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SCET applications to collider physics

In recent years, increasing focus on applying

SCET to collider physics:

really large energies,

zs from Ch. Bauer

small power corrections B physics

relevance to LHC

Collider |

Can we make an 1mpact 7 —_—

early work was rederiving known results

only recently, unsolved problems are being
attacked



Examples of recent applications

Drell-Yan rapidity distribution Becher, MN, Xu 2007
ete—ete"at NNLO for me2 < st Becher, Melnikov 2007
Factorization for jet production Bauer, Hornig, Tackmann 2008
Angularities in e*e- Hornig, Lee, Ovanesyan 2009

Explanation of large K-factor for inclusive Higgs
production (talk by T. Becher for L. Yang)  Ahrens, Becher, MN, Yang 2008

Resummation for heavy color-octet production Idilbi, Kim 2009

Precision top mass determination from event shapes In ete-
Fleming, Hoang, Mantry, Stewart 2008

Electroweak Sudakov resummation Chiu, Kelley, Manohar 2007

W-pair production in e*e” near threshold

Beneke, Falgari, Schwinn, Signer, Zanderighi 2007
Actis, Beneke, Falgari, Schwinn 2008



Towards n-jet processes:

IR divergencies of scattering amplitudes




IR singularities

On-shell parton scattering amplitudes in gauge
theories contain IR divergences from soft and
collinear loop momenta

IR singularities cancel between real and

virtual contributions Bloch, Nordsieck 1937
Kinoshita 1962; Lee, Nauenberg 1964

Nevertheless interesting:

resummation of large Sudakov logarithms
remaining after cancellation of divergences

(very relevant for LHC physics!)

check on multi-loop calculations



IR singularities in QED

Singularities arise from soft photon emission

(for m.#0); eikonal approximation:

=== = Pu
p p—k ~---u(p)p,k

IR divergent part 1s a multiplicative factor

Higher-order terms obtained by exponentiating

leading-order soft contribution  Yennie, Frautschi, Suura 1961
Weinberg 1965



IR singularities in QCD

Much more complicated
soft and collinear singularities

gluons carry color charge, hence soft
emissions do not simply exponentiate

but only a restricted set of higher-order

contributions can appear (non-abelian
exponentiation theorem) Gatheral 1985; Frenkel, Taylor 1984

Form long time, explicit form of IR poles was
only understood at two-loop order Catani 1998



IR singularties in QCD

Dithiculty of the problem eloquently

formulated in pioneering work on
QED by Weinberg:

S. Weinberg, Phys. Rev. 140B, 516 (1965)




IR singularties in QCD

Dithiculty of the problem eloquently

formulated in pioneering work on
QED by Weinberg:

S. Weinberg, Phys. Rev. 140B, 516 (1965)

“... But these remarks do not apply to theories involving charged massless
particles. In such theories (including the Yang-Mills theory) a soft
photon emitted from an external line can itself emit a pair of soft charged
massless particles, which themselves emit soft photons, and so on,
building up a cascade of soft massless particles each of which contributes
an 1nfra-red divergence. The elimination of such complicated
interlocking infra-red divergences would certainly be a Herculean
task, and might not even be possible.

... Perhaps it would not be too much to suggest that it is the infra-red
divergences that prohibit the existence of Yang-Mills quanta, or other
charged massless particles.”



Color-space formalism

Represent amplitudes as vectors in color space:
‘Cl, Ch oo Cn> Catani, Seymour 1996

!

color index of first parton
Color generator for it" parton T |c1,ca, ..., cy)
acts like a matrix:

t* matrix for quarks, f2°¢ for gluons

product T; - T'; = Z T; T (commutative)
° a ° °

charge conservation Z T¢ =0 imples:

T T)=— ZT2 ZC

(7/ j) 1
. s -——w
i / CE or CA




Catani's two-loop tormula (1998)

(“... beautitul, yet mysterious ...”)
Specifies IR singularities of dimensionally

regularized n-parton amplitudes at two loops:

s 1D (e) (;;)2 I (e) + .. } |/\/ln(§, {p})) = finite

amplitude 1s vector in color space

with =
(1) = e¢VE l i 1 i
L) '(1 —e¢) zz: <€2 = T? 6); 2 —Sij
@y~ &2 T — 2¢) Po\ y) AN e T
1 Bo 2
-4 —I(l)(e) (I(l)(e) - _) + g2 (€)
2 S e unspecified

