as shown in
Figure 2.

IV. EXPERIMENTAL PROTOCOL

A. State preparation

To begin, the system must be initialized in the ms = 0
state of the 3A manifold via optical pumping. To do this,
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FIG. 3. Ramsey interferometry measurement of the average magnetic field in the presence of local magnetic field fluctuations
with variances on the range σ ∈ [0.04, 0.4] GHz and a precession time τ2 = 2π ns. The precession frequency relates to the
magnetic field via ω0 = Bzγe − ∆~. From the diagram, increasing magnetic field variations reduce the amplitude of the
expectation value resulting in miscalculations of the average value of a time-independent (static) magnetic field ω0.

the diamond NV centers are illuminated with a green
laser of energy ∼ 2 eV (λ = 532 nm) such that the NV
centers are excited to the 3E orbital levels [13]. During
this process, the ms = 0 spins undergo continuous exci-
tation and spontaneous emission cycles. The ms = ±1
spins also experience spontaneous emission, but are far
more likely to decay through multiple singlet states (as
shown in Figure 1) that slowly repopulate the ms = 0,±1
states equally [14]. After ≈ 5 µs of optical pumping, the
system becomes 70 − 90% spin-polarized in the ms = 0
3A ground state [3]. At this point the system is prepared
for the Ramsey interferometry measurement sequence.

B. Ramsey Oscillating Fields

Two coils along the x- and y-axis create an oscillating
magnetic field. After state preparation, the oscillating
field is applied for a time τπ/2. Then, the spins are al-
lowed to precess at a rate proportional to the strength of
the magnetic field. Finally, a second application of the
oscillating field prepares the system for measurement. If
a time-dependent field measurement is to occur, a se-
quence of π-pulses will be applied during the precession
time period, as will be shown in Section VI.

C. Measurement

To measure the final states after the Ramsey interfer-
ometry protocol, the diamond NV centers are illuminated

with a 532 nm green laser for ≈ 5µs [14]. The ms = 0
3A states will transition to the ms = 0 3E state and
spontaneously decay, emitting detectable light in the vis-
ible range. The ms = +1 3A state will transition to the
ms = +1 3E state and then decay through long lived
non-radiative spin-singlet channels [13]. Detection of the
fluorescence will thus correspond to the final expectation
value of the ms = 0 state. Since the expectation value
of the final state oscillates as a function of the DC mag-
netic field, the range of magnetic fields detectable by the
measurement is ultimately limited to a single period of
oscillation.

V. DEPHASING OF SPINS

In reality, an ensemble of NV centers will be dis-
tributed across a finite region of space and each will
experience a slightly different magnetic field strength.
As such, the probability of the magnetic field being a
strength B for a particular spin may be approximated as
a Gaussian distribution

p(B) =
1

σ
√

2π
e−

(ω(B)−ω0)2

2σ2 (19)

where ω(B) = γeB − ∆~, ω0 is the average precession
frequency, and σ is the variance of the frequency distri-
bution. For simplicity, it will be assumed that the π/2-
pulses are perfectly resonant with each NV center and the
spins will perfectly rotate into the x−y plane. The mag-
netic field fluctuations will then contribute to dephasing
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FIG. 4. Expectation values of the ms = +1, 0 states after a
time τ of precession between π/2-pulses in an inhomogeneous
magnetic field. In this figure, ω0 = 3 GHz and the variance
σ = 0.2GHz.

during the spin-precession period (t1 < t < t2). To ac-
count for this, the new density operator after time t3 may
be expressed as

ρ(t3)dephased =

∞∫

−∞

dBp(B)ρ(t3) (20)

and thus the ms = 0,+1 expectation values become

〈+1〉 =
1

σ
√

2π

∞∫

−∞

dB cos2
(
τω(B)

2

)
e−

(ω(B)−ω0)2

2σ2 (21a)

〈0〉 =
1

σ
√

2π

∞∫

−∞

dB sin2

(
τω(B)

2

)
e−

(ω(B)−ω0)2

2σ2 (21b)

The resulting Ramsey fringes decrease in intensity as the
variance in the local magnetic fields increases, as shown
in Figure 3. Additionally, as the time of precession in-
creases the expectation values of the magnetic field will
each decrease to 0.5, as shown in Figure 4.

VI. TIME-DEPENDENT FIELD SENSING

The Ramsey interferometer serves as a useful tool for
sensing time-independent magnetic fields. However, it
is also possible to retrieve useful information about the
magnetic field’s time dependence by the application of π-
pulses to the diamond spins during the precession period
[15].

To understand this, lets consider the action of the US
time evolution operator during spin precession when the
magnetic field (and thus the Hamiltonian) is a function
of time,

US(ti, tf ) = exp

(
− i
~

∫ tf

ti

dtHS(t)

)
= eiφ(ti,tf ) (22)

where ti and tf are the initial and final times during spin-
precession. If we start out with an ensemble of spins in
the x−y plane, the density operator at some time t2 later
in a time-dependent field is now

ρ(t2) = US(t1, t2)ρ(τπ/2)U†S(t1, t2) (23)

=

(
1
2

i
2e

2iφ(t1,t2)+i
πω0

2Bxyγe

− i
2e
−2iφ(t1,t2)−i πω0

2Bxyγe 1
2

)

Comparing ρ(t2) and ρ(τπ/2) from Equation 13, it is
clear that the action of US adds a phase proportional
to φ(t1, t2) = φ12 to the diagonal elements of the density
operator. Now, consider a π-pulse applied at time t2 and
then another subsequent period of spin-precession. The
π-pulse transforms the system to

ρ(t3) =Uosc(τπ/2, τπ)ρ(t2)U†osc(τπ/2, τπ)

=

(
1
2 − i

2e
−2iφ12+

3iπω0
2Bxyγe

i
2e

2iφ12− 3iπω0
2Bxyγe 1

2

)
(24)

Here we notice something very interesting. The sign
of the phase φ(t1, t2) accumulated during the first spin-
precession is reversed! If we let the spin precess for an-
other period of time until t4, the state will gain another
phase φ(t3, t4) = φ34 with an opposite sign from the first
phase φ12. More explicitly,

ρ(t4) = US(t3, t4)ρ(t3)U†S(t3, t4) (25)

=

(
1
2 − i

2e
−2i(φ12−φ34)+

3iπω0
2Bxyγe

i
2e

2i(φ12−φ34)− 3iπω0
2Bxyγe 1

2

)

From the above expression, we can see immediately that
when the precession times are equal and the field is
time-independent, φ12 − φ34 = 0. However, for a time-
dependent field that oscillates with frequency ω0, these
two will not necessarily be equal. A final π/2-pulse will
result in the following population differences:

〈ms = +1〉 = sin2(φ12 − φ34)

〈ms = 0〉 = cos2(φ12 − φ34)
(26)

This measurement gives us information about the time-
dependence of the magnetic field before and after the π-
pulse [16]. In fact, it is possible to write the total phase
φ accumulated during precession as the original phase
(Equation 22) multiplied by a square-function f(t) that
takes one of the two values ±1 and changes with each
π-pulse. This assumes that the time needed to apply the
π-pulse is much less than the precession times. The phase
is then

φ = −1

~

∫ T

0

f(t′)HS(t′)dt′ (27)

where T is the total time between initial and final π/2-
pulses.

Since f(t) measures the difference between phases ac-
cumulated before and after π-pulses, the π-pulses may be
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FIG. 1. (Color online) Control sequences derived from Walsh
functions (in sequency ordering). The first sequence (Ramsey)
describes the simplest parameter estimation protocol with no modu-
lating π pulses. The second sequence corresponds to the Hahn spin
echo and, in general, the mth Walsh function requires m π pulses in
the control sequence.

control-modulated system dynamics. We emphasize that such
a mapping between control sequences and basis functions is
not possible for more common (continuous) bases such as
the Fourier basis. Let us now outline our protocol in complete
generality for when b(t) is unknown and the orthonormal basis
is left arbitrary but only takes the values ±1.

Suppose we partition [0,T ] into n uniformly spaced
intervals with endpoints tj = jT

n
for j ∈ {0, . . . ,n}. At each

tj , for j ∈ {0, . . . ,n − 1}, a π pulse is applied according to
some predefined n length bit string α. The occurrence of a
1 in α indicates that a π pulse should be applied and a 0
indicates that no π pulse should be applied. Under this binary
encoding of pulse sequences, the evolution of the system is
given by

U (T ) = #0
j=n−1

{[
e
−i[γ

∫ tj+1
tj

b(t)dt]σZ ]Xα(j )
π

}

= e−i[γ
∫ T

0 κα (t)b(t)dt]σZ = e−iφα (T )σZ , (2.5)

where Xπ corresponds to a π rotation about the X axis in
the Bloch sphere representation. It is straightforward to verify
that κα(t) is a piecewise constant function taking values ±1
on each (tj ,tj+1) and a switch 1 ↔ −1 occurs at tj if and
only if a π pulse is implemented at tj . Hence, performing a
π -modulated Ramsey experiment produces a phase evolution
φα(T ) given by the scaled inner product between κα(t)
and b(t),

φα(T ) = γT ⟨κα(t),b(t)⟩ = γT

[
1
T

∫ T

0
κα(t)b(t)dt

]
. (2.6)

Upon rotation by a −π
2 pulse about Y , a measurement in the

computational basis yields the probability

p0 = 1 + sin[φα(T )]
2

= 1 + sin[γT ⟨κα(t),b(t)⟩]
2

(2.7)

and p1 = 1 − p0. Hence, if γT |⟨κα(t),b(t)⟩| ! π
2 , one can

estimate ⟨κα(t),b(t)⟩ exactly from p0. Now, suppose the set of
all κα(t) forms an orthonormal basis of L2[0,T ]. In this case,
we can write any b(t) as

b(t) =
∑

α

⟨κα(t),b(t)⟩κα(t), (2.8)

and so being able to estimate all ⟨κα(t),b(t)⟩ implies that one
can reconstruct b(t) exactly. As mentioned previously, one can
take the Walsh basis {wm(t)} to represent the different κα(t).
Since the Walsh basis is countably infinite, it can be ordered
from m = 0 to ∞, so that

b(t) =
∞∑

m=0

⟨wm(t),b(t)⟩wm(t). (2.9)

In theory, this protocol will reconstruct b(t) exactly. In a
practical implementation, some questions arise that we will
address in the reminder of the paper:

(1) What is the sensitivity in estimating each of the
⟨wm(t),b(t)⟩ and how does this affect the overall reconstruction
(see Sec. IV)?

(2) How does the reconstruction behave if we truncate the
decomposition series to a finite order at a certain point? Are
there certain coefficients that we can neglect (Sec. V)?

(3) How does the control sequence defined by wm aid in
preserving the coherence of the system (Sec. VI)?

Since the Walsh functions form an orthonormal basis that
is well adapted to the reconstruction of time-varying fields
with digital filters, we briefly review their properties, focusing
on the ones that are the most relevant to the reconstruction
method.

III. WALSH BASIS

A. Walsh functions, ordering, and partial reconstructions

Orthogonal functions play a prominent role in a vast
array of theoretical and applied sciences, for instance, in
communication theory, mathematical modeling, numerical
analysis, and virtually any field that utilizes signal processing
theory. An important problem is to use the physical nature of
the signal, control, and sensing mechanisms to determine what
mathematical basis is best suited for processing the physical
information. The sine and cosine trigonometric functions are
the most commonly used set of orthogonal functions for a
variety of reasons: they have clear physical interpretation,
model a large set of physical phenomena, and are easy to
describe mathematically. Moreover, the advent of the fast
Fourier transform has made it more computationally efficient
to move between the time and frequency domains. In analog
signal processing, these functions are often the method of
choice for decomposing and manipulating signals.

Nontrigonometric sets of orthogonal functions have also
found great utility in many different scientific fields [31].
For instance, orthogonal polynomial bases such as Chebyshev

032107-3

FIG. 5. Interferometry protocols in which f(t) from Equation
27 is equal to the first few Walsh functions ωn( t

T
) where T

is the acquisition time, or total time the spins are spent pre-
cessing between the π/2-pulses. A π-pulse corresponds to a
changing sign of f(t). Image from Magesan, et al [17].

interpreted as digital filters [17]. There exists a complete
set of orthogonal square waves, or “Walsh functions”,
that may be used to describe the protocol function f(t)
in an analogous fashion to Fourier decomposition [17].
The first of these Walsh functions are shown in Figure
5. Any time-dependent function, such as b(t), may be
rewritten as a sum of these Walsh functions

b(t) =
∞∑

n=0




T∫

0

ωn(t′)b(t′)dt′


ωn(t) ≡

∞∑

n=0

cnωn(t)

(28)
and coefficients cn corresponding to the overlap between
the Walsh function and our magnetic field over a time
period T . This is precisely the phase we pick up when
we choose a protocol f(t) = ωn(t). For example, an
interferometry protocol where f(t) = ω1(t) corresponds
to a single π-pulse halfway into the precession period.
The measurement of the ms = +1, 0 states will be pro-
portional to the phases picked up before and after this
π-pulse, and thus proportional to the component of b(t)
along ω1(t). A similar protocol performed for higher-
order Walsh functions will provide higher-order coeffi-
cients and allow for a more accurate reconstruction of

the time-dependent magnetic field.

VII. CONCLUSION

Nitrogen-vacancy centers in diamond are stable quan-
tum systems that may be carefully manipulated to pro-
vide valuable information about local magnetic fields.
The energy structure of these defects allows for careful
manipulation with both optical and microwave frequen-
cies of light, while specific decay channels enable easy
optical pumping of the ms = 0 ground state. Coupling
the spins in the ms = 0 state to one of the other ground
state energy levels (such as ms = +1) is possible with
successive applications of resonant oscillating fields. Fi-
nal spin populations in either the ms = 0 or +1 state is
read out by illuminating the sample with green light and
exciting the spins to the corresponding 3E orbital states.
The ms = +1 3E states will decay non-radiatively, while
the ms = 0 3E states decay radiatively, resulting in de-
tectable fluorescence.

The Ramsey interferometer consists of an ensemble of
spins, initially prepared in this lower energy spin-1/2
state, that are subject to an oscillating magnetic field
that rotates the spins 90◦ into the x−y plane of the Bloch
sphere. From here, the spins acquire a phase that is pro-
portional to the strength of the magnetic field. During
this precession time, π-pulses may be applied to detect
time-dependent properties of the magnetic field. With-
out π-pulses, a standard interferometry measurement can
detect the absolute value of a time-independent magnetic
field. Local fluctuations of the magnetic field result in de-
phasing of the spins that take the ensemble to a mixed
state with equal ms = 0 and +1 expectation values.

Applications of π-pulses during the precession period
have been shown to act as digital filters. The fluorescence
measured after a protocol with n π-pulses is proportional
to the coefficient of the nth Walsh function. Multiple
measurements that correspond to different orthonormal
Walsh functions allow for the piecewise reconstruction of
time-dependent magnetic fields.
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Supersymmetric Quantum Mechanics

Reed LaFleche
(Dated: May 2, 2014)

We introduce the factorization methods known as Supersymmetric Quantum Mechanics for gen-
erating different Hamiltonians with similar spectra. After stating the general procedure, we show
that any Hamiltonian which takes the form of an otherwise free nonrelativistic scalar moving in the
presence of a potential energy can be embedded in a larger Hamiltonian which exhibits supersym-
metry, and motivate the terminology. Afterwards, we develop the method of shape invariance which
is used to solve certain Hamiltonians that exist in one spatial dimension, and show how it is used
in the case of the Hydrogen atom.

I. INTRODUCTION

A Supersymmetric Quantum Mechanical system is de-
fined by the existence of operators Q̂i, i ∈ {1, ...N} (in
this paper N = 2 always) satisfying:

[Q̂i, Ĥ] = 0

{Q̂i, Q̂j} = δijĤ,
(1)

where Ĥ is the Hamiltonian. Supersymmetric Quantum
Mechanics was first introduced by Edward Witten in [1]
(from which the above definition is taken) as part of
an attempt to understand supersymmetry breaking in
Quantum Field Theory. In that paper, he used a two
dimensional supersymmetric Hamiltonian, and discussed
conditions for supersymmetry to be broken.

Supersymmetric Quantum Mechanics has since been
studied for its own sake, i.e. as a quantum mechani-
cal theory rather than as a simplified model for a super-
symmetric quantum field theory. It has been found that
using the methods of Supersymmetric Quantum Mechan-
ics, it is possible to solve certain problems algebraically
rather than analytically. It is possible to start from a
single Hamiltonian Ĥ1 and generate an infinite sequence
{Ĥi} with nearly identical energy spectra. Given the

eigenfunctions of Ĥ1, it is possible to construct operators
which subsequently yield the eigenfunctions of the Ĥi’s.
Thus the problem of solving the infinite set of Hamiltoni-
ans is reduced to that of solving a single Hamiltonian and
constructing the required operators (which latter can be
done mechanically).

If the {Ĥi} are all in some way similar (a definition

which can be made rigorous), then Ĥ1 is known as shape
invariant, and can be solved algebraically. Thus Super-
symmetric Quantum Mechanics allows us to define the
class of shape invariant Hamiltonians, which includes
many known solvable Hamiltonians such as the radial
equation for the Coulomb problem, the Harmonic Oscil-
lator, and many potentials involving trigonometric and
hyperbolic functions. Examples can be found in [2], [3].

In this paper, we will set up the formalism of Su-
persymmetric Quantum Mechanics and shape invariance
and show how it is used for the Hydrogen atom. In Sec-
tion II Part A we begin to set up the formalism. In Sec-
tion II Part B we develop ideas from Part 1 further, show

that any Hamiltonian of the form − ~2

2m∇2 + V can be
embedded inside a Hamiltonian which obeys supersym-
metry, and discuss the relation between Supersymmetric
Quantum Mechanics and the supersymmetries proposed
in Quantum Field Theory. In section III we define shape
invariance. In section IV we apply shape invariance to
develop a framework to solve the hydrogen atom alge-
braically.

In what follows we use the convention that ~ = 1, and
use Einstein summation over repeated indices unless oth-
erwise stated.

II. GENERAL FRAMEWORK

A. Factorization of the Hamiltonian

Let Ĥ be a nondegenerate Hamiltonian with ground
state energy E0. Consider the Hamiltonian Ĥ0 = Ĥ−E0.
This Hamiltonian has ground state energy 0, and is thus
positive semidefinite. It may thus be factored as
Ĥ0 = Â†Â. It is natural to consider the pair:

Ĥ0 = Â†Â

Ĥ1 = ÂÂ†
(2)

which are both positive semidefinite by construction.
We have the identities ÂĤ0 = Ĥ1Â, Â†Ĥ1 = Ĥ0Â

†.
These allow us to relate the eigenstates and eigenvalues
of Ĥ0, Ĥ1. In particular,

Ĥ0 |ψn〉 = En |ψn〉 → Ĥ1Â |ψn〉 = EnÂ |ψn〉
Ĥ1 |φn〉 = En |φn〉 → Ĥ0Â

† |φn〉 = EnÂ
† |φn〉

(3)

We may be more explicit if Ĥ has the form
− 1

2m∂
2
x + V (x). If the ground state is ψ0(x), then:

− 1

2m
∂2x + (ψ0(x))−1(

1

2m
∂2xψ0(x)) = − 1

2m
∂2x + V (x)− E0

= Ĥ0

This implies that if Â = 1√
2m
∂x− 1√

2m
∂x ln(ψ0(x)), then

Â†Â = Ĥ0. The quantity

W (x) = − 1√
2m

∂x ln(ψ0(x)) (4)
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is referred to as the superpotential of the Hamiltonian
Ĥ0. We have Ĥ0 = − 1

2m∂
2
x + (W 2 − 1√

2m
∂xW ),

Ĥ1 = − 1
2m∂

2
x + (W 2 + 1√

2m
∂xW ). We also have

that Â |ψ0〉 = 0, and by non degeneracy of Ĥ0, |ψ0〉
is unique in this. Further, as ψ0(x) is normalized,

lim|x|→∞ ψ0(x) = 0, and no solution of Â† |φn〉 = 0 can
be normalized, as any such solution will be a multiple of
ψ0(x)−1, and so will blow up at infinity. Along with (3),

this shows that Spec(Ĥ1) = Spec(Ĥ0) − {0}, that the

operators Â, Â† may be used to move between the two
eigenbases, and that Ĥ1 is also nondegenerate.

We make a few remarks on W (x), and in particular
on why ∂x ln(ψ0(x)) is a sensible quantity to talk about.
ψ0(x) is real and nonnegative for all x by [4], so ln(ψ0(x))
is well defined and real at all points save the zeroes of
ψ0(x). As ψ0(x) is nonnegative, its first derivative must
either vanish or be undefined at any zero. Because the
Schrödinger equation is second order in spatial deriva-
tives, any point where both ψ0(x) and its first derivative
are 0 must be a singularity for the potential energy—
otherwise ψ0(x) = 0 everywhere—and every point where
∂xψ0(x) is undefined must also be a singularity for the
potential energy. Thus we see that every singularity of
ln(ψ0(x)) is also a singularity of the potential energy, so
singularities of the superpotential can only occur at sin-
gularities of the potential energy.

It should be noted that the above factorization process
may be repeated indefinitely, taking Ĥ ′0 = Ĥ1 −E1, and

thus generating Hamiltonians Ĥ2, Ĥ3, ..., where E1 is the
ground state energy of Ĥ1, or equivalently the energy of
the first excited state of Ĥ0.

In more than one dimension, we may still factor the
Hamiltonian as Â†Â, or alternatively we may introduce:

Âi =
1√
2m

∂xi −
1√
2m

∂xi ln(ψ0(x)), (5)

which has the properties:

Â†i Âi = Ĥ0

[Âi, Âj ] =
1

2m
[∂xi − ∂xi ln(ψ0(x)), ∂xj − ∂xj ln(ψ0(x))]

=
1

2m
(∂xj∂xi − ∂xi∂xj )ln(ψ0(x))

= 0

[Â†i , Â
†
j ] = [Âi, Âj ] = 0

[Âi, Â
†
j ] =

1

2m
[∂xi − ∂xi ln(ψ0(x)),−∂xj − ∂xj ln(ψ0(x))]

=
1

2m
(−∂xi∂xj − ∂xi∂xj )ln(ψ0(x))

= − 1

m
∂xi∂xj ln(ψ0(x))

(6)

B. The Superhamiltonian and Supercharges

Thus far we have yet to construct a system satisfying
(1). We do so now, in the process generalizing the fac-
torization methods to any number of spatial dimensions.
We follow a procedure given in [5].

We introduce operators b̂i, where i runs over the di-
mensions of space. We impose upon these the relations

{b̂i, b̂j} = {b̂†i , b̂†j} = 0,

{b̂i, b̂†j} = δij ,
(7)

where {·, ·} is the anticommutator, and additionally

require the b̂’s to be constant throughout space, so

[Ai, bj ] = [A†i , bj ] = [Ai, b
†
j ] = [A†i , b

†
j ] = 0, for the Âi’s

defined in (5). We then construct the operators

Q̂ = Âib̂
†
i ,

Q̂† = Â†i b̂i,
(8)

We then can define the supersymmetric Hamiltonian Ĥ̂ĤH
by:

Ĥ̂ĤH = {Q̂, Q̂†}
= {Âib̂†i , Â†j b̂j}
= ÂiÂ

†
j b̂
†
i b̂j + Â†jÂib̂j b̂

†
i

= Â†i Âi + b̂†i b̂j [Âi, Â
†
j ]

= − 1

2m
∇2 + V (x)− 1

m
b̂†i b̂j∂i∂j ln(ψ0(x)),

(9)

By (7), the third line of (6), we have Q̂2 = (Q̂†)2 = 0.
We form Hermitian operators:

Q̂1 =
Q̂+ Q̂†√

2

Q̂2 =
Q̂− Q̂†
i
√

2
,

(10)

known as the supercharges. It is easy to check that the

supercharges satisfy (1), with Ĥ replaced by Ĥ̂ĤH.
In Quantum Field Theory, particles are described as

excitations of a vacuum (ground) state, and ladder oper-
ators are introduced which act on the system to create or
annihilate particles. The ladder operators for fermions
obey relations which are similar to (7), while those for
bosons obey commutation relations similar to those of
the harmonic oscillator:

[âi, âj ] = [â†i , â
†
j ] = 0,

[âi, â
†
j ] = δij ,

(11)

We thus introduce the ‘Number of Fermions’ operator
in analogy with the number operator of the harmonic
oscillator:

N̂ = b̂†i b̂i, (12)
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We will now give a set of identities, which have various
implications to be discussed afterwards:

[N̂ , b̂†i ] = b̂†i

[N̂ , b̂i] = −b̂i
[Q̂, Ĥ̂ĤH] = [Q̂, {Q̂, Q̂†}]

= Q̂2Q̂† + Q̂Q̂†Q̂− Q̂Q̂†Q̂− Q̂†Q̂2

= [Q̂2, Q̂†]

= 0

[Q̂†, Ĥ̂ĤH] = [Q̂, Ĥ̂ĤH] = [Q̂i, Ĥ̂ĤH] = [N̂ , Ĥ̂ĤH] = 0,

[N̂ , Q̂] = Q̂,

[N̂ , Q̂†] = −Q̂†

[N̂ , Q̂1] = iQ̂2

[N̂ , Q̂2] = −iQ̂1

(13)

Thus Q̂i, N̂ are conserved, and Q̂, Q̂† change the num-
ber of fermions by one without changing the energy. We

may simultaneously diagonalize Ĥ̂ĤH and N̂ . A state with

〈ψ| N̂ |ψ〉 = 0 has (b̂i |ψ〉)†(b̂i |ψ〉) = 0, so b̂i |ψ〉 = 0 for

all i. It follows that Ĥ̂ĤH |ψ〉 = (− 1
2m∇2 + V (x)) |ψ〉, so we

recover our original Hamiltonian in the N̂ = 0 subspace.
We construct a Hilbert space by applying the opera-

tors b̂i, b̂
†
i to N = 0 states. The eigenvalues of N̂ may be

determined by starting with the N = 0 states |ψ〉, and

noting that as these are annihilated by the b̂i’s (previous
paragraph), there is no N = −1 state. By the first two

lines of (13), each b†i we apply raises N by 1. The anti-
commutation relations in (7) give us the Pauli Exclusion
Principle: no state may have 2 or more fermions of type
i for any i. As there are n types of fermions, the Pauli
Exclusion Principle tells us that the possible eigenvalues
of N̂ are the integers between 0 and n.

Thus simultaneously diagonalizing Ĥ and N̂ we have
n + 1 different Hamiltonians {Ĥ0, ...Ĥn}, each with a
different potential, but with the eigenstates related by
Q̂, Q̂†. A basis for the N = l states may be formed by
starting with a basis for the N = 0 states and apply-

ing all possible combinations of l b†i ’s with no repetition.
There are

(
n
l

)
ways to do this, so we conclude that the

Hamiltonian on the N = l subspace is in the form of an(
n
l

)
dimensional square matrix.

Note that if n = 1, we have, by (9):

Ĥ̂ĤH = {Â†b̂, Âb̂†}
= Â†Âb̂b̂† + ÂÂ†b̂†b̂

= Ĥ0(1− N̂) + Ĥ1N̂ ,

and so the Ĥ0, Ĥ1 thus obtained agree with those defined
in (2).

The name ‘Supersymmetric Quantum Mechanics’ can
be motivated by considering the case of a harmonic os-
cillator, where Âi = âi, satisfying (11). By (9), (11), we

see that Ĥ̂ĤH = â†i âi + b̂†i b̂i, which is simply a system of

n bosons and n fermions. The operator Q̂† = â†i b̂i will
create a type i boson and annihilate a type i fermion for
each i, and Q̂ will do the opposite. The supercharges de-
fined in (1), (10) are Hermitian and conserved. Thus they
generate symmetries of the system. Because the super-
charges are linear combinations of Q̂, Q̂†, we see that the
symmetries generated will replace bosons of type i with
fermions of type i, and vice versa. In Quantum Field
Theory, such a symmetry is known as a supersymmetry,
and thus the name Supersymmetric Quantum Mechanics.

III. SHAPE INVARIANCE

The above may be used to solve certain types of poten-
tials in one spatial dimension known as shape invariant,
using methods first introduced in [5]. For these, the po-

tentials of Ĥ0, Ĥ1 are in some way similar. To be precise,
we assume that we have a class of Hamiltonians Ĥ(~a)
depending on some set of parameters ~a ∈ S for some set

S. If upon constructing the superhamiltonian Ĥ̂ĤH(~a) we
find that there are functions f : S → S,R : S → R such
that

Ĥ1(~a) = Ĥ0(f(~a)) +R(~a), (14)

we say that the potential energy function for Ĥ, or alter-
natively Ĥ itself, is shape invariant.

If Ĥ is shape invariant, then the discussion after (13)

tells us that the operators Q̂, Q̂† relate the energies and
eigenfunctions of Ĥ0, Ĥ1. If |ψk+1(~a)〉 is the kth excited

state of Ĥ(~a), then:

Q̂(~a) |ψk+1(~a)〉 = b̂† |ψk(f(~a))〉
|ψk+1(~a)〉 = Q̂†(~a)b̂† |ψk(f(~a))〉 , (15)

up to normalization constants. |ψk+1(~a)〉 , b̂† |ψk(f(~a))〉
are eigenstates of Ĥ̂ĤH(~a) with the same eigenvalue, so:

Ĥ̂ĤH(~a) |ψk+1(~a)〉 = Ĥ0(~a) |ψk+1(~a)〉
Ĥ̂ĤH(~a)b̂† |ψk(f(~a))〉 = b̂†Ĥ1(~a) |ψk(f(~a))〉

= b̂†(Ĥ0(f(~a)) +R(~a)) |ψk(f(~a))〉
Ek+1(~a) = Ek(f(~a)) +R(~a)

We may repeat the above, finding the superhamilto-

nian Ĥ̂ĤH(f(~a)), which gives us the energy of the states

of Ĥ0(f(~a)) in terms of the energies of the states of

Ĥ0(f(f(~a))), and so on until we have the energies of

the kth state of Ĥ0(~a) for all natural numbers k. By

construction, Ĥ0(~a) has ground state energy 0, and so

the general formula will be Ek(~a) =
k−1∑
j=0

R(f j(~a)). If we
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want the energies of Ĥ(~a) = Ĥ0(~a) + E0(~a), we simply
add E0(~a) to get:

Ek(~a) = E0(~a) +
k−1∑

j=0

R(f j(~a)), (16)

where f j(~a) is the result of applying the function f to ~a
j times.

Considering (15), note that Q̂†(~a)b̂† = Â†(~a)b̂b̂† =

Â†(1 − N̂), and N̂ |ψk+1〉 = 0 by construction. Thus

we have |ψk+1(~a)〉 = Â†(~a) |ψk(f(~a))〉, up to normaliza-
tion.

The above also applies for a general non-degenerate
Hamiltonian (i.e. not necessarily of the form − 1

2m∇2 +

V ): if we can write Ĥ0(~a) = Â†(~a)Â(~a), and Ĥ1(~a) =

Â(~a)Â†(~a) = Ĥ0(f(~a)) + R(~a), then Ĥ0 is shape invari-
ant, and we can use this fact to iteratively solve for the
spectrum and eigenstates of Ĥ0.

IV. THE HYDROGEN ATOM

The radial equation for the Coulomb problem gives
an example of a shape invariant potential in 1 spatial
dimension. The equation is [6]:

Ĥ(l) = − 1

2m
∂2r +

(
1

2m

l(l + 1)

r2
− e2

4πε0

1

r

)

= − 1

2m
∂2r +

1

2m

(
l(l + 1)

r2
− 2

a

1

r

)
,

(17)

where a = 4πε0
me2 is the Bohr radius. To analyze this, note

that the ground state wavefunction satisfies
ψ0(r) ∝ rle−r/(l+1)a, u0(r) = rψ0(r) ∝ rl+1e−r/(l+1)a,
so by (4), the superpotential is

W (r) = − 1√
2m

∂r ln
(
rl+1e−r/(l+1)a

)

=
1√
2m

(
1

(l + 1)a
− l + 1

r

)

This gives

Â =
1√
2m

∂r +
1√
2m

(
1

(l + 1)a
− l + 1

r

)

Â† = − 1√
2m

∂r +
1√
2m

(
1

(l + 1)a
− l + 1

r

)

Ĥ1(l) = Â†Â

= − 1

2m
∂2r +

1

2m

(
l(l + 1)

r2
− 2

a

1

r
+

1

(l + 1)2a2

)

= Ĥ(l) +
1

2m(l + 1)2a2

Ĥ2(l) = ÂÂ†

= − 1

2m
∂2r +

1

2m

(
(l + 1)(l + 2)

r2
− 2

a

1

r
+

1

(l + 1)2a2

)

= Ĥ(l + 1) +
1

2m(l + 1)2a2

= Ĥ1(l + 1) +
1

2ma2

(
1

(l + 1)2
− 1

(l + 2)2

)

(18)

Alternatively, we could have derived the above by noting
the form of Ĥ and guessing a superpotential W which is
some low degree polynomial function of 1

r . We see that
(14) holds if we choose

f(l) = l + 1, R(l) =
1

2ma2
(

1

(l + 1)2
− 1

(l + 2)2
) (19)

Ĥ(l) − E0(l) = Ĥ0(l) = Ĥ(l) + 1
2m(l+1)2a2 , so it follows

that the ground state has E0(l) = − 1
2m(l+1)2a2 . By (16),

(19), we have:

Ek(l) =E0(l) +
k−1∑

j=0

R(l + j)

=− 1

2m(l + 1)2a2

+

k−1∑

j=0

1

2ma2
(

1

(l + j + 1)2
− 1

(l + j + 2)2
)

=− 1

2m(l + k)2a2
,

(20)

which is indeed the correct result.
For the wavefunctions, we use the second line of (18)

along with (19) to get:

|uk+1(l)〉 = Â†(l) |uk(l + 1)〉

= (− 1√
2m

∂r +
1√
2m

(
1

(l + 1)a
− l + 1

r
)) |uk(l + 1)〉

∝ (−∂r + (
1

(l + 1)a
− l + 1

r
)) |uk(l + 1)〉

(21)
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This gives:

u0(r, l) ∝rl+1e−r/(l+1)a

u1(r, l) ∝
(
−∂r +

(
1

(l + 1)a
− l + 1

r

))
rl+2e−r/(l+2)a

=

(
−∂r +

(
1

(l + 1)a
− l + 1

r

))
rl+2e−r/(l+2)a

=(2l + 3) ·
(

1

(l + 1)(l + 2)

r

a
− 1

)
rl+1e−r/(l+2)a

∝
(

1

(l + 1)(l + 2)

r

a
− 1

)
rl+1e−r/(l+2)a

(22)

and so on. Thus we see that we are able, using Supersym-
metric Quantum Mechanics, to solve for the eigenstates
of the radial equation of the hydrogen atom simply by
applying the operator Â†(l).

V. CONCLUSION

We have shown that given a Hamiltonian with a ground
state, we may shift it by some constant to obtain a Hamil-
tonian with ground state energy 0. Further, we may fac-
tor this latter as Â†Â, and by considering the new Hamil-
tonian ÂÂ† and iterating, we may obtain a sequence of

Hamiltonians with similar spectra. Given a Hamiltonian
Ĥ = − 1

2m∇2 + V in n dimensions with ground state
ψ0(x)), we may construct fermionic creation and annihi-

lation operators {b̂i, b̂†i}|i∈{1,...n}, operators

{Âi = 1√
2m
∂xi − 1√

2m
∂xi ln(ψ0(x))}|i∈{1,...n}, and finally

an operator Q̂ = Âib̂
†
i such that Ĥ̂ĤH = {Q̂, Q̂†} is a Hamil-

tonian acting on a Hilbert Space with n different types

of fermions. We have shown that Ĥ̂ĤH reduces to Ĥ plus a
constant for states containing 0 fermions, and that hermi-
tian operators formed from Q̂, Q̂† generate symmetries of

Ĥ̂ĤH which may be interpreted for a harmonic oscillator as
supersymmetries - i.e. as changing bosons into fermions
and vice versa.

We have defined shape invariance: that if a set of
Hamiltonians {Ĥ(~a)} is indexed by a parameter ~a, and if

Â(~a)Â†(~a) = Â†(f(~a))Â(f(~a)) +R(~a) for functions f,R,

then Ĥ(~a) = Â†(~a)Â(~a) is shape invariant. Shape in-

variance allows us to use the operators Â†(~a) to solve for

the spectrum and eigenfunctions of Ĥ(~a). The spectrum

is Ek(~a) = E0(~a) +
k−1∑
j=0

R(f j(~a)). Finally, we have ap-

plied this to the hydrogen atom, obtaining algebraically
the correct energies and wavefunctions, and showing in
a particular example the usefulness of the methods of
Supersymmetric Quantum Mechanics.
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Most stars end their lives as white dwarf stars. These dwarfs typically have mass comparable to
the mass of the Sun, and volume comparable to the volume of Earth. In this stage the stars have
terminated their thermonuclear reactions, yet they do not experience gravitational collapse. These
stars provided support to quantum theory, since electron degeneracy pressure, a quantum mechanical
effect, is the only known phenomenon capable of supporting their existence. In this paper we develop
key principles of quantum mechanics in order to derive electron degeneracy pressure and apply it
to characterize the interior of white dwarf stars. We then use it provide an estimation for the upper
bound of the mass of white dwarf stars, known as the Chandrasekhar limit. Finally, we qualitatively
synthesize current knowledge on the fate of white dwarfs, which will either cool down and crystallize,
or explode as type Ia supernovae.

I. INTRODUCTION

In the early 19th century, F.W. Bessel used the tech-
nique of stellar parallax to measure the distance from the
Earth to Sirius, the brightest star in the night sky. Dur-
ing this experiment, Bessel found that the star deviated
slightly from its expected path, and from that point on
decided to follow the star’s movements. After years of
documenting the star’s position, in 1844 Bessel deducted
that Sirius was actually a binary system, but that his
telescope was not strong enough to detect Sirius’ com-
panion star.

In 1862, Alvan Graham Clark, son of a lensmaker, used
a large refractor telescope and was the first to be able to
visualize Sirius’ companion star, Sirius B. By analyzing
their binary orbit, he found that Sirius B had a mass of
∼ 1.0M�. A little over 50 years later, in 1915, Walter
Adams surprisingly discovered that Sirius B was a hot,
blue-white star, with a surface temperature of approx-
imately 27,000 K, and a radius comparable to Earth’s
radius [1]. The other astronomers at the time refused
to believe his results, arguing that it was impossible to
have a star with the Sun’s mass and Earth’s volume. It
was only with the advent of quantum mechanics that the
enigma was resolved.

In this paper we will develop the foundations of Fermi-
Dirac statistics in order to derive electron degeneracy
pressure. This outward pressure is what allows the star
to not collapse on itself due to its inward gravitational
pressure. We will also see that there is an upper bound
to the amount of mass a white dwarf star can possess,
before the star ignites and blows itself apart. Finally, we
will qualitatively describe the ultimate fate of the star,
which we will see can either cool down and die peacefully,
or end with a bang. Let us know describe the basis of
quantum mechanics, the Heisenberg uncertainty princi-
ple and Pauli’s exclusion principle.

II. THEORETICAL FRAMEWORK

A. Heisenberg uncertainty & Pauli exclusion
principles

1. Heisenberg uncertainty principle

Heisenberg’s uncertainty relations constitute one of the
most ground-breaking discoveries of early quantum me-
chanics. In classical mechanics, measurement of any dy-
namical variable of a particle will yield well-defined val-
ues. In quantum mechanics, instead, the outcome of mea-
surement has a probability distribution with an expec-
tation value and an uncertainty. In particular, Heisen-
berg discovered that two measureable conjugate prop-
erties (such as position and momentum) cannot be si-
multaneously known to an arbitrary degree of precision.
The complete derivation of the uncertainty relation, us-
ing the Hermiticity of the operators and the Schwartz
inequality, can be found in Shankar [5]. If we consider
two Hermitian operators, Ω and Λ, with the commuta-
tion relation [Ω,Λ] = iΓ, then it can be shown [5] that Γ
is also Hermitian. Defining the uncertainty of the opera-

tors to be ∆Ω =

√
〈Ω2〉 − 〈Ω〉2 and ∆Λ =

√
〈Λ2〉 − 〈Λ〉2,

where the bra-ket notation is used for the expectation
value about a normalized wavefunction |Ψ〉, then it can
be shown[5] that the uncertainties obey the relationship:

(∆Ω)2(∆Λ)2 ≥ 1

4
〈Ψ| {(Ω−〈Ω〉), (Λ−〈Λ〉)} |Ψ〉2+

1

4
〈Ψ|Γ |Ψ〉2

(1)
where {A,B} is the anticommutator of the operators.
Mathematically, the uncertainty principle states that
there is a lower bound to the product of the conjugate
operators’ uncertainties. In the specific case of position
and momentum, which is the case of interest for later
derivations in this paper, Γ = h̄, and since the first term
is always positive definite, the following inequality must
hold

(∆x)2(∆px)2 ≥ h̄2

4 (2)

(∆x)(∆px) ≥ h̄
2 (3)

159



A Quantum Statistical Description of White Dwarf Stars 2

2. Pauli exclusion principle

Another key concept that arose in early quantum me-
chanics was Pauli’s exclusion principle. From Heisen-
berg’s principle, we know that we cannot describe a par-
ticle in position-momentum phase space with a point, be-
cause its position and momentum cannot both be known
with certainty. Therefore, phase space is not a contin-
uum, but it is “quantized” in cells, which correspond
to states, of area ∆x∆px ∼ O(h)[2]. Pauli’s exclusion
principle states that no more than one fermion with a
given spin orientation can occupy a given state in phase
space[2]. Since electrons and protons are fermions of spin
1/2, and have two possible spin orientations, no more
than two particles can occupy a given state (i.e. cell), and
they must have opposite spin. On the other hand par-
ticles that obey Einstein-Boson statistics, called bosons,
do not follow Pauli’s exclusion principle, and there is no
limit to how many bosons can occupy a given state.

FIG. 1: The cell in phase space has area equal to Planck’s
constant, and cannot contain more than two electrons, of op-
posite spins. Figure adapted from [2].

The same argument can be extended to 3-D space,
which corresponds to 6-D phase space, by stating that
only two fermions, of opposite spin, can occupy the same
state of volume h3 in phase space.

B. Fermi-Dirac statistics

1. Antisimmetry of fermions

This section is not essential for the rest of our anal-
ysis, however it is interesting to see how two different
sets of statistics arise from considering the effects of
interchanging two identical particles in an N-body sys-
tem. Let us consider such a system, and describe with
qi all the coordinates of the ith particle. The time-
independent Schrödinger equation tells us that energy
eigenstates obey the following relation

H Ψn(q1, . . . , qN ) = EnΨn(q1, . . . , qN ) (4)

Let us define Pij as a “parity operator”[3], such that it
simply interchanges the positions of two of the identical
particles, qi and qj . Applying it a second time would

simply return the system the initial system, i.e.

P2
ijΨn = Ψn (5)

The eigenvalue of this equation is (+1), so the eigenvalues
of the operator Pij can be +1 or -1[3]. This implies that
the eigenstates Ψn can either be symmetric or antisym-
metric under the interchange of two of particles. Using
relativistic quantum field theory, specifically the Dirac
equation, it is possible to show that the eigenfunctions
with eigenvalue +1 correspond to particles with integer
spin, which obey Bose statistics, while those with eigen-
value -1 correspond to half-integer spin particles, which
obey Fermi statistics [3].

2. Fermi momentum and energy

A key difference between Fermi particles and Bose par-
ticles is that Fermi particles obey Pauli’s exclusion prin-
ciple, while Bose particles do not. If we consider a gas
with N particles, Pauli’s exclusion principle constrains
the system such that no two identical particles can have
the same set of 4 quantum numbers.

Let us consider an energy level εi, with gi degenerate
states. Let ni (ni < gi) be the number of fermions of
spin 1/2 occupying these states. Since only one fermion
can occupy each degenerate state, the number of possible
ways that the system can be configured is

Wi =
gi(gi − 1) . . . (gi − ni + 1)

ni!

=
gi!

(gi − ni)!ni!
where the ni! in the denominator accounts for the over-
counting due to the particles being identical, a correction
known as Botzmann counting [4]. If we consider all the
energy levels of the system, we obtain that the total num-
ber of ways of configuring the gas is

WF {ni} =
∏

i

gi!

(gi − ni)!ni!
(6)

Now, in accordance with thermodynamics, we can define
the entropy of the system as S = kB ln(W )[4]. The state
with the largest number of microstates will be the most
probable configuration of the system. We can find this
configuration by maximizing entropy. Using Stirling’s
approximation [7],

S = kB ln
∏

i

gi!

(gi − ni)!ni!

' kB
∑

i

[gi ln gi − (gi − ni) ln(gi − ni)− ni lnni]

Using Lagrange multipliers to maximize S while satis-
fying the constraints

∑
i ni = N and

∑
i niεi = E, we

obtain[4]

ni =
gi

eα+βεi + 1
(7)
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To match the known thermodynamic results[1], we can
identify β as 1/kBT and α = −µ/kBT . Hence

ni =
gi

e(εi−µ)/kBT + 1
(8)

Since a particle’s energy is related to its momentum (εi =
p2
i /2m), states in the same location with the same en-

ergy occupy the same volume in space-momentum phase
space. By Pauli’s exclusion principle we found that at
most two spin 1/2 fermions can occupy the same state in
phase space, which has volume h3. Therefore, the degen-
eracy for a given energy level εi is

gi = #states
phase space volume (9)

= 2
h3 (10)

We can now write the number density of particles occu-
pying the states of energy εi as

ni =
2

h3

1

e(εi−µ)/kBT + 1
(11)

As we decrease the temperature of the system to
T → 0, the particles lose their thermal energy and oc-
cupy the lowest available energy state. In the limit, all
the low energy states will be occupied, and none of the
high energy states will be. The maximum energy of the
occupied states is known as the Fermi energy, εF , and
all the other particles have energy E ≤ εF . At T=0 the
Fermi energy is equal to the chemical potential, µ, and,
renaming the particles’ energy εi with E, the energy dis-
tribution function of the system can be written as,

f(E) =
1

e[(E−εF )/kBT ] + 1
(12)

and it is equal to 1 if E < εF and 0 if E > εF [4]. At T=0,
the gas is said to be completely degenerate. If T > 0,
then the distribution will smooth out to include some
energies above the Fermi energy, because some particles
will have enough thermal energy to jump to higher states.
This is captured in figure II. Recall that ni, as expressed
in (11), is the number density of particles occupying a
given volume of position-momentum phase volume. We
can integrate over the momentum component to obtain
the number density of all the particles with a given po-
sition. If the gas is completely degenerate there is an
upper bound to the momentum. Since all the particles
have energy E ≤ εF , and energy is related to momentum
(in the non-relativistic limit) by E = p2/2m, all the par-
ticles will have momentum p ≤ pF =

√
2mεF , where pF

is known as the Fermi momentum. Therefore integrating
over momentum and using the fact that f(E) = 1 for
E < εF :

n =
∫
nid

3~p (13)

= 2
h3

∫
1

e[(E−εF )/kBT ]+1
d3~p (14)

= 2
h3

∫ pF
0

4πp2dp (15)

= 8π
3h3 p

3
F (16)

FIG. 2: The Fermi distribution function for a completely de-
generate gas, in comparison with the distribution for a gas
with T > 0. Here the notation F (E) is used in place of f(E)
Figure adapted from [2].

→ pF =

(
3h3

8π
n

)1/3

=
h

2

(
3n

π

)1/3

(17)

We have derived the expression for the Fermi momen-
tum of a gas, as a function of its number density. In
the non-relativistic limit, the Fermi energy is related to

the momentum by εF =
p2F
2m . Plugging in the expression

above and using the fact that h = 2πh̄, we obtain

εF = 1
2m

h2

4

(
3n
π

)2/3
(18)

= h̄2

2m

(
3π2n

)2/3
(19)

Equipped with this relationship, we can find a condition
for which, even when T > 0, complete degeneracy is a
good approximation to describe the system. In particu-
lar, the approximation can be used if the thermal energy
of the system is lower than its Fermi energy, because that
would imply that the majority of the electrons will not
have sufficient thermal energy to jump from a state with
E ≤ εF to a state of energy E > εF . Using Eqn.(19)

EThermal < εF (20)

3

2
kT < h̄2

2me

[
3π2n

]2/3
(21)

In practice, it is more useful to use the mass density of
the system instead of its number density. Let us there-
fore relate the number density to the mass density of the
system, ρ, as carried out in [1]:

n =

(
#electrons

nucleon

)(
#nucleons

volume

)
=

(
Z

A

)
ρ

mH
(22)

where Z, A, mH are, respectively, the number of protons
and nucleons, and the mass of a hydrogen atom. There-
fore, the condition for degeneracy can be written as

3

2
kT <

h̄2

2me

[
3π2

(
Z

A

)
ρ

mH

]2/3

(23)
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or rearranging

T

ρ2/3
<

h̄2

3mek

[
3π2

mH

(
Z

A

)]2/3

= 1261
K

m2kg2/3
(24)

Plugging in values for temperature and density for the
Sun and the white dwarf Sirius B [1], we obtain that
T/ρ2/3 for the Sun is equal to 5500Km−2kg−2/3, while
for Sirius B it equals 37Km−2kg−2/3. It is apparent that
the condition is not satisfied for the Sun, implying that
electron degeneracy is weak in the Sun and can be ig-
nored, while the white dwarf satisfies it and the star can
be approximated as completely degenerate.

III. WHITE DWARF ANATOMY

A. Electron degeneracy pressure

For 50 years since its discovery, Sirius B puzzled physi-
cists. The star had exhausted its thermonuclear reac-
tions, yet gravitational pressure had not forced it to col-
lapse on itself. The solution to the phenomenon, in fact,
required quantum mechanics. As we will see in this sec-
tion, Fermi statistics lead to a pressure capable of arrest-
ing gravitational collapse.

From Eqn.(17) we found that momentum scales as

p ∼ h̄n1/3 (25)

Using the expression for the number density in Eqn.(22),
the momentum is

p ∼ h̄
[(

Z

A

)
ρ

mH

]1/3

(26)

The velocity of non-relativistic electrons is related to
their momentum by v = p/me. If we assumed that all
the electrons had approximately the same momentum,
the pressure of the gas would be[1]

P ' 1

3
npv (27)

Plugging in the expressions for n, p, v, we obtain that

P ∼ h̄2

me

[(
Z

A

)
ρ

mH

]5/3

(28)

If we substituted ρ with M/R3 we would get that
pressure scales with ∝ R−5.

If we consider the effect of gravity, hydrostatics tell us
that gravitational pressure obeys dP/dR = −ρg. Using
dimensional analysis, this tells us that the gravitational
pressure at the center of the star scales as

0− Pc
R

' −
(
M
R3

) (
GM
R2

)
(29)

Pc ' GM2

R4 ∝ R−4 (30)

It is the fact the outward electron degeneracy pressure
has a steeper dependance on radius than the inward grav-
itational pressure (R−5 vs. R−4) that allows the star to
not collapse! In fact, if the star were to shrink, electron
degeneracy pressure would increase faster and tend to
push the star back out to its equilibrium radius.

B. Estimation of the Chandrasekhar limit

Electron degeneracy pressure was found to have inter-
esting implications. In 1931, at the young age of 21,
Subrahmanyan Chandrasekhar derived that there is an
upper bound for the mass of white dwarfs. Here we will
find a rough estimate for its value.

The natural next step of the above analysis is to set
the two expressions for pressure, Eqn.(28) and Eqn.(30),
equal to each other, to find the relationship between the
equilibrium radius of the star and its mass.

GM2

R4
' h̄2

me

[(
Z

A

)
M

mHR3

]5/3

(31)

which leads to

M1/3R ' h̄2

Gme

[(
Z

A

)
1

mH

]5/3

(32)

or, by taking the cube of both sides,

→MV = constant (33)

where V is the volume of the star.
This equation tells us something initially counter-

intuitive: the more massive the star is the smaller it is [1]!
This also means that if a white dwarf were to accrete mat-
ter, for example from a companion star if it part of a bi-
nary system, it would shrink and get denser. Recall from
Eqn.(26) that, using non-relativistic expressions, the ve-
locity of the particles scales positively as v ∝ ρ1/3. As the
star gets denser the particles’ momentum increases. This
is in accordance with Fermi statistics. Compare with fig-
ure III. There is a limit to how dense the star can become
before the particles reach relativistic speeds. It turns out
that the limiting density is approximately 109kg/m3[1].
For densities above this order of magnitude we need to
correct our equations to account for relativitistic effects.
In particular, we need to change the energy-momentum
expression to be EF = [p2

F c
2 + m2c4]1/2. Following the

same steps as in sections II.B.2 and in III.A with this
modification, we obtain that when the particles reach rel-
ativistic speeds, the electron degeneracy pressure scales
as [1]

P ' h̄c
[(

Z

A

)
M

mHR3

]4/3

∝ R−4 (34)

Eqn. (34) tells us that when the particles achieve rela-
tivistic speeds, their electron degeneracy pressure is no
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FIG. 3: This graph captures how the momentum of Fermi
particles increases as the space they occupy is contracted.
There are fewer lower energy states available, so the particles
are forced to occupy higher energy and higher momentum
states. Figure adapted from [2].

longer steeper than the gravitational pressure. The star is
now dynamically unstable [1]. This means that if the star
accretes additional mass, shrinks and becomes denser,
electron degeneracy pressure will not act as a restorative
force, and nothing will be able to stop the gravitational
collapse of the star. Once again, we can set the inward
gravitational pressure equal to the outward electron de-
generacy pressure to gain some insight.

GM2

R4
' h̄c

[(
Z

A

)
M

mHR3

]4/3

(35)

This time the expression for mass is indipendent of ra-
dius, and we obtain (setting Z/A = 0.5)

MCh '
(
h̄c

G

)3/2 [(
Z

A

)
1

mH

]2

' O(M�) (36)

A precise derivation with correct proportionality con-
stants leads to [1]

MCh ' 1.44M� (37)

This is known as the Chandrasekhar limit, which is the
upper bound to the mass a white dwarf can have, if it is
to avoid gravitational collapse.

C. Ultimate fate of white dwarfs

Although the white dwarf phase is typically consid-
ered as the stage by which point most stars have ended
their lives, it is interesting to see what ultimately hap-
pens to these stars. As we will see, if a white dwarf does

not accrete matter up to the Chandrasekhar limit, it will
simply cool off and slowly dissipate its thermal energy.
As it cools, the star’s carbon and oxygen will eventually
crystallize. If on the other hand it gains enough mass
to reach the Chandrasekhar limit, it will give way to a
spectacular explosion, known as a type Ia supernova.

A satisfying analysis of either of these scenarios re-
quires a detailed description of the structure of the dif-
ferent layers of the star, which is beyond the scope of this
paper. In this section we will simply give a qualitative
description of the processes.

1. Cooling & crystallization

For the star to cool, energy needs to be transported
outward from its interior. In a main-sequence star, pho-
tons can typically travel much farther than atoms before
losing their energy in a collision. Thus energy is trans-
ported from the interior of the star to its surface through
radiation. In white dwarfs instead, since most of the low
energy states are already occupied, the degenerate elec-
trons cannot lose their energy in a collision and jump to
a lower energy state. Therefore the electrons can travel
long distances without losing their energy, and are the
primary transporters of energy from the interior to the
surface of the white dwarfs.

This process is extremely efficient, to the point that,
aside from a thin layer around the surface, most of the
star is isothermal. Near the surface, density decreases, in-
creasing the quantity T/ρ2/3, and by the condition given
in Eqn. (24) it reaches a point where the matter can no
longer be described as degenerate [1]. Figure IV captures
this phenomenon.

FIG. 4: Temperature and degeracy level in the interior of
a white dwarf model. Here D = 1261 K

m2kg2/3
as from the

condition in Eqn. (24). Figure adapted from [1].

The fact that the interior of the star transitions from
degeneracy to non-degeneracy can be used (see [1] for
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a derivation) to show that the star’s surface luminosity
depends on the star’s interior temperature according to

LSurf ∝ T
7/2
c [1]. On the other hand, the interior of

the star loses thermal energy according to the Stefan-
Boltzmann law, in which LInt ∝ T 4

c . Therefore, the in-
terior of the star cools faster than its surface.

As the star cools, the nuclei begin aligning into a crys-
talline lattice, since it is the lowest energy system con-
figuration. The nuclei maintain this structure by electro-
static repulsion and vibrate coherently across the lattice.
The crystallization process starts at the center, which
cools faster, and expands out toward the surface. Eventu-
ally, the ultimate fate of the star is to become an “Earth-
sized diamond”, made of crystallized carbon and oxygen,
floating around indefinitely in space [1].

2. Type Ia supernovae

Type Ia supernovae are extremely luminous explosions,
that have been found to be highly consistent in terms of
energy output. Thus they have become one the most
widely used “standard candles” adopted by astronomers
to determine inter-galactic distances. Given the similar-
ity between all observed type Ia supernovae, physicists
believe they must be caused by a fairly uniform mecha-
nism. Additionally, their spectra do not contain hydro-
gen lines, implying that they must be caused by evolved
objects who have already converted their hydrogen to
heavier elements [2].

The most widely accepted explanation is that these su-
pernovae are triggered by a white dwarf accreting enough
mass to reach the Chandrasekhar limit. This could hap-
pen if two white dwarf stars are in binary orbit, with
the less massive star disintegrating and combining with
the more massive star. As the more massive star nears
the Chandrasekhar limit, nuclear reactions re-ignite near
its center and blow up the star. This is known as the
“double-degenerate model” [1].

The other scenario which could lead to type Ia super-
novae is a binary orbit between a main-sequence star and
a white dwarf, known as the “single-degenerate model”.

The helium accreted by the white dwarf forms a layer
above its degenerate carbon-oxygen interior. The helium
also becomes degenerate, and when enough helium has
accumulated, it explodes in a runaway thermo-nuclear
reaction. This explosion, known as a helium flash, only
lasts a few seconds but releases a large amount of energy.
It also creates a shock wave that propagates inwards
throughout the interior of the star. This is thought to
trigger ignition of the degenerate carbon and oxygen, and
the nuclear reactions ultimately cause the white dwarf to
explode in a type Ia supernovae, disintegrating it [1].

IV. CONCLUSION

In the first part of the paper we described the rele-
vant basic principles of quantum mechanics. We used
this foundation to develop Fermi statistics and subse-
quently electron degeneracy pressure, which is the key
phenomenon that sustains white dwarf stars from gravi-
tational collapse. We then derived an estimation of the
limiting mass white dwarfs can possess, before electron
degeneracy pressure can no longer withstand the inward
gravitational pressure. In the final sections of the pa-
per we qualitatively described the ultimate fate of white
dwarf stars, in the two scenarios of isolated stars and
stars in binary systems.

In future studies we would like to explore current re-
search on type Ia supernovae and analytically develop
the processes which are thought to occur. In particu-
lar, we are interested in the mechanisms that lead to the
ignition of degenerate carbon and oxygen in the white
dwarfs’ core which cause the stars to explode rather than
collapse.
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A two-state formalism for the neutral kaon system is developed, including considerations for neutral
meson oscillations and CP violation. I give a brief introduction to the electroweak Lagrangian
and the Cabibbo-Kobayashi-Maskawa matrix as they relate to the decay and oscillations of the
neutral kaon. I derive the electroweak and CP eigenbases in terms of the strong force eigenbasis by
considering the matrix elements of the effective Hamiltonian for the neutral kaon two-state system.
I then consider the time evolution of the electroweak eigenstates and discuss indirect and direct CP
violating phenomenon in the neutral kaon system.

I. INTRODUCTION

In October 1956, Tsung Dao Lee of Columbia Univer-
sity and Chen Ning Yang of the Institute of Advanced
Study at Princeton published a paper [1] that not only
opened up an entirely new realm of physics, but also lead
to the duo receiving the Nobel prize 14 months later. At
the time, all physics was assumed to be invariant under
parity transformations, which invert all spatial coordi-
nates. However, while Lee and Yang found that the ex-
perimental evidence suggested the strong nuclear force,
electromagnetism, and gravity preserved parity symme-
try, they found no one had ever investigated parity sym-
metry in the weak nuclear force. In the same paper, they
suggested some simple experiments that could test the
effect of parity transformations on weak interactions.

By January 1957, Chien-Shiung Wu of Columbia Uni-
versity showed that the beta decay of cobalt-60 did
not preserve parity [2] and another group at Columbia
showed that pion and muon decays did not either [3].
This means that the weak interaction somehow makes
a distinction between right and left, which went against
the prevailing physical intuition at the time.

Symmetries in physics are important because accord-
ing to Noether’s theorem, every symmetry corresponds to
a conservation law. By the late 1950’s Schwinger, Luders,
and Pauli had independently proved that any physical
system that is invariant under Lorentz transformations
is also invariant under the CPT operator, which takes a
particle to its anti-particle under spatial coordinate in-
version and time reversal. Physical intuition about hand-
edness aside, physicists also wanted parity symmetry to
be true because it is a stronger statement than CPT
symmetry - it gives more constraints on the behavior of
the system than simply reiterating Lorentz invariance.
After parity violation was observed, many physicists still
wanted a stronger symmetry. The new proposal was that
physical laws are the same for matter and anti-matter un-
der spatial coordinate inversion, known as CP symmetry.

This new symmetry seemed to hold up until 1964,
when James Cronin and Val Fitch established that neu-
tral kaons do not conserve CP symmetry in their decays
to pions [4]. The observation of CP violation in the weak
nuclear force was a very powerful statement about real-

ity. In fact, CP violation led Kobayashi and Maskawa to
predict the existence of three new quarks [5] to accom-
pany the already known up, down, and strange quarks in
1973. As modern students of physics will know, the top
quark discovery in 1995 rounded out the predicted three
generations of quarks, twenty years later!

Clearly CP violation was a powerful physical observa-
tion and it is still a rich and active area of research today.
In this paper I will present a model for the behavior of
neutral kaon systems, including neutral kaon oscillations
and CP violating effects. The presented analysis applies
equally well to the neutral B0, B0

s , and D0 mesons, but
for simplicity I consider only the neutral kaon.

II. KAONS AND THE STANDARD MODEL

A neutral kaon is a meson, or bound state of two
quarks, composed of either a down quark and a strange
anti-quark (K0) or a down anti-quark and a strange

quark (K0). In the Standard Model, kaon decay is me-
diated by the W± boson, and they commonly decay into
pions, which are composed of up and down type-quarks.

For example, the K0 in Figure 1 decays into a π+ and
π− when the kaon’s strange quark becomes an up quark
by emitting a W−, which then decays into a down quark
and up anti-quark. The down anti-quark from the orig-
inal K0 and the up quark form a π+, while the down
quark and up anti-quark form a π−.

FIG. 1: Kaon decay into two charged pions.

Diagrams like Figure 1 can be interpreted using Feyn-
man rules to relate them to the Standard Model La-
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grangian for electroweak interactions. A full discussion
of the electroweak force and the Standard Model could
easily span several semester courses or books, so I will
not go into much detail here. Interested readers can find
more information in [6]. The generic Lagrangian for in-
teractions between an anti-up type quark, a down type
quark, and a W± boson is given by

LW± = −gW√
2
uLiγ

µ (VCKM)ij dLjW
+
µ + h.c. (1)

For our purposes, it is sufficient to note that uLi is the
vector (u, c, t) corresponding to the three up-type quarks:
up, charm, top; dLj is the vector (d, s, b) corresponding
to the three down-type quarks: down, strange, bottom;
and VCKM is the Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix.

The CKM matrix is a 3×3 unitary matrix that is most
simply written as

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 (2)

where each matrix element corresponds to the strength
of the coupling between each set of quarks. The values
of the nine matrix elements are determined empirically -
there is currently no theoretical model that predicts their
values.

In Figure 1, we have two vertices of made up of two
quarks and a W− boson, which leads to an overall proba-
bility amplitude proportional to VusV

∗
ud. However, there

are also other more complicated diagrams that also con-
tribute to the decay of a kaon into two pions with smaller
probability amplitudes involving additional vertices.

An interesting phenomenon in the neutral kaon system
is oscillation, where a K0 becomes a K0 or vice versa
through a box diagram like the one shown in Figure 2.

FIG. 2: Kaon oscillation. From [7].

Neutral kaon oscillations occur when the two particles
making up the kaon exchange two W± bosons, ending up
in the other neutral kaon state. This is possible because
electroweak processes, like the emission of a W±, do not
conserve flavor, unlike strong nuclear processes. Similar
phenomenon is also observed in neutrinos.

III. OPERATORS

Now that we’re familiar with our physical system of
interest, we need to define our operators and their effects.
The two operators of interest, charge conjugation and
parity, perform discrete transformations.

The charge conjugation operator, C, transforms a par-
ticle into its antiparticle. Since the anti-particle of an
anti-particle is simply the particle itself, C2 = 1. I choose
to define C such that for a quark q,

C|q〉 = |q〉, C|q〉 = |q〉 (3)

where q is the anti-quark of the same flavor.
The parity operator, P , inverts all spatial coordinates.

As with C, applying P to a system twice returns the
system to its original configuration, such that P 2 = 1.
This means that the eigenvalues of the parity operator
can only be −1 or 1. A result from quantum field theory
requires that fermionic particles and anti-particles must
have opposite parity eigenvalues, but the choice of which
eigenvalue is which is arbitrary. Following the convention
in Griffiths [6], I define P such that

P |q〉 = |q〉, P |q〉 = −|q〉. (4)

Both C and P are multiplicative, such that

P |qq〉 = (P |q〉)(P |q〉) = (+1)(−1)|qq〉 = −|qq〉. (5)

The CP operator acting on a quark and anti-quark
system is thus

CP |qq〉 = −|qq〉. (6)

Neutral kaons, which are composed of two quarks are
initially produced as either a K0 (ds) or K0 (ds). These
two mesons have parity eigenvalue −1, and so acting on
a neutral kaon with the CP operator yields

CP |K0〉 = −|K0〉, CP |K0〉 = −|K0〉. (7)

Clearly, neither neutral kaon is a CP eigenstate. How-
ever, two CP eigenstates can be constructed:

|K1〉 =
1√
2

(|K0〉 − |K0〉)

|K2〉 =
1√
2

(|K0〉+ |K0〉)
(8)

where |K1〉 is CP even (eigenvalue +1) and |K2〉 is CP
odd (eigenvalue −1).

The kaon commonly decays into two charged pions
(π+π−), two neutral pions (π0π0), or three pions (π0π0π0

or π0π+π−). Like the kaon, pions have a parity eigen-
value −1, so a final state with n pions has overall parity
(−1)n. The neutral pion is its own anti-particle, and the
charged pions are each other’s anti-particles such that

C|π0〉 = −|π0〉, C|π±〉 = −|π∓〉. (9)
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Then under the CP operator the pion final states are,

CP |2π〉 = |2π〉, CP |3π〉 = −|3π〉 (10)

such that the two pion final states are CP even and three
pion final states are CP odd. If CP is conserved, the
even |K1〉 states can only decay to the even two pion
final states, while the odd |K2〉 states can only decay to
three pion final states.

IV. NEUTRAL MESON OSCILLATIONS

Now we develop the neutral kaon system as a two state
system, including oscillatory and CP -violating behav-
ior, starting from the weak nuclear force Lagrangian and
symmetry considerations. The two state model is valid
only when ignoring the various decay final states and for
timescales that are much larger than the characteristic
timescale of the strong nuclear force. The following dis-
cussion follows a number of sources: [6, 8–12].

The neutral meson two-state system is governed by a
2× 2 non-Hermitian effective Hamiltonian H = M − i

2Γ
where M and Γ are Hermitian such that
(
H11 H12

H21 H22

)
=

(
M11 M12

M21 M22

)
− i

2

(
Γ11 Γ12

Γ21 Γ22

)
. (11)

The non-Hermitian character of H reflects the fact that
we are allowing the kaons to decay to states that are not
represented in the two state system, thus the probability
is not conserved. The matrix M corresponds to mass
or propagator terms, while the Γ matrix corresponds to
decay terms.

The matrix elements can be approximately evaluated
by treating the weak nuclear force as a perturbation to
the strong nuclear force eigenstates that the K0 and K0

are produced in, then applying time-independent pertur-
bation theory to second order. We use second order per-
turbation theory to include oscillations like the one shown
in Figure 2. The diagonal matrix elements of M are

M11 = mK0 + 〈K0|Hweak|K0〉

+
∑ |〈n|Hweak|K0〉|2

(mK0 −mn)

M22 = mK0 + 〈K0|Hweak|K0〉

+
∑ |〈n|Hweak|K0〉|2

(mK0 −mn)

(12)

where Hweak is the standard model Hamiltonian for
the weak nuclear force, and |n〉 is some intermediate
state. These terms represent flavor-preserving oscilla-
tions where K0 → K0 or K0 → K0.

The off-diagonal terms represent flavor-changing os-
cillations where K0 → K0 or K0 → K0. Because we
require M to be Hermitian, the off-diagonal matrix el-
ements are each other’s complex conjugates. The M21

term is given by

M21 = M∗12 = 〈K0|Hweak|K0〉

+
∑ 〈K0|Hweak|n〉〈n|Hweak|K0〉

(mK0 −mn)
.

(13)

The matrix Γ has matrix elements

Γ11 = π
∑

ρF |〈F |Hweak|K0〉|2

Γ22 = π
∑

ρF |〈F |Hweak|K0〉|2

Γ21 = Γ∗12 =

π
∑

ρF 〈K0|Hweak|F 〉〈F |Hweak|K0〉

(14)

where |F 〉 is a given final state and ρF is the correspond-
ing density matrix for that final state.

By requiring that M and Γ are Hermitian matrices, we
find that H is given by

H =

(
M11 − i

2Γ11 M∗21 − i
2Γ∗21

M21 − i
2Γ21 M22 − i

2Γ22

)
. (15)

We additionally require that the matrix H be invariant
under CPT transformation:

(CPT )

(
M11 − i

2Γ11 M∗21 − i
2Γ∗21

M21 − i
2Γ21 M22 − i

2Γ22

)
(CPT )−1

=

(
M22 − i

2Γ22 M∗21 − i
2Γ∗21

M21 − i
2Γ21 M11 − i

2Γ11

)

=

(
M11 − i

2Γ11 M∗21 − i
2Γ∗21

M21 − i
2Γ21 M22 − i

2Γ22

)
(16)

and we see that M11 = M22 = M and Γ11 = Γ22 = Γ.
This is the equivalent of requiring that a particle and its
anti-particle have the same mass and decay widths.

Now we want to diagonalize this matrix, which requires
us to solve the following eigenvalue equation:
(

M − i
2Γ M∗21 − i

2Γ∗21

M21 − i
2Γ21 M − i

2Γ

)(
K0

K0

)
= λ

(
K0

K0

)
(17)

where λ is the eigenvalue times the identity matrix.
Solving for the eigenvalues λ, we find that

λ = (M − i

2
Γ)±

√
(M∗21 −

i

2
Γ∗21)(M21 −

i

2
Γ21). (18)

To simplify our expression, we define

η =

√
M21 − i

2Γ21

M∗21 − i
2Γ∗21

, (19)

which we understand as a measure of CP violation in the
system.

The eigenstates of the above equation are given by

|KA〉 =
1√

1 + |η|2
(|K0〉 − η|K0〉)

|KB〉 =
1√

1 + |η|2
(|K0〉+ η|K0〉).

(20)
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Note that if we require exact CP symmetry, η = 1, and
|KA〉 and |KB〉 are the CP eigenstates discussed above:

|K1〉 =
1

2
(|K0〉 − |K0〉)

|K2〉 =
1

2
(|K0〉+ |K0〉).

(21)

V. MASS EIGENSTATES

In 1955, Murray Gell-Mann and Abraham Pais noted
that perhaps the K0 and K0 basis was not the most nat-
ural one to use when considering decays of the neutral
kaon [13]. K0 and K0 are eigenstates of the strong nu-
clear force, but kaons decay via the weak nuclear force.
They suggested instead that perhaps there were two dis-
tinct eigenstates of the CP operator, one odd and one
even. On the assumption of CP symmetry, the CP even
state would have to decay to another CP even state, like
two pions, and the CP odd state to something CP odd,
like three pions. This would lead to two distinct popula-
tions of neutral kaons with separate lifetimes and masses.

The next year, an experiment at the Brookhaven Cos-
motron observed two distinct components in a neutral
kaon beam [14]. These two components are the actual
particles with well-defined lifetimes and masses, not the
K0 and K0 created by the strong nuclear force. They
were identified by their lifetimes as the KS (K-short)
and KL (K-long). As it turns out, the lifetimes of
the two particles are vastly different, with the KS life-
time (0.8954 ± 0.00004) × 10−10, and the KL lifetime
(511.6± 2.1)× 10−10 [15].

Eventually, Cronin and Fitch discovered that the KL

and KS are not exactly the two CP eigenstates discussed
above. To understand the physical system, we instead
define

|KS〉 =
1√

1 + |ε|2
(|K1〉+ ε|K2〉)

|KL〉 =
1√

1 + |ε|2
(|K2〉+ ε|K1〉)

(22)

where |K1〉 and |K2〉 are the CP eigenstates, and ε pa-
rameterizes the CP violation in the mass eigenstates.

In terms of the strong eigenstates KL and KS are thus

|KL〉 =
1√

2
√

1 + |ε|2
((1 + ε)|K0〉+ (1− ε)|K0〉)

|KS〉 =
1√

2
√

1 + |ε|2
((1− ε)|K0〉+ (1 + ε)|K0〉).

(23)

Upon inspection, we identify the η parameter from
Equation 20 as (1− ε)/(1 + ε) so Equation 23 becomes

|KL〉 =
1√

1 + |η|2
(|K0〉+ η|K0〉)

|KS〉 =
1√

1 + |η|2
(|K0〉 − η|K0〉).

(24)

Now that we have parameterized these two distinct
mass eigenstates KS and KL, we turn next to under-
standing their behavior as a function of time. Consider
a beam of kaons that is some mixture of K0 and K0 at
time t = 0:

|ψ(0)〉 = a(0)|K0〉+ b(0)|K0〉. (25)

The time evolution of this system is governed by the
non-Hermitian effective Hamiltonian

H
(
a

b

)
= i

∂

∂t

(
a

b

)
. (26)

Solving Equation 23 for K0 and K0, we can rewrite
|ψ〉 as

|ψ(t)〉 =
√

1 + |η|2(
a(t)

2
(|KL〉+ |KS〉)

+
b(t)

2η
(|KL〉 − |KS〉))

=
√

1 + |η|2((
a(t)

2
+
b(t)

2η
)|KL〉

+(
a(t)

2
− b(t)

2η
)|KS〉).

(27)

Now define aL(t) and aS(t) such that

aL(t) = a(t) +
b(t)

η
, aS(t) = a(t)− b(t)

η
. (28)

The time evolution for aL(t) is then given by

i
∂aL(t)

∂t
= λ+aL(t), (29)

where λ+ is the larger eigenvalue from Equation 18. In
the same way as the initial formulation of the Hamilto-
nian, we identify the real part of the eigenvalue as the
KL mass and the imaginary part as the KL decay rate
such that

mL = M +Re
(√

(M∗21 −
i

2
Γ∗21)(M21 −

i

2
Γ21)

)

ΓL = Γ− 2Im
(√

(M∗21 −
i

2
Γ∗21)(M21 −

i

2
Γ21)

)
.

(30)

By the same logic with the smaller eigenvalue from
Equation 18,

mS = M −Re
(√

(M∗21 −
i

2
Γ∗21)(M21 −

i

2
Γ21)

)

ΓS = Γ + 2Im
(√

(M∗21 −
i

2
Γ∗21)(M21 −

i

2
Γ21)

)
.

(31)

Now that we have the eigenvalues associated with the
KS and KL states, we can rewrite the time evolution
equation as
(
mL − i

2ΓL 0
0 m2 − i

2ΓS

)(
aL
aS

)
= i

∂

∂t

(
aL
aS

)
. (32)
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Finally we find that

|ψ(t)〉 = aL(0)e−imLt−ΓLt/2|KL〉
+aS(0)e−imSt−ΓSt/2|KS〉.

(33)

This equation contains both an oscillatory term that goes
as e−imt as well as an exponentially decaying envelope
that goes as e−Γt and as expected, the total probability
is not conserved.

VI. CP VIOLATION

We are now prepared to examine the CP violating phe-
nomenon in the neutral kaon system. Combining Equa-
tions 22 and 33, we find

|ψ(t)〉 =
1√

1 + |ε|2
(aS(0)e−imSt−ΓSt/2(|K1〉+ ε|K2〉)

+aL(0)e−imLt−ΓLt/2(|K2〉+ ε|K1〉)).
(34)

If we then assume that even two pion final states come
from the CP even state, K1, the decay rate is

Γ(ψ(t)→ ππ) ∝ |〈K1|ψ(t)〉|2

∝
(
e−imSt−ΓSt/2 + εe−imLt−ΓLt/2

)2

= e−ΓSt + |ε|2e−ΓLt

+2|ε| cos (∆Mt+ φ)e−(ΓS+ΓL)t/2,

(35)

where ∆M = ML −MS = Re(λL − λS) is the mass dif-
ference between the two eigenstates and φ is an arbitrary
phase. This equation contains three separate components
to the two pion final state.

The largest component comes from the KS decays.
Next there is the term suppressed by a factor of |ε| rep-
resenting interference between the KS and KL decays.
The smallest term is from KL decays, suppressed by a
factor of |ε|2.

After many KS lifetimes, our kaon beam is almost en-
tirely composed of KL. Remember that the KL and KS

states were thought to be precisely the CP eigenstates
K1 and K2. In that case, ε = 0 and the two pion final
states should die out with the same decay constant as
the KS component. However, if ε 6= 0, there will also be
a much longer lived population of two pion final states
that falls of with the KL component of the beam.

It was this long-lived population of CP even two pion
final states that Cronin and Fitch observed in 1964 [4]
as the first evidence of CP -violation by the weak nuclear
force. It is known as indirect CP violation or CP vi-
olation in mixing because the effect doesn’t involve an
actual CP -violating process. Instead it shows that the
mass eigenstates, KL and KS are not themselves eigen-
states of the CP operator, but are both mixtures of CP
odd and CP even states.

Cronin and Fitch’s original experiment observed 45±
10 two pion decays out of 22,700 total decays in a
region where the KS had long since died out. This
rate corresponds to a branching ratio of R = (KL →
π+π−)/(KL → charged) = (2.0 ± 0.4) × 10−3 and
|ε| ≈ 2.3× 10−3 [4].

Current measurements indicate |ε| = (2.228±0.0011)×
10−3 [10], which is not far off Cronin and Fitch’s original
result.

There is also a much smaller asymmetry in the decays
themselves, known as direct CP violation or CP viola-
tion in decay, which can be measured in the ratio between
K0 → π0π0 and K0 → π0π0 events. We define

η+− =
A(KL → π+π−)

A(KS → π+π−)
≈ ε+ ε′

η00 =
A(KL → π0π0)

A(KS → π0π0)
≈ ε− 2ε′

(36)

where ε is the previously defined indirect CP violation
factor, and ε′ is the direct CP violation factor.

Direct CP violation was not conclusively observed in
the neutral kaon system until the late 1990’s by the KTeV
experiment at Fermilab and the NA48 experiment at
CERN [16]. They measured the observable

Γ(KL → π+π−)/Γ(KS → π+π−)

Γ(KL → π0π0)/Γ(KS → π0π0)
=

∣∣∣∣
η+−
η00

∣∣∣∣
2

≈ 1 + 6Re(ε′/ε).
(37)

This can be interpreted as a measure of the relative
strength of the direct and indirect CP violating effects.
The KTeV experiment measured Re(ε′/ε) = (19.2 ±
2.1)× 10−4, indicating that direct CP violation is about
ten thousand times less likely than indirect CP violation.

Similar types of CP violation have also been observed
in semi-leptonic channels of the neutral kaon, the charged
kaons, and the B0, B0

s , and D0 mesons. These CP vi-
olating and oscillatory parameters can be used to con-
strain the values of the CKM matrix, and could poten-
tially show physics beyond the Standard Model as well.
It is thought that some yet-to-be-observed CP violation
will eventually explain the matter-antimatter asymmetry
of our universe. It is an experimentally and theoretically
rich topic still being explored today, but this brief intro-
duction to CP violation in the neutral kaon system cov-
ers the fundamental observations that established CP
violation, as well as a simple model to interpret these
phenomenon.
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We derive the the group properties of the Lorentz transform, and from them the Dirac equation,
assuming only the relativity principle, a constant speed of light c, that physical laws must be
based on observables, and that eigenvalues of Hermitian operators correspond to observables in the
formalism of quantum mechanics. Notably, we make no assumptions about the form of our law (we
choose the simplest non-trivial one), we do not postulate the relativistic energy-momentum relation
E2 = p2 + m2, nor do we bring up boosts as anything other than a passing remark. This serves
as a demonstration that effects arising from the Dirac equation, the most tractable being particle
spin, can be seen as artifacts solely and directly of the principle of relativity. The form of the Dirac
equation is also shown to motivate the energy-momentum relationship.

I. INTRODUCTION

Non-relativistic quantum mechanics, although extraor-
dinarily accurate and useful in a wide range of appli-
cations, suffers from lack of explanatory power rather
quickly. Taking for instance the question of particle spin,
why a single particle at rest should have a multiple com-
ponent wave-function is not explained, and the correc-
tions to the non-relativistic Hamiltonian are phenomeno-
logical; although analogies to classical angular momen-
tum exist, they are weak and fail to be quantitatively
accurate (i.e. the g-factor for the electron as estimated
from that of a spinning charged sphere is a factor of 2
too low).

Dirac originally derived his equation, the standard
first-order equation for fermions in quantum field the-
ory, by attempting to factor the quantized Klein-Gordon

Hamiltonian E =
√
p2 +m2 to retrieve a first-order

equation for the energy. Dirac found that his wave-
function had to be non-scalar in order for his square
root of p2 + m2 to be valid: the coefficients of p had
to have non-trivial commutation and anti-commutation
relations.

We attempt to explain the fundamental reasons for the
form of the Dirac equation by carefully deriving it from
minimal assumptions. We require the relativity princi-
ple to motivate Lorentz transformations, and the invari-
ance of the speed of light to provide an abstract but con-
crete definition of Lorentz transforms. The properties
of the Lorentz transformations are derived defining iner-
tial frames only as ones where Newton’s first law holds;
no reference is made to boosts except to help ground
some of the mathematics with familiar concepts, and the
detailed form of the 4-vector Lorentz transformations is
completely absent. We then motivate the Dirac equation
by attempting to construct the invariant law (Hermitian
eigenvalue equation) with the fewest possible number of
components (i.e. the lowest-dimensional law), defining
operators only based on the symmetries of the Lorentz

∗ ydl@mit.edu

transformations. The simplest first-order equation we
can construct this way is the Dirac equation. The form of
our equation is used to argue that the energy-momentum
relationship is embedded in the Lorentz transformations
and their representations in the Dirac equation.

