Geoffrey Thomas 18.781 problem set 4

- 2.6 2. The single solution of $x^5 + x^4 + 1 \equiv 0 \pmod{3}$ is $x \equiv 1 \pmod{3}$. Note that $f'(1) = 9 \equiv 0 \pmod{3}$, but $1^5 + 1^4 + 1 \not\equiv 0 \pmod{9}$, so the root cannot be lifted and there are no solutions.
- 2.6 3. The single solution of $x^3 + x + 57 \equiv 0 \pmod{5}$ is $x \equiv 4 \pmod{5}$. We lift this root to $4 125 \cdot 4 \equiv 4 \pmod{5^2}$, which then lifts to $4 125 \cdot 4 \equiv 4 \pmod{5^3}$.
- 2.6 7. The single solution of $x^3 + x^2 5 \equiv 0 \pmod{7}$ is $x \equiv 2 \pmod{7}$. We lift this root to $2 7 \cdot 4 \equiv 23 \pmod{7^2}$, which then lifts to $23 12691 \cdot 4 \equiv 23 \pmod{7^3}$.
- 2.6 9.
- 2.6 10. Hensel's lemma tells us that if there is a solution x_0 to $x^2 \equiv a \pmod{p^j}$, then as long as $2x_0 \not\equiv 0 \pmod{p}$, then there is a solution to $x^2 \equiv a \pmod{p^{j+1}}$. Our constraint is true, because if $2x_0 \equiv 0 \pmod{p}$, then $0 \equiv 4x_0^2 \equiv a \pmod{p}$, but we know that $0 \not\equiv a \pmod{p}$. Therefore, by mathematial induction, as long as $x^2 \equiv a \pmod{p^j}$ has a solution for j = 1, it has a solution for all positive integers j.
- 2.7 3. As $(x^{13} + 12x)x \equiv 0 \pmod{13}$, the congruence is true if $x \equiv 0$ or $x^{13} + 12x \equiv 0 \pmod{13}$. By Fermat's Little Theorem, the latter is equivalent to $x + 12x \equiv 0 \pmod{13}$, which is identical.
- 2.7 8.
- 2.7 10. The unreduced numerator is σ_{p-2} from the discussion at the end of the section, so by Wolstenholme's congruence, p^2 divides it. The reduced numerator a is the same as the unreduced one
- 2.7 11.
- 2.8 2. By guessing numbers until they work, 5.
- 2.8 9. $3^4 \equiv -4 \pmod{17}$, so $3^8 \equiv (-4)^2 \equiv -1 \pmod{17}$. Therefore $3^1 6 \equiv (-1)^2 \equiv 1 \pmod{17}$, so the order of 3 divides 16. But the order of 3 does not divide 8, so the order must be exactly 16.
- 2.8 12.
- 2.8 13.
- 2.8 16.
- 2.8 24. Under these conditions, the order of a modulo n is n-1, so $\phi(n) \ge n-1$, so n must be prime.