NNLO corrections to $\bar{B} \to X_u l \bar{\nu}$ in the shape-function region

Ben Pecjak

Johannes Gutenberg-Universität Mainz

SCET Workshop 2009

March 24, 2009

Based on work with Christoph Greub and Matthias Neubert

Outline

- motivation
- ▶ partial decay rates in $\bar{B} \to X_u l \bar{\nu}$ with SCET
- numerical results at NNLO in α_s
- conclusions

$|V_{ub}|$ and $b \rightarrow ul\bar{\nu}$ decays (PDG '08)

Method	Complication	$ V_{ub} \times 10^3$
Exclusive $(\bar{B} \to \pi l \bar{\nu})$	form factors	3.5 ± 0.6
Inclusive $(\bar{B} \to X_u l \bar{\nu})$	exp. cuts ↔ shape functions	4.1 ± 0.4

agree within errors, but inclusive tends to be higher

Kinematic cuts and the shape-function region

$$|V_{cb}|^2\approx 100|V_{ub}|^2$$

- ightharpoonup experiments need cuts $M_X < M_D$ to eliminate charm background
- measurements typically in shape-function region

$$\Lambda_{
m QCD} \ll (M_X \sim \sqrt{m_b \Lambda_{
m QCD}}) \ll (m_b, 2E_X)$$

The shape function

Neubert; Bigi, Shifman, Uraltsev, Vainshtein '93

$$\mathsf{S}(\omega,\mu) = \int rac{dt}{2\pi} \, \mathsf{e}^{i\omega t} \langle ar{\mathsf{B}} | (ar{h}_\mathsf{v}\,\mathsf{Y}_\mathsf{s})(tn) (\,\mathsf{Y}_\mathsf{s}^\dagger\,h_\mathsf{v})(0) | ar{\mathsf{B}}
angle$$

- ▶ think of S as a parton distribution function (PDF) for B meson
- lacktriangle experimental information from E_γ spectrum in $ar{B} o X_{
 m s}\gamma$

Factorization in the shape-function region

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum h \cdot j \otimes S^{\Lambda} + \frac{1}{m_b} \sum h \cdot J^{\Lambda} \otimes S + \dots$$

- hard-jet-soft factorization
 Korchemsky, Sterman '94; Akhoury, Rothstein '95; SCET papers
- (H · J) at NLO in α_s (one loop)
 Bauer, Manohar '03; Bosch, Lange, Neubert, Paz '04
- Subleading shape-functions (S^Λ) at tree level Lee, Stewart; Bosch, Neubert, Paz; Beneke, Campanario, Mannel, BP '05
- Subleading jet functions (J^Λ) at one loop Paz '09

Today: $H \cdot J \otimes S$ at NNLO in α_S

H and J at NNLO

► H from matching b → u current Bonciani, Ferroglia; Asatrian, Greub, BP; Beneke, Huber, Li; Bell '08

► J from cut quark propagator in light-cone gauge Becher, Neubert '06

Large logs and resummation

$$d\Gamma \sim H(m_b, \mu_f)J(M_X, \mu_f) \otimes \hat{S}(\mu_f)$$

- ▶ in limit $m_b \gg M_X$ there are "large" logs ln m_b/M_X
- ▶ have model for \hat{S} at low μ_0 , but needed at arbitrary μ_f

Standard solution in SCET: derive and solve RG-equations

$$H(m_b, \mu_f) = U_H(\mu_f, \mu_h)H(m_b, \mu_h \sim m_b)$$

 $J(M_X, \mu_f) = U_J(\mu_f, \mu_i) \otimes J(M_X, \mu_i \sim M_X)$
 $\hat{S}(\mu_f) = U_S(\mu_f, \mu_0) \otimes \hat{S}(\mu_0)$

- large logs are "resummed" into the evolution factors U_{H,J}
- solution for J relies on Laplace transform technique Becher, Neubert '06

