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Abstract

Protecting the system from less-than-trustworthy
processes and isolating processes from each other has
long been a crucial component to computer security,
but numerous weaknesses continue to plague current
approaches. We demonstrate preliminary work to-
wards a stronger isolation approach based on hard-
ware virtualization support that is capable of inte-
grating with existing operating systems. Our ap-
proach involves running individual processes inside
separate, lightweight virtual machines with indepen-
dent kernels, and providing limited but easily cus-
tomizable access to the host system via userspace
proxies to the file system and other resources. We ar-
gue that this approach addresses several issues with
existing isolation and sandboxing approaches of many
types, is practical, and is likely to be easily maintain-
able and secure as systems evolve.

Background and Previous Work

Isolating processes has a long and important history
in the development of secure operating systems [1]
[23]. Isolation allows multiple user accounts with dif-
ferent privileges to exist on the same system, with
only a single program, the OS kernel, needing to
be absolutely trusted to mediate these users. Typi-
cally, process isolation is enforced with some support
from hardware and restricting what areas of mem-
ory and what devices are available to different pro-
grams: in particular, different programs cannot ac-
cess each other’s memory nor the kernel’s, and all
device access must be mediated through the OS ker-
nel through the system call interface. This allows the
kernel to respond to different user accounts with dif-
ferent responses for certain system calls, for instance,
to prevent one user from reading files that were cre-
ated by another without the permission of the second

user. While this level of protection is generally effec-
tive, misconfigurations, vulnerabilities in individual
programs, and vulnerabilities in the OS kernel can
all cause a loss of system security.

We will describe several existing additional means
of process isolation to investigate their security prop-
erties and their adoption: since the most secure sys-
tem secures nothing if it isn’t used, we would like to
learn lessons from other attempts as to what yields or
doesn’t yield a well-used system before we design our
own. By studying these approaches, we will come up
with a short list of desired features for a new system,
plus some ideas upon which to build that system.

chroot and ptrace

Beyond simple memory protection and user account
protection are a number of additional approaches
for isolating potentially problematic processes. One
common approach is the UNIX chroot system call,
which changes the root directory for a process and its
children. This prevents a process from accessing files
outside the new root directory through normal filesys-
tem operations; the filesystem appears restricted to
just the specified subdirectory. chroot-based isola-
tion has long been a common security layer for many
network services. For instance, FTP servers can be
confined via chroot into a directory consisting of just
the server software executables and the files to be
served, thereby restricting the ability of remote users
to browse other files on the host. However, there
are several known methods for a determined attacker
to break a chroot jail, making this more useful as
a ”defense in depth” strategy than as a complete re-
striction. For instance, a process running as the supe-
ruser, after being confined to a new root can arrange
to run chroot again twice in a way that escapes the
confinement [2], and even unprivileged processes can
interact with the rest of the system in various ways,
perhaps even by hijacking another process belonging



to the same user with the ptrace debugging inter-
face [3]. For an audited FTP server running in its
own user account which attempts to reject invalid re-
quests from remote clients, chroot may provide some
isolation, but by itself it cannot be considered suffi-
cient to protect a machine from a determined attacker

[4].

Various operating systems have developed meth-
ods based around the chroot concept, but with ad-
ditional levels of isolation to allow them to serve as se-
cure isolation techniques, whereas “chroot is not and
never has been a security tool” [5]. At the simplest
level, the third-party grsecurity patch set for the
Linux kernel provides several restrictions on chroot’s
behavior to restrict most common methods of escap-
ing the jail, as well as the ability of processes confined
by chroot to interact with other processes on the sys-
tem [6]. FreeBSD jails add an additional system call
based on chroot that isolate the process in several
ways other than just the filesystem [36]. These solu-
tions, and other similar ones such as Linux contain-
ers, overcome many of the weaknesses of chroot, but
by their very isolation start moving towards requiring
an entirely separate operating system installation, a
significant overhead and perhaps leading towards a
different design goal.

