Geoffrey Thomas
18.781 problem set 4
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The single solution of #° + 2* +1 =0 (mod 3) is # = 1 (mod 3). Note that f'(1) = 9 =0 (mod 3),
but 1° + 1%+ 1 # 0 (mod 9), so the root cannot be lifted and there are no solutions.

The single solution of 2% + 2z + 57 = 0 (mod 5) is # = 4 (mod 5). We lift this root to 4 — 125-4 =4
(mod 52), which then lifts to 4 — 125-4 =4 (mod 53).

The single solution of #® + 22 —5 = 0 (mod 7) is # = 2 (mod 7). We lift this root to 2 — 7-4 = 23
(mod 7%), which then lifts to 23 — 12691 - 4 = 23 (mod 73).

Hensel’s lemma tells us that if there is a solution zo to 2 = a (mod p?), then as long as 2x¢ # 0
(mod p), then there is a solution to 22 = a (mod p?*™t). Our constraint is true, because if 2x¢ = 0
(mod p), then 0 = 422 = a (mod p), but we know that 0 # a (mod p). Therefore, by mathematial
induction, as long as 22 = a (mod p?) has a solution for j = 1, it has a solution for all positive integers
7.

As (213 4+122)x = 0 (mod 13), the congruence is true if z = 0 or 213 +122 = 0 (mod 13). By Fermat’s
Little Theorem, the latter is equivalent to x + 122 = 0 (mod 13), which is identical.

The unreduced numerator is o,_ from the discussion at the end of the section, so by Wolstenholme’s
congruence, p? divides it. The reduced numerator a is the same as the unreduced one

By guessing numbers until they work, 5.

3% = —4 (mod 17), so 3% = (—4)?2 = —1 (mod 17). Therefore 3'6 = (—1)?2 =1 (mod 17), so the order
of 3 divides 16. But the order of 3 does not divide 8, so the order must be exactly 16.

Under these conditions, the order of @ modulo n is n — 1, so ¢(n) > n — 1, so n must be prime.



