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"... nature isn’t classical, dammit, and if you
want to make a simulation of nature, you'd
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers
MIT Physics of Computation Conference, |98




omputational quantum physics

chemical reactions condensed matter physics nuclear/particle
e.g., nitrogen fixation properties of materials physics
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Algorithmic challenges in quantum simulation

|. Efficient simulation with a universal quantum computer
2. Simulating quantum mechanics in real time

3. High-precision simulation

4. An optimal tradeoff

5. Real-time simulation revisited

6. Making quantum simulation practical
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The simulation problem

The dynamics of a quantum system are
determined by its Hamiltonian H.

e
(b)) = ()

Given a description of the Hamiltonian H, an
evolution time ¢, and an initial state |¢/(0)),
produce the final state|v(¢)) (to within some
error tolerance e).

This is as hard as anything a quantum computer
can do!
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|. Efficient simulation with a universal quantum computer

Suppose H = Zj H ;where each H; is individually easy to simulate

Main idea:

Complexity: O(t*/¢)
Higher-order version (order k): O(5kt(t/€)1/k)

[Lloyd 96; Berry, Ahokas, Cleve, Sanders 05]



2. Simulating sparse Hamiltonians

[Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 03; Aharonov, Ta-Shma 03]
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2. Simulating sparse Hamiltonians

Sparse Hamiltonians

For any given row, the locations of the nonzero H .
entries and their values can be computed efficiently - i

Main idea: Color the edges of the graph of H. Then the simulation breaks into small pieces that
are easy to handle.

EERIRPRESDEE

A sparse graph can be efficiently colored using only local information, so this gives efficient
simulations.
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3. Simulating quantum mechanics in real time

No fast-forwarding theorem: Simulating Hamiltonian dynamics for time ¢ requires €)(¢) gates.

0 1 0 1 1 0

Complexity of kth order product formula simulation is O(52kt1+1/2k).

Can we give an algorithm with complexity precisely O(t)?

Systems simulate their own dynamics in real time!
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3. Simulating quantum mechanics in real time

Challenge: mismatch between

* Schrodinger dynamics (continuous time) and

* the quantum circuit model (discrete time)

Main idea: introduce a discrete-time quantum walk corresponding to the Hamiltonian

* discrete dynamics
* easy to implement

» efficiently carries spectral information about the Hamiltonian

Complexity: O(t/+/€)
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4. High-precision simulation?
Can we improve the dependence on ¢!

Many approximate computations can be done with complexity poly(log(1/¢)):
* computing 7
* boosting a bounded-error subroutine
* Solovay-Kitaev circuit synthesis

e and more...
Lower bound (based on the unbounded-error query complexity of parity): Q(loéofo(gl(/le/)e))
) 0 J 0 1 0 1 1 0 °
Quantum walk simulation: O(1/+/¢) Product formulas (kth order): O (5% /¢'/*)

Can we do better?
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Yes! There is a simulation with complexity O(t

log(t/€)

log log(t/e€)
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4. High-precision simulation

Yes! There is a simulation with complexity O(t 102)5)(;(/5/)6) ) W/L

Main idea:
 Consider the truncated Taylor series e tHt ZZO:() ( Zk, )"~ JZO_K ( Zk' )

* Expand H as a linear combination of unitary operators
* Directly implement the overall linear combination by oblivious amplitude amplification
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5.An optimal tradeoff

Combining known lower bounds on the complexity of simulation as a function of ¢ and € gives

log 1 log *
Q(t | logoi)g ;> vs. upper bound of O(t 1Ogolgog z)

Recent work, using an alternative method for implementing a linear combination of quantum

walk steps, achieves the lower bound. M
Mal tra

Main idea:
* Encode the eigenvalues of H in a two-dimensional subspace

* Manipulate those eigenvalues using a carefully-chosen sequence of single-qubit rotations
(inspired by quantum control technique of composite pulses)
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We've focused on the complexity as a function of ¢ (evolution time) and € (precision).
What about the dependence on system size!

Consider a system of 1 spins with nearest-neighbor interactions. To simulate for constant time,
best previous methods give:

e total number of gates: O(n?)

» circuit depth (execution time with parallel gates): O(n) . emieh |

If .f .f lf .f .f lf .f .f lf .f .f :z' :f :f :f :f :f :f :f :f S:'lt:'e :in:'(lgx
Execution time should not have to be extensive! o —itH,
Recent improvement: simulation with O(n) gates, O(1) depth T
Mainideas:  Zdepeng . [ na [ aowms
* Lieb-Robinson bound limits the speed of propagation o [em|[ems]
* Simulate small, overlapping regions, with negative-time et |

evolutions to correct the boundaries -
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/. Making quantum simulation practical

When can we use quantum computers to solve problems that are beyond the reach of classical
computers!

Challenges
* Improve experimental systems

* Improve algorithms and their implementation, making the best use of available hardware



/. Making quantum simulation practical
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Factoring a 1024-bit number [Kutin 06]
*3132 qubits
*5.7%x|0% T gates

*| || qubits
*|.0x|014 T gates

Simulating 50 spins (segmented QSP)
*6/ qubits
*2.4x 0% T gates

Simulating 50 spins (PF6 empirical)
*50 qubits
*|.8x|08 T gates
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Interplay between physics and computer science
* |deas from CS: distributed graph coloring, query complexity lower bounds, Markov chains, ...
* |deas from physics: composite pulses, Lieb-Robinson bounds, scattering, ...

* Quantum simulation algorithms will be powerful computational tools for answering questions
about quantum physics

Ongoing challenges
* Find faster quantum simulation algorithms that exploit system structure
* Develop efficient practical implementations

* Use real quantum computers to do science!