Another approach to securing a process beyond
what chroot offers is to run the process under
ptrace, the UNIX process-tracing interface typi-
cally used for debuggers. ptrace permits inspect-
ing the process as it makes system calls and al-
lows the tracer to refuse execution of certain sys-
tem calls. For instance, an IRC bot on the Freen-
ode network’s C++ discussion channels, Geordi, per-
mits execution of arbitrary snippets of C++ code,
by restricting the number of system calls that can be
made, even though it cannot assume benign users [7].
Geordi works largely by assuming that the evaluated
code fragments demonstrate simple computation and
programming-language features, and do not require
much access to the host system; it therefore can di-
rectly deny system calls that, for instance, start new
processes. Janus is a more full-featured system along
these lines, starting from a basic assumption: “An ap-
plication can do little harm if its access to the under-
lying operating system is appropriately restricted.”
Janus works by interposing itself in between an ap-
plication and various system calls, and making ac-
cess control decisions based on a policy file. While
Janus is illustrative as to the properties a good isola-
tion system should add to the standard OS security

restrictions, unfortunately, system call interposition
techniques have various weaknesses that leave such a
system not completely impregnable [15].

Sandboxing in the Kernel: seccomp

A related and potentially more secure and performant
approach is to let the kernel do system call restric-
tions. Linux offers a “secure computing” mode [13],
which generally goes by the name of seccomp. A pro-
cess can request the kernel enable seccomp via the
prctl system call, such that any further activity from
that processes is limited to reading and writing al-
ready open file descriptors (read and write), exiting
normally (_exit), and returning from signal handlers
(sigreturn). Any other system call will abort im-
mediately without even parsing its arguments. The
manual page documents secure computing mode as
“useful for number-crunching applications that may
need to execute untrusted byte code, perhaps ob-
tained by reading from a pipe or socket,” [9] but there
are many more applications for this kind of protec-
tion. Many applications, once they have opened the
files or other connections they need, can complete
their work with just reads and writes and little more.
Certainly in many cases, an application can spin off
a child process to load a less-trusted shared library,
enable secure computing mode, and jump into the
shared library. For instance, many audio processing
vulnerabilities could be avoided if the audio proces-
sor is not allowed to do anything other than read one
format of addio on one end and produce another for-
mat on the other; the worst it could do is to produce
garbled or incomplete output, but the input to the
image processor was already trusted with the abil-
ity to specify an arbitrary output, and so assuming
a simple output representation (such as one with no
metadata), we can guarantee that no input can harm
the system [10]. The same argument applies to image
renderers, decompression software, and the like.
Note that this technique does not at all require us
to prevent arbitrary code execution, as Janus noted.
By using the existing protection domain functionality
of UNIX, assuming the absence of kernel vulnerabil-
ities, we can allow userspace to run any code, but
by restricting its interaction with the system to read-
ing from or writing to already-opened file descriptors
that are known to be safe, or exiting, it cannot harm
the rest of the system. To a large extent, even, this
offers protection against kernel security bugs. Many
of the particularly egregious bugs in Linux recently
have been against system calls that are rarely used.



Consider the 2008 vmsplice local root exploit [11]:
this system call was a variant of the splice system
call, itself designed for particularly optimized data
transfer between file descriptors that is traditionally
just performed with a read/write loop. vmsplice al-
lows optimized transfer between user memory and a
pipe. This additional code missed some access check-
ing, and allowed a caller to trick the kernel into over-
writing kernel memory. The immediate fix that hit
the web shortly after the news about the vmsplice
vulnerability broke was simply to disable the system
call entirely!, as few programs in practice used it,
and the functionality could be replicated with a sim-
ple write. Although there will always be newer, less-
proofread system calls and demand for them, with
secure computing mode enabled, even exploited pro-
grams simply do not have access to those system calls,
so the exploit becomes harmless.

To examine the viability of a seccomp-based ap-
proach for applications beyond “number crunching”,
we investigated a common Linux PDF reader, xpdf,
to see what system calls it uses. This is easy to de-
termine with strace, a standard system call tracing
utility. Table 1 lists the system calls used by xpdf
once it has loaded a document, in the course of nor-
mal navigation. xpdf is a particularly useful example
here because of its security track record [37].

