Lecture 24: Markov matrices; Fourier series

In this lecture we look at Markov matrices and Fourier series — two applications
of eigenvalues and projections.

Eigenvalues of AT
The eigenvalues of A and the eigenvalues of AT are the same:
(A=ADT = AT -l

so property 10 of determinants tells us that det(A — AI) = det(AT — AI). If A
is an eigenvalue of A then det(AT — AT) = 0 and A is also an eigenvalue of AT

Markov matrices

A matrix like:

1 .01 3
A=1]12 9 3
7 0 4

in which all entries are non-negative and each column adds to 1 is called a
Markov matrix. These requirements come from Markov matrices” use in proba-
bility. Squaring or raising a Markov matrix to a power gives us another Markov
matrix.

When dealing with systems of differential equations, eigenvectors with the
eigenvalue 0 represented steady states. Here we're dealing with powers of
matrices and get a steady state when A = 1 is an eigenvalue.

The constraint that the columns add to 1 guarantees that 1 is an eigenvalue.
All other eigenvalues will be less than 1. Remember that (if A has n indepen-
dent eigenvectors) the solution to u; = Akug is up = ¢ /\Ifxl + cz)\gxz 4+
cnAkxy. If A; = 1 and all others eigenvalues are less than one the system ap-
proaches the steady state c1x;. This is the x; component of uy.

Why does the fact that the columns sum to 1 guarantee that 1 is an eigen-
value? If 1 is an eigenvalue of A, then:

-9 .01 3
A-11= 2 =01 3
7 0 —6

should be singular. Since we’ve subtracted 1 from each diagonal entry, the sum
of the entries in each column of A — I is zero. But then the sum of the rows of
A — I mustbe the zero row, and so A — [ is singular. The eigenvector x; is in the

.6
nullspace of A — I and has eigenvalue 1. It’s not very hard to find x; = [ 33 ‘| .
7



We're studying the equation u;; = Auy where A is a Markov matrix. For
example 11 might be the population of (number of people in) Massachusetts
and uy might be the population of California. A might describe what fraction
of the population moves from state to state, or the probability of a single person
moving. We can’t have negative numbers of people, so the entries of A will
always be positive. We want to account for all the people in our model, so the
columns of A add to 1 = 100%.

For example:
{uw} :[.9 .2][uCal}
UMass | j—f11 1 .8 UMass | j—k

assumes that there’s a 90% chance that a person in California will stay in Cal-
ifornia and only a 10% chance that she or he will move, while there’s a 20%
percent chance that a Massachusetts resident will move to California. If our
0

UMass 1000

UCal 19 2 0 _ | 200

UMass |; | -1 -8 1000 | | 800 |-
For the next few values of k, the Massachusetts population will decrease and
the California population will increase while the total population remains con-

stant at 1000.
To understand the long term behavior of this system we’ll need the eigen-

vectors and eigenvalues of [ ? ;

Because the trace .9 + .8 = 1.7 is the sum of the eigenvalues, we see that Ay = .7.
Next we calculate the eigenvectors:

initial conditions are [ Cal } = [ ] , then after one move u; = Auy is:
0

] . We know that one eigenvalue is A; = 1.

-1 2
A—A11|: 1 _.2:|X10,

so we choose x; = [ % } . The eigenvalue 1 corresponds to the steady state

solution, and A, = .7 < 1, so the system approaches a limit in which 2/3 of
1000 people live in California and 1/3 of 1000 people are in Massachusetts.
This will be the limit from any starting vector uy.

To know how the population is distributed after a finite number of steps we
look for an eigenvector corresponding to Ay = .7:

2 2
A—/\zl— l: 1 1 :|X10,

solet xp = [ _} ]



From what we learned about difference equations we know that:

u =1 [ % ] + e (7)E { _i ] :

When k = 0 we have:

1000

soc1:Tand02:203ﬂ.

In some applications Markov matrices are defined differently — their rows
add to 1 rather than their columns. In this case, the calculations are the trans-
pose of everything we’ve done here.

Fourier series and projections
Expansion with an orthonormal basis

If we have an orthonormal basis q1, q2, ..., q» then we can write any vector v as
vV =Xx1q1 + X2q2 + - - - + X qn, where:

q/v =219/ qi + 229/ g+ + xuq] qu = xi.

Since ql-Tq]- = 0 unless i = j, this equation gives x; = qlv.
X1
In terms of matrices, [ q1 --- qu || : | =v,orQx = v. Sox =
Xn
Q~'v. Because the g; form an orthonormal basis, Q~! = QT and x = QTv.
This is another way to see that x; = q!v.

Fourier series

The key idea above was that the basis of vectors q; was orthonormal. Fourier
series are built on this idea. We can describe a function f(x) in terms of trigono-
metric functions:

f(x) =ap+ajcosx +bysinx+aycos2x +bysin2x + - - - .

This Fourier series is an infinite sum and the previous example was finite, but
the two are related by the fact that the cosines and sines in the Fourier series
are orthogonal.

We're now working in an infinite dimensional vector space. The vectors in
this space are functions and the (orthogonal) basis vectors are 1, cos x, sin x,
cos 2x, sin2x, ...



What does “orthogonal” mean in this context? How do we compute a dot
product or inner product in this vector space? For vectors in R” the inner prod-
uctis vIw = vywy + vpwy + - - - + v, wy. Functions are described by a contin-
uum of values f(x) rather than by a discrete collection of components v;. The
best parallel to the vector dot product is:

= [ Fegax.

We integrate from 0 to 27t because Fourier series are periodic:

f(x) = f(x +2m).
The inner product of two basis vectors is zero, as desired. For example,

27T 1 ) 27
/ sinxcosxdx = ~(sinx) =0.
0 2 0
How do we find ao, a1, etc. to find the coordinates or Fourier coefficients
of a function in this space? The constant term ag is the average value of the
function. Because we’re working with an orthonormal basis, we can use the
inner product to find the coefficients ;.

27 27
f(x)cosxdx = / (ag + a1 cos x + by sinx + ay cos2x + - -+ ) cos x dx
0 0

27

= O+/ alcoszxdx+0+0+~~
0

= apTt.

1 2m .
We conclude that a1 = p f(x) cos x dx. We can use the same technique to
0

find any of the values g;.



