
Geoffrey Thomas
18.781 Problem Set 1
Collaborators: Liz Denys

1.2 2

1819× 0 + 3587× 1 = 3587
1819× 1 + 3587× 0 = 1819

1819×−1 + 3587× 1 = 1768
1819× 2 + 3587×−1 = 51

1819×−69 + 3587× 35 = 34
1819× 71 + 3587×−36 = 17

Since 17 | 34, (1819, 3587) = 17, and we have the x and y values we want.

1.2 3

43× 0 + 64× 1 = 64
43× 1 + 64× 0 = 43

43×−1 + 64× 1 = 21
43× 3 + 64×−2 = 1

93× 1− 81× 0 = 93
93× 0− 81×−1 = 81

93× 1− 81× 1 = 12
93×−6− 81×−7 = 9

93× 7− 81× 8 = 3

1.2 7 6, 10, and 15

1.2 13 n2 − n = n(n− 1). Either n is even or n− 1 is, ergo the product is divisible by 2.

n3 − n = (n − 1)n(n + 1). By the above reasoning, at least one of these terms is a multiple of 2.
Similarly, at least one is a multiple of 3. So the product must have 6 as a factor.

n5 − n = n(n2 − 1)(n2 + 1) = (n− 1)n(n+ 1)(n2 + 1). By the above, the left three terms have 6 as a
factor. Then, let n take the form 5q+ r (with q, r ∈ Z) by the division theorem. If r ∈ {0, 1, 4, 5}, then
(n− 1), n, or (n+ 1) is divisible by 5. Otherwise, n2 + 1 = 25q+ 10qr+ r2 + 1 is either 25q+ 10qr+ 5
or 25q + 10qr + 10, both of which are divisible by 5. Therefore the entire original product is always
divisible by 5 and also by 6, so it is divisible by 30.

1.2 15 Let x = 2a+ 1 and y = 2b+ 1. Then x2 + y2 = 4a2 + 4b2 + 4a+ 4b+ 2 = 4(a2 + b2 + a+ b) + 2, which
has 2 as a factor, so 2 | x2 + y2. By the division theorem, q = a2 + b2 + a+ b and r = 2 is the unique
quotient and remainder of (x2 + y2)/2, and r 6= 0 means 4 - x2 + y2.

1.2 36 Let x = (a, b). By definition x | a and x | b. ((a, b), c) = (x, c), so ((a, b), c) | x and ((a, b), c) | c. By the
transitivity of the divisor relation (theorem 1.1), ((a, b), c) | a and b and is therefore a common divisor
of a, b, and c. So by theorem 1.4, ((a, b), c) | (a, b, c).
On the other hand, since (a, b, c) is a common divisor of a and b, it divides (a, b). It also divides
c, so by theorem 1.4 again, (a, b, c) | ((a, b), c). But this combined with the previous result implies
((a, b), c) = (a, b, c).
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1.2 49

a2m

− 1 =
(
a2m−1

+ 1
)(

a2m−1
− 1
)

=
(
a2m−1

+ 1
)(

a2m−2
+ 1
)(

a2m−2
− 1
)

=
(
a2m−1

+ 1
)(

a2m−2
+ 1
)
· · ·
(
a2 + 1

)
(a+ 1) (a− 1)

Since 1 ≤ n < m,
(
a2n

+ 1
)

is somewhere in this factorization.

1.2 53

((n+ 1)! + 1, n! + 1)
= ((n+ 1)! + 1− (n+ 1) (n! + 1) , n! + 1)
= ((n+ 1)! + 1− (n+ 1)!− n− 1, n! + 1)
= (n, n! + 1)
= (n, n! + 1− n (n− 1)!)
= (n, 1) = 1

1.3 10 If 3k+2 is prime, we are done; otherwise, write it as a×b for a = 3c+d and b = 3e+f where 0 ≤ a, b <
3k+2 and d, f ∈ {0, 1, 2}, which we can do by the division theorem. Then 3k+2 = 9ce+3cf+3de+df .
Suppose that neither d nor f were 2; then df is either 0 or 1, which contradicts this equality (for all
variables integers). So at least one of a = 3c+ 2 or b = 3e+ 2 must hold. Then repeat this argument
on a and b until we find a prime, which we must because every integer factors into primes.