The results indicate that restrictions similar to se-
cure computing mode could be quite reasonable for
running xpdf. writev is another optimized variant of
write, select and poll are both mechanisms for waiting
on file descriptors to be ready for reading or writing
(again, providing essentially the same functionality in
different interfaces), -11seek moves around within an
open file, and mmap2 and munmap are used either for
memory allocation or mapping already-open files into
the user’s address space. Finaly, restart_syscall is
a Linux implementation detail related to signal han-
dling that only allows resuming existing system calls.

This leaves two calls to be examined, stat64 and
gettimeofday. The former gets file metadata by
path; xpdf uses this to periodically check if a PDF
has been changed and needs to be reloaded. For this
functionality to work properly, it needs to examine
the file path instead of the file handle, in case the
document has been replaced with a new one. Under
secure computing mode, though, xpdf would be un-
able to reopen the file, so for a first-order sandboxed

IThe de_exploit payload in [12], a variant of the exploit
code itself, simply finds the address of vmsplice and replaces
the first byte with an unconditional RET.

PDF viewer we can simply remove this feature, as-
suming we are willing to recompile the program. But
we can imagine a slightly more liberal secure comput-
ing mode that restricts stat64 or open to a particular
set of arguments, or a trusted helper that implements
the periodic check itself and somehow provides the
new file descriptor to the program.

As for gettimeofday, there are known crypto-
graphic side-channel attacks that are enabled by hav-
ing access to accurate timing information [13], so
by default secure computing mode disables access to
the hardware timestamp counter [14]. So, providing
microsecond-accurate timing information is presum-
ably also unacceptable. However, we may be able to
provide inaccurate times to the process as long as the
values are still reasonable, either by introducing a bit
of error or just by rounding the reported time.

From this exercise we can conclude that a secure-
computing-style approach to xpdf is possible and re-
tains its security properties, but implementation may
be deeply tied to the behavior of the specific applica-
tion and require customizing its code. We have not
considered enabling access to a host of new system
calls such as access to network sockets or executing
new programs, which are both to attackers in allow-
ing them to control a system and use it as a plat-
form for new attacks, sending spam, etc. However, we
would have to modify either xpdf or its libraries sig-
nificantly in order to collapse all the I/O system calls
into just read and write and disable the functional-
ity that we can’t permit, or we would risk requiring
access to less-common variants of system calls and
increase our attack surface for kernel vulnerabilities.
For these reasons, we would like to see if an approach
other than simple syscall restriction will work, prefer-
ably one that allows confining unmodified processes.

Google’s Chromium project, for instance, does use
an intricate sandbox based on the secure computing
restriction. [14, 15] The setup is to use two threads,
one untrusted and running under seccomp and one
trusted, that share the same memory space, with
communication between those threads over an RPC
interface in a UNIX pipe. The two threads share their
address space so that the trusted one can perform ac-
tions like allocating memory for the untrusted thread,
but this means that the untrusted thread has to be
hand-coded in assembly and not trust any writable
memory — it cannot use any language that wants
to store variables on a stack or heap. Meanwhile,
a second trusted process in a separate address space
handles verification for certain system calls like open,



Table 1: A trace of xpdf’s system calls in normal operation.

geofft@corndog: ~/tmp$ strace -c -p 5344
Process 5344 attached - interrupt to quit
“CProcess 5344 detached

% time seconds wusecs/call calls
52.54 0.005148 6 920
38.32 0.003755 4 891

5.05 0.000495 55 9
4.08 0.000400 0 981
0.00 0.000000 0 1
0.00 0.000000 0 157
0.00 0.000000 0 120
0.00 0.000000 0 156
0.00 0.000000 0 9
0.00 0.000000 0 3
100.00 0.009798 3247

because of this memory restriction. In order to allow
unmodified renderer code to execute under the sand-
box, the initialization of the trusted thread disassem-
bles the code for the untrusted one and replaces all
system calls with RPCs before allowing the untrusted
thread to execute. While there are some interesting
advantages of the solution, it requires very careful
coding of the trusted thread to reduce the risk of
adding vulnerabilities there, as well as writing