Later derivation using factorization properties

and IR evolution equation for form factor
Sterman, Tejeda-Yeomans 2003



All-order generalization

Have argued that IR divergences in d=4-2¢ can

be absorbed into a multiplicative factor Z
(a matrix 1n color space), which derives from an
anomalous-dimension matrix: Becher, MN 2009

Mu({p}, ) =lim Z7 (e, {p}, 1) [Ma(e, {p})) !

finite amplitude I

26 ph=Pew | [ Lrphn| |
—_— - /1/ //[/ ﬁi
Corresponding RG evolution equation:

dlfl,u Ma(pt ) =Tk 1) IMa(ips 1))

=> can be used to resum Sudakov logarithms




All-order generalization

Anomalous dimension 1s conjectured to be
extremely simple:

anom. dimensions, |
color charges

known to three-loop order f

v S e N
I‘({Z_?}Mu) — Z 1-;21-} Wcusp(as) In a B | Z /77;(058)

!

!

(.3) / ¢ |

sum Oover pairs 1

1#] of partons (pi -+ Dy )2

simple structure, reminiscent of QED

IR poles determined by color charges and

momenta of external partons (semi-classical)

color dipole correlations, like at one-loop order



All-order generalization

Result 1s surprising, as it implies
amazing cancellations to occur in
multi-loop calculations

Normally, expect that complexity of L-loop
anomalous dimension equals that of (I.-1)-loop
finite terms, which are known to contain
complicated color and momentum structures!

Here ditferent: pole terms are protected by
soft-collinear tactorization theorem!
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: : . L URRR|S I
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multi-loop calculations

Normally, expect that complexity of L-loop
anomalous dimension equals that of (I.-1)-loop
finite terms, which are known to contain
complicated color and momentum structures!

Here ditferent: pole terms are protected by
soft-collinear tactorization theorem!



Z factor to three loops

d-dimensional p-function

Explicit result: /

Z(Ev {B}mu):/d(j 26—;(04)/04 F({B}7U7a)+/dj/ 9e —F/ﬁ(ig)/o/

0 - 0

where
9,

[Ha) = Oln

({p} by O‘S — f}/cusp Ofs Z C

Perturbative expansion:

1l coethic k !
e I} = | i (@3)2 38, 7 I — 46,T : T, all coetticients known
n = — =
47T 4e?  2e 47 16¢3 1662 Ae /

i (%)3 1185 Ty 56T + 861 — 1265 T'g i I, — 6501 — 6061 x I's
47

= 72¢3 36¢€2 6e
=> exponentiation yields Z factor at three loops!

=




Checks

Expression for IR pole terms agrees with all
known perturbative results:

3-loop quark and gluon form factors, which

determine the functions Y%7 (a;)
Moch, Vermaseren, Vogt 2005

2-100p 3 -j et qqg amphtude Garland, Gehrmann et al. 2002

. . Anastasiou, Glover et al. 2001
2'100]? 4'J et amphtudes Bern, De Freitas, Dixon 2002, 2003

3-loop 4-jet amplitudes in N=4 super Yang-

Mills theory in planar limit Bern et al. 2005, 2007



Catani’s result

Comparison with Catani’s formula at two loops

yields explicit expression for 1/€ pole term:

2 1 ) 1 Cus ) 7T2
Hf({)s(e) — e Z (’h = "0 + Eﬁo Ci)
| Z‘fabc

a b e
S ram

—Sij 1. T Sjk 1. T Ski

In In
an e

Non-trivial color structure only arises since his

operators are not defined 1in a minimal scheme
see also: Mert Aybat, Dixon, Sterman 2006

Our result confirms an earlier conjecture for
the form of this term Bern, Dixon, Kosower 2004



Key 1deas and arguments supporting
our conjecture



Misconception

Conventional thinking 1s that UV and IR

divergences are of totally different nature:

UV divergences absorbed into
renormalization of parameters of theory;
structure constrained by RG equations

IR divergences arise in unphysical
calculations; cancel between virtual
corrections and real emissions

In fact, IR divergences can be mapped onto UV

divergences of operators 1n etfective field theory!