Several conventions used in the paper are worth noting.
First, we use units ~ = c = 1. Second, Einstein sum-
mation over repeated indices is always implied. Third,
two metrics are used depending on the context; for any
4-vectors, the Minkowski metric (introduced in (2)) is
used exclusively. For 3-vectors, only the standard iden-
tity metric is used. In particular, in expressions involving
εijk, the metric is always the identity metric. The mean-
ing of contraction and the use of the metric is briefly
reviewed in the next section. Finally, we refer to the di-
agonal tensor δµν = δµν , where the second symbol is the
Kronecker delta.

II. SPECIAL RELATIVITY

Although the Lorentz transformations at the heart of
special relativity are likely familiar to the reader, the de-
velopment here emphasizes the group properties of the
transformations as arising directly from basic postulates
of the theory. The author has not found a similar de-
velopment elsewhere, so even experienced readers may
want to skim this section. Note that despite our conven-
tion ~ = c = 1, factors of c will be explicitly written in
this section, partly to ease the reader into the conven-
tion, and partly because the equations are concise with
or without the constant.

Defining an inertial frame as any frame where New-
ton’s first law holds (making inertiality a global prop-
erty), we assume (in addition to “obvious” facts like the
Euclidean nature or dimensionality of free space) the rel-
ativity principle; that the laws of nature are the same in
any inertial frame. Furthermore, we immediately impose
a law of nature: the speed of light, c, is constant. We
identify “events” in each frame with a time t and location
~x = xx̂+yŷ+zẑ, the space of which we call “space-time”;
we refer “4-vectors” in this space with a bolded lower-case
letter, i.e. x. These vectors admit a natural mapping to
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R4, with one time-like component and three space-like
components. Our convention will be to normalize units
by making the time-like component ct and to refer to the
components by zero-based numbering, such that x0 = ct
and xi = ~x · x̂i for i = {1, 2, 3} and where x̂i = {x̂, ŷ, ẑ}.
When we represent x as a column vector the ith compo-
nent corresponds to xi. We call Lorentz transformations,
or LTs, transformations that take events from one iner-
tial frame to another. For the remainder of this section,
all 4-vectors will represent “events”.

Our goal is invariance under transformation by LTs;
this is analogous to, for example, rotational or spatial
translational symmetry, both of which correspond to in-
variance under specific operators. These operators typi-
cally form a set with particular properties, and to study
the LTs with the methods we have used to study more
familiar symmetries we need to show they have these
“group” properties as well. Specifically, a group (with
respect to O) is defined as a set G with an operation
O(·, ·) : G × G → G such that (1) there is an iden-
tity element 1 ∈ G such that O(1, g) = O(g, 1) = g
for all g ∈ G, (2) for every g ∈ G there is an inverse
element g−1 ∈ G such that O(g−1, g) = O(g, g−1) = 1,
and (3) the operation O is associative; for a, b, c ∈ G,
O(a,O(b, c)) = O(O(a, b), c). After showing the LTs form
a group, we will be able to advance our study by charac-
terizing simpler subgroups and building up to a complete
understanding of the members of the full group. While
we prove the LTs form a group, we leave the proofs that
the LT subgroups we define satisfy the group properties
to the reader; they are straightforward and concise given
the content of this section.

Consider two LTs T1 and T2. Once we transform to
an inertial frame we may take it equivalent to our orig-
inal frame by the relativity principle, so LTs defined for
one frame are still LTs with respect to the new frame,
although in general not to the same frame relative to
the original. Then the composition of two LTs, T2T1,
is a LT. The trivial transformation that takes events to
events in the same frame must be the identity transfor-
mation, which we call 1. For each LT T that takes the
original inertial frame A to some inertial frame B, there
is a transformation T−1 back to A (since both A and
B are inertial); by the principle of relativity this trans-
formation must be the inverse of T (otherwise A and B
could disagree on the results of physics experiments). Fi-
nally, imagine we have four observers situated in inertial
frames A,B,C, and D. Since all the frames are inertial
there exist transformations TA→B , TB→C , and TC→D. It
is clear that Tβ→γTα→β = Tα→γ (yet again by rel-
ativity, for if it were not true observers in α and β
would disagree on the results of physics experiments),
so TC→D(TB→CTA→B) = TA→D = (TC→DTB→C)TA→B .
Thus the set of LTs forms the group L with respect to
composition of LTs.

Any spatial rotation or space-time translation of an
inertial frame is trivially inertial (objects obeying New-
ton’s first law will continue to do so), so spatial rotations

by angle θ about a space axis n̂, Rn̂(θ), and space-time
translations by α, Tα, are in L. Note that this in com-
bination with the relativity principle implies the homo-
geneity of space-time and isotropy of space. Consider two
frames A and A′, and call T the LT from A to A′. By the
homogeneity of space-time and the relativity principle we
know that T (Tαx)−T (Tαy) = Tx−Ty, i.e. there exists
a Tα′ that does not depend on x such that

T (x+α) = T (Tαx) = Tα′Tx = Tx+α′, (1)

where Tα′ is translation by some 4-vector in A′. Taking
x = 0 gives us α′ = T (α)− T (0), by substituting for α′

in and subtracting T (0) from (1) we can write it in terms
of the operator L = T−T (0)T , and we have L(x + α) =
Lx+Lα. That L is homogeneous, i.e. L(λx) = λLx, λ ∈
R, comes from its continuity at 0 (this is a well-known
and intuitive property of distributive, continuous linear
functionals1). Then L is a linear LT, and T = TT (0)L.
Thus every LT is a composition of a translation and a
linear operator. That the LTs without translations form
a group (a subgroup of L), LL, of linear operators is then
clear. They map from and to a real finite-dimensional
space (of 4-vectors), and so may be represented by real
matrices which we call Λ.

We define the Minkowski length in the space of 4-
vectors to be |x|2 ≡ (x0)2 −∑i>0(xi)2. Suppose ` de-
notes the 4-vector corresponding to the end of a light
beam emitted from the space-time origin (t = 0 and
~x = 0). The invariance of the speed of light implies that
in all frames that are connected only by linear transfor-
mations Λ, |`| = 0 (since linear maps take the origin
to the origin). Finally, representing the linear trans-
formations as general 4 × 4 matrices, carrying out the
transformation, and invoking the relativity principle it
is straightforward to show that the Minkowski length is
preserved by all linear LTs.

We define gµν = gµν such that xµgµνx
ν = |x|2, and

write xµ = gµνx
ν so that |x|2 = xµxµ. The tensor g

then admits a natural symmetric matrix representation,

g =




1
−1
−1
−1


 , (2)

which allows us to concisely state the length-preserving
property of elements of LL in matrix notation:

|Λx|2 = (Λx)T g(Λx) = xTΛT gΛx =⇒ ΛT gΛ = g. (3)

Both sides of this last relation are symmetric 4 × 4 ma-
trices, which gives 10 constraint equations on the 16 pa-
rameters in Λ. This tells us that at most 6 free parame-
ters plus a 4-vector corresponding to a translation com-
pletely specify one inertial frame relative to another. We

1 An outline of the proof proceeds thusly: the proof for positive
integer multipliers is trivial. Then prove for negative integers.
Then rational numbers. Then since the rational numbers are
dense and we have continuity at the origin we are done.
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already know spatial rotations consume 3 of those param-
eters. Consider d(Λx)i/d(x0/c), i > 0. By linearity and
homogeneity of space-time this gives three independent
constants (in time, x0/c) with units of velocity. These
correspond to, in the standard development of special
relativity, the three boost directions. This shows that a
frame moving with constant velocity relative to another
inertial frame is itself inertial, and, more pertinently, that
the last equality in (3) may be taken as the definition of
LL (since no free parameters remain). We adopt this
definition for the remainder of the paper.

Our assumption is that a valid physical theory must be
invariant under these transformations, and we proceed to
their characterization.

III. LORENTZ GROUP

We are now equipped with a group (and a subgroup)
of transformations. A natural next step is to attempt
to enumerate the types of objects these transformations
can act on, and the particular form the LT takes given
the particular object. A clear example given the pre-
vious section are event 4-vectors. Another example fa-
miliar to those who have studied special relativity are
translation-invariant 4-vectors, like the momentum 4-
vector, that only transform under the subgroup LL, and
the completely Lorentz invariant scalars formed from
the Minkowski lengths of these 4-vectors for which the
Lorentz transformations are simply the identity. We can
approach this enumeration systematically by studying
the general properties of LL, then constructing explicit
transformations that satisfy these properties, called rep-
resentations of the group, and noting the space they are
defined on.

We begin with the properties of a representation we
are already familiar with from the previous section; the
4×4 matrix that transforms 4-vectors. The tensor forms
of (3) will be useful

ΛT gΛ = g =⇒ gβηΛβµΛην = gµν (4)

ΛT g = gΛ−1 =⇒ gβνΛβµ = gµβ(Λ−1)βν (5)

xµ = gµνx
ν =⇒ (Λx)µ = gµνΛµβx

β = (Λ−1)νµxν (6)

From (3) we have that det Λ = ±1 and evaluating the
00 element of (4) we have |Λ0

0| ≥ 1. We can use this
information to further narrow the group we are study-
ing. We take the subgroup with det Λ = 1 and Λ0

0 ≥ 1;
the elements we ignore can be trivially recovered from
our subgroup by composing with a space-time parity flip
(i.e. multiplying by a diagonal matrix consisting solely of
±1 with determinant -1). The reason we choose this sub-
group is that we may now take a continuous path from
any element of our subgroup to the identity matrix (this
is not possible with LL since Λ with negative determi-
nant cannot be smoothly taken to a matrix with positive
determinant due to the result above); this is the defining
property of a Lie group.

Many symmetries (all continuous symmetries) are Lie
groups; familiar examples are rotations (of which our sub-
group is a superset) and spatial translations. Just as ro-
tations are completely specified by their angular momen-
tum (Lie) commutator algebra, the elements and prop-
erties of any Lie group are completely specified by an
associated Lie algebra. This algebra is itself defined by
objects we call generators, which may loosely be asso-
ciated with a complete “basis” for the space of the Lie
group; they represent all the linearly independent modifi-
cations of the identity that remain in the space of the Lie
group. Since a Lie group is defined by smooth connected-
ness to the identity, we can retrieve any member of a Lie
group by composing many such “infinitesimal” changes
to the identity2. The angular momentum operators, for
example, are generators of rotation; we will characterize
our subgroup by studying its own generators.

To each free parameter of the transformation there cor-
responds a generator, so we have 6. Instead of the naive
labeling (i.e. a row vector with six entries), we set our pa-
rameters so that the 4×4 representation that transforms
the 4-vector is generated by the infinitesimal changes to
the identity

δΛµν = δµν + ωµν , (7)

where ωµν is infinitesimal, so we ignore all orders of ωµν
higher than the first, unless the zeroth and first order
terms are zero, in which case we take the lowest order
non-zero term3. Application of (4) to the product of
two such operators shows that ωµν = −ωνµ; this means
ωµν defines an anti-symmetric 4×4 matrix, which, as ex-
pected, has exactly 6 free parameters. We use this matrix
to encode the six parameters of our transformation in a
representation-independent way. Although there are only
six independent generators corresponding to the six free
parameters, it will be convenient to anti-symmetrically
label them as well; for generator Gµν , Gµν = −Gνµ (note
there are still only 6 independent generators). These can
be used to define the infinitesimal elements of our sub-
group (for a similar generator-based analysis for the non-
relativistic quantum mechanical operators of momentum,
time evolution, and angular momentum see [4]):

δΛ = 1+
i

2
ωµνG

µν . (8)

To retrieve the finite transformation in general, we re-
peatedly apply the infinitesimal one N times with finite

2 Extremely non-rigorously (even less than in the main body of the
paper), we indicate a “direction” to take the identity with the
generators, then “stretch” this quantity in the indicated “direc-
tion” by repeatedly composing the perturbation with itself.

3 This is rigorously justified, but is also intuitive, since we are free
to take our infinitesimal term as small as we like.
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parameters Ωµν :

Λ = lim
N→∞

(
1+

i

2

Ωµν
N

Gµν
)N

(9)

= exp

(
i

2
ΩµνG

µν

)
(10)

In this way we are able to generate any element of our
subgroup in any representation. Taking

(Gµν)αβ = i(gναδµβ − gµαδνβ) (11)

for example, reproduces (7), so this is the form of the
generator for 4-vectors.

Now that we have an explicit form of a non-trivial (as
opposed to, for example, Lorentz scalars where the gen-
erators are all 0) generator for a particular representation
of our subgroup, we can begin exploring the commutator
algebra. It is straightforward to find the basic commuta-
tion relation directly from (11):

[Gµν , Gαβ ] = i(gµβGαν + gµαGνβ − gνβGαµ − gναGµβ).
(12)

Any set of generators satisfying (12) will produce valid
representations of our subgroup (of LTs).

We now seek new representations. We begin by re-
labeling the generators (note that we only combine de-
pendent generators):

Ri =
1

2
εijkG

jk (13)

Bi = Gi0. (14)

We can define (real) 3-vectors ~ζ, ~η from the ωµν such that

Λ = exp(−i~ζ ·R+i~η ·B) for the same finite element. This
relabeling gives a promising new commutator algebra:

[Ri, Rj ] = iεijkR
k (15)

[Ri, Bj ] = iεijkB
k (16)

[Bi, Bj ] = −iεijkRk. (17)

The first relation is the familiar SU(2)4 algebra of an-
gular momentum; this appears promising, and we can
simplify the algebra even more by defining

J =
1

2
(R+ iB) (18)

[J i, Jj ] = iεijkJ
k (19)

[(J†)i, (J†)j ] = iεijk(J†)k (20)

[(J†)i, Jj ] = 0. (21)

Our Lie algebra is suddenly the commuting algebra of
two angular momenta! Note that their commutation is

4 But see the next footnote.

crucial since it implies that they act on disjoint vector
spaces. This means that any valid representation for
angular momentum can be used to define valid genera-
tors, and hence valid representations of (our subgroup
of) Lorentz transforms. In particular, we can label the
representation by two half-integer or integer5 total spin
eigenvalues corresponding to the two generators, (j, j†).
The form of the finite transformations with these opera-
tors is denoted with its own unique symbol

L (Λ) ≡ e−i((~ζ−i~η)J⊕(~ζ+i~η)J†) = e−i(
~ζ−i~η)J ⊗ e−i(~ζ+i~η)J†

.
(22)

We are now able to comfortably use the well-known
algebra of angular momentum to build arbitrary repre-
sentations of our subgroup. An important note is that
although our representation can be based on the unitary
operators SU(n), that does not imply the unitarity of
the resulting Lorentz transform; for example, the repre-
sentation (1/2, 0) has R = J = ~σ/2, but B = −i~σ/2.
Since B is not Hermitian, the operator in (9) cannot in
general be unitary. On the other hand, R will always
be Hermitian, and recalling the subgroups of operators
that are part of the LTs described in Section II and the
commutation relations (15), the association of R with the
(Hermitian) generators of rotation in LL is natural. B is
then naturally associated with the remaining directional
boosts.

To have a good physical theory (given our assumptions
— the possibility of parity violation is discussed in the
conclusion) we need to re-expand our subgroup to in-
clude parity transforms in our representation. A spatial
parity transformation will not affect R since by (15) it is
a pseudo-vector, but will invert B → −B. This means
that if j 6= j†, the representation (j, j†) does not con-
tain the spatial parity transform. Fortunately, it is clear
from (19) that direct sums of representations are valid
as well, so we can patch up our subgroup by making
the representation (j, j†)⊕ (j†, j). This provides us with
a mechanism for generating Lorentz transforms for arbi-
trarily high (although not arbitrary due to the symmetry
imposed by the parity requirement) dimensions.

Finally, we need to treat the non-linear subspace of
LT, the space of translations. The treatment here will be
brief; the process is almost identical to the translation by
a 3-vector done in [4]. We define the translation operator
and its infinitesimal form and Hermitian generator Pµ

T (α)ψ(x) = ψ(x+α) (23)

T (∆α) = 1+ i∆αuP
µ (24)

It is easy to confirm the infinitesimal form behaves as
expected; as the argument goes to zero the operator goes

5 The careful reader may object that we are dealing with a real
transformation, and so should exclude the half-integer transfor-
mations (i.e. we are in SO(3), not SU(2)). Fortunately all ob-
servables are quadratic in the wave-function so the complexity
of SU(2) causes no trouble.
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to the identity, composition is addition of translations,
translation by the negative is the inverse, and it is uni-
tary (since (Pµ)† = Pµ). We generate the finite trans-
formation in the usual way.

From the linearity of Λ, we have Λ−1T (∆α)Λ =
T (Λ−1∆α). Substituting (24) to both sides, using (6)
on the right, and gathering terms of ∆αµ, we have the
transformation law for Pµ,

Λ−1PµΛ = ΛµνP
ν . (25)

The focus of this paper is on the physics, so some
technical details are glossed over. The mathematically
inclined reader may in particular wonder about the re-
ducability of the representations we use; all final rep-
resentations of the Lorentz transformations we use are
irreducible, and the proof is rather trivial. The connect-
edness of the group we define as the Lorentz transforms
is not discussed extensively either, but we are mostly
concerned with the subgroup connected to the identity.

IV. DIRAC EQUATION

Now that we have a characterization of a wide range
of representations of the LTs, we look to construct a
Lorentz-invariant law that describes a wave-function,
since any true law must have this property. We assume
that this law must be based on an observable quantity,
and that eigenvalues of Hermitian operators are observ-
ables.

We can begin to “march” up our available represen-
tations of the linear LTs to try and find the law re-
quiring the fewest dimensions. Our first representation
is (0, 0). This is one-dimensional, and corresponds to
Lorentz scalars. In this representation the Lorentz trans-
formations are the identity, so they do not convey any
information, and the scalars are invariant anyway so this
representation is of limited use.

The next valid one is (1/2, 0) ⊕ (0, 1/2). This im-
mediately entails a four-dimensional space (2 for each
1/2), and we call elements of this space ψ. These el-
ements will transform by L (Λ) as constructed in the
(1/2, 0)⊕(0, 1/2) representation. We have two Hermitian
operators at our disposal with which to write an eigen-
value equation. One is rotation, but the rotational sym-
metry will be taken care of by making sure that the equa-
tion is invariant under the linear LTs; we must enforce
this invariance outside of the equation anyway since in
this representation L (Λ) is not generally Hermitian. The
remaining Hermitian operator is Pµ, and the naive eigen-
value equation is PµPµψ = m2ψ =⇒ (PµPµ −m2)ψ =
0, where m ∈ R. We can check to see if it is Lorentz
invariant (remembering that ψ changes by L (Λ), Pµ by
Λ as in (25), and the identity (6)):

((Λ−1)νµPνΛµβP
β −m2)L (Λ)ψ (26)

= L (Λ)(PµP
µ −m2)ψ = 0 (27)

which is Lorentz invariant.
This law is not ideal though, since it is quadratic in an

operator. Inspired by this law, we propose a simpler one:

(γµPµ −m)ψ = 0 (28)

for some set of four invariant (i.e. scalar) matrices γ.
Define Lµν as the Lorentz generators corresponding to
the 4-vector transform, given explicitly in (11), and de-
fine Sµν as the Lorentz generators that arise from the
(1/2, 0) ⊕ (0, 1/2) representation. Note that we can get
explicit 4×4 matrices for Sµν quite easily by substituting
J = ~σ/2 and J† = 0 into, sequentially, (18) to find R and
B, then (13) and (14), noting the asymmetry in the extra
generators, then repeating the process for J† = ~σ/2 and
J = 0, and taking the direct sum of the resulting 2 × 2
generators.

Suppose then that there exists a set of four 4× 4 ma-
trices γµ (this method of finding γµ due to [7]) such that

Sµν =
i

4
[γµ, γν ] (29)

The following commutation relation can then be directly
checked,

[γµ, Sαβ ] = (Lαβ)µνγ
ν , (30)

and this implies

L (Λ)
−1
γµL (Λ) = Λµνγ

ν . (31)

Such matrices do exist; one example is γ0 = σ3 ⊗ 12,
γj = iσ2 ⊗ σj . Then taking the Lorentz transform of
(28),

(γµ(Λ−1)νµPν −m)L (Λ)ψ (32)

= L (Λ)L (Λ)
−1

(γµ(Λ−1)νµPν −m)L (Λ)ψ (33)

= L (Λ)(L (Λ)
−1
γµL (Λ)(Λ−1)νµPν −m)ψ (34)

= L (Λ)(γβΛµβ(Λ−1)νµPν −m)ψ (35)

= L (Λ)(γµPµ −m)ψ = 0 (36)

Then (28) is Lorentz invariant (both linearly and gen-
erally), and we have our first-order law. This equation,
with any suitable choice of γ, is called the Dirac equation.

V. CONCLUSION

The Dirac equation (28) may be re-cast in perhaps
a more familiar manner by making the “standard” as-
sociation between generators of spatial translation and
momentum and time translation and energy. Then Pµ

becomes the (dual or “raised”) four-momentum opera-
tor P 0 = i∂0 (since the standard Schrodinger equation
reads i∂t = H), Pµ = −i∂µ (since the standard relation
is momentum goes as −i∇). Noting that Pµ = i∂µ, we
have

(iγµ∂µ −m)ψ = 0. (37)
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Although we assumed nothing about relativistic energy
relations or the form of the four-momentum vector in
deriving (28), with it now in hand the physical interpre-
tation of the eigenvalue m as the rest energy (or equiv-
alently for particles the rest mass) is quite natural given
the (m, 0) form for the rest four-momentum in standard
special relativity. Since the equation is invariant under
LTs, the association between m and the rest energy is
valid in all frames. Again, this is secondary and is being
stated only to aid with interpretation; it is perhaps most
interesting that this equation could be derived without
any reference to the additional postulate of special rela-
tivity concerning the four-vector and rest energy — all we
assume is the relativity principle and an invariant speed
of light. Even our operators only arise from the Lorentz
transformations.

Even the substitutions of derivatives for the Pµ do
not necessarily depend on this assumption; the substi-
tutions for the space-like components of translation are
already well-known from non-relativistic quantum me-
chanics, and the substitution for the time-like can be
given the right sign on the basis of its time-like nature
as opposed to its postulated relationship to energy. Thus
we can “derive” the famous equation of invariance for the
four-momentum scalar in special relativity through quan-
tum mechanics. In fact, if we locate ourselves in the rest
frame of the field, we get a one-dimensional Schrodinger
equation for all the components of the field, and the in-
variance of the eigenvalue strongly hints at its nature as
the rest energy.

From this point forward standard manipulations of
the Dirac equation to get corrections like the g-factor of

the electron and the phenomenological spinor equations
(both of these come from applying an electromagnetic
Dirac operator a second time) or the fine structure of the
hydrogen atom can be done; many of these are straight-
forward and outlined in [7].

It is worth noting that the assumptions chosen here are
actually too stringent for all of modern quantum theory;
parity conservation is violated in several systems, for ex-
ample neutrinos, whose spin always points opposite their
velocity. The lifting of this restriction allows representa-
tions in arbitrary dimensions: in particular, instead of be-
ing forced to a 4-dimensional equation we may use either
the (1/2, 0) or (0, 1/2) representations to act on a space
of two-dimensional objects. The equations obtained this
way are called the Weyl equations and describe massless
spin-1/2 particles.
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We reviewed and developed a theory of the simplest type of coherent states, which are also referred
as ”field coherent states” in some contexts, based on three fundamental definitions. We examined
some of the properties, physical interpretations and applications of the coherent states resulted from
the formalism, which are believed to have more profound implications.

I. INTRODUCTION

Coherent state is the specific quantum state of the
quantum harmonic oscillator whose dynamics most close-
ly resembles that of a classical harmonic oscillator. The
basic concept was first proposed by Erwin Schrödinger
in 1926 while searching for solutions of the Schrödinger
equation that satisfy the correspondence principle [1].
However, after Schrodinger’s discovery, it was not un-
til 1963, when Roy J. Glauber developed a systemat-
ic quantum theory of electromagnetism based on this
coherent-state formalism that this fruitful field of study
got launched. In the past two and a half decades, devel-
opments in the field of coherent states and their applica-
tions have been blossoming, especially in mathematical
physics and quantum optics. In this paper, I will make a
brief review of the coherent-state formalism following a
systematical approach, by introducing the theoretical ba-
sics from a mathematical point of view and then discuss
its physical interpretation as a natural bridge for study-
ing the quantum-classical correspondence. A coherent-
state representation of laser states will be included as an
example of application at the end.

It is worth noting, that the coherent states we will
discuss in this paper are also specified as ”field coheren-
t states” in some contexts [2], namely the ones with a
harmonic-oscillator prototype. But indeed the concept
of coherent state have been generalized to all types of
physical problems [2]. And in fact, the term ”coherent s-
tate” was first coined in Glauber’s two seminal papers, in
which he constructed the eigenstates of the annihilation
operator of the harmonic oscillator in order to study the
electromagnetic correlation functions, a subject of great
importance in quantum optics.

II. THEORY

A. Definition

According to Glauber [3], the field coherent states can
be characterized by any one of the three mathematical
definitions [2]:

Definition 1: The coherent states |α〉 are eigenstates
of the harmonic-oscillator annihilation operator a,

a |α〉 = α |α〉 (1)

where α is a complex number.

Definition 2: The coherent states |α〉 can be obtained
by applying a displacement operator D(α) on the vacuum
state of the harmonic oscillator:

|α〉 = D(α) |0〉 (2)

where the displacement operator D(α) is defined as

D(α) = exp(αa† − α∗a) (3)

which is anti-Hermitian.

Definition 3: The coherent states |α〉 are quantum s-
tates with a minimum-uncertainty relationship,

(∆p)2(∆q)2 =

(
1

2

)2

(4)

where the dimensionless coordinate and momentum op-
erators (q̂,p̂) are defined as

q̂ =
1√
2

(a+ a†) (5)

p̂ =
1

i
√

2
(a− a†) (6)

with

(∆f)2 ≡ 〈α| (f̂ − 〈f̂〉)2 |α〉 (7)

f ≡ 〈f̂〉 ≡ 〈α| f̂ |α〉 (8)

for any operator f̂ .

Note that unlike the first two definitions, definition 3
is not a complete description of coherent states, as it
does not give unique solutions in Hilbert space. Such
non-uniqueness is graphically depicted in Fig 1. For the
coherent states we will talk about in this paper (i.e., field
coherent states, (∆p)2 = (∆q)2 = 1

2 , which is depicted in
(a). Any other choice of ∆p and ∆q constrained by the
third definition, shown in (b), represents an ”uncertainty
ellipse”, which lies in the category of so-called squeezed
states.

We will see in the next subsection that how these def-
initions give rise to formulation of the coherent states
under the so-called Fock representation.
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FIG. 1: The picture of minimum-uncertainty states in
phase space [2]

B. Formalism

1. Quantum Theory of Harmonic Oscillator

Inspired by Schrödinger’s original conception, the
coherent-state formalism we will discuss in this paper
is built on the quantum theory of Harmonic Oscillator.
Let’s consider the Hamiltonian with an one-dimensional
quadratic potential: Ĥ(x) = − ~2

2m
∂2

∂x̂2 + 1
2mω

2x̂2. By

interpreting −i~ ∂
∂x̂ as the momentum operator p̂ in x

direction, we have:

Ĥ(p, x) =
p̂2

2m
+

1

2
mω2x̂2 (9)

Let’s define the operator a and its Hermitian conjugate
as the following:

â =
1√

2~mω
(mωx̂+ ip̂), â† =

1√
2~mω

(mωx̂− ip̂)
(10)

that is,

x̂ = lc(â+ â†), p̂ = −ipc(â− â†) (11)

where lc =
√

~
2mω , pc =

√
~mω

2 are characteristic length

and momentum of the system respectively.
One can easily see that the preceding definitions give

rise to an interesting algebra, by observing:

ââ† =
mω

2~
x̂2 +

1

2~ω
p̂2 +

i

2~
[p̂, x̂] (12)

â†â =
mω

2~
x̂2 +

1

2~ω
p̂2 − i

2~
[p̂, x̂] (13)

Hence we have

[â, â†] = ââ† − â†â

=
i

~
[p̂, x̂] = 1 (14)

In the last line we used the canonical commutation rela-
tion: [x, px] = i~. Moreover, using â and â†, the Hamil-

tonian can be written in the following elegant form:

Ĥ(p, x) =
p̂2

2m
+

1

2
mω2x̂2

= ~ω(â†â+
i

2~
[p̂, x̂])

= ~ω(â†â+
1

2
) (15)

Therefore the eigenstates of the quadratic-potential sys-
tem are precisely those of the operator â†â. In order to
find a complete set of basis (eigenstates) of the Hilbert
space, we observe that:

[â†â, â] = â†[â, â] + [â†, â]â

= −â (16)

for which we used the commutation relation (14). The
newly-obtained commutation relation has profound im-
plications. Let’s consider one eigenstate |N〉 of â†â with
eigenvalue N . Since â†â is Hermitian, N must be real
and non-negative. Additionally, from (16) we have:

[â†â, â] |N〉 = (â†â)â |N〉 − â(â†â) |N〉
= (â†â)â |N〉 −Nâ |N〉
= −â |N〉

⇒ (â†â)â |N〉 = (N − 1)â |N〉 (17)

Therefore, â |N〉 is another eigenstate of â†â with eigen-
value N − 1. As Acting the operator â on a state |N〉
simply lowers the index N to N − 1, â is called lowering
operator, or alternatively, annihilation operator in con-
text of physics. We can calculate its norm (similar to
the absolute value of a c-number) by taking the inner
product:

|â |N〉 |2 = 〈N | â†â |N〉
= 〈N | (â†â |N〉)
= 〈N |N |N〉
= N (18)

Hence we have

â |N〉 =
√
N |N − 1〉 (19)

Since 〈N | â†â |N〉 = N ≥ 0. If N is a non-integer, say Nn,
we can use â to lower the state |Nn〉 to a non-vanishing
(i.e., has nonzero norm) state |N0〉 with 0 < N0 < 1.
However, if we apply â on the residual state one more
time, from (19):

â |N0〉 =
√
N0 |N0 − 1〉 (20)

That is, we obtain a non-vanishing state with index
N0 − 1 < 0, which is forbidden by the hermiticity of
â†â. This is, however, not a problem for integer since
â |0〉 = 0 |−1〉 simply vanishes, and by induction, no
eigenstates of â†â with negative eigenvalue will appear.
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Therefore we assert that only |N〉’s with non-negative
integer N exist as eigenstates of â†â. In fact, it can be
proved that these eigenstates form a complete basis of the
Hilbert space of the one-dimensional system, thus giving
rise to the so-called Fock (number) representation [4].

2. Formulation Under Fock Representation

For the rest of the paper, I will restrict myself to the
Fock representation to discuss the coherent-state formal-
ism. For this purpose, we need to first construct the
wavefunction of coherent states based on the foregoing
three definitions. Since {|n〉 , n ∈ Z∗} span the whole
Hilbert space, we can write the wavefunction as the fol-
lowing:

|α〉 =

∞∑

n=0

αn |n〉 (21)

where the coefficient αn for any n is a complex c-number.
Consider the first definition, in which (1) indicates:

â |α〉 =

{∑∞
n=0 ααn |n〉∑∞
n=0 αnâ |n〉

=
∞∑

n=0

√
nαn |n− 1〉

=
∞∑

n=0

√
n+ 1αn+1 |n〉

⇒ αn+1 =
α√
n+ 1

αn

⇒ αn =
αn√
n!
α0 (22)

where α0 can be determined up to a free phase factor eiS

by the normalization condition:

〈α|α〉 = =

∞∑

n1,n2=0

(α∗)n1αn2

√
n1!n2!

|α0|2 〈n1|n2〉

=

∞∑

n=0

|α|2n
n!
|α0|2

= e|α|
2 |α0|2 = 1 (23)

As a result, |α0| = e−
|α|2
2 . The normalized wavefunction

of coherent states can be therefore expressed as:

|α〉 eiS = e−
|α|2
2

∞∑

n=0

αn√
n!
|n〉 (24)

where the phase factor eiS corresponds to a redundant
degree of freedom.

Let’s now show how (24) can be obtained from the
second definition. The most straightforward way to do

this is to invoke the so-called Baker-Campbell-Hausdorff
formula [2], that given any two complex numbers α and

α
′

exp(αâ† − α′
â) = exp(

1

2
αα

′
) exp(−α′

â) exp(αâ†) (25)

= exp(−1

2
αα

′
) exp(αâ†) exp(−α′

â)

(26)

which I will not prove in this paper [for a derivation using
the so-called faithful matrix representation method check
[5]]. By the second definition:

|α〉 = exp(αâ† − α∗â) |0〉

= exp(
1

2
|α|2) exp(−α∗â) exp(αâ†) |0〉

= exp(
1

2
|α|2) exp(−α∗â)

∞∑

n=0

αn√
n!
|n〉

= exp(
1

2
|α|2 − α∗α)

∞∑

n=0

αn√
n!
|n〉

= e−
|α|2
2

∞∑

n=0

αn√
n!
|n〉 (27)

as desired.
At last, let’s show how the third definition combined

with the additional constraint ∆p = ∆q lead to the same
formula (24). By (5)(6)(7)(8):

(∆q)
2

=
1

2
(〈α| â2 + ââ

†
+ â

†
â+ (â

†
)
2 |α〉 − (〈α| â+ â

† |α〉)2)

=
1

2
(â2 + ââ† + â†â+ (â†)2 − (â)

2 − (â†)
2 − 2ââ†) (28)

(∆p)
2

=
1

2
(〈α| − â2 + ââ

†
+ â

†
â− (â

†
)
2 |α〉+ (〈α| â− â† |α〉)2)

=
1

2
(−â2 + ââ† + â†â− (â†)2 + (â)

2
+ (â†)

2 − 2ââ†) (29)

The constraint that both of them equal 1
2 indicates that:

â2 + (â†)2 − (â)2 − (â†)2 = 0 (30)

ââ† + â†â− 2â†â = 1 (31)

Recall (16), from which we can rewrite (31) as:

[â, â†] + 2â†â− 2ââ† = 1

⇒ â†â = â†â (32)

In order to see it more clearly, let’s rewrite (32) as:

〈α| â†â |α〉 = 〈α| â†(a complete basis)â |α〉 (33)

= 〈α| â†(|α〉 〈α|)â |α〉 (34)

The first line results from the fact that we are free to
insert an identity operator inside the braket, which can
be expressed as the sum of density matrices of a com-
plete basis {|βn〉} of the Hilbert space: I =

∑
n |βn〉 〈βn|,

for coherent states, as we will see in equation (36), it
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can be represented by an integral over the entire com-
plex plane of α. Comparing (33) and (34), we conclude
the state (a vector in the Hilbert space of the system)
â |α〉 lies in the subspace |α〉 〈α| (as we will see, due to
the over-completeness of coherent states, a mathemati-
cal rigorous representation of the subspace |α〉 〈α| should

be written as 1
2π

∫ 2π

0
|α〉 〈α| dφ, the density matrix ρ for

a fixed length of α). In other words, a coherent state
|α〉 is an eigenstate of â, which leads us back to the first
definition, thus gives rise to the same expression (24).

C. Properties

Before we move to discuss the physical interpretation
and application of the coherent-state formalism, there are
two properties of coherent states to be noted [6]:

(a)Non-orthogonality. Given any two coherent states

|α〉 and |α′〉, we can calculate their inner product:

〈
α|α′〉

= e−
1
2 (|α|2+|α′ |2)

∞∑

n1,n2=0

(α∗)n1(α
′
)n2

√
n1!n2!

〈n1|n2〉

= e−
1
2 (|α|2+|α′ |2)

∞∑

n=0

(α∗)n(α
′
)n

n!

= exp[α∗α
′ − 1

2
(|α|2 + |α′ |2)]

⇒ |
〈
α|α′〉 |2 = exp(−|α− α′ |2) (35)

This shows that the coherent states |α〉’s are not orthog-
onal, but normalized.

(b)Over-completeness. For the field coherent states,
Glauber showed that the resolution of the identity in
terms of coherent states is not unique. A common and
useful resolution [2] is:

∫
|α〉 d

2α

π
〈α| = I (36)

Geometrically, this can be viewed as integrating the dis-
placement α over the entire complex plane (two degrees
of freedom). Alternatively, if we restrict the α to a circle
centered at the origin on the complex plane (allow only
an indefinite phase factor as redundant degree of free-
dom, as we did before), we will obtain a density matrix
for a specific value of |α| [7]:

ρ|α| =
1

2π

∫ 2π

0

|α〉 〈α| dφ (37)

where α = |α|eiφ. We will maintain this convention for
the subsequent calculations.

We will make use of this density matrix as a represen-
tation of laser states in the application section. Since the
coherent states are labeled by a continuous index in a
Hilbert space that has a countable basis, they are over-
complete.

III. PHYSICAL INTERPRETATION

There are many physical interpretations of coherent s-
tates in all kinds of different contexts. For this section,
however, we will only focus on the original conception
that Schrödinger had in mind when proposing such s-
tates. In the absence of external fields, the time evolution
of a coherent state is:

|α(t)〉 = e−iH0t/~ |α〉

= e−|α|
2/2
∑

n

(αe−iωt)n√
n!

|n〉

= |αe−iωt〉 (38)

In this case, once the system is in a coherent state, it
will remain at all times as a coherent state. Recall our
previous definitions in (5)(6), according to which we can
calculate the expectation values of the position and mo-
mentum operators of the harmonic oscillator:

〈q̂(t)〉 =
1√
2
〈α(t)| â+ â† |α(t)〉

=
1√
2

(αe−iωt + α∗eiωt)

=
√

2|α| cos (ωt− φ) (39)

〈p̂(t)〉 =
−i√

2
〈α(t)| â− â† |α(t)〉

=
−i√

2
(αe−iωt − α∗eiωt)

= −
√

2|α| sin (ωt− φ) (40)

where again φ = arg(α). (39)(40) indicate that if we
regard a coherent state as a ”particle” (a wave packet
in de Broglie’s description), then it follows exactly the
classical motion of a harmonic oscillator, as it rotates
clockwise along a circular orbit with angular frequency
ω in phase space. Since from the third definition, it is
also a minimum-uncertainty quantum state with (∆p)2 =
(∆q)2 = 1

2 , the ”wave packet” never spreads. With this
unique ”localized” nature, at the classical limit (~→ 0),
such a coherent state will precisely turns into a point-
like particle undergoing harmonic oscillation. From this
point of view, the coherent-state formalism manifestly
provides a natural framework to discuss the quantum-
classical correspondence.

IV. APPLICATION

In Glauber’s two seminal papers, he used the coherent-
state formalism to study the electromagnetic correlation
functions, which is of great importance in quantum optic-
s. A more straightforward example of application of this
formalism is the coherent-state description of the laser
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states, namely again (24):

|α〉 = e−
|α|2
2

∞∑

n=0

αn√
n!
|n〉 (41)

The density matrix of this laser state, resulted from tak-
ing a weighted integral over the redundant degree of free-
dom (37), is given by [7]:

ρlaser =
1

2π

∫ 2π

0

dφ |α〉 〈α|

=
e−|α|

2

2π

∫ 2π

0

dφ
∞∑

n,m=0

|α|n+meiφ(n−m)

√
n!m!

|n〉 〈m|

= e−|α|
2
∞∑

n,m=0

|α|n+mδn,m√
n!m!

|n〉 〈m|

= e−|α|
2
∞∑

n=0

|α|2n
n!
|n〉 〈n| (42)

Under the Fock (number) representation, |n〉 stands
for a state of harmonic-oscillator. For a laser state, in
particular, the quantum number n corresponds to the
photon number in the state. Therefore the average pho-
ton number of the laser can be obtained as:

〈n̂〉laser = tr(

∞∑

n=0

n |n〉 〈n| ρlaser)

= e−|α|
2
∞∑

n=0

n|α|2n
n!

= e−|α|
2
∞∑

n=0

|α|2 d

d(|α|2)

(|α|2)n

n!

= e−|α|
2 |α|2 d

d(|α|2)
e|α|

2

= |α|2

(43)

Since the average photon number characterizes the inten-
sity of the laser field, we have n ∝ I ∝ |A|2, where A is
the amplitude of the electromagnetic field. Therefore it
is very natural to regard |α|, the displacement (recall the
second definition) of the coherent state from the vacuum
state as the amplitude of the laser. In addition, we can
compute the fluctuations in photon number under the
same representation:

〈n̂2〉laser = e−|α|
2
∞∑

n=0

n2|α|2n
n!

= e−|α|
2
∞∑

n=0

(|α|4 d2

d(|α|2)2
+ |α|2 d

d(|α|2)
)
(|α|2)n

n!

= e−|α|
2 |α|2(|α|4 d2

d(|α|2)2
+ |α|2 d

d(|α|2)
)e|α|

2

= |α|4 + |α|2 (44)

hence,

〈∆n̂2
laser〉 = (|α|4+|α|2)−(|α|2)2 = |α|2 = 〈n̂〉laser (45)

This shows that the relative fluctuation of photon num-
ber in a lase state:

〈∆n̂〉laser
〈n̂〉laser

=
1√
〈n̂〉laser

(46)

That is, the laser state modeled by a coherent state has
a Poissonian nature, which is endowed by the intrinsic
structure of coherent-state wavefunction under Fock rep-
resentation, as shown in (24).

V. CONCLUSION AND DISCUSSION

Starting from three fundamental definitions, we have
presented a systematic review of coherent-state formal-
ism by showing explicitly how the elegant mathematical
structure and properties of coherent states arise from the
quantum theory of harmonic oscillator under Fock rep-
resentation (space). The Hilbert-space properties, phys-
ical interpretations as a bridge connecting quantum and
classical physics, as well as one application as a descrip-
tion of Possionian laser states are also discussed as the
mathematical and physical consequences of this formal-
ism. It’s inspiring to see even for the simplest ”field co-
herent state”, which arose as a primordial conception of
Schrödinger immediately after the birth of quantum me-
chanics, there are so many interesting physics and math-
ematics underlying. Indeed, the theory of coherent states
provides a promising approach to modeling quantum sys-
tems as well as studying the correspondence principle
(quantum-classical correspondence). However, on the ex-
perimental side, a physical realization of the coherent s-
tates in a realistic dynamic system is certainly of great
experimental importance, and also remains an exciting
challenge for the future [2].

A Simplistic Theory of Coherent States 181



A Simplistic Theory of Coherent States 6

[1] Erwin Schrödinger. Der stetige übergang von der mikro-
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I will explain the motivation behind the Dirac equation and derive it. I will work out the solutions
to the equation for the case of free particles and we will observe new physical phenomena that arise
from the interpretation of the solutions. Finally, I will show that the Dirac equation describes the
behavior of spin-1/2 particles by proving that it satisfies the SU2 symmetry .

I. INTRODUCTION

The Schrödinger equation is a good first approach
to develop intuition on the behavior of physical sys-
tems. However, there are some extrema in which we
find the need to use perturbation theory to analyze the
corrections originated by the electron spin, relativistic
speeds, and other effects. This is the motivation be-
hind the derivation of an equation with all these cor-
rections already built into it. This is the Dirac equa-
tion. The Dirac Equation is a principal postulate for
quantum field theory: it is the relativistic version of the
Schrödinger equation, which we use to make accurate
predictions about the behavior of really small particles
(quantum mechanics) that go really fast (relativity). It
describes the behavior of all spin-1/2 quantum particles
(which will be proved later) subject to an electric poten-
tial φ(x), and a magnetic potential A(x). This includes
all fermions that have been experimentally confirmed to
exist, which consist of the electron, the muon, and the
tauon, their corresponding neutrinos, and all the quarks.
The equation emerges, as in the case of the nonrela-
tivistic Schrodinger equation, from the postulates that
H → ih̄∂/∂t and p → −ih̄∂/∂x, but this time the rela-
tionship between the kinetic component ofH (free Hamil-
tonian) and p is different, given by Einsteins relativistic
equation E = (p2c2 +m2c4)1/2. In order to get rid of the
square root we could just apply the Hamiltonian to the
state twice. This way we get the Klein-Gordon equation
[3]:

(H/c)2 = p2 +m2c2 →

− 1

c2
∂2

∂t2
|ψ〉 = (− h̄2

2m

∂2

∂x2
+m2c2))|ψ〉.

Although useful, this is not the equation we are look-
ing for. This equation describes the behavior of spin-0
particles. The problem with this approach is that we
get an equation that is second order in time. This fact
is incompatible with the statistical interpretation of ψ
[2], that states that the probability density of finding the
particle at (x, t) is |ψ2|. To account for this we want a
”new Schrödinger equation” that is first order in time, in
such a way that the wave function is determined at any
later time by the initial conditions.

II. DIRACS IDEA

In order to satisfy the conditions we introduced
above we will rewrite this equation with the relativistic
covariant-contravariant notation (in which we sum over
repeated indexes) as pµpµ −mc2 = 0. Diracs strategy to
deal with this problem was to factor this equation into
a product of two components (a sum and a difference)
[2]. Since the first components of the equation are four-
vectors there is no immediately obvious way to factor this
equation into the two components that we want and still
get a nice result.

Mathematical Derivation

One might try to factor the components as

(γµpµ +mc)(γκpκ −mc) = 0. (1)

But if we choose the gammas to be numbers this ap-
proach will not work. The cross terms will not cancel
because they are all proportional to the anticommuta-
tors of the gammas:

pλpλ −m2c2 = γµpµγ
κpκ − (γµpµ − γκpκ)mc−m2c2

= γµpµγ
κpκ −m2c2

Since we are considering the case in which the Hamil-
tonian has no contribution from fields, then all points in
space should be equivalent [2], and therefore the Hamil-
tonian does not have any contributions from the position
operators. This means that the γs commute with the mo-
mentum operators, and since the momentum operators
commute amongst themselves, then, the above equation
becomes:

pλpλ =
1

2
(γµγκ + γκγµ)pµpκ (2)

At this point is when Dirac had his idea of letting the
gammas be operators, instead of scalars [2]. The anti-
commutator of two operators can be zero, and this way,
expanding the sum we find it is possible to cancel the
cross terms. We just need to impose the restriction that
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(γ0)2 = 1, and (γµ)2 = −1, for µ = 1, 2, 3,

and that the different gammas anticommute

{γµ, γκ} = 0.

In summary,

{γµ, γκ} = 2gµκ. (3)

The equation above implies that γµpµ + mc = 0, or
that γµpµ − mc = 0. We will use the second equality
(although it can be done either way [3]). Now we can let
the resulting operator to act on the state |ψ〉 to get the
Dirac equation:

(γκpκ −mc)|ψ〉 = 0. (4)

The only thing left at this point to get our final equa-
tion is the quantum substitution of p → ih̄∂/∂x, where
x0 = ct, x1 = x, x2 = y, x3 = z, to start making analyti-
cal calculations. Back to the gamma matrices, there are
a lot of different choices we could make for the 4 matrices,
but it just happens that the smallest matrices that can
satisfy the above conditions are 4×4 matrices. It cannot
be 2×2 matrices, because that would mean we could add
an extra spin matrix to the 3 existing Pauli matrices, and
we know that is not possible (because there is no addi-
tional traceless Hermitian 2 × 2 matrix that is linearly
independent of the 3 Pauli matrices). These matrices
also need to be even dimensional to be able to satisfy the
requirement [4]. The standard convention for these are
the following [3], expressed in shortened notation:

γ0 =

(
1 0
0 −1

)

γµ =

(
0 σµ

−σµ 0

)
for µ = 1, 2, 3,

where 0 and 1 represent the 0 and the identity 2 ×
2 matrices, respectively, and σµ are the Pauli matrices.
Therefore, |ψ〉 must be a four component wave function,
but we will divide it into two 2×1 components, just as we
did with the gamma matrices above. These will be |ψA〉
(corresponding to the two upper components of |ψ〉), and
|ψB〉 (which correspond to the lower components).

III. DIRAC EQUATION

A. Solution of Particles at Rest

The equation can be easily solved when the momentum
is set to zero. In this case we can work in the momentum
basis, and we can drop the special components of the
momentum operator acting on |ψ〉. We will approach
this simple problem first and use the solution to later find
out the form of the wave function when the momentum
is arbitrary. The equation gets reduced to γ0∂/∂t|ψ〉 =
−imc/h̄|ψ〉, which is equivalent to:

(
1 0
0 −1

)
∂

∂t
|ψ〉 = − imc

h̄
|ψ〉. (5)

The solution is given by the following familiar expres-
sions for the time evolution of the wave function:

|ψA(t)〉 = e−imc
2t/h̄|ψA(0)〉, (6)

and |ψB(t)〉 = eimc
2t/h̄|ψB(0)〉. (7)

B. Physical Interpretation

It is important to realize that it is only possible to
consider the problem of a particle at rest in the absence
of any fields because we are using the relativistic formu-
las to construct this new Schrodinger equation, eq. (5).
If we were using the classical formula for the Hamilto-
nian, then the energy of the particle at rest would be
zero instead of its rest mass. Notice, however, that the
right hand side of eq. (5) is not zero. This allows us
to obtain the two solutions |ψA(t)〉 and |ψB(t)〉 (rather
than the non-relativistic 0 solution, which would be the
same as saying there is no particle). One of these solu-
tions seems to reflect a state with a negative value for the
energy. The prediction that there exist negative energy
eigenstates is something new to this theory that needs a
physical explanation, because we have never observed a
particle with absolute negative energy. Diracs initial in-
terpretation of this strange result was to postulate a field
of particles that was everywhere and that filled those neg-
ative energy states. Since the Dirac equation describes
the behavior of spin-1/2 particles [4], which are fermions,
according to the Pauli exclusion principle, when this sea
of particles (as it is commonly referred to) is full, it would
not allow any other visible particles (particles with posi-
tive energy) to occupy these negative energy states. The
reason why we cannot throw away these states by claim-
ing that they are not physical, as we used to do in some
cases with non-relativistic quantum mechanics, is that we
need a complete basis for the space of states. The posi-
tive energy eigenstates alone do not provide such a basis
[4]. If the quantum field is excited (by a photon with
enough energy), then one of the particles in the negative
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energy state will jump up to the positive energy state,
thus leaving a hole in the sea and kicking a particle from
the sea to the ”visible space”:

FIG 1. Photon exciting the Dirac fermion sea, creating
a particle-antiparticle pair [1].

When there is an empty space, the particle would be
able to annihilate with the hole. It behaves the same
way as the original particle, but with opposite charge.
This hole was initially conjectured by Dirac to be the
proton, but he was soon convinced by Oppenheimer that
that was not possible, because if that was the case, that
would imply that a proton-electron pair would be able
to annihilate in the atom, and that would make all mat-
ter unstable [? ]. This interpretation gives a number of
problems, like the fact that if the sea of negative energy
particles is infinite, it could always accept more particles,
so particles could potentially be swallowed or be created
form the vacuum without conserving energy. Nowadays,
we interpret the hole in the Dirac sea to be the mod-
ern antiparticle. it is a real particle and it still behaves
the same way as the original particle but with opposite
charge. Thus, a particle-antiparticle pair can be ”cre-
ated” out of the vacuum [1]. This is the context in which
the idea of an antiparticle first emerged. The antiparti-
cle corresponding to the electron is the positron, and the
positron was finally discovered experimentally by Carl.
D. Anderson in 1932.

C. Plane Wave Solutions of the Dirac Equation

As a 4-dimensional vector equation, the solutions to
the momentum-less particle in the Dirac equation are
given by 4 linearly independent vectors pointing in the
axis direction. From the discussion above we get the mo-
tivation to interpret what each of these vectors represent.
Mathematically speaking, since the two upper compo-
nents have positive ”energy”, they correspond to electron
states, and similarly, since the two bottom ones have neg-
ative ”energy”, they correspond to positron states. The
top state represents spin up, and the bottom one, spin
down.

Now we want to find the solutions of particles with
momentum, and for this case it is much easier to do the

calculation if we start assuming since the beginning that
the momentum points in the z-direction (this way the
solutions we will get will be automatically eigenstates of
Sz, the new z-spin operator). We generalize the old spin
matrices to account for the new 4-dimensional vectors.
These will be given by:

Si =

(
σi 0
0 σi

)
;

where the σis correspond to the Pauli matrices. The
new form of the solutions once we include momentum in
the equation should be the following [3]:

ψ(r, t) = Ae−
i
h̄ (Et−pzz)u(E, pz), (8)

where A is a normalization constant, and u is a 4-
dimensional vector. We can figure out what the u vector
above is by plugging this expression into the Dirac equa-
tion. When we do this, we obtain the result

γµpµAe
− i
h̄ (Et−pzz)u(E, pz)−mcAe−

i
h̄ (Et−pzz)u(E, pz) = 0,

or (γ3pz −mc)u(E, pz) = 0. (9)

This equation can be dealt with the old way (in the
position basis), or more easily by transforming the ele-
ments into momentum space, in which the momentum
operators are scalars. When we do this, eq.(9) is trans-
formed into a familiar algebraic 4× 4 matrix eigenvector
equation. Taking care of the signs in each of the summa-
tion terms, we can calculate the matrix acting on u to
be:

γµpµ −mc =
E

c

(
1 0
0 −1

)
− pz

(
0 σz

−σz 0

)
−mc

(
1 0
0 1

)

(10)

=

(
E/c−mc pzσ

z

−pzσz −E/c−mc

)
(11)

and when we apply it to u we get:

(E/c−mc)uA + pzσ
zuB = 0, and

−pzσzuA − (E/c+mc)uB = 0,
(12)

where, once again, uA and uB correspond to the upper
and lower two components of the 4-dimensional vector u.
From these expressions, now we can just pick any choice
of uA (or uB), and get the resulting energy eigenfunction.
The simplest choices for uA and uB (namely (1, 0)t and
(0, 1)t), give the following linearly independent solutions
for ψ:

ψ1 = Ae−
i
h̄ (Et−pzz)




1
0
cpz

E+mc2

0



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ψ2 = Ae−
i
h̄ (Et−pzz)




0
1
0

− cpz
E+mc2




ψ3 = Ae−
i
h̄ (Et−pzz)




cpz
E−mc2

0
1
0




ψ4 = Ae−
i
h̄ (Et−pzz)




0
− cpz
E−mc2

0
1


 ,

where the normalization constant is given by A =√
|E|/c+mc [3].

D. Physical Interpretation

As I mentioned before, these are automatically eigen-
states of the spin matrix Sz because they spin is ori-
ented in the z-direction (otherwise these states would
correspond to eigenstates of the spin matrix pointing in
the direction of motion). This mathematical fact implies
that the first two states should be physically interpreted
as an electron with spin up and an electron with spin
down, respectively. The third and fourth states require
a more careful analysis. These would correspond to elec-
trons with a negative energy, but particles cannot have
negative energy. This apparent paradox is reinterpreted
as these states actually being antiparticles with positive
energies. To deal with this problem mathematically we
change the form of equation (in which we change the form
of u) to:

ψ(r, t) = Ae
i
h̄ (Et−pzz)u(−E,−pz), (13)

and the resulting states are

ψ3 = Ae
i
h̄ (Et−pzz)




cpz
E+mc2

0
1
0




ψ4 = Ae
i
h̄ (Et−pzz)




0
− cpz
E+mc2

0
1


 .

In this situation, we can interpret the last two states
as a positron with spin up and positron with spin down.
Nevertheless, this is just an ad hoc observation that could
very well just obey the math without having much phys-
ical meaning behind.

IV. SU2 SYMMETRY

To prove the statements above and, furthermore, that
the Dirac equation describes the behavior of spin-1/2 par-
ticles, I will show that the theory respects the SU2 sym-
metry [5]. In order to do this we need the mathematical
concept of representation of a group. The representation
of a group is a map used to substitute the elements of
a mathematical structure (like a group) by linear trans-
formations [6]. In this case, these linear transformations
will be matrices, or the operators acting on our space of
states. The group representing the rotation transforma-
tions for a spin-1/2 particle in 3 dimensions is SU2. In
general, for a particle of spin-s the representation is given
by SUn with n = 2s+ 1 [5]. This group, SU2, is given by
the set of all 2 × 2 unitary matrices A with det(A) = 1.
Unitary matrices, the can be expressed as the exponen-
tial of i times a hermitian matrix, or equivalently, an
exponential of an antihermitian (2 × 2) matrix. Since
the set of the four matrices composed of the identity and
the 3 Pauli matrices span the space of 2 dimensional her-
mitian matrices, we can express every unitary matrix as
the exponential of i times an arbitrary linear combination
of these matrices. Nevertheless, we will need to use our
new version of the Pauli spin matrices, Si, defined above.

The matrices will have the form U = e−
i
2 (n0I+njSj), but

we can actually simplify this further by noticing that the
identity commutes with all other matrices. Therefore the
matrix above is equal to the same matrix multiplied by a
constant factor of length one (a phase). Since this phase
can be absorbed into the state whenever we act on it (and
this does not change the state) we get the same operator.
So all unitary 2 × 2 matrices can be expressed (up to a
phase factor) as

U = e−
i
2n

jSj ,

which simplifies to

U = I cos(
|n|
2

)− i n
j

|n|Sj sin(
|n|
2

). (14)

A quick indication to see how the appropriate (SU2)
symmetry is satisfied is to act these operators on the Sz
eigenspinors we worked out above. We can see that we
get the same states back:

U—ψ1〉 = Ae−
i
h̄ (Et−pzz)e−

i
2n

zSz




1
0
cpz

E+mc2

0




= Ae−
i
h̄ (Et−pzz)e−

i
2n

z




1
0
cpz

E+mc2

0



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= Ae−i(
nz

2 +E
h̄ t−

pz
h̄ z)




1
0
cpz

E+mc2

0


 = |ψ1〉,

and similarly,

U |ψ2〉 = −|ψ2〉, U |ψ3〉 = |ψ3〉, and U |ψ4〉 = −|ψ4〉 (15)

Nevertheless, these are the states in a homogeneous
space (in the absence of any fields). Therefore, to for-
mally prove that the symmetry is satisfied we need to
verify that Dirac equation itself is invariant under these
transformations. The above calculations in eq. (15) will
help us in doing this calculation, which will follow directly
from the same concept used there (we used eigenspinors).
As we learned, the way to transform operators is to act
on them from the right with the operator, and from the
left with the inverse of the same operator. We also know
that the inverse of a unitary matrix U is U†. Therefore, if
|ψ〉 is a state with a given chirality (spin projection onto
the momentum direction spin basis), with its spin point-
ing in the nj direction (that is, |ψ〉 is an njSj eigenstate)
then we have [5]:

(γκpκ −mc)|ψ〉 = 0→
U†(γκpκ −mc)U |ψ〉 = e

i
2n

jSj (γκpκ −mc)e−
i
2n

jSj |ψ〉
= e

i
2n

jSj (γκpκ −mc)eiφ|ψ〉
= eiφe

i
2n

jSj (γκpκ −mc)|ψ〉 = 0

where φ is an arbitrary phase imparted to |ψ〉 by U .
We see that using the same concept we used above in eq.

(15) we automatically arrive to an expression in which
we get an operator acting on the Dirac operator on |ψ〉,
(γκpκ −mc)|ψ〉, and this is equal to 0. This calculation
additionally shows that a free spin-1/2 particle preserves
chirality.

V. DISCUSSION

We have given the arguments and shown the first steps
that led to the development of Quantum Field Theory
(QFT) at first. Although the facts stated and results
showed on this paper are of crucial importance to the the-
ory itself, this is just the foundation of QFT, and a very
small sample of the predicting power of this theory. We
should also keep in mind that although the predictions
of the Dirac equation are in very good agreement with
the experiments, they are ”not the last word”. There
are effects that are only discovered once we take an ad-
ditional step, such as treating the electromagnetic field
as an operator. Such an example is given in the formula
for the energy spectrum of the Hydrogen atom [4]. The
formula for its eigenvalues is much more accurate than
the prediction given by the Schrödinger equation, yet it
does not account for effects like the Lamb shift, which
can be experimentally measured.
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It has been well understood that certain unstable nuclei will attempt to reach a more stable state
through the emission of an α particle since the initial discovery of α particle emission made by
Earnest Rutherford in the late 1800s. However, it was not until shortly after the invention of
Quantum Mechanics in the late 1920’s that a theoretical model of α particle decay that could
accurately predict the wide range of decay times present in many radioactive materials could be
developed. In this paper, a general expression for the rate of an α decay process is derived through
the use of a cleverly designed nuclear potential function and the WKB approximation methods.
The decay rates of known α particle emitters are then calculated using this derived expression, and
the results of this calculation are compared to the experimentally observed decay rates. It is found
that the calculated decay rates overestimate the experimentally observed decay rates, a fact that
can be largely attributed to sole consideration of ` = 0 energy eigenstates in this derivation and
the relative simplicity of the nuclear potential function used. Considering ` 6= 0 states and a more
sophisticated nuclear potential function will lower the calculated α decay rates into more agreeance
with the experimentally observed rates.

I. INTRODUCTION

A. A Brief Overview of the Alpha Decay Process

An α particle consists of two protons and two neu-
trons. It is a doubly ionized Helium atom, thus carrying
a +2 charge. A typical α decay process can be described
through the following reaction:

A
ZX → A−4

Z−2X
′ + 4

2α (1)

where A and Z are the mass number and atomic number
of element X respectively.

Our knowledge of conservation laws allows the develop-
ment of conditions that govern α decay processes. These
conservation laws include the conservation of energy, the
conservation of linear momentum, the conservation of
charge, the conservation of angular momentum and the
conservation of parity. The conservation of energy dic-
tates that the total kinetic energy of the decay products
must be equal to the mass deficit of the decay products
compared to the initial mass of the mother nucleus. That
is to say,

Q = (mX −mX′ −mα)c2 (2)

where Q is the total energy released in the decay process
and c is the speed of light in a vacuum, equal to 3× 108

m/s.
The conservation of linear momentum dictates how

this kinetic energy will be distributed between the two
decay products, namely

EX′ =
mα

mα +mX′
Q

Eα =
mX′

mα +mX′
Q (3)

The conservation of charge demands that, since an α
particle carries a +2 charge, the daughter particle must

carry a −2 charge. This fact is generally not considered
when analyzing nuclear reactions (which is concerned pri-
marily with the states of the nuclei involved, not with
the electrons); however, the charge on the decay prod-
ucts becomes relevant when analyzing how these decay
products attenuate through matter. By carrying charge,
the interactions between these decay products and mat-
ter are dominated by Coulomb interactions. Coulomb
interactions occur over larger distances than the inter-
actions due to the nuclear strong force or the nuclear
weak force; therefore, charged particles such as these de-
cay products will attenuate less in matter than neutral
particles, such as photons or neutrinos, which do not ex-
perience Coulomb interactions.

Finally, through the conservation of angular momen-
tum and parity, selection rules can be developed that
involve the allowed orbital angular momentum values `
for the decay products. Since the alpha particle is spin-
less, changes in parity between the mother nucleus and
the daughter nucleus will determine the ` values the α
particle is allowed to take. In general, the orbital an-
gular momentum of the alpha particle is restricted such
that

|`X − `X′ | ≤ `α ≤ `X + `X′ (4)

Parity must be conserved as follows:

πX = παπ
′
X (5)

where πi is the parity of nucleus i. Parity can only take
values of +1 and −1, and in particular, the parity of
the α particle can be calculated through the following
equation:

πα = (−1)` (6)

Considering both eqs. 5 and 6, it is clear to see that
if the parity of the mother nucleus and the daughter nu-
cleus are the same, then only even values of `α will be
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allowed such that the parity of the overall system is con-
served; conversely, if the parity of the daughter nucleus
is opposite that of the mother nucleus, only odd values
of `α will be allowed.[1]

B. The Band of Stability as a Model to Predicting
the Most Likely Decay Path of a Radionuclide

To briefly describe why unstable atoms exist, and why
these unstable atoms tend to approach stability through
specific, characteristic decay paths without going into a
lot of quantitative detail, it is important to introduce the
Band of Stability. The Band of Stability is an experimen-
tal result found from plotting the number of protons (Z)
versus the number of neutrons (N) contained within a nu-
cleus. In this plot, nuclei that are considered to be stable
are found to form a thick band. This band of stable nuclei
is often referred to as the Band of Stability, and it serves
as a model in an attempt to explain why an unstable
nucleus will decay through a decay chain specific to that
nucleus type. In order to reach a lower energy state and
thus stability, an unstable nuclei will attempt to bring
its initial proton-neutron ratio to that of one contained
within the band. Thus, the observed decay chain for that
nucleus is simply the optimal path through N-Z space to
reach the band of stability. In α decay, an equal number
of protons and neutrons will be emitted, thus α decay
does not change the proton-neutron ratio of an atom;
however, it will aid heavier nuclei to approach stability
in the region where the band of stability no longer follows
the A=Z line. An N-Z plot demonstrating this band of
stability is shown in Fig.1.

It should be noted that for the purpose of this deriva-
tion the Band of Stability can be considered an empiri-
cal result. A more detailed discussion about the nuclear
decay process, about what makes a nucleus stable ver-
sus unstable or metastable, and about why certain decay
paths are favored over the less optimal decay paths, is
beyond the scope of the current paper.

II. MODELING AN ALPHA DECAY PROCESS
AS A TUNNELING PROBLEM

With the idea of why certain nuclei might undergo an α
decay process versus another type of decay process more
understood, it is appropriate to return to the initial dis-
cussion on the nature of α decay, and more importantly,
how an α decay process might be easily modeled for cal-
culations of decay rates and half-lives of a specific ra-
dionuclide. A famous derivation, originally designed by
physicist George Gamow in 1928, models the α decay
process as a tunneling problem in which an α particle,
preformed within the nucleus and trapped by an effec-
tive nuclear potential well, will at times escape from the
potential well into free space. The calculation of the rate
of an α decay process is considered to be a two stage

FIG. 1: A plot of the number of neutrons versus the number
of protons for the known stable nuclei[2]

calculation: first to calculate the probability that an α
particle will form within the nucleus, and second, to then
calculate the probability that this newly formed α parti-
cle will then transmit through the coulomb barrier and
be successfully emitted[1]. For the sake of brevity, this
paper will only consider the second part of this two stage
process and will assume that the α particle is produced
within the nucleus.

A. Approximating the Nuclear Potential as a
Finite Square Barrier

The simplest calculation of an α decay rate involves
modeling the nuclear potential as a finite barrier of height
V0, shown in Fig.2.

FIG. 2: Modeling the Nuclear Potential as a Finite Barrier
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Since the potential is of the form,

V (x) =

{
0 |x| > a
V0 |x| < a

We know that the wavefunction will take the general form

ψ(x) =




Aeikx +Be−ikx −∞ < x < −a
Ceκx +De−κx −a ≤ x ≤ a
Eeikx + F−ikx a < x <∞

where k and κ are defined as

k =

√
2mE

h̄

κ =

√
2m(V0 − E)

h̄

where E is the energy of the α particle, and m is the
reduced mass of the α particle, mother nucleus system.

In this derivation, we will consider a rightward moving
wave, such that A represents the initial amplitude of the
wave, B represents the amplitude of the reflected wave,
E represents the amplitude of the transmitted wave, and
F, which in general represents the initial amplitude of
a leftward moving wave, will be set to 0. Additionally,
we will assume that the potential barrier is very large
and very wide, as will be the case with the energy of
an alpha particle compared to the potential barrier it
must overcome, such that the coefficient of the growing
exponential is very small and negligible. The observant
reader will recognize that the unnormalizable momen-
tum eigenfunctions are used as the wavefunction for the
region |x| > a. A more realistic approach would be to
use a moving wavepacket that can be properly normal-
ized; however, for the sake of simplicity, the momentum
eigenfunctions will be used instead.

We define the probability of transmission in general as:

T =
|t|2
|A|2 (7)

where t is the amplitude of the transmitted wave and A
is the initial amplitude. Thus for this derivation, our goal
is to compute E in terms of A.

Due to the hard walls at ±a, the WKB connection for-
mulae cannot be applied as boundary conditions; how-
ever, continuity conditions exist such that the wavefunc-
tion and the spatial derivative of the wavefunction must
both be continuous at ±a. That is to say:

Ae−ika +Beika = Deκa

Aike−ika −Bikeika = −Dκeκa

De−κa = Eeika

−Dκe−κa = Eieika (8)

After some manipulation, we find

E =
2ike−2a(ik+κ)

ik − κ A (9)

and

T =
|E|2
|A|2

=
4k2

κ2 + k2
e−4aκ

≈
(

2
k

κ

)2

e−2γ (10)

where

γ =

∫ a

−a
κ dx

and we used the result that κ � k from the approxima-
tion that the potential barrier be very large. This result
can be roughly generalized to state that for a potential
barrier with classical turning points a and b

T ∼ e−2γ (11)

with γ defined as

γ =

∫ b

a

κ(x) dx

=
1

h̄

∫ b

a

√
2m(V (x)− E) dx

In our later computation of the transmission probability
of an alpha particle, we should expect the relationship
given in Eq.11 to be maintained.

B. The Complex Eigenvalue Approach

The complex eigenvalue approach was originally done
by physicist George Gamow in 1928, when he was the
first to formulate an expression for the rate of an α decay
process that is able to accurately predict the wide range
of observed decay rates of in multiple radionuclides[3].

To begin the derivation, we first must construct a po-
tential function that exhibits the same behavior as is
present in the atomic nucleus. In general, a nucleus is
positively charged, with total charge equal to +Ze where
Z is the number of protons and e is the magnitude of the
charge of the electron. At large distance, Coulomb’s Law
tells us that the potential function should behave as if
there was a point charge of total charge +Ze located at
the origin; we should expect the potential function to
scale as ∼ 1

r as r → ∞. At close range, however, it is
obvious that coulomb forces are not dominant; if they
were, Z protons in close proximity would not form a low
energy state. The nuclear strong force is the dominant
interaction at small r, which we can model as a strongly
attractive potential well up to an effective nuclear ra-
dius Reff. To further simplify this nuclear potential func-
tion, we state that at the effective nuclear radius, Reff,
there is a sharp discontinuity in the potential function;
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FIG. 3: A More Sophisticated Model of the Nuclear Potential
Function[4]

the strong nuclear force abruptly goes to zero and the
Coulomb forces immediately take over. The potential
function described is shown in Fig.3.

A key assumption in this derivation is that the nu-
clear potential exhibits spherical symmetry, allowing us
to write the potential function strictly as a function of r:

V (r) =

{ −V0 r < Reff
Z′Zαe

2

4πε0r
r ≥ Reff

(12)

The classical turning points are given as Reff and

RT = Z′Zαe
2

2πε0E
. The wavefunction for this potential can

be written as

u(r) = N





sin(k1r) 0 ≤ r < Reff

A√
κ(r)

e
∫ r
Reff

κ(r′) dr′

+ B√
κ(r)

e
−
∫ r
Reff

κ(r′) dr′
Reff ≤ r ≤ RT

C√
k2(r)

e
i
∫ r
RT

k2(r′) dr′
r > RT

(13)
where we have defined

k1 =

√
2m(E + V0)

h̄2

κ(r) =

√
2m(V (r)− E)

h̄2

k2(r) =

√
2m(E − V (r))

h̄2 (14)

where N is an overall normalization factor, and m is the
reduced mass of the α particle - mother particle system

m =
mX′mα

mX′ +mα

As in the previous derivation, we are not able to use
the WKB connection formulae at the hard wall boundary
of Reff; however, the second boundary at RT is not a hard
wall, and the WKB connection formulae can be applied to
form appropriate boundary conditions. The connection
formulae of interest to this derivation are:

A√
κ(r)

e
∫RT
r

κ(r′) dr′ + B√
κ(r)

e−
∫RT
r

κ(r′) dr′ ←→
2A√
k2(r)

cos(
∫ r
RT

k2(r′) dr′ − π
4 )− B√

k2(r)
sin(

∫ r
RT

k2(r′) dr′ − π
4 )

(15)

Using the continuity conditions on the wavefunction
and its spatial derivative at the hard wall boundary
r = Reff, and the WKB connection formulae at the clas-
sical turning point r = RT , we can derive the following
relationships:

sin(k1Reff) =
1√

κ(Reff)
(A+B)

k1 cos(k1Reff) =
√
κ(Reff)(A−B)

C = 2Aeφ

C = iBeφ (16)

with φ defined as

φ =

∫ RT

Reff

κ(r′) dr′

It then follows that:

A =

√
κ(Reff)

2
[sin(k1Reff) +

k1

κ(Reff)
cos(k1Reff)]

B =

√
κ(Reff)

2
[sin(k1Reff)− k1

κ(Reff)
cos(k1Reff)]

A =
i

2
Be−2φ (17)

These first two relationships can be satisfied for any
chosen energy value; however, the third relationship can
only be satisfied for specific energy values. The implica-
tion of this third relationship is a complex energy eigen-
value, from which this derivation got its name. The imag-
inary component of the energy eigenvalue is much smaller
than the real component such that it can be treated as
zero[5]. A common critique of the complex eigenvalue
method is that it violates the axiom that hermitian op-
erators yield real eigenvalues, and there are more rigorous
derivations one could do, such as summing over all of the
possible scattering states, or using a semiclassical path
integral. However, the end results from those methods
are remarkably similar to the result that will ultimately
be obtained through this method[5].

The tunneling probability can be found with Eq.7

T =
|C|2
k2(r)

In a nuclear potential, the Coulomb barrier is very
large compared to the energy of the emitted α particle,
so we can make the approximation that the wavefunc-
tion within the region 0 ≤ r < Reff is approximately the
solution to the infinite well, i.e

k1Reff ≈ nπ

Additionally, we will evaluate the amplitude of the trans-
mitted wave at large r such that the Coulomb potential
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drops to zero. Therefore,

T =
|C|2
k2(∞)

=
|B|2e−2φ

k2(∞)

≈ k2
1

4κ(Reff)k2(∞)
e−2φ (18)

To obtain a decay rate, we must multiply this proba-
bility by a frequency. Classically, a particle undergoing
simple harmonic motion will have a frequency of oscilla-
tion proportional to its velocity.

1

2
mv2

max =
1

2
mω2x2

max

vmax = ωxmax

= 2πfxmax (19)

In treating the α particle as a classical particle oscillating
with a known energy, we can relate the final velocity
of the α particle to be proportional to a frequency of
oscillation that we will use to obtain a decay rate. The
final velocity used will be that obtained when evaluating
the kinetic energy of the α particle at large r.

vmax =

√
2E

m

f =
1

2πxmax

√
2E

m

=
1

2πReff

h̄k2(∞)

m
(20)

Then the rate of decay Γ can be calculated to be

Γ = fT

≈ 1

2πReff

h̄k2(∞)

m

k2
1

4κ(Reff)k2(∞)
e−2φ

≈ h̄

8πmReff

k2
1

κ(Reff)
e−2φ (21)

To obtain an algebraic expression for the rate of an α
decay process through which we can actually calculate
values of decay rates, we must now evaluate the expres-
sion

φ =

∫ RT

Reff

κ(r′) dr′

∫ RT

Reff

κ(r′) dr′ =

∫ RT

Reff

√
2m

h̄2 (V (r′)− E) dr′

=

∫ RT

Reff

√
2m

h̄2

(
e2Z ′Zα
4πε0r′

− E
)
dr′

=

√
2m

4πε0h̄
2Z
′Zαe2

∫ RT

Reff

√
1

r′
− 1

RT
dr′

=

√
2m

4πε0h̄
2Z
′Zαe2

∫ RT

Reff

√
1

r′
− 1

RT
dr′

=

√
2m

4πε0h̄
2

Z ′Zαe2

RT
RT

∫ 1

Reff
RT

√
1

y
− 1 dy

(22)

where we used the fact that E = Z′Zαe
2

4πε0RT
and defined y ≡

r′

RT
. This integral can be solved through a trigonometric

substitution, namely, y ≡ sin2(θ). Defining θ1 ≡ π
2 and

θ2 ≡ sin−1
√

Reff

RT

∫ 1

Reff
RT

√
1

y
− 1 dy =

∫ θ1

θ2

2 sin(θ) cos(θ)

√
1

sin2(θ)
− 1 dθ

=

∫ θ1

θ2

2 cos(θ)

√
1− sin2(θ) dθ

=

∫ θ1

θ2

2 cos2(θ) dθ

=

∫ θ1

θ2

1 + cos(2θ) dθ

=
π

2
− θ2 − sin θ2 cos θ2

= cos−1

√
Reff

RT
+

√
Reff

RT

(
1− Reff

RT

)

(23)

Thus, the rate of an α decay process can be written as

Γ ≈ h̄

8πmReff

k2
1

κ(Reff)
e
−2Z′Zα e2

4πε0h̄c

√
2mc2

E G
(√

Reff
RT

)

(24)

where we have defined G(x) ≡ cos−1 x−
√
x(1− x). Ta-

ble I shows the decay rates of particles known to undergo
α decay as calculated from Eq.24 compared to the decay
rate data from the National Nuclear Data Center.[6] and
the decay rates calculated by John Rasmussen in 1958,
who used a nuclear potential derived from α scattering
events and considered excited state transitions.[7]

III. LIMITATIONS IN THE COMPLEX
EIGENVALUE APPROACH

To first reiterate the key assumptions made in complex
eigenvalue approach to calculating the rate of an α decay
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Nuclide Computed
Half-Life

Experimentally
Determined
Half-Life

Rasmussen
(1958)

Uranium-
238

1.84× 108 years 4.47× 109 years 4.48× 109 years

Polonium-
210

14.5 days 138.3 days 135.42 days

Thorium-
220

3.80× 10−3 sec 9.7× 10−6 sec NA

Plutonium-
238

51.4 years 87.7 years 89.36 years

Americium-
241

78.8 years 437.6 years NA

TABLE I: The α decay rates of specific radioactive nuclei
as computed using the result of this derivation (Eq.24) are
compared to the experimentally observed values[6] and the
alpha decay rates as calculated by John Rasmussen in 1958[7].

process, this derivation relies heavily on the assumption
that the nuclear potential function can be characterized
by a piecewise function in which there is no overlap be-
tween the nuclear strong force and the Coulomb forces
of the nuclear protons. In this formation of the potential
function, we implicitly considered only the wavefunctions
with `α = 0, such that the angular term in the Hamilto-

nian, normally equal to h̄2`α(`α+1)
2mr2 , is set to zero. It then

should be expected that any decay rates predicted with a
model considering only the `α = 0 states would be under-
estimated; any `α 6= 0 α particle state will have a positive
contribution to the potential function seen in Eq.12, and
as such, will have a larger potential barrier and conse-
quently, smaller probability of tunneling into free space.
Considering the `α 6= 0 states should resolve much of the
underestimation in the calculated decay rates, as can be
seen in Table I with the decay times calculated by Ras-
mussen. In Rasmussen’s derivation, `α 6= 0 states were
considered (with the specific values taken by `α dictated
by previous experimental results) along with a ‘modified’
Gamow potential that included some correction terms
based on electron screening. Only even-even nuclei were
considered; however, Rasmussen did not calculate a de-
cay time for Thorium-220 as it had yet to be discovered.
The results of his derivation, shown in Table I, demon-
strate remarkable similarity to the experimentally deter-
mined decay times.

Thorium-220 is an interesting case; it was the only ra-
dionuclide listed whose half-life was overestimated by this
derivation. It may be the case that Thorium-220 is more
sensitive to the chosen theoretical model than the other
radionuclides. In 1993, Buck, et.al developed a model for
α particle decay that relied upon the Extreme Cluster
model for α particle formation. Instead of assuming that
the α particle is preformed within the nucleus, in the Ex-
treme Cluster model, the mother nucleus is viewed as an
α particle orbiting the daughter nucleus. Also, instead
of using a piecewise function to represent the nuclear po-

Nuclide Extreme Cluster
Model

Experimentally
Determined
Values

Uranium-238 1.78× 1010 years 4.47× 109 years

Polonium-210 41.7 days 138.3 days

Thorium-220 15 µsec 9.7 µsec

Plutonium-238 111 years 87.7 years

Americium-241 634 years 437.6 years

TABLE II: A table comparing the half-lives of specific α parti-
cle emitters calculated through the Extreme Cluster model[8]
and the experimentally determined values[6]

tential, Buck, et.al use a continuous function such that
the nuclear potential function is given as:

V (r) = VN(r) + VC(r) +
h̄2

2m

(`+ 1/2)2

r2
(25)

where

VN(r) = −V0
1 + cosh(Reff/a)

cosh(r/a) + cosh(Reff/a)

VC(r) =





Z′Zαe
2

r for r ≥ Reff

Z′Zαe
2

2Reff

[
3−

(
r
Reff

)2
]

for r ≤ Reff

and a is the diffuseness of the α-core system[8]. The
half-lives of Uranium-238, Polonium-210, Thorium-220,
Plutonium-238 and Americium-241 calculated through
this method are shown in Table II.

Much of this derivation relied on the wavefunction only
being a function of the radial distance r, which subtly im-
plied that the nuclear potential function exhibited spher-
ical symmetries that allowed for this simplification. In
some modern calculations of α decay rates, authors often
consider deformed, namely elliptically shaped, nuclei[9].
There are also corrections made to the Gamow nuclear
potential such that it is a slightly ‘deformed’ Gamow
nuclear potential in order to more accurately represent
the true nature of the coulomb force-strong force inter-
actions, as already discussed with the models proposed
by Rasmussen and Buck et al. Perhaps the largest ap-
proximation made in this derivation is the assumption
that the α particle be preformed within the nucleus. As
stated before, an α decay process can be well thought of
as consisting two distinct stages: the formation of an α
particle and the subsequent transmission of that α par-
ticle through the coulomb barrier. Neglecting the for-
mation of an α particle neglects a lot of the interesting
physics dictating which nuclei are most likely to undergo
an α decay process, as well as how quickly an α particle
can be ‘created’ within the nucleus, which will then have
an impact on the overall rate of the decay process, as
might be the case with Thorium-220.
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IV. CONCLUSION

Since the initial observation of α decay processes by
Earnest Rutherford in the late 1800’s, it was not until
after the invention of Quantum Mechanics that George
Gamow was able to develop a theoretical model for the
process of α decay that was able to accurately predict
the wide spectrum of observed decay rates, from the long
lived Uranium-238 to the ethereal Thorium-220. In this
paper, Gamow’s method of using a cleverly designed nu-
clear potential function and a complex energy eigenvalue
to derive the rate of an α decay process was recreated,
and the resulting expression was then used to calculate
the decay rates of common α particle emitters. In Table
I, the half-lives calculated from this theoretical model are
compared to experimental values taken from the National

Nuclear Data Center, and to the values produced from a
more rigorous theoretical derivation performed by John
Rasmussen in 1958. With one notable exception, the ex-
perimental values of the α decay times are larger than the
calculated decay times, a result that can be attributed to
the neglect of `α 6= 0 angular momentum states. When
considered, the potential barrier for an `α 6= 0 final state
would be would larger than the potential barrier used in

this derivation by a factor of h̄2`α(`α+1)
2mr2 ; thus, a longer

decay time would be calculated. It might be the case that
the vast overestimation in the α decay time of Thorium-
220 is due to the simplistic model for the nuclear poten-
tial function used in the Complex Eigenvalue approach;
a more sophisticated model, proposed by Buck et al, re-
solves much of the overestimation in the α decay time of
Thorium-220.
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Luminescence is a very useful phenomenon. Nowadays people make use of it as glow-in-the-dark
technology to mark the objects that should be visible in the darkness, such as watch hands, emer-
gency arrows, or children’s toys. The intensity is not very strong; with the light bulb turned on
the glow is not noticeable. Nowadays scientists have learned how to produce luminescent mate-
rials with good features (brightness, lifetime, etc.), but those materials have mostly been found
experimentally, because the theory for complex molecules is very complicated. In this paper I will
explain the phenomenon of phosphorescence using the model of the hydrogen atom to show time
scales for the allowed and forbidden transitions. At the end of the paper it will be discussed about
some applications of phosphorescence, its non-linearity and quantitative calculations regarding the
intensity of radiation.