The Chromium developers requested from the
Linux kernel community an extension to the secure
computing request that allows specifying which set
of system calls to approve, instead of hard-coding
just read and write. but this was not met with
much enthuiasm [13]. One particular proposed al-
ternative solution was to use a framework based
on ftrace, a kernel instrumentation technique, which
would allow informing the kernel of restrictions such
as {"sys_read", "fd == 0"}. While this would al-
low more flexibility than the current secure comput-
ing sandbox and ideally eliminate the complexity of
Chromium’s trusted thread and trusted process, it
appears that this approach would fall prey to the
same issues that affect the system call interposition
techniques that were problematic for Janus. On the
kernel mailing list thread, James Morris pointed out
two references, [15] (which we have already seen) and
[16], as examples of why this approach is risky. We
would like a solution that doesn’t have the issues with
these sorts of system call interposition techniques; re-
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restart_syscall
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682

682 total

latedly, it seems optimal, if possible, to implement a
technique that does not require new kernel features,
such that we can start using it without having to con-
vince the kernel development community of its mer-
its.

Linux Security Modules

As mentioned on the kernel mailing list Linux already
has a security module framework, LSM [17], that in-
spects data once it has been copied into kernelspace,
which may be more suitable for the more complex pol-
icy decisions and avoids these issues. There are a cou-
ple of well-known security modules that use LSM, no-
tably SELinux. Developed by the NSA, SELinux is a
mandatory access control architecture for Linux that
involves labeling all objects on the system and assign-
ing to processes and applications that specify what la-
bels they may access and how [38]. However, SELinux
has seen a fair amount of resistance in terms of be-
ing used in production; although Red Hat Enterprise
Linux and Fedora both default to SELinux enabled, a
fair number of system administrators seem to disable
it as a matter of course, and various software pub-
lishers require that it be disabled instead of adapting
their software to be compatible with SELinux and
providing appropriate profiles for their application
[18] [19]. This process may also involve fixing various
coding practices, such as text relocations resolved at
runtime [20], which while not insecure of themselves,



prevents using some additional security techniques in
SELinux such as not allowing executing memory that
has ever been modified since it was mapped, which
Fedora at least enables for even unconfined programs
[19]. Also, if SELinux wants to refuse access to a real
file, it can only return a failure code to the program,
and cannot, say, divert the request to a different, safer
directory so that it can appear to return success. This
can be a common source of frustration when setting
up a profile to confine an application. While SELinux
can be used for tight sandboxing of individual pro-
grams to restrict most kinds of system access [21],
in addition to just locking down abnormal behavior
from a program with fairly liberal system access, the
deployment history suggests that an approach based
on or similar to SELinux will not have as much reach
as we would like because of the demands it makes
regarding modifying existing applications.

One final drawback of any of these approaches is
that they require kernel modifications. While the
LSM approach allows using a clean API and avoiding
modifying the core kernel by loading a kernel module
[17], the resulting code still runs with full kernel priv-
ileges, which has several limitations: code can only
be developed in a low-level language such as C, does
not have the support of standard userspace libraries,
needs to run quickly, and increases the attack surface
of the kernel. As an example of the latter, while most
Linux systems default to not allowing users to map
the zero page to make kernel null pointer vulnera-
bilities harder to exploit, the “Cheddar Bay” Linux
local root exploit from summer 2009, which depended
on such a vulnerability, was able to use SELinux to
bypass this check, thereby [26]. The system-call in-
terposition techniques discussed previously have the
advantage of being able to run in userspace, avoiding
”weakening default security,” in addition to the prac-
tical flexibility advantages. Ideally we would like a
solution that allows us to keep as much of our policy
enforcement in userspace as possible.