Similarly, let 4k + 3 = (4a+ b) (4c+ d) = 16ac+ 4ad+ 4bc+ bd. for b, d ∈ {0, 1, 2, 3}. If neither are 3,
then bd ∈ 0, 1, 2, 4, which again yields the equality unsolvable, so one must be 3.

Similarly, let 6k+ 5 = (6a+ b) (6c+ d) = 36ac+ 6ad+ 6bc+ bd for b, d ∈ {0, 1, 2, 3, 4, 5}. If neither are
5, then bd ∈ {0, 1, 2, 3, 4, 6, 8, 9, 12, 16} = {0, 1, 2, 3, 4, 6 + 0, 6 + 2, 6 + 3, 12 + 0, 12 + 4}, none of which,
again, allow the equality to be solved, so one of them must be 5.

1.3 19 Write a =
∏
p

pα(p), b =
∏
p

pβ(p), and ab =
∏
p

pγ(p). Since (a, b) = 1, then if αp > 0 then βp = 0 and

vice versa (otherwise p would be a common divisor greater than 1). So since γp = αp+βp, γp is either
αp or βp. Both of those are always even, since a and b are perfect squares, so γp is always even and c
is a perfect square.

The same argument applies in in the general case in that αp and βp are always multiples of k, so since
γp is always either one of them, it also is always a multiple of k, and so c is a kth power.

1.3 22 1. False, let a = b = 2 and c = 4, so (a, b) = (a, c) = 2, and [a, b] = 2 but [a, c] = 4.
2. True. The prime factorization of (a, b) = (a, c) is unique, so in the product form, min(α(p), β(p)) =

min(α(p), γ(p)). Because min(2x, 2y) = 2 min(x, y), then this means min(2α(p), 2β(p)) = min(2α(p), 2γ(p)),
so
(
a2, b2

)
=
(
a2, c2

)
.

4. This means a = jp and a2 + b2 = kp for some positive integers j, k. Thus j2p2 + b2 = kp, or
b2 = p

(
k − j2p

)
, so p | b× b, so p | b.

5. If p | a7 then p | aaaaaaa, so p | a.
8. False, 82 | 43 but 8 - 4.

12. Let a = cd and b = de where d = (a, b). Therefore c and e are coprime (if not their common factor
could be multiplied with d to yield an even greater common divisor).

[
a2, b2

]
=
[
c2d2, d2e2

]
. The

gcd of these two numbers is d2, so the lcm is c2d2e2. Now consider
[
a2, ab, b2

]
=
[
c2d2, cd2e, d2e2

]
.

Its lcm must be at least c2d2e2. But cd2e | c2d2e2, so that is in fact the lcm. Therefore
[
a2, b2

]
=[

a2, ab, b2
]
.
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1.3 26 Suppose there are a finite number of primes of the form 4n + 3. Consider the product of all of these
primes; express the result in the form 4m+ r for 0 ≤ r < 4. Now r is either 1 or 3, because any terms
involving a 4n will be a multiple of 4, so r is the remainder of a power of 3 divided by 4, which is either
3 or 1. If r is 3, add 4 to it; otherwise add 2. Consider the prime factorization of the resulting number.
It cannot contain any primes of the form 4n+ 3, since by its construction, its remainder when divided
by 3 is either 2 or 1, and its remainder when divided by any other such prime is either 2 or 4. However,
this number cannot solely consist of factors of the form 4n + 1, since any product of those numbers
would have the remainder 1 when divided by 4. And every prime other than 2 takes one of those two
forms, and this odd number clearly does not have 2 as a factor. Therefore we have a contradiction of
our ability to prime-factorize this number, so there must be an infinite number of primes of the form
4n+ 3.

The above reasoning works in the 6n+ 5 case; any product of numbers of the form 6n+ r for r ∈ {1, 3}
must also have remainder 1 or 3, and the only prime not of the form 6n + r for r ∈ {1, 3, 5} is 2.
So if there were a finite number of primes of the form 6n + 5, then the product of those numbers,
plus the least nonzero offset needed to make the result itself have the form 6n+ 5, would lead us to a
contradiction when attempting to find its prime factors.

1.3 32

(n+ 1)4 + 4 = n4 + 4n3 + 6n2 + 4n+ 5 (1)

=
(
n4 + 4n3 + 5n2

)
+
(
n2 + 4n+ 5

)
(2)

=
(
n2 + 1

) (
n2 + 4n+ 5

)
(3)

the two right terms of which are integers greater than one for any n > 0, and therefore (n+ 1)4 + 4 is
composite for all such n.

