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2.2 8 Any solution must satisfy x2 ≡ 1 mod p, i.e., x = kp + 1 or x = kp − 1. In the original congruence,
this would mean k2p2 ± 2kp+ 1 ≡ 1 mod pα, or kp(kp± 2) ≡ 0 mod pα. So the solutions are k = 0,
i.e., x = ±1, or kp ≡ ±2 mod pα. Since p is prime, k is unique, and we know at least one k that
satisfies this, namely ±2pα−1. But then x is, again, ±1.

2.2 14 Consider the power of p in the numerator and denominator. The binomial coefficient is

pα(pα − 1) · · · (pα − k + 1)
k(k − 1) · · · 1

with the same number of terms on the numerator and denominator. Note that pα ≡ 0 mod p. Given
that, and that multiples of p occur every p integers, there is at least one more multiple of p on the top
than on the bottom, counting the bottom upwards from 1 and the top downwards from pα. Similarly,
there is one more multiple of p2, one more of p3, etc., up to pα, of which there is one more multiple (it
exists on the top and not on the bottom). Therefore, the power of p in the numerator is higher than
that in the denominator, and so the binomial coefficient is a multiple of p, i.e., congruent to 0 mod p.

2.3 9 φ(1) = 1 and φ(2) = 1. Consider any power of two 2n where n > 1. Its totient is 2n
(
1− 1

2

)
= 2n−1,

which is even. Now consider any odd prime power pn. Its totient is pn
(

1− 1
p

)
= (p− 1) pn−1, which

is even because p − 1 is even. Now consider any composite number. Its totient is the product of its
factors’ totients, and so since it can be expressed in product-of-powers-of-primes form, its totient is
only not even if it contains no powers of two beyond 2, and no nonzero powers of any other primes.
This is only true for 1 2.

2.3 17 143 = 11×13, so we have the two congruences (x−1)(x−3)(x−5) ≡ 0 mod 11 and (x−1)(x−3)(x−5) ≡
0 mod 13. The original congruence is true if both are true. The solutions to the first are 1, 3, 5 mod 11
and to the second 1, 3, 5 mod 13, so were are looking for all numbers modulo 143 that are equivalent to
one of the solutions in each set. Since 11 and 13 are relatively prime, we have exactly one residue modulo
143 that is equivalent to one number from each solution set, by the Chinese Remainder Theorem. So
our solutions are 1, 143, 122, 14, 3, 135, 27, 16, and 5.

2.3 23

2.3 24

2.3 29 Should (2, n) = 1, then φ(2n) = φ(2)φ(n) = φ(n). If not, then note that in the representation
φn = n

∏
pn

(
1− 1

p

)
, that replacing n with 2n does not affect the product, since 2|n and 2|2n, but it

does affect the coefficient on the product, so φ2n = 2φn. So for all odd integers φ2n = φn, and for all
even integers, φ2n = 2φn.

2.5 2 We can expand φ = pq−p−q+1 = m−p−q+1, and then substitute q = m/p to yield φ = m−p−m/p+1,
or pφ = mp− p2 −m+ p. This can be solved with the quadratic formula, and since we could as easily
have substituted p, the two solutions are the two values of p and q.

By applying the quadratic formula we find that m factors into 9839 and 3989.

5a Every binomial coefficient other than
(
pk

0

)
and

(
pk

pk

)
will have pk as a factor, by 2.2 14, and the

right side of the congruence is just the first and last terms. So the difference is divisible by pk, which
demonstrates the identity.

6 This holds if n is prime; by the same reasoning as 5a, every term on the left except the first and last
is divisible by n, leaving an ≡ a mod n, which we know is true for every integer if n is prime.
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