I. INTRODUCTION

As a type of luminescence, phosphorescence should be
distinguished from the other types of luminescence – flu-
orescence, chemiluminescence and bioluminescence, be-
cause they all have different mechanism of excitation be-
fore radiation. Fluorescence happens after excitation by
radiation (like in TV tubes) and stops very fast after
the radiation is turned off. Chemiluminescence happens
after excitation by chemical reaction; a lot of those re-
actions are not reversible. This problem of irreversibility
is solved in living beings and bioluminescence, since they
can synthesize the necessary chemicals for it.

Luminescence and phosphorescence demand excitation
by external radiation. After the excitation by a photon,
an atom may stay in the excited state some time be-
fore the spontaneous emission of a photon or transfer-
ring of the energy to the other atoms. Sometimes these
two processes happen together – the electron makes non-
radiative transition to lower energy level and then ra-
diates photon during transition to the ground state; the
last one demands intermediate energy levels. That is why
the emitted and the absorbed light may have different
frequencies. For example, some luminescent materials
absorb infrared radiation and emit visible light.

Depending on the lifetime of the excited states, which
are dependant on the type of transition (allowed or for-
bidden), the radiation may have different names. If the
re-emission takes 10−9 − 10−6 seconds (allowed transi-
tion), it is called fluorescence. With such a short lifetime,
to the human eye it looks like an immediate radiation
of light. If the re-emission happens from a metastable
state it may take 10−4 − 102 seconds (forbidden transi-
tion). Metastable states are the states with a lifetime
that is longer than the one of usual states. In human
timescales time those materials may discharge by emit-
ting light for a long amount of time. These long emissions
are called phosphorescence. The states are very stable
because electrons occupy levels for which the transitions
to the ground level are classically forbidden transitions.
Because of the forbidden transitions, to calculate the life-
time of metastable states we should use the second-order

time-dependent perturbation theory instead of the first-
order. In the next section it is shown what will happen if
we apply the first order approximation to the classically
forbidden transitions.

Though the emission of a photon with frequency cor-
responding to the transition is forbidden, the radiation
can occur if two or more photons are emitted. Maria
Göppert-Mayer was the first person who calculated the
multi-photon emissions (1931) [1]. But only after 28
years did Shapiro and Breit [2] calculate the lifetime of
the 2S state of a Hydrogen atom with 4 significant figures
(0.1216 seconds). They calculated the integrals for the
problem using numerical methods and approximations.
As it will be shown later, my calculations don’t match
their answer in the 4th significant digit and are out of
their confidence range.

This paper will explain the main ideas of the two-
photon emission (or, the second-order perturbation the-
ory) and will provide the reader with the numbers for the
time scales of phosphorescence.

In section II the lifetime of some transitions in Hydro-
gen atom will be calculated using first-order approxima-
tions.

All calculations are done in cgs units.

II. APPLICATION OF FIRST-ORDER
PERTURBATION THEORY FOR CALCULATION
OF THE LIFETIME OF THE TRANSITIONS IN

THE HYDROGEN ATOM

In this section I will calculate the lifetime of some tran-
sition lifetimes in Hydrogen atom, showing that radia-
tion due to (2P 1

2
→ 1S) transition is a fluorescence and

(2S → 1S) is a forbidden transition.
The spontaneous emission rate is derived in Griffith’s

textbook [3]:

1

τ(|i〉 → |f〉) = A(|i〉 → |f〉) =
4ω3

if | 〈f | e~r |i〉 |2
3h̄c3

, (1)

where ωif = (Ei − Ef )/h̄ is the angular frequency of
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the emitted photon, ~d = 〈f | er̂ |i〉 is the electron’s dipole
moment in the atom, |f〉 and |i〉 arethe final and initial
states, respectively,and τ is defined to be the lifetime of
a transition.

The transition rates for transitions (2S → 2P 1
2
),

(2S → 1S) and (2P 1
2
→ 1S) will be calculated using

this formula. The hydrogen wavefunctions are:

ψ1S(r, θ, φ) = 1
√
πa

3
2
0

e−
r
a0 (2)

ψ2P 1
2

(r, θ, φ) = 1

4
√

2πa
3
2
0

r
a0

exp(− r
2a0

) cos(θ) (3)

ψ2S(r, θ, φ) = 1

4
√

2πa
3
2
0

(2− r
a0

) exp(− r
2a0

). (4)

with a0 ≈ 5.29 ∗ 10−9 cm being the Bohr radius.

FIG. 1: Transitions in the lower levels of hydrogen atom.

After calculating the integral for the electric dipole mo-
ment

|~d| = |
2π∫

0

dθ

π∫

0

dφ

∞∫

0

dr ∗ r2 sin(θ)ψ∗(|f〉)ψ(|i〉) (5)

r(x̂sin(θ)cos(φ) + ŷsin(θ)sin(φ) + ẑcos(θ))|, (6)

and considering that wave-functions are real we obtain
the following values for the electric dipole moments

|d(2S → 2P 1
2
)| = 3a0e (7)

|d(2P 1
2
→ 1S)| = 128

√
2

243 a0e (8)

|d(2S → 1S)| = 0. (9)

As seen from the first-order perturbation theory, the
rate of 2S → 1S transition is 0. That is why it is called
forbidden transition.

The frequencies are calculated using Planck-Einstein
equation E = h̄ω. The energy difference between 2S and
2P 1

2
is very small and it is called Lamb shift.The energy

difference between 2P 1
2

and 1S is much bigger and may be

calculated as an energy difference between levels n=2 and
n=1 of the Hydrogen atom, because all next corrections
to energy levels are of order α ≈ 1

137 .

∆E(2S → 2P 1
2
) = ∆ELamb ≈ 4.372 ∗ 10−6eV (10)

∆E(2P 1
2
→ 1S) = 3e2

8a0
≈ 10.20eV. (11)

Combining answers we get the lifetime of transitions
to be

τ(2S → 2P 1
2
) = 3h̄4c3

4∆E3
Lambe

2a20
≈ 1.2 ∗ 1010s. (12)

τ(2P 1
2
→ 1S) = 38a0c

3h̄4

28e8 ≈ 1.6 ∗ 10−9s. (13)

From these numbers it can be seen that the transition
to the 2P 1

2
state happens with very low probability (life-

time about 480 years.) One may think that the lifetime
of 2S → 1S transition is equal to the sum of (2S → 2P 1

2
)

and (2P 1
2
→ 1S) , but that is not true, because there are

also possible different two-photon emissions including in-
termediate imaginary levels. The total probability of the
two-photon emissions is higher than (2S → 2P 1

2
) transi-

tion. That is why the resulting lifetime of the transition
is much less than 1010s. The precise calculations are
hard to get because of that continuum spectrum (due to
imaginary levels) and because of the effect of the higher
P levels [1].

The next section derives the lifetime for 2S state taking
into the account the two-photon transitions and neglect-
ing the width of the intermediate states.

III. APPLICATION OF THE SECOND-ORDER
PERTURBATION THEORY FOR THE

CALCULATION OF 2S STATE’S LIFETIME OF
THE 2S STATE OF HYDROGEN ATOM

In this section it will be shown how to calculate the
total lifetime of 2S state of Hydrogen atom averaging on
all possible two-photon transitions from 2S to 1S states.

The (2S → 1S) transition is forbidden, but simulta-
neous emission of two photons,that obey the following
frequences:

ω
′
+ ω

′′
=

∆E(2S → 1S)

h̄
, (14)

is possible. ω
′

and ω
′′

are the frequences of the emitted
photons.

The probability of the transition from the initial state
|i〉 to the ground (final) state |f〉 is given by the second
order time dependent perturbation theory
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P (|i〉 → |f〉) = | 1

4h̄2

eωif−ω
′−ω′′ − 1

ωif − ω′ − ω′′
∑

k

[
Hik,2Hkf,1

ω′ − ωkf
+
Hik,1Hkf,2

ω′′ − ωkf
)

]
|2 (15)

where Hab,c = 〈a| eEcêc~r |b〉, e is the electron charge, Ec
is the value of an external Electric field in êc direction.

In Shapiot and Breit [2] the lifetime of 2S is derived.
The probability of emission of a photon at the frequency
range [ω

′
, ω
′
+dω

′
] , is given by the formula, derived from

eq. (15)

A(ω
′
)dω

′
= 8e4ω

′3ω
′′3

πh2c6〈∣∣∣∣
∑
k

[
〈i|~rê1|k〉〈k|~rê2|f〉

ω(ik)+ω′′

+ 〈i|~rê2|k〉〈k|~rê1|f〉
ω(ik)+ω′

]∣∣∣∣
2〉

Av

dω
′
. (16)

where ~r is the displacement vector of electron, ê1 and
ê2 are the unit vectors in the directions of the electric
intensities of photons ω

′
and ω

′′
. Summation is done

over k - intermediate atomic states. The averaging goes
over directions of polarization vectors . The transition
rate is calculated using

A =
1

2

ωfi∫

0

A(ω
′
)dω

′
(17)

The facto ofr 1
2 appears because during the integration

each pair of the photons appears twice. While integrating
from 0 to ω2S→1S we encounter two pairs of photons -
(ω, ω2S→1S) and (ω2S→1S − ω, ω), which are, actually,
the same pair of photons.

Skipping the calculation and variable change done in
[2], we have:

A(η)dη =
223cα7

33a0π
η3(

3

4
−η)3|M(η)+M(

3

4
−η)|2dη (18)

Where

α =
e2

h̄c
, (19)

is a fine structure constant.

η = ν
′ 2a0h

e2
, η = [0, 0.75] (20)

M(η) =

inf∑

m=2

R(m)

1− η −m−2
+

∞∫

0

Rc(x)dx

1− η + x2
(21)

R(m) = − 1
2533 , (m = 2)

= m7(m−1)m−2(m−2)m−3

(m+1)m+2(m+2)m+3 , (m > 2) (22)

Rc(x) = x(1 + x)−2(1 + 4x2)−3(1− e− 2π
x )−1

e−
2
x (arctanx+arctan2x). (23)

Behind all these complicated formulas lies a simple
idea. There is some probability of emitting two pho-
tons with frequences not equal to ω2S→2P 1

2

and ω2P 1
2
→1S .

Those probabilities are given by eq. (18). Integrating
those rates we include all possible probabilities.

In the next section we will calculate the integrals nu-
merically

IV. LIFETIME OF 2S STATE OF HYDROGEN
ATOM

The integrals derived in previous section are very com-
plicated. There are two possible ways of solving this
problem - approximations to the integrands or numeri-
cal integration. Using computer, the latter way is better,
because it achieve more precision we only need to lower
the step of the integration.

The authors in [2] calculated eq. (17) using numerical
methods and approximations. The integral was calcu-
lated using Simpson’s method for values η at intervals
0.0375 (21 nodes in region [0, 0.75]). They got the result

A2S→1S = (8.226± 0.001)s−1 (24)

The authors do not mention in the paper how they cal-
culated the final error. One of the possible methods of
error estimation, knowing the precision of the numerical
method, is to use Runge’s method [4]. That method
is derrived as a correction to the numerical method, but
also shows approximate error.

Suppose we have a numerical method of a precision p
(Simpson’s method has p=3). Then if the integrand has
a continuous pth derivative, then there exists C such that

I ≈ Ip(h) + Chp (25)

where I is the precise value of the integral,and Ip(h) is
value calculated with step h. If the step is small enough,
then the constant C is not changing with slightly varying
h. Then we may calculate the same integral with step
2h ( a different step may be chosen, but step 2h is more
convenient, because it doesn’t require new calculation of
the integrand at new points)

I ≈ Ip(2h) + C(2h)p (26)

Solving the system of two equations we get

I − Ip(h) ≈ Ip(h)− Ip(2h)

2p − 1
(27)

This method is easy,as it does not even need a new
calculation of the integrand. However, strictly speaking,
this method sometimes gives lowered error estimation.

To use Simpson’s method and estimate its error, I cal-
culated the integrand at the same nodes as the authors

Forbidden transitions and phosphorescence on the example of the Hydrogen atom 197



Forbidden transitions and phosphorescence on the example of Hydrogen atom 4

did in [2] precise up to 4th decimal digit in Mathemat-
ica.The Simpson’s method gave next results:

A2S→1S ≈ (8.228± 0.002)s−1. (28)

To be sure, I calculated this integral in Mathematica
numerically with PrecisionGoal of 6 (the effective precise
number of digits in the final answer) and accounting for
only 1000 elements in eq. (21). The answer was

A = 8.230s−1 (29)

which is out of range of the original paper’s error region.
The authors may have not payed a lot of attention to the
error estimation.

The lifetime of 2S state was never directly measured [1]
and the answer cannot be checked. The experiments on
the measurement of the lifetime of 2S state used Electric
or Magnetic field, which is described by a different theory.
This example was to show the timescales for allowed and
forbidden transitions, which in hydrogen vary by 8 orders
of magnitude.

Later I will show the calculations concerned with real
phosphorescent materials and experimental data.

V. PHOSPHORESCENCE IN COMPLEX
MOLECULES

Taking into account the complexity of the calculation
for a simple one-electron Hydrogen atom, it is expected
that there is no way to precisely calculate the spectrum
of complex molecules.

As an example, in Fig. 2 there is a plot of the spec-
trum of chrysene molecules C18H12. It can be seen from
the Fig. 2, that the light is re-emitted at lower fre-
quences compared to the absorbed light. It is also typi-
cally expected for phosphorescence to have lower frequen-
cies than for fluorescence, because the energy levels at
which phosphorescence occur have lower energy than the
fluorescence energy levels [5]. In real life collisions be-
tween molecules and atoms may occur, which is another
way of losing energy. That is why not so many fluids and
gases at room temperature have phosphorescence. But
the situation changes in crystal structures; those materi-
als may have the ability to re-emmit the light after the
crystallization.

Though while talking about phosphorescence we men-
tioned lifetime, we meant by this the most probable time
before radiation. If we suppose the linearity of radiation

I ∝ −dNexcited
dt

=
Nexcited

τ
, (30)

then the intensity of radiation has a law similar to the
law of radiative decay

I = I0e
− t
τ (31)

FIG. 2: Relative positions of absorption, fluorescence and
phosphorescence bands of chrysene.

where τ is a transition lifetime, I0 is initial intensity,
Nexcited is the number of excited molecules that depends
on time and become smaller due to radiation.

Now let’s check whether we can say that the lifetime
depends on the intensity of radiation or not.

The 4 values (Intensity, time) taken for material LU-
MILUX green N from [6]. For rough estimation we may
take first two and last two values and caculate I0 and τ
for them (Fig. 3). If the values are far from each other,
then the model is incorrect.

0 10 20 30 40 50 60
t, min0

20

40

60

80

100

120

luminance,
mcd

m2

FIG. 3: Approximation of the intensity by first two and last
two points. Dashed are exponential approximations, bold is
the inverse relation approximation.

For the first two points we have τ ≈ 4.9 minutes, for
the last two τ ≈ 34 minutes. It is a very big difference.
Here we can see nonlinearity - the higher the radiation
intensity, the lower τ and vice versa.

The experimental graph looks more like inverse depen-
dence rather than the exponential one. Suppose the so-
lution has the common form of 1

t dependance.
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I =
I0

1 + I0t
β

, (32)

where β is some constant. Taking the derrivative and
comparing with eq. (31) we have

τ =
β

I
(33)

Which means that in this theory the lifetime is in-
versely proportional to the intensity.

Though the curve fits experimental points very well,
this approximation is precise only in the region [3, 60]
minutes, because the integral representing the total em-
mitted energy

E ∝
∞∫

0

Idt (34)

does not converge, which means that the source has
infinite amount of energy.

VI. CONCLUSION

As seen from the previous section, due to the com-
plexity of the phenomenon, people mostly investigate it
from the experimental perspective. Even for Hydrogen
atomscientists skipped correction of order α = 1

137 and
interaction between atoms and molecules in materials,
but experimentally the numbers may be obtained with
higher precision. Real materials are also non-linear, since
the rate of change of the excited atoms ( dNexcitedNexciteddt

) is not
a constant , but a function of intensity itself. That is why
the decaying of intensity in real materials is not exactly
exponential.
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A survey of graphene including band structure derivation and applications.

I. INTRODUCTION

Graphene has the potential to revolutionize the world
of modern electronics and physics. It is currently the
topic of active research in different fields in science and
engineering [1]. The excitement in graphene is gener-
ated from its plethora of applications that range from
radiofrequency (RF) electronics to effective field transis-
tors, which make graphene an option for post-silicon elec-
tronics [2]. Furthermore, because of its unusual electronic
spectrum, it improves the performance of experiments on
relativistic condensed matter physics without the need of
expensive accelerators [3]. This paper will give a survey
of graphene and its potential applications in order to ex-
plain why it has become such a popular topic of research.
In section II, we will derive the energy band structure of
graphene. In section III, it will be shown that this band
structure has linear Dirac dispersion. This dispersion re-
lation establishes that electrons that propagate through
graphene can do so at speeds faster than in any other ma-
terial at room temperature. Section IV will explain one of
the most important applications of graphene, field-effect
transistors (FET), and the advances that have been made
in order to make this application feasible. This is an im-
portant field of research, because FETs are an essential
component in modern electronic devices. We will con-
clude by commenting on the outlook and future of this
application.

II. DERIVATION OF THE ENERGY BAND
STRUCTURE

It is important for us to understand the derivation of
graphene’s energy band structure, since it is this feature
that gives it unusual properties that will be discussed
later in the paper. We will make use of the tight binding
model in this derivation. Graphene consists of a thin and
flat monolayer of carbon atoms which are arranged in a
honeycomb structure. The lattice is shown in Fig 1. We
can see that the lattice vectors can be written as:

~a1 = a0
√

3

(
1

2
,

√
3

2

)
, ~a2 = a0

√
3

(
−1

2
,

√
3

2

)
(1)

in the (x, y) basis and with a0 representing the neigh-
bor distance, a0 = 1.42Å. Bloch’s theorem states that a
wavefunction in a crystal or periodic potential can change
under translation only by a phase factor. Using this fact

FIG. 1: Lattice of graphene. Carbon atoms are located at
each crossings and the lines indicate the chemical bonds,
which are derived from sp2 orbitals. Also shown are the prim-
itive lattice vectors ~a1,2 and the unit-cell (shaded). There are
two carbon atoms per unit-cell, denoted by 1 and 2 [4].

we can write the wavefunction for this system as:

ψ~k =
∑

~R∈G

ei
~k·~Rφ(~r − ~R) (2)

where G denotes the set of latice vectors and ~R denotes
the latice vectors; in our case ~R represents ~a1 and ~a2.
φ(~r) are the atomic wavefunctions. Since we have two
atoms per cell, and thus two such functions per cell, we
can label them as φ1 and φ2, where 1 and 2 represent the
corresponding carbon atoms. As a result, we can write
the total wavefunction φ as follows:

φ(~r) = c1φ1(~r) + c2φ2(~r) =
∑

n

cnφn (3)

The Hamiltonian for a single electron in this atomic po-
tential produced by all the carbon atom is given by:

H =
~p2

2m
+
∑

~R∈G

(
Vatom(~r − ~r1 − ~R) + Vatom(~r − ~r2 − ~R)

)

(4)
where ~r1,2 represents the position of the two carbon
atoms in the unit-cell. If we apply this Hamiltonian to
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φ1 we get:

Hφ1 = ε1φ1+φ1
∑

~R∈G

(
Va(~r − ~r1 − ~R) + Va(~r − ~r2 − ~R)

)

(5)
Here ε1 is the eigenvalue of the kinetic energy. The second
part of this equation can be abbreviated as ∆U1φ1. This
product is small because ∆U1 is small in the vicinity of
atom 1, and φ1 is small in all places away from location
1. Using this abbreviation, we can re-write the action of
the Hamiltonian in a compact way:

Hφ1,2 = ε1,2φ1,2 + ∆U1,2φ1,2 (6)

We can further simplify this equation by noting that by
symmetry ε1 = ε2 and that we can set the zeroth energy
to any value. If we choose ε1 = ε2 = 0, Eq. (6) can by
simplified as:

Hφ1,2 = ∆U1,2φ1,2 (7)

Next, we solve the Schrödinger equation:

Hψ~k = E(~k)ψ~k (8)

where ψ~k was defined in Eq. (2). There are two parame-
ters c1 and c2, and as a result, two equations are required
to solve this system. These are given by by projecting ψ
on to the two states φ1 and φ2. By multiplying Eq. (8)
by 〈φj |, it can be shown that:

E(~k) 〈φj |ψk〉 = 〈φj |∆Uj |ψk〉 (9)

Calculating the terms 〈φ1|ψk〉 and 〈φ2|ψk〉, which can
be done by assuming that only the nearest-neighbor over-
lap integrals have to be taking into account and using
Eqs. (2) and (3) we obtain:

〈φ1|ψk〉 = c1 + c2

(∫
φ∗1φ2 d3~r

)(
1 + e−i

~k· ~a1 + e−i
~k· ~a2

)

〈φ2|ψk〉 = c2 + c1

(∫
φ∗2φ1 d3~r

)(
1 + ei

~k· ~a1 + ei
~k· ~a2

)
(10)

Assuming that the overlap integral is real, we can de-
fine:

γ0 =

∫
φ∗1φ2 d3~r ∈ R (11)

Next, we need to calculate 〈φj |∆Uj |ψ〉 . We do this by
once again only considering the nearest-neighbor overlap
integrals. Additionally, we can use the abreviation:

γ1 =

∫
φ∗1∆U1φ2 d3~r =

∫
φ∗2∆U2φ1 d3~r (12)

where the second equality holds because changing the in-
dex should not matter due to the symmetry of the prob-
lem. We get these two equations:

〈φ1|∆U1 |ψk〉 = c2γ1

(
1 + e−i

~k· ~a1 + e−i
~k· ~a2

)

〈φ2|∆U2 |ψk〉 = c1γ1

(
1 + ei

~k· ~a1 + ei
~k· ~a2

)
(13)

Combining Eqs. (9), (10), and (13) and using the abbre-
viation:

α(~k) = 1 + e−i
~k· ~a1 + e−i

~k· ~a2 , (14)

the eigenvalue problem can be written as:

(
E(~k) α(γ0E(~k)− γ1)

α∗(γ0E(~k)− γ1) E(~k)

)(
c1
c2

)
=

(
0
0

)
(15)

We solve for E(~k) by taking the determinant of the ma-
trix in Eq. (15) and using the fact that γ0 is small, since
the overall overlap of the atomic wavefunctions is small,
we get the simple dispersion relation:

E(~k) = ±γ1
∣∣∣α(~k)

∣∣∣ (16)

Calculating the magnitude of α using Eq. (14) we obtain:

E(~k) = ±γ1
√

3 + 2cos(~k · ~a1) + 2cos(~k · ~a2) + 2cos(~k · ( ~a2 − ~a1))

(17)

This result can be expressed using the (x, y) compo-

nents of ~k. This yields the formula for the energy band
structure of graphene:

E(kx, ky) = ±γ1

√√√√1 + 4cos

(√
3aky
2

)
cos

(
akx
2

)
+ 4cos2

(
akx
2

)

(18)

where a is the lattice constant: a =
√

3a0. This equation
gives us the energy band structure of graphene; it is called
dispersion relation. We can visualize it in Fig. (2)

FIG. 2: Band structure of graphene [4]
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III. LINEARITY OF DISPERSION RELATION

We can see that in Fig. (3) if we zoom in close to the in-
tersection (Dirac points) of the bands that the dispersion
relation is linear. We can mathematically formalize this
effect by looking at the lattice structure in momentum
space.This aforementioned structure is called the Recip-
rocal Lattice of Graphene, which is the Fourier Transform
of Fig. (1).

FIG. 3: Band structure of graphene and a zoom-in around
the Dirac Points [3].

The primitive lattice vectors in reciprocal lattice space
~b1 and ~b2 are given by:

|~b1,2| =
4π

3a0
(19)

The 1st Brillouin zone is the unit cell defined in Fig. (1)
in reciprocal space. There are six corner points located
at the boundary of the Brillouin zone. These points are
known as K-points. In Fig. (4) one K-point is shown

with its respective wavevector ~K pointing along the x-
axis. We can find this K-point by using the geometry of
the problem and by plugging it into Eq. (17). We find
that:

~K =
4π

3
√

3a0
~ex and E( ~K) = 0 (20)

The Fermi-energy is located at the K-points in the en-
ergy spectrum. Thus, the low energy properties can be
well described by expanding the wavefunctions around
~K. We now look at the energy eigenvalue problem in Eq.

(15) and write: ~k = ~K+~q and E(~k) = E( ~K)+ε(~q) = ε(~q)

since E( ~K) = 0. (see Fig (2) and Eq. (20)). Then the
new eigenvalue equation is given by:

(
ε(~q) 3γ1a0

2 (qx + iqy)
3γ1a0

2 (qx − iqy) ε(~q)

)(
c1
c2

)
=

(
0
0

)
(21)

Again taking the determinant of the matrix in Eq. (21),
and setting it equal to zero, we obtain the dispersion
relation:

ε(~q) = ±
(

3γ1a0
2

)
|~q| (22)

FIG. 4: Reciprocal Lattice of graphene with the 1st Brillouin

zone (shaded). ~b1 and ~b2 are the primitive lattice vectors [4].

The velocity of the wavepacket is given by ~v =
h̄−1∂E/∂~q. It is also known as the Fermi velocity vF .
Its magnitude in this case is given by:

vF =
3γ1a0

2h̄
(23)

The parameters are known: a0 = 1.42Å, γ1 = 2.9 eV, and
as a result, vF ≈ 1x106 m/s. Using the Fermi velocity
vF we can rewrite Eq. (22) in a very simple form:

ε(~q) = ±h̄vF |~q| (24)

This energy dispersion in Eq. (24) resembles the energy
of ultrarelativistic particles. Thus, we see that the en-
ergy dispersion for graphene is linear with group velocity
of magnitude close to that of ultrarelativistic particles.
This means that electrons can travel at ultrarelativis-
tic speeds in graphene at room temperature. It is this
unusual result that inspired applications of graphene to
modern electronics. We will discuss this further in the
next section.

IV. APPLICATIONS AND THE FUTURE

One of the most famous and talked about applications
of graphene is its potential as a replacement for silicon as
the main material used to design transistors. We will fo-
cus on the Field-effect Transistor (FET) because it’s the
most successful device concept in electronics and there-
fore, most of the research on graphene devices has been
related to FETs [5].

Most FETs are made out of the semiconductor silicon
dioxide. A FET consists of a gate, a channel region con-
necting source and drain electrodes (Fig. 4). The opera-
tion of a typical FET consists of controlling the channel
conductivity, and consequently the drain current, by a
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voltage, VGS . For high-speed applications, FETs need
to respond quickly to variations in VGS . In order to
accomplish this, FETs require short gates and fast car-
riers in the channel. However, FETs with short gates
frequently suffer from degraded electrostatics and other
short-channel effects [5]. There is a point when the gates
reaches a minimum size and Moore’s Law will end. This
is the reason why the industry is looking for novel ma-
terials that can replace silicon. Since graphene has only
a one-atom thickness, the possibility of having channels
this thin is perhaps its most attractive feature along with
the fast-moving electron properties. This would allow us
to continue to build smaller transistors, which enables
the building of faster microprocessors.

FIG. 5: Cross-section of an n-channel Si MOSFET. When the
voltage applied between the source and the gate electrodes
exceeds a threshold voltage, VTh, a conduncting channnel is
formed and a drain current ID flows. The length of the chan-
nel is defined by the length of the gate electrode; the thinkness
of the gate-controlled channel region is the depth to which the
electronic properties of the semiconductor (p-doped Si in this
case) are influenced by the gate [5].

The main feature that graphene lacks in order to re-
place silicon as the standard material to design FETs is
that it is not a semiconductor. As a result, it lacks a
bandgap, as it was derived in Section II. Its valence and
conducting bands are cone-shaped in most places. Be-
cause the bandgap is zero, devices with channels made of
large-area graphene cannot be switched on and off, and as
a result cannot be used for logic applications like a semi-
conductor [5]. However, the band structure of graphene
can be modified to add bandgaps. This can be done in
three ways: by constraining large-area graphene in one
dimension to form graphene nanoribbons, by biasing bi-
layer graphene, or by applying strain to graphene [5].

Graphene nanoribbons are strips of graphene with
ultra-thin width (<50 nm). It has been predicted [5] that
ideal nanoribbons have a bandgap that is inversely pro-
portional to the width of the nanoribbon. The opening
of a bandgap in nanoribbons has been verified experi-
mentally for widths down to about 1nm [5]; theory and
experiments both reveal bandgaps above 200 meV for
widths below 20 nm. Nonetheless, real nanoribbons have

rough edges and widths that change along their lengths.
These edges and width issues destroy the potential to cre-
ate bandgaps between nanoribbons with different edge
geometries [5]. To open a bandgap useful enough for
FETs, very narrow nanoribbons with well-defined gaps
are needed. This represents a major technological chal-
lenge at this moment. Using nanoribbons that have re-
duced edge roughness creates a larger bandgap. However,
as the bandgap increases, the energy band structure be-
comes parabolic (rather than cone-shaped) (Fig. 6 (ii)).
As a result, this tarnishes the electronic properties that
make graphene unique.

Bilayer graphene also lacks a bandgap and its energy
structure around the K-point also has a parobolic shape.
However, when an electric field is applied perpendicu-
lar to the bilayer, a bandgap opens and the bands near
the K-point take on a ”Mexican hat” shape. Theoreti-
cal predictions have shown that the size of the bandgap
depends on the strength of the electric field [5]. How-
ever, even with the bandgap, the cone shape is lost and
once again the electronic properties of graphene are com-
promised. This configuration is shown in Fig. (6 ((iii),
(iv))).

Finally, strain is another method to create a bandgap
in large-area graphene. The effect of uniaxial strain on
the band structure has been simulated. If this is in fact
a viable option, opening a gap in this way would require
a uniaxial strain exceeding 20%, which would be diffi-
cult to achieve in practice. Furthermore, there is not
much knowledge about the ways in which other types of
strain (biaxial and local) influence the band structure of
graphene [5]. Thus, there are a number of techniques for
opening a bandgap in graphene, but they are all at this
moment some way from being suitable for use in practical
applications.

Besides creating a bandgap in graphene, the primary
challenges that researchers face at present is to develop
other means of improving transistor saturation charac-
teristics, for example developing contacts that block one
kind of carrier without degrading the transistor’s speed
[5]. This challenge will not be discussed further, since it
is a subject that mainly involves electrical engineering.
Even with these challenges, we must keep in mind that
this technology is relatively new and it is impossible to
predict whether any of the variations of graphene will ac-
tually be able to replace conventional transistors. This
promises to generate and motivate research in this field
for many years to come.

V. DISCUSSION

Graphene promises to be a fascinating topic of research
in the upcoming years. We have derived its energy band
structure, the unusual property of graphene, which po-
tentiates its use in solid state physics and modern elec-
tronics. We used the tight binding method and Bloch’s
Theorem along with knowledge of its chemistry struc-
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FIG. 6: Band structure around K-point of (i) large area
graphene, (ii) graphene nanoribbons, (iii) unbiased bilayer
graphene, and (iv) bilayer graphene with an applied electric
field. Large-area graphene and unbiased bilayer graphene do
not have a bandgap, which makes them less useful for digital
electronics [5].

ture to accomplish this derivation. Furthermore, we have
shown that the group velocity in graphene is in the order
of ultrarelativistic speeds; this leads to large conductiv-
ity. In general, large conductivity can also be achieved
through the method of superconductivity, but this re-
quires very low temperatures. Graphene’s unique energy
band structure generates this conductivity effect at room
temperature.

From there, we discussed graphene’s potential as a
Field-Effect Transistor. We emphasized that the main
challenge for graphene to substitute silicon as the ma-
terial for FETs is that it lacks a well-defined bandgap,
which is characteristic of semiconductors. There are some
methods to create a bandgap, but they are not very effi-
cient so far. As a result, it is hard to predict at this point
whether graphene will be the savior of modern electron-
ics as we approach the end of Moore’s Law. Nonetheless,
we want to remark once again that this material will con-
tinue to be a major aspect of modern research in solid
state physics and electrical engineering for years to come.

[1] AHC Neto, F Guinea, NMR Peres, and K S Novoselv. The
electronic properties of graphene. Reviews of modern ...,
2009.

[2] Jeon-Sun Moon and D Kurt Gaskill. Graphene: Its Fun-
damentals to Future Applications, IEEE Transactions on
Microwave Theory and Techniques, 2001.

[3] A K Geim and K S Novoselov. The rise of graphene, Na-
ture Materials, 2007.

[4] Christian Schoenenberger. Bandstructure of Graphene
and Carbon Nanotubes, April 2000

[5] F Schwierz. Graphene transistors. Nature nanotechnology,
2010

204 A Description of Graphene: From Its Energy Band Structure to Future Applications



On The Theory of Superconductivity

Theodore Mouratidis
Center for Theoretical Physics, 77 Massachusetts Ave., Cambridge, MA 02139-4307

(Dated: May 2, 2014)

In this research paper, the foundations of Bardeen Cooper Schrieffer (BCS) theory and the proper-
ties of superconductors will be investigated. BCS theory assumes that the attractive Cooper Pair
Interaction (weak e− − e− bound pair mediated by a phonon interaction) dominates over the re-
pulsive Coulomb force. Cooper’s work in 1956 showed that the e− − e− paired states can have
less energy than the Fermi energy of the material, and thus at adequately low temperatures, these
states can form. In order to describe the fundamentals of the BCS theory of superconductivity,
the many-body Hamiltonian, consisting of the kinetic energy term, as well as the electron-electron
phonon mediated potential energy term, will be utilized. By diagonalizing the Hamiltonian, the BCS
ground state and excited states will be found. Furthermore interesting thermodynamic properties
of superconductors such as the energy gap and critical temperature, will be investigated, as will the
quantum mechanical foundation of the electrodynamic and magnetic properties of superconductors.

I. INTRODUCTION

One of the unsolved problems of solid state physics in
the 20th century was that of superconductivity. Below a
certain critical temperature for some materials, there are
two fascinating effects which occur; namely those of infi-
nite conductivity (E = 0), and the Meissner-Oschenfeld
effect (very small penetration of the magnetic field into
the material such that it falls to zero rapidly). Insights
made by Maxwell and Reynolds into the relationship be-
tween isotopic mass and the critical temperature Tc, al-
lowed for the conjecture that superconductivity relied on
electron phonon interactions, finally leading to Bardeen,
Cooper and Schrieffer’s discovery of a theory called the
Bardeen Cooper Schrieffer (BCS) theory of superconduc-
tivity in 1957. BCS theory assumes that the attrac-
tive Cooper Pair Interaction dominates over the repulsive
Coulomb force. A Cooper pair is a weak e− − e− bound
pair mediated by a phonon interaction. These e− − e−
paired states can have less energy than the Fermi energy
of the material, and thus at adequately low temperatures,
these states can form; this is because thermal energy is
not a significant factor at these temperatures. In sec-
tion II, the Bloch State and the fundamentals underly-
ing electron-phonon interactions will be presented, and
in section III the superconducting ground state and ex-
cited states will be calculated. In section IV the thermo-
dynamic properties of superconductors will be derived,
and in section V, their two most valuable properties, in-
finite conductivity and an internally expelled magnetic
field will be investigated. Finally in sections VI and VII,
the characteristics of type I and type II superconductors
will be described.

II. THE BLOCH STATE AND
ELECTRON-PHONON INTERACTIONS

We will begin the theoretical basis of superconduc-
tivity by looking at the Sommerfeld-Bloch individual-
particle model. This model assumes each electron

moves independently, in a field equivalent to that of
all the other electrons in the metal. These electrons
occupy individual-particle Bloch states, denoted with
wavevector k and spin σ. However, we cannot use these
wavefunctions directly to describe superconductivity, as
lattice imperfections, and electron-electron and electron
phonon interactions result in the Bloch wavefunctions
not being exact single-particle eigenstates. If we assume
these states have low energies, they can be treated
perturbatively, in terms of scattering electrons between
single-particle states.

Now let us describe the effect of Cooper pairs.
The Coulomb attraction between the electron and the
positively charged cores of ions will leave a net positive
charge in the vicinity; a paired electron is one with
opposite momentum and spin which is attracted by the
Coulomb force to this positive charge, thus forming
the bound state with the other electron. One electron
scatters from a Bloch state with initial wavevector k, to
final wavevector k

′
= k ± κ by exciting an oscillation

of the lattice (phonon). Almost immediately, the
phonon is absorbed by the other electron, which is then
also scattered to a different wavevector. The bound
state (the Cooper pair) thus interacts due to phonon
exchange, and the overall effective interaction combines
phonon-exchange and the Coulomb interaction. The
key property for superconductivity is that the overall
interaction is attractive for frequencies below the Debaye
frequency ωD. Let us make an argument for this case
by considering a Cooper pair interaction at T = 0 K in
a Fermi gas, where we will look for a zero momentum
wavefunction of the form:

Ψ (r1, r2) =
∑

k

gke
ik·(r2−r1)( | ↑ ↓ 〉 − 〈 ↓ ↑ |) (1)

This is a general expression for a zero momentum, two
particle state, and thus the spins are chosen accordingly.
Antisymmetry places a constraint on the coefficients gk =
g−k. Placing this into the Schrodinger Equation Hψ =
Eψ, yields the following result [7]:
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(E − 2εk) gk =
∑

k′>kF

Vkk′ gk′ (2)

where Vkk′ = 1
V ol

∫
V ol

d3r V (r)ei(k−k
′
)·r and εk is the

Bloch energy of the state. We will make the mean field
approximation, which sets the potential equal to an aver-
age value over the field, to greatly simplify calculations:

Vkk′ =

{
−V0, εF < εk < εF + h̄ωc
0, otherwise

(3)

The bound on the energy shows that we only consider
interactions that are allowed by the metal’s frequency
range. Here, εF is the Fermi energy of the metal and
ωc is the cutoff frequency of the metal. This equation
therefore becomes:

1

V0
=

∑

k′>kF

1

2εk − E

1

V0
= N0

∫ εF+h̄ωc

εF

dε

2ε− E

=
N0

2
ln

(
2εF − E + 2h̄ωc

2εF − E

)

2εF − E =
2h̄ωc

e
2

N0V − 1
≈ 2h̄ωce

− 2
N0V (4)

This is valid for N0V0 << 1 (the weak coupling solu-
tion), where N0 is the number of particles, and finally
this shows that the energy of the cooper pair is less than
the Fermi energy for the bound state:

E = 2εF − 2h̄ωce
− 2
N0V < 2εF (5)

III. SUPERCONDUCTING STATES

In this section, the Hamiltonian for a superconducting
system will be introduced. We will transform into a
diagonal basis, and find expressions for the coefficients
which will help us characterize the ground state. Fur-
thermore, the gap energy between the superconducting
ground state and excited states will be quantified.

Due to scattering in the states |k ↑ 〉 and |k ↓ 〉
(spin up electron and spin down electron), the Fermi
sea becomes unstable, and the ground state is then a
superposition of the cooper pairs formed. The prob-
lem thus reduces to calculating this ground state and
the excited states of a solid state system of fermions
interacting via two body potential. The creation and
annihilation operators of the Cooper Pairs satisfy the
Fermi commutation relations [2]:

{
ckσ, c

†
k′σ′

}
= δkk′ δσσ′

(6)

where σ is the spin of the electrons. In the previous
section we only considered a Hamiltonian for a single
Cooper pair. The Hamiltonian for the many-body system
can be written as [3]:

HBCS =
∑

kσ

εkc
†
kσckσ + Vint (7)

where the interaction potential Vint is defined as

Vint =
1

N

∑

kk′

Vkk′ c
†
k↑c
†
−k↓c−k′ ,↓ck′ ,↑ (8)

The first term is the kinetic energy of the electrons,
and the second is the addition of the phonon mediated
interactions into this framework. Before we calculate the
ground state, let us notice a few interesting facts about
the Hamiltonian. An unusual fact about the HBCS is
that it does not conserve the electron number, because
it contains terms of the form cc and c†c†. It is therefore
expected that eigenstates of HBCS do not have a sharp
electron number, but instead the relative fluctuation is

proportional to N0
−1/2 [3]. We therefore diagonalize the

Hamiltonian, by introducing new fermionic operators in
the Bogoliubov basis. The linear transformation is de-
fined as:

ck,↑ = ukγk,↑ + vkγ
†
−k,↓

c†−k,↓ = −v∗kγk,↑ + u∗kγ
†
−k,↓ (9)

where the coefficients uk and vk will be derived, and the

new operators introduced, γk,↑ and γ†−k,↓, are the lower-
ing operator for the first particle and the raising operator
for the second particle, respectively. Each particle in the
Cooper pair is known as a quasi-particle. Now we can
calculate the Hamiltonian to find expressions for the co-
efficients uk and vk following the derivation in [3]:

HBCS

=
∑

k

εk[(|uk| 2−|vk| 2)(γ†−k,↓γ−k,↓+γ†k,↑γk,↑)+2|vk| 2+

2uk
∗vk
∗γk,↑γ−k,↓ + 2ukvkγ

†
k,↑γ

†
−k,↓]+∑

k

[(∆kukvk
∗ + ∆k

∗uk
∗vk)(γ†−k,↓γ−k,↓ + γ†k,↑γk,↑ − 1)

+(∆kvk
∗2−∆k

∗uk
∗2)γk,↑γ−k,↓+(∆k

∗vk
2−∆kuk

2)γ†−k,↓γ
†
k,↑+

∆k〈c†k,↑c
†
−k,↓〉

∗
] (10)

where the spins are summed over the spin up and spin
down particles, and ∆k is the gap energy between the
ground and excited superconducting states, defined by
the equation:

∆k = − 1

N

∑

k′

Vkk′
〈
c−k′ ,↓ck′ ,↑

〉
(11)
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The coefficients are chosen such that the γγ and γ†γ†

terms vanish because they are not diagonal. This re-
quires:

2εku
∗
kvk + ∆∗kv

2
k −∆k(u∗k)

2
= 0 (12)

and therefore the coefficients uk and vk are found to be:

u2
k =

1

2


1 +

εk√
ε2k + ∆k

2


 , v2

k =
1

2


1− εk√

ε2k + ∆k
2




(13)
The coefficients uk and vk are known as coherence fac-

tors; they determine how much of an electrons or a hole
is traveling as a quasi particle in the superconductor (in
a Cooper pair). u2

k and v2
k are the probabilities that a

pair of states with opposite k and σ are unoccupied and
occupied respectively.

In the original basis, the Hamiltonian could be ex-
panded in terms of the gap energy by re-expressing the
interaction potential in terms of ∆k. To express it in
terms of the new basis, we will look at the dispersion

energy of the quasi-particles defined as Ek =
√
ε2k + ∆2

k;

these are the resulting excitation energies. By making the
assumption that the gap energies of opposite spin states
are equal, |∆−k| = |∆k| , and using the definitions of uk
and vk, the Hamiltonian in the diagonal basis becomes:

HBCS =
∑

k

Ek(γ†−k↓γ−k↓ + γ†k↑γk↑)+

∑

k

(εk − Ek + ∆k〈c†k↑c
†
−k↓〉

∗
) (14)

The first term describes the free fermion excitations
above the ground state, with spectrum Ek. The second
term is a constant, which will be important in calculating
the ground state energy. We will investigate this energy
later in this section.

Now let us return to Eqn.(11); this is known as
the gap equation. When the expectation value in
the equation is calculated, a non-linear integral equa-
tion, which can be solved by numerical integration, is
obtained [3]:

∆k = − 1

N

∑

k′

Vkk′
〈
c−k′ ,↓ck′ ,↑

〉

∆k = − 1

N

∑

k′

Vkk′
∆k′

2
√
ε2
k′

+ ∆2
k′

(15)

The presence of the potential term Vkk′ in the gap
equation, results from the competition of the phonon at-
traction and the Coulomb repulsion.

∆k is the energy that is required to excite a quasi-
particle from the superconducting ground state. Now, let
us try and gain some physical intuition about ∆k, and the
relationship between the original operators c, c† and the

new operators, γ, γ†. Originally there were electrons;
now the Bogoliubov operators describe quasi-particles.
From FIG. 1, we can see that far below the Fermi en-
ergy, we have ’hole-like’ quasi-particles, and far above the
Fermi energy we have electron-like quasi-particles. Near
the Fermi energy however, as suggested by Eqn. (9), the
quasi-particles are a resonance/mixture of electron-like
and hole-like structures. These superpositions describe
the pairing correlations present in the BCS state.

Now let us look at the quasi-particle energy dispersion,
Ek. The smallest possible excitation is ∆Emin = 2∆0,

(one per electron) where ∆0 = 2h̄ωDe
− 1
N0V (solved by as-

suming constant ∆k). It is the energy required to break a
pair, and cause the now separated electrons to be excited
to a higher energy state in which they are in a Fermi sea
(normal metal electron phase), rather than combined as
a Cooper pair. Thus electrons can exist separately in
a superconducting phase, if they are excited. The BCS
ground state is what is known as the pure condensate
of Cooper pairs (the only way electrons can exist in the
ground state). It can be seen in FIG. 1, that supercon-
ductivity raises the spectrum of the quasi-particles by
∆kF .

FIG. 1: Variation of Quasi-Particle Energy Dispersion with
Wavevector k:
All states are Cooper pairs as vk → 1. All states are single
electron states as uk → 1. [8]

The foundations of the BCS theory have been laid, so
let us now find the ground state. The ground state must
take the form [3]:

|ΨBCS〉 ∼
∏

k,σ

γkσ |0〉 (16)

(where |0〉 is the vacuum state), as this state is killed by
γkσ for any σ, because γkσγkσ = 0. The |0〉 state is an
eigenstate of the original ck,σ operator and is killed by
it. However, the vacuum is not an eigenstate of the γkσ
operator, and is not killed by it. But since γkσ |ΨBCS〉 =
0, then

∏
k,σ γkσ |0〉 is the new vacuum eigenstate of the

quasi-particle operators. Thus, in terms of the original
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creation and annihilation operators, this ground state is:

|ΨBCS〉 =
∏

k,σ

(uk + vkc
†
k,↑c
†
−k,↓) |0〉 (17)

where uk and vk are the calculated complex coefficients.
By normalization, it is required (|uk| 2 + |vk| 2) = 1.
Filled states are occupied in pairs such that if |k ↑〉
(spin up electron state) is occupied then so is | − k ↓〉
(spin down electron state). |ΨBCS〉 is therefore a linear

FIG. 2: Variation of Coefficients uk and vk:
uk = 1, vk = 0 (positive k − kF ) corresponds to no Cooper
Pairs. uk = 0, vk = 1 (negative k−kF ) corresponds to Cooper
Pairs. 2∆ is the energy change of this transition. [8]

combination of empty states, with the probability of
no electrons equal to u2

k, or doubly occupied states
(combination of spin up and spin down electrons, k, ↑
and −k, ↓ ), with probability of v2

k. Therefore looking
back at FIG. 1, we can now see that well below the Fermi
energy, vk = 1, so all electrons are in Cooper pairs. The
fact that we can have uk = 1 shows that ψBCS is a
general expression for not only superconducting states,
but also normal states. An interesting observation from
FIG. 2 shows that when v2

k = 1, the BCS ground state

becomes |ΨBCS〉 =
∏
k,σ(c†k,↑c

†
−k,↓) |0〉 , which is the

Fermi sea.

It is necessary for the system to reduce the in-
teraction energy, so the net momentum of the Cooper
pair is k1 + k2 = 0, implying that uk and vk actually
minimize the ground state energy. The ground state
energy is calculated to be:

〈ΨBCS |H|ΨBCS〉

=
∑

k

2εk|vk| 2 +
1

N

∑

kk′

Vkk′ v
∗
kuku

∗
k′ vk′

=
∑

k

(εk −
εk

2

Ek
)− ∆k

2

V
(18)

The normal state at T = 0 corresponds to the BCS
state with ∆k = 0 and Ek = |εk|, so the energy of the
normal state is

∑
k<kF

2εk. We can therefore see that
the energy of the superconducting state is less than the
energy of the normal state. The difference in energy is
known as the condensation energy of the BCS ground
state:

EBCS − Enormal =
−1

2
N0∆2

0 (19)

Now that the ground state has been introduced, we can
return to the matter of excited superconducting states.
As mentioned previously, since the Hamiltonian is diag-
onal in the Bogoliubov basis, and the vacuum state of
this basis is |ΨBCS〉, we can obtain superconducting ex-
cited states by acting on this state with the quasi-particle
raising operator:

γ†k1σ1
γ†k2σ2

. . . γ†knσn |ψBCS〉 (20)

IV. THERMODYNAMIC PROPERTIES

Arguably the most fundamental of all properties of su-
perconductors is the critical temperature. This is the
temperature below which the electrical resistivity drops
to zero. We can find Tc using the definition for the gap
energy. We will see in this derivation, that by working in
the transformed basis, the Fermi distribution will arise in
the expectation value of certain combinations of Bogoli-
ubov operators because the quasi-particles are essentially
independent fermions. From [1] we have:

〈γ†
k′↑γk′↑〉 = f(Ek′ )

〈γ†
k′↑γ

†
−k′↓〉 = 0

〈γ−k′↓γk′↑〉 = 0

〈γ−k′↓γ†−k′↓〉 = 1− f(Ek′ ) (21)

where f is the Fermi distribution. Following [1], we begin
the derivation of the Tc:

∆k = − 1

N

∑

k′

Vkk′
〈
c−k′ ,↓ck′ ,↑

〉

= − 1

N

∑

k′

Vkk′uk′ vk′
(
−
〈
γ†
k′↑γk′↑

〉
+
〈
γ−k′↓γ

†
−k′↓

〉)

= − 1

N

∑

k′

Vkk′uk′ vk′ (1− 2 (f (Ek′ ))

= − 1

N

∑

k′

Vkk′
∆k′

2Ek′

(
tanh

(
βEk

2

))

=
V

2N

∑

k′

∆k′

Ek′

(
tanh

(
βEk

2

))
(22)

The critical step from here is to notice that the en-
ergy is independent of k in the approximation that the
potential is independent of k. Also, at the transition
temperature, the energy gap vanishes, and thus the total
energy is just that of the Bloch state, εk. We also define
the number of total electrons as N0.

1

V N0
=

∫ h̄ωD

0

dεk
εk

tanh

(
βcεk

2

)

kTc = 1.14h̄ωD exp

( −1

N0V

)
(23)
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FIG. 3: Energy diagram ∆0 vs. T :
Minimum required energy to excite a quasiparticle from the
ground state increases as T decreases beyond Tc. There is no
energy gap above Tc. [1]

In FIG. 3, we see that the gap energy, ∆0, between the
ground and excited superconducting states, will increase
rapidly as the temperature drops below Tc. The critical
temperature is unsurprisingly equal to the critical tem-
perature of the Cooper instability; the temperature at
which the pairs form. For simple elementary supercon-
ductors, Eqn. (23) holds, however for unconventional ma-
terials, and those with much stronger Cooper coupling,
this is not a good approximation.

V. INFINITE CONDUCTIVITY AND THE
MEISSNER EFFECT

The two most valuable properties of superconductors
are infinite conductivity and the Meissner-Oschenfeld Ef-
fect (more commonly known as the Meissner Effect). The
Meissner effect describes how and why magnetic fields
are actively expelled from superconductors. It is possi-
ble to derive these effects from the previous results, but
Ginzburg and Landau found a much more direct method
to find them. To retain the field within the material, the
superconductor will lose free energy, and thus naturally,
the most thermodynamically favorable outcome is the ex-
pulsion of the field. The Ginzburg-Landau Free energy
density for any magnetic field incident on a superconduc-
tor is defined as [6]:

f = α|ψ (~r)| 2 +
β

2
|ψ (~r)| 4 +

1

2m
| (−ih̄∇+ 2eA (~r))ψ (~r)| 2

+
1

2µ0

(B (~r)−BE (~r))
2

(24)

The first two terms are a Taylor series expansion
about the phase transition temperature Tc (where α =

α′(Tc−T ), and α
′
, β are constants), while the third term

describes the coupling of the wavefunction to the electro-
magnetic field, and the final term is the magnetic energy
density due to currents within the superconductor (B (~r)
is the induction field, and BE (~r) is the external field). By
observing the 2e term which contains the vector poten-
tial A (~r), it can be inferred that there are two electrons

coupling to the field, as is expected. For the supercon-
ducting state, we want to minimize the free energy, such
that the state is in the lowest possible energy configura-
tion. By taking the derivative of Eqn.(24) with respect
to ψ∗ (~r) and A (~r), two equations are obtained [6]:

1

2m
(−ih̄∇+ 2eA (~r))

2
ψ (~r) +

(
α+ β|ψ (~r)| 2

)
ψ (~r) = 0

which is the derivative with respect to ψ∗ (~r)

(25)

JS (~r) =
−2eh̄ns
m

(
∇φ (~r) +

2eA (~r)

h̄

)

which is the derivative with respect to A (~r)

(26)

where JS (~r) is the current density. Equation (25) will
be used in section VII to calculate a critical magnetic
field.

Here, we have used the de Broglie pilot wave
theory postulate that any wavefunction can be written
in terms of the probability density ρ and the phase S

: ψ =
√
ρe

iS
h̄ . Therefore our wavefunction becomes

ψ =
√
nse

iφ(~r), where ns is the number density of
quasi-particles in the superconducting state. Buried
within these two equations are the two essential proper-
ties of superconductors. Notice that the first equation
has the form of the Schrodinger equation without the
non linear |ψ (~r)| 2ψ (~r) term. We therefore expect this
wavefunction to behave like a macroscopic wavefunction,
however will not satisfy linearity properties including
normalization and superposition. Another interesting
fact is that without the A (~r) term, the equation describ-
ing Bose-Einstein condensates arises (Gross-Pitaevski
Equation). The second equation defines the quantum
mechanical definition of a current. Now, the Meissner
effect will be proven. Taking the curl of the current, we
obtain:

∇× JS (~r) =
−4e2ns
m

∇×A (~r) =
−4e2ns
m

B (~r) (27)

Using the fact that µ0∇ × Js (~r) = −∇2B (~r) =
−4e2nsµ0

m B (~r) , the second London equation is obtained,

∇2B (~r) = B(~r)
λ2 , where

λ =

√
m

4µ0e
2ns

(28)

This is the characteristic penetration depth of a su-
perconductor; the depth to which the magnetic field will
penetrate. The solution to the second London equation
shown above, is:

B (x) = B0e
− xλ (29)
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finally proving that the field in a superconductor expo-
nentially decays rapidly from the wall of the material
for temperatures below Tc. Using Fermi statistics, as
T −→ 0, and ns −→ ne/2, the limit of penetration is
purely determined from normal state properties. At Tc,
and as ns −→ 0, λ diverges and the screening of the field
breaks down such that the magnetic field can penetrate
the superconductor.

To consider the property of zero resistance, gauge
transformations must be re-visited. The fields, E and
B remain unchanged with the phase transformations
φ −→ φ − ∂ξ

∂t , and A (~r)−→A (~r) + ∇ξ, where ξ is
an arbitrary differentiable and single-valued function.
Consider the transformation [6], φ −→ φ − 2e

ξ . Eqn.

(24) becomes:

∂JS (~r)

∂t
=
−2eh̄ns
m

(
2e

h̄
∇φ (~r) +

2e

h̄

∂A (~r)

∂t

)
(30)

Since E (~r) = −∇φ − ∂A(~r)
∂t , then we obtain the first

London equation:

∂JS (~r)

∂t
=

4e2ns
m

E (~r) (31)

This is an acceleration equation, implying that an elec-
tric field E (~r) is needed to kick-start the super-current,
but not sustain it. It is simply Newton’s second law for
quasiparticles, as we know that since the current density
is proportional to the current velocity, its derivative is an
acceleration. If the electric field drops to zero from some
finite value, the acceleration becomes zero, but the quasi-
particles will still move at a constant speed. Another way
to see the Meissner effect is to notice that the minimum
free energy is found when ∇φ (~r)+ 2eA(~r)

h̄ = 0; taking the
curl of this equation gives B = 0 in the superconductor.

VI. TYPE I AND TYPE II
SUPERCONDUCTORS

Type I superconductors are those which only have
one superconducting phase below Tc called the Meissner
phase, and therefore have one critical magnetic field, Hc,
above which superconductivity is destroyed. Type II su-
perconductors have two phases below Tc, and therefore,
have two critical magnetic fields. In type two supercon-
ductors, once the field is increased beyond Hc1 (the lower
critical field), the Meissner phase transitions to the vor-
tex phase. A vortex lattice forms until Hc2 (the upper
critical field) is reached, beyond which superconductivity
is destroyed. Vortices are points in the superconductor
where the magnetic field can be non-zero, and they will
be investigated in section VII.

To characterize these superconductors, the coherence
length must be defined. It is the scale over which the

wavefunction varies [4]:

ξ =

√
h̄2

2m |α| (32)

From this, the Ginzburg-Landau dimensionless param-
eter can be defined as κ = λ

ξ . This parameter defines

the bound on the two types of superconductors. Type
I superconductors have κ < 1√

2
, and type II supercon-

ductors exist for κ > 1√
2
. FIG. 4 and FIG. 5 show the

respective critical fields and phases for Type I and Type
II superconductors respectively.

FIG. 4: Type I Superconductor Phase Diagram [7]

FIG. 5: Type II Superconductor Phase Diagram [7]

VII. CRITICAL MAGNETIC FIELDS,
QUANTIZED FLUX AND VORTEX FORMATION

Any small penetration of magnetic flux will occur in
a manner such that it minimizes the free energy. For
fields greater than a critical field, the superconductivity
is destroyed. So not only is there a critical temperature
bound, but there is also a maximum magnetic field above
which superconductivity is destroyed. Let us derive the
critical fields.

For Type I superconductors, the critical magnetic field,
Hc, below which exists the Meissner phase and exponen-
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tial expulsion of the field, is [4]:

Hc =

√
4π
α2

β
(33)

We will now derive the two critical fields for Type
II superconductors, and investigate the very interesting
problem of the vortex phase. To do this, flux quanti-
zation must be described. Consider a superconducting
loop with a magnetic field running through the center.
By computing the line integral along a loop within the
superconductor, the flux (which is infact just the stan-
dard quantized magnetic flux) can be found:

∮
~r · ∇φ = 2πn = −

∮
~r · 2e

h̄
A

−2e

h̄

∫∫
~r∇× ~A = −2e

h̄
ΦB

ΦB = −hn
2e

(34)

This is a quantized value, but not all type II supercon-
ductors are loops of material. The way quantized flux
arises in type II superconductors is at points where the
wavefunction vanishes, known as quantum vortices. This
phenomenon of vortices only arises in type II supercon-
ductors.

Let us analyze this mathematically. The minimum
amount of flux that can penetrate a type II supercon-
ductor is one flux quantum φ0 = hn

2e . The phase of the
wavefunction changes by −2π around the vortex, so in
the center, the phase is undefined, implying ψ = 0 here.
The Ginzburg-Landau equations are solved using the fol-
lowing boundary conditions:

ψ (ρ = 0) = 0, |ψ (ρ→∞)| = ψ0, B (ρ→∞) = 0
(35)

These must be satisfied as the wavefunction must fall
to zero in the vortex and far away, and the field can
only exist within the vortex and will exponentially decay
within the superconducting material. FIG. 6 shows the
numerical solution to the equation.

FIG. 6: Wavefunction and Magnetic Field Near a Vortex:
Magnetic field exponentially decays away from vortex site,
and wavefunction rapidly falls to zero at the site. [5]

The lower critical field Hc1 occurs when the Gibbs free

energy for a superconductor without vortices equals the
Gibbs free energy in the presence of a single vortex. To
do this we define the free energy per unit length of a
vortex line [1]:

εv =
H2
c

8π
4πξ2 ln (κ) (36)

From this, the condition for Hc1 is imposed:

0 = Gone vortex −Gno vortex
0 = (Fs + Lεv)− (

1

4π

∫
d3rH ·B + Fs)

0 = Lεv −
Hc1Lφ0

4π

Hc1 =
Hc√

2

ln (κ)

κ
(37)

where Fs is the free energy density. We have derived the
lower critical field.

But type II superconductors can withstand an entire
lattice of vortex flux penetration before superconductiv-
ity is destroyed. B

φ0
is the concentration of vortices. We

assume the magnetic flux density to be uniform, and valid

for λ > l =
√

φ0

B (penetration depth is greater than the

distance between vortices). To solve the Ginzburg Lan-
dau equation for a constant magnetic field B = B~z , the
vector potential is chosen to be A = ~yHx. The wave-
function is small in magnitude just below Hc2, so the
|ψ (~r)| 2ψ (~r) term can be ignored. By solving Eqn. (25)
with the ansatz ψ (x, y) = eikyyr (x), where r (x) are ar-
bitrary coefficients, the equation becomes [4]:

1

2m

(
h̄

i
∇+

2eH

c
ŷx

)2

ψ + αψ = 0

h̄2

2m

d2f

dx2
+

1

2
mω2

c(x− x0)
2
f = −αf (38)

This is just the one dimensional shifted Harmonic Oscil-
lator with solutions:

α = h̄ωc

(
n+

1

2

)
, n = 0, 1, 2 . . . (39)

A solution can only exist if T ≤ Tc:

−α = −α′
(Tc − T ) = α

′
(T − Tc) ≥

h̄ωc
2

=
h̄eH

mc
(40)

For superconductivity to occur, H ≤ Hc2. Using the
definition of ξ and the relationship between λ and α (for
the Type I critical field), the upper critical field can
be found if one important assumption is made; since
ξ ∼ 1√

Tc−T close to Tc (by plugging Eqn. (40) into

Eqn. (32)), then Hc2 becomes linear, so this field can be
compared to the Hc field for the type I superconductors.

Hc2 =
−mc
h̄e

α =
√

2κHc (41)
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The vortex lattice is a very complex system and is
in fact the true reason that objects can levitate and
glide without resistance near a superconductor. The phe-
nomenon of an object seemingly floating in space is due
to ’vortex pinning’, where the magnetic field penetrates
the material through the vortices and holds up the object.
This is the underlying idea behind all magnetic levitation
including that of Maglev trains.
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Lieb-Robinson bounds give a limit on the speed at which information can propagate in a quantum
many-body system. They have broad applications in quantum information theory, quantum optics
and condensed-matter theory. Following Hastings, we prove the bound for time-independent local
Hamiltonians on a finite lattice or graph. We then consider implications of the bound for Hamilto-
nians with a spectral gap, namely exponential correlation decay and the area law for entanglement
entropy.

I. INTRODUCTION

An important challenge in quantum many-body
physics is characterising the ground state and the
expectation values of observables on a large and
possibly complex quantum system. Even for simple
Hamiltonians, interactions within the system lead to
complicated quantum correlations that make diagonal-
ization computationally infeasible [1]. Fortunately, a
wide range of many-body systems are local, meaning the
interactions between subsystems decay with distance.
The correlations between observables on a local system
with an energy gap decay exponentially with distance,
simplifying the behaviour of the system and making it
easier solve [2]. Related to this is the area law for en-
tanglement entropy, which states that the entanglement
of a subsystem scales with the area of its boundary, a
further simplification of the interactions [3].

The simplicity of local systems and the results mentioned
above are a consequence of the Lieb-Robinson bounds
[4]. The bounds state that local quantum systems have
a “speed limit” that restricts the amount of information
that can escape a propagating “light-cone” [13]. We
prove the bound for systems with exponentially decaying
interactions and show that the bound implies the cor-
relation decay formula for Hamiltonians with an energy
gap. We then briefly discuss the open question of area
laws for entanglement entropy. The proofs we consider
are due to Hastings [4][5][6].

In Section II, we introduce the mathematics and
formalism used in the paper. In section III, we introduce
two forms of the Lieb-Robinson bound and show that
the bound “confines” information within a light-cone.
In section IV, we prove the bound for Hamiltonians
on a finite graph. In section V, we explore two conse-
quences of the bound, the correlation decay formula and
entanglement entropy law.

II. BACKGROUND

We use the Heisenberg picture of time-dependency,
with U(t) denoting the unitary time-evolution oper-

ator. Given an operator X, we write X(t) = U†(t)XU(t).

We use the symbol Λ to represent a finite set of
points that either forms an undirected graph or a
lattice in Rd. At each of the N sites of Λ, we attach
a D-dimensional Hilbert space [14]. For example,
Λ = {−N,−N + 1, . . . , N − 1, N} with D = 2 could
represent a linear chain of 2N + 1 spin-1/2 particles.
The Hamiltonian is is defined on Hilbert space of the
whole system, which is the DN -dimensional tensor
product of the Hilbert spaces associated with each site.

In order to rigorously define locality, we introduce
the notion of support on a subset A ⊂ Λ. An op-
erator X is supported on A if X can be expressed
as the tensor product X = Q ⊗ IΛ\A, where IΛ\A
is the tensor product of the identity on the sites
not in A and Q is some operator on the the Hilbert
space over the sites of A. Informally, an operator
supported on A “only acts on on A.” For example, the
particles on the length 2N + 1 spin-1/2 chain can be
equipped with nearest-neighbour interactions of the form
Szi S

z
i+1=I−N ⊗ · · · ⊗ Ii−1 ⊗ Szi ⊗ Szi+1 ⊗ Ii+2 ⊗ · · · ⊗ IN .

The operator Szi S
z
i+1 is supported on {i, i + 1}. An

important result we use is that if two operators X and Y
are supported on disjoint sets A and B, i.e. A ∩ B = ∅,
then [X,Y ] = 0.

We will use d(i, j) to denote a metric function that gives
the distance between points i and j of Λ. For example,
we could use the Euclidean metric d(i, j) = |i−j| if i and
j represent vectors in Rd. As the Lieb-Robinson bounds
involve exponential decay with distance, we want to
choose a metric d that assigns a large distance between
points of Λ. However, our Hamiltonian has to satisfy
the condition given by Equation (2) for the bound to
hold, so the distance between points can’t be too large.
When applying the bounds to a particular Hamiltonian,
we choose the “largest” convenient metric for which (2)
holds.

For any point i and subsets A and B of Λ, we
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define the following concepts:

distance between a point and a set: d(i, B) = min
j∈B

d(x, y)

distance between two sets: d(A,B) = min
i∈A,j∈B

d(i, j)

diameter of a set: diam(A) = max
i,j∈A

d(i, j)

We let |A| denote the cardinality of A, the number of
points in A.

Finally, we make use of the operator norm. For an
operator X on our Hilbert space, we define

‖X‖ = sup
〈ψ|ψ〉=1

√
〈ψ|X†X |ψ〉

If the reader is not familiar with the supremum (sup),
they can think of it as the maximum. The operator
norm satisfies the usual axioms of a norm, including
the triangle inequality ‖X + Y ‖ ≤ ‖X‖ + ‖Y ‖ and the
multiplicative property ‖XY ‖ = ‖X‖‖Y ‖. It can be
shown that the norm of a Hermitian operator is the ab-
solute value of its largest eigenvalue [7], which explains
how the operator norm represents the “magnitude” of
an observable. Notice that for any unitary operator
U , ||U || = sup〈ψ|ψ〉=1

√
〈ψ|ψ〉 = 1, and consequently,

‖UX‖ = ‖X‖.

III. THE LIEB-ROBINSON BOUND

A. Local Hamiltonians

We now have the tools we need to define a local
Hamiltonian. There are many definitions of locality;
we consider Hamiltonians with exponentially decaying
interactions. Other versions of the bound exist for other
definitions of locality, such as finite-range interactions or
sub-exponentially decaying interactions [5].

We can break up any hamiltonian H into supported
components {HS}, where each HS is supported on some
S ⊂ Λ, by writing

H =
∑

S

HS (1)

Note that there always exists the trivial decomposition,
H = HΛ. We say that H is local if there exists some
decomposition resembling (1) with the property that for
every i ∈ Λ,

∑

S3i
‖HS‖|S|eµdiam(S) ≤ C <∞ (2)

where S 3 i means that the sum is over the subsets from
the decomposition (1) that contain the point i. µ and C
are arbitrary real constants that say how local the system

is, i.e. how rapidly the Hamiltonian dies off with the size
of each subsystem S. The larger µ is or the smaller C
is, the tighter the bound will be. When checking the lo-
cality condition for a given Hamiltonian, we want to find
a decomposition {HS} that gives the smallest value of
C/µ . For any Hamiltonian, setting H = HΛ, µ = 0 and
C = |Λ| satisfies the locality condition, but the resulting
Lieb-Robinson bound is trivial. Likewise, if we choose
d(i, j) = 0 for all i, j as our metric, then the locality con-
dition holds for any choice of µ ∈ R, but the bound is
again trivial [4].

B. Theorem and Interpretation

The Lieb-Robinson bound we prove can be stated as
follows: if (2) holds for a time-independent Hamiltonian
H [15] on a finite lattice or graph Λ and we are given
operators XA and YB supported on disjoint sets A and
B (i.e. d(A,B) > 0) respectively, then

‖[XA(t), YB ]‖ ≤ 2‖XA‖‖YB‖|A|e−µd(A,B)(e2C|t| − 1) (3)

We can reformulate this in terms of the Lieb-Robinson
velocity, defined as vLR = 4C/µ . Let l = d(A,B). If
|t| ≤ l/vLR , (3) implies that

‖[XA(t), YB ]‖ ≤ 2‖XA‖‖YB‖|A|e−µl(eµl/2 − 1)

≤ g(l)‖XA‖‖YB‖|A|
vLR|t|
l

(4)

where g(l) = l(e−µl/2 − e−µl) decays exponentially with
l. The commutator ‖[XA(t), YB ]‖ is approximately zero
if l is sufficiently large and vLR|t| isn’t too large. The
latter term grows at a rate rate vLR, representing the
expansion of the light-cone. This terminology comes
from the fact that in relativistic quantum mechanics,
the commutator of any spacelike separated observ-
ables is zero [1]. Otherwise, we could determine if a
friend has measured with XA by measuring with YB .
Since the Lieb-Robinson bound is a nonrelativistic
approximation, the commutator is instead small (but
potentially nonzero) outside the light-cone. The larger
the commutator, the more information is shared be-
tween measurements of XA and YB after time t. So the
Lieb-Robinson bound tells us how much information
about XA “escapes” into the region B after time t, at a
rate given by the Lieb-Robinson velocity [2].

The following application gives another way of thinking
about the system’s light-cone. Given an operator XA

supported on A, consider the radius-r region surrounding
(and including) A, Br(A) = {i ∈ Λ with d(i, A) ≤ r}.
The Lieb-Robinson bound allows us to construct an
operator Xr

A(t) supported on Br(A) that approximates
XA(t) when vLR|t| is small [4]. We first define Xr

A(t),
then use the Lieb-Robinson bound to prove that it is a
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good approximation for XA(t). Let

Xr
A(t) =

∫

{U supported on Λ\Br(A)}

UXA(t)U†dU (5)

The integral in this expression is with respect to the col-
lection of unitary operators on the whole Hilbert space
[16]. Integrating over the unitary operators supported
on Λ\Br(A) “smears out” the operator XA(t) outside
Br(A), and is equivalent (up to a constant) to taking the
tensor product of the partial trace of XA(t) over Λ\Br(A)
with the identity on Λ\Br(A) [1]. In effect, we throw out
any information we have about XA(t) outside Br(A), so
Xr
A is supported on Br(A). The following calculation

bounds the error in this approximation:

‖XA(t)−Xr
A(t)‖ ≤

∫
‖XA(t)− UXA(t)U†‖dU

=

∫
‖U [XA(t), U†]‖dU =

∫
‖[XA(t), U†]‖dU

If vLR|t| ≤ r, we can apply the Lieb-Robinson bound
given by Equation (4) to the rightmost expression to give

‖XA(t)−X l
A(t)‖ ≤ K‖XA‖|A|g(r)

vLR|t|
r

(6)

where K =
∫
dU is a finite constant. g(r) ≈ re−µr/2 , so

the approximation is good if r isn’t too small. Equation
(6) tells us that that XA(t) interacts negligibly with sites
outside a light-cone of radius r ≈ vLR|t| around A that
propagates with the Lieb-Robinson velocity.

IV. PROVING THE BOUND

Suppose the locality condition (2) holds for H. Write
X = XA and Y = YB for the two operators supported
on A and B respectively. We can assume without loss
of generality that t ≥ 0, replacing t with −t up until
Equation (13) if t < 0. Time-independence of H gives
U(t) = e−itH . After some manipulation, we will use the
locality condition given by Equation (2) to bound the
commutator ‖[X(t), Y ]‖.

Step 1. We use the decomposition into supported
components, Equation (1), to discard terms in the
Hamiltonian that do not contribute strongly to the
time-evolution of X. We start by defining

H̃ =
∑

S:S∩A 6=∅
HS

Given a component S with S ∩ A = ∅, HS is the
identity on all sites where X is not the identity, so

[HS , X] = 0. Therefore, [H,X] = [H̃,X]. We can use
the Baker-Campbell-Hausdorff formula to approximate
X(t) = eitHXe−itH with the commutator it[H,X] for

small t. Writing X(t) in terms of the commutator

allows us to replace H with H̃. The following steps will
demonstrate this rigorously. The reader may skip to
(11) for the result.

The value of t in the term ‖[X(t), Y ]‖ is not nec-
essarily small, so expand in small increments using a
telescoping series,

‖[X(t), Y ]‖ − ‖[X,Y ]‖ =
N−1∑

i=0

‖[X(tn+1), Y ]‖ − ‖[X(tn), Y ]‖ (7)

where tn = tn/N and N is any natural number. Notice
that for any unitary operator U ,

‖[U†XU, Y ]‖ = ‖U†[X,UY U†]U‖ = ‖[X,UY U†]‖ (8)

Therefore, defining ε = t/N = tn+1 − tn,

‖[X(tn+1), Y ]‖−‖[X(tn), Y ]‖ = ‖[X(ε), Y (−tn)]‖−‖[X,Y (−tn)]‖
(9)

We use the Baker-Campbell-Hausdorff expansion to lin-
earise X(ε) in terms of ε:

X(ε) = eiεHXe−iεH = X + iε[H,X] +O(ε2)

Applying the identity [H,X] = [H̃,X] followed by the
BCH formula in reverse gives

X(ε) = X+iε[H̃,X]+O(ε2) = eiεH̃Xe−iεH̃+O(ε2) (10)

Substituting this into Equation (9) and using the triangle
inequality to pull the O(ε2) terms out of the operator
norm gives:

‖[X(ε), Y (−tn)]‖ ≤ ‖[eiεH̃Xe−iεH̃ , Y (−tn)]‖+O(ε2)

By Equation (8),

‖[X(ε), Y (−tn)]‖ ≤ ‖[X, eiεH̃Y (−tn)e−iεH̃ ]‖+O(ε2)

We can linearise this in terms of ε by applying the BCH
formula again and using the triangle inequality to pull
out the O(ε2) terms.

‖[X(ε), Y (−tn)]‖ ≤ ‖[X,Y (−tn)− iε[H̃, Y (−tn)]]‖+O(ε2)

≤ ‖[X,Y (−tn)]‖+ ε‖[X, [H̃, Y (−tn)]]‖+O(ε2)

The second line follows from the triangle inequality. We
use this to bound (9), which represents a term in the
telescoping series (7).

‖[X(tn+1), Y ]‖−‖[X(tn), Y ]‖ ≤ ε‖[X, [H̃, Y (−tn)]]‖+O(ε2)

We can use the triangle inequality to simplify the term
on the right-hand side:

‖[X(tn+1), Y ]‖ − ‖[X(tn), Y ]‖ ≤ 2ε‖X‖‖[H̃, Y (−tn)]‖+O(ε2)

= 2ε‖X‖‖[H̃(tn), Y ]‖+O(ε2)
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This inequality and the fact that N = O(1/ε ) give an

estimate of (7) in terms of H̃,

‖[X(t), Y ]‖ − ‖[X,Y ]‖ ≤ 2‖X‖
N−1∑

i=0

ε‖[H̃(tn), Y ]‖+O(ε)

(11)
This completes the first step of the proof.

Step 2. We attempt to write Equation (11) in a
form that resembles the left-hand side of the locality
condition (2), which will allow us to bound ‖[X(t), Y ]‖.
The result of this step is Equation (16). Deriving (16)
from (11) is an interesting but purely mathematical
exercise: we express (11) as an integral, and then
repeatedly substitute the integral into itself to get the
infinite sum in (16). The reader may skip to Step 3 if
they do not wish to see the details.

We first use the definition of H̃ to expand the right-hand
side of (11) in terms of the HS ,

‖[X(t), Y ]‖−‖[X,Y ]‖ ≤ 2‖X‖
∑

S:S∩A 6=∅

N−1∑

i=0

ε‖[HS(tn), Y ]‖+O(ε)

(12)

We can simplify this by approximating the inner sum as
an integral, provided that the integral of ‖[HS(t), Y ]‖ ex-
ists. Because the whole Hilbert space is DN -dimensional,
HS(t) = eitHHSe

−itH can be viewed as a DN ×DN ma-
trix in some basis, with each entry continuous in t. There-
fore, the matrix entries of [HS(t), Y ], which are polyno-
mials in the entries of HS(t) and Y , are continuous in t.
The operator norm ‖[HS(t), Y ]‖ is (the supremum of) a
finite combination of the matrix entries, which is continu-
ous with t, so the operator norm is integrable. Therefore,
we can take the limit of (12) as N →∞, or equivalently
ε→ 0, to give

‖[X(t), Y ]‖−‖[X,Y ]‖ ≤ 2‖X‖
∑

S:S∩A 6=∅

∫ t

0

‖[HS(s), Y ]‖ds

Rearranging this and relaxing our assumption t ≥ 0 gives

‖[X(t), Y ]‖
‖X‖ ≤ ‖[X,Y ]‖

‖X‖ + 2
∑

S:S∩A 6=∅

∫ |t|

0

‖[HS(s), Y ]‖ds

(13)
We want to get this into a form where we can substitute
the integrand back into the expression. To do this, we
need to “abstract away” the dependence on X. If OA
denotes the set of observables supported on A, then X ∈
OA. By the definition of the supremum (thinking of it as
a maximum if necessary),

‖[X(t), Y ]‖
‖X‖ ≤ sup

Z∈OA

‖[Z(t), Y ]‖
‖Z‖ ≡ SY (A, t)

In particular ‖[X(t), Y ]‖ ≤ ‖X‖SY (A, t), so we can al-
ways recover a bound on ‖[X(t), Y ]‖ from SY (A, t). Tak-
ing the supremum of both sides, Equation (13) can be

rewritten as

SY (A, t) ≤ SY (A, 0) + 2
∑

S:S∩A6=∅
‖HS‖

∫ |t|

0

SY (S, s)ds (14)

Now we can begin the recursive substitution. Recall that
Y is supported on B. If Z ∈ OS (e.g. Z = HS) and
S ∩B = ∅, then [Z, Y ] = 0. SY (S, 0) is the supremum of
‖[Z, Y ]‖/‖Z‖ = 0 over all such Z ∈ OS , so SY (S, 0) is
zero. That is, SY (S, 0) = 0 if S ∩ B = ∅. Since we have
assumed that d(A,B) > 0, A and B are be disjoint, so
SY (A, 0) = 0. Therefore, (14) is equivalent to

SY (A, t) ≤ 2
∑

S1:S1∩A 6=∅
‖HS1

‖
∫ |t|

0

SY (S1, s1)ds1 (15)

The indices on S1 and s1 foreshadow the next step. We
can use use (14) to bound the SY (S1, s1) term in the
integral by

SY (S1, s1) ≤ SY (S1, 0) + 2
∑

S2:S2∩S1 6=∅
‖HS2

‖
∫ |s1|

0

SY (S2, s2)ds2

Substituting this in to Equation (15) gives

SY (A, t) ≤ 2
∑

S1:S1∩A6=∅
‖HS1

‖
∫ |t|

0

SY (S1, 0)ds

+22
∑

S1:S1∩A 6=∅
‖HS1‖

∑

S2:S2∩S1 6=∅
‖HS2‖

∫ |t|

0

∫ |s1|

0

SY (S2, s2)ds2ds1

Notice that we can replace
∫ |t|

0
SY (S1, 0)ds with

|t|SY (S1, 0). By the triangle inequality,

SY (S1, 0) ≤ sup
Z∈OS1

2‖Z‖‖Y ‖
‖Z‖ = 2‖Y ‖

Furthermore, the result S∩B = ∅ ⇒ SY (S, 0) = 0 allows
us to discard the redundant terms in the sum over
S1 : S1 ∩ A 6= 0 by ignoring all S1 with S1 ∩ B = ∅.
Putting this together gives

SY (A, t) ≤ 2(2|t|)‖Y ‖
∑

S1:S1∩A 6=∅,S1∩B 6=∅
‖HS1‖

+22
∑

S1:S1∩A6=∅
‖HS1

‖
∑

S2:S2∩S1 6=∅
‖HS2

‖
∫ |t|

0

∫ |s1|

0

SY (S2, s2)ds2ds1

We carry out this process recursively, at each step using
(14) to bound the SY (Si, si) term in the integral, then
integrating out the resulting constant term, SY (Si, 0).
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This leads to the desired result,

‖[X(t), Y ]‖
‖X‖ ≤ SY (A, t) ≤ 2(2|t|)‖Y ‖

∑

S1:S1∩A 6=∅,S1∩B 6=∅
‖HS1

‖

+2
(2|t|)2

2!
‖Y ‖

∑

S1:S1∩A 6=∅
‖HS1

‖
∑

S2:S2∩S1 6=∅,S2∩B 6=∅
‖HS2

‖

+2
(2|t|)3

3!
‖Y ‖

∑

S1:S1∩A6=∅
‖HS1

‖
∑

S2:S2∩S1 6=∅
‖HS2

‖
∑

S3:S3∩S2 6=∅,S3∩B 6=∅
‖HS3

‖

+ . . . (16)

Step 3. Equation (16) brings us close to the final result.
In deriving it, we threw out a number of redundant
components of H. This allows us to introduce the
exponentials eµdiam(Si) to Equation (16), so that the
terms in each order of |t|n resemble the locality condition
(2). We then bound the terms individually and evaluate
sum over the orders of |t|n, showing that the series (16)
converges to the Lieb-Robinson bound given by (3).