Interpretation and derivation

In our case, I i1s the anomalous-dimension
matrix of n-jet operators in SCET, and Z 1s the
associated matrix of renormalization factors

Will now discuss structure of SCET for n-jet
processes and constraints on anomalous

dimension I arising from
charge conservation > . T; = 0
soft-collinear factorization
non-abelian exponentiation

consistency with collinear limits
Becher, MN, arXiv:0903.1126



Soft-collinear factorization
Sen 1983; Kidonakis, Oderda, Sterman 1998

Hard function H depends on

large momentum transfers s;;
between jets

Soft function S depends
M?ZM?
i

on scales AZ; =
J
Sij

Jet functions Ji = J; (M;j?)



SCET for n-jet processes

n different types of collinear quark and gluon
fields (— jet functions J;), interacting only via

soft fields (soft function S)

operator definitions for J; and S

Hard contributions (Q ~ Vs) are integrated out
and absorbed into Wilson coefﬁcientsz

I'en
E Cn Z O Bauer, Schwartz 2006

Scale dependence — by RGE:

T 1Ca({b ) = Tl 2}) €l {2} 1)

\

anomalous-dimension matrix




On-shell parton scattering amplitudes

Hard functions C, can be obtained by setting

the jet masses to zero: jet and soft functions
become scaleless, loop corrections vanish.

renormalization factor

One ObtalnS: — (minimal subtraction of IR poles)

Co({p}, 1)) = lim Z7 (e, {p}, ) IMu(e, {p}))

Becher, MN 2009

where r_ dln Z

dln p

IR poles of scattering amplitudes mapped onto
UV poles of n-jet SCET operators

Multiplicative subtraction, controlled by RG



Constraints tfrom soft-collinear
factorization



Factorization constraint on I

Operator matrix elements must evolve 1n the

same way as hard matching coethcients, such
that physical observables are scale independent

SCET decoupling transformation then implies

: M?M?
(with A7, = ; 2 ):
i7

trivial color structure

[(sij) = To(A7)) + ) To(M}) 1)1/
0) ) 1 \

L se—
M; dependence must cancel!

suggests logarithmic dependence on s;; and M;?

I' and I's must have same color structure



Soft function

SCET decoupling transformation removes soft

interactions among collinear fields and absorbs
them 1nto soft Wilson lines

n; ~ pi 1ight—1ike reference vector

- 0 =
Si — Pexp Zg/ dtnz . Aa(tnz) Tia //;L

For n-jet operator one gets: ‘\V

O
,_)H
|S

i
bl

S(in}, u) = (0[51(0) ... 5,(0)]0) = exp(

“Mercedes star operators”



Renormalization of Wilson loops

Wilson loops containing singular points (cusps

or cross points) require UV subtractions
Polyakov 1980; Brandt, Neri, Sato 1981

For single cusp formed by tangent vectors nj
and no, renormalization factor depends on

1 * N9
cusp angle p12 defined as 4. By =
ny s

More generally, sets of related Wilson loops
mix under renormalization, with Z. matrix
depending on all relevant cusp angles

=5 %



Non-abelian exponentiation
Gatheral 1983; Frenkel and Taylor 1984

Purely virtual amplitudes in eikonal (i.e.,
soft-gluon) approximation can be written as
exponentials of simpler quantities, which

receive contributions only from Feynman
diagrams whose color weights are “color-

connected” (or “maximally non-abelian”)

Color-weight graphs associated with each

Feynman diagram can be simplified using the
Lie commutator relation:

£ wae ol

TaTb == TbTa = Z-fabcTc




Non-abelian exponentiation

Use this to decompose any color-weight graph
into a sum over products of connected webs,
defined as a connected set of gluon lines (not
counting crossed lines as being connected)

e RERREN

single connected web
o o . »
maximally nonabelian

Only color structures consisting of a single
connected web contribute to the exponent S



Non-abelian exponentiation

Single connected webs are two-particle
irreducible with respect to Wilson lines

In our case the gluons of the web can connect
to more than two Wilson lines

Fact that only single connected webs

contribute to InZ and Iy, while =
products of webs contribute to M
Zs, 1s in analogy with structure :

of nested UV divergences in QFT

(Zimmermann's forest formula)