Master formula for partial decay rates

$$\begin{split} \left. \Gamma_{u} \right|_{\text{cut}} &\sim \left. \left| V_{ub} \right|^{2} \int_{\text{cut}} \, dP_{+} \, dy \, \textit{U}(\mu_{h}, \mu_{i}, \mu_{0}) \textit{H}(y, \textit{m}_{b}, \mu_{h}) y^{-2\textit{a}_{\Gamma}(\mu_{h}, \mu_{i})} \\ & \widetilde{\textit{j}} \left(\ln \frac{\textit{m}_{b} \textit{y}}{\mu_{i}} + \partial_{\eta}, \mu_{i} \right) \frac{e^{-\gamma_{E} \eta}}{\Gamma(\eta)} \int_{0}^{P_{+}} \, d\hat{\omega} \left[\frac{1}{P_{+} - \hat{\omega}} \left(\frac{P_{+} - \hat{\omega}}{\mu_{i}} \right)^{\eta} \right]_{*} \hat{S}(\hat{\omega}, \mu_{0}) \end{split}$$

- **partial rates formally independent of** μ_h, μ_i
- $\mu_h = \mu_i = \mu$ is fixed-order perturbation theory $[H \cdot J](\mu) = C(\mu)$
- ▶ need model for $\hat{S}(\hat{\omega}, \mu_0)$ at some low scale μ_0

Numerical evaluation of partial rates

Arbitrary partial rates at NNLO in α_s can be obtained:

Greub, Neubert, BP, in preparation

- cut on maximum $P_+ = E_X |\vec{P}_X|$
- cut on maximum hadronic invariant mass
- cut on minimum lepton energy
- combinations of these

Will study

- ▶ P₊ < 0.66 GeV</p>
- E_I > 2.0 GeV

Input for partial rates

HQET parameters

•
$$m_b \equiv m_b^{\rm SF} = 4.71~{\rm GeV}, ~~\mu_\pi^2 \equiv \mu_\pi^{2,{\rm SF}} = 0.2~{\rm GeV}^2$$

Shape-function model

$$\hat{S}(\hat{\omega}, \mu_0) = \mathcal{N}(b, \Lambda) \hat{\omega}^{b-1} \exp\left(-\frac{b\hat{\omega}}{\Lambda}\right)$$

- ▶ $(b, \Lambda)(\mu_0)$ can be tuned to $B \to X_s \gamma$ data
- also constrained by shape function moment relations
 - first moment ↔ m_b
 - second moment $\leftrightarrow \mu_{\pi}^2$
- lacktriangle moment constraints implemented at NNLO in $lpha_s$ at $\mu_0=$ 1.5 GeV

Partial rate for $P_+ < 0.66$ GeV

- ▶ reduced dependence on μ_h , μ_i at NNLO
- large negative shift between NLO and NNLO
- largest uncertainty associated with μ_i (usually fixed at $\mu_i = 1.5 \text{ GeV}$)

Comparison with fixed-order perturbation theory

- fixed-order well behaved
- not clear that resummation is necessary

Partial rate with cut $E_l > 2.0 \text{ GeV}$

BLNP and $|V_{ub}|$

Most complete numerical implementation in SCET is "BLNP" Bosch, Lange, Neubert, Paz '04; Lange, Neubert, Paz '05

$$\Gamma_u\big|_{\text{cut}} = |V_{ub}|^2 \left[\Gamma_u^{(0)} + \frac{1}{m_b} \Gamma_u^{(1)} + \frac{1}{m_b^2} \Gamma_u^{(2)} \right]_{\text{BLNP}}$$

Have included NNLO corrections to $\Gamma_u^{(0)}$ in BLNP "generator"

Net effect is that $|V_{ub}|$ goes up by \sim 10% compared to NLO

Summary

NNLO calculation for partial rates in $\bar{B} \to X_u l \bar{\nu}$ now complete (to leading order in $1/m_b$ in the shape-function region)

Numerical analysis shows that the NNLO corrections

- reduce perturbative uncertainty compared to NLO
- ▶ raise |V_{ub}| by roughly 10% compared to NLO compared to current BLNP results