If i ∈ S1 and S1 ∩ B 6= ∅, pick any point j ∈ S1 ∩ B.
From the definitions, d(i, B) ≤ d(i, j) ≤ diam(S1), so
1 ≤ e−µd(i,B)eµdiam(S1). Using this, the first term in
(16) can be bounded by

∑

S1:S1∩A 6=∅,S1∩B 6=∅
‖HS1

‖ ≤
∑

i∈A

∑

S13i,S1∩B 6=∅
‖HS1

‖

≤
∑

i∈A
e−µd(i,B)

∑

S13i
‖HS1

‖eµdiam(S1)

Wenow apply the locality condition (2) to bound the or-
der |t| term,

2(2|t|)‖Y ‖
∑

S1:S1∩A6=∅,S1∩B 6=∅
‖HS1

‖ ≤ 2(2C|t|)‖Y ‖
∑

i∈A
e−µd(i,B)

Having dealt with the first term of (16), we approach
the second term in a similar manner. For any i, j ∈ Λ,
d(i, B) ≤ d(i, j)+d(j, B), so 1 ≤ e−µd(i,B)eµd(i,j)eµd(i,Y ).
For i, j ∈ S1 and j ∈ S2 with S2 ∩ Y 6= ∅, this implies
that 1 ≤ e−µd(i,B)eµdiam(S1)eµdiam(S2). Therefore,

∑

S1:S1∩A 6=∅

‖HS1
‖
∑

S2:S2∩S1 6=∅,S2∩B 6=∅

‖HS2
‖ ≤

∑

i∈A

∑

S13i

∑

j∈S1

‖HS1
‖
∑

S23j,S2∩B 6=∅

‖HS2
‖

≤
∑

i∈A
e−µd(i,B)

∑

S13i

∑

j∈S1

‖HS1‖eµdiam(S1)
∑

S23j

‖HS2‖eµdiam(S2)

≤ C
∑

i∈A
e−µd(i,B)

∑

S13i
‖HS1

‖|S1|eµdiam(S1) ≤ C2
∑

i∈A
e−µd(i,Y )

Notice that we applied the locality condition twice in the
last line. The second term in (16) is therefore bounded by
2 (2C|t|)2

/
2! ‖Y ‖∑i∈A e

−µd(i,B). Continuing the pro-

cess of bounding d(i, B) by
∑n
i=1 diam(Si) and apply-

ing the locality condition, we can show by induction
[17] that the nth term in (16) is bounded above by

2 (2C|t|)n/n! ‖Y ‖∑i∈A e
−µd(i,B). Substituting this into

(16) brings us close to the desired result:

‖[X(t), Y ]‖
‖X‖ ≤

∞∑

n=1

2 (2C|t|)n/n! ‖Y ‖
∑

i∈A
e−µd(i,B)

= 2‖Y ‖
∑

i∈A
e−µd(i,B)(e2C|t| − 1)

For any i ∈ A, d(i, B) ≥ d(A,B), so e−µd(i,B) ≤
e−µd(A,B). Therefore,

‖[X(t), Y ]‖ ≤ 2‖X‖‖Y ‖
∑

i∈A
e−µd(i,B)(e2C|t| − 1)

= 2‖XA‖‖YB‖|A|e−µd(A,B)(e2C|t| − 1)

proving the Lieb-Robinson bound. The first line of the
inequality above is another useful form of the bound.

V. APPLICATIONS TO GAPPED
HAMILTONIANS

We now consider two theorems - both consequences
of the Lieb-Robinson bound - concerning Hamiltonians
with a unique ground state |ψ0〉 [18] and an energy dif-
ference ∆E > 0 between the ground state energy E0 and
the next-lowest energy, E1. ∆E is known as the spectral
gap, and we say that such a Hamiltonian is gapped. Our
results apply to the ground state of the Hamiltonian, the
focus of most quantum many-body physics [4]. The 1D
Ising model is a simple example of a gapped and local
Hamiltonian on a lattice, and the ground state obeys the
correlation decay formula (17) and the area law (see [8]).

A. Correlation Decay

If the Hamiltonian is gapped, we can use Lieb-
Robinson bound to show that for any operators XA and
YB supported on sets A and B respectively,

x |〈ψ0|XAYB |ψ0〉 − 〈ψ0|XA |ψ0〉 〈ψ0|YB |ψ0〉|
≤ K‖XA‖‖YB‖

(
e− l∆E/2vLR + min(|A|, |B|)g(l)

)
(17)

for some constant K, where g, l and vLR defined
consistently with (4). The term on the left is the
quantum correlation of the observables XA and YB
analogous to the classical definition of covariance,
σ(X,Y ) = E[XY ] − E[X]E[Y ]. Equation (17) states
that the correlations between XA and YB decay expo-
nentially with the distance between their support. The
key to deriving the correlation decay formula is to use
the Fourier transform to extract the spatial bound (17)
from the time-dependent information decay given by
the Lieb-Robinson bound (3) [4]. The proof is some-
what involved, so we provide a rough but detailed sketch.
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We assume that |A| < |B|, interchanging X and Y
if this is not the case, so min(|A|, |B|) = |A|. We
first construct Y +

B , the positive part of the operator
YB . Without loss of generality, we can subtract the
ground-state expectation values 〈YA〉ψ0

and 〈YB〉ψ0

from YA and YB respectively to set their ground-state
expectation values to zero. The term on the left of (17)
now has the simpler form |〈XAYB〉ψ0 |. Let {|ψi〉} be an
eigenbasis of H with energies {Ei} and let (YB)ij denote
the matrix entry 〈ψi|YB |ψj〉. With respect to this basis,
we can define

(Y +
B )ij =





(YB)ij (Ei > Ej)

(YB)ij/2 (Ei = Ej)

0 (Ei < Ej)

If there are no degeneracies, this amounts to “continu-
ously” taking the lower-triangular part of the YB ma-
trix in the energy eigenbasis. Recall that by assump-
tion, (YB)00 = 〈YB〉ψ0

= 0. For all i > 0, Ei > E0, so
(Y +
B )i0 = (YB)i0 and (Y +

B )0i = 0. Therefore, Y +
B |ψ0〉 =

YB |ψ0〉 and 〈ψ0|Y +
B = 0. This implies that 〈XAYB〉ψ0

=

〈XAY
+
B 〉ψ0

= 〈[XA, Y
+
B ]〉ψ0

. We bound 〈[XA, Y
+
B ]〉ψ0

by

approximating Y +
B with a more tractable term Ỹ +

B and

bounding the commutator [XA, Ỹ
+
B ]. We construct Ỹ +

B
as follows:

Ỹ +
B =

1

2π
lim
ε→0+

∫ ∞

−∞
U†(t)Y U(t)

1

it+ ε
e−

t2∆E2

2q dt (18)

The energy gap allows us to bound the error term of

Ỹ +
B |ψ0〉. Using the definition of Ỹ +

B , we can examine the

matrix elements (Y +
B − Ỹ +

B )i0 for i > 0:
∣∣∣∣(Y

+
B −Ỹ +

B )i0

∣∣∣∣ =

∣∣∣∣(YB)i0

∣∣∣∣
∣∣∣∣1− lim

ε→0+

∫

R

ei(Ei−E0)t

2π(it+ ε)
e−

t2∆E2

2q dt

∣∣∣∣
(19)

The integral in (19) above is equal to the Fourier

transform of 1
it+εe

− t2∆E2

2q , which is the convolution of

the Fourier transform of 1
it+ε and the Gaussian e−

t2∆E2

2q .

In the limit as ε → 0+, the Fourier transform of 1
it+ε

approaches a step function [7]. If q is very large, the

Fourier transform of e−
t2∆E2

2q approximates a delta
function. The convolution of a delta function with an-
other function preserves the function, so for large q, the
integral in (19) approximates a step function in Ei−E0.
Ei > E0 for i > 0, so this always evaluates to 1, and the
term on the right-hand side of (19) is approximately zero.

It is possible to prove that the error in approxi-
mating a step function by the integral in (19) is bounded

by K1e
− q2 for some constant K1 [9]. Therefore, for each

i > 0, |(Y +
B − Ỹ +

B )00| ≤ K1|(YB)i0|e−
q
2 . As (YB)00 = 0,

|(Y +
B − Ỹ +

B )00| = 0. We can write |(Y +
B − Ỹ +

B ) |ψ0〉 | as

(
〈ψ0| (Y +

B − Ỹ +
B )†

∑

i≥0

|ψi〉 〈ψi| (Y +
B − Ỹ +

B ) |ψ0〉
) 1/2

Using (
∑
i x

2
i )

1/2 ≤ ∑i xi, we can pull the sum out to
give

|(Y +
B − Ỹ +

B ) |ψ0〉 | ≤
∑

i≥1

K1|(YB)i0|e−
q
2 ≤ K1‖YB‖e−

q
2

(20)

This shows that for large q, Ỹ +
B is a suitable approxi-

mation to Y +
B . We wish to apply this to 〈XAYB〉ψ0 =

〈[XA, Y
+
B ]〉ψ0 . By the triangle inequality,

|〈[XA, Y
+
B ]〉ψ0 | ≤ |〈[XA, Ỹ

+
B ]〉ψ0 |+ |〈[XA, Y

+
B − Ỹ +

B ]〉ψ0 |
≤ ‖[XA, Ỹ

+
B ]‖+ 2‖XA‖|(Y +

B − Ỹ +
B ) |ψ0〉 |

Substituting in (20) gives

|〈XAYB〉ψ0
| ≤ ‖[XA, Ỹ

+
B ]‖+ 2K1‖XA‖‖YB‖e−

q
2 (21)

All we need to do now is bound ‖[XA, Ỹ
+
B ]‖. Applying

the inequality ‖
∫
X(t)dt‖ ≤

∫
‖X(t)‖dt to (18), we can

write

‖[XA, Ỹ
+
B ]‖ ≤ 1

2π
lim
ε→0+

∫

R
‖[XA, YB(t)]‖e

− t2∆E2

2q

|it+ ε| dt
(22)

We can split the integral in (22) into two parts. For
t < l/vLR , we may apply the Lieb-Robinson bound (4)
to the integrand, bounding the section of the integral
from − l/vLR to l/vLR by

g(l)vLR
2πl

‖XA‖‖YB‖|A|
l/vLR∫

− l/vLR

e−
t2∆E2

2q dt ≤ K3g(l)‖XA‖‖YB‖|A|

for some constant K3. For t ≥ l/vLR , the exponential
decay of the gaussian term bounds the rest of the integral
by

1

2π

∫

t≥ l/vLR

‖[XA, YB(t)]‖
|t| e−

t2∆E2

2q dt ≤ K2‖XA‖‖YB‖e−
( l∆E/vLR )2

2q

for some constant K2, as the tail-integral
∫∞
c

e−tx/t dt is

on the order of e−cx. Combining these two bounds gives

‖[XA, Ỹ
+
B ]‖ ≤ ‖XA‖‖YB‖

(
K2e

− ( l∆E/vLR )2

2q +K3|A|g(l)

)

Applying this to (21), we see that |〈XAYB〉ψ0
| is bounded

above by

‖XA‖‖YB‖
(
2K1e

− q
2 +K2e

− ( l∆E/vLR )2

2q +K3|A|g(l)
)

(23)

This holds for arbitrary q, so to get the tightest possi-
ble bound, we attempt to minimise (23) by the setting
derivative with respect to q to zero,

−K1e
− q2 +

l∆E

q2vLR
e−

( l∆E/vLR )2

2q = 0
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The non-exponential terms don’t matter much for large
q, so suppose they cancel to one. Then the opti-
mal choice of q is given by equating the exponents,
q/2 = ( l∆E/vLR )2

/
2q , or q = l∆E/vLR . Letting

K = max(2K1 + K2,K3) for simplicity and substitut-
ing in the optimal q shows that (23) gives the desired
expression,

|〈XAYB〉ψ0 | ≤ K‖XA‖‖YB‖
(
e− l∆E/2vLR + |A|g(l)

)

B. Area Laws

The quantum complexity of the ground state of a
local Hamiltonian is a fundamental aspect of study in
quantum information theory [2]. Area laws state that
the entanglement entropy of any subsystem of a gapped,
local system scales in some manner with the boundary
area, rather than with the volume [10]. Area laws have
been conjectured in arbitrary dimensions, yet a general
proof only exists for 1-dimensional systems [3]. In these
systems, the upper bound on the entanglement entropy
is a constant that depends on the parameters of the
system, increasing with the Lieb-Robinson velocity and
decreasing with the energy gap [6].

The intuition for area laws is compelling. The ex-
ponential decay of correlations given by Equation
(17) suggests that only the sites near the boundary
of a region can entangle with points outside. The

entanglement of a subsystem should depend on the
number of these crossings, which goes as the area of
the boundary. However, on small but highly connected
graphs known as quantum expanders, the ground state
may have exponentially decaying correlations but large
entanglement [6], complicating the matter. Even in one
dimension, the proof is very involved, certainly beyond
the scope of this paper. The reader may consult [3] if
they wish to explore the topic in more detail.

VI. DISCUSSION

We have proved two powerful results for local Hamil-
tonians, namely the Lieb-Robinson bound (3) and the
correlation decay theorem (17), and we have examined
the area law for entanglement entropy. There are many
extensions to consider. Versions of the Lieb-Robinson
bound exist for weaker locality conditions, and we ig-
nored time-dependence of the Hamiltonian. The bound
can be extended to infinite lattices by first restricting to
a bounded subsystem and then taking the uniform limit,
if it exists. It can be further generalised to systems with
infinite-dimensional Hilbert spaces on each site, as in
[11]. Lieb-Robinson bounds imply a number of important
and general results in quantum many-body theory that
we didn’t consider. Examples include a non-relativistic
Goldstone theorem, quasi-adiabatic continuation and a
generalisation of the Lieb-Schultz-Mattis theorem [4].
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In this paper we develop the principles of electron dynamics in metals. This is first done by consid-
ering the work of Drude and Sommerfeld who approximated an electron in a metal as a free electron,
forming with all of the other electrons a gas. Drude was the first to propose such a model based
on the classical description of an electron and Boltzmann statistics for the electron gas. This was
then improved upon by Sommerfeld who considered the electron as a wavepacket, and the electrons
in a metal as a fermionic gas. Once these models are introduced, the conductivity of a metal is
calculated based on the relaxation time approximation for scattering. These models while simple
serve as a template for how the conductivity of a metal is calculated once we introduce Bloch’s 1928
discovery of Bloch waves which gives the wavefunction of an electron in a periodic lattice. Repeating
essentially the same derivation as we conducted for the Drude and Sommerfeld models except that
we use the Bloch electrons instead we find the conductivity of metals. This then immediately results
in a description of why some materials are conductors and others insulators.

I. INTRODUCTION

The story of the theory of electrical conductivity in
metals (electron flow dynamics in metals) is the story
of the development of quantum theory. Shortly after J.J.
Thompson discovered the electron in 1897 [6] Paul Drude
combined the classical electron (a hard charged sphere)
and the recently developed statistical theory of gasses,
by treating the electrons in a metal as a gas of elec-
trons, to produce the Drude model of electron behaviour
in metals in 1900 [4]. This model was a triumph of the
nascent quantum mechanical theory that was beginning
to arise with the discovery of subatomic particles since it
was able to account for many of the properties of met-
als such as the conductivity, and the Hall effect. This
theory while simple and crude even to this day is used
to make rough approximations. [1] After this period the
development of quantum mechanics began in full force
and by 1927 Arnold Sommerfeld took the original en-
ergy distribution of the electron energies in the Drude
model, the Boltzmann distribution, and replaced it with
the Fermi-Dirac energy distribution. In this model much
like Drude’s model the electrons are treated as free elec-
trons, but the difference being that the electron energies
are distributed according to the Fermi-Dirac distribution
since by this time the fermionic nature of the electron had
been discovered. The result of this modification was that
one of the most serious problems with the Drude model
was corrected. The specific heat which is dependent on
the energy distribution of the electrons was finally cor-
rected by this switch in energy distributions. Despite all
of these advances, and triumphs there were still problems
with the theory. It had open questions such as: why are
only some of the the electrons in metals conducting elec-
trons? Why are electrons able to travel so far without
being disturbed by the lattice? These questions among
others were answered in 1928 when Felix Bloch discov-
ered the Bloch theorem. This theorem essentially dis-
covered that electrons in a periodic potential due to the
effects of constructive interference have a wave function

that is that of a free electron wavefunction modulated by
a periodic function with the period of the lattice. Most
interestingly this resulting wavefunction is a stationary
state of the Hamiltonian, and therefore does not expe-
rience any decay over time in this particular potential.
Thus our question from before is answered as to why
electrons can travel so freely through the metal, it is be-
cause the lattice does not cause a degradation of these
electron states. Additionally, since our solution is that
of a modulated free electron it explains why the crude
models of Drude and Sommerfeld were so effective in as-
suming that the electron was free.

In this paper we shall cover the following topics, with
the end goal to see how one can get the conduction of
metals from Bloch theorem and Semi-Classical analysis.
To reach this objective we shall first take a brief look
through the Drude-Sommerfeld model to understand how
electric fields can be introduced into a conduction model.
This will be done in Section II. Then shall then mod-
ify this model by combining it with the Bloch theorem
and generate the Semiclassical model in Sections III-IV.
This is a model for interactions between the electrons
and external electromagnetic fields that treats electrons
classically, but the lattice they inhabit quantum mechan-
ically due to Bloch’s Theorem. When this framework is
complete we shall construct a simple model for electron
scattering called the relaxation time approximation in
Section V. Since scattering is what causes the finite con-
ductivity in our electron flow this dictates the current in
our metal given an external electromagnetic field. Thus
with all of these elements in place we will derive the cur-
rent and resulting conductivity for metals in Section VI
for various fields. This is where we will conclude our in-
vestigations having derived the conductivity of a metal
under the Semi-Classical Theory. These derivations fol-
low heavily after similar work spanning chapters 1, 8, 12,
and 13 in the wonderful book by Aschroft and Mermin
for the reader who is interested in learning more about
various properties of metals beyond just the conduction
of metals.[1]
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II. THE DRUDE-SOMMERFELD MODELS

Before we move on to Bloch’s theorem let us first con-
sider how the theory of electrical conduction works for the
Drude-Sommerfeld model or the free electron model as it
is often called. This model will serve as a template for
how the theory of metal conduction may be carried out
when we consider the Bloch theorem. As stated this is a
simple model that assumes that electrons are free within
the confines of the metal volume. For a piece of metal
that is much larger than the de Broglie wavelength of the
electron we can approximate the lattice as infinite. This
means that the wavefunction of a free electron within the
metal may be approximated as a plane wave with some

wavevector ~k. Thus the wavefunction takes on the form:

ψ = eik·r (1)

Since electrons are fermionic this means that their energy
distribution is described by the Fermi-Dirac distribution
which is given by:

f(ε) =
1

e(ε−µ)/kBT + 1
(2)

Where f(ε) is the probability density that an electron
in our metal electron gas has energy ε. The µ is the
chemical potential, which is the term that governs the
drift of electrons in the metal due to electron density
differences.[2] While the kB is the usual Boltzmann con-
stant, and T is the temperature. Now that we have the
basic description of a metal at thermal equilibrium, nat-
urally, the next thing to consider is the effect of external
electric fields on the electrons inside. What we should
notice is that within the metal we can localize the elec-
trons into a minimum uncertainty wavepacket. There-
fore, we can use the same classical arguments that Drude
used to express conduction assuming that the electrons
were classical hard sphere electrons. This is possible due
to the Ehrenfest theorem, which for the minimum un-
certainty wavepacket (our electrons) can be represented
classically.[5] Therefore if we use the classical equations
of motion on the minimum uncertainty wavepacket with
the average momentum p = h̄k we obtain the following
equations of motion:

v =
h̄k

m

h̄k̇ = −e(E +
v

c
×H)

This description of the electron and its dynamics in
the metal are only part of the story. In real metals there
are various scattering processes that occur, which lead
to the resistances that we observe in real metals. It is
not the purpose of this paper to attempt to go through
all of these models of scattering within metals. How-
ever, we will use the same approximation as Sommerfeld
and Drude, the relaxation time approximation. This is a

simple approximation in which we assume that if we pick
some electron in our metal then it will on average scat-
ter after some time τ which is known as the relaxation
time. Our interest is in the conductivity of metals. First
lets carefully define the conductivity of metals. This is
defined as the following:

j = σE (3)

Where j is the current density a vector perpendicular to a
surface area whose magnitude is given by the number of
electrons passing through that area per unit time. The
electric field is given by E and the proportionality be-
tween the two of them is given by σ the conductivity. To
phrase this in terms of electrons, we note that the cur-
rent density is given by j = −nev in this model. This
is because per unit time electrons traveling at speed v
will pass through a perpendicular surface at the rate nv
while the −e arises from the charge on the electron. Thus
j is exactly the total amount of charge passing through
a given surface per unit time. Now, remember that we
have scattering effects that we account for by using the
τ or the mean relaxation time. This is the mean amount
of time that an electron will travel through our metal be-
fore colliding with something. Thus since we know that
the force from the electric field is given by −eE, classi-
cally, then the velocity that an electron puts on before
colliding is given by: −eEτm on average. To tie this back
to the wavepacket of the electron, this means that in an
electric field E our wavepackets k will increase by −eEτm
before it collides again. Notice that after a collision the
electrons go in every direction, thus the velocity that is
left over after collision does not contribute to the current.
This is because on average due to the random direction,
the currents cancel out. However, between collisions the
velocity is in a definite direction and contributes to the
current. Combining this with our definition of j we find
the following relationship to be true on average:

j =
ne2τ

m
E (4)

Notice this has the same form as our relationship above
for conductivity. Therefore for the free electron model we
find that the following must be true:

σ =
ne2τ

m
(5)

We shall use the derivation an approximations above
as our roadmap to creating the semiclassical model which
in addition to taking into account the fermionic nature of
electrons, as in the Sommerfeld model, also includes the
effects of the periodic lattice on the electron dynamics
and metal properties. This occurs through the remark-
able result known as Bloch’s theorem that Felix Bloch
discovered in 1928 [3]
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III. BLOCH’S THEOREM

A. Bloch’s theorem

Bloch’s theorem is a statement about the form of the
wavefunction when it is in a periodic potential. Mathe-
matically this is described as the following: If Hamilto-
nian has the form:

Ĥ =
p̂2

2m
+ U(r) (6)

Where the potential has the following periodic form:

U(r) = U(r + R) (7)

Where U is the potential, and R is a vector such that
the function above holds.

Given these constraints Bloch discovered that on such
a potential the wavefunction takes on the following form.

ψnk(~r) = e(i~k∗~r)unk(~r) (8)

Where the function unk has the same period as the lat-
tice, IE unk(r) = unk(r + R) where R is the vector that
is the shift between identical points in between two unit
cells in the lattice. These ψnk are the energy eigenstates
of the energy operator on the periodic lattice. This means
that they are stationary states over time and are con-
served, which is why an electron having the energy εnk
will keep this energy unmolested by the lattice. Now
since the boundary conditions are identical at the bound-
ary of each unit cell in the lattice this means that we only
have to solve the Schrodinger equation over a unit cell to
get the solution over the entire lattice. This is because
once the Schrodinger equation is solved for one cell the
rest of the cells are also resolved due to the periodicity
of unk. This restriction of the space between boundary
conditions leads to a restriction in the Fourier space of
allowed k values and just like a square well this causes
discrete energy levels to occur. These different energy
levels lead to the band structure of the metal. This is
the essence of Bloch’s theorem.

B. Bloch’s theorem and Velocity

Given a ψnk, the number n is the number of the par-
ticular energy band that ψ is a member of much like n
denotes the particular energy level of an eigenstate in
a potential well. However, unlike energy eigenstates at
each of these n levels in a simple square wave potential,
in the periodic potential there the ψnk still depends con-
tinuously on k thus we expect that at each n level there
will be a range of allowed energies indexed by k. This is
where the name energy bands comes from, unlike a single
well in a lattice the different energy levels get smeared
out because each unit cell contributes an energy level (one
for each possible multiple of R), and if there are a large

number of cells we may approximate this dependence as
continuous which we have done.

Now, we want to see what the relationship between the
velocity and the energy of a particle is in this potential.
This is easily found using perturbation theory by noticing
that εn(k + ∆) is the energy eigenstate of the energy

operator Ĥk+∆. Therefore, if we expand out εn(k + ∆)

as a power series the first order correction is ∂εn(k)
∂k , then

to find this term we take the first order perturbation
introduced by ∆ into Ĥ. A simple equality results and
thus we find the following relationship between v and ε:

vn(k) =
1

h̄

∂εn(k)

∂k
(9)

This result is important to us as we proceed into adding
electric and magnetic fields to our model exactly as it was
important in the classical models of electron conduction
since the velocity is needed for the semiclassical model
which we will describe next.

IV. SEMI-CLASSICAL MODEL

A. Limitations of the Drude-Sommerfeld Model

The most important thing to note in both the Drude
model and the Sommerfeld model is that the lattice ions
are essentially not considered except through the relax-
ation time and scattering. Only the boundary of our
metal is important. Thus the ions in the lattice have no
effect on the electron dynamics in the metals outside of
scattering. This is a bit of a problem because this type of
structure does not give rise to the energy bands that are
found in crystals. Without these energy bands the model
is not able to differentiate between semiconductors, con-
ductors, and insulators. Thus, our model needs to be
improved to take into account the work of Bloch and the
energy band structure that arises as a consequence. To
do this we will consider the semiclassical model.

B. Semi-Classical Model

Once the Bloch model for the electrons in a lattice was
found the question became how can one include electric
and magnetic fields into this new model for the electron.
It is not as straight forward as the classical model to
incorporate these external electromagnetic fields, since
one can not just assume that electrons will behave clas-
sically. Consider that Bloch electrons are already pass-
ing through the lattice in a way that disturbs our classi-
cal intuition, since a Bloch electron is able to pass over
a lattice without being degraded as would be expected
classically. However, one thing to note is that the Som-
merfeld model despite its simplifications was able to get
many results which indicates that it is not entirely in-
accurate. Indeed examining Bloch’s theorem closely one

222 The Semiclassical model and the Conductivity of Metals



The Semiclassical model and the Conductiviy of Metals 4

notes that the wave functions of electrons in a periodic
lattice are given by the free electron solution eik·r mul-
tiplied by a periodic envelop function unk. This is why
Sommerfeld’s model which assumed that the electrons
could be treated as plane waves was still somewhat accu-
rate, the Bloch electrons are nothing more than modu-
lated plane wave solutions! Now our intention is to derive
a model for the electron dynamics in a metal taking into
account Bloch’s discovery. In order to do this we note
that we can construct minimum uncertainty wavepack-
ets out of ψnk at a fixed n. This is because, given an
n we can find a wavefunction solution at any possible
k, therefore we may construct our wavepacket. Once
again invoking Ehrenfest theorem we shall be able to
treat the electrons classically. However, notice that our
ψnk was specified by the lattice throught the inclusion of
the lattice as the periodic potential. The effects of this
lattice can not be treated classically since the lattice is
clearly highly localized spatially. Thus the uncertainty
is nowwhere near its minima and so the lattice and its
effects can not be treated classically. This is why we can
apply the classical uncertainty to the electrons, however,
it is also why we must use the Bloch electron wavepacket
since this wavepacket takes into account the quantum
effects of the lattice quantum mechanically rather than
classically yielding the Bloch solutions. This is why the
Semiclassical model is an improvement on the Drude-
Sommerfeld Models, it includes the quantum mechanical
lattice. Since we may treat the Bloch electrons classically
this results in equations of motion which are quite similar
to the original Drude-Sommerfeld equations of motion.

vn(k) =
1

h̄

∂εn(k)

∂k

h̄k̇ = −e(E +
vn(k)

c
×H)

The only difference between this and the classical
model is that the forces experienced by the electron are
no longer solely given by the classical electromagnetic
forces. They are also dictated by the lattice, this is re-
flected by the usage of the vn and the h̄k̇. These variables
inherently contain the interactions between the electron
and the lattice due to fact that they both derive from the
Schrodinger equation on the lattice, thus the actual reac-
tion of the electron may not be obvious classically. Notice
that the energy function is cyclical due to the fact that
the only unique k are bounded by the periodic nature of
the solution on the lattice. Thus, if we are near the max-
imum of this energy and then increase k via the electric
field. The electron may actually begin to travel in the
opposite direction of the electric field! This is because
of the effects of the lattice, a good analogy for this is if
we have an electron in a metal box with momentum in
the positive direction, now if we increase the electric field
and pull it into the wall then the electron can bounce off
of the wall and begin traveling in the opposite direction.
This type of behaviour occurs also in the lattice leading

to this mysterious behaviour.

V. RELAXATION TIME APPROXIMATION
AND ENERGY DISTRIBUTION

A. Relaxation Time Approximation

Notice that once again our model lacks a mechanism
for scattering, whats worse is that in this model if the
lattice is perfect the electrons will retain any energy in-
putted via external electromagnetic fields and the current
induced will be infinite. Clearly, we need a mechanism
for scattering. There are many modes of scattering in
metals, some of the most significant are scattering due
to the instantaneous thermal deformations in the lattice
and permanent defects in the lattice. Both of these fac-
tors are leading contributors to scattering in real metals.
These are complicated to model, however, for this paper
we will once again fall back on the relaxation time ap-
proximation similar to that of Drude and Sommerfeld.
As we stated before in the Drude-Sommerfeld model the
key component of the relaxation time approximation is
the relaxation time constant τ . This constant was useful
for that model, however, we want to extend it a bit here
and allow τ to vary with the energy band of the electron
it is associated with n, the position in the lattice r, and
finally the wavevector k. Thus our upgraded relaxation
time constant becomes τn(r,k). Since τn represents the
average time an electron travels without collision. This
means that the probability of a collision happening in
some time dt is given by dt

τn
. In addition to this we want

our relaxation time model to enforce the thermal equi-
librium.

In order to state this mathematically we must recog-
nize that what collisions are doing is changing the en-
ergy distribution of the electrons that collide. Lets de-
fine the energy distribution function gn(r,k, t) such that
gn(r,k, t)drdk4π3 is simply the number of electrons that have
the values r, and k at some time t. Notice that at thermal
equilibrium with no external fields this distribution sim-
ply becomes the Fermi distribution function as one would
expect. However, in the presence of external fields gn be-
comes a non-equilibrium distribution function which we
will derive by noting that any changes in the distribu-
tion function are governed by the collisions which are
described by the relaxation time model we gave above.
To fufill the requirements that our function goes to the
local equilibrium we require the following things from
changes in the distribution function. First that our sys-
tem is memoryless, e.g. after a collision it is not possible
to tell what the original energy distribution function was
of the electron before the collision. Additionally, if our
function is at equilibrium then we want to collisions to
maintain that equilibrium. Thus if

gn(r,k, t) = g0
n(r,k) = f(ε(k)) =

1

eεn(k)−µ(r))/kBT (r) + 1
(10)
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,where T (r) is the local temperature at r, the collision
will not change the energy distribution function gn at
all. All of these desired properties lead us to the following
mathematical statement of how the energy distribution
changes over time.

dgn(r,k, t) =
dt

τn(r,k)
g0
n(r,k) (11)

Essentially, at every time interval dt we have the prob-
ability dt

τn(r,k) of the collision returning the non equilib-

rium solution to the local equilibrium solution at r and
k.

B. Non-Equilibrium Distribution Function

From the previous section we found that the effect of
a collision on the electron distribution function to be

dgn = (r,k, t) =
dt

τn(r,k)
g0(r,k) (12)

If we want to find gn(r,k, t) we must integrate over time.
However, this integration is a bit more subtle than just in-
tegrating dgn over time, this is for two reasons. First, no-
tice that because of the external electric field both r and k
of the electrons in the distribution are changing accord-
ing to the semi-classical equations given above. Thus,
if we want to find the contribution of electrons from a
collision at time t′ we must look at dgn(r′(t′),k′(t′), t′)
where r′(t) = r and k′(t) = k after evolution by the
semi-classical equations. Thus the contribution to the
change in gn(r,k, t) from these electrons is only counted
for the electrons that come from a collision with values
r′(t′) and k′(t′) at time t′. However, this is not the full
story since between the collision at time t′ which has put
the electrons on track to contributing to gn may be dis-
rupted if they experience another collision before time t.
Thus, the contribution from electrons at time t′ is only
counted if there are no intermediary collisions interven-
ing. Thus the percentage of electrons that make it all
the way to time t is mitigated by P (t, t′), the probabil-
ity that a collision does not occur between time t′ to t.
Thus considering these two factors we find that gn can
be written as:

gn(r,k, t) =

∫ t

−∞

dt′

τn(r′(t′),k′(t′)
g0(r′(t′),k′(t′))P (t, t′)

(13)
Let gn(r,k, t) = g(t), g0(r′(t′),k′(t′)) = g0(t′),
τn(r′(t′),k′(t′)) = τ(t′). Thus our equation becomes:

∫ t

−∞

dt′

τ(t′)
g0(t′)P (t, t′) (14)

Now, notice that P (t, t′) is the probability of a collision
occurring to an electron between time t and t′. Notice
that due to the relaxation time approximation, we know

that at any particular instance in time we the probabil-
ity of an electron collision is given by dt

τn
. Thus we can

generate a differential equation for P (t, t′) since:

P (t, t′) = P (t, t′ + dt′)(1− dt′

τ(t′)
) (15)

If we take the limit of infinitesimal time we get the fol-
lowing equation:

∂

∂t′
P (t, t′) =

P (t, t′)
τ(t′)

(16)

Notice we can insert this into our equation for g(t) which
then becomes:

∫ t

−∞
dt′g0(t′)

∂

∂t′
P (t, t′) (17)

Finally, if we apply integration by parts we get the fol-
lowing formula:

∫ t

−∞
dt′P (t, t′)

d

dt′
g0(t′) (18)

Since we know the form of g0, if we differentiate and then
substitute (a lengthy, unpleasant bit of work) we can ob-
tain the following general formula for the non-equilibrium
distribution function.

g(t) = g0+

∫ t

−∞
dt′P (t, t′)[−df

dε
v·(−eE−∇µ− ε− µ

T
∇T )]

(19)

VI. CONDUCTIVITY OF METALS

A. DC Conductivity

In metals we note that the electric field is generally
small, which means that over the average time between
scattering τ the change in k induced by the electric field
is negligible. Thus we neglect its effect on dk

dt . Addition-
ally, notice since metals are good thermal conductors the
gradient over the metal will also tend to be small and so
we may treat the effect of T as a constant. Finally, no-
tice that the chemical potential µ in metals is negligible
since it only arises as an artifact of the gradient of the
temperature and thus it may also be neglected.

Now that we have found that the effect of the elec-
tric field and temperature gradient are neglibible, we
should note that the effect of the magnetic field can not
be ignored since the magnetic fields that can be com-
monly generated in metals is large enough to significantly
change k over the relaxation time. However, one thing
to note in particular is that the energy is conserved over
the magnetic field. Since the ε(k), the only variable in
the fermi distribution dependent on time, is conserved
this means that the f in our equation for g does not
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have any remaining time dependence in our approxima-
tions. Therefore, from our equation for g the only time
dependent elements left in the integral are P (t, t′) and
v(kn(t′)).

Finally, we make one last approximation in which we
assume that the relaxation time is based on the energy of
electron, instead of directly on the k. Notice once again
that when this is done, the approximation that only the
magnetic field is important means that the τ(εn(k) is also
not time dependent since εn(k) is conserved in magnetic
fields. Thus if we refer back to the differential equation
for P (t, t′) we find that we can now write P as:

P (t, t′) = e−(t−t′)/τn(k) (20)

In light of these useful approximations in metals we
find that our equation for g has become:

g(k, t) = g0 +

∫ t

−∞
dt′e−(t−t′)/τn(k)[(−df

dε
)v

·(−eE−∇µ− ε(k)− µ
T

∇T )]

(21)

Our interest is to calculate the conductivity of the metal
without temperature gradients or an external electric
field, just as did for the Drude-Sommerfeld model. Thus
all the terms except for the exponential lose their depen-
dence on time due to our approximation or since we have
assumed them to be constant like the electric field and
the temperature. Thus the rather complex integral in
eqn 21. evaluates quite simply to:

g(k) = g0(k)− eE · v(k)τ(ε(k))(−∂f
∂ε

) (22)

Since we now know the electron density for a given band
and k are are now in the position to calculate the current
which is the amount of charge moving through a surface
over some unit time. This means that our current equa-
tion is given by:

j =

∫
dk

4π3
v(k)g (23)

Where we have integrated over the entire space of unique
k, or over a single unit cell in k space. This is the current
density of a single energy band. Plugging in g we find
the equation to have the following form:

j = e2E

∫
dk

4π3
v(k)2τ(ε(k))(−∂f

∂ε
) (24)

We left off the g0 term since we know it does not con-
tribute to the current, since it is the equilibrium solution.
Remember that the conductivity is given by: j = σE this
implies that the conductivity for band n is given by:

σ(n) = e2E

∫
dk

4π3
v(k)2τ(ε(k))(−∂f

∂ε
) (25)

To find the total conductivity we simply sum over the
contributions to conductivity from all available bands.

Thus this is the conductivity of a metal with band struc-
ture εn.

B. Insulators vs. Conductors

Notice that ∂f
∂ε is basically 0 everywhere except for at

the Fermi temperature what it becomes very large. Thus
what we find is that only the bands that are close in
energy to εf are significantly contributing to the conduc-
tion. This begins to shed some light on why some ele-
ments are conductors and others insulators. The conduc-
tors are the metals where the Fermi temperature lands in
the middle of an energy band thus allowing for the elec-
trons in the band to contribute to the conductivity. How-
ever, if the fermi temperature lands between two bands
which happens to insulators then very few to none of the
electrons will contribute to the conductivity and we ob-
serve the insulation properties of the insulator. Finally,
we see this effect in semiconductors where the bands are
sufficiently close to the fermi temperature but not part
of them so the crystal acts as both a conductor and an
insulator. Notice that this effect was not considered in
the Drude-Sommerfeld model at all!

VII. CONCLUSION

In this paper we first considered the conductivity of
metals using the classical Drude model and its early
quantum mechanical extension the Drude-Sommerfeld
model. These models modelled the electrons in a metal
as forming an electron gas. The Drude model used the
Boltzmann distribution for the energies of the electrons
in this gas. While Sommerfeld included the fermionic na-
ture of electrons and used the Fermi-Dirac distribution.
Once this model of the metal had been constructed exter-
nal electric fields were added to the model classically and
thus the conductiviy, which is the ratio of current pro-
duced, compared to electric field applied. These models
had some significant problems such as a lack of account-
ing for insulators vs. conductors, and why only some
electrons seem to conduct in a metal and not all of them.
These problems arose due to the neglect of the models
to account for the lattice that the electrons resided in,
other than through scattering effects. This is why when
Bloch discovered the Bloch Theorem an upgrade to these
models was immediately discovered since the Bloch elec-
trons took into account the periodic nature of the lattice.
This lead to many interesting effects such as the energy
band structure of allowed electrons in metals. Then with
the addition of classical electromagnetic fields this a new
model for the dynamics of electrons was developed using
Bloch electrons instead of free electrons as was done in
the Drude-Sommerfeld model. This model is called the
semiclassical model. With this model we then recalcu-
lated the conductivity of metals and found that due to
the band structure of metals we could predict if it would
be a conductor, semiconductor, or an insulator which
was an exciting new result that was not possible under
the older models.

The Semiclassical model and the Conductivity of Metals 225



The Semiclassical model and the Conductiviy of Metals 7

[1] Ashcroft, N. W., Mermin, N. D. (1976). Solid state
physics. New York: Holt, Rinehart and Winston.

[2] Baierlein, Ralph. Thermal physics. New York: Cambridge
UP, 1999.
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Use of the WKB Approximation Method in Characterizing the Probability and
Energy of Nuclear Fusion Reactions

James M. Penna
Department of Physics, 77 Massachusetts Ave., Cambridge, MA 02139-4307
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The potential of an atomic nucleus is developed as a model exactly solvable using the WKB method.
The results are used to find the tunneling probability through the potential and to calculate the
parameters of fusion reactions.

I. INTRODUCTION AND HISTORICAL
BACKGROUND

Nuclear fusion has long been a physical process that
has turned science on its head multiple times, redefining
known physics and causing scientists across the globe to
embark on huge quests to harness its power. The histor-
ical basis for the physical problem comes from the efforts
of scientists to meaningfully answer the rather childish
question, “Why does the sun shine?”

The first problem that beleaguered scientists was that
the actual properties of the sun were largely unknown,
including it’s composition and age. Though earlier scien-
tists such as Helmholtz and Mayer had proposed answers
to this question, the first solid calculations of the sun’s
energy and age were produced by William Thompson,
better known as Lord Kelvin. Lord Kelvin’s calculations
were based on the idea of the sun’s gravitational energy
being the cause of its radiation, as he had calculated that
if the sun were to burn via chemical reactions the sun’s
lifetime would be roughly 3000 years, an absurdly small
timescale (and obviously false as the Egyptians had the
sun to worship and build pyramids by the light of). After
calculating the gravitational energy of an object of the
sun’s size and using its radiation rate, he calculated the
overall lifetime of the sun to be about 30 million years.
It was with no small amount of vitriol that Kelvin used
this result to attack Charles Darwin’s theory of natural
selection and erosion-based estimates of the earth’s age,
which he disagreed with. Citing his result he stated “
What then are we to think of such geological estimates
as [Darwin’s] 300,000,000 years for the “denudation of
the Weald?”The “ denudation of the Weald ” here refers
to the erosion of a valley calculated by Darwin in order
to give scale to the Earth’s age. [1]

Unfortunately for Lord Kelvin, as renown as he is, his
criticism of Darwin turned out to be less than merited.
The true answer to the sun’s power came with the discov-
ery of radiation and the formulation of Einstein’s most
famous result, the equation E = mc2. This was the key
to the sun’s power, but the answer sstill remained be-
hind two locks. The first lock was the result of spectro-
graphic measurements of the sun that gave the first hints
of its composition. Measurements yielded that the sun is
composed of mostly hydrogen and helium, with varying
small percentages of heavier elements. The second was
the discovery that the helium-4 nucleus, though made

of of four nucleons, was ever-so-slightly lighter than the
mass of four constituent nucleon, such as hydrogen nu-
clei. It was Arthur Eddington who fit the lock and key
together, deducing that in some nuclear process, mass
was being converted to energy through the conversion of
hydrogen to helium.

This process is known to us today as nuclear fusion,
but by the classical laws of physics, this process should
be impossible. As a toy model we will look at the simplest
case of fusion, between two hydrogen-1 nuclei. According
to classical electrostatic laws, the force between them can
be represented by the equation for Coloumb’s law:

F (r) = ke
q2
e

r2
(1)

where ke = 8.9876 × 109N×m2

C−2 , the SI-unit Coloumb

constant, qe is the charge of the proton, 1.602 × 10−19

C. If we were to evaluate this equation for r = 1.535 ×
10−18 meters, i.e. the distance of two adjacent protons,
we would get a force of 4.168 meganewtons repelling the
two protons. As described by classical electrodynamics,
nuclear fusion should not occur, so in order to accurately
explain the phenomenon, quantum mechanics must be
introduced.

With the advent of quantum mechanics, it became
clear that classical forces did not exactly scale to the
quantum level. One such non-classical phenomenon is
that of quantum tunneling. For a given potential bar-
rier V (x), it is impossible for a particle of E < V (x)
to traverse the barrier according to classical calculations.
However, when solving the Schrödinger equation for pre-
cisely such a potential, there is a small probability that
a particle of E < V (x) can indeed traverse the barrier
to the other side, the ”classically forbidden” region. For
a slowly varying potential, one such that V (x) is rel-
atively continuous and does not greatly vary in value
across distance, it is possible to apply a method known
as the Wentzel-Kramers-Brillouin (WKB) Approxima-
tion or Method. The WKB approximation allows the
Schrödinger equation to be approximately solved over
such slowly-varying potentials for a ”semiclassical” so-
lution. The method itself and the formalism associated
with it will be developed in the next section.

In 1928, the concept of tunneling and the WKB ap-
proximation were applied to the problem of alpha emis-
sion by the noted physicist George Gamow. Previously it
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was not understood how a positively charged alpha par-
ticle could remain confined in the nucleus given such a
massive potential barrier. However, through use of the
WKB approximation it became clear that alpha emission
could be explained by tunneling. Conversely, the oppo-
site process of nuclei coming together and fusing was also
described this way. Thus the purpose of this paper shall
be to:

• Develop the components of the WKB Method
needed to do the calculation in Section II.

• Establish a model of the nuclear potential and solve
the Schrödinger equation for the potential using the
WKB method in order to derive the probability of
fusion on the microscopic level in Section III.

• Use the derived probability to calculate the reaction
cross-section, reaction rates and reaction energy of
a plasma system in which fusion occurs in Section
IV.

II. THE WKB METHOD AND FORMALISM

Here I shall introduce the WKB approximation and
list the relevant connection formulae to be ussed in the
following derivation. For the purpoe of brevity I will omit
the full derivation of the WKB approximation and the
connect formulae, but they should be readily accessible
and familiar to anyone with a rigorous understanding of
basic quantum mechanics. For the complete treatment,
one should refer to Griffiths, Chapter 8. [2]

Given a spacially-varying potential V (x), we can ap-
ply the WKB approximation if the following condition is
satisfied:

λ(x)|dV (x)

dx
| << [p(x)]2

m
(2)

where λ(x) is the De Broglie wavelength associated
with the wavefunction, V (x) is the potential over space,
and p(x) is the momentum associated with the wavefunc-
tion. [3]

For this potential the one-dimensional Schrödinger
equation can be written as

d2ψ

d2x
= −k2ψ (3)

where k =
√

2m
h̄2 (E − V (x), E being the energy of the

incoming particle, m being its mass, and V (x) being the
potential we are looking at. Solving this second order
differential equation one yields solutions of the type be-
low:

ψ(x) =
C√
k(x)

exp(±i
∫ a

r

k(x) dx) (4)

This is the wave function in the so-called “classically-
allowed” region, where the energy of the particle exceeds
that of the potenial. However, during the treatment of
the nuclear potential, we must also consider the “classi-
cally forbidden” region in which E < V (x), where classi-
cally it would be impossible for a particle to travel. How-
ever, these regions still do also give valid solutions to the
Schrodinger equation even if not classically admissible.

One of the most important aspects of the WKB ap-
proximation is its ability to connect two different regions,
both allowed and forbidden, through use of the connec-
tion formula. The key assumption is recasting the po-
tential as an approximately linear function at the point
where the two regions meet, V (x) ≈ E + V ′(0)x. The
derivation that follows is once again too tedious to cover
here, but the basic logic is that because the lengthscale
of the slowly-varying potential is much longer than the
area in which the wavefunction transits between regions
a simple linear form can be used to simplify analysis. The
end result is a set of relations between the wavefunctions
in each area known as the connection formulae. In going
from the classically allowed region to a classically forbid-
den region such that V (x < a) < E, V (x > a) > E our
connection formula is:

2A√
k(x)

cos

(∫ a

x

k(x) dx− π

4

)
+

B√
k(x)

sin

(∫ a

r

k(x) dx− π

4

)
⇔

A√
|p(x)|

exp

(
−
∫ x

a

|p(x)| dx
)

+

B√
|p(x)|

exp

(∫ x

a

|p(x)| dx
)

(5)

Note the order of the limits of integration give the di-
rection of the wave, traveling into the classically forbid-
den region. Going in an opposite direction, forbidden to
allowed such that V (x < b) > E, V (x > b) < E, our
connection formula is:

A√
|p(x)|

exp

(
−
∫ b

x

|p(x)| dx
)

+

B√
|p(x)|

exp

(∫ b

x

|p(x)| dx
)
⇔

2A√
k(x)

cos

(∫ x

b

k(x) dx− π

4

)
+

B√
k(x)

sin

(∫ x

b

k(x) dx− π

4

)

(6)

Again, the order of integration indicate the region into
which we are moving. These connection formulae become
key to solving the problem of tunneling and describing
the mechanism by which fusion happens.
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III. APPLICATION OF THE WKB METHOD
TO THE NUCLEAR POTENTIAL

The connection formula shown above is essential to
solving the barrier problem. The potential we consider
for the problem of nuclear tunneling must take into ac-
count both the electrostatic repulsion of the Coulomb
force and the attractive force of the nuclear potential.
Such a potential can be modeled below by:

V (x) =

{
Z1Z2e

2

4πε0R
if r ≥ R

−Vo if r < R
(7)

where R is the radius of the atomic nucleus being fused
with, and Z1 and Z2 are the atomic numbers of the nu-
clei colliding. The exact form of the nuclear potential
varies between nuclear reactions but can usually be ap-
proximated by a deep potential well −V0 [3] This was the
same approximation made in Gamow’s 1928 paper on the
tunneling of an alpha particle from a heavy nucleus [4]
(though in this case, we are going to flip Gamow’s work
on its head, or at least in its direction). As we shall see,
thanks to the connection formulas, we will never need to
deal with it directly for the first part of our calculation.A
graph of this toy model of the nuclear potential is seen
in Figure [1]. With this graph, we can very clearly dis-
tinguish the classically allowed regions r < R and r > b
from the classically forbidden region in R, r < b. Looking
first at the classically allowed region I, the region where
r > b on the right, we see that the wave function takes
the form in one dimension:

ψ(x) ≈ A√
k(x)

exp(±i
∫ r

b

k(x) dx) (8)

with k(x) defined as above in the connection formula,
though this time we have the explicit potential to work
with.In order to simplify our calculations, we shall be
continuing the treatment in one dimension only - how-
ever, since the Coloumb potential is inversely linear and
radially symmetric, a one dimensional approximation and
calculation will be suitable for our purposes.

Now looking at the classically forbidden region, r < b
as seen in to Figure [1], previous intuition informs us that
the wave fuction takes the form of a decaying exponential.
Specifically the WKB approximation gives the form of
the wavefunction on the other side of the barrier via the
connection formula:

ψ(x) ≈ A√
|p(x)|

exp

(
−
∫ b

r

|p(x)| dx
)

+

B√
|p(x)|

exp

(∫ b

r

|p(x)| dx
) (9)

Note here that I am using the notation from Griffiths
such that |p(x)| = |k(x)| for the case where E < V (r)

FIG. 1: A sketch of the nuclear potential we are model-
ing. The Coloumb force is responsible for the positive up-
wards sloping portion and the nuclear force is here repre-
sented as a deep well. R represents the nuclear radius and
b represents the distance of closest approach between two nu-
clei. The incoming plane wave A, the reflected plane wave
B, and the transmitted plane wave F, from the solutions to
the Schrodinger equation in one dimension, are shown here.
A and F are used to find the transmission coefficient which
will in turn be used to find the probability of transmission.
Adopted from Aziz et. al. [3]

and k(x) becomes imaginary.This solution is a decaying
exponential rather than the oscillatory behavior we see
in the classically allowed region.

With the wave amplitudes and arrows labeled in Fig-
ure [1] providing the visual queue to refresh our mem-
ories. On one side of the barrier, we see the intuitive
behavior of a reflection of the incoming low energy wave,
but we also see the transmission of one component of
the incoming free wave on the other side of the barrier,
in the other classically allowed region r < R, where R
is the nuclear radius. The square of the amplitudes of
the transmitted wave over the amplitude of the incoming
wave gives the probability of transmission, or transmis-

sion coefficientT = |F |2
|A|2 .

Using the connection formula as mentioned in the sec-
ond section, we can equate the wave function of the clas-
sically forbidden region to that of the classically allowed
region r < R. The resultant wavefunction looks similar
to the one in equation (7), though granted with the limits
of integration instead being from r to R. Thus by divid-
ing the wave function squared amplitudes for the regions,
we obtain for the transmission coefficient :
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T = exp

(
−2

∫ R

b

|p(x)| dx
)

=

exp

(
−2

∫ R

b

√
2m

h̄2 (V (r)− E) dx

) (10)

The integral in the exponential above is often referred
to as the Gamow factor γ, the result of Gamow’s original
work on tunneling in 1928 and also the result of the cal-
culation in Aziz, Yusof, and Kassim in [3]. Despite the
seemingly-impossible to pass electrostatic barrier, there
is a probability of the particle passing through it, de-
pending on its energy. For the electrostatic potential for
V (r > R)specified in (2),this integral can be solved ex-
actly and gives the probability of an incoming particle
tunneling through the Coloumb barrier. Here we will de-
part from the calculation used by Gamow and we will
instead look to the calculation done by Aziz et. al.

When the Coloumb potential is inserted and the inte-
gral in T is expanded out, we see that the probability of
the particle tunneling is [3]:

P (E) = exp−
(

8Z1Z2e
2µb

h̄2

)
×

arccos

((
E

V

)1/2

−
(
E

V

)1/2(
1− E

V

)1/2)
.

(11)

In which again Z1 and Z2 are the atomic numbers of
the elements being fused, µ is the reduced mass of the
two nuclei, m1m2

m1+m2
, and b is a parameter representing

classically the closest approach between two nuclei, just
outside of the atomic radii. Though both Gamow and
Aziz et. al. use the low energy approximation in order
to either simplify the arccos term away or use a logarithm
to get rid of higher terms, we cannot do this just yet. In
order to establish valid parameters and energy scales for
approximations to take place, we must first look into the
actual reactions we are trying to explore, those of nuclear
fusion.

IV. NUCLEAR PHYSICS AND
CHARACTERIZING LARGE-SCALE FUSION

REACTIONS

Having established the cause of nuclear fusion and
a suitable mathematical expression to characterize its
probability of occurring, it is time to start looking at
fusion in a physical setting. Fusion reactions in nature
happen on an enormous scale in stars, a far-cry from the
simple two-particle model we had built our model upon.
It is from the sun we shall first draw intuition and infor-
mation from.

It has been established through thousands of years of
empirical evidence that the sun is hot. Precisely how hot,

however, has only been relatively recently known, despite
Lord Kelvin’s best efforts. The sun’s core is where fusion
takes place at about an average of 1.5 × 107 K [5], or
in terms of average particle energy, about 1.3 keV. Even
in the hottest fusion reactors on Earth, average nucleon
energy will not exceed an energy scale on the order of 10
KeV. This relatively small energy scales means that for
real life fusion reactions, we may neglect the arccos term
as it will go to unity. The probability now becomes the
exponential:

P (E) = exp−
(

2πZ1Z2e
2

E

)
(12)

However, in large scale nuclear reactions, it becomes
next to useless to discuss individual probabilities. In-
stead, the concept of a reaction cross section must be
introduced. Just as scattering in quantum mechanics or
macroscopic processes uses a cross section to describe
the relative reaction between incoming particle flux and
a target, nuclear physics uses the cross section σf to char-
acterize the likelihood of a fusion reaction occurring be-
tween two particles. The cross section becomes a more
physically useful parameter as it can be used to charac-
terize properties of a whole system of fusing particles and
also provides a unitless parameter to characterize fusion
reactions by. Simply speaking, the cross section can be
expressed as:

σ(E) =
S(E)

E
P (E) (13)

where S(E) is the astrophysical S-factor [5]. The S
factor cannot be derived purely from theory -it is a pa-
rameter of nuclear reactions with units of energy that has
not been theoretically derived and must be measured em-
pircally at each energy. In the case of the fusion reaction
scales we are examining, from 1-10 KeV, the S factor is
known to vary very slowly, making the derived probabil-
ity the dominant term in the cross section.

The cross section safely parameterized, we will now di-
rect our attention to deriving the energies at which these
reactions occur in a more physical environment than our
artificial toy potential model. In a hot plasma or other
sufficiently warm, dense collection of light nuclei (such as,
conveniently enough, that found in the sun) the energies
of said nuclei fall into a Maxwell-Boltzmann distribution
of the approximate form:

φ(E) = φ(v) ∝ E exp (−E/kT ) (14)

(For the full form refer to Berulani, pg. 344, eq. 12.14
[5]). E is the energy of the reaction. T is the particle
temperature and k is the familiar Boltzmann’s constant
The thermally averaged rate of the fusion reaction 〈σv〉
can now be found, knowning both the cross section and
how the particles are distributed according to their ener-
gies. The explicit calculation is:
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FIG. 2: A sketch of the Gamow factor, and the cross-
section. When calculating the reaction rate this peak
will dominate the other terms in the integral equation at
the energy E0. This is referred to as the Gamow peak,
the “ideal” energy for fusion reactions. Adapted from:
http://inspirehep.net/record/827392/plots

〈σv〉 = (
8

πµ
)(kT )−3/2

∫ ∞

0

σ(E) exp (− E

kT
) (15)

One may notice, given the form of the cross-section,
that the integrand has a term proportional to

exp (− E

kT
− u√

E
) (16)

with u =
√

2µπ2 Z1Z2e
2

h̄2 . This term implies that there
is in fact a peak energy at which the reaction rate is maxi-
mized, the so-called Gamow peak that can be seen in Fig-
ure [2]. The calculation shall be omitted here for virtue
of being messy but the intermediate steps are referred
to in Aziz et. al. [3] The end result is quite neat, with
an energy that ends up being dependent on the tempera-
ture, the size of the nuclei and a few physical parameters:

Eo = 1.22(Z2
1Z

2
2µT

2
6 )1/3keV (17)

where µ is again the reduced mass and T6 is temper-
ature expressed in millions of degrees Kelvin. The en-
ergy needed for the nuclear reaction has been completely
characterized from the derivation of the coefficients in
the WKB approximation - arguably this is one of the
most startlingly effective and important results of quan-
tum mechanics (no fusion means no reaction to provide

the energy for sunlight, and sunlight is rather important
for life on earth).

With the energy required for the reaction character-
ized, we may take a look at the opposite end of the equa-
tion, the energy produced in the reaction. As mentioned
in the discussion of the potential model, within the range
of the nuclear radius there is a powerful attractive force
that allows nucleons to be bound together despite the
powerful Coloumb force repelling the protons in a nu-
cleus. This nuclear force is a consequence that arises
from the strong force interactions between quarks in nu-
cleons. The nuclear force is very poorly characterized -
to date there are no known universal constraints or pa-
rameters on it and any model or problem involving the
nuclear force must be dealt with as an individual case.
However, for our purposes, merely knowing that the force
exists is enough.

The fusion of nuclei is an energy-releasing process, and
this energy comes from the release of binding energy from
the nuclear force as the separate nucleons are once again
re-joined (if this process seems counter-intuitive, consider
that it takes net energy to break apart a nucleus into its
constituent nucleons - therefore the individual nucleons
have stored binding energy they can release by binding
once more).

Calculating this release of binding energy does not
need to involve a complex study of the nuclear force or
QCD (it is not the author’s intent to win the Nobel Prize
with this paper). It merely requires knowledge of the
mass-energy equivalence principle and a little subtrac-
tion. The fusion reaction we shall consider is the fusion
between a deuteron and a triton, known as a D-T re-
action. The D-T reaction is of particular interest as its
cross section is much higher than that of other common
fusion reactions. This makes it the most important fusion
reaction in fusion energy research as it is the most-easily
producible. A D-T reaction will produce an alpha parti-
cle and a neutron, and by calculating the mass difference
between the reactants and products using the following
equation

B(Z,N) = (
∑

mr(Z,N)−
∑

mp(Z,N))c2 (18)

we can calculate the binding energy released. The Z
in the equation is the atomic number whereas the N is
the number of neutrons. For the D-T reaction, a di-
rect calculation of this change in binding energy yields
9.5 MeV. However the actual energy released is a little
less than twice that, at 17.6 MeV - this simple formula
does not take into account the change in rest masses of
the products and reactants moving at relativistic speeds.
Plugging in the relevant atomic numbers at 100 million
Kelvin, the Gamow peak energy needed for a deuteron to
fuse with a triton is roughly 2.8 MeV, less than one-sixth
what the reaction would produce. Fusion is an incredi-
bly energetic process with astounding returns on energy,
a tempting fact which has led the nuclear fusion power
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community into the joint effort of harnessing that energy
for humanity.

V. CONCLUSION AND DISCUSSION

The derivation in this paper demonstrates the enor-
mous utility of toy models in solving quantum mechani-
cal systems and the power of approximate methods. By
using a model based off of basic knowledge of nuclear
physics, we were able to piece together the wavefunction
across the nuclear region with the WKB approximation,
use the wavefunction amplitudes to derive the transmis-
sion coefficient and found the probability of transmission.
The direct derivation of the tunneling probability and the
fusion cross section that is parameterized by it was a huge
win for nuclear physics and stellar astrophysics. To have
a reliable expression for it based on the Gamow factor
has helped to enable the whole of experimental fusion
physics. Knowing the temperature and energy of these
reactions allowed for the development of the hydrogen

bomb and the design of fusion reactors such as the toko-
mak, currently mankind’s best hope at attaining power
from sustainable fusion. Gamow’s original work was the
key stepping stone that allowed other physicists such as
Hans Bethe and [4] to derive the reaction chains of stel-
lar fusion reactions such as the CNO cycle, truly answer-
ing the question “Why do the stars shine?” Quantum
mechanics is a powerful tool with which many physical
systems in nature can be solved, and nuclear fusion has
proven to be one of them. Using the techniques of the
WKB approximation we have shown it is possible to char-
acterize the workings of even the mightiest stars starting
with their smallest constituents.
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The need for and subsequent discovery of the Dirac equation was born out of the necessity to
unite special relativity with quantum mechanics. Our investigation of the Dirac equation begins
with a historical introduction that provides motivation for our subsequent treatment of the equation.
Following the historical preface, we provide a derivation of the Dirac equation for a free electron and
discuss its important aspects and implications. This derivation introduces useful concepts including
the Dirac spinor, gamma matrices, and antimatter. We then consider the Dirac equation describing
an electron in an electric field, in particular, the hydrogen atom potential. Finally, we use the Dirac
equation to investigate the energy spectrum of the hydrogen atom and discuss this spectrum in
relation to results obtained using perturbation theory in non-relativistic quantum mechanics.

I. NOTATION AND CONVENTIONS

For this treatment, we will use natural units, in which,
h̄ = c = 1. The presentation of relativity and tensors
will be limited to its utility in describing basic processes
in special relativity. We will use the following convention
for the metric tensor

ηµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




With greek letter (µ, ν, ρ, . . . ) running over 0, 1, 2, 3
and latin letters (i, j, k, . . . ) running over 1, 2, 3 unless
otherwise stated. We now introduce covariant and con-
travariant four-vectors.

xµ = (x0,x), xµ = ηµνx
µ = (x0,−x)

Based on the notion of upper and lower indices, we
will introduce Einstein’s summation notation. Whenever
there is the same index both as an upper index and a
lower index, that index is summed from 0 to 3 or 1 to 3
depending on whether it is a Greek or Latin letter. Along
the same vein, we may define the derivative operator

∂µ =
∂

∂xµ
=

(
∂

∂t
,∇
)

Which is a four-dimensional gradient operator.

II. INTRODUCTION

The late 1800s and early 1900s saw great advancement in
theoretical physics. In 1890, apparent doublets were ob-
served in the hydrogen spectrum. This phenomenon be-
came later known as the fine structure of hydrogen. The
discovery was largely ignored until 1916, when Arnold
Sommerfeld treated it (to high experimental accuracy)

using both quantum mechanics and special relativity,
even before the explicit discovery of the Schrödinger
equation [7]. After this treatment, several experimental-
ists set out to measure the fine structure. Some of these
included Merton and Nicholson (1917), Geddes (1922),
and Hansen (1925). The most thorough results of the
era were given by Kent et. al (1927), following the dis-
covery of the Schrödinger equation[7].

Concurrently, in his 1905 paper, On the Electrodynamics
of Moving Bodies Einstein postulated the theory of Spe-
cial Relativity, part of which describes particles moving
at speeds comparable to the speed of light. The next
few decades saw the development of quantum theory. In
1925, Erwin Schrödinger wrote the Schrödinger equation,
which written in its general form is

i
∂Ψ(x, t)

∂t
= ĤΨ(x, t) (1)

Here Ψ(x, t) represents the quantum state of a particle,

and Ĥ is the Hamiltonian of the system. This equation
describes how a non-relativistic quantum particle evolves
in time. Shortly after the discovery of this equation, Os-
kar Klein and Walter Gordon wrote down an equation
that purported to describe the quantum theory of a rel-
ativistic electron. The equation was derived from the
principles of special relativity and the Schrödinger equa-
tion. In particular, the relativistic energy is given by
E2 = |p|2 + m2. In quantum theory, momentum is de-
scribed by operator p̂ = −i∇ and the energy is described
by the Hamiltonian operator given by (1). Combining
the relativistic energy equation with the operator forms
of energy and momentum, led to the Klein-Gordon equa-
tion.

E2 = |p2|+m2

− ∂2

∂t2
Ψ(x, t) =

(
−∇2 +m2

)
Ψ(x, t)

0 =

(
∂2

∂t2
−∇2 +m2

)
Ψ(x, t) (2)
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In the equation above, (2) is a form of the Klein-Gordon
equation, more commonly written in the form

(
∂µ∂

µ +m2
)

Ψ(x, t) = 0 (3)

This equation was widely accepted as the relativistic gen-
eralization of the Schrödinger equation and was consid-
ered viable for describing an electron. However, there
were a few physical problems associated with this equa-
tion.

A. Negative Energy

Note that the fundamental solutions to (3) are e±ipµx
µ

,
where pµ = (E, ~p) [4]. However, since (3) is second-order,
the solutions admit negative-energy solutions as demon-
strated below. Plugging our fundamental solutions into
(3), we get that

0 =
(
pµp

µ −m2
)

= (E2 − |p|2 −m2)

E = ±
√
p2 +m2

Which means that the energy can take a negative value.
The underlying cause for this problem of negative energy
comes about due to the fact that (3) is second order in
time, an issue that greatly bothered Dirac [3].

B. Other Problems

Another physical problem with the the Klein-Gordon
equation is related to its associated probability density.
In analogy with the concepts of probability density and
probability current in non-relativistic quantum mechan-
ics, we can define the quantities

ρ =
i

2m
(Ψ∗∂tΨ−Ψ∂tΨ

∗) , ~J = − i

2m
(Ψ∗∇Ψ−Ψ∇Ψ∗)

that satisfy the continuity equation ∂ρ
∂t +∇ · ~J = 0. But

notice something troubling: the probability density for
the Klein-Gordon equation ρ = i

2m (Ψ∗∂tΨ−Ψ∂tΨ
∗) =

1
m Im(Ψ∂tΨ

∗), which is not positive definite. This means
ρ cannot be interpreted as a probability density.

Dirac’s major contention with the Klein-Gordon was that
it was not first order in time. He was quoted as saying
[3]

“The linearity [of the wave equation] in
∂
∂t was absolutely essential for me. I just
couldn’t face giving up the transformation
theory”

Compelled by the the problems of negative energy, the
positive definiteness of the probability density, and the
order of the equation, Dirac went about trying to develop
an equation for the electron that solved these apparent
inconsistencies.

III. THE DIRAC EQUATION

The ultimate goal of this paper is to examine the spec-
trum of the hydrogen atom using the Dirac equation. To
do so, we will first derive the Dirac equation for a free
spin-1/2 particle, using which we will derive the equation
that describes a spin-1/2 particle in an electromagnetic
field.

A. Free Spin-1/2 Particle

It is our intent to find an equation that is first order
in both temporal and spatial derivatives. This involves
taking the “square root” of (3). Based on the form of
(3) and our desire to have first-order equations, we can
ansatz the following factorization [1].

(
∂µ∂

µ +m2
)

Ψ(x, t) = (4)

(
3∑

µ=0

αµ∂
µ − β

)(
3∑

ν=0

αν∂ν + β

)
Ψ(x, t)

Here αµ are arbitrary coefficients to be specified. Note a
slight notational peculiarity. We have the index ν twice
in the bottom. However, we do not intend for αν to be a
four-vector and hence ν is simply a label of the α’s. This
is why we have included explicitly the sums, rather than
using Einstein’s summation notation. For simplicity, let
us set α0 = 1. We have just made several assumptions,
but if we are able to attain equation (3) by these means,
all assumptions become justified. Expanding (4) gives

0 = (5)(
3∑

µ,ν=0

αµαν∂
µ∂ν −

3∑

i=1

{(αiβ + βαi)∂i} − β2

)
Ψ(x, t)

In order for (5) to take the same form as (3), we must
impose some conditions on αi and β. Let us look at
the first (double) sum in (5). This term must be equal
to ∂µ∂µ (the sum here is suppressed). For this condi-
tion to hold, we must have that αiαj = δij where δij
is the Kronecker delta function. Notice that in (4), we
could have done the multiplication from the other side, in
which case we would have gotten αjαi = δij . It follows
that {αi, αj} = 2δij Moving onto the second term, we
recall that (3) contains no first derivatives which means
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that αiβ + βαi = 0. Finally, we want −β2 = m2. Con-
solidating our conditions, we get that

{αi, αj} = 2δij (6)

{αi, β} = 0 (7)

β2 = −m2 (8)

Here is the first departure from conventional thought.
Note that if αi and β are simply numbers (6), (7), and
(8) are incompatible. Note that (7) implies either αi or β
vanishes, which would violate either (6) or (8). A possible
solution to this conundrum is to extend our consideration
from scalars to matrices. It can be shown that the most
restrictive space for these quantities is the set of 4 × 4
matrices [2].

From (8), we may write β = imα4, with α2
4 = 1. With

this simplification, conditions (6)-(8) can be condensed
to a single condition

αi, αj = 2δij , (i = 1, 2, 3, 4) (9)

There are several sets of matrices that satisfy (9), how-
ever we will use the convention in [2], namely

αi =

(
0 σi
σi 0

)
(i = 1, 2, 3) α4 =

(
I2 0
0 −I2

)
(10)

With our coefficients determined by (10), we can finally
write our first-order equation from (4), given by

∂0 + ~α · ∇+ imα4 = 0

p0 − ~α · ~p−mα4 = 0 (11)

Where ~α = (α1, α2, α3) and ~p = (p1, p2, p3)

B. Solutions and Antimatter

We can now analyze (11) in more detail. Firstly, no-
tice that the operator on the left hand side of (11) is
a four-dimensional matrix. For this to be able to act
on Ψ, it must be a four-component object. The ob-
ject that describes the solution to the Dirac equation is
called a spinor [4]. A spinor is an element of a com-
plex vector space The spinor solution to (11) is given
by Ψ(x, t) = u exp (i(px− Et)), where u is a constant
4-spinor. Plugging this into the Dirac equation, we get
two independent, positive-energy solutions for u [5]

u1 =




1
0
p3

E+m
p1+ip2
E+m


 , u2 =




0
1

p1−ip2
E+m−p3
E+m




However, we also have two similar solutions for the neg-
ative energies, making a total of four independent solu-
tions. These negative energy solutions confounded Dirac
for several years. He had attempted to remedy this co-
nundrum by proposing his “Hole Theory,” which stated
that the negative-energy states were normally filled by
one electron each (in accord with the Pauli-Exclusion
Principle), which means they are unavailable [3]. This
interpretation was not exactly correct. Instead, we in-
terpret these negative energy states as electron anti-
particles, also known as positrons [4].

C. Electron in an Electromagnetic Field

Section IIIB was devoted to formulating the relativistic
equation for a free spin-1/2 particle. We are interested in
studying an electron in an electromagnetic field (particu-
larly, the one formed by the hydrogen atom). In quantum
mechanics and special relativity, an electromagnetic field
is represented by a four-vector

Aµ = (Φ, ~A)

Where Φ is the scalar potential and ~A is the electromag-
netic vector potential. We can obtain the more common
electric and magnetic fields by the identities

~E = −∇Φ− ∂ ~A

∂t
~B = ∇× ~B

The motion of an electron in an electromagnetic field
described by Aµ is described by making the following
substitution in the free particle Lagrangian

pµ −→ pµ − eAµ

Where e is the positron charge [5]. We can use this sub-
stitution to modify (11), giving us the Dirac equation in
an electromagnetic field

0 = (p0 − eΦ)− ~α ·
(
~p− e ~A

)
−mα4

p0 = ~α ·
(
~p− e ~A

)
+mα4 + eΦ (12)

Since p0 is the energy operator, p0 → Ĥ, and ~p→ −i∇.
With this is mind, we can write the Hamiltonian of the
electron in an electromagnetic field.

Ĥ = −i~α · ∇ − eα · ~A+mα4 + eΦ (13)

Recall that, as in the case of non-relativistic quan-
tum mechanics, we wish to solve the time-independent
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Schrödinger equation Ĥψ = Eψ. Here, we wish to solve
the exact same equation, with the Hamiltonian given by
(13). Consolidating everything, we get that the equation
of interest is

−i~α · ∇Ψ− eα · ~AΨ +mα4Ψ + eΦΨ = EΨ (14)

This is the general form of the relativistic equation for
an electron in an electromagnetic field. We can now use
this formalism to construct and solve the equation for the
hydrogen atom. Before launching into this consideration,
we will make a few comments that will explain the con-
sequences of the Dirac equation and some concepts that
will aid our discussion of the hydrogen atom.

D. Spin and the Dirac Equation

Crucial to our treatment of the hydrogen atom will be the
effects of spin. We have asserted that the Dirac equation
describes a spin-1/2 particle. This can be seen directly
from the Dirac equation. In this theory, the equation of
interest is

i
∂Ψ

∂t
= HΨ = −i~α · ∇Ψ +mα4Ψ (15)

This is simply (11) (or (13) with the four-potential set
to zero). Note that [H, ~p] = 0, which means momentum
is a constant in time. This, however, is not true for the
angular momentum defined as

~L = ~r × ~p = −i~r ×∇
Let us attempt to calculate the commutator of the angu-
lar momentum with the Hamiltonian. This will give us
insight into the true conserved quantity.

[H,Li] = −[~α · ∇, εijkrj∇k]

= −εijkα`[∇`, rj∇k]

= −εijkα`δ`jj∇k
= −εijkαj∇k
= −~α×∇ (16)

Note that we are summing over repeated indices in this
calculation. By virtue of the commutation relations sat-
isfied by the α matrices, we notice that [5]

[H,~σ] = 2~α×∇ (17)

Where ~σ = (σ1, σ2, σ3). From (16) and (17), we can
construct the conserved quantity

[H, ~J ] = 0

~L+
h̄

2
~σ = h̄ ~J (18)

Equation (18) is identical to the one we attain in non

relativistic quantum mechanics ~L+ ~S = ~J . Here ~S is the

spin operator and ~J is the total angular momentum (or-
bital plus spin) operator. Notice that for this equation,
we have restored the h̄’s to make the connection with the
non-relativistic equation. Looking at the spin term, it
is clear that 1

2 h̄~σ describes the angular momentum of a
spin-1/2 particle, justifying our claim.

IV. HYDROGEN ATOM

The purpose of the previous section was to obtain the
equation describing an electron in an electromagnetic
field. We can now consider the electron in an hydro-
gen atom potential. Starting with (14), we make a few
clarifications to get to our equation of interest. Firstly,
note that the potential for the hydrogen atom is given
by Φ = −e/r which means eΦ = −e2/r. In addition, an
important property of electromagnetic theory is that the

vector ~A is simply a gauge that we can pick arbitrarily

so long as its curl is ~B. For initial considerations, there
is no magnetic field experienced by the electron, so we

may fix ~A to be zero [5]. This reduces (14) to

H = −i~α · ∇Ψ +mα4 −
e2

r
(19)

Where α4 is given in (10). Just as in section IIIC, we de-

fine the total angular momentum operator ~J = ~L+ ~S. In
exact analogy with the total angular momentum operator
in non-relativistic quantum mechanics, we can define Jz
(with corresponding eigenvalues jz) as the z-component

of ~J in (18) and ~J2. We need to construct a complete set
of commuting observables in order to continue with this
calculation. To completely specify a state of the electron,
we need to construct a complete set of commuting observ-
ables. As in the non-relativistic case, we could consider

the set J2, Jz, S. However, in this case, ~S does not com-
mute with the Hamiltonian. In its stead, we introduce
another operator, which encodes the same information
and commutes with the Hamiltonian [5].

K = α4~σ · ~J −
1

2
α4 (20)

K2 = L2 + ~σ · ~J + 1

= J2 +
1

4
(21)

It can be shown that this operator commutes with the
Hamiltonian and it accounts for the spin component of
the angular momentum. The eigenvalues of K2 are k2 =
j(j+ 1) + 1

4 = (j+ 1
2 )2 =⇒ k = ±

(
j + 1

2

)
. With this in

mind, we will try to rewrite the Hamiltonian in terms of
K. The only term we need to consider is the ~α · ∇ term.
We want an equation in the polar radial variable r. In
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order to do this, we use the identity given by equation
32 in [2].

(~σ · ~A)(~σ · ~B) = ( ~A · ~B) + i(~σ · ( ~A× ~B)) (22)

By use of (22), we get that

(~σ · ~r)(~σ · ~p) = ~σ · (~r × (~r ×∇))

= (~σ · ~r)(~r · ∇)− r2(~σ · ∇)

Here we have used the fact that ~r·~L = 0. Using this result
and some computation (for full calculation, see [5]), we
settle on the Hamiltonian in polar coordinates.

H = i(~α · ~r)
(
α4K

r2
− 1

r2
− 1

r

∂

∂r

)
+mα4 −

e2

r
(23)

A. Solving the Equation

Plugging in the explicit forms of β and αr and using a
two-component representation of the spinor

Ψ =

(
ψ1

ψ2

)

We get the following matrix equation for these compo-
nents.

∂

∂r

(
ψ1

ψ2

)
=

(
−(1−k)

r −
(
E +m+ α

r

)
(
E −m− α

r

) −(1+k)
r

)(
ψ1

ψ2

)

≡ M(r)

(
ψ1

ψ2

)
(24)

Where α is the fine structure constant. Before attempt-
ing to solve this equation, let us examine its asymptotic
properties. Note that as r → ∞, we get the following
simple equation

∂

∂r

(
ψ1

ψ2

)
=

(
0 −(E +m)

E −m 0

)(
ψ1

ψ2

)

The solutions to this equation go as ψ± ∼ e±ipr, recalling
that p =

√
E2 −m2. With this in mind, and by defining

functions f1(r), f2(r)

f1(r) = ureipr

f2(r) = vreipr

we can construct the matrix equation

∂

∂r

(
f1
f2

)
=

(
ip+ k

r −
(
E +m+ α

r

)
(
E −m+ α

r

)
ip− k

r

)(
f1
f2

)

We proceed to solve this differential equation using a se-
ries expansion [2]

f1 =

∞∑

s=0

asr
s

f2 =
∞∑

s=0

bsr
s (25)

Substituting these expansions into (24), we get the fol-
lowing recursion relations

αas − (E −m)as−1 = −ipbs−1 + (k + s)bs (26)

αbs + (E +m)bs−1 = ipas−1 + (k − s)as (27)

Solving these recursion relations gives us

as =
(E −m)α+ ip(k + s)

(E −m)α2 + (E −m)(s2 − k2))
cs

bs =
ipα(E −m)(k − s)

(E −m)α2 + (E −m)(s2 − k2))
cs

cs+1 =
((E −m)2 + p2)α+ 2ip(E −m)s

(E −m)α2 + (E −m)(s2 − k2)
cs

Where cs ≡ (E −m)as−1 − ipbs−1. In order to prevent
the solution from blowing up, we suppose that cs 6= 0 for
some s = n + ε for n ∈ 1, 2, 3, . . . [5]. This supposition
gives us the equations

0 = α2 + ε2 − k2 (28)

0 = ((E −m)2 + p2)α+ 2(ε+ n)ip(E −m) (29)

From (28), it follows that ε =
√
k2 − α2 and

(n+ ε)2 =

(
((E −m)2 + p2)2

−4p2(E −m))

)

=

(
((E −m)2 + E2 −m2)2

4(m2 − E2)(E −m))

)

=
E2α2

(m2 − E2)
(30)

Combining (30) and the fact that ε =
√
k2 − α2, we ob-

tain the desired result.

E =
mc2√

1 + α2

(n+
√
k2−α2)2

(31)

Notice that we have restored c in this equation. The
reason for this is that we would like to compare this result
to the non-relativistic case.
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B. Comparison to Non-Relativistic Case

In order to investigate this comparison, we would like to
make a few clarifications about the expression derived
in (31). Recall that the k’s are the eigenvalues of the
K operator. It can be shown (see [2]) that the principle
quantum number, N is related to n and k by N = n+ |k|.
With this in mind, we can expand (31) in powers of α ∼
1

137 to get

E = mc2
(

1− α2

2N2
+

α4

8N4

(
3− 4N

|k|

))
(32)

Where the second term is what we get without any
corrections in non-relativistic quantum mechanics. The
third term corresponds to the fine-structure term. Recall-
ing from (21) and the discussion following it, k = ±(j+ 1

2 )

which means |k| = j + 1
2 . This gives us

E = mc2
(

1− α2

2N2
+

α4

8N4

(
3− 4N

j + 1
2

))
(33)

Which is miraculously the exact expression obtained in
[6].

V. CONCLUSIONS

Without the conception of the Dirac equation, the fine
structure shift in the hydrogen atom can be derived by
considering three separate effects: relativistic correction,
spin-orbit coupling, and the Darwin Shift [6]. The Dirac
equation equation elucidates many puzzling questions
that challenged the early theories of relativistic quantum
mechanics. In particular, it solved the problems of neg-
ative energy solutions, linearity of the time derivative,
and the positive definiteness of the probability density.
However, what is truly amazing about this equation is
that it is able to predict to high experimental accuracy
the shift in the energy levels of the hydrogen atom in a
manner that agrees exactly with what was derived using
perturbation theory in non-relativistic quantum mechan-
ics.
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In the Quantum version of the Zeno paradox, frequent measurements of a quantum state will inhibit
transitions to another quantum state due to wave function collapse. This Quantum Zeno Effect
was observed in 1990 by Itano et al[2] on an induced transition between two 9Be+ ground state
hyperfine levels. In 2014, it was found by Signoles and Haroche[3] that it is possible to not only
halt the evolution of the quantum system; but also tailor its evolution within a customizable border
around a degenerate Hilbert space. This paper reviews the theory and experiments of both QZE
and QZD, two phenomena that elucidate the true meaning of quantum measurement.

I. INTRODUCTION

What is a measurement? Even in 490-430BC, the Elea-
tian philosopher Zeno demonstrated the counterintuitive
nature of measurement with his arrow paradox, which
concludes that an arrow in flight at any one instant in
time cannot be moving. It is not moving to where it is
not - for no time has elapsed for it to make such a move-
ment. Neither is it moving to where it is, because it is
already there. But, if at every instant of time the arrow
is not moving, then motion is impossible.

The quantum version of this is known as the Quan-
tum Zeno Effect(QZE). Just as an arrow whose motion
is scrutinized at every instant of time never reaches its
target, it is experimentally possible to inhibit transitions
between quantum states by frequent measurements. The
first half of the paper is devoted to understanding the
1990 experimental implementation of QZE by Itano [2],
with the aim of impressing upon readers the causal re-
lationship between measurement and wavefunction col-
lapse, a relationship whose nature tormented Schrödinger
in the nascent days of Quantum Theory (he described
measurement as ‘damned quantum jumping’ – verdamnte
quantenspringerei).

Qualitatively, the experiment goes as follows: Start-
ing off in an initial state that we want to confine the
particle in, we repeatedly ask the particle “Have you de-
cayed yet?”. Importantly, we make the interrogation at
very short time intervals, namely T/n where n −→ ∞.
We will see later that in the quantum world, ‘asking’
translates to projecting the state onto exactly one of the
eigenstates of the measurement operator. Between t=0
and the first interrogation, the state might have evolved
into some superposition of eigenstates due to environ-
mental influence, but measurement – i.e. wavefunction
collapse – eliminates this decoherence.

