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How to Proceed? 

1.  Numerics: 

2.  Toy Models (e.g. supersymmetry) 

3.  Guess 

A particularly useful method is to invoke dualities 



Particle-Vortex Duality 

XY Model: 

Abelian-Higgs  
Model: 

Peskin 1978 
Dasgupta and Halperin 1981 
Fisher and Lee, 1989 

Figure 33: The heat capacity of helium at the superfluid transition. This system lies in the

XY universality class. The data above is well described by the function C ⇠ C
0

+A|T �T
c

|�↵

with ↵ ⇡ �0.16 and A < 0.

While the values of ⌘ and ⌫ do not look very di↵erent from the Ising exponents, there

is an important di↵erence in the critical exponent for the heat capacity c ⇠ |T �T
c

|�↵,

which is given by ↵ = 2 � 3⌫. For both the O(2) and O(3) transition, ↵ is negative.

For example, ↵ ⇡ �0.16 for the O(2) transition. This means that the heat capacity

exhibits a cusp, rather than a true divergence.

For example, the superfluid transition of helium lies in the XY universality class.

The heat capacity has long been known to exhibit cusp-like behaviour as shown in

Figure 339. This characteristic shape means that the second order superfluid transition

is sometimes referred to as the “lambda transition”. It turns out that the accuracy

in these experiments is limited by the e↵ect of the Earth’s gravitational field. In

the 1990s, these measurements were made on a space shuttle flight, in broad (but

not perfect) agreement with theoretical prediction of c ⇠ A± � Bt�↵ for the critical

exponent ↵ ⇡ �0.16 and suitable coe�cients A± and B.

The transition to Bose-Einstein condensate also sits in the XY universality class.

This is a particularly clean system which allows precision experiments. For example,

the data above shows the behaviour of the correlation length as a gas of ultracold

rubidium-87 atoms passes through the critical point. The critical exponent is found

9This data is taken from Buckingham and Fairbank, “The Nature of the Lambda Transition”, in

Progress in Low Temperature Physics III, 1961.
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Duality = Universality 

Superfluids and superconductors have  
the same second-order phase transition 
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 Fermionic Particle-Vortex Duality 

Free Fermion 

“3d QED” 

Son, 2015 Wang and Senthil; Metlitski and Vishwanath 

Half-filled Landau level Topological insulators 
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Supersymmetric Particle-Vortex Duality 

a.k.a mirror symmetry 

Intriligator and Seiberg 1996 
Aharony, Hanany, Intriligator, Seiberg, Strassler 1997 

Supersymmetric QED: 

Free chiral multiplet: 

N=2, U(1) gauge theory + chiral multiplet + Chern-Simons = ½   

free Dirac fermion + complex scalar 

Dorey and Tong, 1999 

How is this related to the other dualities?! 

Deser, Jackiw, Templeton 1982 



Help from a Surprising Direction 

Higher spin theories in the bulk = Simple theories on the boundary 

Vasiliev, 1980s and 1990s 
Klebanov and Polyakov 2002   
Sezgin and Sundell 2002 
Giombi and Yin 2009 



The Dual of Higher Spin Theories 

Theory A:            U(N) Yang-Mills + WF boson + CS = k 

Tested beyond all reasonable doubt at large N and k 

Theory B:            SU(k) Yang-Mills + fermion + CS = -N+1/2 

Minwalla et al. 2011-2015 
Aharony et al. 2011-2015 



The Simplest Bosonization Duality 

The upshot of these arguments is that we must amend the action (2.5) in some way

in order to preserve gauge invariance. There are (at least) two remedies. The first

is to retain the quantisation condition (2.1) but include a compensating half-integer

Chern-Simons action SCS[A]. The second is to change the quantisation condition (2.1).

Both remedies will appear in di↵erent places below.

2.2 Attaching Flux to Scalars

With these building blocks in place, we can now describe the simple dual from which

all else follows. We consider a scalar coupled to a dynamical gauge field a with unit

Chern-Simons coe�cient. This, in turn, is coupled to a background field A. The full

partition function takes the form

Z

scalar+flux

[A] =

Z
D�Da exp

⇣
iS

scalar

[�; a] + iSCS[a] + iSBF [a;A]
⌘

(2.7)

Here the path integral over gauge fields implicitly includes the relevant gauge fixing

terms. Both f = da and F = dA are taken to have canonical normalisation (2.1).

