18.06 Session 8

Problem 8.1: (3.4 #13.(a,b,d) *Introduction to Linear Algebra:* Strang) Explain why these are all false:

- (a) The complete solution is any linear combination of x_p and x_n .
- (b) The system Ax = b has at most one particular solution.
- (d) If A is invertible there is no solution \mathbf{x}_n in the nullspace.

Solution:

- (a) The coefficient of x_p must be one.
- (b) If $\mathbf{x}_n \in \mathbf{N}(A)$ is in the nullspace of A and \mathbf{x}_p is one particular solution, then $\mathbf{x}_p + \mathbf{x}_n$ is also a particular solution.
- (d) There's always $\mathbf{x}_n = 0$.

Problem 8.2: (3.4 #28.) Let

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$$
 and $\mathbf{c} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$.

Use Gauss-Jordan elimination to reduce the matrices $[U \ 0]$ and $[U \ c]$ to $[R \ 0]$ and $[R \ d]$. Solve Rx = 0 and Rx = d.

Check your work by plugging your values into the equations $U\mathbf{x} = \mathbf{0}$ and $U\mathbf{x} = \mathbf{c}$.

Solution: First we transform $[U \ 0]$ into $[R \ 0]$:

$$[U \ 0] = \left[\begin{array}{cccc} 1 & 2 & 3 & 0 \\ 0 & 0 & 4 & 0 \end{array} \right] \longrightarrow \left[\begin{array}{cccc} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right] \longrightarrow \left[\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right] = [R \ 0].$$

1

We now solve Rx = 0 via back substitution:

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 + 2x_2 = 0 \\ x_3 = 0 \end{bmatrix} \longrightarrow \mathbf{x} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix},$$

where we used the free variable $x_2 = -1$. We check that this is the correct solution by plugging it into the equation $U\mathbf{x} = \mathbf{0}$:

$$\left[\begin{array}{cc} 1 & 2 & 3 \\ 0 & 0 & 4 \end{array}\right] \left[\begin{array}{c} 2 \\ -1 \\ 0 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \checkmark$$

Next, we transform $[U \ \mathbf{c}]$ into $[R \ \mathbf{d}]$:

$$[U \ \mathbf{c}] = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 4 & 8 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix} = [R \ \mathbf{d}].$$

We now solve $R\mathbf{x} = \mathbf{d}$ via back substitution:

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 + 2x_2 = -1 \\ x_3 = 2 \end{bmatrix} \longrightarrow \mathbf{x} = \begin{bmatrix} -3 \\ 1 \\ 2 \end{bmatrix},$$

where we used the free variable $x_2 = 1$. Finally, we check that this is the correct solution by plugging it into the equation $U\mathbf{x} = \mathbf{c}$:

$$\left[\begin{array}{cc} 1 & 2 & 3 \\ 0 & 0 & 4 \end{array}\right] \left[\begin{array}{c} 2 \\ -1 \\ 0 \end{array}\right] = \left[\begin{array}{c} 5 \\ 8 \end{array}\right] \checkmark$$

Problem 8.3: (3.4 #36.) Suppose $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{b}$ have the same (complete) solutions for every \mathbf{b} . Is it true that A = C?

Solution: Yes. In order to check that A = C as matrices, it is enough to check that $A\mathbf{y} = C\mathbf{y}$ for all vectors \mathbf{y} of the correct size (or just for the standard basis vectors, since multiplication by them "picks out the columns"). So let \mathbf{y} be any vector of the correct size, and set $\mathbf{b} = A\mathbf{y}$. Then \mathbf{y} is certainly a solution to $A\mathbf{x} = \mathbf{b}$, and so by our hypothesis must also be a solution to $C\mathbf{x} = \mathbf{b}$; in other words, $C\mathbf{y} = \mathbf{b} = A\mathbf{y}$.