If we are to achieve our goal of confining the parti-
cle in the initial state, we must ensure that the ‘asking’
yields the answer ‘not decayed’ (a null measurement).
We capitalize on the key fact that the probability of de-
cay is quadratic at short time scales. Then, because we
interrogate at short time scales, the probability of decay
is vanishingly small, and the probability of the particle
not having decayed (which is our desired outcome) ap-

proaches 1.
Readers will be able to gain some mathematical

intuition for this in Section II. Following the description
of the experiment in Section III, we will lay down a more
rigorous mathematical framework in terms of density op-
erators for the QZE in Section IV, from which the step to
Quantum Zeno Dynamics(QZD) is merely an allowance
for a multi-dimensional subspace of evolution. This is
easy to conceive of mathematically, but the experimental
implementation, which we consider in Section V is full of
subtleties, and we will try to understand the basics of the
Signoles and Haroche experiment of 2014 [3] in Section V.

II. QUANTUM ZENO EFFECT

There are two ways that the state of a quantum system
can change in time. Firstly, the state could evolve in time
according to the time-dependent Schrödinger Equation,

ih̄∂|ψ〉
∂t = H |ψ〉. H is the Hamiltonian of the system, usu-

ally the result of environmental factors beyond our con-
trol.Alternatively, one could measure the system, forcing
a state collapse. The state collapses into the eigenstate
|i〉 of the measurement operator Q corresponding to the
measured eigenvalue q: Q |i〉 = q |i〉. Prior to the mea-
surement the state may be in a superposition of opera-
tor eigenstates, but after the measurement the state is
found (with certainty) in the eigenstate to which it has
collapsed.

Now we consider a situation that incorporates both
pictures: a given system that starts off in state |ψ0〉 =
|ψ(t = 0)〉 is unstable, evolving unitarily in time due to
some time-independent Hamiltonian H . If we measure it
after a time t, the state will have evolved into

|ψ(t)〉 = eiHt |ψ(0)〉 (1)

Here we have set h̄ to 1, and we will do so in all sub-
sequent discussions. We will henceforth be interested in
whether, at any future time t, the system is in the state
|ψ0〉 in which it started out – whether it has “survived”.
To this end we (following [9]) define two useful parame-
ters: the “survival” amplitude A(t) and the probability
P(t) that the state has survived, which is the amplitude
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squared:

A(t) = 〈ψ0|ψ(t)〉 =
〈
ψ0|e−iHtψ0

〉
(2a)

P(t) = |A(t)|2 = |
〈
ψ0|e−iHtψ0

〉
|2 (2b)

Now take t to be an infinitesimally small period of time,
δt. Then, expanding the exponential and taking out the
time dependence from the inner product, the above two
equations become:

A(δt) = 1 + iδt 〈ψ0|H |ψ0〉 − 1

2
δt2 〈ψ0|H2 |ψ0〉 + ...

(3a)

P(δt) = 1 − δt2〈H2〉0 + δt2〈H〉20 +O(δt4)

= 1 − δt2

τ2
z

+O(δt4) (3b)

where we define a timescale, the Zeno time, τz :

1

τz2
≡ 〈H2〉0 − 〈H〉20 (4)

Physically-oriented readers might want to gain some
intuition for the meaning of the Zeno time. Consider a
Hamiltonian that has both a free and interaction part,
which are diagonal and off-diagonal respectively: H =
H0 + Hint. Then, 〈Hint〉0 = 0 and if the initial state is
an eigenstate of the free Hamiltonian H0 |ψ0〉 = ω0 |ψ0〉,
the Zeno time depends solely on Hint:

1

τz2
= 〈H2

int〉0 =
∑

n

〈ψ0|Hint |ψn〉 〈ψn|Hint |ψ0〉 (5)

where we use the Completeness Relation for the second
equality. This form is analogous to Fermi’s Golden Rule,
which gives the inverse lifetime γ of a decaying quantum
system under a perturbation W, which we associate with
Hint.

γ = 2π
∑

f

| 〈ψf |W |ψ0〉 |2δ(ωf − ω0) (6)

In any case, the probability of survival is now quadratic
in this characteristic time. We can now capitalize on the
quadratic-time regime to make the probability of decay,
1 − P(δt), negligible. That is, the probability of making
a transition to any state |ψ′

0〉 other than the initial state
, is

P (|ψ0〉 → |ψ′
0〉) ≈ 1 −

[
1 −

(
δt

τz

)2
]

=

(
δt

τz

)2

(7)

which is negligible because δt is small. Formally, if we
divide our total amount of time, T , into N infinitesimal
subintervals τ such that T = Nτ , then the probability
of survival P(T ) after the total time T consisting of N
subintervals of length τ is now a product of the proba-
bilities of survival after each τ subinterval:

P(T ) = [P(τ)]
N

=

[
P

(
T

N

)]N

=

[
1 −

(
T

Nτz

)2
]N

(8)

N large−→ ≈ exp

[
− 1

N

(
T

τz

)2
]
N→∞−→ 1

where we have replaced δt in equation (12) with the
small time interval T

N in the second line. That is all
well and good, but let us take a step back and compare
this with the experimental framework we have outlined
in the introduction. Where did we perform the “asking”
at intervals of T

N ? The answer is that it is implicit in (8).
If we had let the particle evolve for a long time T with
no regular interrogation, P(T ) is merely eq (2b) with
large t, where the Taylor expansion of the exponential
is no longer valid and P < 1. Instead, we collapse the
state after every τ = T

N , in effect ‘resetting’ the state to
its initial with high probability given in eqn 12. In order
for the state to have survived after a long time T , there
is only one path available to it: it must survive at every
infinitesimal subinterval τ . Probability of survival after
T, P(T ), is therefore a product of the probabilities of
survival at the end of each τ .

III. EXPERIMENTAL REALIZATION OF
QUANTUM ZENO EFFECT

FIG. 1: Simplified energy level diagram for the Quantum
Zeno Effect, taken from [2]. Level 2 is an excited metastable
state that seldom decays to Level 1. On the other hand, the

1 → 3 transition is strongly allowed.

In 1990, a landmark experiment using laser-cooled
trapped 9Be+ ions was performed by Itano and Wineland
at NIST [2] that experimentally demonstrated the valid-
ity of the QZE. Referring to the level structure shown
in figure 1, the ion starts off in level 1, and the experi-
ment aims to prevent the “decay transition” from level
1−→ level 2. In terms of the formalism of the previous
section, |ψ0〉 is level 1 (and level 3, as we will see be-
low) and |ψ′

0〉 is level 2. Then, in order to simulate the
environmental forces causing the decay, H is artificially
applied – a radiofrequency(rf) drive pulse having the fre-
quency Ω = E2−E1

h̄ . Because this exactly corresponds
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to the energy separation between the two states, an ion
subject to this drive would tend to undergo the 1 −→ 2
decay. In the interaction picture, H is of the form

H = Hint = Ωσx =

(
0 Ω
Ω 0

)
(9)

The sole purpose of level 3 is results verification. If
we were able to directly count the populations of ions in
level 1 and level 2, then level 3 would not be necessary.
Lacking such capabilities, we must instead exploit the
fact that once an ion has ‘decayed’ to level 2, it is ‘shelved’
there forever (no photons are emitted or absorbed). On
the other hand, ions in levels 1 and 3 are free to cycle
from one to the other, emitting or absorbing a photon in
the process. We create this freedom by coupling levels 1
and 3 via a strongly allowed transition, while there is no
such coupling between levels 1 and 2. In effect, we now
know what is going on in the ion: if it fluoresces, we has
succeeded (because the atom is oscillating between levels
1 and 3, and has not gone over to the ‘dark’ side, ie. level
2).

To recapitulate, the aim is to prevent the 1 −→ 2 transi-
tion via frequent measurements. Each measurement will
project the ion onto either level 1 or 2. It is easy to
understand this experiment using the simple concept of
a spin-half particle rotating in a B-field. We make the

association |1〉 = |+〉 =

(
1
0

)
and |2〉 = |−〉 =

(
0
1

)
.

Then, the spin vector representing the state is |~n〉 =
cos( θ2 ) |+〉 + sin( θ2 )eiφ |−〉. Recalling the form of unitary
time evolution, the Hamiltonian forms a rotation opera-
tor Rσt(~x) = e−iHintt = e−iΩtσx . This has the effect of
causing the spin to precess about the x-axis at angular
frequency Ω, which we term the Rabi frequency. Then
because the spin starts out in |+〉 = |z; +〉 (level 1), its
state just before the first measurement at τ− is

|ψ(τ)〉 = e−iΩτσx |+〉 = cos(
Ωτ

2
) |+〉 + sin(

Ωτ

2
)ei

±π
2 |−〉

=

(
cos(Ωτ

2 )
±i sin(Ωτ

2 )

)
(10)

and the vector describing the direction is ~n =
(0,− sinΩτ , cosΩτ ) (the spin has precessed ever so
slightly in the y-z plane). But the measurement projects
the ion back along the z-axis, so only the z-component
remains: ~n = (0, 0, cosΩτ ). The aim of QZE is to make
this as close to ~n = (0, 0, 1) as possible, which will only be
the case if τ is short (we choose τ = 2π

NΩ , N large, since
the driving pulse is a π-pulse)! Substituting this into

eqn (10), P1(τ) = cos2( πN ) and P1(T ) = [P1(τ)]
N

=

cosN ( πN ), which goes to 1 as N −→ ∞.
There is another way to look at this: consider what hap-
pens to the density matrix describing the two-level sys-
tem (i.e. only 1 ion) each time we make a measurement.
The density matrix of a spin- 1

2 particle |~n〉 is

ρ =
I + ~n.~σ

2
=

1

2

(
1 + nz nx − iny
nx + iny 1 − nz

)
(11)

An important concept is that we can immediately see
P(t) from the expectation of the density matrix on the
corresponding state vector, in other words, the diagonal
matrix elements :

P1(t) = ρ11; P2(t) = ρ22 (12)

. In particular, the z-component of ~n is given by nz =
ρ11−ρ22 = P1−P2. nx and ny are going to be 0 right af-
ter each measurement because the ion is unambiguously
either |+〉 with probability 1 or |−〉 with probability 1.
This means that ρ for just one ion will be purely diag-

onal: if the ion has been projected to level 1, ρ is

(
1 0
0 0

)
;

if it has been projected to level 2,

(
0 0
0 1

)
.

If we consider a system of many ions, some will have
been projected into level 1, |+〉 and others (if we are do-
ing our experiment right, not too many) into level 2, |−〉.
Whatever the proportions are, note that if we take en-
semble average of all the ions’ density matrices right after
any measurement, there will be no off-diagonal elements
whatsoever, since there are no off-diagonal elements ρ of
any single ion. Measurement introduces decoher-
ence and destroys the off-diagonal elementsof ρ.

IV. DENSITY MATRIX FORMALISM; STEPS
TOWARDS QZD

Having understood the evolution of the density matrix
in the case where the initial state is in a one-dimensional
subspace, it is easy to generalize the picture to multiple
dimensions, which will take us into the realm of QZD.
The aim of QZD is slightly different from QZE; rather
than prevent transition to another energy eigenstate as
in QZE, QZD aims to prevent transitions to another sub-
space of the operator. For example, choose the total an-

gular momentum operator, Ĵ2. Recall that each eigen-
state |J,mJ〉 is characterized by two quantum numbers:
J, the total angular momentum, and Jz, its projection
onto the z-axis. For every value of J, Jz is allowed to run
from [−J, J ]. The aim of QZD is then to confine the par-
ticle within a J subspace; ie. we force the total angular
momentum to stay constant, but let its projection onto
the z-axis vary.

Since we are now working with many degenerate eigen-
states, it will behoove us to study the density matrix of
the entire system under unitary time evolution. That is,
we will want to generalize the 1D discussion in section II.
However, we will find that many principles used in the
1D case are equally applicable here.

Let the total Hilbert space be H, with dimension m.
Then, the initial density matrix is assumed to belong
to an s-dimensional Hilbert space HP , with s < m.
The measurement therefore corresponds to determining
whether the system is still in HP . We want to ask the
state ‘Have you evolved into this particular eigenstate of
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Â, |ai〉?’ A meaningful answer to this question is the den-
sity operator of the system, which encodes the probability
of being in each eigenstate of each subspace – for instance,
in the two-level system, Prob( |+〉) = 〈+|ρ|+〉 = ρ11 .
What happens to the density operator after a measure-
ment? Recall what happened in QZE for one particle:

1

2

(
1 + nz nx − iny
nx + iny 1 − nz

)
measurement−→

(
1 0
0 0

)
or

(
0 0
0 1

)

(13)

That is, knowing the measurement projected the particle
into the |+〉 eigenstate means we know that the new ρ
corresponds to the first of the options above. This can
be re-expressed as

ρnodecay =

(
1 0
0 0

)
=

[
Prob( |+〉)

]
| + 〉〈 + | = 〈+|ρ|+〉 |+〉 〈+|

=

[
| + 〉〈 + |

]
ρ

[
| + 〉〈 + |

]
= P+ρP+

(14)

where P+ is the projection operator |+〉 〈+|. Since an
‘undecayed’ measurement in QZE corresponds to pro-
jection onto exactly 1 eigenstate, Prob(undecayed) =
Prob |+〉 = 1. But this is not true in QZD, for the mea-
surement projects the state into subspaces, not single
eigenstates. Hence, an ‘undecayed’ measurement in QZE
means that the state is in the subspace but could be in
any superposition of its constituent eigenstates, and pro-
jection onto HP (represented by the s-dim block in ρ)
looks like:



d11 · · · d1s · · · d1m

d21 · · · d2s · · · d2m

...
. . .

...
...

ds1 · · · dss · · · dsm
...

. . .
...

...

dm1 · · · dms · · · dmm




7→




D11 · · · D1s · · · 0

D21 · · · D2s · · · 0
...

. . .
...

...

Ds1 · · · Dss · · · 0
...

. . .
...

...

0 · · · 0 · · · 0




(15)
Generalizing eqn (14) (still considering only one particle)
to the multi-dimensional subspace in QZD spanned by
|di〉′

s,

ρnew ≡
m∑

j=1

cj |dj〉
m∑

i=1

c∗i 〈di| By definition of ρ

= N
∑

i,j∈H
|dj〉 〈dj |ρ|di〉︸ ︷︷ ︸

cjci∗

|di〉 Matrix expansion of (15)

= N PρP N : some normalization
(16)

where P is the projection operator onto all eigenstates of
HP , that is, P =

∑
i∈HP

|di 〉〈 di|. Since the state starts
off in HP however, projecting it onto HP at t=0 will not
change it:

ρ0 = Pρ0P (17)

Tr[ρ0Pi] = 〈Pi〉 = 1 (18)

and these are our initial conditions.

A. From 0 to τ−, then measurement

For this and the following subsection, we present the
analysis given by Facchi and Pascazio in [14]. Consider
what happens up to time τ−, before any measurements.
The state has undergone purely unitary time evolution
described by

ρ(τ) = U(τ)ρ0U
†(τ) (19)

We perform a measurement at time τ . Now, if mea-
surement at τ reveals that the state has not decayed, it
means the state has been projected onto HP , and ρ is
now, according to eqn (16):

ρ(τ−) 7→ Pρ(τ)P = PU(τ)ρ0U
†(τ)P

= Nno decayV (τ)ρ0V
†(τ) (20)

where V (τ) ≡ PU(τ)P and we have used eqn (17).
Just as in 27, we can thus define the survival probability,
P(t). This is exceptionally easy to compute given ρ(t)
(by analogy with eqn (12)):

Pno decay(t) = Tr [ρ(τ)P ] = Tr
[
U(τ)ρ0U

†(τ)P
]

= Tr
[
PU(τ)(Pρ0P)U †(τ)P

]

= Tr
[
V (τ)ρ0V

†(τ)
]

(21)

using equations (17) and PP = P , as well as the cyclic
property of traces. Since this is the probability of being
undecayed, we have to divide ρno decay by this to get the
normalization N .
Since there is also a probability that the state has de-
cayed into H⊥

P = HQ where HP

⊕HQ = H. Replicating
the steps of eqn (20), it is straightforward to compute
that the density matrix and probability of decay are then

ρ(τ−) 7→ NdecayVQP (τ)ρ0V
†
QP (τ) (22)

Pdecay(t) = Tr
[
VQP (τ)ρ0V

†
QP (τ)

]
(23)

where again, Ndecay = 1/T r
[
VQP (τ)ρ0V

†
QP (τ)

]
. Of

course, we do not know a priori what answer the mea-
surement is going to yield: all we know are the proba-
bilities of either outcome. So the density matrix that we
can write down a priori is




V (τ)ρ0V
†(τ)

Tr[V (τ)ρ0V †(τ)]
0

0 VQP (τ)ρ0V
†

QP (τ)

Tr[VQP (τ)ρ0V
†

QP (τ)]




(24)

And this expression is equally applicable to one particle
as it is to many particles.
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B. After N time intervals, T

Now, just as in the 1D case, we repeat the above analy-
sis for many successive time intervals. Then, to represent
many repeated cycles of measurement-unitary evolution-
measurement, we define a new operator

VN (T ) = [PU(
T

N
)P ]N (25)

. It is easy to see that the density matrix is now:

ρN (T ) = N VN (T )ρ0V
†
N (T ) (26)

where

N = 1/PN(t) = 1/T r[VN(t)ρ0V
†
N (t)] (27)

is the normalizing probability of the state having survived
after N time intervals. We want to compute ρN and PN

in the limit N −→ ∞(i.e. frequent interrogations), so we
define

UZ ≡ lim
N→∞

VN (28)

which we can compute as follows

VN (T ) = [PeiH T
N P ]N

= P [1 − iPHP T
n

+O

(
1

N2

)
+ ...]N

N→∞−→ UZ(t) = Pe−iPHPT = Pe−iHZt (29)

defining the Zeno Hamiltonian as HZ = PHP .
Equipped with UZ(T ), it becomes simple to evalu-
ate the asymptotic probability of remaining undecayed,
limN→∞ PN (T ):

lim
N→∞

PN (t) = Tr
[
UZ(T )ρ0U

†
Z(T )P

]

= Tr

[
PP︸︷︷︸
P

e−iHZtρ0U
†
Z

]
Use eqn (29)

= Tr
[
UZρ0U

†
Z

]
= Tr [ρ0] = 1

and ρ will be block-diagonal with only the block repre-
senting the HP subspace non-zero, ie. like the RHS of eq
15.

V. EXPERIMENTAL IMPLEMENTATION OF
QUANTUM ZENO DYNAMICS

Here we give a brief summary of the experiment done
by Signoles and Haroche (henceforth S&H) to illustrate
QZD. Atomic angular momentum, J , can be represented
as an vector evolving on the tip of a Bloch sphere of
radius J. The z-component of angular momentum, Jz, is
then the projection of this arrow onto the z-axis, and Jz

can take on any integer values from [−J, J ]. In Signoles’s
notation, the eigenstates are |J, J − k〉 with k = 0 · · · 2J
(where Jz is now represented by J-k).

While it is not hard to conceive of measurement ‘pro-
jecting’ a general state onto a single eigenstate (QZE),
it is less clear how to selectively project onto the multi-
ple states of a subspace. The key innovation of S&H is
to impose a ‘Limiting Latitude’(LL) on the Bloch sphere
via a ‘Zeno’ microwave pulse, such that the atom can
have values of Jz that correspond to being above the
LL, but not below. This LL, along with the energy-level
diagram, are shown in Figure 2. Note that S&H do
not directly perform their experiments on angular mo-
mentum states: they choose a subspace of the Stark
manifold of a Rydberg atom [11] (the terms ‘Stark ef-
fect’ and ‘Rydberg atom’ are explained in the footnote
[15]), equivalent to a spin J=25. Here we make the
association |ne, k〉 = |J, J − k〉. The state in bold in

FIG. 2: (a) Energy level diagram of three adjacent Stark
manifolds of a Rydberg atom with Principal Quantum

Numbers ng = 50, ne = 51, nf = 52. The ng manifold allows
us to impose the LL, so that atoms can only evolve within
the subspace spanned by ketne, k ≤ 5 (so they cannot even

evolve to ketne, k > 5, needless to say the ng manifold). The
nf manifold is analogous to level 3 (in the sense that it is
only there for results verification) (b) Limiting Latitude

arises from an admixture of energy levels from two different
manifolds. (Source of diagrams:[3])

figure 2 is the initial state |ne = 51, k = 0〉 which cor-
responds to |J = 25,mJ = J − k = 25〉, and this is the
state with maximal Jz. The aim of the experiment is
to try to keep the atom within the k ≤ 5 subspace of
the ne = 51 Rydberg manifold. The Hamiltonian H
that causes the unitary evolution (whose effects we want
to counteract) is a radio-frequency drive field, given by

V̂ =
h̄Ωrf

2

√
(k + 1)(ne − k − 1) |ne, k + 1〉 〈ne, k| + h.c..

Since Ωrf is tuned to the separation between adjacent k-
levels within the ne = 51 manifold, the RF field therefore
induces evolution up and down the ‘ladder’ in bold in fig-
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ure 2 within the ne = 51 subspace. In the Bloch sphere
representation, this is evolution along a meridian of the
sphere. While the z-component of this angular momen-
tum is therefore changing constantly, the total angular
momentum remains fixed at J=25.

The aim is to prevent the state from exploring the en-
tire ladder by imposing a LL at kp = 5. The ‘frequent
interrogation’ of QZE now translates into frequent im-
position of the ‘Zeno’ microwave field that creates the
LL, which in turn prevents decay. This field is resonant
on the |ne, kp = 5〉 → |ng, kp = 5〉 transition. Hence it
admixes these two states from different manifolds into
two dressed states separated by a large energy gap Ωmw,
much larger than the coupling matrix element between
adjacent k states ∼ √

neΩrf (recall that the probability
of transition in PT ∼ 1/detuning2). Effectively, evolution
to |ne, k > 5〉 is now highly improbable! We will justify
this statement in the Appendix, but for now, let us study
the results, contrasting the evolution of the populations
in the |ne, k ≤ 5〉 subspace with and without QZD, in
figure 4 (but see footnote [16]):

Note that without QZD (figure 4(a)), the state can be
seen to be climbing down the ladder of states first in-
troduced in figure 2: the lines representing the different
k values (and thus different rungs of the ladder) display
population peaks at successively later times. But with
QZD, instead of the usual decay of initial populations,
the presence of the LL causes a ‘revival’ of the initial pop-
ulations starting from around 0.76µs, the point of time at
which the k = 5 line peaks and the spin hits the LL. For
interest’s sake, we show a plot of the system’s inverted
Q distribution[12] (which essentially reconstructs the sys-
tem’s density matrix from measurements) and gives a pic-
torial representation of the evolution on the Bloch sphere
in Fig 3.

FIG. 3: Looking down from the North Polar Cap of the Bloch
sphere at successive times - QZD has confined the motion inside
the Limiting Latitude (dashed circle). Notice the ‘bouncing off
the wall’ effect at t ≈ 0.76µs: instantaneously, the spin is in a

quantum superposition of two (coherent) spin states with
opposite azimuthal phases. This is in effect a Schrödinger Cat

State (refer to [13] for details) that can function as a qubit basis
state.(All diagrams on this page are from [3])

VI. CONCLUDING REMARKS

Just as this paper started by describing Zeno’s para-
dox, it will end by describing a paradox inherent to this
discussion: the question of whether measurement deter-

(a)Without QZD, the probability of being in each of the eigenstates
of the ne, k ≤ 5 manifold decrease monotonically over a time t1 due
to transitions to other states within and without the manifold. The
insets present the color code for the different values of k ≤ 5, while

the solid lines correspond to theoretical expectations from numerical
simulation.

(b)With QZD (selecting kz = 5), the probability of being in the HN

subspace oscillates sinusoidally in time. The top frame gives the total
population Ptot of Hn,which never goes below 0.8 of the original.
Data points are in good agreement with expectation (solid lines).

FIG. 4: Evolution of the spin state populations for k≤5

mines the quantum state. Although this paper belabors
the idea that wavefunction collapse via measurement is a
real effect, one might wonder whether the observed tracks
of particles in a bubble chamber [1], where the particle
decays despite what one might consider continuous mea-
surement, directly contradicts this conclusion. One pos-
sible resolution is described by [1]: in the Von Neumann
interpretation where measurement is an interaction with
the measuring instrument, only if the measurement is
sufficiently energetic (as in QZE) can it ‘freeze’ an object
in its initial state; mere observation of a decaying parti-
cle is not energetic enough and hence does not alter the
quantum state. We will leave the interpretation to the
philosophers; for us, it will suffice to appreciate this beau-
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tiful melding of theory and experiment and note that the
future is bright: QZD holds great interest for Quantum
Information Processing because it allows one to tailor
evolution within a subspace such that it is robust against
decoherence.

VII. ACKNOWLEDGMENTS

The author is eternally grateful to Professors Aram
Harrow and Barton Zwiebach for setting good Quantum
fundamentals in 8.05 and 8.06.

APPENDIX A: HOW IS THE LIMITING
LATITUDE IMPOSED?

We impose the ‘Limiting Latitude’ by splitting two states
(|ne, kp〉 and |ng, kp〉, henceforth |e0〉 = |e〉 |0〉 and |g1〉 =
|g〉 |1〉) that are coupled by a‘Zeno’ RF pulse with frequency
ωz into two dressed states separated by a large Ωmw . This
can be understood in terms of the familiar Jaynes-Cummings
Hamiltonian that describes atom-photon interactions (we as-
sume one photon per mode):

Ĥ =
1

2
h̄ω0(|g 〉〈 g|+ |e 〉〈 e|) + ...

...h̄ωz(â
†â +

1

2
) +

h̄Ωmw

2
(|e 〉〈 g|â− |g 〉〈 e|â†) (A1)

For simplicity, we take ωz = ω0 (the incident radiation is on
resonance with the natural energy separation). The first term
is the Hamiltonian of the unperturbed atom, the second term
is the Hamiltonian of the Zeno RF pulse, and the last term,
Hint represents the interaction between the two in the Ro-
tating Wave Approximation. The effect of applying the Zeno
pulse (Hint) is to break the degeneracy that |e0〉 and |g1〉 en-
joy without any interaction: the eigenvalue of |e0〉 is clearly
h̄
(

ω0
2

+ (0 + 1
2
)ω0

)
and that of |g1〉, h̄

(
−ω0

2
+ (0 + 3

2
)ω0

)
,

which are the same. In the model of the spin-half particle
precessing in a B-field, degeneracy is equivalent to no applied
B-field and no precession. But Hint introduces off-diagonal
terms in the Hamiltonian equivalent to some σx and σy. This
creates an axis of spin precession in the xy-plane and there-
fore, new eigenstates are created: the ‘up’ and ‘down’ states
of the new axis. These are the ‘dressed states’ on either side of
the LL, whose energy separation is h̄Ωmw (please refer to [6]
for the general idea). The key idea of QZD is to make Ωmw

much larger than the natural frequency separation between
states |ne, k ≤ 5〉 and |ne, k > 5〉, ω0. Defining the detuning
∆ to be Ωmw −ω0, we recall from Time-Dependent Perturba-
tion Theory that the probability of transition to another state
is proportional to 1/∆2. Hence, by making ∆ massive, the
probability of transition ’across’ the LL is vanishingly small.
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In this paper, we will consider the problem of diagonalizing the Hamiltonian of the monatomic
harmonic crystal. We start by thinking of the problem classically, i.e; by modeling the ions as
undergoing small oscillations about the points of a 3D Bravais lattice. In particular, we derive
the classical Hamiltonian for the crystal and discuss the problem of finding the normal modes of
the crystal. We then quantize the classical Hamiltonian and diagonalize it via a normal mode
transformation. We will interpret the solution of this problem using the language of occupation
number representations and show that the excitations of the crystal can be thought of as the
addition of noninteracting bosonic particles (phonons) to a vacuum state. Using this bosonic picture
of the normal modes, we derive a formula for the specific heat of a monatomic crystal at low
temperatures using Bose-Einstein statistics and show that it correctly predicts that this specific
heat is proportional to T 3.

I. INTRODUCTION

In this paper, we examine the spectrum of the har-
monic crystal. The harmonic crystal is a system of N
identical ions whose equilibrium positions are the points
of a Bravais lattice in three dimensions. N is on the or-
der of Avogadro’s number in physical solids. These ions
interact with all of the other ions in the crystal via a pair
potential function that depends only on the distance be-
tween ions. Is it possible for us to find the eigenenergies
of the system? At first sight, this many-body problem
looks intractable, and one of the surprises of this many-
body problem is that it can be understood very cleanly
in terms of phonons. A phonon is a single excitation of
the harmonic crystal and is suggestive of a “particle of
sound”. Phonons allow us to simply understand proper-
ties of solids such as specific heat, electrical conductivity,
thermal conductivity, indirect band gap transitions, su-
perconductivity, and many others [1].

We will show in this paper that the energy eigenstates
of the harmonic crystal are formally identical to the en-
ergy eigenstates of a harmonic oscillator. In fact, we will
show that for a monatomic lattice (only one type of ion),
the system is equivalent to a 3N-dimensional harmonic
oscillator (i.e; one with 3N different spring constants). In
other words, that the energy eigenkets of the harmonic
crystal are of the form |n1, n2, ..., n3N 〉. Each of these
numbers represents the level of excitation of one of the
3N different harmonic oscillators.

Furthermore, we will show that each of these excita-
tions can be associated with a boson. We will demon-
strate the mathematical equivalence of the harmonic
crystal states with the states of non-interacting bosons
by examining a system of non-interacting bosons and
writing their states in the occupation number represen-
tation. We will show that we can define creation and
annihilation operators for the bosonic system that make
it formally identical to a harmonic oscillator. And be-
cause the harmonic oscillator is formally identical to the
harmonic crystal, we can establish a complementary pic-
ture of excitations of the harmonic crystal in terms of

identical bosons, called phonons.
Using this boson picture of the collective vibrations of

the lattice, we will derive the specific heat of a monatomic
solid (for simplicity) at low temperature and show that
using this picture correctly predicts a T 3 dependence.

II. SETUP AND MATHEMATICAL
BACKGROUND

The monatomic harmonic crystal refers to a system in
which we have N identical ions of mass M interacting via
a pairwise potential function φ. The N ions have as their
equilibrium positions the points of a Bravais lattice. We
want to find the eigenenergies of this systemn

A. Bravais Lattices

A Bravais lattice (BL) is a set consisting of all points in

<3 with position vectors ~R of the form ~R = n1 ~a1+n2 ~a2+
n3 ~a3, where the nis are integers and the ~ais are linearly
independent. The ~a vectors are called lattice directions.
Equivalently, a BL is an array of discrete points with
an arrangement and orientation that appears exactly the
same from whichever point the array is viewed. See [1]
for more discussion on this. Using the second definition,
we can quickly see that this set of points invariant under

translation by ~R.
If the number of points in a lattice is finite, then a

translation of the lattice will move some points out of
the region of the lattice and this is distinguishable from
the original lattice. Thus, no physical lattice is a BL.
However, we can turn a finite lattice into a BL if we im-
plement periodic, or Born von Karman, boundary condi-

tions. In other words, we say that the point ~R is equiv-

alent to the point ~R + Ni ~ai for i = 1,2,3 and Ni being
some integer for each i. This “wraps the system around
itself” along the three lattice directions. As an exam-
ple of this, consider the 1D case. The periodic boundary
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condition implies that the point x is equivalent to the
point x + Na. While periodic boundary conditions are
not physical, it is intuitively clear that for large Ni, the
fact that our boundaries aren’t physically accurate can’t
change the physics of the crystal in it’s interior. For fur-
ther discussion of this point, see [1]. Now that we have
defined a BL, we can go ahead and setup the classical
Hamiltonian.

B. The Classical Hamiltonian

Suppose that each ion has as its equilibrium position

a unique Bravais lattice vector, ~R. And suppose that the

displacement of an ion at ~R is ~u(~R). The ~us are called
lattice coordinates. Finally, we assume that any two ions

whose equilibrium positions at ~R and ~R′ respectively in-

teract via a pair potential of the form φ(~r, ~r′) = φ(|~r−~r′|),
where ~r = ~R + ~u(~R). ~r is the position of an ion with re-
spect to a fixed origin. In order to solve the quantum me-
chanical problem of lattice vibrations, we will write down
the classical Hamiltonian and quantize it. The classical
Hamiltonian, Hc of the N particle system is given by

Hc =
∑

~R

~P 2(~R)

2M
+ U, (1)

where ~P (~R) = M~̇r = M~̇u(~R) and U is the potential
energy of the system. The

∑
~R denotes a sum over all

vectors in the BL. The potential energy of the system is
sum of the potential energy between each pair of ions.
We can write this as:

U =
1

2

∑

~R, ~R′

φ(~r − ~r′)

=
1

2

∑

~R, ~R′

φ((~R− ~R′) + (~u(~R)− ~u( ~R′))). (2)

The factor of 1
2 comes from the fact that we’ve double-

counted pairs of ions by including contributions from the

[~R, ~R′] term of the sum and the [ ~R′, ~R] term. These
both correspond to an interaction between an ion whose

equilibrium position is ~R and an ion whose equilibrium

position is ~R′. This expression for U however, is com-
pletely intractable unless we make approximations. We
will simplify it using the harmonic approximation. This
requires Taylor expanding each φ in the sum in powers

of ~u(~R) − ~u( ~R′). For convenience, let ~a ≡ ~u(~R) − ~u( ~R′)
and ~x ≡ ~R− ~R′. Then

φ(~x+ ~a) = φ(~x) +∇φ
∣∣∣
~a=0
· ~a

+
1

2

∑

i,j=1,2,3

aj
∂2φ

∂xi∂xj

∣∣∣
~a=0

ai +O(a3). (3)

When the all of the ions are in their equilibrium po-
sitions, ~a = 0 and the force between any pair of ions
is zero. The force between any two particles, modulo a
minus sign, is the gradient of the potential with respect
to the coordinates of any of the two particles. Therefore,
the second term in the Taylor expansion vanishes because
that gradient is just the force between two particles at
their equilibrium positions. We can take the first term
to vanish as well, because we’re free to shift the potential
energy by a constant. Finally, in the harmonic approx-
imation, we assume that the ais are small enough such
that we can ignore terms higher than second order in a.
Working in this regime, we can simplify (2) by substitut-
ing for φ the third term in (3). Doing this substitution

and writing ~a in terms of the ~us and ~Rs, we get

U =
1

4

∑

~R, ~R′,i,j

(ui(~R)−ui( ~R′))
∂2φ

∂xi∂xj

∣∣∣
~R− ~R′

(uj(~R)−uj( ~R′)).

(4)
I claim that (4) is equivalent to the expression:

U =
1

2

∑

~R, ~R′,i,j

ui(~R)Dij(~R− ~R′)uj( ~R′), (5)

where

Dij(~R− ~R′) ≡


δ~R, ~R′

∑

~R′′

∂2φ

∂xi∂xj

∣∣∣
~R− ~R′′


− ∂2φ

∂xi∂xj

∣∣∣
~R− ~R′

(6)
This can be verified by substituting (6) into (5) and com-
paring it with a version of (4) in which the summand is
expanded into terms each quadratic in ~u. Plugging (5)
into (1) gives us the classical Hamiltonian in the form
that we will use in order to solve for the spectrum of the
quantum harmonic crystal.

C. Normal Modes of the Harmonic Crystal

Before quantizing the classical Hamiltonian, we will
discuss “solving the classical harmonic crystal”, which
means finding the normal modes of oscillation of the crys-
tal. We do this because it will give us intuition for the
quantum problem.

We would like to solve Newton’s equations of motion
for the harmonic crystal. They read:

Müi(~R, t) = − ∂U

∂ui(~R)
= −

∑

~R′,j

Dij(~R− ~R′)uj( ~R′, t)

Or in matrix form,

M~̈u(~R, t) = −
∑

~R′

D(~R− ~R′)~u( ~R′, t). (7)

In a system of N oscillators with 3N position degrees of
freedom, we expect there to be normal mode solutions
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(3N of them) in which all of the ions are oscillating with
the same frequency. We know from classical mechan-
ics that these normal modes form a basis for all of the
solutions of Newton’s equations in this system. Thus,
without loss of generality, we look for trial solutions of

the form ~u(~R, t) = ~A(~R)e−iωt. Because of our periodic
boundary conditions, we can expand ~u in a three dimen-

sional Fourier series. Any function, f(~R), that is peri-
odic with respect to three linearly independent vectors,
N1~a1, N2~a2, and N3~a3 can be written in the following

form: ~f(~R) =
∑
~k
~C~ke

i~k·~R. This expansion has the prop-

erty that the only ~ks that appear in the sum are those

such that ei
~k·(aN1 ~a1+bN2 ~a2+cN3 ~a3) = 1, where a,b, and c,

are integers. As a check of this, we see that upon replac-

ing ~R in the Fourier sum by ~R+(aN1 ~a1 +bN2 ~a2 +cN3 ~a3)
with a,b,c being integers, the sum is unchanged, and
hence the function is indeed periodic in each of the Ni ~ais.
A more careful treatment of periodicity in higher dimen-
sions is given in almost any book on solid state physics,
see [1,2] for example.

Therefore, the exponentials ei
~k·~R form a basis for the

position dependence of the solutions. Thus we can let
~A(~R) = ~εei

~k·~R and take a superposition over all ~k in the
Fourier series expansion to find more general solutions.

Adding the time-dependence to ~A(~R), we are left with a
trial solution of the form:

~u(~R, t) = ~εei(
~k·~R−ωt). (8)

The vector ~ε is called a polarization vector because it
represents the direction of oscillation of the ions in the

trial solution. The ~ks that appear in the trial solutions
are the vectors that show up in the Fourier expansion

of ~u(~R). They are called wavevectors. Plugging (8) into
(7), we get that we find a solution whenever ~ε satisfies
the 3D eigenvalue equation:

Mω2~ε =
∑

~R

D(~R− ~R′)e−i
~k·(~R− ~R′)~ε

≡
∑

~x

D(~x)e−i
~k·~x~ε ≡ D(~k)~ε (9)

where ~x still runs over the entire BL. D(~k) is called the
dynamical matrix. It is shown in [1] that the dynamical
matrix is real-symmetric. It is a theorem of linear algebra
that any real-symmetric three-dimensional matrix can be
diagonalized such that the three eigenvectors are real and

orthonormal [1]. For each ~k, there are three eigenvectors,

labeled ~εs(~k) and three eigenvalues, Mω2
s(~k). The s label

is an eigenvector index (s=1,2,3) for fixed ~k, and is called
the polarization index. We’ve broken the problem of find-
ing normal modes into separate eigenproblems for each
~k. Since the system has 3N normal modes, we expect to
solve N eigenproblems. However, the Fourier series ex-
pansion has an infinite number of terms. Thus for this

to be consistent with a finite number of normal modes,
there must be redundancies in the Fourier series. Indeed,
there are. Although I won’t prove it, it turns out that
there are in fact N non-redundant terms in the Fourier
series [1]. We have everything we need to solve for the
spectrum of the quantum harmonic crystal.

III. THE SPECTRUM OF THE HARMONIC
CRYSTAL

To quantize the classical Hamiltonian, we will need
to turn the lattice coordinates and momenta of the ions
into operators and find commutation relations between
the momenta and the lattice coordinates. We also need
to find commutation relations between different lattice
coordinate operators and between different momentum
operators. These will be derived using the canonical com-

mutation relations, namely: [ri(~R), Pj( ~R′)] = ih̄δijδ~R, ~R′ ,

and [ri(~R), rj( ~R′)] = [Pi(~R), Pj( ~R′)] = 0, where ri(~R)
is the ith component of the position vector of the ion

whose equilibrium position is ~R, and Pi(~R) is the ith
component of that ion’s momentum. Remembering that

~r = ~R + ~u(~R), it directly follows that [ui(~R), Pj( ~R′)] =

ih̄δijδ~R, ~R′ . It also directly that [ui(~R), uj( ~R′)] = 0. The

problem is now fully quantum.
To proceed, I will define phonon creation and annihi-

lation operators as follows:

a~k,s =
1√
N

∑

~R

e−i~k·~R~εs(~k) ·



√
Mωs(~k)

2h̄
~u(~R) + i

√
1

2Mh̄ωs(~k)
~P (~R)




(10)

a†
~k,s

=
1√
N

∑

~R

ei
~k·~R~εs(~k) ·



√
Mωs(~k)

2h̄
~u(~R)− i

√
1

2Mh̄ωs(~k)
~P (~R)


 ,

(11)

where the ~εs(~k) and ωs(~k) are defined to be the polar-
ization vectors and the eigenfrequencies of the dynamical
matrix (9). The definition of these operators is sugges-
tive of a transformation into normal mode coordinates
because we’re defining an a and an a† for each wavevector
~k and each polarization, s. To get the commutation re-
lations between the creation and annihilation operators,
I need to invoke another identity involving three dimen-
sional Fourier series (see [1] for proof). In particular, the
identity reads

∑

~R

ei
~k·~R =

{
N if ei

~k·~R = 1 for all ~R ∈ BL

0 otherwise
. (12)

Using this identity, the commutation relations for ~u and
~P , and the orthonormality of the polarization vectors, we
get the algebra of the harmonic oscillator, namely:

[a~k,s, a
†
~k′,s′

] = δ~k,~k′δs,s′ (13)

and [a~k,s, a~k′,s′ ] = [a†~k,s, a
†
~k′,s′

] = 0. (14)
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At this point, solving for the spectrum is llike solving
for the spectrum of the 1D harmonic oscillator. We must

express the ~us and ~P s in the Hamiltonian terms of the
creation/annihilation operators. The algebra involved in
doing this is cumbersome and not worth showing given
how unsurprising the result is (a little bit more of the
algebra is shown in [1]). The result of this process is the
final Hamiltonian given by:

H =
∑

~k,s

h̄ωs(~k)

(
a†~k,sa~k,s +

1

2

)
. (15)

This is an immense simplification! With a Hamil-
tonian of this form and the algebra given by (13)
and (14), we automatically have a problem mathe-
matically equivalent to a 3N-dimensional harmonic os-
cillator whose individual frequencies are indexed by

(~k, s). In particular, we can write the energy eigen-

states as
∣∣∣n~k1,s1

, n~k1,s2
, n~k1,s3

, ..., n~kN ,s1 , n~kN ,s2 , n~kN ,s3

〉
,

where each n~k,s is an integer quantum number labeling

the state. By the algebra of the harmonic oscillator, we
know that these states are given by:
∣∣∣n~k1,s1

, n~k1,s2
, n~k1,s3

, ..., n~kN ,s1 , n~kN ,s2 , n~kN ,s3

〉
= (16)


Π~k,s

1√
n~k,s!

(a†~k,s)
n~k,s


 |0, 0, 0, ..., 0, 0, 0〉 ,

where |0, 0, 0, ..., 0, 0, 0〉 denotes the ground state of
the system. The corresponding energy is E =∑
~k,s h̄ωs(

~k)
(
n~k,s + 1

2

)
.

This was a lot of work in order to get the spectrum.
We would like to spend some time understanding the so-
lution. The most generally accepted interpretation of
(16) is that it is a state ket corresponding to a sys-
tem of

∑
~k,s n~k,s identical non-interacting particles called

phonons. Each phonon has a wavevector and a polariza-

tion (just like a photon!) and carries an energy h̄ωs(~k)

(the function ωs(~k) is called the dispersion relation or
just the dispersion sometimes). Furthermore, I claim
that they are bosons. We will support this interpreta-
tion by defining the occupation number representation
for identical bosons. We will then show from our analysis
of the occupation number representation that the states
of the harmonic crystal are mathematically equivalent to
the states of identical non-interacting bosons. The next
section will be devoted to developing a few formal tools
needed to support our claim.

IV. THE ALGEBRA OF IDENTICAL BOSONS

Suppose that we have a system of N non-interacting
identical bosons. Now consider just one of these bosons.
We define the single-particle states to be the states in the

Hilbert space of this particle. Let’s denote these states
|ψ〉. To construct the states of the N particle system,
we have to take a symmetrized sum of tensor products
of the single-particle states. This is because boson states
must always be symmetric with respect to particle ex-
change. In particular, if we have an N-particle state in
which a particle is in state |ψ1〉, a second is in |ψ2〉, ...,
and an Nth particle is in state |ψN 〉, then the appropri-
ately symmetrized state, called |ψ1, ψ2, ..., ψN 〉, to within
a normalization constant, is given by:

|ψ1, ψ2, ..., ψN 〉 =
∑

P

∣∣ψP (1)

〉
⊗
∣∣ψP (2)

〉
⊗ ...⊗

∣∣ψP (N)

〉
,

(17)
where the sum over P denotes a sum over permutations
of strings of the form P (1)P (2)...P (N), with P(j) being
an integer between 1 and N, inclusive [3,4]. From now
on, I will omit the tensor product symbol. This state
should be thought of as the N-particle state constructed
from permutations of product states of the form |ψ1〉,
|ψ2〉, ... |ψN 〉. Note that in this list, there are always N
kets since we have an N-particle state but two ψs with
different indices could very well refer to the same state,
since two bosons can occupy the same state. For example,
we could have a state |φ, φ, φ〉 which is a three-particle
state in which all three particles are in the single particle
state |φ〉.

Now we would like to define two operators that can
take us from N particle states to N ± 1 particle states.
These are called bosonic creation and annihilation
operators, respectively. We define the bosonic creation

operator, b†φ (from now on, just the creation operator)

as follows: b†φ |ψ1, ψ2, ..., ψN 〉 = |φ, ψ1, ψ2, ..., ψN 〉. In
other words, we go from a symmetrized N particle state
with states |ψ1〉, |ψ2〉, ... |ψN 〉 to the symmetrized N + 1
particle state with states |φ〉 , |ψ1〉, |ψ2〉, ... |ψN 〉. From

this,we immediately get that [b†φ1
, b†φ2

] = 0. The reason

is as follows: consider the states b†φ1
b†φ2
|ψ1, ψ2, ..., ψN 〉

and b†φ2
b†φ1
|ψ1, ψ2, ..., ψN 〉. These are just

|φ1, φ2, ψ1, ψ2, ..., ψN 〉 and |φ2, φ1, ψ1, ψ2, ..., ψN 〉,
respectively, by definition. Going back to the definition
of these states in (17), it is clear that they are exactly
the same! This is because the sum of all products of
permutations of states |φ1〉 , |φ2〉 , |ψ1〉, |ψ2〉, ... |ψN 〉
is precisely the same as the sum of all products of
permutations of states |φ2〉 , |φ1〉 , |ψ1〉, |ψ2〉, ... |ψN 〉.
Furthermore, defining the annihilation operator to

the adjoint of the creation operator (i.e; bφ = (b†φ)†)

and taking the adjoint of [b†φ1
, b†φ2

] = 0, we get that

[bφ1 , bφ2 ] = 0.
These commutation relations are suggestive of a har-

monic oscillator algebra. To prove this, we now need to
find the commutation relations between creation and an-
nihilation operators. To do this, we will need to know
what the annihilation operator does. Our intuition sug-
gests that it will turn an N-particle state into an N − 1-
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particle state. Let’s verify this. In order to verify it, I
will need to invoke a formula for the inner product of two
N-particle boson states, which is proven in [3]. It reads:

〈χ1, ..., χN |ψ1, ..., ψN 〉 =

∣∣∣∣∣∣

〈χ1|ψ1〉 ... 〈χ1|ψN 〉
: ... :

〈χN |ψ1〉 ... 〈χN |ψN 〉

∣∣∣∣∣∣
+

,

(18)
where the (+) subscript denotes that we are evaluating
a permanent. Evaluating a permanent is like evaluat-
ing a determinant except “with no minus signs” when
doing a cofactor expansion. Recall that when evaluat-
ing a determinant using a cofactor expansion (also called
an expansion by minors), alternating terms pick up a
minus sign. Using this, we would like to evaluate the
inner product 〈χ1, ..., χN−1|bφ|ψ1, ..., ψN 〉. This is equal

to
〈
ψ1, ..., ψN |b†φ|χ1, ..., χN−1

〉∗
. Using the definition of

the creation operator and (18), we get that this is equal
to

∣∣∣∣∣∣

〈ψ1|φ〉 〈ψ1|χ1〉 ... 〈ψ1|χN−1〉
: ... :

〈ψN |φ〉 〈ψN |χ1〉 ... 〈ψN |χN−1〉

∣∣∣∣∣∣

∗

+

.

Doing a cofactor expansion along the column of φs, this
is equal to

N∑

k=1

〈φ|ψk〉

∣∣∣∣∣∣

〈ψ1|χ1〉 ... 〈ψ1|χN−1〉
: (no ψk) :

〈ψN |χ1〉 ... 〈ψN |χN−1〉

∣∣∣∣∣∣

∗

+

,

where “no ψk” means that we remove all terms from the
permanent with ψk in it before evaluating it. When we
pull the 〈φ|ψk〉 term out, we evaluate the permanent ob-
tained by deleting the row and column that we pulled
〈φ|ψk〉 from. Writing the permanents as inner products
of N−1-particle states, and pulling out the 〈χ1, ..., χN−1|
(because our analysis works for arbitrary 〈χ1, ..., χN−1|),
we arrive at:

bφ |ψ1, ..., ψN 〉 =
N∑

k=1

〈φ|ψk〉 |ψ1, ...(no ψk), ..., ψN 〉 .

(19)
This is a sum of states with N − 1 particles, as expected.
It can be shown relatively easily by direct computation

of the commutator that [bφ1 , b
†
φ2

] = 〈φ1|φ2〉 [3]. Now we
say the following: let the single-particle states φ be states
belonging to an orthonormal basis |i〉 for i = 1,2,3,.... In
other words, |φ1〉 = |m〉 and |φ2〉 = |n〉 (recall that the
numerical indices are just particle labels). Then we get
that the inner product in the commutator of the previous
line is δmn.

The last formal tool that I will introduce is called the
occupation number representation. Consider states of the
form (17) except now each |ψ〉 is instead a state in the
orthonormal basis defined in the above paragraph. In

general, a state in the occupation number representation
can be expressed as |n1, n2, n3, ...〉, where n1 denotes the
number of particles in the first orthonormal basis state,
n2 the number in the second, and so on. As a example,
suppose we have the orthonormal basis described above
and we have a state that looks like |1, 1, 1, 3, 10, 2014〉.
This ket corresponds to a six-particle state with three
particles in the state |1〉, one in the state |3〉, etc. The oc-
cupation number representation is another way of writing
these kinds of states. In the occupation number repre-
sentation, the six-particle state above would be expressed
as |3, 0, 1, ...1, ........, 1, 0, 0, ...〉, where the ones are in the
third, tenth, and 2014th place.

It can be shown the bosonic creation/annihilation op-
erators act very simply on states in the occupation num-
ber basis. In particular, by using the commutation rela-
tions that we derived, it can be shown that:

b†i |n1, ..., ni, ...〉 =
√
ni + 1 |n1, ..., ni + 1, ...〉 (20)

bi |n1, ..., ni, ...〉 =
√
ni |n1, ..., ni − 1, ...〉 (21)

|n1, n2, ...〉 =

[
Πi

1√
ni!

(b†i )
ni

]
|0, 0, ...〉 , (22)

where b
(†)
i denotes an operator that removes (adds) a par-

ticle to the orthonormal basis state, i. This is amazing!
We started with N identical bosons. We showed that
we could express N-particle basis states of the space of
N-particle states in terms of an occupation number rep-
resentation with a simple interpretation. Each entry in
the state ket tells us the number of bosons in a particu-
lar orthonormal basis state. Furthermore, we have shown
that there are bosonic creation and annihilation opera-
tors that can change the number of particles in each state
(equations (20) and (21)) and furthermore, they satisfy
the harmonic oscillator algebra. We then showed that
the states in the occupation number representation can
be obtained by acting on a vacuum state (zero-particle
state) with creation operators (equation (22)). The fi-
nal thing to note is that the normalization constants
that creation and annihilation operators introduce when
they act on occupation number states are exactly the
same as the constants that the harmonic oscillator cre-
ation/annihilation operators introduce when they act on
the number eigenstates of the oscillator. Thus the prob-
lem of the harmonic crystal is mathematically identical
to the problem of non-interacting identical bosons. We
formally have the same states with the same operators
with the same algebra!

In particular, we can view the problem of the harmonic
crystal in terms of the following complementary picture
[4]: the harmonic crystal states, given by (16) are states
written in the occupation number representation. Each
entry of the ket, n~k,s, represents exactly that number of

some bosonic particle, called a phonon, in an orthonor-

mal basis state whose energy is h̄ωs(~k) (recall that the

energy of the harmonic crystal increases by h̄ωs(~k) when
n~k,s increases by 1). The total number of phonons in a
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harmonic crystal state is given by
∑
~k,s n~k,s. We have

replaced the complicated vibrations of an entire lattice
with non-interacting particles. Like particles that we’re
used to, they carry energy, and can scatter off of other
particles. And we can develop some intuition for what
new phenomena occur in solids just by thinking of them
as particles that have energy and momentum, which can
be absorbed or emitted when energy is moved into or out
of the normal modes of the harmonic crystal. Using this
bosonic particle picture, we can understand many prop-
erties of lattice vibrations in solids with relative ease.
We will focus only on the specific heats of solids at low
temperature.

V. SPECIFIC HEATS OF MONATOMIC
METALS AT LOW TEMPERATURE

One of the biggest failures of classical physics in the
19th century was its failure to predict the temperature
dependence of the specific heat of metals. Classical
physics predicts that the specific heat of a solid is a
temperature-independent constant equal to 3R per mole
of metal, where R is the universal gas constant. This pre-
diction is called the Law of Dulong and Petit and is only
true at high temperatures, where the equipartition theo-
rem can correctly describe the vibrations of a solid. [1].
The next attempt at calculating the specific heat of solids
due to lattice vibrations was made by Einstein. Einstein
modeled the ions in a metal as independent harmonic os-
cillators with the same frequency [5]. This assumption
is of course incorrect. The harmonic crystal is full of

phonons each with different frequencies ωs(~k). It is un-
surprising given this knowledge that Einstein’s prediction
of the specific heat of metals has the wrong temperature
dependence at low-T . In particular, he predicted that the
specific heat would decay exponentially fast with temper-
ature as T → 0. It took Debye to get the correct result
at low temperatures. He did this by thinking of the har-
monic crystal as phonons in a box and by thinking of the
statistical mechanics of the system as analogous to the
statistical mechanics of photons in a box (i.e; blackbody
radiation) [5]. Our derivation is different from that of
Debye, but we will get the same answer. This derivation
closely follows the derivation of low-T specific heats done
in [1].

Because phonons are bosons, they obey Bose-Einstein
statistics. Therefore, the number of phonons with energy

h̄ωs(~k) in thermal equilibrium is given by:

n~k,s =
1

eβh̄ωs(~k) − 1
, (23)

where β = 1
kT , in which k is Boltzmann’s constant and

T is the temperature. Notice that we’ve set the chem-
ical potential to zero because phonons can be added
and removed by adding energy to the system. Dump-
ing energy into normal modes will increase the excita-

tion numbers n~k,s of the system. In our particle pic-

ture this corresponds to the addition of phonons to the
crystal. The total energy of the phonons is given by

Etot =
∑
~k,s

h̄ωs(~k)

eβh̄ωs(~k)−1
. We need to evaluate this be-

cause the specific heat is given by the derivative of the
total energy with respect to temperature. It turns out
that for a large enough crystal, the sum can be replaced
by an integral over k-vectors. As V → ∞, the spacing
between k points goes to zero and the summand can’t
vary significantly between two k-points. Therefore we
can replace the sum by an integral. Namely,

Etot =
V

8π3

∑

s

∫
d3~k

h̄ωs(~k)

eβh̄ωs(~k) − 1
. (24)

To evaluate this integral, we will need to make several
approximations. First, we need an approximate form of

the dispersion relation. It turns out that for small |~k| in

the region of non-redundant ~k’s, ωs(~k) = c(k̂)|~k|, where

c(k̂) is a direction dependent constant. See [1] for a proof.
The next approximation is the low-T approximation. In
other words, that the characteristic thermal energy kT
corresponds only to frequencies where the dispersion re-
lation is to very good approximation linear. Where the
dispersion is nonlinear, the energy is much larger than
kT . Therefore, there are nearly no contributions to the

integral from values of ~k such that the dispersion is non-
linear. We can express (24) as

Etot =
V

8π3

∑

s

(∫

linear region

d3~k
h̄ωs(~k)

eβh̄ωs(~k) − 1

+

∫

non-linear region

d3~k
h̄ωs(~k)

eβh̄ωs(~k) − 1

)
, (25)

where “(non)-linear region” denotes the region in k-
space where the dispersion is (not) approximately lin-
ear. Because of the low-T approximation, we can ap-
proximate the energy using the first term of (25) with

ωs(~k) = c(k̂)|~k|. We can also extend the limits of this
integral to infinity because we’re at low temperatures.
Because the edge of the linear region corresponds to a

place where the energy h̄c|~k| is much above kT , integrat-
ing energies beyond that, even assuming a linear disper-
sion, make an exponentially vanishing contribution to the
integral. Thus we’re left with the integral:

Etot =
V

8π3

∑

s

∫

all k

d3~k
h̄c(k̂)|~k|

eβh̄c(k̂)|~k| − 1
.

The specific heat is given by the derivative of Etot respect
to temperature. Integrating in spherical coordinates, we
get that the specific heat capacity is

C =
∂

∂T

V

8π3

∑

s

∫
dΩ

∫ ∞

0

d|~k| h̄cs(k̂)|~k|3
eβh̄cs(k̂)|~k| − 1

. (26)
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Doing a substitution x = βh̄cs(k̂)|~k|, defining 1
c3 =

1
3

∑
s

∫
dΩ
4π

1
(cs(k̂))3

and using the identity
∫∞

0
dx x3

ex−1 =

π4

15 , we finally arrive at:

C =
2π2V k

5

(
kT

h̄c

)3

, (27)

which is the result we desired, and one consistent with
measurements of the specific heats of solids at low tem-
peratures. We have successfully solved the problem that
plagued classical physics using a boson picture of the nor-
mal mode vibrations of the lattice.

VI. SUMMARY AND CONCLUSION

We started with what at first a very complicated sys-
tem. We had a lattice with N ions and every ion was in-
teracting with every other ion via a linear restoring force.
On the face of it, we were working with the Hamiltonian
in (1) with U being given by (5). But through a nor-
mal mode transformation, we managed to get to (15),

giving us a problem formally identical to that of a 3N
dimensional harmonic oscillator. We then showed that
the excitations of this system correspond to the addition
of bosonic particles to a gas. We called these bosonic
particles phonons. Using the intuition that these collec-
tive vibrations of the lattice were bosons, we were able
to calculate the specific heat of a solid at low-T using
Bose-Einstein statistics and correctly obtained a T 3 de-
pendence for the specific heat.

When we replace a many-body problem by non-
interacting bosons, we call these bosons collective excita-
tions. Sometimes they are called quasiparticles. Quasi-
particles/collective excitations have consistently been an
enormous simplifying tool in problems in many-body
physics and the reason is simple. We don’t have good
intuition for the dynamics of ≈ 1023 particles. But we do
have good intuition for the dynamics of non-interacting
particles. And we can use this intuition to predict at
least qualitatively phenomena that occur in many-body
systems. In some cases, it’s even useful for quantitative
calculations, like what we did in calculating phononic
contribution to the specific heat of a metal at low-T .
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The Hyperfine Splitting of Hydrogen and its Role in Astrophysics

Devyn M. Rysewyk
Massachusetts Institute of Technology

(Dated: May 1, 2014)

The 21cm line of hydrogen originates from a photon that is emitted due to the spin flip transition
of the electron in the ground state of the hydrogen atom. It derived by use of time-independent
perturbation theory, magnetic dipole moments, spherical harmonics, and knowledge of spin. It
was predicted by Van de Hulst in 1945 and observed by Ewen and Purcell in 1951. Since then,
astronomers have utilized this spectral line for their work. The 21cm line is used to measure the
velocity and distance of neutral hydrogen clouds which ultimately measures the rotation dynamics
and the structure of galaxies.

I. INTRODUCTION

The 21cm line of hydrogen was first theorized by Van
de Hulst in 1945; however, it wasn’t until 1951 when it
was first observed by Ewen and Purcell [5][6]. Since then,
astrophysicists have used the 21cm line in astrophysics
since neutral hydrogen is the most abundant element in
the universe. When a photon is emitted from the hyper-
fine transition of hydrogen, it has a wavelength of 21cm.
Since this is in the microwave length of light, it is not
affected by interstellar gas and dust, unlike optical light.
Radio astronomers use this to their advantage in deter-
mining the structure and dynamics of galaxies.

II. HISTORY

The prediction and observation of the 21cm line of hy-
drogen began with the desire for discovering the struc-
ture of our galaxy, the Milky Way. Jan Oort, a Dutch
astronomer, had been working on this problem for sev-
eral years. He was studying the structure and rotation of
the galaxy using visible light [5]. Visible light is blocked
by interstellar clouds and dust, which unfortunately, the
galactic plane is littered with. Oort realized that he
would have to utilize another wavelength of light to study
the structure and rotation of the galaxy.

At the time, Grote Reber was working in radio astron-
omy. Oort heard of his work and asked if there were
any radio spectral lines that existed that could be used
[5]. Hendrick Van de Hulst was a student of Oort’s at
the time, and Oort assigned him this project. Van de
Hulst immediately thought of hydrogen because it is very
abundant in the universe. With further calculations, he
predicted the 21cm line of hydrogen in 1945 [5].

In 1950, Harold Ewen was designing an antenna to ob-
serve the 21cm line of hydrogen, supervised by Edward
Purcell. He had to use a mixer and a receiver in order to
reduce the background noise [6]. He put the antenna out-
side of a window at Harvard University and waves trav-
eled through a waveguide to the mixer and the receiver.
Once his antenna was set up, he observed the 21cm line
of hydrogen in 1951. Since then, many astronomers and
astrophysicists have used the 21cm hydrogen line to de-

termine the structure and dynamics of the Milky Way
and other galaxies.

III. DERIVATION OF THE 21CM RADIATION

A. Time-Independent Perturbation Theory

Perturbation theory is used in quantum mechanics
when a Hamiltonian is adjusted by a small perturbation.
Changes in the wavefunctions and energy eigenvalues can
be approximated by using perturbation theory. The per-
turbed hamiltonian is defined as:

H = H0 + δH (1)

where H0 is the original hamiltonian and δH is the small
perturbation. The wavefunction and energy shifts are
written as ψm

′
m and Em

′
m respectively where m labels

the wavefunction and its corresponding energy eigenvalue
and m′ indicates up to which order the wavefunction or
energy eigenvalue has been corrected through perturba-
tion theory. The first-order wavefunction shift can be
calculated by [1]:

ψ1
n =

∑

m 6=n

〈
ψ0
m

∣∣ δH
∣∣ψ0
n

〉

E0
n − E0

m

ψ0
m (2)

where ψ0
m,n and E0

m,n are the wavefunctions and energy
eigenvalues of the original Hamiltonian, H0. The first-
order energy shift can be calculated by [1]:

E1
n =

〈
ψ0
n

∣∣ δH
∣∣ψ0
n

〉
(3)

The wavefunction and energy shifts can be approximated
to higher orders, but for the purpose of this problem, only
first-order perturbation theory will be used.

B. The Perturbing Hamiltonian

For the hydrogen atom, the original Hamiltonian of the
electron is [2]:

H0 =
p2

2me
− e2

4πε0r
(4)
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where me is the mass of the electron and e is the charge
of the electron. The proton in the hydrogen nucleus can
be considered a magnetic dipole. The magnetic dipole
moment of a proton is [1]:

µp =
gpe

2mp
Sp (5)

where mp is the mass of a proton, Sp is the spin operator
of a proton, and gp is the gyromagnetic ratio of a proton.
The magnetic dipole produces a magnetic field that is
given by [1]:

B =
µ0

4πr3
[3(µp · r̂)r̂ − µp] +

2µ0

3
µpδ

3(r) (6)

where the magnetic dipole is at the origin and the mag-
netic field is evaluated at r.

The perturbation of an electron in a magnetic field is
given by [2]:

δHHF = −µe ·B (7)

where µe is the dipole moment of an electron. The dipole
moment of an electron is given by [1]:

µe = − gee

2me
Se (8)

where ge is the gyromagnetic ratio of an electron. Plug-
ging µe and B into Eq. 7, the hyperfine perturbation is
[1]:

δHhf =
µ0gpgee

2

16πmpmer3
[3(Sp · r̂)(Se · r̂)− Sp · Se]

+
µ0gpgee

2

6mpme
Sp · Seδ3(r) (9)

where the 21cm radiation will be derived by calculating
δHhf .

C. The 21cm Radiation

From spherical harmonics, the ground state wavefunc-
tion of the hydrogen atom is [2]:

ψ1,0,0 =
1√
πa3

0

e−
r
a0 = |1, 0, 0〉 (10)

where a0 is the Bohr radius, a0 = 4πε0h̄
2

mee2
. Using Eq. 3

and plugging in Eq. 9 and Eq. 10, the first order energy
shift is:

E1
hf = 〈ψ1,0,0| δH |ψ1,0,0〉 = 〈δH〉

=
µ0gpgee

2

16πmpme

〈
3(Sp · r̂)(Se · r̂)− Sp · Se

r3

〉

+
µ0gpgee

2

6mpme
〈Sp · Se〉 |ψ1,0,0(0)|2 (11)

The first term in E1
hf goes to zero:

〈
3(Sp · r̂)(Se · r̂)

r3

〉
=

∫ ∞

0

|ψ1,0,0|2
r3

r2dr ×
∫∫

3(Sp · r̂)(Se · r̂) sin θdθdφ

= 3
4π

3
(Sp · Se)

∫ ∞

0

|ψ1,0,0|2
r3

r2dr

〈
−Sp · Se

r3

〉
= −

∫ ∞

0

|ψ1,0,0|2
r3

r2dr ×
∫∫

Sp · Se sin θdθdφ

= −4π(Sp · Se)
∫ ∞

0

|ψ1,0,0|2
r3

r2dr

→
〈

3(Sp · r̂)(Se · r̂)− Sp · Se
r3

〉
= 0

Knowing that |ψ1,0,0(0)|2 = 1/(πa3
0), E1

hf can be simpli-

fied to [1]:

E1
hf =

µ0gpgee
2

6πmpmea3
0

〈Sp · Se〉 (12)

We can change the dot product into something more use-
ful by completing the square:

Sp · Se =
1

2
(S2 − S2

e − S2
p)

S2 |s,m〉 = h̄2s(s+ 1) |s,m〉
S2
e |s,m〉 = h̄2se(se + 1) |s,m〉
S2
p |s,m〉 = h̄2sp(sp + 1) |s,m〉

FIG. 1: The triplet state is when the proton and the electron
have parallel spins and the singlet state is when the proton
and the electron have antiparallel spins [9].

where S = Se + Sp, s = 0 or 1, se = 1
2 , and sp = 1

2 .
When s = 0, the spins of the proton and the electron are
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antiparallel. This is called the singlet state. When s = 1,
the spins of the proton and the electron are parallel. This
is called the triplet state. These states can be seen in
Fig. 1. Using the fact that:

〈Sp · Se〉 =
h̄2

2
(s(s+ 1)− se(se + 1)− sp(sp + 1))

=

{
h̄2

4 triplet

− 3h̄2

4 singlet
(13)

the final answer for the first order energy shift is:

E1
hf =

µ0gpgee
2h̄2

6πmpmea3
0

{
1
4 triplet
− 3

4 singlet
(14)

This result differs from the results of [1] and [2] only by
how the fundamental constants were laid out. This split-
ting of energy can be seen in Fig. 2. The energy difference

FIG. 2: The triplet state is when the proton and the electron
have antiparallel spins and the singlet state is when the proton
and the electron have parallel spins [1].

between the triplet state and the singlet state is the en-
ergy of the photon that is emitted from the hyperfine
transition. This energy difference is:

∆Ehf =
µ0gpgee

2h̄2

6πmpmea3
0

(15)

Knowing that gp = 5.59 and ge = 2, the energy difference
is ∆Ehf = 5.882 × 10−6 eV. The energy of this photon
can be converted into a frequency, or a wavelength [1]:

ν =
∆Ehf
h

= 1420 MHz

λ =
hc

∆Ehf
= 21 cm

IV. ROLE IN ASTROPHYSICS

Astrophysicists use the 21cm line of hydrogen to probe
galaxies because neutral hydrogen is the most abundant
element in the universe and it is not affected by inter-
stellar clouds or dust [4]. After the prediction and sub-
sequent observation of the 21cm line of hydrogen, as-
tronomers have been able to study the structure and dy-
namics of the galaxy in great detail.

A. The Doppler Effect

FIG. 3: Observed light from a moving source has a lower or
higher frequency than if the source was stationary [11].

Before discussing the role that the 21cm line has in
astrophysics, we must know what the doppler effect is.
The light originating from a moving object will appear
to have a lower or higher frequency than when the object
is stationary. When the light-emitting source is moving
towards an observer, the frequency of the light is higher
than the original frequency. This means that the light
is shifted towards the blue end of the electromagnetic
spectrum, or it is blueshifted. This can be seen in Fig. 3.
When the source is moving away from an observer, the

FIG. 4: The top three figures show idealized hydrogen doppler
shift profiles and the bottom figure shows a typical observed
hydrogen doppler shift profile [4].
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frequency of the light is lower than the original frequency,
or it is redshifted.

In astronomy, doppler shift is used to calculate the
velocity of light-emitting sources. For radio astronomy
in particular, a radio telescope is used to obtain doppler
shift profiles. Ewen used a rectangular antenna to detect
the 21cm line. Today, radio astronomers use a parabolic
antenna. The signal travels from the sky into a series of
band pass filters and amplifiers which focuses the signal
around 1420 MHz, or 21 cm. Once the signal is focused
around 1420 MHz, the signal travels to a mixer and a
receiver which reduces the amount of background noise
in the signal. The signal is then sent to a computer where
the hydrogen-line profiles can be seen.

There are three idealized hydrogen profiles that can
be seen. To the observer, the neutral hydrogen cloud can
look stationary. When the cloud is stationary, the center
of doppler shift profile will be at the rest frequency, 1420
MHz. The cloud can be moving with a velocity that can
be determined. The center of the doppler shift profile
will be some frequency, ν away from the rest frequency.
The radial velocity can then be calculated by:

vr =

(
ν − ν0

ν

)
c (16)

where vr is the radial frequency, c is the speed of light,
ν is the observed frequency, and ν0 is the rest frequency,
1420 MHz. The cloud can also be stationary with internal
motion inside of the cloud [4]. This is when the center
of the doppler shift profile is centered around the rest
frequency, but the profile is a bit wider than when there
is no internal motion in the cloud. These three hydrogen
profiles can be seen in Fig. 4. Observed hydrogen profiles
have a combination of the idealized hydrogen profiles and
multiple clouds in one profile. This can also be seen in
Fig. 4.

B. Structure and Dynamics of the Milky Way

The observed hydrogen profiles taken at different
galactic longitudes translate into doppler shifts. The
doppler shifts allow for the radial velocities of the neu-
tral hydrogen clouds to be calculated by using Eq. 16.
Using the complex galactic geometry seen in Fig. 5, the
rotational velocity of the neutral hydrogen clouds can be
calculated using [3]:

θrot = vr − vlsr + (θsun + ve) sin l (17)

where θrot is the rotational velocity, θsun = 220 km
s is the

rotational velocity of the sun, l is the galactic longitude,
ve is the velocity of the earth, and vlsr is the velocity of
the local standard of rest. vlsr describes the mean motion
of stars in the solar neighborhood.

The rotation of the galaxy depends on the mass dis-
tribution. An example of a mass distribution is a solid

FIG. 5: Galactic geometry [3].

body, or a uniform sphere. The rotation curve of a solid
body gives a velocity that is proportional to the radius:

F = ma
GMm

r2
=

mv2

r
G 4

3πr
3ρ

r2
=

v2

r
v ∝ r

where m is the mass of a star inside of a galaxy, r is the
distance between the center of the galaxy and the star,
M = 4

3πr
3ρ is the enclosed mass of the galaxy at radius r,

and ρ is a constant density. Another mass distribution is
the Keplerian mass distribution, or a central mass. The
rotation curve of a central mass gives:

GMm

r2
=

mv2

r

v ∝ 1√
r

The Keplerian mass distribution models the luminous
matter in the Milky Way. Examples of these mass dis-
tributions and the rotational velocity curve of the Milky
Way can be seen in Fig. 6 and Fig. 7, respectively. How-
ever, the rotation curve of the Milky Way does not match
the Keplerian mass distribution curve. This means that
there is a lot more matter in the galaxy than we can ac-
tually see. This matter is called dark matter. Plotting
the rotational velocity curve of the Milky Way using the
21cm line of hydrogen is one way to give evidence that
dark matter exists in the galaxy.

The galactic geometry used to calculate the rotational
velocity can also be used to calculate the radius of the
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FIG. 6: Examples of different mass distributions [9].

FIG. 7: The observed rotational velocity, v, and the angular
velocity, ω of the Milky Way as a function of radius from the
center of the galaxy [4].

neutral hydrogen clouds using [3]:

R = Rsun sin l (18)

where Rsun = 8 kpc is the radius of the sun from the
center of the galaxy. Knowing the radii and the galactic
positions of these clouds, the neutral hydrogen in the
galaxy can be mapped. The distribution of the neutral
hydrogen in the Milky Way is shown in Fig. 8. The areas
of dense neutral hydrogen clearly show the spiral arms
within the galaxy. This led to the classification of the
Milky Way as a spiral galaxy [4].

C. Early Galaxies

The 21cm line of hydrogen has applications beyond
that of studying our own galaxy. Recently, the hyperfine
transmission has been used to probe the early universe,

FIG. 8: A map of the neutral hydrogen in the Milky Way
plotted by Kerr and Westerhout in 1964 using the 21cm line
of hydrogen. [4].

specifically, the time during reionization. Reionization
occurred from about 400 million years to a billion years
after the big bang. Galaxies and quasars started to form
at the beginning of reionization. Quasars are galaxies
with a supermassive blackhole at the center. The super-
massive blackhole at the center takes in mass at a high
rate, and therefore is highly luminous. The 21cm radia-
tion has been used in order to probe these early galaxies
and quasars. 21cm absorption has been detected from
early galaxies and quasars [7] and the gas density, velocity
profiles, ionization state, and temperature profiles have
been modeled for dwarf galaxies that formed in the be-
ginning of reionization [8]. The evolution of these dwarf
galaxies could also be detected, and therefore, through
the use of the 21cm line of hydrogen, astrophysicists aim
to understand the thermal history of the universe [8].

V. CONCLUSION

Through time-independent perturbation theory, mag-
netic dipole moments, spherical harmonics, and spin, the
21cm line of hydrogen was derived. When Van de Hulst
predicted the 21cm line in 1945 and Ewen and Purcell
observed the line in 1951, they had made a significant
advancement in the field of astronomy and astrophysics.
The 21cm line of hydrogen has proven to be very useful
in measuring properties of not only the Milky Way, but
other galaxies as well. Molecular hydrogen can also be
used to study galaxies; despite that it is far less abundant
that neutral hydrogen [4]. The structure and dynamics
of the Milky Way can also be determined by measuring
the distance to stars within the galaxy using stellar paral-
lax [10]. With all of these techniques in determining the
structure and dynamics of galaxies, astronomers continue
to make advances in the field of astrophysics.
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Solving Neutrino Oscillation with Matrix Mechanics

William Spitzer
(Dated: May 2, 2014)

Our understanding of neutrinos has improved since their initial discovery. Experimentally, we have
discovered the fact that neutrinos can oscillate between different flavors in its lifetime. Theoretically,
we can represent the oscillation in the form of a matrix. We will explore how to utilize the neutrino
oscillation matrix in order to calculate the probability of a flavor evolving into another flavor in its
time evolution. We will also consider a solution with four neutrino flavors as a possible solution to
the LSND anomaly.

I. INTRODUCTION

The neutrino was first theorized by Wolfgang Pauli in
1930 as an idea created to resolve the problems involved
with an early model for the nucleus of an atom.[1] It was
initially called the neutron and described as a neutral
particle with a mass like that of the electron. Some in-
spiration for this theory came from the need of a neutral
particle to fix the model of the nucleus and the process
of radioactive decays. A resolution to the nucleus model
appeared when James Chadwick discovered what we now
know as the neutron, and Pauli’s neutron, renamed as the
neutrino, became discarded as a solution to this problem.
The neutrino would be ignored until several years later
in 1934, when Fermi was working on his theory of weak
interactions, which included the problem of energy con-
servation in the mechanism of beta decay. In beta de-
cay, Fermi found that the end products seemed to have
a lower energy than the initial state. He concluded that
the missing energy could be explained in the form of a
neutral particle and reintroduced the neutrino as a so-
lution. His theory was verified when in 1937 the muon
neutrino was discovered from cosmic rays.[2]

In the 1950’s, experiments showed that in some weak
processes, particles could violate parity in decay. Parity
is the reversal in sign of a spatial coordinate of a parti-
cle. This idea is similar to that of left and right handed
particles. Other than parity, the particles in these pro-
cesses were found to hold the exact same properties as
each other. This result hinted at the possibility that a
particle could change its parity through these weak in-
teractions. As more became known about the neutrino,
various anomalies began to appear. These anomalies
suggested that neutrinos could be particles that could
change between different states, or flavors as they are
now known. One such anomaly that prompted this idea
was the inconsistency between theoretical neutrino detec-
tion and experimental neutrino detection from the sun.

In this paper, we will explore how the theory of neu-
trino oscillation came about and the matrix created to
help calculate these oscillations. In sections II, we give
discuss the solar neutrino problem that led to the theory
of neutrino oscillation. In section III, we introduce the
Pontecorvo-Maki-Nakagawa-Sakata Matrix used in cal-
culating neutrino oscillations. In section IV, we compute
the two-flavor neutrino oscillation as a demonstration of

the calculation process. In section V, we calculate the full
three-flavor neutrino oscillation and compare the transi-
tion probabilities from different starting neutrino flavors.
In section VI, we discuss the current state of neutrino
theory and anomalies that have yet to be resolved. Fi-
nally in section VII, we consider the possibility of a fourth
neutrino and its effect on neutrino oscillations.

II. SOLAR NEUTRINO PROBLEM

The solar neutrino problem was a major inconsistency
in neutrino theory that eventually led to neutrino oscil-
lation theory. The nuclear process that fuels the sun, hy-
drogen fusion, releases large quantities of electron neutri-
nos which can be detected via liquid detectors. However,
the first detections of solar neutrinos found a much lower
flux of electron neutrinos than expected: approximately
a third of the predicted value. Physicists proposed sev-
eral explanations such as the nuclear processes slowing
down in the solar core, but these were all rejected due
after advancements in the ability to measure data from
the sun. This problem puzzled physicists until they dis-
covered the possibility of neutrino oscillation.

Put forth by Bruno Pontecorvo in his 1968 paper,
the idea of neutrino oscillation is explained by neutrino
masses[3]. If neutrinos exist in flavor states that are su-
perpositions of different neutrino mass states, then it is
possible that over a long enough period of time or dis-
tance, the neutrino could change its mass by oscillating
from one flavor to another. Therefore, in the case of so-
lar neutrinos, it is possible that the neutrinos emitted by
the sun change their flavor over the course of the journey
from the sun to the earth. Years later, three different
flavors of neutrinos were detected from the sun which
matched his predictions. The electron neutrino was de-
tected in 1969, the muon neutrino in 1973, and the tau
neutrino in 1995[2]. With experimental data backing up
the idea, neutrino oscillation became a well accepted the-
ory in particle physics.

III. PMNS MATRIX

The theory of neutrino oscillation was developed by
Bruno Pontecorvo.[3] With the discovery of the different
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flavors of neutrinos, Pontecorvo developed a matrix that
could be used to give a time dependent solution of neu-
trino oscillation which can then be used to calculate the
transition probabilities between the different flavors of
neutrinos. In our current theory in the standard model,
we have flavor eigenstates |ve〉, |vµ〉, and |vτ 〉, and mass
eigenstates |v1〉, |v2〉, and |v3〉. The flavor eigenstates are
related to the mass eigenstates in the following form.

|vf 〉 = Ufm|vm〉 (1)

where f and m represents the flavor and mass eigen-
states. The matrix U is called the Pontecorvo Maki Nak-
agawa Sakata (PMNS) matrix. We will use this matrix
to calculate the transition probabilities between different
neutrino flavors.

IV. TWO FLAVOR NEUTRINO OSCILLATION

We will first begin by working through the two state
example in order to understand how to calculate neu-
trino oscillations using matrices. For the two state ex-
ample, we will use the flavor eigenstates |ve〉, |vµ〉 and
mass eigenstates |v1〉, |v2〉. The PMNS matrix relating
the two bases is the rotation matrix in two dimensions
about an angle θ. For two flavors, the flavor and mass
eigenstates will be related by the single rotation angle θ
as shown in figure 1 [4].

FIG. 1. The neutrino flavor eigenstates are a rotation of its
mass eigenstates. The angle θ is the mixing angle between
the two bases[4].

For higher dimensions, the PMNS matrix will still be
an angular rotation matrix between the flavor eigenstates
and mass eigenstates. However, we will have c(n, 2) =
n(n−1)

2 rotation angles to consider. When we perform the
calculation using three and four neutrino flavors, we will
have more rotation angles involved. For two flavor states,
we can write the equation relating the flavor eigenstates
and mass eigenstates as follows

(
ve
vµ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
v1

v2

)
(2)

The next step will be to consider time evolution. This
will have the form

|ve(t)〉 = cos(θ)e−i
E1t
~ |v1〉+ sin(θ)e−i

E2t
~ |v2〉 (3)

|vµ(t)〉 = −sin(θ)e−i
E1t
~ |v1〉+ cos(θ)e−i

E2t
~ |v2〉 (4)

We will be assuming neutrinos are relativistic, so the
energies will be in the form E1 =

√
p2c2 +m2

1c
4 and

E2 =
√
p2c2 +m2

2c
4 where p � m1,m2. After setting

~ = 1 and c = 1, we will expand to second order of the

mass term to get E1 =
m2

1+2p2

2p and E2 =
m2

2+2p2

2p and

extract the E1 time dependence as a phase factor. Let

α =
m2

1+2p2

2p and β =
m2

1−m2
2

2p to simplify the equations.

|ve〉 = e−iαt(cos(θ)|v1〉+ sin(θ)eiβt|v2〉) (5)

|vµ〉 = eiαt(−sin(θ)|v1〉+ cos(θ)eiβt|v2〉) (6)

Ignoring the phase, the time evolution has left the dif-
ference of the masses on the |v2〉 mass term. This term is
important because the transition probability will depend
on time and the frequency of the transitions will depend
on the difference in the square of the masses. Now we
wish to find the probability of finding a particular fla-
vor after some time t given a starting neutrino flavor.
We can calculate these probabilities using the formulas
P (ve → vµ) = |〈vµ|ve〉|2 and P (vµ → ve) = |〈ve|vµ〉|2.

