
Lecture 28: Similar matrices and Jordan form

We’ve nearly covered the entire heart of linear algebra – once we’ve finished
singular value decompositions we’ll have seen all the most central topics.

AT A is positive definite

A matrix is positive definite if xT Ax > 0 for all x 6= 0. This is a very important
class of matrices; positive definite matrices appear in the form of AT A when
computing least squares solutions. In many situations, a rectangular matrix is
multiplied by its transpose to get a square matrix.

Given a symmetric positive definite matrix A, is its inverse also symmet-
ric and positive definite? Yes, because if the (positive) eigenvalues of A are
λ1, λ2, · · · λd then the eigenvalues 1/λ1, 1/λ2, · · · 1/λd of A−1 are also positive.

If A and B are positive definite, is A + B positive definite? We don’t know
much about the eigenvalues of A + B, but we can use the property xT Ax > 0
and xT Bx > 0 to show that xT(A + B)x > 0 for x 6= 0 and so A + B is also
positive definite.

Now suppose A is a rectangular (m by n) matrix. A is almost certainly not
symmetric, but AT A is square and symmetric. Is AT A positive definite? We’d
rather not try to find the eigenvalues or the pivots of this matrix, so we ask
when xT AT Ax is positive.

Simplifying xT AT Ax is just a matter of moving parentheses:

xT(AT A)x = (Ax)T(Ax) = |Ax|2 ≥ 0.

The only remaining question is whether Ax = 0. If A has rank n (independent
columns), then xT(AT A)x = 0 only if x = 0 and A is positive definite.

Another nice feature of positive definite matrices is that you never have to
do row exchanges when row reducing – there are never 0’s or unsuitably small
numbers in their pivot positions.

Similar matrices A and B = M−1AM

Two square matrices A and B are similar if B = M−1 AM for some matrix M.
This allows us to put matrices into families in which all the matrices in a family
are similar to each other. Then each family can be represented by a diagonal
(or nearly diagonal) matrix.

Distinct eigenvalues

If A has a full set of eigenvectors we can create its eigenvector matrix S and
write S−1 AS = Λ. So A is similar to Λ (choosing M to be this S).
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If A =

[
2 1
1 2

]
then Λ =

[
3 0
0 1

]
and so A is similar to

[
3 0
0 1

]
. But A

is also similar to:

M−1 A M B[
1 −4
0 1

] [
3 0
0 1

] [
1 4
0 1

]
=

[
1 −4
0 1

] [
2 9
1 6

]
=

[
−2 −15

1 6

]
.

In addition, B is similar to Λ. All these similar matrices have the same eigen-
values, 3 and 1; we can check this by computing the trace and determinant of
A and B.

Similar matrices have the same eigenvalues!
In fact, the matrices similar to A are all the 2 by 2 matrices with eigenvalues

3 and 1. Some other members of this family are
[

3 7
0 1

]
and

[
1 7
0 3

]
. To

prove that similar matrices have the same eigenvalues, suppose Ax = λx. We
modify this equation to include B = M−1 AM:

AMM−1x = λx
M−1 AMM−1x = λM−1x

BM−1x = λM−1x.

The matrix B has the same λ as an eigenvalue. M−1x is the eigenvector.
If two matrices are similar, they have the same eigenvalues and the same

number of independent eigenvectors (but probably not the same eigenvectors).
When we diagonalize A, we’re finding a diagonal matrix Λ that is similar

to A. If two matrices have the same n distinct eigenvalues, they’ll be similar to
the same diagonal matrix.

Repeated eigenvalues

If two eigenvalues of A are the same, it may not be possible to diagonalize
A. Suppose λ1 = λ2 = 4. One family of matrices with eigenvalues 4 and 4

contains only the matrix
[

4 0
0 4

]
. The matrix

[
4 1
0 4

]
is not in this family.

There are two families of similar matrices with eigenvalues 4 and 4. The

larger family includes
[

4 1
0 4

]
. Each of the members of this family has only

one eigenvector.

The matrix
[

4 0
0 4

]
is the only member of the other family, because:

M−1
[

4 0
0 4

]
M = 4M−1M =

[
4 0
0 4

]
for any invertible matrix M.
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Jordan form

Camille Jordan found a way to choose a “most diagonal” representative from
each family of similar matrices; this representative is said to be in Jordan nor-

mal form. For example, both
[

4 1
0 4

]
and

[
4 0
0 4

]
are in Jordan form. This

form used to be the climax of linear algebra, but not any more. Numerical
applications rarely need it.

We can find more members of the family represented by
[

4 1
0 4

]
by choos-

ing diagonal entries to get a trace of 4, then choosing off-diagonal entries to get
a determinant of 16:[

4 1
0 4

]
,
[

5 1
−1 3

]
,
[

4 0
17 4

]
,
[

a b
(8a− a2 − 16)/b 8− a

]
.

(None of these are diagonalizable, because if they were they would be similar

to
[

4 0
0 4

]
. That matrix is only similar to itself.) What about this one?

A =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


Its eigenvalues are four zeros. Its rank is 2 so the dimension of its nullspace
is 4− 2 = 2. It will have two independent eigenvectors and two “missing”
eigenvectors. When we look instead at

0 1 7 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,

its rank and the dimension of its nullspace are still 2, but it’s not as nice as A.
B is similar to A, which is the Jordan normal form representative of this family.
A has a 1 above the diagonal for every missing eigenvector and the rest of its
entries are 0.

Now consider:

C =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

Again it has rank 2 and its nullspace has dimension 2. Its four eigenvalues are
0. Surprisingly, it is not similar to A. We can see this by breaking the matrices
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into their Jordan blocks:

A =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , C =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

A Jordan block Ji has a repeated eigenvalue λi on the diagonal, zeros below the
diagonal and in the upper right hand corner, and ones above the diagonal:

Ji =


λi 1 0 · · · 0
0 λi 1 0
...

. . .
...

0 0 λi 1
0 0 · · · 0 λi

 .

Two matrices may have the same eigenvalues and the same number of eigen-
vectors, but if their Jordan blocks are different sizes those matrices can not be
similar.

Jordan’s theorem says that every square matrix A is similar to a Jordan
matrix J, with Jordan blocks on the diagonal:

J =


J1 0 · · · 0
0 J2 · · · 0
...

. . .
...

0 0 · · · Jd

 .

In a Jordan matrix, the eigenvalues are on the diagonal and there may be ones
above the diagonal; the rest of the entries are zero. The number of blocks is the
number of eigenvectors – there is one eigenvector per block.

To summarize:

• If A has n distinct eigenvalues, it is diagonalizable and its Jordan matrix
is the diagonal matrix J = Λ.

• If A has repeated eigenvalues and “missing” eigenvectors, then its Jordan
matrix will have n− d ones above the diagonal.

We have not learned to compute the Jordan matrix of a matrix which is missing
eigenvectors, but we do know how to diagonalize a matrix which has n distinct
eigenvalues.
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