Another system worth briefly addressing here is
that of UserFS, which allows unprivileged users to
create sub-user identities with a subset of their sys-
tem access, and run programs as these new users in-
stead of with their full privileges [35]. Specifically for
the use case of preventing outside attacks from exe-
cuting malicious code, UserFS is an elegant solution
to preventing this malicious code from having the full
privileges of a user’s account. Although UserFS was
in no small part inspiration for our present work, we
reject its approach because it does not provide pro-

tection from kernel bugs, does not provide complete
isolation, and also requires kernel modification. Ar-
guably, though, UserFS operates on a different level
and provides a different type of security than we are
interested in providing, and we will see later that it
can possibly integrate with our solution.

Virtual Machines

A completely different approach to confining
possibly-malicious software is to run it within a vir-
tual machine, and only make the necessary resources
available to this virtual machine. This approach has
been well-known since the 1970s and the days of
IBM’s VM line of operating systems: an architecture
allowing for hardware virtualization can allow for es-
sentially complete isolation between guest virtual ma-
chines, with security at least as strong as the inter-
process protection in time-sharing operating systems
[23]. The properties of a virtual machine as set out by
Popek and Goldberg [24] are essentially the proper-
ties we want for a good sandboxing system for either
individual software or an entire operating system: ef-
ficiency and equivalence guarantee that our scheme is
reasonably usable with existing software, and the re-
source control property, that nothing in the guest can
affect any system resources that were not explicitly
allocated to it by the host, is sufficient to provide us
with the security guarantees we want for sandboxing.

One simple although potentially cumbersome and
high-overhead approach is to simply run multiple vir-
tual machines with an existing off-the-shelf hypervi-
sor, and keep tasks of different security profiles in dif-
ferent virtual machines. This is a variant of the tradi-
tional “air gap” approach, invovling multiple physical
machines, but trades the ability to trust a hypervisor
for consolidation into a single piece of physical hard-
ware. Omne security researcher, Joanna Rutkowska,
has detailed such a setup involving three levels of
trustworthiness and indicates she uses it regularly as
her standard computing platform, using VMware Fu-
sion, and regularly resets the least-trustworthy but
least-important image to a known clean state [25].
However, such an approach has not seemed to catch
on, and the overhead of multiple VMs and things like
file transfer make this less practical for users who are
not themselves security researchers.

Recently, Rutkowska’s firm has started developing
an operating system based on this context, using the
Xen hypervisor and a customized Linux distribution
to isolate applications. Their setup, called Qubes OS
[22], uses on the order of a half dozen security do-
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mains (”banking”, ”social”, etc.) for running individ-
ual applications. The privileged Xen domain (dom0)
runs a non-networked GUI to display windows from
the guests, with borders around the windows indi-
cating which guest they are from; a special graphics
driver using X compositing is available to the guests
for rendering. Qubes allows strong isolation of stan-
dard off-the-shelf Linux software by running every
application in a VM that is not the dom0, but its
architecture requires it to be a full OS, as opposed to
something usable on existing operating systems. Our
design has several goals in common with Qubes, but
we would like one that works without requiring users
to choose a specialized operating system.

Summarizing the above, we have a small list of
desiderata in our sandboxing system:

e capable of securing all interaction with the sys-
tem

e capable of working with unmodified binary ap-
plications

e reliably secure to actively malicious attackers

e requiring as few changes to core kernel code as
possible

e operating as much in userspace as possible

e compatible with existing operating systems

Our Design

Taking Advantage of Virtual Machines

Virtual machine technology has matured and im-
proved much in the recent past, most notably includ-
ing the advent of hardware virtualization support for
the x86 family by both Intel and AMD which makes
the architecture classically virtualizable [29] [24] and
the availability of various stable virtual machine mon-
itors using these interfaces. We will focus our efforts
on Linux running on x86, using the KVM hypervisor
[39]. KVM is structured to run as a userspace Linux
application, based on the QEMU emulator, using a
kernel interface (/dev/kvm) to the hardware virtu-
alization extensions. This structure allows us to in-
tegrate our work with existing Linux operating sys-
tems, unlike Qubes, which is its own OS based on
the separate Xen hypervisor. Our design will focus
on isolating individual less-trustworthy applications,
as opposed to categorizing and confining every ele-
ment of the system like Qubes or even SELinux.