P (ve → vµ) =

|(−sin(θ)〈v1|+ cos(θ)〈v2|)·
(e−iαt(cos(θ)|v1〉+ sin(θ)eiβt|v2〉))|2

= 2sin2(θ)cos2(θ)(1− cos(βt))

= sin2(2θ)sin2(
βt

2
) (7)

P (vµ → ve) =

|(cos(θ)〈v1|+ sin(θ)〈v2|)·
(e−iαt(−sin(θ)|v1〉+ cos(θ)eiβt|v2〉))|2

= 2sin2(θ)cos2(θ)(1− cos(βt))

= sin2(2θ)sin2(
βt

2
) (8)

We see that the transition probabilities are identical
which is expected since we arbitrarily named the flavor
eigenstates. The transition probability is only dependent
on β which is the difference between the squares of the
two neutrino masses. We can substitute back for βt

2 using

β =
m2

1−m2
2

2p = ∆m2

2E and t = x for relativistic neutrinos.

We will also include ~ and c and substitute ~c = 197eV ·
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nm to get a dimensionless value for the second sine term.

Ptrans = sin2(2θ)sin2(
∆m2x

4E
)

= sin2(2θ)sin2(
∆m2c4x

4E~c
)

= sin2(2θ)sin2(
1.27∆E2

vx

E
) (9)

We will plot the probability P against x
E for both neu-

trino flavors using ∆E2
v = 2 ∗ 10−3eV 2 and sin2(2θ) =

.95. ∆E2
v is the difference in the square of the ener-

gies of the neutrino masses and sin2(2θ) is the mixing
angle according to experimental results for atmospheric
neutrinos[5]. We normalized the distance by the energy
of the neutrinos.

FIG. 2. Probability of finding a neutrino flavor at a distance
x
E

after starting in a flavor state |ve〉. The curve starting at
P = 1 represents P (ve → ve) and the curve starting at P = 0
represents P (ve → vµ).

We see that the transition probability is maximized at
x
E ≈ 600 which is when sin2(βt2 ) ≈ π/2.

V. THREE FLAVOR NEUTRINO OSCILLATION

We now move on to the full PMNS 3 by 3 matrix with
ve, vµ, vτ are the flavor eigenstates and v1, v2, v3 are the
mass eigenstates.



ve
vµ
vτ


 =



Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3





v1

v2

v3


 (10)

The PMNS matrix will be the product of the three
rotation matrices possible in a three state system.




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




where sij = sin(θij), cij = cos(θij), θij are the mix-
ing angles between the masses i and j, and δ is a phase
that is nonzero if the neutrino oscillation breaks CP
symmetry[6]. CP symmetry refers to charge parity sym-
metry and states that if a particle is interchanged with
its antiparticle, then it will act the same under the laws
of physics if the parity is flipped. Particles, such as neu-
trinos, that violate this symmetry are said to break the
CP symmetry. The time evolutions of these flavors will
then have the form

|vf (t)〉 = Σ3
n=1e

−iEnt/~Ufn|vn〉 (11)

for each flavor f. From here, we can calculate the tran-
sition probabilities. We will use |vf1〉 as our starting fla-
vor eigenstate and |vf2〉 as our ending flavor eigenstate.
The full expansion of the transition probabilities is much
larger so we will not show them here.

P (vf1 → vf2) = |Σ3
n=1Uf1nU

∗
f2ne

−i(m2
n) L2E |2 (12)

With these equations, we can calculate the probabil-
ities and plot them again. For these probabilities, we
expect to see three curves that oscillate at slightly differ-
ent periods. We will use sin2(2θ12) = 0.857, sin2(2θ13) =
0.095, sin2(2θ23) = 0.95, ∆m2

21 = 7.5 ·10−5eV 2, ∆m2
31 =

2.4 · 10−3eV 2, and ∆m2
32 = 2.32 · 10−3eV 2. These values

have been determined from experimental data that has
been fit according to the theoretical predictions for the
neutrino oscillation equations that we have determined.
The experimental values for the angles and mass differ-
ences with errors are shown below[6].

sin2(2θ12) = 0.857± 0.024

sin2(2θ23)〉0.95

sin2(2θ13) = 0.095± 0.010

∆m2
21 = (7.5± 0.2) · 10−5eV 2

|∆m2
21| = (2.32+0.12

−0.08) · 10−3eV 2

The plot of the transition probabilities for ve and vµ
are shown here.

These plots are interesting in several ways. First, the
probability curves for ve have small oscillations on top
of them, while the curves for vµ have large oscillations
on top. This oscillation arises from the different θ values
that are present in a three dimensional matrix; we can
clearly see the effect of a larger θ value.

Second, the transition probability P (ve → ve) is never
0 which means that the ve flavor can always be measured
no matter where it is measured at, while P (vµ → vµ)
does hit 0 sometimes. However, the other two transition
probabilities in the ve plots have points at which they
are approximately 0 which means that the ve flavor is
almost guaranteed to be measured. Despite the fact that
P (vµ → vµ) does hit 0, both P (ve → ve) and P (vµ → vµ)
probabilities return to 1 periodically, which is expected
since it should return to its original state after some time.
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FIG. 3. Probability of finding a neutrino flavor at a distance
x
E

after starting in a flavor state |ve〉.

FIG. 4. Probability of finding a neutrino flavor at a distance
x
E

after starting in a flavor state |vµ〉.

Finally, the shape of the transition probability of the
electron flavor is distinctly different compared to the
transition probabilities of muon flavor and tau flavor. In
both figures, the tau and the muon transition probabili-
ties have similar shapes and cover the same areas at the
same time. This result suggests that the tau and muon
neutrinos have similar proportions of mass eigenstates
and the mass eigenstates consist of similar proportions
of muon and tau flavor states. We see in figure 5 that
the model of the neutrino masses do have mass eigen-
state compositions with almost equal quantities of muon
and tau neutrino flavors. This fact is interesting because
it means that the ve neutrino is different in some way
compared to the other two flavors.

The diagram of masses in figure 5 shows the current
theoretical positions of the neutrino mass eigenstates in
comparison with each other. These masses are based
on experimental values for the square of the difference in
masses. As a result, there are two models that could pos-

FIG. 5. Composition of the neutrino mass eigenstates in terms
of the neutrino flavor eigenstates[7].

sibly describe the relationship between the mass eigen-
states. Experiments to determine the value of ∆m32 are
underway to identify the correct model.

VI. THE STANDARD MODEL AND THE LSND
ANOMALY

Currently there are three neutrino flavors that are
known to exist: electron, mu, and tau neutrinos. The
existence of these neutrino flavors fit well with the Stan-
dard Model, a theoretical model that connects three of
the four fundamental forces of nature: weak, strong, and
electromagnetic nuclear forces. The existence of the three
neutrino flavors were predicted from the electron, muon,
and tau particles, which gave the flavors their names.
However, the Standard Models predicted that the neu-
trinos lacked mass, contradicting the fact that neutri-
nos undergo oscillations. If instead, we use the Standard
Model as guide to assign masses to the neutrino flavors,
then it would make sense to consider ve the lightest, fol-
lowed by vµ, and vτ the heaviest based on the masses
of the electron, muon, tau particles. Because the masses
of the neutrino flavors are not known, we cannot deter-
mine whether or not this is accurate. Thus, the Standard
Model does not fully explain the properties of neutrinos
and can be improved upon.

In addition to mass problem from the Standard Model,
neutrino masses also create problems in experimental de-
tections. There are several experimental anomalies that
the current theory of neutrinos cannot explain. The most
puzzling of these anomalies, the Liquid Scintillator Neu-
trino Detector(LSND) anomaly, gave results of neutrino
energy differences that differed from theoretical predic-
tions by several orders of magnitude. The LSND was a
detector set in Los Alamos Meson Physics Facility that
aimed to find neutrino oscillations from vµ anti-neutrinos
that came from a proton target[8]. They managed to de-
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tect a difference in neutrino mass; however, this mass
difference was on the order of ≈ 1 eV compared to other
experimental values on the order of ≈ 10−5 to 10−3 eV.

A possible solution to these problems is the existence
of sterile neutrinos, a different type of neutrino that does
not interact via interactions other than gravity[9]. By
adding in an additional neutrino with a different mass
from the existing neutrino flavors, the large mass differ-
ence found in the LNSD detection could be explained.
However, if a fourth neutrino flavor is discovered, then
the current 3 by 3 matrix used to calculate neutrino os-
cillations will need to be adjusted.

VII. FOUR FLAVOR NEUTRINO
OSCILLATION

FIG. 6. Probability of finding a neutrino flavor at a distance
x
E

after starting in a flavor state |ve〉 for four neutrino flavor
eigenstates.

Using the same framework that we have used to calcu-
late the two and three state neutrino oscillations, we will

also use to calculate the four state neutrino oscillation.
We will begin by calculating the PMNS matrix. This ma-
trix will be a product of all the rotations possible in a four
state system. If we consider the WXYZ plane, we can
have WX, WY, WZ, XY, XZ, and YZ rotations for a to-
tal of 6 possible rotation matrices. The matrix will not be
presented because it is very large. We then follow equa-
tion 12 to calculate the transition probabilities. We will
use the values sin2(2θ12) = 0.857, sin2(2θ13) = 0.095,
sin2(2θ14) = 0.01, sin2(2θ23) = 0.95, sin2(2θ24) = 0.1,
sin2(2θ34) = 0.9, ∆m2

21 = 7.5 · 10−5eV 2, ∆m2
31 =

2.4 · 10−3eV 2, ∆m2
41 = ∆m2

42 = ∆m2
43 = 1eV 2, and

∆m2
32 = 2.32 · 10−3. The angular values were chosen to

be similar to the three state case and the mass differ-
ence values were chosen based on the LSND predicted
values. The main difference is that the transition proba-
bility P (ve → vµ) has gone down. The point where the
transition probability P (ve → v4) is maximal is where the
transition probability P (ve → ve) is the lowest, so this
point could be used as an experimental starting point.

VIII. CONCLUSION

We have investigated the calculations of neutrino os-
cillations using the PMNS matrix in the two flavor neu-
trino example to understand how neutrino oscillations
work out mathematically. Following this, we were able
to calculate neutrino oscillations for three flavors and to
produce a plot of neutrino oscillations given initial condi-
tions on the rotation angles and mass differences between
the neutrino eigenstates. However, neutrino oscillation is
still not a completely understood subject. Although we
can accurately predict some phenomenon of neutrino os-
cillations, we still lack concrete answers to others such
as the LSND anomaly. If a fourth neutrino is found, it
could solve the problem of the LNSD anomaly and pro-
vide possibilities to consider for other currently unsolved
questions including the nature of dark matter. We have
demonstrated the changes necessary to be made to the
PMNS in order to correctly account for a fourth neutrino
and an example of its effect on neutrino oscillations.
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Describing Quantum and Stochastic Networks using Petri Nets

Adam Strandberg
(Dated: 2 May 2014)

We discuss the basics of stochastic petri nets, the rate equation, the master equation, and the
connections between stochastic and quantum mechanics. Unless otherwise noted, everything is
drawn from work by John Baez and Jacob Biamonte in [1].

I. STOCHASTIC PETRI NETS

In many fields, one encounters a network of connected
objects that can react to form new objects. Examples
include

• chemistry: networks of chemical reactions

• physics: particle creation and annihilation

• biology: predator-prey relationships

• computer science: resource flow and queuing

Stochastic petri nets are mathematical objects de-
signed to model the evolution of these networks over time,
assuming that each reaction happens randomly at some
specified rate.

A petri net consists of a set S of species and a set T
of transitions, together with two fuctions s, t : T → NS .
These specify the source and target of each transition.
[2] (Note: we can equivalently say that a petri net is a
directed multigraph whose nodes are multisets of species
and whose edges are transitions between those multisets.)
In a graphical representation, species are indicated by
circles, while transitions are indicated by boxes. For each
transition τ , there is an arrow from each species in s(τ)
to τ , and an arrow from τ to each species in t(τ).

A stochastic petri net is a petri net equipped with a
function r : T → R, specifying the rate of each reaction.
Oftentimes, the transitions are labelled by their rates.

II. THE RATE EQUATION

In chemistry, statistical mechanics and biology, we are
concerned with the overall concentration of particles in
given states. For example, when calculating the acidity
of a solution, we care about the relative amounts of H+,
OH−, and H2O.

We define a classical state x(t) to be a map S → R
specifying the expected value or concentration of each
species. (Note: the variable t is overloaded throughout
this paper, referring both to time and to the target func-
tion. We trust that it will be unambiguous in context.)
The rate equation gives a systematic method for deter-
mining the time evolution of classical states given a petri
net. Namely, we want an equation such that given a
stochastic petri net and a state x(0), we can find d

dtx(t).
For the time being, we will take this as a given rule with

heuristic motivation. Later we will see the conditions un-
der which this equation arises from considering stochastic
evolution.

To understand the rate equation, we must first define
vector exponentiation, which is a sort of generalization
of a dot product. In the dot product, we multiply ele-
mentwise and then sum; here we exponentiate element-
wise and then take the product. If we have two vectors
x = (x1, x2, ...xn) ∈ XA, y = (y1, y2, ...yn) ∈ Y A, such
that exponentiating elements of X by elements of Y is
well defined, then we define

xy ≡ xy11 xy22 ...xynn (1)

Note that xy ∈ X. Note also that this quantity is basis-
dependent, unlike the dot product. As a concrete exam-
ple, take x, y ∈ R2, with x = (1, 2), y = (3, 4). Then, we
have

xy = (13)(24) = 16

To motivate the form of the equation, we note that
the amount of a species can only change via some transi-
tion. Each transition τ will happen at a rate given by the
number of ways it could possibly happen (given by com-
binatorial consideration) times a rate constant (given by
r(τ)). How many ways can a reaction happen? To have a
reaction with inputs s(τ), you need to pick si(τ) objects
from each species i ∈ S. If we assume that the objects are
all distinguishable, and you pick with replacement, the
number of ways to do this given a number of things x(t)
is
∏
i∈S xi(t)

si(τ), or in our new notation, x(t)s(τ). The
assumption of picking with replacement seems wrong: if
you need two H+ ions to make H2O, you can’t use the
same ion twice! However, the rate equation is used to
describe systems with large numbers of interacting par-
ticles, and when you have large numbers picking a few
things without replacement is almost the same as pick-
ing a few things with replacement.

Next, we need to find out how much stuff gets moved
around each time a transition occurs. This is straightfor-
ward enough: the change in a species is just the amount
of that species output by the transition minus the amount
used up: ti(τ) − si(τ). We can combine everything we
know so far into one compact equation, the rate equation:

d

dt
x(t) =

∑

τ∈T
r(τ)

(
t(τ)− s(τ)

)
x(t)s(τ) (2)
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FIG. 1: An example of a predator/prey relationship, repre-
sented as a stochastic petri net [1]

For clarity, let’s parse this bit by bit. The left-hand
side is a vector specifiying the rate of change of each
species. The right-hand side is also a vector that says
that for each transition, take the base rate of the transi-
tion times the amount the transition changes the species
by, then multiply by the number of ways the transition
can happen given the stuff you have. Sum over all tran-
sitions and you’re done.

Example II.1. Consider the stochastic petri net in fig-
ure II.1:

This is a toy model of a predator/prey relationship:
rabbits can make more rabbits, foxes can eat a rabbit
in order to have enough energy to reproduce, and foxes
can also just die. There are obviously issues with this
model, one of which is that rabbits don’t reproduce via
binary fission, but the qualitative behavior of the model is
sufficiently interesting that real biologists actually study
it.

Let xR(t) and xF (t) denote the concentrations of rab-
bits and foxes, respectively. Let α, β, and γ be the rates
at which birth, predation and death occur. The rates are
then given by

d

dt
xR(t) = α(x2R − xR)− βxRxF

d

dt
xF (t) = β(x2F − xRxF )− γxF

III. THE MASTER EQUATION

While the rate equation is great for cases in which you
have a large number of interacting objects (for instance,
chemicals in solution), it is not the full story. Since we
consider the transitions as random processes, we want to
have a system that, given a probability distribution over
the number of objects of each species, tells us how this
full probability distribution evolves. This will have the
advantage of being able to describe systems with small
numbers of objects of each species, as well as developing
powerful analogies with quantum mechanics.

To describe the probability distribution over numbers
of objects of species, we use formal power series. A for-
mal power series given a species i ∈ S is just a series(
Ψ(zi)

)
(t) =

∑∞
ni=0 ψni(t)z

ni
i , where ψn(t) ∈ R. The

formal variable z does not have any particular meaning;
it’s just a tool we use. We interpret this formal power
series as such: zni represents the basis vector correspond-
ing to n objects of species i, and ψi,n is the probability
that there are this n objects of species i. Consider a petri
net with three species, denoted A,B, and C. Say that
you start out believing at time zero that there’s a 60%
chance you have 5 of species A, and a 40% chance you
have 1 of species A, 2 of species B, and 16 of species C.
This state would be represented as

(
Ψ(zA, zB , zC)

)
(0) = 0.6z5A + 0.4zAz

2
Bz

16
C

We can condense this notation by defining two vectors,
z = (z1, z2...z|S|) and n = (n1, n2...n|S|). We can then
express the power series as Ψ(z)(t) =

∑
n∈NS ψnz

n. Since
we are interpreting the ψn as probabilities, we should en-
force that ψn(t) ≥ 0∀n, t and

∑
n∈NS ψn = 1. (We will

see later how the requirement for non-negative probabil-
ities plays in.) A power series that has these properties
is called a stochastic state.

Given a stochastic state, how do we figure out the time
evolution of the state? Taking a cue from quantum me-
chanics, we assume there exists a linear operator on the
space of power series called the Hamiltonian (H), such
that

d

dt
Ψ(z)(t) = HΨ(z)(t) (3)

We define the creation operator a†i on a species i

such that a†iz
ni
i = zni+1

i . If we have a state in which
there are definitely ni objects of species i, applying the
creation operator to that state gives a state with ni + 1
objects (hence the name).

The annihilation operator ai is given by aiz
ni
i =

d
dzi
znii = niz

ni−1
i . If we are in a definite state with ni

objects, this brings us to a state with ni − 1 objects,
but why the factor of ni? This is due to the fact that
there are ni ways to choose which object to annihilate, as
opposed to creating an object, in which there is only one
choice. If this is confusing, it will become clearer when
we look at the master equation.

For notational convenience, we define vectors of op-

erators a† and a such that a† = (a†1, a
†
2...a

†
|S|), a =

(a1, a2...a|S|).
(Note to self: what are other reasons H should be a

linear operator?)
The Hamiltonian is given by

H =
∑

τ∈T
r(τ)

(
a†t(τ) − a†s(τ)

)
as(τ) (4)

Example III.1. Consider again the petri net from ex-
ample II.1. We denote the annihilation operators for rab-
bits and foxes as aR and aF , respectively. The Hamilto-
nian is then
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H = α(a†2R − a†R)aR +β(a†2F − a†Ra†F )aRaF + γ(1− a†F )aF

Let rmfn denote a state with r rabbits and f foxes.
Assume we start in a state in which we are certain there
are two rabbits and one fox. We have Ψ(0) = r2f . The
rate of change at time zero is then

d

dt
Ψ(0) = HΨ(0)

d

dt
Ψ(0) =

(
α(a†2R−a†R)aR+β(a†2F −a†Ra†F )aRaF+γ(1−a†F )aF

)
r2f

d

dt
Ψ(0) = α(a†2R −a†R)2rf+β(a†2F −a†Ra†F )2r+γ(1−a†F )r2

d

dt
Ψ(0) = α(2r3f −2r2f) +β(2rf2−2r2f) +γ(r2− fr2)

This expression looks ugly, but it has a nice interpre-
tation. At a rate α, we are gaining probability that there
will be three rabbits and one fox (r3f). Total probabil-
ity is conserved, so we lose probability at the same rate
from the state with two rabbits and one fox (r2f). The
factor of two comes from the fact that there are two ways
to pick one rabbit from a collection of two distinguish-
able rabbits. Similarly, we gain probability that there is
one rabbit and two foxes at the cost of probability theat
there are two rabbits and one fox. Through the ”death”
transition, we gain probability there is one fewer fox at
the cost of probability that it stays the same.

A. Eigenvectors of the Hamiltonian and Negative
Probabilities

In quantum mechanics, it proves very useful to find
the energy eigenstates of the Hamiltonian. Energy eigen-
states behave simply under time evolution: they just ro-
tate with a complex phase! Consider the eigenstates φn
such that

Hφn(t) = λnφn(t) (5)

Since H is an operator over a complex vector space, its
eigenvectors span the space, and any state ψ(t) can be
expressed as a linear combination of (normalized) eigen-
vectors: ψ(t) =

∑
n cnψn(t). It is then trivial to get the

solution for all time given an initial condition:

ϕ(t) = U(t)ϕ(0) = eiHtϕ(0)

ϕ(t) =
∑

n

cne
iλntφn(0) (6)

We can verify that this evolution is in fact unitary:

|ϕ(t)|2 =
∑

m,n

cmc
∗
nδmne

i(λm−λn)t

|ϕ(t)|2 =
∑

m

cmc
∗
m = |ϕ(0)|2

Since this is so useful in quantum mechanics, let us try
to apply the same idea to stochastic mechanics. Given
a formal power series at time zero Ψ(0), we can express
the time evolution as

Ψ(t) = U(t)Ψ(0) = eHtΨ(0)

Ψ(t) =
∑

n

cne
λntΨn(0) (7)

There is a problem here. While the evolution of an
eigenstate in the quantum picture was guaranteed to be
unitary, the evolution in the stochastic picture is not
stochastic unless λn = 0. For any other value the prob-
ability exponentially blows up or decays. Didn’t we say
earlier that probability should be conserved by the mas-
ter equation? That’s still true, but it only applies to
valid stochastic states. The issue is that the eigenvectors
are not valid stochastic states: they can have negative
components.

The use of negative probabilities to solve problems
whose solutions can only have non-negative probabilities
is analogous to the use of complex analysis in the so-
lution of real differential equations. While the solutions
cannot take on those values, the steps to solving the prob-
lem are most easily broken down into components using
those values.

Negative probabilities have also been used in de-
scribing quantum mechanics For example, the Wigner
quasiprobability distribution, which was developed by
Eugene Wigner in 1932 as a way to extend classical prob-
ability distributions for systems in thermal equilibrium to
quantum ones, can specifiy some joint configurations as
having negative probability (hence the use of the term
”quasiprobability”). [3]

IV. NOETHER’S THEOREM

Given a Hamiltonian H, an observable O, and any an-
alytic function f : R→ R, then

[O,H] = 0

if and only if

d

dt
〈f(O)〉 (t) = 0
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A. Case Study: Ion Channels and Antiparticles

Brain function is mediated by neurons, which fire ac-
tion potentials to send signals. In order to function prop-
erly, a neuron needs to precisely control the voltage across
its membrane by selectively allowing ions, such as Na+

and K+, to pass through ion channels. These channels
open up when the cell needs to become more or less po-
larized. However, the channels need to have a high degree
of specificity for one type of ion in order to function prop-
erly. They do this by having a site in the middle of the
channel where only one ion can bind at a time, for which
the binding affinity is highly tuned to the size of the ion.
[4]

A naive approach to modelling this system is shown
in the following diagram: an extracellular ion (E) flows
into the channel (C) and then becomes an intracellular
ion (I). There are two problems here. The first is that
we only allow ions to flow from the outside of the cell to
the inside of the cell. This is mostly to make the exam-
ple cleaner, but it’s worth noting that there are some ion
channels that act like diodes in that most of the current
only flows in one direction. The larger problem is that an
arbitrary number of ions are allowed to be in the channel
at the same time. To get around this, we use a for-
mal trick and introduce an ”antichannel” species, called
C† in suggestive analogy with antiparticles in quantum
mechanics. We then make it so that an ion exiting the
channel creates an antichannel ion, and a particle can
only enter the channel if it destroys an antichannel ion.
We therefore expect that the number of channel ions plus
the number of antichannel ions should remain constant.
Let’s use Noether’s theorem to prove it.

Let the observable Nchan be the number of C plus the
number of C†:

Nchan = NC +NC† = a†CaC + a†
C†aC† (8)

The Hamiltonian for this petri net is

H = α(a†C − a†Ea†C†)aEaC† + β(a†Ia
†
C† − a†C)aC (9)

We note that for each species i, j ∈ S, [Ni, aj ] = −δijai
and [Ni, a

†
j ] = δija

†
i . We also note that for any operators

A,B and C, we have [A,BC] = [A,B]C+B[A,C]. Using
these facts gives

[NC , H] = α[NC , a
†
CaEaC† ]+β[NC , a

†
Ia
†
C†aC ] = αa†Ca

†
Ea
†
C†−βa†Ia†C†aC

[NC† , H] = α[NC† , a†CaEaC†+β[NC† , a†Ia
†
C†aC ] = −αa†Ca†Ea†C†+βa†Ia

†
C†aC

Adding these together gives

[Nchan, H] = 0. (10)
Now we know that if we start out in a state in which
〈Nchan〉 = 1, for all time we will have 0 ≤ 〈NC〉 ≤ 1, ac-
curately modelling the fact that we have a single binding
site.

A. GUIDE TO NOTATION

Variable Meaning Type

ai annihilation operator P → P

a annihilation operator S → (P → P )

a†i creation operator P → P

a† creation operator S → (P → P )

H Hamiltonian P → P

Ni number operator P → P

N number operator S → (P → P )

〈O〉 expectation value of observable O R
P space of formal power series on S RS → R
r rate constant T → R≥0
s source T → NS

t time R
t target T → NS

x classical state R→ (S → R≥0)

φn eigenvector of Hamiltonian with eigenvalue λn R→ (NS → C)

ϕ quantum state R→ (NS → C)

ψn probability of n objects R
Ψ stochastic state R→ (RS≥0 → R)
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In this paper, we derive the Feynman path integral via finite discretization, from which we recover
the Schrodinger equation as a demonstration of consistency. With all the basic elements introduced,
we then pause to examine more closely the mathematical structure of the Feynman path integral
in relation to its Euclidean analog. Next, we apply this formulation to solving the free particle and
the harmonic oscillator. Furthermore, we also emphasize applications in statistical mechanics. We
conclude by briefly surveying the diverse utility of the path integral.

I. INTRODUCTION

The early pioneers of quantum mechanics, including
Erwin Schrodinger, Paul Dirac, and Werner Heisenberg,
focused their efforts on describing quantum dynamics
through the governing Hamiltonian. Although certainly
a remarkably fruitful approach, it proved difficult when
applied directly to the renormalization of quantum elec-
trodynamics. The unsatisfactory state of knowledge in
the 1930’s intrigued the then-youthful Richard P. Feyn-
man to seek the solution that ultimately led him to the
discovery of a new formulation of quantum mechanics.

As an undergraduate at MIT, Feynman was puzzled
by the self-interaction of a charge with its own electro-
magnetic field [1]. He proposed that perhaps a charge
does not interact with its own field at all. In fact, the
concept of field to him is auxiliary, although useful, in de-
scribing what is fundamentally action-at-a-distance. As
a consequence, this viewpoint necessitated that a radiat-
ing charge must experience radiative reaction [2]. Work-
ing with John Wheeler, his graduate advisor at Prince-
ton University, to make this picture of radiative reaction
consistent, Feynman found that a combination of both
advanced and retarded solutions to Maxwell’s equations
was needed [3, 4].

With this new theory of electrodynamics, Feynman
looked for a consistent quantum picture. He needed a
formulation that not only considers the current state of
a system, but also its past and future [2], a feature that
the Hamiltonian approach lacks. The classical principle
of least action provided Feynman with an answer, but
it needed alterations to be consistent with quantum me-
chanics. So he began searching for such a theory.

At the dawn of his search, Feynman was guided by a
proposal of Dirac in a 1933 paper [2] which claims that

“(qt|qT ) corresponds to exp

[
i

∫ t

T

Ldt/h

]
.” (1)

Feynman ultimately found that the probability of a par-
ticle initially at position and time (xi, ti) getting to a
final position and time (xf , tf ) depends on all paths con-
necting the two events. Each path contributes equally to
the probability, but with a different complex phase given
by the classical action of the path in units of h̄.

This is distinctly different from classical mechanics in
that a classical particle travels between two space-time

∗ Email address: vophong@mit.edu

coordinates precisely by one path, the one that minimizes
the action. As quantum mechanics is inherently proba-
bilistic, this discrepancy is perhaps not too surprising.
In fact, we can gain some intuition for this viewpoint by
considering an electron in the two-slit experiment [5]. We
know the initial location of the electron from the emitter
and its final destination at the detector. Which slit the
electron goes through is an ill-defined concept, however.
Thus, to find the probability that the electron gets to the
detector, we must add contributions from both slits.

This approach of summing over all paths is elegantly
described by the Feynman path integral, the central
theme of this manuscript. In the pages to come, we will
derive the path integral and apply it to different quantum
systems as illustration of its utility.

II. THE PRINCIPLE OF LEAST ACTION

Before we formally define the path integral in quantum
mechanics, we first recall a basic result of relevance from
classical theory. The principle of least action states that
the path which a classical particle takes from an initial
location and time (xi, ti) to a final location and time
(xf , tf ) is the one that minimizes the action defined as

S =

∫ tf

ti

L(x, ẋ, t)dt, (2)

where L(x, ẋ, t) is the Lagrangian describing the particle,
defined as the difference between the particle’s kinetic
energy, K(ẋ), and potential energy, V (x, t), x is a gener-
alized spatial variable, ẋ is the corresponding generalized
velocity, and t denotes time [5, 6].

The action S is a functional whose value depends on
the particular path of the particle. So to minimize S, we
must consider all possible paths, and the one for which S
is minimal is the physical path. To find the physical path,
we use the calculus of variations. Let x̃(t) be the actual
path of the particle. Consider another path slightly per-
turbed by δx(t) from the actual path. By virtue that x̃(t)
minimizes S, to first order, the differential change in S
about x̃(t) vanishes

δS = S[x̃(t) + δx̃(t)]− S[x̃(t)] = 0. (3)

Evaluating the action while imposing this constraint
leads us to the Euler-Lagrange equation

d

dt

[
∂L
∂ẋ

]
− ∂L
∂x

= 0. (4)

In classical mechanics, given a Lagrangian, we can pre-
dict the unique path of the particle using Eq. 4.268



2

III. DERIVATION OF THE PATH INTEGRAL

In quantum mechanics, we pose a slightly different
question regarding the path of a particle with a given
Lagrangian than that in classical mechanics. Instead of
looking for a specific, unique path which the particle must
take, we seek to find the probability of the particle be-
ing at (xf , tf ) knowing its initial condition at (xi, ti).
Richard Feynman conjectured that, in fact, all paths that
the particle can take from (xi, ti) to (xf , tf ) contribute
equally to the probability amplitude, but each with a dif-
ferent complex phase given by the classical action in units
of h̄. Said differently, suppose we have the wavefunction
ψ(x+δx, t); we are interested in finding the wavefunction
ψ(x, t+ δt), where δx and δt denote infinitesimally small
changes in position and time respectively. As derived in
Refs. [2, 7], Feynman proposed that

ψ(x, t+δt) =
1

A

∫
exp

(
i

h̄

∫ t+δt

t

Ldt′
)
ψ(x+δx, t)d(δx),

(5)
where the overall integral is the sum over all paths, and A
is a normalization constant to be determined. Assuming
that for a particle of mass m

L =
1

2
mẋ2 − V (x, t) ≈ 1

2
m

(
δx

δt

)2

− V (x, t), (6)

we have

ψ(x, t+ δt) =

{∫
exp

(
i
δt

h̄

[
m

2

[
δx

δt

]2

− V (x, t)

])

× ψ(x+ δx, t)d(δx)

A

}
. (7)

Now, we expand ψ(x+ δx, t) about δx = 0 and find

ψ(x, t+ δt) =
1

A
exp

(
− iδt
h̄
V (x, t)

)
×

∫
exp

(
im

2h̄

δx2

δt

)(
ψ(x, t) + δx

∂ψ

∂x
+
δx2

2

∂2ψ

∂x2
+ ...

)
d(δx).

(8)

We are now left with integrals of the form

∫
δxn

n!
exp

(
im

2h̄

δx2

δt

)
d(δx) n = 0, 1, 2, ...,

which have analytic solutions [2]. Substituting in the
integrals, we find, to first order in δt,

ψ(x, t+ δt) =

√
2iπh̄δt
m

A
e−

iδtV
h̄

(
ψ(x, t) +

ih̄δt

2m

∂2ψ

∂t2

)
.

(9)
Now, if we let δt → 0, then physical intuition requires
that ψ(x, t + δt) → ψ(x, t) because the evolution of the
wavefunction is continuous. We consequently must have

A =

√
2iπh̄δt

m
. (10)

Substituting in A and performing Taylor expansion for
ψ(x, t+ δt) and e−iδtV/h̄ about δt = 0, we find that

ψ(x, t)+δt
∂ψ

∂t
= ψ(x, t)+

ih̄δt

2m

∂2ψ

∂t2
− iδtV

h̄
ψ(x, t)+O(δt2).

(11)
Simplifying Eq. 11 and taking the limit as δt→ 0 yield

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t), (12)

which is precisely the time-dependent Schrodinger equa-
tion. Thus, we see that this formulation based on the
sum over all paths is equivalent to that of wave mechan-
ics. The wavefunction we find using Feynman’s method
encodes the same information as that solved through the
Schrodinger equation.

Having shown its consistency, we can now generalize
this result to find the wavefunction ψ(xf , tf ) at arbi-
trary space and time coordinates from ψ(xi, ti) [5]. First,
we partition the interval tf − ti into N equal subinter-
vals of length δt. We denote the time interval limits as
t0, t1, t2, ..., tN . Likewise, we partition the corresponding
spacial intervals such that x0 = x(t0) = xi, x1 = x(t1),
x2 = x(t2), ..., xN = x(tN ) = xf . We can now define
ψ(xN , tN ) iteratively

ψ(xN , tN ) ≈ 1

A

∫
e
i
h̄S(xN ,xN−1)ψ(xN−1, tN−1)dxN−1,

(13)

where S(xN , xN−1) =
∫ tN
tN−1

Ldt′ is the classical action.

Iterating Eq. 13 N − 1 times, we obtain

ψ(xN , tN ) ≈ 1

AN−1

∫∫
...

∫ N∏

k=1

exp

(
i

h̄
S(xk, xk−1)

)
ψ(x0, t0)dxN−1...dx2dx1. (14)

To make our notation more compact, we note that

N∏

k=1

exp

(
i

h̄
S(xk, xk−1)

)
= exp

(
i

h̄
S(xf , xi)

)
.

Additionally, we define a new infinite-dimensional inte-

gral operator D[x(t)] by

∫ xN

x0

D[x(t)] = lim
δt→0

( m

2iπh̄δt

)N−1
2

∫
...

∫
dxN−1...dx1,

(15)
Furthermore, we now adopt the Dirac bra-ket notation
for simplicity by using the position base ket in the Heisen-
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berg picture |xN , tN 〉 for the state represented in position
by ψ(xN , tN ) = 〈xN , tN |ψ〉 as in Refs. [8, 9]. Thus, in the
continuum limit as δt → 0, we finally obtain Feynman’s
path integral

〈xN , tN |x0, t0〉 =

∫ xN

x0

D[x(t)] exp

(
i

h̄
S(xf , xi)

)
. (16)

Eq. 16 is also known as the Minkowski path integral. In
the Schrodinger picture, with a time-independent Hamil-
tonian H, we have

〈xN , tN |x0, t0〉 = 〈xN |e−
i(tf−t0)H

h̄ |x0〉,

showing that the path integral yields the matrix elements
of the time-evolution operator. This interpretation is
consistent with our motivation, in that the path inte-
gral allows us to evaluate the probability amplitude at
some space-time coordinate given initial conditions.

In our new notation, the probability of find-
ing the particle at (xf , tf ) from (xi, ti) is simply
|〈xN , tN |x0, t0〉|2dxN . To simplify the notation, we de-
fine the propagator as

K(xf , tf , xi, ti) = 〈xf , tf |xi, ti〉, (17)

and note some of its properties. With this definition, we
need not resort to Feynman’s path integral for insight.
Rather, we can use the Heisenberg picture to understand
its properties as noted in Ref. [8] and then compare them
to the path integral formulation as a check of consistency.

First, the propagator is nothing more than the ker-
nel of Schrodinger’s equation in the sense that given
K(xf , tf , xi, ti), we can convolve it against an initial
wavefunction to find the final wavefunction. That is

ψ(xf , tf ) = 〈xf , tf |ψ〉 =

∫
〈xf , tf |xi, ti〉〈xi, ti|ψ〉dxi

=

∫
K(xf , tf , xi, ti)ψ(xi, ti)dxi.

From Eqs. 14 and 16, this property should also be ap-
parent from the path integral approach. The physical
intuition behind the kernel is that it is a distribution
function that counts how much of the wavefunction at
(xi, ti) makes its way to (xf , tf ). So to get the total am-
plitude at (xf , tf ), we must sum all contributions from
every initial (xi, ti), hence we integrate over all paths as
shown [5].

Second, we see that

lim
tf→ti

K(xf , tf , xi, ti) = δ(xf − xi), (18)

where δ is the Dirac delta function. To make this more
clear, we use the Schrodinger picture to write

K(xf , tf , xi, ti) =
∑

n

〈xf |n〉〈n|xi〉 exp

(
− iEn(tf − ti)

h̄

)
,

where H|n〉 = En|n〉, and H is the Hamiltonian. Taking
the limit as tf → ti, and using the completeness of the
eigenstates of N and the orthonormality of the position
states, we have

lim
tf→ti

K(xf , tf , xi, ti) =
∑

n

〈xf |n〉〈n|xi〉 = δ(xf − xi).

Again, this property is apparent from the path integral
formulation. At a fixed time t, the probability that the
particle is at its initial coordinate is, of course, one. And
the probability that the particle is anywhere else is zero.
Thus, we see that the path integral formulation is con-
sistent with the Schrodinger and Heisenberg pictures of
conventional quantum mechanics.

It remains to explore how this formulation yields the
classical result in the limit as h̄ → 0. In light of Eq. 14,
we see that when h̄ is very small, the exponential oscil-
lates rapidly, contributing mostly destructive interference
between adjacent paths [2, 5, 8]. In other words, when
integrated against dxi, the positive and negative contri-

butions of e
iS
h̄ tend to cancel out. The only exception

is the path that, when perturbed slightly, remains un-
changed to first order. That is, we have δS = 0, precisely
corresponding to the classical path that satisfies the least
action principle. In the limit as h̄ → 0, only a narrow
strip of paths very close to this path survives from de-
structive inference and manifests in measurements as the
true (classical) path of the particle.

At this point, we have examined most of the basic
salient features of the path integral formulation. Namely,
we have recovered the Schrodinger equation from this ap-
proach, checked it against the Schrodinger and Heisen-
berg pictures of quantum mechanics, and demonstrated
that the path integral reduces to the classical path in the
limit as h̄→ 0.

IV. THE EUCLIDEAN PATH INTEGRAL

Having derived the path integral in Eq. 16, we need to
now examine whether the path integral is mathematically
well-defined. Here, we follow the approach in [10, 11].
There are at least two apparent convergence issues that
must be resolved. The first is convergence in the limit as
δt→ 0. But even more crucial is convergence of the dis-
cretized iterated integrals. The rapidly oscillating com-
plex exponential (which does not converge absolutely)
can potentially be a source of problems when integrated.
Consider, for example, the integral

∫ ∞

−∞
eixdx =

∫ ∞

−∞
(cosx+ i sinx)dx

that clearly diverges due to the integrand’s oscillation.
Mathematicians have shown that under certain as-

sumptions, the path integral is well-behaved, i.e. it con-
verges [12]. For instance, it has been shown that the
path integral converges for Lagrangians whose potentials
are in the class of C∞ functions [13], of which the har-
monic oscillator potential is a member [14]. But it turns
out that the path integral as defined by Eq. 16 is not,
in general, a well-behaved mathematical operation. In-
stead, the notion of the path integral needs to be made
rigorous by other means. In this section, we briefly sum-
marize one such means which will play a dominant role
in the discussion of statistical mechanics.

Although not rigorous, we take as our motivation to
aim to eliminate the oscillating complex exponential that
does not converge. Thus, instead of integrating the La-
grangian in real time, we define an imaginary time such
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that tE = it. The exponential of the discretized classical
action becomes

exp

(
− 1

h̄

N∑

i=1

[
1

2
m

(xi − xi−1)2

δtE
+ δtEV (xi)

])
,

where we have used that δtE = iδt. In the limit that
N →∞, we obtain

exp

(
− 1

h̄

∫ tE,f

tE,i

[
1

2
m
dx

dtE
+ V (x)

]
dtE

)
= exp

(
− 1

h̄
SE
)
,

(19)
where SE is the Euclidean action. We can, of course,
go through the same procedure of discretizing time and
iteratively integrate the contributions of all paths as we
have done in the previous section. This time, for every
finite N time intervals, we have absolute convergence of
the integrals. So in the limit as N → ∞, we typically
have a well-behaved path integral in the end. We omit
the detailed calculation and quote the result here

〈xf |e−βH |x0〉 =

∫ xf

xi

D[x(tE)] exp

(
− 1

h̄
SE(xf , xi)

)
,

(20)

where we have used e−
i
h̄ (tf−ti)H = e−

1
h̄ (tE,f−tE,i)H , and

without loss of generality, we choose the initial imaginary
time tE,i = 0 and final imaginary time tE,f = h̄β to get
e−βH . Eq. 20 is known as the Euclidean path integral.

In contrast to the Minkowski path integral, the Eu-
clidean path integral is well-defined. But the two are in-
tricately linked by a linear transformation of time. Thus,
we can rigorously define the Feynman path integral (in
its form as a Minkowski integral) by an analytic continu-
ation of the Euclidean path integral [15]. With this new
definition, issues with convergence can be avoided.

V. THE FREE PARTICLE

In this section, we apply the path integral approach to
the basic one-dimensional free particle for demonstration
of the method. Evaluating the path integral for even
simple systems can be rather cumbersome. It is thus
reasonable that through all of this, the reader becomes
doubtful of the utility of this method. We emphasize,
however, that the real utility of the path integral will
become apparent when we briefly explore quantum sta-
tistical mechanics. Here, we follow the method in [11].

Consider the free-particle Lagrangian

L =
1

2
mẋ2. (21)

Without loss of generality, we find the propagator for a
particle of mass m that starts at the origin at time t = 0

K(x, t, 0, 0) =

∫ x

0

exp

(
i

h̄

m

2

∫ t

0

ẋ2dt′
)
D[x(t)]. (22)

Without a force, we know that the classical path of the
particle is xc(t

′) = x
t t
′, where c denotes classical. The

actual path is then just some deviation δx(t′) from the

classical path x(t′) = xc(t
′)+δx(t′). The velocity is then

ẋ = ẋc + ˙δx = x
t + ˙δx. Thus, we can write the action as

2

m
S(x) =

∫ t

0

ẋ2dt′ =

∫ t

0

(ẋc + ˙δx)2dt′

=

∫ t

0

ẋc
2dt′ +

∫ t

0

˙δx
2
dt′ =

2

m
S(xc) +

2

m
S(δx)

(23)

where we have used that
∫ t

0

ẋc
dδx

dt′
dt′ =

x

t

∫ t

0

dδx =
x

t
(δx[t]− δx[0]) = 0.

With this, the propagator becomes

K(x, t, 0, 0) =

∫ x

0

exp

(
i

h̄

m

2

∫ t

0

(ẋc
2 + ˙δx

2
)dt′
)
D[x(t)]

= exp

(
i

h̄
S(xc)

)∫ x

0

exp

(
i

h̄
S(δx)

)
D[δx(t)].

(24)

The classical action is simply S(xc) = mx2

2t . We expect
the path integral with respect to δx to only depend on t
because the arbitrary endpoints are always zero. Thus,
we write the propagator in a more suggestive form of

K(x, t, 0, 0) = exp

(
i
mx2

2th̄

)
f(t),

with some function f(t) to be determined, and exploit
orthonormality that as t→ 0, we have

lim
t→0

K(x, t, 0, 0) = δ(x),

where δ(x) is the Dirac delta function. Using one of the
approximations of the Dirac Delta function

δ(x) = lim
t→0

( m

2iπh̄t

)1/2

exp

(
i
mx2

2th̄

)
, (25)

we can read off the propagator as

K(x, t, 0, 0) =
( m

2iπh̄t

)1/2

exp

(
i
mx2

2th̄

)
. (26)

If we repeat the same procedure above to find the Eu-
clidean path integral, we arrive at

KE(x, tE , 0, 0) =

(
m

2πh̄tE

)1/2

exp

(
−mx

2

2tE h̄

)
. (27)

KE becomes delocalized as tE → ∞, which in terms
of statistical mechanics, models the occupation of the
ground state as T → 0. We shall make this notion more
precise later. In fact, KE in this case is exactly the ker-
nel of the one-dimensional heat equation. Under closer
inspection of the Schrodinger equation, this result should
not be surprising. When t is mapped to tE , we have

ih̄
∂K

∂t
→ ∂KE

∂tE
=

h̄

2m

∂2KE

∂x2
,

the one-dimensional heat equation. The analogy holds
also for any form of the Hamiltonian, except then, the
heat equation is non-homogeneous.
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VI. QUANTUM STATISTICAL MECHANICS

We have already seen with the Euclidean path inte-
gral an expression (Eq. 20) reminiscent of the partition
function. Defining β = 1

kBT
, where kB is Boltzmann’s

constant, and T is the temperature in the canonical en-
semble, Eq. 20 is in fact related to the matrix elements
of the density matrix. In this section, we highlight appli-
cations of the path integral in statistical mechanics using
the approach of Refs. [5, 16].

Recall that in the canonical ensemble, the probability,
p(Ei), of finding a state with energy Ei at fixed temper-
ature T is given by

p(Ei) =
e−βEi

Z
, (28)

where Z =
∑
i e
−βEi is the partition function that nor-

malizes the probability distribution. The partition func-
tion allows us to compute many of the fundamental ther-
modynamic quantities governing the system. For in-
stance, the internal energy U(T ) is

U(T ) =
∑

i

Eip(Ei) = −∂ lnZ

∂β
. (29)

Introducing a new normalization factor F (T ) such that
p(Ei) = e−β(Ei−F ), we get that

F (T ) = −kBT lnZ, (30)

where F (T ) is the Helmholtz free energy. Thus, it follows
from the first and second law of thermodynamics that the
entropy S(T ) is

S(T ) = −∂F
∂T

= kB lnZ +
U(T )

T
. (31)

From Eqs. 29, 30, and 31, it is clear that our task is
to calculate the partition function. In this section, we
explore the utility of the path integral in computing the
partition function for statistical quantum systems.

As we have seen, using the path integral ultimately
involves computing the kernel with the integrand being
the exponential of the classical action. In statistical me-
chanics, this integrand is the density matrix. Recall that
a density matrix ρ of an ensemble of energy eigenstates
|n〉, each occurring with probability pi is

ρ =
∑

i

pi|i〉〈i| =
1

Z

∑

i

e−βEi |i〉〈i| = e−βH

Z
. (32)

In coordinate representation, we have

ρ(xf , xi) = 〈xf |ρ|xi〉 =
1

Z

∑

i

e−βEiψ(xf )ψ(xi)
∗, (33)

where ψ is the energy eigenfunction in position represen-
tation. It is clear then that

Z =
∑

i

e−βEi = Tr
[
e−βH

]
. (34)

Thus, we have

ρ =
e−βH

Tr [e−βH ]
=

ρ̃

Tr [e−βH ]
, (35)

where we adopt the convention that ρ̃ = e−βH is the
unnormalized statistical density matrix. It is not difficult
to see then that

− ∂ρ̃
∂β

= Hρ̃. (36)

We observe that ρ̃ satisfies the heat equation with respect
to β just as the Euclidean kernel does with respect to
imaginary time. Therefore, we can immediately write
the path integral for the density matrix

ρ̃(xf , xi, u) =

∫ xf

xi

Φ[x(u)]D[x(u)], (37)

where

Φ[x(u)] = exp

(
− 1

h̄

∫ u

0

[
1

2
mẋ(u)2 + V [x(u)]

]
du

)
,

(38)
and u = βh̄. From Eq. 37, we can easily compute the
partition function

Z = Tr[e−βH ] =

∫
ρ̃(x, x)dx, (39)

from which we can obtain important thermodynamic
quantities.

VII. THE HARMONIC OSCILLATOR

In this section, we utilize the insight gained from sta-
tistical mechanics to explore the properties of the quan-
tum harmonic oscillator using the path integral formal-
ism. We shall first calculate the Minkowski path integral
and then perform a change of time at the end. We will
use Fourier analysis to calculate the path integral [5].

Consider the Lagrangian for the harmonic oscillator for
a particle of mass m and frequency ω

L =
1

2
mẋ2 − 1

2
mω2x2. (40)

The propagator is

K(x, t, 0, 0) =

∫ x

0

exp

(
im

2h̄

∫ t

0

[
ẋ2 − ω2x2

]
dt′
)
D[x(t)].

(41)

As before, we consider a path slightly perturbed from the
classical path such that x(t) = xc(t) + δx(t). Inserting
this observation in Eq. 41 and expanding, we find that the
cross terms involving xc(t) and δx(t) integrate to zero.
Thus, we arrive at

K(x, t, 0, 0) = exp

(
i

h̄
S(xc)

)∫ x

0

exp

(
i

h̄
S(δx)

)
D[δx(t)],

(42)

where

S(xc) =
1

2
m

∫ t

0

[
ẋc

2 − ω2x2
c

]
dt′, (43)

and

S(δx) =
1

2
m

∫ t

0

[
˙δx

2 − ω2δx2
]
dt′. (44)
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Now, we observe that the remaining path integral is only
dependent on t and not on the arbitrary endpoints as
δx(0) = δx(t) = 0. So we can write

K(x, t, 0, 0) = exp

(
i

h̄
S(xc)

)
f(t), (45)

for some function f(t) that we now determine. Because
δx(0) = δx(t) = 0, it has period t and can be expanded
as a Fourier sine series such that

δx(t′) =
∑

n

bn sin

(
nπt′

t

)
, (46)

for coefficients bn. Now, we expand the path integral in
terms of bn in place of δx. First noting that

∫ t

0

˙δx
2
dt′ =

t

2

∑

n

(nπ
t

)2

b2n, and

∫ t

0

δxdt′ =
t

2

∑

n

b2n.

we get the path integral for δx to be

f(t) = J lim
N→∞

∫ N∏

n=1

exp

(
im

2h̄

[(nπ
t

)2

− ω2

]
b2n

)
dbn
A
,

(47)
where A is the normalization factor as before, and J is a
Jacobian determinant associated with the transformation
from δx to bn. Each of the integrals in Eq. 47 is Gaussian
and can be integrated. Thus f(t) becomes

f(t) ∝ lim
N→∞

N∏

n=1

(
1−

[
ωt

nπ

]2
)−1/2

=

(
ωt

sinωt

)1/2

.

(48)
To find the normalization constant, we note that as ω →
0, we have f(t) of the free particle in Eq. 25, leading to

f(t) =
( mω

2πih̄ sinωt

)1/2

. (49)

To find the propagator, it only remains to evaluate the
classical action. We know that the path of the classical
particle satisfies the Euler-Lagrange equation (Eq. 4). So
we can find S(xc) by solving for xc(t). We omit the
calculation, and quote the propagator for the harmonic
oscillator in its final form as

K(x, t, 0, 0) =
( mω

2πih̄ sinωt

)1/2

exp

(
imω

2h̄ sinωt
[x2 cosωt]

)
.

(50)
If we use any arbitrary initial condition, then

K(xf , tf , xi, ti) =
( mω

2πih̄ sinωt

)1/2

×

exp

(
imω

2h̄ sinωt
[(x2

f + x2
i ) cosωt− 2xfxi]

)
,

(51)

where t = tf−ti. Encoded in this propagator is the com-
plete information of the time evolution of the harmonic
oscillator in some initial state at (xi, ti).

To gain additional insight from Eq. 51, we proceed to
evaluate the partition function of a system of harmonic
oscillators in thermal equilibrium. First, we obtain from

Eq. 51 the density matrix by performing the transforma-
tion t→ −itE and using β = tE/h̄, we have [16]

ρ(xf , xi) =

(
mω

2πh̄ sinhωβh̄

)1/2

×

exp

(
imω

2h̄ sinhωβh̄
[(x2

f + x2
i ) coshωωβh̄− 2xfxi]

)
.

(52)

Now, we calculate the partition function [16, 17]

Z =
1

2 sinh
(

h̄ω
2kBT

) =
∞∑

i=0

exp

(
− (i+ 1/2)h̄ω

kBT

)
. (53)

Knowing that the partition function takes the form Z =∑
i e
−Ei/kBT , we can read off the energy levels

Ei =

(
i+

1

2

)
h̄ω, (54)

which agree with the result from other analyses. Addi-
tionally, we can obtain from this formulation even more
than just the energy levels. Consider the limit as T → 0;
we note that the density matrix tends to

√
mω

πh̄
exp

( −h̄ω
2kBT

)
exp

(
−
mωx2

f

2h̄

)
exp

(
−mωx

2
i

2h̄

)
,

(55)
which agrees with our intuition that as T → 0, the en-
tropy tends to a constant; so only the ground state is
occupied. Then noting that in this limit, ρ(xi, xf ) →
e−βE0ψ0(xf )ψ0(xi)

∗, we can read off the ground state
wavefunction

ψ0(x) =
(mω
πh̄

)1/4

exp

(
−mωx

2

2h̄

)
. (56)

As shown, using the path integral, we arrived at very
important results in statistical mechanics, including the
partition function and the density matrix. From these,
we were able to confirm the energy levels of the harmonic
oscillator as well as its ground state wavefunction.

VIII. FURTHER IMPLICATIONS

It is impossible for a short paper such as this do jus-
tice to a topic as broad and profound as the Feynman
path integral. Thus, we briefly summarize a few exten-
sions and applications of the path integral here to give
the reader a taste of the far-reaching impact of this al-
ternative approach to quantum mechanics.

First, for clarity, our treatment of the path integral
has been only done for one-dimensional non-relativistic
systems. Most practical systems, however, are funda-
mentally of higher dimensions. The generalization of
Eq. 16 to higher dimensions is straightforward. Recall
that for a set of generalized coordinates and velocities,
{q1, ...qN , q̇1, ..., ˙qN , t}, the classical action is simply

S =

∫ tf

ti

(
1

2
m

N∑

i=1

q̇i
2 − V (q1, ...qN , q̇1, ..., ˙qN )

)
dt.

(57)
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The N -dimensional path integral follows naturally from
this generalized classical action.

To make this groundwork fully relativistic is a more
difficult matter. It suffices to note though that such an
effort led Feynman to the formulation of one of the first
successful quantum theories of the interaction of matter
with electromagnetic fields. In the non-relativistic limit,
we can write the action of such a process as a contribution
of three separate actions: one due solely particles, one
due to the interaction of particles with fields, and one
due to the presence of fields only.

Quantum electrodynamics is one of the hallmarks of
the path integral formulation, even though it was cer-
tainly not the key ingredient of the theory. In his Nobel
Lecture, Feynman noted, “The path-integral formulation
of quantum mechanics was useful for guessing at final ex-
pressions and at formulating the general theory of elec-
trodynamics in new ways - although, strictly it was not
absolutely necessary” [1].

Beyond quantum electrodynamics, the Feynman path
integral has also played an important role in the devel-
opment of quantum field theory [18, 19], and has been
often used in condensed matter physics [20]. For exam-
ple, it has been applied to calculating the interaction of
bosons with a fluctuating gauge field [21], to estimating
the polaron ground state in a magnetic field [22], and to
studying the Anderson-Higgs mechanism [23]. Outside
of physics, the path integral has been utilized in diverse
fields like finance and materials science [20].

IX. DISCUSSION

The path integral formulation is an alternative ap-
proach to quantum mechanics that relies on the classi-

cal principle of least action. Throughout this paper, we
have shown that the path integral approach is in com-
plete agreement with conventional quantum mechanics.
Namely, we have recovered from computing the propa-
gator the Schrodinger equation, implying that all the in-
formation encoded in the Schrodinger wavefunction can
also be obtained from the propagator. This consistency
was seen in the examples as well, as in the case of the
harmonic oscillator when we recovered the ground state
wavefunction and exact energy levels from the density
matrix in the low temperature limit.

Furthermore, the path integral is not merely duplica-
tion of known physics. Rather, through this method,
we gain additional insight and computational machin-
ery for quantum systems. For instance, when evalu-
ated against imaginary time, the Euclidean path inte-
gral quickly yields the density matrix, from which we
can obtain all thermodynamic quantities of importance.
Conversely, when a system lacks Hamiltonian form, the
conventional description of quantum mechanics cannot
be easily used to reach any conclusion. In this case, the
Feynman path integral may be applied. Such an effort
has led, if indirectly, to the development of a consistent
theory of quantum electrodynamics.

Feynman is known to insist on finding new ways to
solve the same problem [2]. The path integral is certainly
a stellar example of the productivity that can spring from
such a mentality.
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The Methods and Benefits of Squeezing

Troy P. Welton
Physics Department, 77 Massachusetts Ave., Cambridge, MA 02139-4307

(Dated: May 2, 2014)

This paper examines the principal method for the construction of squeezed states and some appli-
cations for which they are useful.

I. INTRODUCTION

A squeezed state is a quantum mechanical state that
saturates the bound of the Heisenberg uncertainty prin-
ciple (∆x∆p = h̄/2). To better understand squeezed
states, the simple harmonic oscillator offers a convenient
context. It has a Hamiltonian describable in terms of the
oscillator’s fundamental frequency and its mass. Assume
that these parameters instantaneously can be changed
without changing the wavefunction of the particle. The
new Hamiltonian does not have the same eigenstates as
the previous one, so the particle does not evolve trivially.
The uncertainties of the position and momentum, which
originally are

∆x =

√
h̄

2mω
and ∆p =

√
h̄mω

2
, (1)

are changed by the reparametrization to be

∆x′ =

√
h̄

2m′ω′
and ∆p′ =

√
h̄m′ω′

2
. (2)

This shows a skew in the uncertainties of position and
momentum from the original values that can be rewritten
in terms of a parameter γ:

∆x′ = e−γ∆x and ∆p′ = eγ∆p (3)

where eγ =

√
m′ω′

mω
. (4)

This new parameter measures how much the uncertainty
is skewed toward position or momentum in the Heisen-
berg uncertainty relation. Mathematically, a squeezed
state is described as [6]

|ψ(γ)〉S ≡
1√

cosh(γ)
exp[−1

2
tanh(γ)(â†)2] |0〉 . (5)

One sees that taking γ → −∞ produces a state propor-
tional to exp[â†2] |0〉, which is annihilated by the momen-
tum operator. That means that it must be proportional
to δ(p) in momentum space, or a constant in position
space. Taking γ → ∞ creates a state proportional to
exp[−â†2] |0〉, which is annihilated by the position opera-
tor and must be proportional to δ(x). These two conclu-
sions about the wavefunction match with the predictions

of Eq. 3, in which position or momentum achieves zero
uncertainty under infinite squeezing. This gives the basic
function of a squeezed state: The squeezing parameter
gives an idea of the uncertainty in each of a conjugate
pair of variables. This is true for any conjugate pair that
follows an uncertainty relation similar to x and p. Sec-
tion II describes a graphical representation for squeezed
states that allows for probabilistic calculations. Section
III gives the prominent application of squeezed states to
modern experiments. Section IV examines a theoretical
use for squeezed states in quantum computing. Section
V shows how one would create a squeezed state.

II. WIGNER FUNCTIONS

A Wigner function, also referred to as a Wigner
quasiprobability distribution, gives the closest approxi-
mation to a joint probability distribution for conjugate
variables in quantum mechanics [5]. The form of a
Wigner function is

P (x, p) =
1

πh̄

∫ ∞

−∞
ψ∗(x+ y)ψ(x− y)e2ipy/h̄ dy (6)

where x and p, representing the position and momentum
respectively, could be replaced by any conjugate pair of
variables. This formula has the capacity to represent any
number of particles by extending the coordinate and mo-
mentum dependence to as many variables as necessary.
It is very useful in statistical mechanics for finding the
properties of many particles, but it can also be used to
quantify probabilities of a single particle system using
Eq. 6. The probability of a particle’s position or mo-
mentum is given by integrating over all momentum or
space, respectively. It is easy to see that integrating over
momentum in Eq. 6 leaves |ψ(x)|2 and integrating over
position gives

∣∣∣∣
∫ ∞

−∞
ψ(x)e−ipx/h̄dx

∣∣∣∣
2

(7)

which is just the norm-square of the Fourier transform.
Thus, integrating with respect to one of the variables
gives the correct probability for the other. In this sense,
the Wigner representation is more illuminating than a
phase space diagram in classical mechanics because it
incorporates the aspect of probability that is essential
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to quantum mechanics. The one difference between the
Wigner distribution and a classical probability distribu-
tion is that there is no restriction on the function to
remain positive everywhere. The negative values in a
Wigner function are indicative of the quantum mechani-
cal nature of this distribution. The change of the function
over time also aids to establish a quantum mechanical in-
terpretation for this distribution. It can be shown [5] that
the change of a Wigner function over time can be put in
the form

∂

∂t
P (x, p) = − p

m

∂

∂x
P (x, p) +

∫ ∞

−∞
P (x, p+ j)J(x, j)dj

(8)
Here p represents a number instead of its traditional op-
erator designation and J(x, p) can be interpreted as the
probability of a jump in momentum in the amount j for a
particle at position x. The probability of the jump takes
the form

J(x, j) =
i

πh̄2

∫ ∞

−∞
[V (x+ y)− V (x− y)]e−2iyj/h̄dy (9)

This is also the form of a Fourier expansion of the coeffi-
cients of the potential V of the system. These jumps or
discontinuities are indicative of the transfer of quanta of
momentum, which only arises from quantum mechanical
considerations.

The canonical picture for the squeezed state in two-
dimensional phase space is an ellipse that has a very long
major axis and a very narrow minor axis. This means
that the squeezed state has a very well defined value for
one conjugate variable and is nearly indeterminate in the
other. In other words, the uncertainty in one variable is
close to zero and the uncertainty of the conjugate variable
is very large. The additional visualization of a squeezed
state through the lens of a Wigner diagram is shown in
Figure 1.

The common phase space variables for squeezed states
are amplitude (which is also sometimes written in terms
of intensity) and phase. These two variables form a con-
jugate pair that has an uncertainty relation which is ob-
tainable from the canonical relation of position and mo-
mentum. The ellipses formed by taking horizontal slices
out of the Wigner function very close to the origin shows
the elliptical nature of the phase space in relation to the
conjugate variables. The reason to consider the region
very close to the origin is that it represents the location
of the highest probability.

Now that we know that squeezed states are important
for focusing one of a conjugate pair and that they have a
propensity towards nonclassicality, we can examine how
these features are used in experiment and theory.

III. QUANTUM NOISE REDUCTION

The main use of squeezed states in quantum mechan-
ical experiments is in the reduction of quantum noise.

FIG. 1: This plot shows a squeezed state for a specific squeez-
ing parameter γ. The key features of this graph are the prob-
abilities associated with the different regions of the graph and
the general shape of the graph in the region very close to the
origin. The first feature shows that this state is quantum
mechanical because its largest amplitude is negative. Nega-
tive values on a Wigner function are associated with quantum
mechanical regions. The second feature shows that a phase
space diagram (horizontal slice) is an ellipse (focused in one
variable). [2]

Consider the picture of a two-dimensional phase space
diagram of a conjugate variable pair. Imagine taking
this diagram to the limit of squeezing. In phase space,
this diagram becomes a line instead of an ellipse. That
means that the variation in one of the variables is zero
and the variation of the other is very large (the value is
indeterminate). Even disregarding the concept of infinite
squeezing, very large squeezing creates an ellipse in phase
space that is very similar to the line just mentioned. That
means that the variation in one variable can be stabilized
very precisely if one does not care about its conjugate
partner. Using squeezed states, random fluctuations in
all electronic and photonic systems can be restricted to
produce very clean results. A common fundamental limit
to the precision of an electronic or photonic measurement
is the shot-noise limit. Shot noise arises from the fluc-
tuations in measurement of discrete particles. Light and
electrons carry discrete quanta of momentum and charge,
respectively. When considering a weak beam of light or a
weak current, the fluctuation in the intensity of the beam
can be significant based on the randomness of any such
Poissonian system. For a beam of light with high inten-
sity or large currents, the shot noise has a proportionally
lower effect because it grows much less rapidly than other
sources of noise. This suggests that having a beam of few
particles that can still maintain a well regulated ampli-
tude is essential for circumventing the limit imposed by
the shot noise level. Squeezed states that are also en-
tangled with each other are very useful for establishing
this kind of noise reduction. Fortunately, the standard
creation of squeezed states (see Section V) also leaves the
resulting states entangled. Therefore, the correlation be-
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tween the states can be manipulated to ensure that the
amplitude of the signal beam (the light being used in an
experiment) remains relatively noiseless.

The most common method for creating squeezed states
leaves the states in two different beams separable by po-
larization. The idle beam (the states not being used in
an experiment) can be monitored by a feedback loop so
that its amplitude remains very stable. By necessity, the
signal beam also maintains a very stable amplitude. The
fact that the beams are correlated through entanglement
allows for this nondemolition measurement. Having two
identical beams allows one to be confident of the accu-
racy of the experimental amplitude of a beam of light,
for example. The reason for this confidence will be ex-
plained in Section V when the creation of squeezed states
is explained. As early as 1987, experimentalists saw the
potential for these states, and the earliest attempts re-
duced the noise of their measurements by up to 25%, as
shown in Figure 2. The plot shows a comparison of the
measured noise to the shot noise level for various frequen-
cies in the MHz range.

FIG. 2: As early as 1987, scientists were capable of engineer-
ing lasers that had lower noise than the shot-noise limit. This
figure shows a reduction by as much as 25% at a frequency for
light of about 5 MHz. Here the axes represent the frequencies
for which light was tested and the comparison of the resulting
noise to the shot noise level. [3]

Even though the shot-noise limit is small for most
scales, this reduction is very important for interferom-
etry. Interferometry splits a beam of light and sends it
in perpendicular directions to reflect off two mirrors and
interfere as the beams re-merge at the beam-splitter in-
terface. In the detection of gravitational waves, which
deals with length scales on the order of 10−19 meters,
any reduction of noise is significant. The interferometer
is detecting a change in the relative spatial location of
the two mirrors, which are tuned to interfere perfectly in
the absence of gravitational waves. A gravitational wave
passing through the detector reshapes space so that the
direction of propagation is elongated and the transverse

direction is shrunk. These differences are very small, as
described above, so it is very important to reduce any
external factors that might obscure a detection of these
extremely small alterations to space.

IV. SQUEEZED STATES IN QUANTUM
COMPUTING

Squeezed states are also very important for experi-
ments in quantum computing. One prominent example
is the process of quantum teleportation. All the applica-
tions below involve EPR beams, which are simply the su-
perposition of two independent beams of squeezed-state
light sent through a half-beam splitter. (See Figure 3.)

FIG. 3: This figure shows the setup for a quantum teleporta-
tion experiment. The squeezed states are created using OPOs
(see Section V) and sent to a sending and receiving station.
Then another squeezed state is superposed with the beam
at the sending station and the classical quantities of position
and momentum are measured. These quantities are sent clas-
sically to the receiving station and the receiver combines a
state with these values to the entangled quantum state origi-
nally sent. The output is a reconstructed version of the state
introduced at the sending station. The accuracy of the recon-
struction depending on the squeezing parameter, γ.

The resulting state is also referred to as a two-mode
squeezed vacuum. For clarity, the form of one of the new
states is

{
x̂′1 = 1√

2
(eγ x̂1 + e−γ x̂2)

p̂′1 = 1√
2

(e−γ p̂1 + eγ p̂2)
(10)

where the unprimed variables represent the states be-
fore mixing and γ is the squeezing factor. The other
state is retrieved by replacing the addition in Eq. 10
with subtraction. These squeezed states are important
for quantum teleportation because in the limit of per-
fect squeezing, states can be perfectly reconstructed by a
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simple transfer of information about the state’s position
and momentum. The following example from [4] best
illustrates this fact.

Consider an input state that Alice, the sender, wants
to teleport to Bob, the receiver. Using the superpo-
sition state that she was given (Eq. 10), Alice mea-
sures the position and momentum of the input state
to be teleported by combining it with the superposition
state at a half beam splitter. She obtains the operators
x̂u = (x̂in − x̂′1)/

√
2 and p̂v = (p̂in + p̂′1)/

√
2 from this

mixing, and measures the associated values. She sends
these measured values (xu, pv) classically to Bob, the re-
ceiver. Bob reconstructs the state by applying the oper-
ators x̂tel = x̂′2 +

√
2x̂u and p̂tel = p̂′2 +

√
2p̂v. Using Eq.

9, one sees that the reconstructed state takes the form

xtel = x̂in −
√

2e−γ x̂2 and p̂tel = p̂in +
√

2e−γ p̂1

(11)

The error in the teleportation goes as e−γ , so in the
limit of perfect squeezing, a state can be perfectly recon-
structed in a different location only using the classical
transfer of two pieces of information.

With these applications in mind, it is necessary to dis-
cuss the creation of these states.

V. OPTICAL PARAMETRIC OSCILLATIONS

The most common method for creating squeezed states
is through the use of optical parametric oscillators
(OPOs). [3] These devices combine a nonlinear crystal
with an optical cavity that acts as a resonator to pro-
duce beams of light that are highly correlated in ampli-
tude fluctuations and are, in fact, squeezed. A nonlinear
crystal, such as KTiOPO4, can transform one pulse or
continuous stream of photons that is passed through it
(called the pump beam) into two beams, referred to as
the signal and the idle beams. In the process known as
downconversion, a single photon from the pump beam is
absorbed and two new “twin” (entangled) photons are
released in its place. This interaction must obey conser-
vation laws and various other conditions for this to hap-
pen. These conditions include energy conservation, mo-
mentum conservation, and boundary-condition matching
for the optical cavity. The first two conditions can be
represented by simple formulas:

ωp = ωs + ωi (12)

~kp = ~ks + ~ki (13)

where the subscripts correspond to the pump, signal,
and idle beams, and the variables are frequency ω and

wavevector ~k. The resonant cavity determines the ex-
citable modes of the signal and idle beams because the
beams must match boundary conditions related to the
length of the cavity. All of these conditions are only sat-
isfied for specific cavity lengths, restricted by the desired

frequencies and wavevectors. Oscillations only occur in a
range of a few nanometers around these specific lengths.
Any vibrations that the OPO experiences during the cre-
ation of the beams is very detrimental to the output in-
tensity of the beams. In order to stabilize the intensity
of the beams, the length of the cavity is variable and is
adjusted throughout the experiment to be stabilized at
the resonance conditions for the output beams. This is
accomplished by monitoring the tiny fraction of the out-
put beams that is transmitted from the cavity through
the mirror nearer to the source, back in the direction of
the laser. The intensity of this beam is maintained at
a constant value by adjusting the cavity length. This
portion of the beam is representative of the intensity of
the whole beam, so it is an indirect measurement of the
overall beam intensity difference over time.

After the beams are emitted from the cavity, the origi-
nal laser frequency is filtered out, and the other frequen-
cies are separated by a polarizing beam splitter. In com-
mon usage in experiment, the amplitude fluctuations in
the idle beam are closely measured and the beam’s ampli-
tude is stabilized with a feedback loop. Since the creation
of the signal and idle beams correlates the amplitude fluc-
tuations (the number of photons in each beam over a long
period of time will be approximately the same through
the creation mechanism), it does not matter if we mea-
sure one of the beams and destroy those states because
we know exactly how the other beam will respond to sim-
ilar corrections. This correlation between the two beams
allows the noise from the amplitude to fall much below
the shot-noise limit. This is important for increasing the
precision of laser amplitudes.

FIG. 4: The figure shows the experimental setup for an optical
parametric oscillation/squeezing experiment using KTiOPO4

(KTP) as the crystal. [3]

Figure 4 shows one of the original squeezing experi-
ments. In addition to details described above, this setup
has a few other features. The pumping laser is offset
from the center of the crystal and the cavity so that
the feedback loop can be reflected from the cavity along
the axis of propagation without interfering with the laser
light. After exiting the cavity (through the back), the two
beams are separated based on their polarizations by the
polarizing beam splitter, or PBS. FR is a Faraday rotator
(to account for the laser’s skew). AO is an acousto-optic
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modulator to isolate the reflected infrared beam from the
laser beam. F is a filter that absorbs the untransformed
pump beam and allows the new signal and idle beams
to pass through. The beam intensities are converted to
currents using InGaAs photodiodes. SA is the spectrum
analyzer, which examines the noise, or fluctuation, in the
difference in intensity of the two beams by way of the cur-
rent.

Crystals have properties that can make this process ef-
ficient or very inefficient. [1] The crystals used in OPOs
are birefringent, which means that different directions
of propagation and polarizations of waves have differ-
ent refractive indices in the crystal. These crystals have
preferred axes that specify up to 3 different refractive
indices. Combinations of these directions determine the
overall refractive index for a given direction. When crys-
tals have two preferred axes with the same index, the
polarization is the same along those axes and perpen-
dicular for the other axis. For this experimental setup,
the crystal is oriented so that the signal and idle beams
have perpendicular polarization for easier discrimination
of the two beams. The conversion rate of the pump beam
into the signal and idle beams is also related to the prop-
erties of the crystal. In general, the conversion between
the two over the length of the crystal relates to the phase-
matching condition. Mathematically, conversion, or the
rate of change of the amplitude of the signal and idle
beams over the length of the crystal, is

∂(As +Ai)

∂z
= Apχe

i∆kz (14)

where A represents the amplitude, χ the susceptibility
of the crystal (explained below), z the direction of prop-
agation of the beams, and ∆k the difference in phase
between the pump beam and the sum of the signal and
idle beams. The change in amplitude of the output fre-
quencies is positive when z < π

∆k and negative when
z > π

∆k . This presents a problem because a region that is
negative converts the signal and idle frequencies into the
pump frequency instead of the other way, which would
diminish the returns of this experimental setup. For-
tunately, there is still one parameter that can save the
experiment: χ. The susceptibility of the crystal depends
on the direction of propagation (it relates to the birefrin-

gence of the crystal). Therefore, switching the axis of the
crystal (exchanging −z with +z) changes the sign of χ.
Therefore, if one changes the axis of the crystal when-
ever z = π

∆k , the sign of the amplitude change remains
positive. This is accomplished by taking slices of crystal
and placing them back to back, so that the orientation
is changed periodically. The length at which the crystal
axis is changed is referred to as the coherent length of the
crystal. The situation just described is shown in Figure
5. The resulting conversion equation is

∂(As +Ai)

∂z
= Apχ(−1)nei∆kz+nπ (15)

and the result is always positive.

FIG. 5: The electromagnetic wave E(ω1) is propagating
through a crystal that changes orientation (and susceptibility
from χ to χ̄ every coherent length, δ.[1]

VI. CONCLUSIONS

By examining the creation and uses of squeezed states,
one sees that the uncertainty description supplied for har-
monic oscillators gives a good description of squeezing for
any pair of conjugate variables. Squeezing in optical ap-
plications focuses the amplitude of the beam as it relates
to intensity and ignores all information of phase of that
beam. This allows for very precise measurements in ar-
eas like interferometry. Position and momentum are still
useful parameters for theoretical calculations in quan-
tum computing because these quantities are easy to de-
termine. The key fact to remember about squeezing is
that a sudden change to the Hamiltonian of a state can
reduce the uncertainty of one variable enough to make
useful calculations and calibrations with it.
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We develop the formalism of path integrals in quantum mechanics and put it to use in familiar
contexts, such as analysis of the quantum-mechanical free particle and harmonic oscillator. For
each of these systems, we compute the general path integral, and use this to obtain information
about the time evolution of such a system, as well as the energy spectrum and eigenstates.

I. INTRODUCTION

The path integral in quantum mechanics is a tool with
which a complete description (Feynman’s “path inte-
gral formulation”) of quantum mechanics can be built.
Conventionally, quantum mechanical systems are char-
acterized by of their Hamiltonians, because the Hamil-
tonian fully governs the time-evolution of the system in
a relatively straightforward way. In the Schrödinger pic-
ture, this manifests as the evolution of states over time
– the system has a characteristic time evolution opera-
tor U(t0, t1) (depending only on the Hamiltonian) which,
when acting on the state of a system at time t0, yields
the state at time t1. This picture is fairly abstract, and
makes little direct reference to basic physical processes
familiar from our experience of the world, such as mo-
tion of objects through space.

Perhaps for this reason, it also makes essentially no
mention whatsoever of the closely related classical con-
cept of action in Lagrangian mechanics, which is defined
in terms of paths in spacetime. Like the Hamiltonian, the
quantum-mechanical Lagrangian can straightforwardly
be defined, but the analogue of the action is nontrivial. In
the 1920s, Dirac developed an informal correspondence
between the quantity eiS/h̄, where S is the action for
a path between two points (x0, t0) and (x1, t1) and the
transition amplitude 〈x0, t0|x1, t1〉, remarking that the
two were essentially proportional over infinitesimal time
intervals. However, it wasn’t until 1948 that the action
was brought fully into quantum mechanics, when Feyn-
man formulated the famous path integral, and showed
that the resulting picture was equivalent to the other
theories [2, 3].

In some ways, this new picture of quantum mechanics
provides remarkably straightforward physical intuition,
as it can informally be described as based on (a more
general version of) the following principle: given that a
particle is known to be at position x0 at time t0, the am-
plitude for it to be found at x1 at time t1 is the “sum over
all spacetime paths” between these two points, weighted
by the “amplitude” for each path. Of course, the tricky
part here is to give meaning to concepts like a “sum over
all spacetime paths.” This is precisely what the path
integral accomplishes.

A. Review of Lagrangian Mechanics

Classically, a system whose state can be specified by
coordinates q and dq/dt = q̇ (we will work with only
one q for simplicity) has dynamics determined by a La-
grangian L(q, q̇, t). The Lagrangian determines an ac-
tion functional S which associates to each path q(t) (for
t0 ≤ t ≤ t1) its action

S[q(t)] =

∫ t1

t0

L(q(t), q̇(t), t)dt. (1)

The system is then said to obey the principle of least ac-
tion, whereby the path taken between two configurations
is that which minimizes the action among all paths be-
tween those configurations. This leads to the variational
principle, δS = 0 for a path taken by the system; i.e.
that “small deformations” of the path yield no variation
in the action to first order. Careful examination of the
requirement δS = 0 yields the equations of motion (the
Euler-Lagrange equations) for the system; which depend
only on the Lagrangian. The Lagrangian determines the
dynamics of the system through the associated Euler-
Lagrange equations. Typically, we are interested in sys-
tems with Lagrangians of the form L = T−V , where T is
the kinetic energy and V is the potential energy. The cor-
responding Hamiltonian for such a system is H = T +V .

II. MOTIVATING AND DEFINING THE PATH
INTEGRAL

A. A Simple Case: Diffraction

Before considering the full path integral, we turn to an
example where we can roughly interpret the notion of a
“sum over paths” in an elementary way – diffraction of
a particle through two slits. This follows the example in
[4]. The primary focus here is on gaining intuition for the
behavior of the phase eiS[x]/h̄, and how two such phases
interfere for different paths.

We suppose a particle of mass m propagates with a mo-
mentum localized around some particular value p (thus
very delocalized in position space) through a screen with
two slits at positions x1 and x2 (equidistant from the
source of the particle), to a screen some large distance
(compared to the slit separation) away (see figure 1).
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p

D

D + d

x1

x2

y

FIG. 1: A particle propagating through two slits at x1 and
x2, being observed at y.

Now consider a point y on the screen a distance D from
x1 and D+d from x2. If the particle propagates through
slit 1 and then takes a classical trajectory to reach y
a time t = mD/p later, the action for this second leg
is S1 = (p2/(2m))t = mD2/(2t), since the Lagrangian is
just the kinetic energy p2/(2m), which is constant for this
trajectory. On the other hand, for the particle to reach
y from x2 in the same time (this can occur with non-
negligible probability for d � D), the action is instead
S2 = m(D + d)2/(2t). If we were then to informally ap-
ply the notion that the amplitude for the particle to be
found at y is the “sum over paths” of eiS/h̄, restricting
to these two paths, we would obtain

eiS1/h̄ + eiS2/h̄ = eimD
2/(2h̄t) + eim(D+d)2/(2h̄t)

≈ eimD2/(2h̄t)
(

1 + eimDd/(h̄t)
)

= eimD
2/(2h̄t)

(
1 + e

ipd
h̄

)
.

If we use the de Broglie relation p = h/λ, the phase in
the second factor is eid/(2πλ), from which we see that con-
structive and destructive interference happen for d = nλ
and d = (n + 1/2)λ respectively, which is in agreement
with the conventional result. This should be seen as a
sign that this choice of phase leads to sensible results.
Interestingly, it turns out that the true path integral (al-
lowing all paths, not just the classical ones) for the free
particle is a normalized version of eiSc/h̄, where Sc is the
action of the classical path, so we were not far off in this
approximation.

B. Generalizing to the Continuum Limit

In our previous example, we restricted our integral to a
sum of two discrete contributions. However, in general,
the paths in the sum are allowed to vary continuously
in some nonzero volume of spacetime, thus making the
notion of summation over such paths seemingly tricky.

However, Feynman’s approach in [1], which serves as the
definition used by most other sources regarding the topic,
makes it surprisingly straightforward. The trick is to
discretize time, and, in a manner reminiscent of the con-
struction of the Riemann integral, consider the quantity
we are interested in to be the “infinitesimal time interval”
limit.

If we wish to integrate some functional F of paths in
spacetime over the paths connecting the points (xa, ta)
and (xb, tb), we can make approximations by subdividing
the time interval into N equal segments, defining

Nε = tb − ta (2)

ε = ti+1 − ti (3)

t0 = ta tN = tb (4)

x0 = xa xN = xb. (5)

To integrate over all paths in this approximation, then,
is simply to integrate over all the intermediate coordi-
nates x1, . . . , xN−1 (excluding x0 and xN so that the path
satisfies the boundary conditions), subject to some nor-
malization that ensures that the limit N →∞ can yield
something sensible. If we denote this approximation with
N time intervals by KN (xb, tb;xa, ta), we then have

KN (xb, tb;xa, ta) ∝
∫
· · ·
∫
dx1 · · · dxN−1F [x(t)], (6)

where here x(t) is the “continuous” path constructed by
interpolating linearly between the coordinates xi. In our
case, the functional F turns out to be the aforementioned
phase eiS/h̄, which is supported by the diffraction exam-
ple. Another way to understand this choice of functional
is that it ensures that the contribution of each path is of
equal (unitary) magnitude, but it reproduces the classi-
cal principle δS = 0 in the following way: if we consider
the limit h̄→ 0, variation of the action from one path to
another results in extreme oscillation of the phase. So,
roughly, the stationary phase approximation tells us that,
in this limit, contributions where S varies to first order
will cancel out due to this rapid oscillation, leaving only
contributions from terms with δS = 0, which is precisely
the classical behavior (this is meant very informally, as
a rigorous description of this phenomenon is outside the
scope of this paper).