Laght-like Wilson lines

For large values of cusp angle 312, anomalous
dimension associated with a cusp or cross

point grows linearly with P12, which is then

approximately equal to In(2n;- ny/ \/ nsns)
Korchemsky, Radyushkin 1987
Cusp angle diverges when one or both

segments approach the light-cone:
2 2

ny2—0 . H
F(ﬁlz) = I (Oés) ] =

n
cusp 9
AS
Korchemskaya, Korchemsky 1992
Presence of single logarithm characteristic for

Sudakov problems (double logs)




Laght-like Wilson lines

In SCET, this feature has been found for 2-jet

f l{ d 1 . Manohar 2003
Operators O quar S dan g uons. Becher, MN 2006
9 Ahrens, Becher, MIN, Yang 2008

Lo jor = —Tiuy (@) In 2= + 29/(a,)

Appearance of logarithms of hard scale 1s
perplexing, but can be understood based on

scale correlation p7 ~ pis pts, which implies:

Ty Ty e

e 2l =l
i, e
For such a rewriting to be possible, the
anomalous dimension must depend single-

logarithmically on momenta



Laght-like Wilson lines

Introducing IR regulators p;?#0 to define the
soft and collinear scales, we obtain:

/

= L;+L; —In i
: SZ]
—57,3 s hard log
67Lj
J
soft log ,u2
Li — |l —p2

collinear log



Soft anomalous-dimension matrix

Decompositions:

D({p},#) = Do({8h.0) + 3 TilLisso)

FE(LZ) — _Fiusp(&s) LZ T /YZ(CVS>

Key equation: s ellses G, Wi ey AL 1091
j
O (18}, 1L}, 1) i ;
8LZ — I“Cusp(OéS) S
- E—

Enforces linearity in cusp angles [3;; and
significantly restricts color structures



Soft anomalous-dimension matrix

Only exception would be a more complicated
dependence on conformal cross ratios, which
are iIndependent of collinear scales:

=S =)
G5

Gardi, Magnea 2009
Can be excluded using other arguments, such

i — S e e

as consistency with collinear limits



Consistency with collinear limits

When two partons become collinear, an n-point
amplitude M, reduces to an (n-1)-parton amplitude

times a Sphttlng function: Berends, Giele 1989; Mangano, Parke 1991
Kosower 1999; Catani, de Florian, Rodrigo 2003

‘Mn({pl,pmp:s, P 7p’fl})> — SP({pl,pz}) ]Mn_1({P, p3, ... 7pn})> T .. "

FSP({plap2}7 :u) — F({pla s 7pn}7 :u) o F({Pa ps--- 7pn}7 ’LL)‘TP—>T1—|—T2

— _-—-————_4
I's, must be independent of momenta and colors of
partons 3, ..., N Becher, MN 2009




Consistency check

The form we propose 1s consistent with
factorization in the collinear limait:

FSP({plap2}7 ILL) — F({pla - 7pn}7 M) i F({P7 ps .- - 7pn}7 ’u)‘Tp—>T1—|—T2

2

Csp({p1, 02} 1) = Yeusp |T1 - T2 In A; + T - (Ty + 1) Inz + T, - (Ty + 1) In(1 — Z)]
o112

+4' 492 =", momentum fraction of parton 1

But this would not work if I' would involve
terms of higher powers 1n color generators T

or momentum variables

A very strong constraint (new) !



Diagrammatic analysis of the soft

anomalous-dimension matrix



Existing results

Our conjecture implies for the soft anomalous-
dimension matrix:

I‘S({ﬁ}, ,u) ——— Z L 21—} ’Ycusp(@s> ﬁij = sz(&s)

(4,7)
This form was confirmed at two loops by

showing that diagrams connecting three

parton legs vanish
Mert Aybat, Dixon, Sterman 2006

Also holds for
three-loop fermionic

contributions
Dixon 2009




Order-by-order analysis
One loop (recall 2. T-T = —Z; T = —Z; Ci )