We have a couple of advantages on our side in tak-
ing the virtual-machine strategy as a primitive in our
design. While we have seen that there is some resis-
tance to introducing new kernel mechanisms or wide-
ranging changes for the sake of a direct interface for
sandboxing, there is an immense amount of commer-
cial interest in virtualization and its efficiency and
flexibility, and so we can expect an in-kernel virtual-
ization interface to only be better-maintained, more
secure, and more efficient over time. Similarly, if
we want to launch and shut down virtual machines
quickly, many people in the Linux community have
been working on optimizing Linux’s boot time [31]
[32]. By setting up our efforts in synergy with these
goals, we can hope to have a practical, usable solu-
tion for years to come, instead of one that remains
usable only on older systems (Janus, for instance, is
only compatible with Linux 2.2, long obsolete).

Our basic approach is simply to take the applica-
tion we wish to sandbox and run it inside a KVM
guest, running a Linux kernel solely for the sake of
supporting this process. This allows us to run un-
modified applications by providing a full Linux kernel
— instead of some custom-written interface to fake re-
sponses to system calls, or a restriction on which sys-
tem calls are permissible — but by carefully control-
ling what virtualized hardware and other resources
we provided to the KVM process, we can determine
exactly what sort of access the sandboxed processes
has to our host system. For instance, reads and writes
can use any of the various system calls for IO, whether
read and write themselves or fancier interfaces like
vmsplice or writev, but the only interface to the
host file system is whatever virtualized disk or file sys-
tem we provide, which can use a much tighter inter-
face. Assuming the security of the hypervisor, which
as we have already noted can be expected to increase
over time, the only point of attack here is whatever
small interfaces we provide to the KVM process.

It is worth noting explicitly that, if we only have
one application per KVM virtual machine, such a
setup is in fact secure not only to arbitrary userspace
code but also to arbitrary kernelspace code: in other
words, we are effectively immune to kernel vulnera-
bilities, and only need worry about hypervisor vul-
nerabilities. Everything running within the guest,
whether userspace or kernelspace, root or not, has
exactly the same level of privilege with respect to the
outside system. This is a powerful and extremely
useful barrier.



Userspace Helpers

To sandbox a program, we trap calls to that pro-
gram, for instance by replacing the binary with a shell
script wrapper, and pass the arguments off to the
sandboxing core, vwrap. This program will identify
the program and its immediate dependencies (such as
shared libraries) and start up a new virtual machine
instance, running a lightweight Linux kernel whose
init process is a shell script to run the sandboxed
program with the appropriate arguments. vwrapwill
also arrange for resources such as limited file system
access, open file descriptors, etc. to be made available
to the VM, such that the process can run as normal.

Our current approach for filesystem access is to run
an NFS server as a separate process in the host, and
use this as the root filesystem in the guest. The NFS
server does not need to be privileged (in particular
this is not the standard kernel NFS server); it does
not even need to bind privileged ports, because we
can specify the port numbers as a mount option. This
means that the server does not affect the security of
other processes running on the system, and can run
with, at most, the credentials of the user invoking
vwrap. As compared to the guest, though, this is a
trusted process and mediates all external file access
available to the guest. This is an important part of
our ability to allow root and the kernel of the guest
to be untrusted: if we provided full disk access to
the guest and relied on, say, a union file system to
prevent permanent writes to the host system, anyone
with root inside the guest could simply unmount the
unioned file system and get direct access to the host’s
file system, or read files on the block device belonging
to other users, or the like. Our NFS server is written
in Python, which provides two advantages to us: the
code is easier to audit and easier to change. By writ-
ing in a high-level bytecode-based language, we avoid
the risk of buffer overflows, null pointer dereferences,
and other similar attacks common to OS kernels writ-
tein in a low-level language (assuming the security of
the Python core runtime, but this is much more static
than a constantly-evolving kernel. We also have the
ability to implement as complex or as simple access-
control logic as we desire, and are not limited by the
desire to avoid introducing complex parsers or inter-
preters into the kernel.