Given that we use this amplitude functional, the only
question remaining about our path integral is how it
should be normalized. As is noted in [1], this is quite
difficult to do in general (i.e. for a general Lagrangian),
but for those of the typical form L = T − V , the nor-
malization of the approximation with N time steps turns
out to be A−N , where

A =

√
2πih̄ε

m
. (7)

A quick way of seeing why this is a good choice is to
consider the case of the free particle, where the exponent
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is a sum of kinetic energy terms that look like

im

2h̄

(
xi − xi−1

ε

)2

ε =
−π
A2

(xi − xi−1)2,

since the path from xi−1 to xi is taken to have constant
velocity in time ε, so the action is again just the prod-
uct of the kinetic energy with the time ε. So the inte-
gral looks roughly like a product of gaussian integrals
with normalization A (this is not exactly true because of
the nontrivial way the variables appear in each factor).
Later, we will see that this normalization reproduces the
Schrödinger picture.

In summary, we define the path integral from (xa, ta)
to (xb, tb) as

K(b, a) =

∫ x(tb)=xb

x(ta)=xa

eiS[x(t)]/h̄Dx(t)

= lim
N→∞

(
2πih̄ε

m

)−N/2 ∫
dx1 · · · dxN−1e

iS[x(t)]/h̄,

(8)

where we have written K(b, a) instead of K(xb, tb;xa, ta)
for convenience.

C. Reproducing the Schrödinger Picture

At this point, we have defined the notion of a path
integral, but have said little of how it is used to construct
a physical (quantum-mechanical) theory. Furthermore,
even after the latter point is addressed, the question of
how this theory relates to the conventional descriptions
– whether it is equivalent (they make exactly the same
predictions), stronger or weaker (one theory making all
the same predictions as the other, and more which are
genuinely novel), or even inconsistent with them (making
different predictions regarding the same phenomena) – is
of paramount importance. It turns out that the theory is
equivalent; we will confirm this insofar as recovering the
Schrödinger equation in the path integral formulation.
First, however, we must further develop an interpretation
of the new theory.

To do this, we will adopt a way of dealing with wave
functions in the path integral formulation. As mentioned
before, the path integral itself K(xb, tb;xa, ta) can be
thought of, on physical grounds, as representing the am-
plitude that a particle known to be at xa at time ta will
be found at xb at time tb. We can then think of the
former condition as being represented by the wave func-
tion δ(x − xa) at time ta, and the latter condition as
some other wave function ψ(xb), since we interpret wave
functions as probability amplitudes. So in this theory,
ψ here represents the result of evolving δ(x − xa). Our
statement about the interpretation of K is equivalent to
saying K(xb, tb;xa, ta) = ψ(xb), i.e. the path integral as
a function of xb is equal to the result of evolving δ(x−xa)
from ta to tb, interpreted as a wavefunction.

In general, if, instead of certainty that the particle is
at xa at time ta, we have a probability amplitude ψa(xa)
that this is true, then we can use the path integral to find
the probability amplitude ψb(xb) that the particle is at
xb at time tb, by integrating the propagation amplitude
K(xb, tb;xa, ta) over all xa, weighted by the amplitude
for the particle to have been at xa in the first place:

ψb(xb) =

∫
dxaK(xb, tb;xa, ta)ψa(xa). (9)

(Because of this property, the function K is also often
called the kernel.) Again, this can also be described
as the “evolved” form of the original wavefunction – we
can replace ψa and ψb with the more familiar notation
ψ(xa, ta) and ψ(xb, tb). This essentially completely spec-
ifies our theory in terms of path integrals, as we have
defined how an arbitrary state evolves in time.

To recover the Schrödinger equation, we consider in-
finitesimal time evolution with a Lagrangian given by
L(x, v, t) = (1/2)mv2 − V (x, t), following [1]. According
to (9),

ψ(x, t+ ε) =

∫
K(x, t+ ε; y, t)ψ(y, t)dy (10)

=
1

A

∫
exp

(
i

h̄
εL

(
x+ y

2
,
x− y
ε

, t

))
ψ(y, t)dy

(11)

=
1

A

∫
exp

(
i

h̄

m(x− y)2

2ε

)

× exp

(
− i
h̄
εV

(
x+ y

2
, t

))
ψ(y, t)dy.

(12)

Obtaining (11) from the previous line is justified as fol-
lows: we consider K(x, t + ε; y, t) to be the “final time
step” in the discretized approximation of K(x, t+ε; y, 0),
and the action in this case is approximately εL since ε is
infinitesimal (i.e. L is approximately constant over the
path). At this point, we argue that the phase of the first
factor in the integrand varies so rapidly when y is a finite
distance from x that the integral can be neglected outside
a region y ∼ x+ δx, with δx on the order of

√
2h̄ε/m (so

expanding to first order in ε means expanding to second
order in δx). Substituting y = x + δx and dy = d[δx]
in (12) and then expanding the second exponential to
first order in ε then yields the product

(
1− i

h̄
εV (x, t)

)(
ψ(x, t) + δx

∂ψ

∂x
+

(δx)2

2

∂2ψ

∂x2

)

in the integral. Again to first order in ε, this can be
expanded as

ψ(x, t)− i

h̄
εV (x, t)ψ(x, t) + δx

∂ψ

∂x
+

(δx)2

2

∂2ψ

∂x2
.

The integral of the first term gives

ψ(x, t)
1

A

∫
exp

(
im(δx)2

2h̄ε

)
d[δx] = ψ(x, t).
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Similar computations show that the integral of the sec-
ond term is simply (−i/h̄)εV (x, t)ψ(x, t), the third van-
ishes due to the factor of δx, and the last term gives
(ih̄ε/(2m))∂2ψ/∂x2. Combining all of these, we then
have

ψ + ε
∂ψ

∂t
= ψ − i

h̄
εV ψ +

ih̄ε

2m

∂2ψ

∂x2
,

or, after cancelling the ψ’s and the factor of ε,

∂ψ

∂t
= − i

h̄

(
− h̄2

2m

∂2ψ

∂x2
+ V ψ

)
,

which is the Schrödinger equation.

III. APPLICATIONS TO FAMILIAR SYSTEMS

We now turn to the problem of analyzing specific quan-
tum systems in the path integral formulation. We will fo-
cus on two of the most fundamental systems, which are
frequently among the first analyzed in the Schrödinger
formulation – the free particle and the simple harmonic
oscillator. Before considering either system in particu-
lar, we will derive an important identity here for the
kernel, for systems with time-independent Lagrangians
(time-independent potentials):

K(xb, tb;xa, ta) =
∞∑

n=1

φn(xb)φ
∗
n(xa)e−

iEnT
h̄ , (13)

Where T = tb − ta and φn are the energy eigenfunctions
of the system, which we take to be orthonormal. One way
of seeing why this would be true is by the “propagation
amplitude” interpretation of K. We have reproduced the
Schrödinger equation, so we are confident that the path
integral formulation is equivalent to the Schrödinger pic-
ture. If this is the case, then we can consider the propaga-
tion amplitude in the Schrödinger picture, which should
be given by 〈xa|U(ta, tb) |xb〉, where U(ta, tb) is the time
evolution operator. Then we can insert a complete set of
energy eigenstate projections |n〉 〈n| on either side of U
to find

K =
∑

n

〈xa|n〉 〈n|U(ta, tb) |n〉 〈n|xb〉 ,

And it is not too difficult to see that this is in fact the
form in (13). Perhaps a slightly more rigorous demon-
stration starts with the fact that any wavefunction ψ can
be expanded in terms of the φn at time ta, and then its
time evolution is governed by the superposition principle,
resulting in the following:

ψ(x, ta) =

∞∑

n=1

anφn(x), and

ψ(x, tb) =

∞∑

n=1

ane
− iEnTh̄ φn(x).

If we substitute the relation an =
∫
dyφ∗n(y)ψ(y, ta)

which follows from orthonormality, we obtain

ψ(x, tb) =

∫
dy

∞∑

n=1

φn(x)φ∗n(y)e−
iEnT
h̄ ψ(y, ta).

On the other hand, (9) says that the same relation holds
for K. If we denote the right-hand side of (13) by K ′,
then this means

0 =

∫
dy(K ′ −K)ψ(y, ta)

For any ψ – this can only be true if K ′ −K = 0. With
this, we are prepared to analyze the free particle and the
simple harmonic oscillator.

A. The Free Particle

We begin by directly computing the path integral
K(xb, tb;xa, ta) for the free particle, with Lagrangian
L = (1/2)mv2. The action for a linear path from (xa, ta)
to (xb, tb) in this case is simply given by (1/2)mv2T where
T = (tb − ta) and v = (xb − xa)/T . This allows us to
substitute directly into the definition of the path integral
to obtain the expression

K = lim
ε→0

A−N
∫
dx1 · · · dxN−1exp

(
im

2h̄ε

N∑

i=1

(xi − xi−1)2

)

For a given N , we can actually just perform the integra-
tions explicitly. To integrate over x1, we factor out all
terms except those which involve x1 and integrate. This
gives us a factor of

∫
dx1exp

(
im

2h̄ε

[
(x2 − x1)2 + (x1 − x0)2

])

=

∫
dx1exp

(
im

h̄ε

[(
x1 −

x0 + x2

2

)2

+

(
x2 − x0

2

)2
])

=
A√
2

exp

(
im

2h̄ · 2ε (x2 − x0)2

)

Inside the integral. Then to integrate over x2, we
multiply this by the other term involving x2, which is
exp

(
(im/(2h̄ε))(x3 − x2)2

)
. Completing the square as

we did above gives the result

A2

√
3

exp

(
im

2h̄ · 3ε (x3 − x0)2

)
,

And, continuing inductively, after n− 1 integrations, we
have

An−1

√
n

exp

(
im

2h̄ · nε (xn − x0)2

)
,
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So that after all N − 1 integrations and multiplying the
result by A−N , we finally have

A−1

√
N

exp

(
im

2h̄ ·Nε (xN − x0)2

)

=

√
m

2πih̄Nε
exp

(
im

2h̄ ·Nε (xN − x0)2

)

=

√
m

2πih̄(tb − ta)
exp

(
im(xb − xa)2

2h̄(tb − ta)

)
,

where the last line uses the definitions of x0, xN , and ε
in (2) and (5).

In the interpretation of K as the evolved form of a po-
sition eigenfunction δ(x−xa), we see that, over time, the
wavefunction spreads out as a widening gaussian centered
at xa, reflecting the fact that the momentum of the par-
ticle was completely unconstrained. Furthermore, using
a continuous-spectrum analogue of (13), the expression
of K as a Fourier transform

K =

∫
dpe

ip
h̄ (xb−xa)e−

ip2

2mh̄ (tb−ta)

shows that the energy eigenstates are propotional to
eipx/h̄ with corresponding energies p2/(2m). This is the
simplest system of quantum mechanics, so it is good that
we have been able to obtain the most fundamental facts
about it using the path integral as our primary tool.

B. The Simple Harmonic Oscillator

A more interesting, but still very fundamental system
to analyze is the quantum simple harmonic oscillator
with Lagrangian given by

L =
1

2
mẋ2 − 1

2
mω2x2

To compute the path integral for this, we first write the
paths from (xa, ta) to (xb, tb) in the form x(t) = xc(t) +
y(t), where xc(t) is the classical path from (xa, ta) to
(xb, tb). So x(t) runs through all paths from xa to xb
as y runs through all loops beginning and ending at 0.
Furthermore, the action for a path x can be written

S[x(t)] = S[xc(t)] +

∫ tb

ta

(
mẋcẏ −mω2xcy

)
dt

+

∫ tb

ta

(
1

2
mẏ2 +

1

2
mω2y2

)
dt.

However, the second term vanishes, which is actually a
direct result of the requirement δS = 0 for the classical
path – the action must not vary to first order in y (more
explicitly, the first term can be integrated by parts, and
then the equation of motion ẍc = −ω2xc shows this term
vanishes). So the exponential of the first term can be

factored out of the path integral, and the path integral
an be expressed as

K(b, a) = e
iS[xc]
h̄

∫ 0

0

exp

(
i

h̄

∫ tb

ta

m

2

(
ẏ2 − ω2y2

)
dt

)
Dy(t).

The classical path and its associated action can be found
straightforwardly by solving the equation ẍ = −ω2x with
the appropriate boundary conditions, and computing the
action explicitly for the result. From this we obtain

S[xc] =
mω

[
(x2
a + x2

b) cos(ω(tb − ta))− 2xaxb
]

2 sin(ω(tb − ta))
.

To compute the remaining path integral, note that we
can shift everything in time so that effectively we have
ta = 0 and tb = T (i.e. the quantity we’re interested in is
only a function F (T ) of the difference T = tb− ta). Then
each path under consideration can be treated as periodic
with period T (since it returns to 0 at time T ), so can be
expanded in Fourier series, say y =

∑
n an sin(nπt/T ).

The result can then be computed by considering the ac-
tion for each individual wave and integrating over the
coefficients aj . This introduces a Jacobian relating the
measure Dy(t) to

∏
daj , and the integration becomes a

product of gaussian integrals in each aj . This is carried
out in detail in [1]; we simply cite the result

F (T ) =
( mω

2πih̄ sinωT

)1/2

.

Combining this with the previous result for eiS[xc]/h̄

yields the full path integral for the harmonic oscillator.

C. Spectrum of the Harmonic Oscillator

We will examine two different methods for finding the
spectrum of the harmonic oscillator in the path integral
formulation. The first is described in [1], which makes
use of the decomposition (13). For this method, we sub-
stitute the expressions

i sinωT =
1

2
eiωT

(
1− e−2iωT

)
,

cosωT =
1

2
eiωT

(
1 + e−2iωT

)

Into our expression for the path integral, obtaining

√
mω

πh̄
e−

iωT
2 (1− e−2iωT )−

1
2 exp

(
−mω

2h̄
(B − C)

)
,

where

B = (x2
a + x2

b)

(
1 + e−2iωT

1− e−2iωT

)
, and

C =
4xaxbe

−iωT

1− e−2iωT
.
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Everything to the right of the factor e−iωT/2 is a function
of e−iωT , so we can taylor expand in this variable, and
the path integral becomes

K = e−
iωT

2

∞∑

n=0

Φn(xa, xb)e
−inωT

=
∞∑

n=0

Φn(xa, xb)e
−iω(n+1/2)T .

Here the Φn represent the coefficients in this expansion,
which are functions of xa and xb. When computed explic-
itly, these do indeed factor into the form φ∗n(xa)φn(xb)
as desired (see [1]), but it is difficult and tedious to carry
out for general n (though this does tell us that, in prin-
ciple, the energy eigenfunctions φn can be found in the
new theory by performing these computations). How-
ever, since this is in the form of (13), this implies that
the energy levels En satisfy

En/h̄ = ω

(
n+

1

2

)
,

again in agreement with the conventional result.
Another way of recovering the spectrum makes use of

an interesting connection to statistical mechanics, which
is also discussed in [1]. For a system with energies En,
an important thermodynamical quantity is the partition
function

Z =

∞∑

n=1

e−βEn ,

Where β = 1/(kBT ), with T the temperature. This func-
tion is significant for the role it plays in the probability
pn of observing the system in state n:

pn =
1

Z
e−βEn .

From this, we see that we can find the probability (den-
sity) of observing the system at position x is given by

P (x) =
1

Z

∞∑

n=1

φ∗n(x)φn(x)e−βEn ,

Since φ∗n(x)φn(x) represents the probability density of
observing x, given that the system is in state n. Now
we notice that the sum is formally identical to the right-
hand side of (13), with xa = xb = x, but with the time
interval tb − ta replaced by −iβh̄ – this is also called a
“Wick rotation.” If we rewrite K as a function of T , say
K(xb, tb;xa, ta) = G(xb, xa;T ) (which is always possible
for systems with time-independent Lagrangians), then
what we are saying is

P (x) =
1

Z
G(x, x;−iβh̄).

Then, since P is normalized, integrating over x and mul-
tiplying by Z yields

Z =

∫
dxG(x, x;−iβh̄).

So we can find the partition function for the harmonic
oscillator by substituting −iβh̄ for T = tb − ta in our
expression for K(xb, tb;xa, ta), also setting xb = xa = x,
and integrate over x to obtain the partition function. In
our case, the integral is just a gaussian integral (we will
omit the computation), and the result is

Z =
1√

2(coshβh̄ω − 1)
.

Then if we expand Z in powers of e−βh̄ω we recover the
spectrum of the harmonic oscillator. Note, however, that
this approach throws away the information about the
wave functions of the eigenstates when we integrate over
x.

IV. DISCUSSION

We have defined the Feynman path integral for quan-
tum mechanics and given some motivation for its form;
we subsequently showed how it could form the basis for
a complete description of quantum mechanics which is
equivalent to the Schrödinger (and therefore also Heisen-
berg) picture. Through analyzing simple but fundamen-
tal systems such as the free particle and harmonic oscil-
lator, we learned how to recover important facts in the
path integral formulation such as the energy eigenval-
ues. However, many important subtleties and questions
have been left unaddressed. Our analysis actually has a
notable weakness – the “time-slicing” definition we used
for the path integral specifies a parameterization of the
path in terms of time, which makes computing the path
integral for potentials which cannot be approximated as
quadratic (to low order) essentially intractable using a
direct method (it is simply not known, generally, how
to compute the integral for such potentials). This is an
extremely significant problem because the Coulomb po-
tential, arguably one of the most important examples,
cannot be analyzed in this manner. This issue is resolved
in [5], by using a different parameterization of the paths.

Additionally, we have not shown much in the way
of substantial advantages of the path integral formula-
tion over the “conventional” descriptions, rather focusing
on showing that certian problems which are eminently
tractable in conventional theories are also doable with
path integrals. However, there are advantages to the
path integral – particularly when it comes to generalizing
non-relativistic quantum theory to more powerful physi-
cal theories (particularly quantum field theory). First, as
a general principle, it is desirable that the path integral
formulation unifies the action principle of Lagrangian me-
chanics and quantum mechanics, but, as noted by Dirac
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[2], this brings with it the more concrete advantage of
being more easily made relativistic, as the action S lends
itself easily to a relativistic form – in particular, the ac-
tion can be taken to be Lorentz invariant, while total
energy (i.e. the Hamiltonian) is not. At first glance, it
may appear that there is still a problem because we have
defined the path integral by parameterizing the paths in
terms of time, thus breaking symmetry between time and
space. However, we are free to reparameterize the path –
for example, in terms of some Lorentz-invariant quantity
like proper time.

Another advantage in a different vein is the way the
path integral for ordinary quantum mechanics serves as
a stepping stone for its analogue in quantum field theory,
where it actually becomes an object of central interest
which is put to diverse uses, one of the most important
of which is in describing scattering (for example, finding
scattering cross-sections). Most introductions to QFT,
such as [4], discuss the application of the QFT-analogue
of the path integral to problems of scattering.

If one grants that QFT is, in some sense, a more funda-
mental description of nature, then the fact that it lends
itself well to a description in terms of path integrals ar-
guably indicates that the notion of the path integral itself
is somehow a very natural, fundamental physical concept.
I hope that the examples reviewed here provide a glimpse
into the workings of the path integral which yields some
sense of why this might be true.
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We discuss the symmetries of elementary particles coming from the quark model. We start by
considering protons and neutrons, which have similar masses and the same strong interactions
but different charges. This would be explained by a formalism of ”isospin” coming from a SU(2)
symmetry. After a general discussion of SU(2) symmetry, we explain isospin symmetry via the
quark model of hadrons. As an application, we estimate the ratio of the magnetic moments of
the neutron and the proton. Finally, we give a brief overview of SU(3) flavor symmetry and the
Eightfold Way.

I. INTRODUCTION

Before the neutron was discovered in 1932, there were
only two other ”elementary” particles known: the elec-
tron and the proton. The neutron has very similar prop-
erties to the proton. For one thing, the mass of the
neutron and the proton are almost identical. In fact,
physicists had earlier been working with a model of the
atom consisting only of protons and electrons. So when
James Chadwick found the neutron, physicists immedi-
ately started trying to explain the similarities between
the proton and the neutron.

Within a year, Werner Heisenberg had come up with
a proposal. Heisenberg suggested that the proton and
the neutron were roughly analagous to the up-spin and
down-spin states of a spin- 12 particle. The proton and
the neutron would similarly be two states of a single par-
ticle. Instead of being up-spin or down-spin, they would
be up-”isospin” or down-”isospin”. The particle’s elec-
tromagnetic properties could depend on isospin, and this
would slightly alter the mass. But the behavior of the
particle under the strong interaction would not depend
on its isospin.

Heisenberg did not have an exact understanding of how
the strong interaction worked. He only knew that there
must be some force stopping the electromagnetic repul-
sions between protons from blowing up the nucleus. He
had no Hamiltonian. But just as spin is a consequence of
the rotation symmetry of the universe, isospin would be
a consequence of an angular-momentum-like symmetry
of the strong interaction’s Hamiltonian. This symmetry
would give all of the angular momentum formalism in this
setting: raising/lowering operators, singlets/multiplets,
etc. This kind of symmetry is called a SU(2) symmetry.

As time went on, many more particles were discovered,
and physicists needed to somehow organize them. Isospin
was a starting point for this organization. By the late
1950s, physicists had found many more isospin families
than the proton and neutron. For example, they knew of
four Delta baryons, all with very similar masses but with
different charges. In the language of isospin, the Delta
baryons could be treated as different states of a single
isospin- 32 particle. But there were still many different
isospin multiplets, so physicists still needed some tool for
arranging those multiplets into even bigger multiplets.

This was accomplished in the 1960s when it was discov-
ered that protons and neutrons, previously thought to be
elementary particles, were actually composed of smaller
particles called quarks. There was an even greater (if
less exact) symmetry present, namely flavor symmetry, a
SU(3) symmetry, and isospin/flavor symmetry was rein-
terpreted as a symmetry of quarks. This had as a natural
consequence the Eightfold Way, a classification scheme
for hadrons. But before sketching these more recent de-
velopments, we spell out the classical picture.

In Section II, we define SU(2) symmetry and explain
in what sense it is equivalent to rotation symmetry and
algebras of angular momentum. We give isospin as an ex-
ample of a SU(2) symmetry. Then in Section III we ex-
plain the quark model of hadrons and reinterpret isospin
as coming from an approximate symmetry between up
and down quarks. We extend this to strange quarks in
Section IV, and give an exposition of SU(3) flavor sym-
metry. Finally, we say a few words about quantum chro-
modynamics in Section V.

II. SU(2) SYMMETRY

Consider the spin state space of an electron. This will
be a two-dimensional vector space V . A rotation T cor-
responds to an unitary operator U on V . Composition
of unitary operators corresponds to composition of rota-
tions, i.e., the unitary matrix corresponding to rotating
by T1 and then rotating by T2 is U2U1. (Note: We have
to consider 360◦ rotations as different from 0◦ rotations;
a 0◦ rotation corresponds to the identity matrix I, while
a 360◦ rotation corresponds to the matrix −I.)

More generally, assume we have a vector space V and
a unitary operator U(T ) for every rotation T such that
U(T2)U(T1) corresponds to rotating by T1 and then ro-
tating by T2. We call this data a SU(2) representation.

We claim that a SU(2)-representation with vector
space V is equivalent to an algebra of angular momentum
on V. We will not fully prove this, but we can still get a
sense of why this might hold. If we take an infinitesimal
rotation T , we will get an infinitesimal unitary matrix
U = 1 + iεA+O(ε2). For U to be unitary, it must satisfy
U†U = 1, or
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(1 + iεA+O(ε2))(1− iεA† +O(ε2)) = 1 +O(ε2)(1)

1 + iε(A−A†) = 1 +O(ε2)(2)

A† = A (3)

So we see that from an infinitesimal rotation we get
a Hermitian operator. We can get back the original ro-
tation by exponentiation. We can now define Sx, Sy, SZ
to be the Hermitian operators corresponding to the in-
finitesimal rotations at a speed of 1 radian per second
around the x, y, z axises. (Note: These are scaled differ-
ently than the usual spin operators.) The point is that for
any unitary SU(2)-representation, these operators will
satisfy an algebra of angular momentum, namely

[Si, Sj ] = 2iεijkSk (4)

We will prove this later. But first we rephrase the
definition of a SU(2) representation. Our new definition
of a SU(2) representation is a vector space V with a
unitary operator U(T ) for every unitary 2 × 2 matrix T
such that U(T2)U(T1) is the operator corresponding to
T2T1.

We have a natural representation, given by taking V
two-dimensional and defining U(T ) to just be T itself.
This is called the fundamental representation. In our
previous definition, this would correspond to the spin- 12
doublet, i.e., the state space of the electron with rotations
acting in the standard way.

It turns out that there is a natural way (which we will
not discuss) to associate to each unitary 2 × 2 matrix a
rotation so that composition of matrices becomes com-
position of rotations. Each rotation will be sent to by
2 different unitary matrices, which reflects the fact that
a 360◦ rotation has a nontrivial effect. This is good: if
we work purely with rotations, we always have to keep
in mind the distinction between 360◦ and 0◦ rotations,
while with unitary matrices no such issues occur.

The spin operators Sx, Sy, Sz are defined as the Her-
mitian operators such that eSxt, eSyt, eSzt correspond to
the infinitesimal 2× 2 unitary operators eiσ1t, eiσ2t, eiσ3t

(t is infinitesimal). This definition corresponds to our
previous definition of the spin operators under the corre-
spondance outlined in the previous paragraph.

We can now see why Sx, Sy, Sz satisfy an algebra of an-
gular momentum. We know, as composition corresponds
to composition, that

eitSxeitSye−itSxe−itSy

is the unitary operator associated to

eiσ1teiσ2te−iσ1te−iσ2t.

We can thus apply Baker-Campbell-Hausdorff to con-
clude that

[Sx, Sy]t2 +O(t3)

corresponds to

[σ1, σ2]t2 +O(t3)

So [Sx, Sy] must correspond to 2iσ3, or [Sx, Sy] = 2iSz.
And so we see that we indeed get our traditional algebra
of angular momentum from a SU(2)-representation.

Now that we have summarized the key properties of
SU(2)-representations, we can explain how isospin can
now be interpreted as a SU(2)-symmetry. For our vector
space V , take the two-dimensional vector space gener-
ated by the state of a neutron and the state of a proton.
We then take our representation to be the fundamental
representation of SU(2). Then we could consider this to
be the vector space of ”isospin-states” of a single particle,
the nucleon. The SU(2) symmetry would give a Hermi-
tian operator Sz, which would have as eigenvectors the
states of a neutron and of a proton. For spin, particles
whose state space is the fundamental representation are
called spin one-half. Using the same terminology in the
context of isospin, we call nucleons isospin- 12 .

III. THE QUARK MODEL AND MAGNETIC
MOMENTS

We now know the structure of two-dimensional isospin
representations. But not all isospin vector spaces will
be two-dimensional; for example, there are four differ-
ent Delta baryons, and we would like to consider them
as four independent eigenvectors of Sz in some isospin
representation. To do, we need some way of generating
higher-dimensional representations.

Imagine that we have a representation V . Then we can
take its kth tensor power, the tensor product V⊗V · · ·⊗V
of k copies of V. This sometimes decomposes into smaller
representations. For example, if we take the 2nd ten-
sor power of the fundamental representation, we get a
direct sum of a three-dimensional representation and a
one-dimensional representation. In this way, we can get
higher-dimensional representations. It turns out that the
third tensor power of the fundamental representation is
the direct sum of a four-dimensional representation and
two fundamental representations. We would like to say
that this is the four-dimensional Delta baryon represen-
tation.

Where does a tensor product arise physically? It arises
whenever we have multi-particle systems. So one way we
could get the Delta baryon representation is if they were
composed out of three isospin- 12 particles.

This is indeed the case. In fact, even the proton
and neutron turn out not to be elementary. Delta
baryons and nucleons are both composed of particles
called quarks, of which there are 6 types (called flavors).
We temporarily focus on two particular flavors, namely
up-quarks and down-quarks. The state space generated
by up-quarks and down-quarks is the fundamental repre-
sentation under isospin. All the isospin families we have

288 Isospin, Flavor Symmetry, and the Quark Model



Isospin, Flavor Symmetry, and the Quark Model 3

seen are just pieces of a tensor power of the up/down
quark doublet.

You cannot isolate a lone quark. All particles we know
of that consist purely of quarks contain three quarks,
and such a particle is called a baryon. (There are also
mesons, which are composed of one quark and one an-
tiquark.) Every particle we have discussed to this point
is a baryon. For example, a proton is two up-quarks
and a down-quark, while a neutron is two down-quarks
and a up-quark. So here, we see that the nucleons (neu-
trons/protons) correspond to an isospin doublet in the
third tensor power of the up/down-quark isospin doublet.
This matches up with what we already know: when we
take the third tensor power of a spin doublet, we get a
spin quartet and two spin doublets. Furthermore, the
quartet in the third tensor product corresponds to the
Delta baryons.

Simiarly, for mesons, when we tensor the two-
dimensional quark representation with the two-
dimensional antiquark representation we get a triplet
and a singlet. And indeed, we observe a family of three
particles corresponding to that triplet, namely the pi
mesons. We will not discuss mesons further.

We will derive equations for nucleon states later, so for
now we content ourselves with giving the Delta baryon
states. For the delta baryon states, we have

|∆++〉 = |uuu〉

|∆+〉 =
1√
3

(|uud〉+ |udu〉+ |duu〉)

|∆0〉 =
1√
3

(|udd〉+ |dud〉+ |ddu〉)

|∆−〉 = |ddd〉

Note that every state is completely symmetric in the
three quarks. In general, the kth tensor power of any
SU(2) representation will contain a representation with
all states completely symmetric.

So how does the quark model explain why neutrons
and protons have such similar properties? Well first of
all, up and down quarks behave the same in the strong
interaction. So neutrons and protons also have the same
strong interactions. Furthermore, up and down quarks
have much smaller masses than the neutron and proton,
so the variation in mass affects the masses of the neutron
and proton only a bit. Finally, the charge of the up
quark is 2

3e, while the charge of the down quark is − 1
3e.

Therefore, the neutron is neutral, while the proton has
charge 2

3e+ 2
3e− 1

3e = e.
As another application, we can use the quark model to

estimate the magnetic moments of hadrons. In particu-
lar, we will estimate the ratio of the magnetic moment
of the proton to the magnetic moment of the neutron. If
the neutron were elementary, it would have no magnetic
moment as it has no charge. But as it is composed of

three quarks and each of those quarks has a charge, the
neutron has a magnetic moment.

Before we can calculate anything, we need to analyze
the state of a proton (or really, the state of a 3 quark
system inside the proton.) We make the simplifying as-
sumption that the quarks don’t interact in any way. In
that case, their relative positions within the proton do
not matter, so we simply ignore the position part of their
state. Disregarding position, there are three attributes of
a quark that we need to take into account. Two are spin
and isospin. The third is a more complicated property
specific to quarks, called color. The possible color states
of an individual quark form a three-dimensional vector
space, and the tensor corresponding to a triple of quarks
must be totally antisymmetric. As there is only one to-
tally antisymmetric element in the third tensor power of
a three-dimensional vector space, the total color vector
space is one dimensional and hence we can ignore it.

As quarks are spin-12 , the Pauli exclusion principle tells
us that the state of a proton must be antisymmetric with
respect to the three quarks in it. As the color part of
the state is already antisymmetric, the spin/isospin part
must be symmetric. (We are disregarding the position
wavefunction here; it turns out that must be symmetric
as well.) Furthermore, we know that if we consider the
spin-up state of a proton, the z-projections of spin and
isospin will both be 1

2 . This tells us that the state must
be some linear combination of

|u ↑ u ↑ d ↓〉+ |u ↑ d ↓ u ↑〉+ |d ↓ u ↑ u ↑〉

and

|u ↑ u ↓ d ↑〉+ |u ↓ u ↑ d ↑〉+ |u ↑ d ↑ u ↓〉
+|u ↓ d ↑ u ↑〉+ |d ↑ u ↓ u ↑〉+ |d ↑ u ↑ u ↓〉

To figure out which linear combination, we need to
also use that the total spin is 1

2 . (We could also use that

the total isospin is 1
2 , but this turns out to give the same

equation.) The total spin being 1
2 tells us that the raising

operator (which will turn the ↓s into ↑s) must annihilate
the space. Our above two states get sent by (the same
multiple of) the raising operator to (respectively)

|u ↑ u ↑ d ↑〉+ |u ↑ d ↑ u ↑〉+ |d ↑ u ↑ u ↑〉

and

2(|u ↑ u ↑ d ↑〉+ |u ↑ d ↑ u ↑〉+ |d ↑ u ↑ u ↑〉)

so we see that the state of a proton must be

1√
18

(|u ↑ u ↓ d ↑〉+ |u ↓ u ↑ d ↑〉+ |u ↑ d ↑ u ↓〉

+|u ↓ d ↑ u ↑〉+ |d ↑ u ↓ u ↑〉+ |d ↑ u ↑ u ↓〉
−2|u ↑ u ↑ d ↓〉 − 2|u ↑ d ↓ u ↑〉 − 2|d ↓ u ↑ u ↑〉)
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In particular, we see that the down-quark has proba-
bility 1

3 of being up-spin, while the two up-quarks have

probability 5
6 of being up-spin. If we let µu denote the

magnetic moment of the spin-up up-quark and µd denote
the magnetic moment of the spin-up down-quark, then
we see the expected magnetic moment of an up-quark is
2
3µu and the expected magnetic moment of a down-quark

is − 1
3µd. Therefore the expected magnetic moment of a

proton is 4
3µu − 1

3µd. Furthermore, as an up-quark has
charge −2 times the charge of a down-quark, we expect
µu to be around −2µd. We can thus estimate the mag-
netic moment of a proton as −3µd.

We can repeat this argument for a neutron. We will
find that the state of a neutron is

1√
18

(|d ↓ d ↑ u ↓〉+ |d ↑ d ↓ u ↓〉+ |d ↓ u ↓ d ↑〉

+|d ↑ u ↓ d ↓〉+ |u ↓ d ↑ d ↓〉+ |u ↓ d ↓ d ↑〉
−2|d ↓ d ↓ u ↑〉 − 2|d ↓ u ↑ d ↓〉 − 2|u ↑ d ↓ d ↓〉)

and here the two down-quarks have probability 1
6 of

being up-spin, while the up-quark has probability 2
3 of

being up-spin. The magnetic moment is thus − 4
3µd +

1
3µu = −2µd, and we finally see that the quark model
predicts that the ratio between the magnetic moment of
the proton and the magnetic moment of the neutron is 3

2 .
This heuristic argument fares quite well; the actual ratio
is around 1.46.

To get a possible isospin state for the proton and the
neutron, we just take only the terms in the above expres-
sions with the fixed spin state ↑↑↓〉 or ↑↓↓ . We thus get
the expressions

1√
6

(|duu〉+ |udu〉 − 2|uud〉)

for the proton and

1√
6

(|udd〉+ |dud〉 − 2|ddu〉)

for the neutron. (Note that these are only one possibil-
ity for there states. For example, you could get a different
possibility by permuting the three quarks, as the above
two expressions are not symmetric.)

IV. SU(3) FLAVOR SYMMETRY AND THE
EIGHTFOLD WAY

As mentioned before, there are quarks of flavors other
than up and down. The other four flavors of quarks are
strange, charm, bottom, and top. Up and down quarks
are the most common (as the other flavors rapidly decay
into them) and have the smallest mass. The quark with
the next smallest mass is the strange quark, and we would

like to be able to have an analogue of the isospin story
for particles made out of up, down, and strange quarks.
In particular, it would be nice if we could group such
particles into families of similar mass, just as we grouped
the nucleons (neutron/proton) together and the Delta
baryons together.

These hopes are answered by something called SU(3)
flavor symmetry. What is a SU(3) symmetry? Well now
that we have a definition of a SU(2)-representation in
terms of 2× 2 unitary matrices, we can now easily define
a SU(n)-representation for any n: simply replace 2 × 2
matrices with n× n matrices.

And so if we take the three-dimensional vector space
spanned by up, down, and strange quarks, it will nat-
urally be a SU(3)-representation: the unitary operator
corresponding to a unitary 3×3 matrix can just be taken
to be itself. This SU(3) symmetry is called flavor sym-
metry. As before, if we want to predict what flavor sym-
metry does to hadrons, we should look inside pieces of
the (third) tensor power of the quark state space.

The decomposition of SU(3) tensor powers is more
complicated than that of SU(2) tensor powers. It can be
computed that the third tensor power decomposes into a
decuplet (i.e. a SU(3)-representation of dimension 10),
two octets, and a singlet. The decuplet would have one
particle for every combination of up, down, and strange
quark, while the octets would have no |uuu〉, |ddd〉, or
|sss〉 but would have two particles composed of one up,
one down, and one strange quark. To give a taste, here
are the states for the decuplet:

|∆++〉 = |uuu〉

|∆+〉 =
1√
3

(|uud〉+ |udu〉+ |duu〉)

|∆0〉 =
1√
3

(|udd〉+ |dud〉+ |ddu〉)

|∆−〉 = |ddd〉

|Σ∗+〉 =
1√
3

(|uus〉+ |usu〉+ |suu〉)

|Σ∗0〉 =
1√
6

(|uds〉+ |dus〉+ |usd〉+ |dsu〉+ |sud〉+ |sdu〉)

|Σ∗−〉 =
1√
3

(|dds〉+ |dsd〉+ |sdd〉)

|Ξ∗0〉 =
1√
3

(|uss〉+ |sus〉+ |ssu〉)

|Ξ∗−〉 =
1√
3

(|dss〉+ |sds〉+ |ssd〉)

|Ω−〉 = |sss〉

As we know that the strange quark has charge − 1
3 ,

we could calculate the charges of all of these particles.
Furthermore, the masses of any two particles in the same
family would be close. If they had the same number of
strange quarks, the masses would be very close.
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In the case of the octet, there were known particles
fitting these descriptions that could be nicely organized
together. In fact, this organization, called the Eightfold
Way, precluded the introduction of the quark model. In-
deed, the quark model arose out of attempts to give a
conceptual explanation for this organization.

On the other hand, in the case of the decuplet, only
nine of the ten particles were known when the Eightfold
Way was introduced. The |sss〉 particle had not yet been
discovered. Murray Gell-Mann, one of the (independent)
discoverers of the Eightfold Way and the quark model,
predicted that there would be a new particle, the omega-
minus particle, fitting in the |sss〉 spot. Such a particle
would have charge -1, and Gell-Mann could also predict
its mass.

The omega-minus particle was discovered in 1964, only
a few years after the introduction of the Eightfold Way.
Its discovery essentially confirmed the validity of the
Eightfold Way, and Gell-Mann would win a Nobel prize
in 1969.

V. CONCLUDING WORDS

We’ve seen that isospin, flavor symmetry, and quarks
are fantastic tools for the classification of hadrons. By

decomposing particles into quarks, we can calculate their
charge and approximate their mass. Nowadays, we have
experimental proofs of quarks, even though no quarks
can be isolated.

However, because of the impossibility of isolating
quarks, there was a period where the physicality of the
quark model was greatly in question. But eventually a
theory was proposed for how quarks are confined, or in
other words, why quarks always appear inside hadrons.
Still no analytic proof of confinement exists, but it is
almost certainly true.

Nowadays, quarks play a prominent role in quantum
chromodynamics, the quantum field theory of the strong
force. Quantum chromodynamics, or QCD, is one of the
parts of the Standard Model, the comprehensive descrip-
tion of all forces other than gravity. It describes the
dynamics of quarks and gluons, the elementary particles
participating in the strong interaction.

[1] Griffiths, Introduction to Elementary Particles
[2] S. Coleman, Aspects of Symmetry
[3] http://www.physics.umd.edu/courses/Phys741/xji/chapter3.pdf

[4] ”On the Consequences of the Symmetry of the Nuclear
Hamiltonian on the Spectroscopy of Nuclei”, E. Wigner
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Nuclear Magnetic Resonance (NMR) is a powerful analytical technique that allows researchers to
determine the underlying characteristics and compostions of molecules. In order for NMR to prop-
erly polarize its samples, however, it relies on the use of superconducting magnets that are highly
immobile, expensive, and require cryogenic temperatures in order to operate sufficiently. There has
been great interest in instead exploring Nuclear Quadrupole Resonance (NQR) that does not rely
on the use of superconducting magnets but instead analyzes the nuclear quadrupole interactions
with an Electric Field Gradient (EFG) created by surrounding charges. This report explores the
derivation for the quantum expression of the NQR Hamiltonian, assuming that energy of the sys-
tem can be described by the product of the nuclear electric quadrupole moment and the EFG. As
superconducting magnets generate homogeneous fields for acquiring high signal-to-noise data used
in NMR analysis, alternative hyperpolarization techniques for NQR spectroscopy are also discussed.

I. INTRODUCTION

The phenomenon of magnetic resonance has become
an essential tool in a diverse number of fields since its
discovery by Bloch and Purcell 60 years ago[1]. Pow-
erful analytic devices relying on magnetic resonance al-
low researchers to determine the structures of chemical
and biological samples, further revealing their underlying
characteristics and compositions. In medicine, magnetic
resonance serves as the foundation of magnetic resonance
imaging (MRI) technology that allows physicians to ac-
quire a clear picture inside a patient’s body while avoid-
ing invasive surgical procedures and the external health
risks associated with other imaging systems[2].

Magnetic resonance, however, is not just restricted to
studying the human body but has also allowed phys-
ical scientists to understand the underlying mechan-
ics of molecules[3]. The magnetic resonance technique
that revolutionized the study of chemical characteristics
and molecular dynamics is nuclear magnetic resonance
(NMR).

NMR and MRI both use resonant radio-frequency
pulses to perturb nuclear spins, yielding unique spectra
that are indicative of molecular structure[3]. In order to
generate a sufficient magnetic field to achieve high spin
polarization, however, superconducting magnets are typ-
ically required to create a large, homogenous magnetic
field. This is problematic, however, in that supercon-
ducting magnets are immobile, expensive, and require
cryogenic temperatures in order to operate sufficiently.

With these drawbacks in mind, there has been great
interest in engineering portable, low-cost, cryogen-free
devices utilizing Nuclear Quadrupole Resonance (NQR)
spectroscopy instead, often referred to as ‘Zero-field
NMR’[2]. These spectrometers have the ability to enable
chemical analysis at greatly reduced cost in environments
not accessible to standard high-field NMR technology.

As in NMR spectroscopy, the primary goal of NQR
spectroscopy is to analyze the energy level transitions and
spin relaxations of molecules. NQR spectroscopy, how-
ever, does not rely on the application of magnetic fields

but rather analyzes the nuclear interactions with an Elec-
tric Field Gradient (EFG) created by the surrounding
charges in the medium. As the nucleus can only inter-
act with the EFG via its electric quadrupole moment, a
unique Hamiltonian must be derived in order to conduct
tests and collect data using NQR spectroscopy.

Section II outlines the derivation of the NQR Hamil-
tonian. We start off with a nucleus sitting in a solid
which, in the absence of a magnetic field, interacts with
the surrounding charges via its nuclear quadrupole mo-
ment. Section II A shows that the nucleus orients itself
such that it rests in an equilibrium position in which
the electric field is zero. As the nuclear quadrupole mo-
ment changes the shape of the distribution of the nuclear
charges, however, the nuclear interactions with the sur-
rounding EFG is non-zero.

Section II B goes on to outline Das and Hahn’s original
formulation of the nuclear quadrupole moment and EFG
as tensor functions. Das and Hahn composed these func-
tions by parameterizing the nuclear shape by a multipole
expansion of the external electric field. These functions
are spherically symmetric and transform like the spheri-
cal harmonics.

Section II C goes on to fully express the nuclear
quadrupole tensor by evaluating the spherical harmon-
ics corresponding to the `=2 angular momentum states,
the first excited interaction states with the EFG. The
EFG tensor is fully formulated in Section II D after eval-
uating two sets of spatial derivatives of the Coulombic
potential surrounding the nucleus. Once both the nu-
clear quadrupole and EFG tensors are fully developed,
we take the product of these two tensors to derive the
final quantum expression of the NQR Hamiltonian.

II. GENERAL FORMALISM

A. The Nuclear Shape in a Medium

A nucleus sitting in a solid will feel an external electric
field generated by charges in the surrounding medium.
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The nucleus in turn will rest in an equilibrium position
to minimize the electric field and so in the absence of a
magnetic field, the first non-zero interactions are with the
electric quadrupole moment of the nucleus. Nuclei with
a total nuclear spin, I, greater than 1

2 will posses a non-
zero quadrupole moment and will have a nuclear charge
distribution resembling either a prolate (“stretched”) or
an oblate (“squashed”) spheroid as shown in Figure 1.

FIG. 1: Two orientations of a non-spherical nucleus inter-
acting with external charges in a surrounding medium. An
electric field is generated by charges sitting in lattices sur-
rounding the nucleus. Althogh the nucleus can orient itself
such that this electric field is zero, the second set of spatial
derivatives of this electric field, called the EFG, is nonzero.
The configuration on the left, the prolate spheroid, is lower
in energy than that shown on the right, the oblate spheroid.

Although the nucleus can rest in this orientation, the
gradient of this electric field, however, is not necessarily
zero. The second set of spatial derivatives of the elec-
trostatic potential evaluated at the nucleus is non-zero,
however, when interacting with non-spherical nuclei and
thus giving rise to the EFG.

B. Outline of Das and Hahn’s Tensor Functions

Das and Hahn formulated tensor functions that de-
scribe the nucleus interacting with the EFG generated by
surrounding charges[4]. Although the derivation of these
tensor functions are not derived explicitly in this report,
an outline of their steps are explained in this section.

Das and Hahn started by creating an explicit form of
the nuclear quadrupole moment. The nuclear shape can
be parameterized by a multipole expansion of the exter-
nal field or potential felt by the nucleus.

V (r) =
1

4π

∫
ρ(r′)
|r − r′|d

3r′ (1)

where |r − r′| is the distance to the observer and ρ(r′)
describes the density of the charges sitting in the poten-
tial. If the observer is sitting very close to this potential
or r′ << r, the potential can be expanded in powers of

r’/r and generate a set of Legendre polynomials [5]. This
assumption is valid as nuclei sitting in a lattice will be in
close proximity to its surrounding charges. The expan-
sion results in three relevant terms, a first-order overall
nuclear charge term, an electric dipole term and an elec-
tric quadrupole term.

The nuclear wavefunction has a defined parity, how-
ever, so the electric dipole moment is always zero. More-
over, as the nuclear quadrupole moment is non-spherical,
only the quadrupole term will interact with the EFG. We
can disregard the first term of the power expansion, re-
sulting in the first non-zero interaction term of the po-
tential, the electric quadrupole moment. The nuclear
quadrupole is non-spherical and describes the distribu-
tion of nuclear charges by

eQ =

∫
ρr2(3 cos2 θ − 1)dτ (2)

where ρ is the charge density in a small volume element,
dτ , inside the nucleus at a distance r.

As the total potential energy of a nucleus sitting in a
lattice is formulated by taking the product of the contri-
butions of the nuclear quadrupole moment and the EFG,
Das and Hahn created tensor functions to explicitly de-
fine their interactions. If we instead defined equation 2
in terms of the Legendre polynomials, P`(cos θ), we can
can reformulate the nuclear charge distribution in terms
of the spherical harmonics, Y m` (θ, φ). The electric field
tensor can be treated similarly, resulting in the nuclear
quadrupole tensor and electric field tensor functions, re-
spectively, from Das and Hahn used to derive the NQR
Hamiltonian in this report[4].

Nm
` =

(
4π

2`+ 1

)1/2∑

i

eir
2
i Y

m
` (θi, φi) (3)

E−m` =

(
4π

2`+ 1

)1/2∑

j

ejY
m
` (θj , φj)

r(`+1)
(4)

C. The Nuclear Quadrupole Moment Tensor

The energy level transitions are created by the elec-
tric quadrupole moment interacting with the EFG. The
Hamiltonian operator can be expressed as the sum of the
tensor products that define the electrostatic charge inter-
actions between the nucleus and the external field:

Ĥ =
∞∑

`=0

∑̀

m=−`
Nm
` · E−m`

where ` and m are quantum numbers that describe the
azmuthal angular momentum and the magnetic moment

Nuclear Quadrupole Resonance Spectroscopy 293



Nuclear Quadrupole Resonance Spectroscopy 3

of the nucleus, respectively. This expression for the
Hamiltonian can be Taylor expanded considering that
the energy level splittings created by the EFG are per-
turbative. Given that odd ` states disrupt the symmetry
constraints on the nuclear wavefunction, only the even
angular momentum states survive[6].

Ĥ = N0
0E

0
0 + N0

1E
0
1 +N±11 E±11 +N0

2E
0
2

+ N±12 E±12 +N±22 E±22 + ...

The terms with `=0 correspond to the Coulomb inter-
actions within the system. These interactions are suf-
ficiently high in energy and are not considered[6]. The
next nonzero terms are the `=2 momentum states that
describe the nuclear quadrupole interactions. We can
solve for each set of nuclear quadrupole states by choos-
ing the corresponding quantum numbers for each state,
where ` = 2 and m = [−2, 2], and utilizing the known
forms of the spherical harmonics as provided in Equa-
tion (5)[7].

Y 0
2 (θ, φ) =

1

4

√
5

π
(3 cos2 θ − 1)

=
1

4

√
5

π

(2z2 − x2 − y2)

r2
(5)

where {r}2 = x2 + y2 + z2. Both the nuclear quadrupole
moment tensor and electronic tensor functions are pro-
portional to the spherical harmonics and can be fully ex-
pressed in terms of Cartesian coordinates. When treated
as such, the first non-zero nuclear terms are expressed as:

N0
2 =

1

2

∑

i

ei(3z
2
i − (x2i + y2i + z2i )) (6)

N±12 =

√
6

2

∑

i

eizi(xi ± iyi) (7)

N±22 =

√
6

4

∑

i

ei(xi ± iyi)2 (8)

Further, it is easier to generalize this set of expressions
in terms of a general quadrupole moment tensor, Qm,
given that all the first non-zero terms in the Hamiltonian
are in the `=2 angular momentum state.

Moreover, we need to express these relations in terms
of the total nuclear spin operator, Î. As the primary goal
of NQR spectroscopy is to analyze the spin dyamics of
molecules in a medium, the total nuclear spin is used to
understand the underlying dynamics and configurations
of molecules. Given the general expressions for spin op-
erators, Î = (Î2x + Î2y + Î2z ) and |Î2| = I2[6], equations
(6-8) can be rewritten as:

Q0 =
1

2
κ(3Î2z − Î2)

Q±1 =

√
6

4
κ(Îz Î± + Î±Îz)

Q±2 =

√
6

4
κÎ2± (9)

where the ladder operator is defined as Î± = Îx± iÎy and
κ is a normalization constant resulting from reformulat-
ing the nuclear quadrupole moment as a function of the
Cartesian spatial operators to a function of the nuclear
spin operators.

The total charge of the nucleus is the sum of all the
individual charges that constitute the atom,

∑
i ei. As

neutrons do not carry charge, only protons and electrons
will contribute to the overall charge. If we choose that the
maximum component of the nuclear charge aligns along
the ẑ axis, assigning axial symmetry to the system, κ can
be evaluated by[4]:

eq ≡ κ 〈I, I| 3Î2z − Î2 |I, I〉 (10)

As the nuclear tensor matrix elements in states |I,M〉
are formed from a basis of angular momentum eigen-
states, the Wigner-Eckhart theorem can be used to cal-
culate κ. This relation is evaluated to find

κ =
eq

I(2I − 1)
(11)

We can plug in this value for κ into Equation (9) to report
the final set of expressions for the nuclear quadrupole
moment.

Q0 =
eq

2I(2I − 1)
(3Î2z − Î2)

Q±1 =

√
6eq

4I(2I − 1)
(Îz Î± + Î±Îz)

Q±2 =

√
6eq

4I(2I − 1)
Î2± (12)

D. The Electric Field Gradient Tensor

The electronic tensor functions share a similar form to
the nuclear tensor in which they also transform like the
spherical harmonics. The electronic tensors differ, how-
ever, in that they are not functions of the total nuclear
spin operator but rather the Coulombic potential created
by the charges surrounding the nucleus. The tensor needs
to require that the electric field is generated solely by the
charges in the medium and is centered on the nucleus.
We can then, at first, treat the electronic tensor function
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similarly to that of the nuclear tensor to express the elec-
tronic tensor function in Cartesian coordinates, again by
using the known forms of the spherical harmonics.

E0 =

(
4π

5

)1/2∑

j

ejY
0
2 (θj , φj)

r3

=
e

2

∑

j

3z2j − r2j
r5j

E±1 =

√
6e

2

∑

j

zj(xj ± iyj)
r5j

E±2 =

√
6e

4

∑

j

(xj ± iyj)2
r5j

(13)

From here, the electric field tensor needs to evaluated
in terms of the central potential. The electrostatic poten-
tial at the nucleus can be modeled like a general coulom-
bic potential, given below:

V (r) =
q2

4πε0r

Taking the nucleus to be the origin of the coordinate
system, the EFG is given by the second set of spatial
derivatives of the Coulombic potential.

Vij = −∇2V (r)

= −



Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz




= −χ




2x2 − y2 − z2 3xy 3xz
3yx 2y2 − x2 − z2 3yz
3zx 3zy 2z2 − y2 − x2




where Vij = ∂2V
∂xi∂xj

and χ = q2

4πε0r5
that describes the

volumetric electric field density.
We can choose a proper set of principal axes to diag-

onalize the matrix in addition to the three components
associated with the principal axis directions. Moreover,
by using the Laplace equation, ∇2V (r) = 0, the resultant
matrix created is traceless so that the electric field at the
nucleus is produced entirely by the charges external to
the nucleus[10]. Using the matrix elements of the EFG,
the electric field tensor can be re-evaluated as:

E0
2 =

e

2

∑

j

3z2j − r2j
r5j

= −e
2
V̂zz

E±12 = ∓
√

6e

6
(V̂xz ± iV̂yz)

E±22 = ±
√

6e

12
(V̂xx − V̂yy ± 2iV̂xy) (14)

Finally, Das and Hahn devised an asymmetry
paramter, η, to measure the deviation of the EFG from
cylindrical symmetry[4].

η =
V̂xx − V̂yy

V̂zz

The parameter η can vary from 0 to 1 where η=0 cor-
responds to symmetry around the ẑ axis. We want to
align the maximum component of the nuclear potential
so that it is symmetric around the nucleus and it aligns
with the ẑ axis. When η=0, the components of the EFG
tensor are:

Vxx = Vyy = −1

2
eq

Vzz = eq (15)

As expected, the maximal component of the EFG ten-
sor aligns along the ẑ axis and is symmetric in respect to
the other axes. Additionally, the resultant EFG tensor is
diagonalized such that all the off-diagonal elements are
zero. Using all the redefined parameters,the matrix ele-
ments of the EFG tensor and the asymmetry parameter,
the electric field tensor functions are evaluated as:

E0 =
eq

2

E±1 = 0

E±2 =

√
6eq

12
η (16)

We now have all of the relevant expressions to re-
port the final quantum NQR Hamiltonian. The end of
Section II B gives the final expressions for the nuclear
quadrupole moment tensor function in terms of the total
nuclear spin operator, Î. We can combine the nuclear
quadrupole tensor with the electronic tensor function,
in terms of the EFG matrix elements in Equation (16),
to derive the nuclear quadrupole interactions with the
surrouding charges. As described in the Hamiltonian in
Equation (5), the product of the nuclear quadrupole ten-
sor and the electronic tensor results in the final expression
of the NQR Hamiltonian[8].

Ĥ =
eq

2I(2I − 1)
(3Î2z − Î2 +

η

2
Î2±) (17)

III. BEYOND THE HAMILTONIAN:
HYPERPOLARIZATION TECHNIQUES FOR

NQR SPECTROSCOPY

The utilization of the NQR Hamiltonian is important
in that it allows researchers to conduct magnetic reso-
nance spectroscopy without the restrictions created by
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using superconducting magnets. Superconducting mag-
nets, although they create high signal-to-noise data by
generating a large, homogeneous magnetic field to spin
polarize molecules to a high degree of homogeneity, they
are largely limited by their immobility and cost. In-
stead, NQR spectroscopy does not rely on supercon-
ducting magnets but rather uses hyperpolarization tech-
niques and direct optical detection of NMR signals to
compensate[11].

Using extremely sensitive direct optical detection of
the NMR signal amends the low detection efficiency of
NMR at low magnetic fields. Hyperpolarization is a tech-
nique that allows NQR spectroscopy to be possible, by re-
placing the thermal equilibrium spin distribution, which
produces very low signals at low magnetic fields, with a
long-lived non-equilibrium distribution favoring one spin
state over the other[11]. When 129Xe is hyperpolarized
through means of spin-exchange with optically pumped
87Rb atoms, 129Xe will be polarized by 3 to 4 orders
of magnitude more than the maximum value if it was
polarized using strong magnets[13]. The hyperpolarized
129Xe, with its greatly enhanced NMR signal, may then
be used for probing a variety of phenomenon, such as the
presence or lack of biological molecules[12].

FIG. 2: An experimental model that flows Xenon through a
microfluidic chip. Xenon flows in and out through glass tub-
ings attached to the back of the chip. There are two 795 nm
lasers that interact with the system: the pump and probe
beams. The pump beam transfers its energy to the Rubidium
Azide which in turn polarizes the Xenon. The probe beam is
guided by the two mirrors and comes through the microflu-
idic chip perpendicular to the pump beam. We analyze the
transferred polarization in the probe beam when it comes out
of the magnetometer to detect for hyperpolarization.

This technology can be further miniaturized using
standard microfabrication techniques to work on a mi-
crofluidic chip[13]. The microfluidic chip that is created
is no more than a couple of centimeters wide and a couple
of millimeters thick as opposed to high-field NMR spec-
troscopy where the superconducting magnets can weigh
a couple tons.

Optical polarization, however, isnt the only tech-
nique of increasing low-field NMR signal-to-noise.
Parahydrogen-induced polarization is one particularly ef-
fective technique to amplify the low-field NMR signal to

help determine chemical composition[14]. When parahy-
drogen is added to an analyte via hydrogenation, the non-
equilibrium singlet spin polarization is spread throughout
the molecule through spin-spin couplings. The spread of
spin order is particularly effective at zero to low mag-
netic fields because the couplings are not truncated by
chemical shift differences[12].

FIG. 3: The spectrum depicts parahydrogen hydrogenating a
reference styrene sample, proving that hyperpolzariation can
be achieved using parahydrogen as it increased the styrene
hyrdogenation signal under no applied magnetic field. The
shaded boxes are used to identify the contributions from the
α and β isotopermers with 13C on the benzene ring.

Parahydrogen-induced spin polarization is a valuable
tool for vastly increasing the intensity of the spectral
peaks used to characterize chemical structures in NQR
spectroscopy, improving the sensitivity of the technique
by orders of magnitude. Increased spin polarization also
further extends the applicability of NQR to dilute an-
alytes in solution, also eliminating the need for isotopic
labeling[14]. This allows NMR researchers to explore low-
field spectra of essential, complex biomolecules including
amino acids, peptides, and neurotransmitters.

IV. CONCLUSION

NQR spectroscopy, unlike in NMR, does not rely on
the use of magnetic fields to split the energy levels but
rather analyzes the effect of an EFG created by charges in
a medium on the nuclear quadrupole moment. The first
non-zero terms of the Hamiltonian are the terms in which
the EFG interacts with the non-spherical moment of the
nucleus, the electric quadrupole moment, corresponding
to the `=2 angular momentum states. The nuclear inter-
actions can be described by a tensor function that trans-
forms like the spherical harmonics and is in terms of the
total nuclear spin operator, Î. As the components of
the nuclear quadrupole tensor are eigenstates of angular
momentum, the Wigner-Eckhart theorem was used to
normalize the quadrupole tensor functions to align the
maximum nuclear spin component along the ẑ axis.
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The electric field tensor function can be treated simi-
larly as it also transforms like the spherical harmonics. It
must be expressed, however, in terms of the Coulombic
potential surrounding the nucleus. Assigning the EFG
so that it is produced entirely by the charges external
to the nucleus and the potential is completely symmet-
ric around ẑ axis, the final form of the electronic tensor
function is expressed in terms of the EFG matrix ele-
ments. By combining the final expression for the nuclear
quadrupole and EFG field tensors, the full quantum ex-
pression for the Hamiltonian is formulated.

The NQR Hamiltonian allows researchers to conduct
magnetic resonance analysis without the use of a super-
conducting magnet. NQR spectroscopy is limited by ex-
tremely low thermal spin polarization and poor detection
sensitivity so hyperpolarization, the polarization of nu-
clear spins far beyond thermal equilibrium, is used to
generate data with large signal-to-noise in order to con-
duct NQR spectroscopy.

Two different techniques were explored: optical detec-
tion of NMR signals through means of optically pumped
87Rb atoms and the application of parahydrogen. 129Xe
can be hyperpolarized by 3 to 4 orders of magnitude

more than the maximum value if it was polarized using
strong magnets. Moreover, optical detection of NMR sig-
nals can be transferred onto a microfluidic chip, opening
the door for portable NMR analysis. Further, parahy-
drogen can be added to an analyte such that the non-
equilibrium singlet spin polarization is spread throughout
the molecule through spin-spin couplings, thus hyperpo-
larizing the sample.
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The isotropic harmonic oscillator has many degeneracies in its energy spectrum, which increase in
number at higher dimensions. These degeneracies are explained by symmetries of the Hamiltonian,
some of which are obvious, and others of which seem “hidden.” One way to organize the degeneracies
is using angular momentum; however, we find that this organization is insufficient in explaining all
of the degeneracies. The symmetry of an N dimensional harmonic oscillator in general can be
understood in terms of the special unitary SU(N) group, which we will develop. This formalism will
be used to derive and understand the conserved operators of the 2D and 3D harmonic oscillator.

I. INTRODUCTION

Problems in quantum mechanics that have symmetry
will exhibit degeneracies. Some problems have a natu-
ral way to organize these degeneracies; one example is
into angular momentum states. Our intuition is that
these problems have rotational symmetry, and thus an-
gular momentum. However, it may be that some of these
symmetries may be hidden as angular momentum. This
means that their associated operators satisfy the algebra
of angular momentum, but do not have the antisymmet-
ric property of true angular momentum operators. One
example of this type of problem is the isotropic harmonic
oscillator.

In general, a symmetry is represented by an operator
G, that commutes with the Hamiltonian of the system

[H,G] = 0. (1)

It is known that the expectation value of such an oper-
ator does not change over time [6]. For the isotropic
harmonic oscillator, we can construct operators Ji that
both commute with H and satisfy the algebra of angu-
lar momentum. These operators obey the commutation
relations

[Ji, Jj ] = ih̄εijkJk (2)

i, j, k = 1, 2, 3.

We can choose a basis that is an eigenstate of J2 = J2
x +

J2
y + J2

z and Jz and label the respective eigenvalues by j
and m. In this basis, we can write raising and lowering
operators J+ and J−

J± |j,m〉 = h̄
√
j(j + 1)−m(m± 1)) |j,m± 1〉 (3)

that relate states with different angular momenta. The
J+ and J− operators are related to Jx and Jy by

J± =
Jx ± iJy√

2
. (4)

We run into a problem when we try to use only these
“angular momentum” operators to explain the symme-

tries of the isotropic harmonic oscillator. 1 We first no-
tice that there are only three of these operators: Jx, Jy,
and Jz. However, the number of symmetries in an N -
dimensional isotropic harmonic oscillator is not always
three. In fact, for some values of N , the number of sym-
metries is not even a multiple of three.2 We will also
show that for some values of N , writing the eigenstates
in the angular momentum basis still leaves unexplained
degeneracies. Thus, these “angular momentum” opera-
tors can not completely explain the symmetries in the
isotropic harmonic oscillator.

The origin of these fake “angular momentum” oper-
ators is not immediately obvious. In this short paper,
we will construct and explain the conserved operators in
the isotropic harmonic oscillator, using the 2D and 3D
cases as examples to build intuition. We will first con-
struct the conserved operators that satisfy the algebra
of angular momentum in the 2D and 3D case. We will
then construct the additional conserved operators using
symmetries of the special unitary group SU(N) of group
theory. Finally, we will give the conserved operators a
physical explanation. This includes identifying which of
the operators that satisfy the algebra of angular momen-
tum are true angular momentum operators and which
are “hiding” as angular momentum.

II. REVIEW OF THE HARMONIC
OSCILLATOR

We will first review the derivations of the energy spec-
trum for the 2D and 3D harmonic oscillators and build
their operators that satisfy the algebra of angular mo-
mentum. Understanding the 2D and 3D cases provides
good intuition for understanding and organizing the of
degeneracies associated with the symmetries of the har-
monic oscillator, which we can then explain.

1 We use quotation marks here because we will later discover that
not all of these operators are true angular momentum operators.

2 It is a coincidence that the 3D harmonic oscillator is rotationally
symmetric in 3 dimensions. However, the 2D harmonic oscillator
is rotationally symmetric in only 1 direction.
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A. 2D

We start with the Hamiltonian of the 2D harmonic
oscillator

H =
1

2m
(p2
x + p2

y) +
1

2
mw2(x2 + y2). (5)

The Hamiltonian takes a more intuitive form when we
define raising and lowering operators

ax ≡
√
mw

2h̄

(
x+ i

px
2m

)
(6)

a†x ≡
√
mw

2h̄

(
x− i px

2m

)

and similarly ay and a†y. We rewrite the Hamiltonian as

H = h̄w(Nx +Ny + 1) (7)

where Nx ≡ a†xax and Ny ≡ a†yay are the number oper-
ators. We see that the number operators commute with
the Hamiltonian, which means that the operators can be
simultaneously diagonalized. Thus, acting with the num-
ber operator on the energy eigenstates does not change
their energies. We can relabel the states by the eigenval-
ues of the number operator states, nx and ny. We already
see that there are degeneracies in the energy spectrum,
because for the 2nd energy level, {nx, ny} = {1, 1}, {2, 0},
and {0, 2} all give states with the same energy.

Now we want to look for the operators that satisfy
the algebra of angular momentum. We start by notic-
ing that the classical z-angular momentum operator com-
mutes with H

` = xpy − ypx = ih̄(a†yax − aya†x) (8)
[
H, `

]
= 0.

We would like to choose a basis that is also an eigenstate
of `, in order to organize the energy eigenstates by their `
eigenvalue. Thus, we are looking to rewrite ` as a product
of linear combinations of ax, ay, a†x, and a†y. We find
inspiration in circularly polarized light, where the electric
field points in x ± iy and has angular momentum ±h̄.
Thus, we can try a similar construction [4]

aR ≡
1√
2

(ax − iay) (9)

aL ≡
1√
2

(ax + iay).

Indeed, by multiplying out, we find that

` = h̄(a†RaR − a†LaL) = h̄(NR −NL). (10)

where we have defined NR ≡ a†RaR and NL ≡ a†LaL
Rewriting H in terms of NR and NL gives:

H = h̄w(NL +NR + 1). (11)

We can label the eigenstates states by nL and nR and
can visualize them quite nicely by organizing them by
their H and ` eigenvalues (see Figure 1). We see that
{NR, H} and {NL, H} form a complete set of commuting
observables (CSCO).
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A. U(1)

The U(1) group is made up of the identity matrix up to a constant. A rotation in U(1)

means that all operators gain the same phase. Thus, all systems have U(1) symmetry because

we don’t detect an overall phase in a system. For the harmonic oscillator, the Hamiltonian

is diagonal, which means that U(1) actually corresponds to the Hamiltonian. The energy is

one conserved quantity. There are N2 − 1 remaining conserved quantities.

B. SU(3)

By inspecting Hamiltonian of the 3D harmonic oscillator, we can see that an operator

that raises one quantum number ni and lowers another quantum number nj is conserved.

Thus, the following constructions of operators is conserved

Aij = a†
iaj (29)

i �= j; i, j = 1, 2, 3 (30)

We exclude i = j following the discussion from above of U(1) symmetry.

Explain more what happens in between

We can construct the raising and lowering operators between states of different j eigen-

values

N+ =
�a†

x + ia†
y√

2

��ax + iay√
2

�
(31)

|0, 0� (32)

|1, 0� (33)

|0, 1� (34)

|2, 0� (35)

IV. RELATION TO PARTICLE PHYSICS

SU(1), SU(2), and SU(3) symmetries play an important role in creating the forces of our

universe. SU(1) symmetry leads to electromagnetic forces, SU(2) symmetry breaking leads

to weak forces, and SU(3) symmetry leads to strong forces.
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FIG. 1: Energy spectrum of the 2D harmonic oscillator. The
different representations are labeled in black and red.

We are now ready to construct the angular momentum
operators. We notice that within each degenerate level,
the ` eigenvalues jump by 2h̄. The z component of angu-
lar momentum should jump by h̄. 3 If we divide ` by 2,
then it gives the correct difference in eigenvalues:

Jz =
1

2
` =

h̄

2
(a†RaR − a†LaL) = i

h̄

2
(a†xay − a†yax) (12)

where in the last expression, we have used the definitions
of aR and aL. This picture also fits with the multiplet
states. The first three energy levels in Figure 1 contain
1, 2, and 3 degenerate states. This can be explained by
total angular momentum values of 0, 1

2 , and 3
2 , which are

multiplets of 1, 2, and 3 states respectively. We can re-
label these states with the quantum numbers j, the total
angular momentum number, and m, the z component of
the angular momentum:

J2 |j,m〉 = h̄2j(j + 1) |j,m〉 (13)

Jz |j,m〉 = h̄m |j,m〉 .

We see that the states can be completely specified by
{J2, Jz}, so they form a CSCO.

By inspecting Figure 1, we see that we can move from
|j,m〉 to |j,m+ 1〉 by raising nR by one and lowering nL
by one. The opposite is true of moving from |j,m〉 to
|j,m− 1〉. We construct the raising and lowering opera-
tors

J+ = h̄a†RaL

J− = h̄a†LaR. (14)

3 We can show this using the commutation relation [Jz , J±] =
±h̄J±. If f is an eigenfunction of Jz with eigenvalue µ, then
Jz(J±f) = [Jz , J±]f + J±Jzf = (h̄+µ)(L±f). Thus, we have a
ladder of states whose Jz eigenvalues are separated by h̄ [6].
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From J+ and J− we can construct the Jx and Jy opera-
tors

Jx =
J+ + J−

2
=
h̄

2
(a†RaL + aRa

†
L)

=
h̄

2
(a†xax − aya†y) (15)

Jy =
J+ − J−

2
=

h̄

2i
(a†RaL − aRa†L)

=
h̄

2
(a†xay + axa

†
y).

We can easily check that Jx, Jy and Jz satisfy the com-
mutation relation in Equation 2, but we don’t know yet
whether they are all true angular momentum operators.

We expected to find only one angular momentum op-
erator, because the 2D harmonic oscillator is rotationally
symmetric in one dimension, which we’ve arbitrarily cho-
sen here as the z axis. At first sight, the Jx and Jy oper-
ators seem to have no physical significance. These extra
“angular momentum” operators result from additional
symmetries, which we will construct and understand in
Section III.

B. 3D

The 3D problem offers a more rich energy spectrum
and thus a more interesting organization of states. These
additional degeneracies result from the additional sym-
metries in the problem. Some of these extra degeneracies
are explained by the extra two dimensions of rotational
invariance. We set up the problem in a similar way to
the 2D case. We begin again with the Hamiltonian

H =
1

2m
(p2
x + p2

y + p2
z) +

1

2
mw2(x2 + y2 + z2). (16)

We again define raising and lowering operators ax, ay, az
and a†x, a

†
y, a
†
z in the same way as we did in Equation 7.

The Hamiltonian can be rewritten as

H = h̄w(Nx +Ny +Nz +
3

2
). (17)

We can label the states with nx, ny, and nz. Let
us check again the degeneracies of the 2nd en-
ergy level (Nx + Ny + Nz = 2). We find
that this includes the states {nx, ny, nz} =
{1, 1, 0}, {1, 0, 1}, {0, 1, 1}, {2, 0, 0}, {0, 2, 0}, and
{0, 0, 2}. When we compare this to the degenera-
cies of the same energy level in the 2D case, we see
that the 3D harmonic oscillator does indeed have more
degenerate states.

We will look for an angular momentum representa-
tion by starting with the same analogy to the classical
z-angular momentum operator (see Equation 12). We
define aL and aR in the same way as in Equation 9, and
az remains unchanged. We can also define NR and NL
in the same way and Nz ≡ a†zaz. We relabel the states as
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order to satisfy this condition, we must create another field and add two more terms to the

Hamiltonian. By looking at the conserved quantities, we can arrive at Maxwell’s equations!

So far, the U(1) symmetry is only an analogy to the conservation of energy in the harmonic

oscillator. We can try to require the same symmetry with SU(2): eiσsψ(s) = ψ(x), where σ

are the Pauli sigma matrices. However, this symmetry doesn’t match with our observation

of fermions having mass; thus, the symmetry

SU(1) symmetry leads to electromagnetic forces, SU(2) symmetry breaking leads to weak

forces, and SU(3) symmetry leads to strong forces.

|0, 0, 0� (40)
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|1, 0, 0� (42)
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The relation of the isotropic harmonic oscillator to SU(N) is certainly expected. But

the approach of learning the harmonic oscillator without group theory makes this relation a

pleasant surprise. This approach also easily reveals the angular momentum representation

of the harmonic oscillator.
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IV. RAISING AND LOWERING OPERATORS
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2

�
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of one multiplet and the highest m state of the next multiplet (see Figure ??)

F+ = a†
RaL =

�a†
x + ia†

y√
2

��ax + iay√
2

�
(44)

F− = a†
LaR (45)

We see now that this is just T12 +S2. From here, we can construct Fx, Fy, and Fz. Thus, we

can interpret a linear combination of the additional conserved quantities form the algebra

of angular momentum between j states.
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The interpretation of Tij and S is more easily done by looking at examples. We will look

specifically at the 2D and 3D cases discussed above.

B. SU(2)

The conserved Hermitian operators of the 2D case are

M12 =
i

2
(a†

xay − a†
yax) (37)

T12 =
1

2
(a†

xay + a†
yax) (38)

S2 =
1

2
(a†

xax − a†
yay) (39)

(40)

We find 22 − 1 = 3 operators, as we had expected.

From Equation 15 we see that M12 is Jz and corresponds to true angular momentum.

If we closely inspect Jx, we find that it is just Nx- Ny up to a factor. It is just a linear

combination of the Nx and Ny symmetry; thus, one conserved quantity is the difference

between the nx and ny quantum numbers. [6] We see that T12 is Jy, which can be physically

interpreted as the harmonic oscillator not precessing [1].

C. SU(3)

We can now easily construct the angular momentum operators from the the antisymmetric

conserved quantities Mij

M12 = i
h̄

2
(a†

xay − a†
yax) = Jz (41)

M23 = i
h̄

2
(a†

yaz − a†
zay) = Jx (42)

M31 = i
h̄

2
(a†

zax − a†
xaz) = Jy. (43)

We can check that Jx, Jy, and Jz follow the algebra of angular momentum. We can also find

J+ and J− operators that move between states of different m quantum numbers. However,

we also notice from the energy diagram (see Figure ??) that each energy level has different

j multiplets. By inspection, we can construct operators that between the highest m state

FIG. 2: Energy spectrum of the 3D harmonic oscillator. The
different representations are labeled in black and red. Mul-
tiplet states have the same energy and are represented by
multiple states directly above one another.

|nR, nL, nz〉. The operators {NR, NL, Nz} form a CSCO
[3]. Figure 2 shows the energy spectrum.

We see now that each energy level contains one or
more sets of angular momentum states with the same
` eigenvalue, which forms a multiplet of states. This is
different from the 2D H.O., where the degenerate states
in each energy level had a distinct ` eigenvalue. This
seems to suggest that the 3D H.O. has an additional an-
gular momentum representation. We relabel the states
by |n, j,m〉, according to the convention of the hydrogen
atom, where n indicates the energy level, j is the orbital
angular momentum number, and m is the z component of
the angular momentum. For instance, we see that the n
= 3, j = 2 multiplet contains 5 states, just as we expect.
However, we also note that the multiplets of the same
energy level are separated by j values of ±2, rather than
±1. Constructing the angular momentum operators that
give these eigenvalues is not so easy for the 3D case. We
will do so in Section III C.

III. SYMMETRIES

We would like to understand the underlying symmetry
that generates the angular momentum operators of the
2D case and derive those for the 3D case. It seems so far
that they have only been near-random constructions of
conserved operators. To be more systematic in looking
for symmetries, we inspect the Hamiltonian. We notice
that the Hamiltonian of the harmonic oscillator only de-
pends on norms of operators, meaning a†a, p2, and x2.
Thus, an operator that conserves the length of another
operator will be a conserved quantity of the harmonic
oscillator. These operators are the unitary operators U
with the properties

U†U = 1 (18)

a†(U†U)a = a†a.

Since the Hamiltonian H is a function of a†a, it remains
unchanged when acted on by U

U†H(a†a)U = H. (19)

300 Hidden symmetries of the isotropic harmonic oscillator



Hidden symmetries of the 2D and 3D harmonic oscillators 4

We can write an N -dimensional unitary operator as

U = eiΩ (20)

where Ω is an N -dimensional Hermitian operator [2].
The number of conserved quantities will be the num-

ber of independent parameters of Ω. An N dimensional
Hermitian operator has N2 independent parameters [1].
Thus we expect N2 conserved quantities. 4 The multi-
plication of any two of these conserved quantities will
yield another conserved quantity. Thus, they form a
group, in mathematical language [5]. This group of op-
erators is called the special unitary group SU(N), where
“special” means the operator has determinant 1, and N
means it has N dimensions. Thus, we see that the N -
dimensional harmonic oscillator is a representation of the
SU(N) group.

We will now construct the conserved quantities for a
general N-dimensional harmonic oscillator, and then we
will examine in detail the 2D and 3D cases.

A. SU(N)

The goal of this section is to mathematically derive the
conserved operators, and then we will give them physical
interpretations when discussing the 2D and 3D cases. To
construct the conserved quantities, we inspect the Hamil-
tonian. We notice that the following quantities are con-
served

Qij = a†iaj (21)

i, j = 1, 2, ..., N

because they creates one quantum and destroys one
quantum, keeping the sum of the number operator eigen-
values the same. Thus, the conserved unitary operators
of the Hamiltonian will be linear combinations of Qij .
Since i, j = 1, 2, ..., N , there will be N2 linear combina-
tions of Qij . This is the number of conserved quantities
that we are expecting.

However, we notice that for the linear combination∑
Qii is the just the Hamiltonian up to an additive con-

stant. This conserved operator can be interpreted as just
the conservation of energy. We can also understand this

by considering
∑
Qii in the a†iaj basis as the identity

operator. Thus, acting with
∑
Qii operator just gives

every operator an overall phase. Since we cannot detect
overall phases, we expect this to be a conserved quan-
tity. In the language of group theory,

∑
Qii is a part of

the one dimension unitary group U(1). We will disregard

4 We can quickly check this for N = 2. The most general 2 by
2 Hermitian operator has 4 = 2 × 2 independent parameters 3
from linear combinations of the Pauli matrices, and 1 from the
identity matrix.

this symmetry in looking for the remaining symmetries,
which now number N2 − 1.

Now we turn our attention back to Qij . A unitary op-
erator has the additional property of being Hermitian.
Although Qij are conserved, they are not Hermitian.
This can easily be fixed with linear combinations of Qij

Mij = i(a†iaj − a†jai)
Tij = a†iaj + a†jai, i 6= j (22)

S2 = a†1a1 − a†2a2

S3 = a†1a1 + a†2a2 − 2a†3a3

...

where we have grouped the linear combinations into
the antisymmetric combinations Mij , and the symmetric
combinations Tij and S [5]. We’ve written S in a way to
avoid making a linear combination of H, which we have
already accounted for.

We can now count up the number of operators. For
an N -dimensional harmonic oscillator, there are

(
N
2

)
=

(N−1)N
2 possible Mij operators. For Tij there are again

(N−1)N
2 possibilities. There are N − 1 possibilities of

S. We find the total number of conserved Hermitian
matrices to be:

(N − 1)N

2
+

(N − 1)N

2
+N − 1 = N2 − 1 (23)

Thus, all of these operators account for the conserved
quantities we were expecting.

A nice interpretation of the antisymmetric operators
Mij can be seen by rewriting Mij in terms of xi and pi
using Equation 6

Mij = xipj − xjpi, (24)

up to a factor. We can check that this rewritten opera-
tor makes sense because we expected an operator that’s
antisymmetric in i, j and is Hermitian. We now notice
that Mij is just a component of the angular momentum!
We have known all along that angular momentum is an-
tisymmetric, and since the Mij ’s are antisymmetric, it is
natural then that they are the angular momentum op-
erators. Thus, we interpret Mij as representations of
rotational symmetries.

Now we can look specifically at the 2D and 3D cases
and identify the real and fake angular momentum oper-
ators. Additionally, the interpretation of Tij and S is
more easily done by looking specifically at specific cases.

B. SU(2)

We will now write the conserved operators of the 2D
case and compare them to the Jx, Jy, and Jz operators
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that we constructed earlier. The conserved Hermitian
operators are

M12 = i
h̄

2
(a†xay − a†yax)

T12 =
h̄

2
(a†xay + a†yax) (25)

S2 =
h̄

2
(a†xax − a†yay)

We find 22 − 1 = 3 operators, as we had expected.

From Equations 12 and 15, we see that M12 = Jz, T12

= Jx, and S2 = Jy. Therefore, only Jz is a representation
of angular momentum, as discussed above. We now see
that Jx and Jy are other conserved operators hiding as
angular momentum! How then can we give them a phys-
ical interpretation? We will appeal to the classical 2D
harmonic oscillator. The orbits are ellipses that do not
precess (we can think of rolling a marble down a circular
ramp.). 5 Thus, there are two conserved quantities: the
ratio of the major to minor axis of the orbit and its orien-
tation. This is the best that we can do to understand the
quantum 2D H.O. Since the orbits do not take a shape,
we cannot say find a physical quantity that is associated
with T12 and S2 being conserved. However, the sym-
metry is an analogy to the classical harmonic oscillator
orbits not precessing.

C. SU(3)

Whereas earlier we had trouble constructing the an-
gular momentum operators, we can now easily construct
them from the possible antisymmetric conserved quanti-
ties Mij

M12 = i
h̄

2
(a†xay − a†yax) = Jz

M23 = i
h̄

2
(a†yaz − a†zay) = Jx (26)

M31 = i
h̄

2
(a†zax − a†xaz) = Jy.

We can check that Jx, Jy, and Jz follow the algebra of
angular momentum. We can also find the J+ and J− op-
erators that move between states of different m quantum
numbers. This accounts for 3 conserved operators, all of
which are real angular momentum operators.

