MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures
Fall 2006

Quiz #5: December 8, 2006

Name Athena login name Score
TA: Justin Mazzola Paluska TA: Katarzyna Puchala ~ TA: Daniel Taub TA: Hubert Pham
O WF 10, 36-372 O WF 11, 34-303 O WF 12, 34-304 O WF 1, 34-303
O WF 11, 36-372 O WF 12, 34-303 O WF 1, 34-304 O WF 2, 34-303

Problem 1. Pipelined execution (6 Points)

In this example, we examine the execution of a “busy wait” loop on a standard 5-stage pipelined Beta.
The process repeatedly examines the memory location that is labelled £1ag, waiting for it to become
non-zero (e.g. having been set by another process). You may assume, however, that no process actually
writes to this location, and the contents of the memory location £1lag remain zero.

flag: long(0) | Always zero, in this example
loop: LD(R31, flag, RO) | poll the status flag
BEQ(RO, loop, R31) | keep polling if it’s zero
ADD (RO, R1l, R2) | ahh, something useful to do

Please fill in the 14 blanks in the pipeline diagram below, showing the execution of this instruction
sequence on a standard 5-stage pipelined Beta with full bypassing and one branch delay slot with
annulment, as well as 2-stage memory access. When filling in the blanks assume that the flag

location reads as zero, i.e., the BEQ is taken each time through the loop. Enter a symbolic opcode (such
as “ADD”) in each blank, or NOP for an annulled instruction.

You may want to refer to the pipelined Beta diagram on the reverse side of this page.

IF LD BEQ

RF LD

ALU LD

MEM LD

WB LD

6.004 Fall 2006 -lof5- Quiz #5

Problem 2. 3-process pipeline (11 Points)

In lecture, you saw the use of semaphores to mediate a communication stream between a Producer and a
Consumer process. In this problem, we assume the existence of three asynchronous processes: a
Producer process, producing a stream of characters; a Consumer process, which consumes a stream of
characters; and a Filter process spliced between the Consumer and Producer processes. The Filter
process takes characters from the producer, processes them (via a translate function), and passes the
result to the Consumer process. The Producer and Consumer processes each communicate directly only
with the Filter process.

The following is in Shared Memory (shared among Producer, Filter, and Consumer processes):

Semaphore charsA=???, spaceA=???, charsB=?7?7?, spaceB=??7?;
char buf[100];

char indata;

int in=0, out=0;

and the following code runs in the Filter Process:

while (1) { /* loop forever.. */
char temp; /* local variable */

wait (charsa) ;

temp = indata;

signal (spaced) ;

temp = translate (temp) ; /* do the actual translation */
wait (spaceB) ;

buf[in] = temp;

in = (in+1)%100; /* increment ‘in’ modulo 100 */
signal (charsB) ;

}

(A) (1 point) What is the maximum number of characters that can be produced by the Producer process
but not yet processed by the Filter process?

Maximum unprocessed characters produced:

(B) (4 points) What are appropriate initial values for each of the semaphores?

initial value for charsA:

initial value for spaceA:

initial value for charsB:

initial value for spaceB:

(C) (5 points) For each of the following lines of code, indicate whether you would expect to find them
in the Producer process, the Consumer process, or Neither process:

out = (out+1)$%$100; inprocess (circle one): P C Neither

6.004 Fall 2006 -20f5- Quiz #5

signal (charsd) ; inprocess (circle one): P C Neither
wait (spaceA); in process (circle one): P C Neither
signal (spaceB) ; in process (circle one): P C Neither
wait (charsB); in process (circle one): P C Neither

(D) (1 point) Assuming that the only process synchronization appearing in the Producer and Consumer
processes is the use of the four semaphores shown, will the above implementation work with
multiple Producer processes? Multiple Filter processes? Multiple Consumer processes? “Work”™
means each character produced by a Producer is translated by exactly one Filter process and then
consumed by exactly one Consumer process, i.€., no character is lost or processed twice.

Works with multiple Producers (circle one): YES NO
Works with multiple Filters (circle one): YES NO

Works with multiple Consumers (circle one): YES NO

6.004 Fall 2006 -3of5- Quiz #5

Problem 3 (8 Points): Real Virtuality

Real Virtuality, Inc. markets three different computers, each with its own operating system.
The systems are:

Model A: A timeshared, multi-user Beta system whose OS kernel is uninterruptable.
Model B: A timeshared Beta system which enables device interrupts during handling of
SVC traps.

Model C: A single-process (not timeshared) system which runs dedicated application
code.

Each system runs an operating system that supports concurrent I/O on several devices, including an
operator's console with a keyboard. Les N. Dowd, RVI's newly-hired OS expert, is in a jam: he has
dropped the shoebox containing the master copies of OS source for all three systems. Unfortunately,
three disks containing handlers for the ReadKey SVC trap, which reads and returns the ASCII code for
the next key struck on the keyboard, have gotten confused. Of course, they are unlabeled, and Les isn't
sure which handler goes into the OS for which machine. The handler sources are

ReadCh _h{() { /* VERSION R1 */
if (BufferEmpty (0)) /* Has a key been typed? */
User->Regs [XP] = User->Regs[XP]-4; /* Nope, wait. */
else
User->Regs[0] = ReadInputBuffer(0); /* Yup, return it. */
}
ReadCh h () { /* VERSION R2 */
int kbdnum=ProcTbl [Cur] .KbdNum;
while (BufferEmpty (kbdnum)) ; /* Wait for a key to be hit*/
User->Regs[0] = ReadInputBuffer (kbdnum); /*...then return it. */
}
ReadCh h () { /* VERSION R3 */
int kbdnum=ProcTbl [Cur] .KbdNum;
if (BufferEmpty (kbdnum)) { /* Has a key been typed? */
User->Regs [XP] = User->Regs[XP]-4; /* Nope, wait. */
Scheduler () ;
} else
User->Regs[0] = ReadInputBuffer (kbdnum) ; /* Yup, return it. */

(A) (2 points) Show that you're smarter than Les by figuring out which handler goes with each
08, i.e., for each operating system (A, B and C) indicate the proper handler (R1, R2 or R3).

R1 goes with Model
R2 goes with Model

R3 goes with Model

6.004 Fall 2006 -4 of 5 - Quiz #5

But Les isn't that clever. In order to figure out which handler code goes with each OS version,
Les makes copies of each disk and distributes them as "updates" to several beta-test teams for
each OS. Les figures that if each handler version is tried by some beta tester in each OS, the
comments of the testers will allow him to determine the proper OS for each handler.

Les sends out the alleged source code updates, routing each handler source to testers for each
OS. In response, he gets a barrage of complaints from many of the testers. Of course, he's
forgotten which disk he sent to each tester. He asks your help to figure out which combination
of system and hander causes each of the complaints.

For each complaint below, indicate which handler and which OS the complainer is trying to
use.

(B) (2 points) Complaint: "I get compile-time errors; Scheduler and ProcTbl are undefined!"

User has handler on system
(C) (2 points) Complaint: "Hey, now the system always reads everybody's input from keyboard

0. Besides that, it seems to waste a lot more CPU cycles than it used to."

User has handler on system

(D) (2 points) Complaint: "Neat, the new system seems to work fine. It even seems to waste
less CPU time than it used to!"

User has handler on system

END OF QUIZ S (“phew!”)
END OF 6.004 (“aw...”)

Enjoy a stellar career at MIT
And beyond!

6.004 Fall 2006 -5o0f5- Quiz #5