The userspace NFS server provides a limited copy
of the host’s filesystem to the guest. This allows ap-
plications to be installed only once on the host, in-
stead of requiring several separate installations, and
more importantly patched for security updates only

once. We cannot, after all, prevent applications from
destroying data they are legitimately authorized to
work with. Since this runs in userspace, we can pro-
vide any files known to the OS’s packaging system,
which can be assumed public, without exposing pri-
vate configuration on this system, for instance, the
passwd file. We can also allow modifying files as much
as the application wants without risking allowing the
application to maliciously affect the host system, such
as by installing rootkits or winning race conditions
in /tmp. However, we have the flexibility to make
these writes appear to the guest to succeed, instead
of simply refusing them, as SELinux and other LSM-
based systems must do. This design choice also allows
us to not have to worry about the overhead of cre-
ating persistent installations for our virtual machine
instances, as for instance is the case with the Tahoma
web browser, which also uses virtual machines for iso-
lation [28].

We can provide dynamically-generated faked con-
figuration files, such as the passwd file, which really
needs only contain information about a single user.
We also provide a separate home directory, except
for the files that the program should have legitimate
access to, which eliminates several types of attacks
involving stealing private files or writing to various
configuration files (.bashrc, .wgetrc, etc.) that can be
leveraged to attack other programs. Again, though,
we allow sandboxed processes to write their own con-
figuration files within the sandbox, which eliminates
a large class of annoyances in trying to confine pro-
grams with a system like SELinux. By running in
userspace, we have significantly more flexibility about
making these sorts of access control decisions: in par-
ticular, we can even have the trusted process bring
up UI to interact with the user before permitting ac-
cess to the guest, similar to the file-opening API in
OLPC’s Bitfrost security model [33].

Challenges and Future Direction

The major challenge in this design will be to provide
flexible, performant, and secure access to non-file re-
sources. The most important is the display server:
obvious options include the X SECURITY extension
[34], but the policies it enforces are fairly inflexible
and also require denying requests for things like key-
board grabs instead of returning success to the client.
Much like with the filesystem case, we would like to
be able to let the client speak to a proxy X server
interface for increased compatibility with unmodified
applications that expect X requests to succeed. Other



options include a design using X compositing and
running another X server inside the guest, similar to
the approach taken by Qubes or the SELinux-based
sandbox -X do, or a lighter-weight approach involv-
ing something else that speaks the X client protocol.
Other resources that we will need to provide limited
access to include audio and networking. For the lat-
ter, QEMU’s user-mode network stack gives us a fair
amount of flexibility.

Another resource that we will need to provide is
access to file-like resources that are not regular files:
pipes, sockets, terminals, and the like. For a large
amount of this, we can make do by providing guest
serial devices connected to the appropriate inputs and
outputs on the host side, but this has several draw-
backs. The file descriptors will appear uncondition-
ally as serial terminals, but we could install wrappers
in the guest to work around this. More problem-
atic is that we have no way to make file-type-specific
calls, whether setting terminal attributes or sending
datagrams or accepting connections from a listening
socket. We will need to design some interface for pro-
viding this functionality to the guest, but the inter-
face needs to be simple enough that we can be assured
of its security, or at least have reason to believe that
the attack surface is significantly smaller than the
kernel’s native interfaces for the system calls that we
will be replicating.

While the design may seem at first to be in-
escapably slow because of the cost of emulating and
virtualizing every interface with the outside world, we
have the option of providing so-called paravirtualized
drivers, which interact directly through the privilege
boundary with host code, instead of going through a
layer of hardware emulation. KVM and other Linux-
based hypervisors support the virtio interface [30],
which allows the hypervisor to provide functions to
guest drivers. We currently use the stock virtio net-
work and console drivers to avoid the overhead of
serializing all network traffic, including filesystem re-
quests, and console traffic through an emulated hard-
ware device just to deserialize it on the other end. We
may end up developing additional virtio drivers and
controllers to avoid specific hardware overheads or
just address measured inefficiencies in our setup.