1.3 37 Suppose in a block of integers there were two integers a and b both divisible by 2i and no higher power
of two, and no integer in the block were divisible by 2i+1. Then we can write a = c2i and b = d2i,
where c and d are odd. But c+ 1 < d (because d is odd) and is even, so (c+ 1)2i is divisible by 2i+1,
a contradiction. So in any block of integers there can be at most one integer divisible by some power
of two 2i where no other integer in the block is divisible by 2i+1. However, in any nonempty block of
integers is at least one integer divisible by 20 at least, so there must exist such an i and 2i and integer
divisible by it.

Somewhere in those fractions is the unique denominator described by the above property that is
divisible by 2i, where 2i divides no other denominator. The simplified sum of the other elements has
a denominator no greater than their least common denominator; the unique prime factorization of the
lcd therefore has its power of 2 no greater than i−1, since the power is the maximum power of 2 across
all the denominator. Let that fraction be written in that form n/(d2i−1), where d is odd. Then

n

d2i−1
± 1

2i
=

2n± d
d2i

Since the numerator is odd and the denominator is even, the quotient cannot be an integer.

1.3 39 This can be written
2000∑
n=1

1
n
− 2

1000∑
n=1

1
2n

in other words, starting with all the terms positive, then subtracting the even terms to cancel them,
and then subtracting them again. But this is equal to

2000∑
n=1

1
n
−

1000∑
n=1

1
n
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which is just
2000∑

n=1001

1
n

QED.

1.3 48 Consider any two numbers x = 22m

+ 1 and y = 22n

+ 1, m > n ≥ 1. Problem 1.2 49 tells us that
x−2 = 22m−1 has a divisor of y = 22n

+1, so given that y ≥ 5, our first two numbers are coprime. But
this holds between any two numbers x, y of that form, so all such numbers are coprime. Now suppose
there were a finite number of primes p1 . . . pn. Because all numbers in our sequence are coprime, i.e.,
they share no prime factors, they must partition these primes, such that any primes with a nonzero
power in one number has a zero power elsewhere. But since all numbers in our sequence are greater
than 1 and our sequence is infinite, we are looking for infinite partitions of a finite set, a contradiction.
The only way to resolve it is let p1 . . . be infinite.

3 We demonstrate the second claim, for which the first is an easy corollary: m | n implies (m,n) = m
implies a(m,n) − 1 = am − 1 implies (am − 1, an − 1) = am − 1 implies am − 1 | an − 1.

We can approach this with a variant of Euclid’s algorithm. Let m0 = m and n0 = n. Start with the
two terms am0 − 1 and an0 − 1. At each step, if mi > ni, then subtract ami−ni (ani − 1) from the left
term, leaving ami−ni − 1 as the new left term; if ni > mi, do the reverse. Terminate when the two
terms are equal; this is the gcd, for the same reason that Euclid’s algorithm terminates at the gcd
(that (a, b) = (a, b−ka) and (a, a) = a). Note that the mi and ni values followed the same structure as
Euclid’s algorithm, too, and the terms remained of the form ami−1 and ani−1. This final exponent is
therefore (m,n), since the gcd is unique. And because we know that Euclid’s algorithm will terminate
at (m,n), we know that our variant will terminate, too.

Note that if m | n, (an − 1) / (am − 1) = an−m + an−2m + an−3m + · · ·+ 1.

4 The following GP code does the calculations we want:

\p 6
a = b = c = 0;
for(start=0, 9, forprime(i=10000*start, 10000*(start+1), a++;
b += (i == Mod(1, 4)); c += (i == Mod(3, 4))); print(a " " b
" " c " " (10000*(start+1)/log(10000*(start+1)))))

Here are the results:

? \r hw1-4
realprecision = 9 significant digits (6 digits displayed)

1229 609 619 1085.74
2262 1125 1136 2019.49
3245 1611 1633 2910.09
4203 2085 2117 3774.78
5133 2549 2583 4621.17
6057 3018 3038 5453.50
6935 3449 3485 6274.51
7837 3903 3933 7086.05
8713 4348 4364 7889.50
9592 4783 4808 8685.89

The balance between primes congruent to 1 and congruent to 3 modulo 4 is fairly close, with a slight
but probably immaterial bias for 3. Growth seems roughly linear so far; it’s not clear that x/ log x is
a better estimate yet.
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