If we turn o↵ the background source, so F = 0, then the equation of motion for a
0

reads

⇢

scalar

+
f

2⇡
= 0 (2.8)

where ⇢
scalar

is the charge density of �. Clearly this attaches one unit of flux to each

� particle. In analogy with the familiar non-relativistic results [12],we should expect

the resulting object to be a fermion.

To see this explicitly, we need to look at the monopole operator [40]. (Once again,

this is simplest if we work on S

2 rather than R

2.) A single monopole operator hasR
f = 2⇡. The constraint (2.8) means that we must excite a single mode of the scalar

in this background. However, the scalar monopole harmonics carry half-integer angular

momentum [43], ensuring that the monopole operator does indeed carry half-integer

spin. The monopole is a fermion.

With this in mind, we define the fermionic path integral

Z

fermion

[A] =

Z
D exp

⇣
iS

fermion

[A]
⌘

As we explained previously, this is not gauge invariant. To restore gauge invariance, we

dress this partition function by a Chern-Simons term for the background gauge field

with half-integer coe�cient, e.g. e�
i
2SCS [A]. Such a term results in contact interactions

between currents [41].

7

The equation of motion for a attaches flux to particles:  

Long known in non-relativistic theories:  Wilczek 1982 
 
 
More complicated in relativistic theories: Polyakov 1988 
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Scalar + CS: 

Free Fermion 

⇥(r) = N 2

F̃
2

(1 + 1/k, 1�N ; 1 + 2/k, 2�N � 1/k; ⇡r2/k)

2

F̃
2

(1/k/�N ; 2/k, 1�N � 1/k; ⇡r2/k)

+
N

(N � 1)k + 1
1

F
1

(1�N, 2�N � 1/k, ⇡r2/k)

1

F
1

(�N, 1�N � 1/k, ⇡r2/k)

⇥ =
⇡

k

⌘H =
~⇢

0

2

✓
1

2⌫
� 1

2
+ h 

◆

⌘
total

= ⌘H + ⌘̃H

hTrZ†Zi = kN2

2
+

1� k

2
N

⌘H

|groundik ! |Laughlinik+1

SA =

Z
d3x � 1

4e2
fµ⌫f

µ⌫ + |Dµ�|2 � a|�|2 � b|�|4

SB =

Z
d3x |@µ�|2 � a0|�|2 � b|�|4

SB =

Z
d3x i ̄ /@ 

SA =

Z
d3x � 1

4e2
fµ⌫f

µ⌫ + i ̄ /D 

10
= 

Boson + 2π flux  Fermion 



A Web of Dualities 
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Scalar + CS: 

Free Fermion 
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This is the seed duality. From this we can derive all others! 

Karch and Tong 2016 
Seiberg, Senthil, Wang and Witten 2016 



A Web of Dualities 

Seed Duality: 

Karch and Tong 2016 
Seiberg, Senthil, Wang and Witten 2016 

U(1)1 + complex WF boson = free fermion 

Key idea:  •  Identify currents on both sides 
•  Gauge currents to get new dualities 
•  Repeat 

What we get: •  U(1)-1/2 + fermion = WF boson 

•  Bosonic particle vortex duality 

•  Fermionic particle vortex duality 

•  An infinite number of new dualities... 
•  e.g. U(1) + 2 fermions is self-dual with emergent 

       SU(2) x SU(2) global symmetry.  

See also Barkeshli and  
McGreevy, 2012 



What Happened Next? 

“Derivations” of bosonization Proliferation of dualities 

Almost anything = Something else Break supersymmetry = Bosonization 

Lattice derivation 

Kachru et al; Chen, Son, Wang, Raghu  Dozens of papers, including Benini, Cordova, Jensen, Karch,  
Komargodski, Hsin, Radicevic, Robinson, Seiberg, Tong 

Numerical Tests 

Karthik and Narayanan 

Condensed Matter Physics 

See last week’s Aspen conference 

Critical points in QED3 Bewildering number of applications 



Summary: we’re making progress! 

Condensed matter 

Holography Supersymmetry 



Viki Weisskopf and CTP 

“Reading current publications can be difficult because  
of the jargon, which changes today more quickly than  
ever. A much better method is to have it explained... 
 
 
Our center vibrated with activity.”” 



Viki Weisskopf and CTP 

“Reading current publications can be difficult because  
of the jargon, which changes today more quickly than  
ever. A much better method is to have it explained... 
 
 
Our center vibrated with activity.”” 

Happy Birthday CTP! 