(4,9)

one leg: T? = C; =
two legs: T, T,
Two loops
one leg; _j fabe o T e — C/;CZ-
two legs: = e R Ly % T, T, (only new structure)

l\/\/\O\/\/\Q
three legsz —i T T, Ty

=> vanishes, since no antisymmetric momentum
structure 1n 1,),k consistent with soft-collinear

explains cancellations observed in:

factorization exists!
Mert Aybat, Dixon, Sterman 2006; Dixon 2009



Three-loop order

T RAYY

(only new structure)

Six new structures consistent with non-abelian
exponentiation exist, two of which are
compatible with soft-collinear tactorization:

AF3({]_9}7M) = _fl(zfus) Z fadefbce 1-;@ 1—;b ch CZ-,ld In (_Sij)(_skl)

= (=5 )(=551)
~ Ralan) Y o (T T, T \
(4,7:k) more generally, arbitrary odd

function Of Conformal Cross ratio



Three-loop order

Neither of these 1s compatible with collinear

limits: the sphitting function would depend on
colors and momenta of the additional partons

Consider, e.g., the second term:

ATsp({p1, p2}, )] 5,0,y = 2% 1 [ (™), (BT, - ) (T + ) (T; Tﬂ)+]
i#1,2 T

2
ATs,({p1, p2}s )| 50y = FE<F* Y (T +TT7) T T In _“S”+
(6,§)#1,2 -

=

dependence on color invariants and
momenta of additional partons (1#1,2)




Four-loops and beyond

Interesting new webs involving higher Casimir

invariants first arise at four loops

d%de 1’;& Tyb ch I}d _ d%bcd (1‘;& 1’1;) ch CZ'vld) 5
deoz-an — tr[ (TS T .. T, ]
One linear combination of such terms would

be compatible with soft-collinear factorization,
but does not have the correct collinear limit



Casimir scaling

Applied to the two-jet case (form factors), our

formula thus implies Casimir scaling of the
cusp anomalous dimension:

Pusp(@s) — Tusplass) '-
Cusp Cusp _

= = et |
R — -————-——-——J

CheCked eXpliCitly at three lOOPS Moch, Vermaseren, Vogt 2004

But contradicts expectations from AdS/CFT
correspondence (high-spin operators in

strong-coupling limit) Armoni 2006
Alday, Maldacena 2007

Presumably not a real conflict ...



Wanted: 3- and 4-loop checks

Full three-loop 4-jet amplitudes in N=4 super
Yang-MiHs theory were expressed in terms of
small number of scalar integrals Bern et al. 2008

Once these can be calculated, this will provide
stringent test of our arguments (note recent

calculation of three-loop form-factor integrals)
Baikov et al. 2009;
Heinrich, Huber, Kosower, Smirnov 2009

Calculation of four-loop cusp anomalous
dimension would provide non-trivial test of
Casimir scaling, which 1s then no longer
guaranteed by non-abelian exponentiation



GENERALIZATIONS

... and applications




Generalizations

Have established conjecture for anomalous-
dimension matrix up to three loops (four loops

for cusp-log part)
sufficient for NNNLL resummations (good

enough 1n practice)
all-orders proof should be possible

Extensions to massive partons should be

possible, generalizing existing methods

Catani, Dittmaier, Trocsany1 2000
Becher, Melnikov 2007
Mitov, Moch 2007



Main phenomenological application

Beyond LL resummation of Sudakov logarithms:

hard functions known from fixed-order results
for on-shell amplitudes (use matrix-element
generators to obtain results for arbitrary n)

new unitarity methods allow calculation of
one-loop amplitudes with many legs

(— NNLL resummation)

need to calculate soft and jet functions for
given observable

solve RG equations



Automatization

in the longer term, this will
hopefully lead to automated
higher-log resummations for
jet rates

goes beyond parton showers,
which are only accurate at
LLL, even after matching

predicts jets, not individual
partons



n

SCET provides transparent way to separate
contributions from different mass scales (hard,
collinear, soft), and etficient method to resum
associated logarithms by RG evolution

Finally on track to analyse non-trivial, unsolved
problems, such as higher-log resummation for
n-jet production at LHC

Most non-trivial task (evolution of hard
matching coethcient) has been completed

Solves old problem of understanding IR
divergences of QCD scattering amplitudes