Current Results
We have prototyped our system with a straightfor-

ward NFS server in 1200 lines of Python with no
native code dependencies. The file server currently

enforces no access control other than to check that
the file is world-readable and to refuse all write re-
quests, but this can be changed for the actual system.
We have a small C program to serve as init and exe-
cute xpdf as a child process with an appropriate min-
imal environment, and run KVM with this program
as init for a minimally-configured Linux kernel (re-
compiled, but with no source changes) optimized for
a bare KVM environment. The kernel boots in half
a second, configures its networking within 2 seconds,
mounts and executes the initial process within 0.1
second, and successfully launches xpdf within about
ten seconds. The resulting PDF viewer is responsive
for interactive use and feels comparable with xpdf
run on the host. So this system is already eminently
usable for limited use cases.

Planned Work

To make the system practical for general use requires
significant further development, which can generally
be split into two categories, adding secure functional-
ity and improving performance. Specifically, we pro-
pose the following work:

e Extend the file system with reasonable policies
for applications that write to files.

e Allow the file system to provide persistent per-
application home directories.

e Design a scheme for handling sockets, terminal
devices, and the like.

e Design a performant, secure proxy for guest ap-
plication access to the window server.

e Design an appropriate interface for specifying
the policy by which guests are permitted to ac-
cess the host.

e Reduce the boot-up time of the virtual machine,
that is, the time for the application to launch.

e FEnsure performance for running multiple VMs,
likely by using memory ballooning and host
memory deduplication.

e Find a way to optimize performance of the
userspace file server without compromising se-
curity.

e Write unit and system tests for the various com-
ponents, and integration tests involving exploits.



e Investigate the security of our hypervisor.

While xpdf is useful, it is admittedly a fairly sim-
ple application, never writing to the filesystem. We
would like to support larger applications such as web
browsers and office suites, which will require a fair
amount of engineering work and performance analysis
to properly run under this system. However, we are
confident that this approach will work, given our suc-
cess with xpdf and given the design that lets us export
any resources to the guest. Additional possibilities
for this technology include isolating each tab within
a browser, in the manner of Chromium, Gazelle [27],
or Tahoma [28], or encapsulating web applications.

A few possibly-related goals are specifically out of
scope for our design. First, we intend to confine un-
modified applications, and leave intra-application se-
curity to the application. For instance, the UserFS
authors demonstrate modifying a web application,
DokuWiki, to assign separate local users to each re-
mote user [35], thereby reducing the risk of leaks be-
tween private content as compared to running the
web application as a single local user. We do not in-
tend to pursue this route, although we note in pass-
ing that UserFS can be combined with our system,
thereby eliminating our previous objection to UserFS
requiring a kernel module since this now only requires
modifying the guest kernel. We also do not design our
system for the case in which sandboxed applications
are trusted, but a sandbox rerouting layer is more
straightforward than modifying the applications; if
one can assume that the application inside is trusted,
one can as well use a much simpler and weaker pro-
tection layer. Finally, although it would be possible
to use our setup to run non-native programs, such as
Linux applications on a non-Linux system or ARM
applications on an x86 host using QEMU as a strict
emulator, our efforts will focus on optimization as-
suming we can use hardware virtualization and so
that we can assume that certain host components,
such as copies of system libraries, can be passed to
the guest.

Our final system should be reasonably usable on
existing Linux desktops and servers as a practical
but secure sandboxing technique. We have proposed
a new approach for sandboxing, running individual
programs inside their own virtualized kernel, which
has only become practical recently with well-matured
full system virtualization technology, but which elimi-
nates a number of difficulties and problems with pre-
vious sandboxing designs. It is worth noting again
that our system works entirely unprivileged: as long

as /dev/kvm is accessible to all users, kvm itself runs
unprivileged, and our file server and any other servers
also need no special privileges from the perspective
of the host and no configuration from the system
administrator other than installing kvin. We have
demonstrated the viability of this approach in a fairly
simple prototype and argued for the validity of our
approach, and we propose additional design and en-
gineering work to make a system usable in practice.
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