The remaining 9 - 3 - 1 = 5 conserved operators come

5 Central potentials 1
rα

with α = -1 and 2 possess this unique
quality. Thus, the harmonic oscillator potential and the
Coulomb/gravitational potentials have orbits that do not pre-
cess

from the 5 symmetric operators:

T12 =
h̄

2
(a†xay + a†yax)

T23 =
h̄

2
(a†yaz + a†zay) (27)

T31 =
h̄

2
(a†zax + a†xaz)

S2 = a†xax − a†yay
S3 = a†xax + a†yay − 2a†zaz

A nice way to interpret two of these symmetric opera-
tors comes from noticing that each energy level also has
different j multiplets (see Figure 2). Thus, we are able
to construct and operator F± that moves between these
multiplets, and from there construct a second algebra of
angular momentum. By inspecting the |n, l,m〉 states,
we notice that between the highest m state of one mul-
tiplet and the highest m state of the next multiplet we
have nR + 1 and nL − 1. Thus we construct

F+ = a†RaL =
(a†x + ia†y√

2

)(ax + iay√
2

)
(28)

=
1

2
[(a†xax − a†yay) + i(a†xay + a†yax)]

F− = a†LaR

We see now that F+ and F− are just a linear combination
of T12 and S2. From here, we can construct Fx, Fy, and
Fz. Thus, we can interpret the additional degeneracies of
the 3D harmonic oscillator as coming from an additional
angular momentum representation [2].

FIG. 3: The Mexican hat potential for SU(2) symmetry
breaking in particle physics. Figure taken from W. Mader [8].

IV. CONCLUSION

The approach of learning the harmonic oscillator with-
out group theory makes the relation of the isotropic har-
monic oscillator to SU(N) a pleasant surprise. We see
that the N -dimensional harmonic oscillator is just a rep-
resentation of SU(N) symmetry. This approach easily

302 Hidden symmetries of the isotropic harmonic oscillator



Hidden symmetries of the 2D and 3D harmonic oscillators 6

reveals the conserved operators, and we realize which
“angular momentum” operators are real and which are
fake by looking at antisymmetry. We interpret the other
conserved operators as additional hidden symmetries, by
making an analogy to classical mechanics. For each
higher dimensional harmonic oscillator, there are addi-
tional degeneracies which can be grouped into more angu-
lar momentum representations. We only explored the 2D
and 3D cases in detail, but we can now also explain the
additional degeneracies of higher dimensional isotropic
harmonic oscillators.

A neat application of SU(N) symmetry is in the sym-
metries of the Lagrangian that describes our universe.
In field theory, particles are described by fields. From
assuming that the Lagrangian is invariant under trans-
formations of the fields in different dimensions of SU(N),
we can derive the fundamental forces. For example, from
assuming that the fields are invariant under transforma-
tions in SU(1), we derive electromagnetism. From SU(2)
symmetry breaking, we derive the electroweak force. We
have called it symmetry breaking because SU(2) symme-

try would require that all fermions are either massless or
have the same mass. Instead of a 2D H.O. representation,
imagine a Mexican hat potential, as in Figure 3. Finally,
from SU(3) symmetry, we derive the strong force [7].

Thus, SU(N) symmetry finds an application in many
problems that only depend on the norms of objects. We
have found a way to organize the SU(N) degeneracies into
angular momentum states. It is possible that other beau-
tiful organizations exist, and we encourage the reader to
explore more.
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I will discuss the quantum mechanical phenomenon of superconductivity and its consequences as
predicted by B. D. Josephson known as the Josephson effect. I will explore the idea of quantum
tunneling across a Josephson junction, and explain the behavior of currents that have been measured
experimentally. I will also discuss recent applications of the Josephson effect; namely, its use in
experiments to measure the magnetic flux quantum Φ0 with a great degree of precision. Finally, I will
explore the phenomenon of high-temperature superconductivity which is not adequately explained by
current theories, and the importance of the Josephson effect in recent efforts to study the mechanism
behind high-temperature superconductors.

I. INTRODUCTION

Superconductivity is a phenomenon in which some ma-
terials behave as a perfectly diamagnetic conductor when
cooled below a critical temperature Tc. It was first dis-
covered in 1911 by the Dutch physicist Heike Kamerlingh
Onnes, who was one of the first to study the behavior of
materials at temperatures near absolute zero. Using liq-
uid helium, which Onnes himself was the first to create
three years earlier, he discovered that the electrical re-
sistance of some metals abruptly vanishes when they are
cooled to sufficiently low temperatures. Since its discov-
ery over 100 years ago, superconductivity has been one
of the most actively researched fields in physics.

I begin by outlining the theory of superconductivity as
proposed by the London brothers, in which I will derive
the electromagnetic equations which are fundamental to
a superconductor. I will also discuss qualitatively the
nature of Cooper pairing and the development of BCS
theory, which is now widely accepted as a quantum me-
chanical description of superconductivity. In sections two
and three I consider the quantum mechanical theory of a
junction between two superconductors (a Josephson junc-
tion) and the predictions set forth by B. D. Josephson re-
garding this junction - namely, the DC and AC Josephson
effects. In section four I will briefly discuss an applica-
tion of the Josephson effect which has allowed physicists
to measure the elementary charge and Planck’s constant
with great precision. Finally, in section five I explore
the phenomenon of high-temperature superconductivity,
which remains unexplained to this day.

I.1. The Meissner Effect

When a material undergoes a transition into the super-
conducting state, it responds to incident magnetic fields
in an interesting way. Walther Meissner and Robert
Ochsenfeld observed a change in the exterior magnetic

∗ ezayas@mit.edu

field around a superconducting material during this tran-
sition; since magnetic flux must be conserved, this im-
plies a change in the interior magnetic field (through the
superconductor) as well. Further analysis revealed that
when the material reached a superconducting state, the
interior field was very nearly equal to zero. This “expul-
sion” of internal magnetic fields is known as the Meissner
effect.

The Meissner effect suggests that the superconduct-
ing state cannot be explained simply as a state of per-
fect conductance because it contradicts the predictions
of classical electromagnetic theory. A phenomenological
explanation of the Meissner effect was first proposed by
Fritz and Heinz London [1], where they consider electrons
in a perfect conductor which is under the influence of an
electric field E:

F = eE = m
dv

dt
(1)

Here e is the elementary charge. The current density
J is defined as J = env where n is the number density
of charge carriers. Then, we can easily relate the time
derivative of current density to the electric field:

J̇ =
ne2

m
E (2)

This is the first London Equation, and is commonly
written as ΛJ̇ = E with Λ ≡ m

ne2 . Following the process
of London, we can use the Maxwell equation ∇ × E =
− 1
c Ḃ to obtain:

∇× ΛJ̇ = −1

c
Ḃ (3)

Then, we use the Maxwell equation ∇ × B = 4π
c J

(neglecting the displacement current):

∇× (∇× ΛḂ) = −4π

c2
Ḃ (4)

Finally, since div B = 0, we can replace ∇× (∇× Ḃ)

with −∇2Ḃ and integrate with respect to time, yielding
a differential equation in B:

1

4π
Λc2∇2 (B−B0) = B−B0 (5)
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B0 is the magnetic field at time t = 0, the point of tran-
sition. The general solution to this equation is given by
a superposition of the homogeneous and particular solu-
tions: a trivial particular solution is B = B0, which phys-
ically means the initial interior magnetic field persists for
all time. The homogeneous solution to this equation gives
a magnetic field which exponentially decays (we rule out
exponential growth as this is unphysical) with a decay

constant of λ =
√

mc2

4πne2 . This is called the London pen-

etration depth; numerically, it is typically on the order
of 10-100 nanometers. Then, the homogeneous solution
is effectively zero at all points except those very near the
surface of the superconductor, and the general solution
is given simply by the particular solution of B = B0.

However, the observational evidence of the Meissner
effect contradicts this theory. We know (as did the Lon-
dons) that the internal magnetic field in a superconductor
is expelled to zero, rather than persisting like this equa-
tion would suggest. We conclude from this that Equation
2 is too general; nature should not be governed by an
equation which has physical but not-observed solutions.
This reasoning motivated the Londons to instead postu-
late that the homogeneous case of Equation 5 (B0 → 0)
is the true fundamental equation which describes a su-
perconductor - in other words, it is the replacement for
Ohm’s law. Then, the exponentially decaying solution
is the only solution, and it perfectly predicts the Meiss-
ner effect. This is the second London Equation, typically
written as:

∇× ΛJ = −1

c
B (6)

One can derive the same results from a quantum me-
chanical standpoint, with the velocity operator given by
[1, 2]:

mv̂ = p̂− eA

c
(7)

Where p̂ is the generalized momentum operator and
A is the vector potential defined by B = ∇×A. London
argues that we expect the ground state to have zero net
momentum1, and thus we obtain:

J = − 1

Λc
A (8)

Taking the time derivative gives the first London equa-
tion (2) and taking the curl gives the second (6). With

1 This is apparently shown in an unpublished theorem by Bloch
according to F. London [2, 3]. The theorem states that with no
applied magnetic field, the most stable state of any electronic
system is one with zero current. Although a complete proof of
this theorem has never been published, there is little doubt that
it is correct. It is also predicted by BCS theory, specifically in
the case of boson condensation; see section I.2 entitled ‘Cooper
Pairs’ for more information.

this approach, it is also easy to see why Equation 2 by
itself is too general: by taking the time derivative of
Equation 8 we lose the information that B0 = 0, which
explains and predicts the Meissner effect.

I.2. Cooper Pairs

While the London Equations explain one observed
effect of superconductivity, a more complete theory is
needed to explain its origin in the first place. It wasn’t
until the 1950s when work from John Bardeen [4] and
Herbert Fröhlich [5] led Leon Cooper to formulate a situ-
ation in which pairs of electrons existing in a bound state
could explain the superconducting phenomenon. [6]

When an electron moves through a lattice, it at-
tracts nearby positively charged nuclei; this attraction
is manifested as a change in the vibrations of the lattice
(phonons). As a result, the space near the electron is (on
average) of higher positive charge density than normal.
Another electron will be attracted to this area of positive
charge, thus forming a bound state with the first electron
known as a Cooper pair. It is important to note that
although these two electrons are interacting, the average
spatial separation between them is quite large, sometimes
on the order of 1 micron.2 This is much greater than
the lattice spacing as well as the mean distance between
two electrons in the superconductor - consequently, many
Cooper pairs will occupy the same space. It is also im-
portant to note that while this effect is best described
as an interaction between two individual electrons, this
description is not entirely accurate. Bardeen [8] remarks
that while the paired states become energetically favor-
able below the critical temperature, electrons constantly
move in and out of these pairings as a result of ther-
mal excitation. Even at sufficiently low temperatures the
electrons will have some probability to exist “normally”,
not in a Cooper pair.

The crucial link between Cooper pairs and supercon-
ductivity comes from thinking of the pair as a two-
particle composite of fermions, which behaves as a boson.
Bosons are not restricted by Pauli’s exclusion principle,
meaning that under the right conditions a large fraction
of these Cooper pairs could simultaneously condense into
a ground state. Cooper [6] showed that the formation of
many paired states leads to an energy spectrum which
is continuous except for the ground state, which is sep-
arated by an energy gap. Because of this gap to excita-
tions, small perturbations to the system which normally
cause electrical resistance will not affect the condensate
as a whole; the condensate experiences no resistance and
the superconducting state is obtained.

With all of these elements, Bardeen and Cooper as-
sembled the BCS theory with Robert Schrieffer, for which

2 According to Rohlf. [7]
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they received the Nobel Prize in 1972. BCS theory served
as the first comprehensive description of superconductiv-
ity, and is widely accepted in part because it explains and
predicts many aspects of the phenomenon to do with pen-
etration depth, specific heat, and the Meissner effect.3

II. QUANTUM MECHANICS OF A JUNCTION
BETWEEN TWO SUPERCONDUCTORS

Consider two superconductors which are separated by
a thin insulating material, and with a potential differ-
ence V (which I will define to be positive for conve-
nience) between them. It is possible for electrons in one
superconductor to tunnel across the insulator, provided
that the quantum mechanical amplitude does not sub-
stantially decay across the junction - this is a familiar
example of quantum tunneling. In practice, the insula-
tor must be very thin (< 50Å) to observe this effect. Ivar
Giaever [10] discovered that when two superconductors
are joined in this way, there is almost zero tunneling cur-
rent for a sufficiently low potential. For voltages which
are considerably higher than this threshold, the current
behaves linearly as a function of V as one would expect
from Ohm’s law. Giaever’s results can be explained by
the energy gap behavior of Cooper pairs in BCS theory.
Since the electrons are condensed into these paired states,
individual electrons are not available to tunnel across the
barrier. However, when the potential difference is large
enough to break the Cooper pairs, the current quickly
becomes proportional to V , which describes the famil-
iar process of ohmic tunneling. The threshold voltage is
given by V = 2∆

e where ∆ is the energy gap and e is the
elementary charge. BCS theory predicts that the energy
gap is given approximately4 by ∆ ≈ 1.764 kB Tc where
kB is the Boltzmann constant.

A sample plot of Giaever’s results is presented in Fig-
ure 1. For the T = 1.6K curve (where the approximation
above holds best), the threshold voltage is given by:

V =
∆

e
≈ 1.764

e
× 7.2K kB = 1.094mV (9)

Here we use V = ∆
e instead of 2∆

e because only the lead
sample is superconducting and not the aluminum. The
plot above shows a clear change in behavior in the region
near this potential; the current is very nonlinear for volt-
ages near and below the threshold. One might expect

3 There is some debate on that last note. Crucial to the explana-
tion of the Meissner effect is the prediction that the canonical
momentum in Equation 7 is zero in the Bose-condensed ground
state. Hirsch [9] argues that BCS theory does not predict this to
be the case.

4 Of course, we would expect that as T → Tc the energy gap goes to
zero. This approximation is valid for temperatures which are not
extremely close to Tc, and has been supported by experimental
results. See Tinkham [2] and Bardeen et. al. [11] for more
information.

FIG. 1. Current vs. voltage for a junction between aluminum
and lead, adopted from Giaever [10]. In this experiment, the
lead was superconducting but the aluminum was not, as its
critical temperature is very low at 1.2K. The threshold voltage
is approximately equal to 1.094 mV.

the current to abruptly drop to zero instead, but recall
that even in a superconductor there is a small fraction of
electrons which are not in Cooper pairs, as I have already
discussed. These electrons can tunnel normally and thus
produce a current. Additionally, there is a clear distinc-
tion between the curve at 4.2K and 1.6K, which Giaever
notes is a consequence of the temperature dependence of
∆.

III. JOSEPHSON’S PREDICTIONS

Following Giaever’s research, Brian David Josephson
[12] examined the wave functions of electrons tunneling
across this junction, which we now call a Josephson junc-
tion. We will begin by considering the wavefunction am-
plitudes at each side of the junction, a procedure which
is described also by Feynman [13]:

i~
∂ψ1

∂t
= U1ψ1 +Kψ2

i~
∂ψ2

∂t
= U2ψ2 +Kψ1

(10)

These equations assume only that both superconduc-
tors are the same material and that K is some character-
istic constant of the junction which depends both on the
superconductors and the insulator. Then, if a potential is
applied across the junction, we have that U1−U2 = 2qV .5

5 This q is equal to the elementary charge e. I proceed with q
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For convenience, we can define the zero-point energy to
be the average of U1 and U2 such that U1 = −U2; then,
Equation 10 simplifies to:

i~
∂ψ1

∂t
= qV ψ1 +Kψ2

i~
∂ψ2

∂t
= −qV ψ2 +Kψ1

(11)

Next we make the following substitutions for ψ1 and ψ2:

ψ1 =
√
ρ1e

iθ1

ψ2 =
√
ρ2e

iθ2
(12)

This is a simple and valid way to express any complex
number. Of course, it is important to note that ρ1,2

and θ1,2 depend on time. Combining equations 11 and
12 yields four more equations (see p. 15 of Feynman
[13]) which in turn yield the following expression for the
current across the junction:

J = ρ̇1 = −ρ̇2 = J0 sin

(
δ0 +

2q

~

∫
V (t)dt

)
(13)

Here J0 ≡ 2K
√
ρ1ρ2
~ is a new quantity which is char-

acteristic of the junction and δ0 ≡ θ2(0) − θ1(0) is the
phase difference between the wavefunctions at time t = 0.
The consequences of this equation are what we now call
the Josephson effects, and are responsible for Josephson’s
Nobel Prize in 1973.

III.1. DC Josephson Effect

First, let us consider applying a DC voltage: that is,
V (t) = V0. Then, the argument of the sine becomes

δ0 + 2qV0

~ t. For realistic values of V0, the frequency of this

oscillation is much too fast to measure.6 Thus, the mea-
sured current averages to zero in all cases except when
V0 is equal to zero. In this case, the current across the
junction is simply given by J0 sin δ0. From this, we con-
clude that the current should decrease nonlinearly and
become very small as V → 0, but at V = 0 a small
current between +J0 and −J0 (depending on δ0) should
be observed. Figure 2 shows the first published observa-
tion of this effect, which is now called the DC Josephson
effect.

III.2. AC Josephson Effect

Next, we can consider applying a DC voltage with a
small AC component: V = V0 + v cos (ωt). Then, we ob-

anyway to avoid confusion with the energy unit electron-volts
(eV). Note that Feynman [13] uses q = 2e instead, the charge of
a pair.

6 Take, for example, V0=1 millivolt. This gives a frequency of 484
GHz, while standard oscilloscopes operate at 1 GHz or lower.

FIG. 2. Plot of voltage vs. current showing both Josephson
tunneling and single electron tunneling, adopted from Joseph-
son [14]. Note that the axes here are reversed from those in
Figure 1.

tain the following expression for the current from Equa-
tion 13:

J = J0 sin

(
δ0 +

2qV0t

~
+

2qvt

~ω
sin (ωt)

)
(14)

Following the process of Richards et. al. [15], we may
choose δ0 = π

2 for simplicity and expand the sine in the
following way:

sin (X sin θ) =
n=∞∑

n=−∞
Jn(X) sin (nθ)

cos (X sin θ) =
n=∞∑

n=−∞
Jn(X) cos (nθ)

⇒ J

J0
=
n=∞∑

n=0

Jn

(
ω0v

ωV0

)
×

[
cos ((ω0 + nω) t) + (−1)n cos ((ω0 − nω) t)

]

(15)

I have defined ω0 ≡ 2qV0

~ to simplify the expres-
sion. Here Jn is the n-th order Bessel function and
J−n(X) ≡ (−1)nJn(X). This expression, while some-
what arduous, allows us to see that the term in brackets
(sum of cosines) simply describes a beat phenomenon.
Once again, the frequency of these beats in general will
be much too quick for a feasible measurement, and the
current will average to zero. However, if we choose ω such
that the beat frequency is very short, we do expect to
measure a current. By driving the beat frequency down
to zero, we can observe a constant and nonzero current;
we call this value of ω a resonant frequency. We observe
a current when any harmonic of the resonant frequency
coincides with ω0:

nω = ω0 =
2qV0

~
for n ∈ Z+ (16)
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Feynman [13] derives this result with a somewhat sim-
pler approach starting from the assumption that V � v.
Using this, we can expand Equation 14 in a different way
using first-order approximations:

sin (x+ ∆x) ≈ sinx+ ∆x cosx for small ∆x

⇒ J

J0
= sin (δ0 + ω0t) +

ω0v

ωV0
sin (ωt) cos (δ0 + ω0t)

(17)

Here I have used the same substitution of ω0. In this
case, the first sine term averages to zero as before and
the second term will do the same for non-resonant fre-
quencies. However, if nω = ω0 for some positive integer
n then the average current is nonzero and depends on
our choice of δ0.

IV. PRECISE MEASUREMENT OF
FUNDAMENTAL CONSTANTS

The AC Josephson effect is useful to experimental
physicists because it provides an exact conversion be-
tween the resonant frequency and the applied voltage.
Recent experiments [15, 16] have shown that it is possi-
ble to observe this resonance with incredible precision -
in some cases with a fractional uncertainty of order 10−8.
By dividing the applied voltage V0 by the fundamental
harmonic (n = 1) resonant frequency, we can obtain a
numerical value for the quantity 2e

h :

2e

h
= 483, 597.870(11) Hz/V (18)

This quantity is also called the Josephson constant, de-
noted KJ . It is only a function of fundamental constants,
meaning it does not depend on the nature of the Joseph-
son junction, the superconducting materials, or the envi-
ronment of an experiment. This has allowed physicists to
measure its value with a great deal of precision; the num-
ber quoted above [17] has an uncertainty of only 0.023
parts per million. Additionally, one can use the following
relationship to determine the fundamental constant h:

h =
8α

µ0cK2
J

(19)

Here µ0 is the permeability of free space, α is the fine-
structure constant, c is the speed of light and KJ is the
Josephson constant. Experiments which study the AC
Josephson effect in this way have yielded some of the
most precise measurements of the Josephson constant
and Planck’s constant to date.

V. HIGH-TEMPERATURE
SUPERCONDUCTIVITY

BCS theory provided the first widely successful expla-
nation of superconductivity, but more recent experiments

have shown that it is likely incomplete. It predicts a the-
oretical maximum Tc ≈ 30K, above which the formation
of Cooper pairs should be impossible for any material due
to thermal energy. In 1986, Georg Bednorz and K. Alex
Müller [18] found that Lanthanum Barium Copper Oxide
(LBCO) compounds exhibited superconducting proper-
ties at 35K. Within the next year, these results had been
confirmed many times, Bednorz and Müller had won a
Nobel Prize, and the Chinese physicist M. K. Wu [19] had
observed superconductivity at 93K, which is particularly
significant because a sample at this temperature can be
cooled with liquid nitrogen (BP 77K) instead of liquid
helium. Since then, high-temperature superconductivity
(HTS) has been actively researched by physicists around
the world. It remains one of the most prominent unsolved
problems in physics.

FIG. 3. Resistivity vs. Temperature for compounds in the
Ba - La - Cu - O system plotted for various current densi-
ties. Adopted from Bednorz and Müller [18], this plot shows
superconducting effects at about 35K, which is above the the-
oretical limit imposed by BCS theory.

V.1. A Possible Qualitative Explanation

Considering the success of BCS theory, it is natural
to postulate that the mechanism responsible for HTS is
similar. A major component of BCS theory is the idea of
Cooper pairing, where electron-phonon interactions cre-
ate an attractive potential between two electrons which
binds the pair together. However, the origin of this at-
tractive potential need not be specified; the formation
of Cooper pairs relies only on the fact that there exists
some attraction between the electrons. Resonating Va-
lence Bond theory (RVB) suggests that in a HTS, this
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attraction is caused by spin-density waves rather than by
phonons (which can be viewed as charge-density waves).
The strength of this attraction depends on the lattice
structure of the material; it is strongest when the lattice
is nearly antiferromagnetic - that is, when neighboring
lattice sites have opposite spins. All currently observed
HTS materials are “strong” spin-density systems in this
regard.

V.2. Experimental Tests of Cooper Pairing in
High-Tc Superconductors

If RVB Theory is correct and high-temperature super-
conductivity is a consequence of Cooper pairs, then we
should already have an understanding of how to model a
Josephson junction between two HTS samples. Consider
a superconducting ring which consists of one Josephson
junction where we choose δ0 = π. Such a setup is called
a π-loop, and the junction is called a π-junction. Any
superconducting ring will exhibit magnetic flux quanti-
zation (see Kirtley and Tsuei [20–22]) - that is, the flux
through the loop is given by:

Φ = nΦ0 for n = 0, 1, 2, ... (20)

Where Φ0 is the magnetic flux quantum h
2e , the re-

ciprocal of the Josephson constant KJ . However, in the
particular case that the loop has an odd number of π-
junctions, we can observe half-integer quantization:

Φ =

(
n+

1

2

)
Φ0 for n = 0, 1, 2, ... (21)

This is a consequence of a symmetry that exists in
the Cooper pairing mechanism called d-wave symmetry.
The electron spins spontaneously align even in the ab-
sence of an applied magnetic field, a process known as

spontaneous magnetization. Kirtley and Tsuei [20–22]
provide some additional insight on this phenomenon. To
test whether Cooper pairing is involved in the mechanism
for HTS, many experiments have been built to observe
this half-integer flux quantization. The results of such
experiments thus far have been somewhat inconclusive,
most likely due to defects in the superconductor. To cir-
cumvent this problem, Kirtley and Tsuei [22] designed
an experiment to consider both the “clean” limit (no de-
fects) and the “dirty” limit (maximal defects). From this
they have concluded that while it is likely that Cooper
pairing is involved with at least some high-Tc supercon-
ductors, the extent and nature of its involvement is still
unknown.

VI. CONCLUSIONS

The Josephson junction applies the familiar idea of
quantum tunneling to an insulating barrier between two
superconductors. From the theory of Cooper pairing and
the energy gap-to-excitations, we have explored the pre-
dictions set forth by Josephson regarding the induced
current through a junction in response to DC and AC
voltage input. These effects have helped physicists mea-
sure the magnetic flux quantum Φ0 with greater precision
than before, and the Josephson junction has proved to
be a useful tool in probing the mechanism behind high-
temperature superconductors.
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The Solar Neutrino Problem and Neutrino Oscillation
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We first introduce the neutrino and a mysterious phenomenon about it , which is usually referred
as the solar neutrino problem. Then we present in detail the theory of neutrino oscillation, which
gives a reasonable and powerful explanation to the solar neutrino problem.

1. INTRODUCTION

The solar neutrino problem is the discrepancy be-
tween the number of solar neutrinos predicted by stan-
dard model of solar interior and the number actually
measured. Due to technological limit, keeping track of
the products of sun’s nuclear reaction is by far the best
and the only way to study the structure of the sun. In
that sense, the discrepancy between the expected and
recorded numbers of solar neutrinos is undoubtedly a
huge impact upon our understanding about the sun.
Therefore, the solar neutrino problem is a crucial and
fundamental problem we have to answer before we can
proceed in our exploration of the universe. The main
purpose of this paper is to present a theory that gives
reasonable account for “disappearance” of solar neutri-
nos.

This paper mainly consists of five sections. The first
section is the introduction. The second and third are
mostly introductory backgrounds of neutrinos and the
solar neutrino problem. The forth section is devoted to a
detail illustration of the neutrino oscillation theory, which
includes the formulation of the theory, example of calcu-
lation as well as experimental evidences that support the
theory. The final section is the conclusion.

2. A BRIEF INTRODUCTION OF NEUTRINO

Neutrino was first postulated in 1930 by Wolfgang
Pauli to compensate for missing energy of beta decay.
Until now, three “flavors” (types) of neutrinos have been
discovered. They are electron neutrinos, muon neutri-
nos and tau neutrinos, each named after their partner
leptons.

The name of these spin 1
2 subatomic particles, “neu-

trino,” which means little neutral one in italian, pretty
much summarize their characteristics: electrically neu-
tral and extremely light weighted. Because of these
characteristics, neutrinos are not subject to electromag-
netic force and gravity, but only responsive to short-range
weak force. And this makes them extremely hard to de-
tect.

⇤Electronic address: shengenz@mit.edu

Scientists used to believe, and in fact the standard
model of particle today still assumes, that neutrinos were
massless and traveling at the speed of light. However,
even though the masses of neutrinos are yet to be deter-
mined, experiment conducted at the Super-Kamiokande
detector in Japan, 1998, proved that neutrinos do have
masses. As we would see later in this paper, the mass dif-
ferences among the mass eigenstates of neutrinos is the
core of the neutrino oscillation theory.

3. THE SOLAR NEUTRINO PROBLEM

The sun power generate power through proton-proton
fussion, which includes mainly the following three
branches:

1) PP1: p + p ! D + e+ + ⌫e + 0.26 MeV

2) PP2: 7Be + e� ! 7Li + ⌫e + 0.80 MeV

3) PP3: 8B ! 8Be + e+ + ⌫e + 7.2 MeV.

As you can see, electron neutrinos are produced in all
three branches of the proton-proton fussion. Because
they are electrically neutral and only response to weak
interaction, most of the them could easily make it to the
earth without any being damped by any material in be-
tween.

Studying solar neutrons had always been a good way
to visualize what was happening at the core of the sun.
However, as the quality of detector improved, scientists
noticed a discrepancy between the actual measurement
of solar neutrino flux and the prediction according to
the standard solar model. Ray Davis and John Bah-
call’s Homestake experiment in the late 1960s captured
an approximately 2/3 loss of solar neutrinos. Similar
deficits persisted in subsequent experiments which con-
ducted even with more accurate technologies.

The mysterious disappearance of solar neutrinos is
what we call the solar neutrino problem. This is not
a good sign to physicists, for it could probably overturn
their understanding about interior of the sun. There are
generally two types of proposed solutions. One suggests
modifying the solar interior model while the other bring
up a brand new theory called neutrino oscillation, which
is what we are going to discuss today.
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4. NEUTRINO OSCILLATION

The concept of neutrino oscillation was first proposed
by Bruno Pontecorvo in 1957. By “oscillation,” it refer
to the periodic shift of a neutrino among its three fla-
vor eigenstates. The theory brought up two brand-new
idea. Firstly, neutrinos have masses and secondly, the
flavor eigenstates are not the mass eigenstates but rather
mixtures (or superpositions) of them. Because the mass
eigenstates do not share the same mass, the mixtures is
actually changing over time in a periodic pattern. This
is saying that an electron neutrino produced by nuclear
fusion at the core of the sun could probably end up in
a di↵erent flavor when it it detected on the earth. If
our apparatus we use only detect electron neutrinos, we
could definitely experience a loss of solar neutrinos. As
a matter of fact, the neutrino oscillation theory is quite
a reasonable explanation for the solar neutrino problem,
for it is backed by a some subsequent experiments.

4.1. Formulation of the Neutrino oscillation in
Vacuum [? ]

Let us take a closer look at the formulation of the neu-
trino oscillation in vacuum . Denote the mass eigenstate
of a neutrino by ⌫k (k = 1, 2, 3), and the flavor eigen-
state by ⌫↵ (↵ = e, µ, ⌧). According to theory, the fla-
vor eigenstates can be written as superpositions of mass
eigenstates:

|⌫↵ >=
3X

k=1

U↵,k|⌫k > . (1)

Here, U is an unitary matrix that mixes up the mass
eigenstates. Because matrix U is unitary, according to
CPT invariance, the mass eigenstates can conversely be
written as superpositions of the flavor eigenstate:

|⌫k >=
X

↵=e,µ,⌧

U⇤
k,↵|⌫↵ > . (2)

Because the mass eigenstates have definite energy and
mass, using variable separation, we can write down the
time-dependent mass eigenstate as

|⌫k(t) >= e
�iEkt

~ |⌫k > . (3)

Combining Equation 1), 2) and 3), we see that, a flavor
eigenstate is in fact a superposition of all three flavor
states:

|⌫↵(t) > =
3X

k=1

U↵,ke�iEkt~|⌫k >

=
X

�=e,µ,⌧

(
3X

k=1

U↵,ke
�iEkt

~ U⇤
�,k)|⌫� > . (4)

And the probability of the transition from state ↵ to state
� can be obtained as the square of the inner product of
the two states,

P⌫↵!⌫� = | < ⌫� |⌫↵ > |2 = |
3X

k=1

U↵,ke
�iEkt

~ U⇤
�,k|2. (5)

Because the three mass eigenstates are normal to each
other, only terms with the same subscript survive. Con-
tinue simplifying the above equation, we get,

P⌫↵!⌫� =

3X

j,k=1

U⇤
↵,kU�,kU↵,jU

⇤
�,je

�(Ek�Ej)t

~ . (6)

The complex exponential phase in equation 6) shows
that due to discrepancies in mass, and thus in energy,
the flavor eigenstates of neutrino are not stable. Instead,
it “oscillates” periodically among all three flavor eigen-
states.

4.2. The Maki-Nakagawa-Sakata (MNS) Matrix

The unitary matrix U appears in the previous section is
the Maki-Nakagawa-Sakata (MNS) Matrix, named after
Ziro Maki, Masami Nakagawa and Shoichi Sakata who in-
troduced it in 1962. It basically describes how the mass
eigenstates are mixed in construction of specific flavor
eigenstates. In the case of three-flavor neutrino oscilla-
tion in vacuum, the MNS matrix

U =
2
4

c12c13 s12c13 s13e
�i�CP

�s12c23 � c12s13s23e
i�CP c12c23 � s12s13s23e

i�CP c13s23

s12s23 � c12s13c23e
i�CP �c12s23 � s12s13c23d

i�CP c13c23

3
5 ,

(7)

which is 3 ⇥ 3 matrix. The abbreviation cij stands for
cos✓ij , where ✓ij is the mixing angle between ⌫i and ⌫j .
e�i�CP is a complex phase that responses to CP viola-
tion.[? ]

The maxing matrix for two-flavor neutrino oscillation
is a lot simpler, the 2⇥ 2 matrix

U =


cos✓ sin✓
�sin✓ cos✓

�
. (8)

We do not have the complex phase this time. The angle
✓ is simply just the mixing angle between the two chosen
flavors.[? ]

4.3. Example: Oscillation Between Two Flavor
Neutrinos[? ]

To obtain a clearer picture, let us go through the cal-
culation of the 2-flavor case.
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Suppose we want to calculate the transition probability
of a muon neutrino into an electron neutrino at time t
after its creation. The MNS matrix in this case would be
a 2⇥2 matrix. The relation between the flavor eigenstates
and the mass eigenstates is summarized as the following
matrix equations:


⌫e

⌫µ

�
=


cos✓ sin✓
�sin✓ cos✓

� 
⌫1
⌫2

�
(9)

and

⌫1
⌫2

�
=


cos✓ �sin✓
sin✓ cos✓

� 
⌫e

⌫µ

�
. (10)

Rewriting the above equation in the form of equations
1) and 2), we have

|⌫e >= cos✓|⌫1 > +sin✓|⌫2 > (11)

|⌫µ >= �sin✓|⌫1 > +cos✓|⌫2 > (12)

|⌫1 >= cos✓|⌫e > �sin✓|⌫µ > (13)

|⌫2 >= sin✓|⌫e > +cos✓|⌫µ > . (14)

Now introduce the time dependences to equation 11)
and 12). Then, substitute |⌫1 > and |⌫2 > with equation
13) and 14), we have:

|⌫e > = (cos2✓|⌫e > �cos✓sin✓|⌫µ >)e
�iE1t

~

+ (sin2✓|⌫e > +sin✓cos✓|⌫µ >)e
�iE2t

~ (15)

and

|⌫µ > = (�sin✓cos✓|⌫e > +sin2✓|⌫µ >)e
�iE1t

~

+ (sin✓cos✓|⌫e > +cos2✓|⌫µ >)e
�iE2t

~ . (16)

Now, we can calculate the transition probability of an
muon neutrino transforming into an electron neutrino (or
the other way around) at time t, simply by squaring the
inner product of “< ⌫e|” and “|⌫µ >”. Because ⌫e and
⌫µ are orthonormal, only terms with identical subscript
survive, leaving

P (⌫µ ! ⌫e) = | < ⌫e|⌫µ > |2

= | � sin✓cos✓e
�iE1t

~ + sin✓cos✓e
�iE2t

~ |2

= sin2✓cos2✓(2� e
�i(E2�E1)t

~ + e
i(E2�E1)t

~ )

=
1

2
sin2✓(1� cos

(E2 � E1)t

~
) (17)

Let us carry out some approximations to make our
answer more explicit. In general, the energy of a neutrino

is E =
p

p2c2 + m2c4. Because neutrino are traveling
at a speed close to the speed of light (not the speed of
light), we can approximate E with the first two terms of

its binomial expansion. This gives E ⇡ pc + 1
2

m2c4

pc and

therefore

P (⌫µ ! ⌫e) =
1

2
sin2✓(1� cos

(E2 � E1)t

~
)

=
1

2
sin2✓(1� cos

1

2

(m2
2 �m2

1)c
4t

pc~
)

=
1

2
sin2✓(1� cos

1

2

(�m2)c4t

pc~
)

=
1

2
sin2✓sin2 1

4

(�m2)c4t

pc~
. (18)

The sine term of the above equation tells us that the
amplitude of transition probability depends on the mix-
ing angle ✓. When ✓ = ⇡/4, it reaches its maximum value
1/2. Similarly, from the sine square term, we can see that
the frequency of oscillation depend of �m2. The larger
the mass di↵erence, the more rapid neutrinos are going
to oscillate.

4.4. Evidences of Neutrino Oscillation

Even today, the validity of the neutrino oscillation the-
ory is still doubted by some physicists due to its conflict
with the standard model of particle and CP violation,
but two strong evidences have been found for the past 2
decades. The first compelling evidence was found at the
Super-Kamiokanade detector in Japan, 1998. Comparing
two groups of muon neutrinos, one coming directly from
the upper atmosphere and the other coming through the
earth, experimenters detected a di↵erence in the number
of muon neutrinos between the two groups. And that
di↵erence depended on the distance traveled by the neu-
trinos before reaching the detector.[? ]

The second and even more compelling evidence was
found in 2001 at the Sudbury Neutrino Observatory
(SNO) in Canada. The detector used by SNO was sen-
sitive to all three flavor of neutrinos. Even though the
number of electron neutrinos was only 35% of the num-
ber predicted, the number of all three types of neutrinos
detected was in fact consistent with the predicted value.
It was quite reasonable to believe neutrino oscillations
did take place when he solar neutrinos were traveling to
the earth.

5. CONCLUSION

In this paper, we present the solar neutrino prob-
lem along with the theory of neutrino oscillation which
tries to tackle the problem. The theory suggests that
neutrinos have masses, the frequency of oscillation de-
pend upon the mass di↵erences among mass eigen-
states. Even though, the well working standard model
of particle we use today assume that neutrinos have
no masses, the experimental evidences observed by the
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Super-Kamiokanade detector and the SNO, in some ex-
tend proves reasonability of the neutrino oscillation the-
ory. And I personally believe that, as the advance of tech-

nologies and the increase of our understanding about the
neutrinos, we would find a way to resolve this conflict.
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In this paper, I will discuss recent progress in quantum information to characterize quantum
mechanics and differentiate it from other possible physical theories and mathematical theories. The
paper will start from a discussion of Bell’s inequalities at the level covered in lecture. It will
then move on to a discussion of more experimentally feasible CHSH inequalities and Tsirelson’s
bound on quantum correlations. Following this will be recent proposals for physical principles
to separate quantum mechanics from other stronger nonlocal correlations, including information
causality, multipartite quantum information tasks and local orthogonality.

I. Introduction

Ever since its discovery in the early twentieth century,
the peculiarities of quantum correlations have generated
much interest and investigation. As early as 1935, Ein-
stein, Podolski and Rosen demonstrated that quantum
mechanics is inherently nonlocal [1], and they therefore
advocated a local realism formalism to attempt to ex-
plain the phenomena dubbed quantum.

In 1964 Bell [2], however, showed that quantum me-
chanics and local realism give rise to experimentally
testable differences. Kochen and Specker also showed
[3] that the local realism assumption of hidden variables
with definite values independent of measurement settings
(noncontextuality) is inconsistent with quantum mechan-
ical predictions. Experiments have since tested Bell’s in-
equality and support quantum mechanics [13–15].

These lower bounds on correlation strength naturally
led to efforts to characterize the upper boundaries of
quantum mechanics. Notable is work by Tsirelson [4]
which proved an upper bound to the strength of quan-
tum correlations in Bell inequality settings.

Along the trails of the EPR paradox, Bennett et al.
[5] put forward the possibility of quantum teleportation;
this idea, however, does not permit super-luminal com-
munication, since classical information needs to be trans-
mitted. Further work also found that while quantum me-
chanics and entanglement could be exploited to achieve
more efficient communication, they were always bounded
by the no-signaling principle, which states that no infor-
mation can be transmitted by local operations.

Popescu and Rohrlich then discovered [6] that math-
ematically a much richer class of theories exist. They
obey the no-signaling principle yet have correlations
stronger than quantum mechanics. These theories, how-
ever, would make distributed computations require only
a trivial amount of communication [7]. Researchers have
thus proposed physical principles which might explain
the absence of stronger correlations in nature, including
“information causality” which limits the amount of in-
formation that can be recovered from a certain amount
of communication.

∗ hyzhou@mit.edu

Lately, it has also been found that multipartite princi-
ples are necessary to completely distinguish the bound-
aries between quantum mechanics and stronger theories
[8]. Quantum games have been devised to illustrate this
point, and a new principle named “local orthogonality”
has been proposed to characterize quantum correlations
in a multipartite setting.

In this paper, we will give a brief introduction to the
aforementioned progress in the exciting field of quantum
information and provide some physical reasoning as to
why these principles hold true.

II. The Boundary Between Classical Correlations
and Quantum Correlations

II.1. Review of Quantum Mechanical Expectations

Although entanglement was first discussed as early as
1935 [1], it took another 30 years for people to realize that
the distinction between local and quantum correlations
has experimentally testable consequences [2].

Before we derive Bell’s inequality and the CHSH in-
equality, let us first review the quantum mechanical ex-
pressions for correlation expectations. For simplicity, we
consider a spin-1/2 system with a pair of entangled parti-
cles in the singlet state |Ψ〉 = 1√

2
(|+〉A|−〉B−|−〉A|+〉B).

We then consider the correlation between a pair of
measurements performed on part A and B. If A per-
forms a measurement in the ~a direction and B in the
~b direction, then the correlation function is defined as

C(~a,~b) = E[A(~a)B(~b)], where E denotes expectation

value and here we assume E[A(~a)] = E[B(~b)] = 0. Corre-
lations are normalized such that perfect correlation cor-
responds to C(~a,−~a) = 1. Therefore, in the quantum
mechanics formulation we may write our expression in

terms of Pauli matrices C(~a,~b) = 〈( ~σA · ~a)( ~σB ·~b)〉.
By spherical symmetry, we take ~a to be in the ẑ direc-

tion and ~b in the x− z plane at an angle θ to ~a. We can
then calculate the quantum-mechanical expression

C(~a,~b) = 〈( ~σA · ~a)( ~σB ·~b)〉
= 〈σzA(cosθσzB + sinθσxB)〉

=
1

2
(〈+|〈−| − 〈−|〈+|)σzA(cosθσzB

+ sinθσxB)(|+〉|−〉 − |−〉|+〉) = −cosθ (1)
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We also note here that when ~a and ~b are approxi-
mately the same we have the small angle approximation

C(~a,~b) ≈ −1 + θ2/2 as θ → 0.

II.2. Bell’s Inequality

Equipped with the quantum-mechanical expectations,
we can now proceed to analyze Bell’s inequality. In its
original form, it states that for any three measurement

settings (in our case directions ~a, ~b and ~c) and for any
theory which invokes local hidden variables, the corre-
lation functions are bounded by the nontrivial relation
[2]

|C(~a,~b)− C(~a,~c)| ≤ 1 + C(~b,~c) (2)

Before we give a rigorous derivation, we first motivate
this relation from general probability considerations, also
known as the Wigner-d’Espagnat inequality [9].

Since C(~a,~a) = −1, we can think of M(~a,~b) =

C(~a,~b) + 1 ≥ 0 as characterizing the mismatch between

~a and ~b. Now consider the mismatch between the three
vectors ~a, ~b and ~c. In a local theory, each mismatch be-

tween ~a and ~b must either be due to a mismatch between
~a, ~c or between ~b, ~c. This implies that the mismatch be-

tween ~a, ~b is no greater than the sum of the other two
mismatches, or mathematically

M(~a,~c) +M(~b,~c) ≥M(~a,~b) (3)

C(~a,~c) + C(~b,~c) + 2 ≥ 1 + C(~a,~b)

C(~a,~b)− C(~a,~c) ≤ 1 + C(~b,~c)

By symmetry C(~a,~b) = C(~b,~a), so we see that equation
(2) should hold.

To rigorously derive Bell’s inequality, we shall need
to use the fact that the two parts of the singlet state
are perfectly anti-correlated. In the language of hidden
variables,

C(~a,~b) =

∫
dλA(~a, λ)B(~b, λ)ρ(λ) (4)

Here, λ is the hidden variable of the system and ρ(λ) a
corresponding probability distribution which, in a clas-
sical theory, will encode all information about the dis-

tributions. A(~a, λ) = ±1 and B(~b, λ) = ±1 denote the
observed values for a given λ.

Using the anti-correlation properties of a singlet, and
writing Aa as a short hand notation for A(~a, λ) etc., we
can write the correlations in terms of integrals over out-
comes of system A. To prove the inequality, we only need
to transform two correlations into the third one using sin-

glet properties. This will lead us to

|C(~a,~b) − C(~a,~c)| = |
∫
dλρ(λ)(AaBb −AaBc)|

= |
∫
dλρ(λ)(−AaAb +AaAc)|

= |
∫
dλρ(λ)(−AaAb +AaAbAbAc)| (5)

= | −
∫
dλρ(λ)AaAb(1−AbAc)|

≤
∫
dλρ(λ)(1−AbBc) (6)

= 1 + C(~b,~c)

Here in equation (5,6) we have used the fact that the
outcomes are ±1 and in equation (6) we use 1−AbAc ≥ 0.
Therefore, we have proved a bound to all local theories.
This bound essentially stems from the fact that we are
considering a mathematical setup which allows separable
descriptions of the two subsystems A and B.

Now we compare to quantum mechanics. For simplic-

ity, we assume that the three vectors ~a, ~b, ~c are coplanar.
Then the inequality becomes |cosθab−cosθac| ≤ 1−cosθbc.

But if we consider the case where ~c is between ~a and ~b
with θac = θbc = 1

2θab = θ, as shown in figure 1, then

locality requires 2cosθ ≤ 1 + cos2θ = 2cos2θ, which is
violated for angles θ ∈ (0, π2 ). Therefore, quantum me-
chanics and local realism have different predictions.

a

c

b

Bell CHSH

b'

a'b

a

FIG. 1. Figure of the directions of vectors chosen in a mea-
surement. On the left is Bell’s inequality, on the right is the
CHSH inequality with solid vectors denoting system A and
dashed ones denoting system B.

II.3. The CHSH Inequality

The above Bell’s inequality is valid for perfectly corre-
lated or anti-correlated states for A and B, since we need
to transform measurement results from B to A in our
derivation. In actual experiments, however, due to detec-
tor efficiency limitations and other factors, we might not
always be able to achieve perfect correlations, and there-
fore we need an inequality which does not rely on this
assumption. It was found that a generalization to Bell’s
inequality - the CHSH inequality proposed in 1969 [10]-
can satisfy this by introducing 4 measurement directions,
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and moreover, it provides mathematical advantages for
generalizing into other no-signaling theories.

The form of the CHSH inequality is the following:
(hereon we drop the vector symbols for simplicity)

|C(a, b) + C(a′, b) + C(a′, b′)− C(a, b′)| ≤ 2 (7)

An intuitive argument is similar to the one presented
in the previous section, in which we consider the mis-
matches which can occur between different correlations.
Once again the mismatch is bounded by the sum of the
others, which will lead to the above equation.

A rigorous derivation uses the same idea of transform-
ing one correlation into another, this time by supple-
menting terms, and then uses the fact that outcomes
|A|, |B| ≤ 1. Following the trails of Bell in his 1987 book
[11] and using the same notation as the previous section,

C(a, b) − C(a, b′) =

∫
dλρ(λ)(AaBb −AaBb′)

=

∫
dλρ(λ)AaBb(1−Aa′Bb′)

−
∫
dλρ(λ)AaBb′(1−Aa′Bb)

≤
∫
dλρ(λ)(1−Aa′Bb′ + 1−Aa′Bb) (8)

= 2− C(a′, b)− C(a′, b′)

where in equation (8) we have used the bounds on out-
come values |A|, |B| ≤ 1. We have therefore proved the
CHSH inequality for local realism theories.

The CHSH inequality is violated by quantum mechan-
ics for certain choices of measurement directions. In
particular, for the configuration in figure 1, choosing
θab = θa′b = θa′b′ = π

4 , θab′ = 3π
4 gives C(a, b)+C(a′, b)+

C(a′, b′)− C(a, b′) = 2
√

2, violating the inequality.
Before we move on to more general no-signaling theo-

ries, we note experimental evidence which is overwhelm-
ingly in favor of nonlocal correlations. Using the form
of the CHSH inequality which takes photon detector ef-
ficiency and the fact that we can only detect one po-
larization at a time into account [10], Freedman and
Clauser [12] were able to experimentally test the in-
equality (7). Their results are equivalent to finding that
C(a, b)+C(a′, b)+C(a′, b′)−C(a, b′) = 2.416±0.104 can
be achieved, violating Bell’s inequality.

In 1982 Aspect et al. performed a similar experiment
[13], this time with the polarization directions chosen af-
ter the photons were generated to ensure space-like sep-
aration. Further experiments by Zeilinger’s group and
other scientists have closed possible loopholes such as
freedom of choice and detector efficiency, further corrob-
orating quantum mechanical results [14, 15].

III. Quantum Correlations and Beyond

III.1. Tsirelson’s Bound

While we have seen that local realism imposes restric-
tions on the possible correlations, we would also like to

ask whether quantum mechanics might have any simi-
lar restrictions. A natural restriction for any correlation
function, not limited to quantum mechanics, is that

|C(a, b) + C(a′, b) + C(a′, b′)− C(a, b′)| ≤ 4 (9)

since each correlation function satisfies |C(a, b)| =
|
∫
dλρ(λ)AaBb| ≤ |

∫
dλρ(λ)| = 1.

This however can not be saturated by quantum me-
chanics due to the Tsirelson’s (Cirel’son) bound [4]. The
key to proving this is to recognize that quantum mechan-
ics imposes restrictions on the commutators, so that the
different correlation functions are related to each other.

To prove Tsirelson’s bound of 2
√

2 on the right-hand-
side of equation (7), we write the left hand side of the
inequality in operator form and define

T = AaBb +Aa′Bb +Aa′Bb′ −AaBb′ (10)

As usual, the operators satisfy A2 = B2 = I. Since the
two systems A and B are space-like separated, [Aa, Bb] =

0 for any directions ~a and ~b.
Since we are interested in the correlations, we wish to

generate interference between terms, so we square equa-
tion (10) to get

T 2 = 4I + {Aa, Aa′}+ {AaBb, Aa′Bb′} − {Bb, Bb′}
+ {Bb, Bb′} − {Aa′Bb, AaBb′} − {Aa′ , Aa}
= 4I + (AaAa′ −Aa′Aa)(BbBb′ −Bb′Bb)
= 4I + [Aa, Aa′ ][Bb, Bb′ ] (11)

where {A,B} = AB + BA, [A,B] = AB − BA are the
anticommutators and commutators.

Local deterministic theories require the commutators
to be 0, so we recover the CHSH bound |T | ≤ 2. In
quantum mechanics, the eigenvalues of A and B are ±1,
so |〈AB〉| ≤ 1. Therefore

〈T 〉 ≤
√
〈T 2〉 ≤ 2

√
2 (12)

In general, though, the observables may not necessarily
obey the commutation relations which we have exploited
in equation (11), and therefore supraquantum correla-
tions might violate Tsirelson’s bound.

III.2. Maximally Strong No-signaling Correlations

In fact, it was shown by Popescu and Rohrlich [6] that
there exist correlations, now known as PR boxes, that
fit into relativity (meaning that they do not allow super-
luminal communication of information) yet still achieve
the maximal CHSH value of T = C(a, b) + C(a′, b) +
C(a′, b′)− C(a, b′) = 4.

Consider a “superquantum” singlet state in which for

chosen measurement directions ~a and ~b, the correlation
function will only depend on the angle C(a, b) = C(θab).
By symmetry, the outcome probabilities satisfy P (↑↑) =
P (↓↓) and P (↑↓) = P (↓↑). Since their sum is 1, we have
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P (↑) = P (↑↑) + P (↑↓) = 1/2, i.e. the outcome of one
measurement contains no information of the other, thus
satisfying relativistic causality. The only restriction on
the correlation function is that by rotational symmetry
C(π − θ) = −C(θ).

−1

−0.5

0

0.5

1

θ

C
(θ

)

0 π/3 2π/3 π

FIG. 2. Figure of the correlation function for a maximally
strong no-signaling correlation function as a function of angle

Now, instead of quantum mechanics where C(a, b) =
−cosθab, we artificially construct a correlation function as
shown in figure 2. From this figure, we see that as long
as we construct a suitable function where there exists a
point with C(θ) = −C(3θ) = 1 (in this case θ = π/12
suffices), then we can choose a configuration as in figure
1 with angle θ between the vectors and achieve the max-
imal CHSH value of T = C(a, b) + C(a′, b) + C(a′, b′) −
C(a, b′) = 4.

III.3. Physical Implications of
Stronger-than-Quantum Correlations

The preceding example of stronger no-signaling cor-
relations (henceforth called NS correlations) shows that
quantum mechanics is not the unique theory which satis-
fies both nonlocality and relativity. Indeed, there exist a
broad class of theories which also satisfy these two princi-
ples. Van Dam showed, however, that these correlations
will have strong information consequences [7, 16].

Before we look at these consequences, let us first
rephrase our previous inequality into the form of a game
or an information task, also known as the black-box
model.

We imagine two parties, Alice and Bob, sharing two
prewired boxes. The boxes might have any kind of cor-
relation, depending on which theory we would like to
analyze. The boxes have the functionality that when Al-
ice and Bob each insert an input (x for Alice, y for Bob)
into their own side, the box returns a value on each side,
denoted as u and v. We shall assume that all values are
binary choices in the following discussion, since a general
case can be constructed by expanding the number in base
2. Here the values satisfy x, y, u, v ∈ {0, 1}.

Now we consider a game in which Alice and Bob need
to construct a box that will produce outputs satisfying
(⊕ denotes congruence mod 2)

u⊕ v = xy (13)

how likely are they to succeed given a certain type of
resource that they can share beforehand?

We can in fact easily obtain the result by mapping this
problem into the CHSH inequality. In equation (13), to
succeed we require u ⊕ v = 0 when xy = 0 (3/4 of the
time) and u⊕ v = 1 when xy = 1 (1/4 of the time). This
ratio is precisely that of the signs in the CHSH inequality,
and therefore if we map x = 0, 1 into A(a′), A(a), y = 0, 1
into B(b), B(b′) and output u = 1 if measurements yield
A = 1, u = 0 if measurements yield A = −1 etc., then
the success probability of input set a, b is

Psuccess(a, b) = P (ua = va = 1) + P (ua = va = 0)

= P (Aa = Bb = 1) + P (Aa = Bb = −1)

=
1− P (Aa ·Bb = −1)

2
+
P (Aa ·Bb = 1)

2

=
C(a, b) + 1

2

The total success probability P and the CHSH value
T are thus related by

P =
1

4

C(a, b) + C(a′, b) + C(a′, b′)− C(a, b′) + 4

2

One consequence is elimination of communication re-
dundancy in distributed decision problems [7]. For ex-
ample, suppose Alice and Bob each have two strings ~x
and ~y of 0s and 1s and they wish to determine whether
the number of incidents where they both have 1 is even or
odd (i.e. whether the inner product between the strings
is even or odd, which is also why this problem is called
the “inner product” problem).

Classically and even quantum mechanically, one side
will have to send the entire string over to get the result.
However, with PR boxes, the parity of

∑
i xiyi is equal

to that of
∑
i ui + vi, so all that Bob needs to know to

compute the decision is simply the parity of
∑
i ui, which

can be communicated in one bit.
While eliminating this redundancy doesn’t seem to go

against our direct physical intuitions, the task is known
to be the most general communication task [16], and in
a sense it is like achieving P = NP in communication
tasks.

III.4. Information Causality as a Physical Principle

In 2009, Pawowski et al. [17] extended this idea into a
new principle which they termed information causality.

Suppose Alice and Bob receive strings ~x and ~y and
are asked to compute a Boolean function f(~x, ~y). Since
any Boolean function can be written as a sum f(~x, ~y) =
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∑
i Pi(~x)Qi(~y), where Pi and Qi are locally computable

quantities, all they need to do is let Alice compute Pi
locally and employ the inner product algorithm discussed
in the previous section.

For a PR box, if we choose ~y = (K) and f(~x,K) = xK ,
where K is some given index, then we see immediately
that Bob can access any bit Alice has, though not si-
multaneously. This seems to imply that they actually
have communicated more information than we naturally
imagine, and this is where information causality poses a
boundary, restricting the amount of information that Bob
can recover from his initial resources and Alice’s signal
bit(s) by m, the information volume communicated.

Alice Bob
Preshared 

Correlations

x y

u v
Sum of u

Output

Guess Your 
Neighbor's Input1

1 0

0 1

1
1

1

1

1

0

0

You Win!

FIG. 3. Figure of the two games we consider in this article.
The first one is a distributed computing problem and the sec-
ond one is the “guess your neighbor’s input” game, where the
players have won in this particular example.

This formulation can be made more rigorous by us-
ing mathematical expressions of entropy and Shannon
mutual information, and people have shown [17] that the
principle singles out correlations which violate the CHSH
inequality stronger than the Tsirelson’s bound. These de-
tailed discussions, however, are beyond the scope of this
paper.

IV. Multipartite principles

IV.1. Game of “Guess Your Neighbor’s Input”

To illustrate interesting consequences of a multipartite
setting, we introduce the game of “guess your neighbor’s
input”, first studied by Almeida et al [18]. As the name
suggests, the game consists of N people forming a circle
for which each person’s task is to output the bit that the
person to his left received, see figure 3. Formally, the
winning probability is

ω =
∑

~x

q(~x)P (ai = xi+1|~x) (14)

where q(~x) denotes the input distribution and P (~a|~x) de-
notes the probability of outcome vector ~a given input
vector ~x.

If there are no shared correlations between the parties,
so that each subsystem only has local resources, every
player can only make a binary choice according to the
input that they have received. Suppose that an output
strategy succeeds when a string x is the input, then it will
also succeed only for the input x̄, where the bar denotes

inverting all input bits and hereon we will omit vector
symbols on top to simplify notation. Clearly then, the
classical optimal winning probability is given by

ωc = maxx[q(x) + q(x̄)] (15)

Almeida et al. prove that quantum mechanics can not
do any better in this task by exploiting an algebraic iden-
tity that only relies on the properties of projective oper-
ators and does not depend on any commutation features
of quantum mechanics.

In quantum mechanics, the N parties will share an
entangled state |ψ〉 beforehand. If we define projection
operators Mxi

ai corresponding to projection of the ith per-
son’s state onto result ai if he/she is given xi, and let
Mx = Mx1

x2
⊗ ...Mxn

x1
, then the winning probability ωq

and operators Mx satisfy

ωq =
∑

x

q(x)〈Mx〉 (16)

M2
x = Mx (17)

MxMy = 0 for x 6= y, ȳ (18)

Now we may proceed to try and prove ωc ≥ ωq. Due to
the property in equation (17), we naturally wish to put
ωc−ωq into the form of a sum of squares. Some guessing
around and a few mathematical tricks yield

ωc − ωq = ωc −
∑

x

q(x)Mx

= (
√
ωc −

∑

x

q(x)√
ωc
Mx)2 +

∑

x

q(x)Mx

−
∑

x

q(x)2

ωc
Mx −

∑

x

q(x)q(x̄)

ωc
MxMx̄ (19)

= (
√
ωc −

∑

x

q(x)√
ωc
Mx)2 +

∑

x

q(x)2 + q(x)q(x̄)

ωc
Mx

−
∑

x

q(x)2

ωc
Mx −

∑

x

q(x)q(x̄)

ωc
MxMx̄ (20)

= (
√
ωc −

∑

x

q(x)√
ωc
Mx)2 +

1

2

∑

x

q(x)q(x̄)

ωc
(Mx −Mx̄)2

≥ 0 (21)

where in the derivations all operators Mx stand for their
expectation values 〈Mx〉 and we have repeatedly made
use of identities (17,18). Since ωc − q(x) − q(x̄) ≤ 0
by equation (15), we have also replaced all q(x) by
q(x) + [ωc − q(x) − q(x̄)]/2 to make q(x) + q(x̄) = ωc
in our preceding arguments. The last line in equation
(21) follows from the fact that the two terms are sums of
Hermitian operators multiplied by nonnegative numbers.

Intuitively, one might guess that the results above are
due to the fact that relativity prohibits any local result
to reveal information about its neighbor. However here
arises the peculiarity of multipartite cases, in that for
general no-signaling theories, even though any individ-
ual party does not reveal information about its neighbor,
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for certain inputs by utilizing established NS correlations
they can still collectively improve the winning probabil-
ity.

A mathematical statement of no-signaling is that the
probability distribution of any subset {i1, ..., ik} should
not depend on the choices of the remaining parts, so that
mathematically

P (ai1 , ..., aik |x1, ..., xN ) = P (ai1 , ..., aik |xi1 , ..., xik) (22)

To find a case where NS correlations do better, we
would like to have the inputs correlated to some degree.
Therefore, we consider the simple case where N = 3, with
input distribution

q(x) =

{
1/23−1, x1 ⊕ x2 ⊕ x3 = 0
0, otherwise

(23)

Intuitively, the input is strongly correlated: knowing two
bits automatically tells us what the third bit is. However,
each individual will not be able to extract any informa-
tion about their neighbor just by looking at what they
have received.

Now consider what restrictions the no-signaling prin-
ciple imposes on these correlations [18]. We are most
interested in the terms which appear in the winning prob-
abilities

ω =
1

4
[P (000|000) + P (110|011) + P (011|101)

+ P (101|110)]

ωc = ωq ≤
1

4
(24)

We also wish to find a bound from the no-signaling
principle, so we should try to transform different terms
into having the same input and make use of some nor-
malizations. This leads us to

P (000|000) ≤
∑

a3

P (00a3|000) =
∑

a3

P (00a3|001)

P (110|011) ≤
∑

a2

P (1a20|011) =
∑

a2

P (1a20|001)

P (011|101) ≤
∑

a1

P (a111|101) =
∑

a1

P (a111|001)

Here the inequalities follow from probabilities being non-
negative and the equalities come from the no signaling
condition. Notice how each time we only change one bit,
but all three situations can be tuned to have matched
inputs.

Writing down similar expressions for each three terms
and summing over them we find

3[P (000|000)+P (110|011)+P (011|101)+P (101|110)] ≤ 4

implying that ωns ≤ 4/3ωc. Input distributions can in-
deed be found which saturate this bound [18], though the
mathematical constructions are quite complicated and do
not have a clear physical intuition. In fact, similar ratios
can also be obtained for more parties and they are all
bound by 2.

IV.2. Necessity for a Multipartite Principle

We would like to note that correlations which do not
violate Tsirelson’s bound for the CHSH inequality could
still be stronger than quantum mechanics: the bound
only singles out part of the boundary, but there might be
other restrictions that make a correlation stronger than
any possible quantum correlation.

In fact, Gallego et al. [8] showed that to completely
characterize quantum mechanics, any principle which is
bipartite, in the sense that when generalizing it to N
parties it is applied to a bipartition of the N parties,
is insufficient. They managed to construct an example
where for any bipartition of the system the result will
be the same as a classical local theory, but in multiparty
cases it violates the “guess your neighbor’s input” bound
(24), meaning that it is actually supra-quantum.

IV.3. Local Orthogonality as a Physical Principle

One of the latest progress in formulating a multipartite
physical principle to characterize quantum mechanics is
local orthogonality [19].

For a system of n parties with each party having m
possible measurements with d outcomes per measure-
ment, two events e = (a1, ..., an|x1, ..., xn) and e′ =
(a′1, ..., a

′
n|x′1, ..., x′n) are considered locally orthogonal if

for some measurements with the same input, the out-
comes are different. A collection of events {ei} is called
orthogonal if they are pairwise orthogonal. We would
then naturally expect the normalization restriction for
any set of orthogonal events

∑

i

P (ei) ≤ 1 (25)

If there are only two parties then it can be shown that
this restriction is equivalent to the no-signaling principle,
which seems to be a pretty weak constraint. However the
trick of this method is to consider not one copy of this
pair, but instead k copies, and then apply local orthogo-
nality to all of these parties. This new set of restrictions
is known as LOk. It turns out that these larger systems
will have stronger restrictions which can be plugged back
to obtain a bound on the bipartite case.

As an example, we illustrate the method for a PR box.
Consider 2 copies of PR boxes, with probability distri-
bution P (u1v1u2v2|x1y1x2y2), then it is possible to con-
struct an inequality from local orthogonality [19]

P (0000|0000) + P (1110|0011) + P (0011|0110)

+ P (1101|1011) + P (0111|1101) ≤ 1 (26)

This inequality is violated by PR boxes by a value of
5/4 of the left hand side, since each term is equal to
1/4 (recall that P (uv|xy) = 1/4 whenever u ⊕ v = xy).
Therefore, PR boxes are excluded by LO2.
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However, it is known that even LO∞ does not exclude
all stronger-than-quantum correlations [20]. Therefore, it
is still an interesting question as to how we might improve
these principles to further prune out the nonphysical the-
ories that lie between current boundaries and quantum
mechanics.

GYNI 
Game

PR Boxes

Bell's 
Inequality

Tsirelson's 
Bound

FIG. 4. Schematic of a possible cross section of the correla-
tion polytope. The smallest green region are the local correla-
tions, the larger rectangular region with green and yellow are
the quantum correlations, and the outer boundaries charac-
terize all no-signaling correlations. Some boundaries between
theories are labeled in the figure as well.

V. Conclusion

In this paper, we have reviewed the various results
in characterizing the boundaries of quantum mechanics.
Many discoveries have been made over the years to help
us understand what quantum mechanics, with all of its
fancy yet powerful machinery that has been so successful
in explaining the microscopic world, actually means from
a physical and information theoretical viewpoint.

Although many of this progress might seem haphazard

at first sight, looking back we can see the natural logical
development in these works: from Bell’s bound on classi-
cal physics, people were prompted to find a similar bound
on quantum mechanics; this then led to the realization
that relativity and nonlocality are insufficient, and that
more compelling reasons were needed for quantum me-
chanics. Then an investigation of what those strong cor-
relations could do led to new physical principles, which
imposed further restrictions. When the natural general-
izations of these principles to multiparty cases were ex-
amined, researchers realized that more was needed, lead-
ing to the most recent developments in the field.

If we visualize all of the possible correlations as points
in a higher dimensional space (figure 4), with coordinate
values corresponding to the input and output values, then
each of the inequalities and principles that we have de-
scribed above can be thought of as imposing one con-
straint on the permissible points. Over the years, we have
been constantly narrowing our range down and provid-
ing better explanations for why these bounds hold true.
Hopefully, a better understanding of these underlying
principles will shed more light on quantum mechanics
and physics as a whole, and let us gain a new apprecia-
tion of our beautiful world.
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A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70,
1895 (1993).

[6] S. Popescu and D. Rohrlich, Foundations of Physics 24,
379 (1994).

[7] W. V. Dam, Nonlocality & Communication Complexity,
Ph.D. thesis, University of Oxford.

[8] R. Gallego, L. E. Würflinger, A. Aćın, and M. Navascués,
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Von Neumann Entropy and Transmitting Quantum Information

Kevin Zhou
(Dated: May 2, 2014)

We introduce the Shannon entropy and its quantum counterpart, the von Neumann entropy. We
then exhibit their operational meanings in the context of coding in a noiseless channel, via Shannon’s
and Schumacher’s theorems. We then give a brief overview of the problems of coding in a noisy
quantum channel, and the concept of accessible information.

I. INTRODUCTION

In 1948, Shannon’s paper “A Mathematical Theory
of Communication” jumpstarted the field of information
theory, both defining the Shannon entropy and linking it
to limits on communication rates in noiseless and noisy
channels. [4] However, it was not until almost 40 years
after that the ideas of information theory were applied
to quantum mechanics. [3]

Quantum information theory presents a number of fea-
tures that cannot be reproduced in classical information
theory. For example, it is possible for two states to indi-
vidually not possess definite states, but for the composite
system to be in a definite state; this is quantum entan-
glement. As another example, quantum states that are
not orthogonal cannot be perfectly distinguished; classi-
cal information theory is the special case where we only
transmit orthogonal quantum states.

Despite these differences, results in classical and quan-
tum information theory, along with their proofs, often
parallel each other closely. In this paper, we briefly dis-
cuss the Shannon entropy and Shannon’s source coding
theorem, then discuss Schumacher’s theorem, its quan-
tum analog. We also consider transmission of informa-
tion over a noisy channel, which leads to the concept of
mutual information and its quantum analog, the Holevo
information. [2]

II. CLASSICAL INFORMATION THEORY

A. Shannon Entropy

Suppose we want to transmit a message A consisting
of letters chosen from the alphabet {a1, . . . , ak}, with ai
occurring with probability pi. Further suppose that the
letters in our message in our set are chosen independently.
How many bits per letter are necessary to transmit the
message?

Naively, the answer is lg k, where lg denotes the base-
2 logarithm. This lets us assign a unique binary string,
of length lg k, to each letter. However, we already know
this is not the case. For example, Morse code transmits
26 distinct letters using only binary dots and dashes, but
the average number of dots/dashes used for each letter is
less than lg 26 because more common letters, such as E
and T, are given shorter representations. (The analogy
is not perfect, because Morse code also includes a third

symbol (a pause) to separate letters.)
The idea, which is to give precedence to the more likely

letters, is sharpened in Shannon’s theorem. We will see
that when we consider blocks of many letters at once,
we will only have to code a fraction of the total possible
blocks to get an arbitrarily high probability of successful
transmission. The length of such a “typical” block will
be given by the Shannon entropy,

H(A) = −
∑

i

p(ai) lg p(ai) (1)

B. Mathematical Results

By the convexity of the lg function, it can be shown
that the Shannon entropy H(A) is maximized when all
the probabilities are equal to 1/k. In this case, it is equal
to lg k, which intuitively fits with our discussion in the
previous section; if none of the letters are privileged over
the others, coding is as difficult is possible, we cannot do
better than the naive code.

Moreover, as one of the pi approaches 1, the Shannon
entropy approaches 0. This is also plausible, because
when pi = 1 we will know that the message consists only
of the letter ai before it is even sent.

The weak law of large numbers will be useful. Sup-
pose we have N independent, identically distributed ran-
dom variables x1, . . . , xn with mean x and finite variance.
Then for any δ, ε > 0, there exists an N0 so that for
N > N0,

P

(∣∣∣∣
∑
i xi
N

− x
∣∣∣∣ > δ

)
< ε (2)

C. Shannon’s Source Coding Theorem

We now quantify the notion of a “typical” block. Con-
sider the random variable on letters f(a) = − lg p(a). By
definition, its mean value is H(A). Considering a block
α = a1a2 . . . aN of N letters, the sum of the values of this
random variable is equal to

f(a1) + . . .+ f(aN ) = −(lg p(a1) + . . .+ lg p(aN ))

= −(lg p(a1)p(a2) . . . p(aN ))

= −(lg p(α))
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where p(α) is the probability of the block α occurring.
Applying Eq. (2), we find that for any ε, δ > 0,

P

(∣∣∣∣
− lg p(α)

N
−H(A)

∣∣∣∣ > δ

)
< ε (3)

for sufficiently large N . Define a typical block to be one
that satisfies this inequality. How many typical blocks
are there? This is constrained by the fact that the sum
over all blocks

∑
α p(α) must be 1. The above tells us

that the probability of a typical block satisfies p(α) >
2−N(H(A)−δ). This means there are at most 2N(H(A)+δ)

typical blocks.
This gives us our protocol: only code the typical

blocks, each of which requires N(H(A) + δ) bits. Define
the fidelity F as the change of successful transmission,
1 − ε. As ε and δ go to zero, we attain a code that ex-
presses the message with perfect fidelity, using on average
H(A) bits per letter. [6] This is the forward direction of
Shannon’s source coding theorem.

We now sketch a proof of the converse. Suppose there
was a scheme that encoded a block of length N using on
average R bits per letter, where R < H(A). Then we
can code a maximum of 2NR blocks. All these blocks
should be typical blocks, since the total contribution
from the atypical blocks goes to zero. However, applying
Eq. (3), we find that the probability of a typical block is
at most 2−N(H(A)+δ). That means the probability that
our scheme works is bounded by

2NR2−N(H(A)+δ) = 2N(R−H(A)+δ)

For sufficiently large N , we may set δ < |R−H(A)|/2,
which shows that the probability of successful transmis-
sion goes to zero. This completes the proof of Shannon’s
theorem.

The coding scheme we have exhibited, though it is op-
timal by certain standards, lacks many practical features.
It requires a codebook of exponential size to decode the
typical blocks (which defeats the point of a data com-
pression algorithm), and it requires the probability dis-
tribution to be known in advance. However, it serves
as a reference point for compression efficiency, similarly
to how the Carnot efficiency does the same in thermo-
dynamics. It then serves as a point of comparison for
practical algorithms like Huffman coding (which requires
little space) and universal coding schemes, which do not
need to know the probability distribution.

III. NOISELESS QUANTUM CHANNEL

A. Von Neumann Entropy

Suppose we now want to transmit a message consisting
of quantum states |a〉 with probability p(a). We know

that, for the purposes of any measurement, this ensemble
is completely specified by the density matrix

ρ =
∑

a

p(a) |a〉 〈a| (4)

and all quantities should be written in terms of it. We
claim that the analog of the Shannon information in this
context is the von Neumann entropy, [5]

S(ρ) = −tr(ρ lg ρ). (5)

As justification, suppose that all the states we are send-
ing are orthogonal. In this case our message is equiva-
lent to a classical one, so our expression should reduce
to the Shannon entropy. This is indeed the case. If we
work in the |a〉 basis, ρ is diagonal with p(a) on the di-
agonal entries. Then ρk is diagonal with diagonal entries
p(a)k, which means f(ρ) is diagonal with diagonal entries
f(p(a)) by applying Taylor series. Then ρ lg ρ has diag-
onal entries p(a) lg p(a), and taking the trace reproduces
the Shannon entropy. In general, however, S(ρ) ≤ H(A),
where H(A) is computed from the p(a).

Next, consider the case of a pure state, ρ = |a〉 〈a|.
Then ρ2 = ρ. Now consider a function of ρ that can be
expanded in a Taylor series. Then

f(ρ) =
∑

akρ
k =

(∑
ak

)
ρ = f(1)ρ.

Because lg 1 = 0, this shows that the von Neumann
entropy of a pure state is zero, which is also plausible. In
this case, there is only one possible state that is sent, so
we already know the message.

Another useful property will be invariance under uni-
tary evolution. If the quantum state |ψ〉 is subjected to
a unitary evolution U , then the density operator ρ be-
comes UρU†. Then the von Neumann entropy stays the
same because

tr
(
f(UρU†)

)
= tr

(∑
ak(UρU†)k

)

= tr
(∑

akUρ
kU†

)

= tr
(
Uf(ρ)U†

)

= tr
(
U†Uf(ρ)

)
= tr (f(ρ))

where we have used the cyclic property of the trace. Note
that we have already implicitly used this property when
we chose to work in the |a〉 basis, because taking UρU†

is equivalent to a change of basis.

B. Fidelity

The quantum analog of the classical coding problem
is as follows: given a message characterized by a den-
sity matrix ρ, how many qubits per letter are necessary
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to transmit the message with high fidelity? Before we
continue, we have to define two new terms.

A qubit is an arbitrary two state system. When we
transmit a message using k qubits, we are representing it
as a vector in a 2k−dimensional Hilbert space.

To motivate the definition of fidelity, suppose we at-
tempt to transmit the state |ψ〉 and our partner re-
ceives the density matrix w. The projection operator
π = |ψ〉 〈ψ| acts as a validation test; its expectation value
is equal to the probability that a test that w matches |ψ〉
returns true. For an operator A, the expectation value
of A is

〈A〉 = tr(Aρ) (6)

Accounting for the different possibilities for |ψ〉, we
define the fidelity [7]

F =
∑

a

p(a)tr(πawa) (7)

Note that this is consistent with our previous defini-
tion of fidelity. In classical information theory, a string
with an incorrect bit contributed zero to the fidelity. In
this case, a bit flip is equivalent to sending a qubit state
orthogonal to the intended state, which makes the pro-
jection zero, also contributing nothing.

C. Schumacher’s Theorem

Schumacher’s Theorem states that the most efficient
possible high fidelity encoding scheme, requires on aver-
age S(ρ) qubits per letter. Parallel to Shannon’s theo-
rem, we will achieve this by only sending the components
of states that lie within a “typical subspace”.

Because ρ is Hermitian, we may choose a orthogonal
basis where it is diagonal. That is, we can choose or-
thogonal |ϕi〉 so that ρ is equivalent to sending the state
|ϕi〉 with probability pi. Because S(ρ) is invariant un-
der a change of basis, we know that −∑ pi lg pi = S(ρ).
Because the quantum states are orthogonal, this is equiv-
alent to sending classical states, so we may borrow from
the proof of Shannon’s theorem.

Consider sending a block of N letters, represented by
the density matrix ρN = ρ⊗ . . .⊗ ρ. Now apply Eq. (3).
The eigenvectors take the place of blocks of letters, the
eigenvalues take the place of probabilities (because tr ρ =
1, they also sum to 1), and the von Neumann entropy
S(ρ) takes the place of the Shannon entropy H(X).

Performing all these substitutions, we conclude that
there are at most 2N(S(ρ)+δ) typical eigenvectors, where
a typical eigenvector has a eigenvalue λ that satisfies
2−N(S(ρ)−δ) ≥ λ ≥ 2−N(S(ρ)+δ). Moreover, the sum of
the eigenvalues of all other eigenvectors is less than ε.
Define the typical subspace Λ to be the space spanned
by the typical eigenvectors, and let Λ⊥ be its orthogonal
complement.

Schumacher’s coding protocol is then as follows.

1. Taking the input block, perform a measurement
that projects the state into either Λ or Λ⊥. [8]

2. Perform a unitary operation U that takes all typical
eigenvectors to a state of the form |ψ〉⊗|0〉⊗. . .⊗|0〉,
where |ψ〉 is a state of N(S(ρ) + δ) qubits. This is
possible because the subspace of such states has
dimension 2N(S(ρ)+δ), which was our bound on the
number of typical eigenvectors.

3. Send only |ψ〉 and discard the other qubits.

4. When |ψ〉 is received, append the appropriate num-
ber of |0〉 qubits and then perform U−1.

The last three steps do not affect the fidelity, but they
give us a concrete way to package the information in fewer
qubits. The number of qubits per letter is S(ρ)+δ which
limits to S(ρ), as desired. However, we must also show
that the fidelity can be made arbitrarily high.

Let E be the operator that projects onto the typical
subspace. Because the typical eigenvectors’ eigenvalues
add up to at least 1− ε, we know that tr(ρNE) > 1− ε.
When we apply the measurement in step (1) to the pure
state |ϕ〉 〈ϕ|, the result is a density matrix,

ρ′ = E |ϕ〉 〈ϕ|E + ρj 〈ϕ| (1−E) |ϕ〉 (8)

where ρj is the “junk” state that we send if we failed in
step 1.

Because the typical eigenvectors do not have anything
to do with the states in the alphabet, the fidelity will
likely be less than 1 for any of the states in the alphabet.
However, we are interested in the fidelity averaged across
all possible block states, we apply Eq. (7), which yields

F =
∑

pi 〈ϕi| ρ′i |ϕi〉

=
∑

pi 〈ϕi|E |ϕi〉 〈ϕi|E |ϕi〉+ “junk” terms

≥
∑

pi(〈ϕi|E |ϕi〉)2

where we have used the fact that the junk terms must
contribute a nonnegative amount to the fidelity. We now
wish to get a bound on F in terms of ε.

For any real number x, we have

(x− 1)2 ≥ 0 → x2 ≥ 2x− 1 (9)

Applying this to our previous equation yields

F ≥
∑

pi(2 〈ϕi|E |ϕi〉 − 1)

= 2 tr(ρnE)− 1

> 2(1− ε)− 1 = 1− 2ε. (10)
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Thus, as ε is taken to zero, we get arbitrarily good
fidelity. This concludes the proof of correctness of Schu-
macher’s protocol. We must also prove that we cannot
do better than S(ρ) qubits per letter; this is proven in the
same way the converse of Shannon’s theorem is proven.

IV. ACCESSIBLE INFORMATION

A. Mutual Information

The concept of mutual information appears when com-
municating over a noisy channel. Suppose that when we
attempt to send the letter x in an alphabet X, the chan-
nel randomly outputs a letter y in an alphabet Y , with
the probabilities characterized by conditional probabili-
ties f(y|x). How much information can we learn about
x, given y?

When we receive y, we use Bayes rule to update our
prior distribution p(x) to p(x|y). We know that p(x|y) =
p(x, y)/p(y). Then, taking the log and expectation value
of both sides,

〈− log(p(x|y))〉 = 〈− log p(x, y)〉 − 〈− log p(y)〉 (11)

The left hand side is the Shannon information of the
posterior distribution. We call this quantity H(X|Y ),
the conditional entropy; it is the amount of additional
bits needed to determine x. The right hand side is, by
definition, H(X,Y )−H(Y ).

The quantity we want is the amount of information
about X which we gained; this is equal to H(X) −
H(X|Y ). We thus define the mutual information as

I(X;Y ) = H(X)−H(X|Y ) (12)

= H(X) +H(Y )−H(X,Y ) (13)

where the latter equality shows that I is symmetric in
X and Y .

B. Holevo Bound

We now consider the analogous question in a noisy
quantum channel. Suppose we are attempting to send
states |x〉 characterized by a probability distribution
p(x). However, due to the noise in the channel, the recip-
ient instead gets a mixed state ρx. Denote the ensemble
{ρx, px} by E . The recipient then performs a measure-
ment which gives result y characterized by conditional
probabilities p(y|x).

Here, the information the recipient is trying to get is
classical information. The measurement gives a definite
result, and this gives us some number of bits of knowledge
about the preparation x that was used to send the state.
This is in contrast with the previous section, where the

focus was having the recipient end up with the correct
quantum state; in that case, the recipient might have no
idea what that state actually is.

The situation is already more complex than in the clas-
sical case. For example, suppose there is no noise at all,
and we are trying to send one of two nonorthogonal states
|ϕ〉 and |ψ〉. Then it is impossible for the recipient to tell
with certainty which state he has received, since any pos-
sible measurement may give the wrong result.

One possibility is that the recipient may try to boost
his chances of success by cloning (making copies of) the
received state. Then as long as the mutual information
isn’t zero, he will be able to distinguish between the
two states arbitrarily accurately by making more copies.
However, this is forbidden by the no-cloning theorem,
which states that it is impossible to accurately duplicate
quantum states! [1]

Here, the amount of information gain I(X;Y ) depends
on the measurement scheme. We define the Holevo in-
formation as

χ(E) = S(ρ)−
∑

x

pxS(ρx) (14)

where ρ is the density matrix
∑
pxρx. The Holevo

bound states that the accessible information, which is the
maximum possible value of I(X;Y ) over all measurement
schemes, is at most χ(E). Note that S(ρ) ≤ H(X) in
general, this means that we can’t get more than n bits
of classical information out of n qubits! This is, at first
glance, a rather surprising conclusion.

Switching back to the context of data compression,
consider an alternate scenario when we are intentionally
sending mixed states ρx with probability px (through a
noiseless channel). Then χ(E) is the minimum number of
qubits per letter needed to send the message with high
fidelity; this is the analog of Schumacher’s theorem for
mixed states.

V. CONCLUSION

Quantum information theory presents many new fea-
tures not found in classical information theory. In this
paper, we have considered theoretical bounds on data
transmission through noiseless quantum channels, as well
as the practical issue of accessible information.

There are many questions that remain. We have not
mentioned how one would actually encode mixed states,
or when the Holevo bound may be attained. We have
also ignored the transmission of entangled states, which
open up many new possibilities. Finally, one might want
to develop practical algorithms for these tasks. An ev-
eryday application of quantum information theory may
soon come from quantum cryptography, and its subfield,
quantum key distribution.
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