
Lecture 24: Markov matrices; Fourier series

In this lecture we look at Markov matrices and Fourier series – two applications
of eigenvalues and projections.

Eigenvalues of AT

The eigenvalues of A and the eigenvalues of AT are the same:

(A − λI)T = AT − λI,

so property 10 of determinants tells us that det(A − λI) = det(AT − λI). If λ
is an eigenvalue of A then det(AT − λI) = 0 and λ is also an eigenvalue of AT .

Markov matrices

A matrix like:

A =

 .1 .01 .3
.2 .99 .3
.7 0 .4


in which all entries are non-negative and each column adds to 1 is called a
Markov matrix. These requirements come from Markov matrices’ use in proba-
bility. Squaring or raising a Markov matrix to a power gives us another Markov
matrix.

When dealing with systems of differential equations, eigenvectors with the
eigenvalue 0 represented steady states. Here we’re dealing with powers of
matrices and get a steady state when λ = 1 is an eigenvalue.

The constraint that the columns add to 1 guarantees that 1 is an eigenvalue.
All other eigenvalues will be less than 1. Remember that (if A has n indepen-
dent eigenvectors) the solution to uk = Aku0 is uk = c1λk

1x1 + c2λk
2x2 + · · ·+

cnλk
nxn. If λ1 = 1 and all others eigenvalues are less than one the system ap-

proaches the steady state c1x1. This is the x1 component of u0.
Why does the fact that the columns sum to 1 guarantee that 1 is an eigen-

value? If 1 is an eigenvalue of A, then:

A − 1I =

 −.9 .01 .3
.2 −.01 .3
.7 0 −.6


should be singular. Since we’ve subtracted 1 from each diagonal entry, the sum
of the entries in each column of A − I is zero. But then the sum of the rows of
A− I must be the zero row, and so A− I is singular. The eigenvector x1 is in the

nullspace of A− I and has eigenvalue 1. It’s not very hard to find x1 =

[
.6

33
.7

]
.
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We’re studying the equation uk+1 = Auk where A is a Markov matrix. For
example u1 might be the population of (number of people in) Massachusetts
and u2 might be the population of California. A might describe what fraction
of the population moves from state to state, or the probability of a single person
moving. We can’t have negative numbers of people, so the entries of A will
always be positive. We want to account for all the people in our model, so the
columns of A add to 1 = 100%.

For example: [
uCal

uMass

]
t=k+1

=

[
.9 .2
.1 .8

] [
uCal

uMass

]
t=k

assumes that there’s a 90% chance that a person in California will stay in Cal-
ifornia and only a 10% chance that she or he will move, while there’s a 20%
percent chance that a Massachusetts resident will move to California. If our

initial conditions are
[

uCal
uMass

]
0
=

[
0

1000

]
, then after one move u1 = Au0 is:

[
uCal

uMass

]
1
=

[
.9 .2
.1 .8

] [
0

1000

]
=

[
200
800

]
.

For the next few values of k, the Massachusetts population will decrease and
the California population will increase while the total population remains con-
stant at 1000.

To understand the long term behavior of this system we’ll need the eigen-

vectors and eigenvalues of
[

.9 .2

.1 .8

]
. We know that one eigenvalue is λ1 = 1.

Because the trace .9+ .8 = 1.7 is the sum of the eigenvalues, we see that λ2 = .7.
Next we calculate the eigenvectors:

A − λ1 I =
[

−.1 .2
.1 −.2

]
x1 = 0,

so we choose x1 =

[
2
1

]
. The eigenvalue 1 corresponds to the steady state

solution, and λ2 = .7 < 1, so the system approaches a limit in which 2/3 of
1000 people live in California and 1/3 of 1000 people are in Massachusetts.
This will be the limit from any starting vector u0.

To know how the population is distributed after a finite number of steps we
look for an eigenvector corresponding to λ2 = .7:

A − λ2 I =
[

.2 .2

.1 .1

]
x1 = 0,

so let x2 =

[
1

−1

]
.
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From what we learned about difference equations we know that:

uk = c11k
[

2
1

]
+ c2(.7)k

[
−1

1

]
.

When k = 0 we have:

u0 =

[
0

1000

]
= c1

[
2
1

]
+ c2

[
−1

1

]
,

so c1 = 1000
3 and c2 = 2000

3 .
In some applications Markov matrices are defined differently – their rows

add to 1 rather than their columns. In this case, the calculations are the trans-
pose of everything we’ve done here.

Fourier series and projections

Expansion with an orthonormal basis

If we have an orthonormal basis q1, q2, ..., qn then we can write any vector v as
v = x1q1 + x2q2 + · · ·+ xnqn, where:

qT
i v = x1qT

i q1 + x2qT
i q2 + · · ·+ xnqT

i qn = xi.

Since qT
i qj = 0 unless i = j, this equation gives xi = qT

i v.

In terms of matrices,
[

q1 · · · qn
]  x1

...
xn

 = v, or Qx = v. So x =

Q−1v. Because the qi form an orthonormal basis, Q−1 = QT and x = QTv.
This is another way to see that xi = qT

i v.

Fourier series

The key idea above was that the basis of vectors qi was orthonormal. Fourier
series are built on this idea. We can describe a function f (x) in terms of trigono-
metric functions:

f (x) = a0 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x + · · · .

This Fourier series is an infinite sum and the previous example was finite, but
the two are related by the fact that the cosines and sines in the Fourier series
are orthogonal.

We’re now working in an infinite dimensional vector space. The vectors in
this space are functions and the (orthogonal) basis vectors are 1, cos x, sin x,
cos 2x, sin 2x, ...
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What does “orthogonal” mean in this context? How do we compute a dot
product or inner product in this vector space? For vectors in Rn the inner prod-
uct is vTw = v1w1 + v2w2 + · · ·+ vnwn. Functions are described by a contin-
uum of values f (x) rather than by a discrete collection of components vi. The
best parallel to the vector dot product is:

f T g =
∫ 2π

0
f (x)g(x) dx.

We integrate from 0 to 2π because Fourier series are periodic:

f (x) = f (x + 2π).

The inner product of two basis vectors is zero, as desired. For example,

∫ 2π

0
sin x cos x dx =

1
2
(sin x)2

∣∣∣∣2π

0
= 0.

How do we find a0, a1, etc. to find the coordinates or Fourier coefficients
of a function in this space? The constant term a0 is the average value of the
function. Because we’re working with an orthonormal basis, we can use the
inner product to find the coefficients ai.∫ 2π

0
f (x) cos x dx =

∫ 2π

0
(a0 + a1 cos x + b1 sin x + a2 cos 2x + · · · ) cos x dx

= 0 +
∫ 2π

0
a1 cos2 x dx + 0 + 0 + · · ·

= a1π.

We conclude that a1 =
1
π

∫ 2π

0
f (x) cos x dx. We can use the same technique to

find any of the values ai.
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