
Lecture 12: Graphs, networks, incidence matrices

When we use linear algebra to understand physical systems, we often find
more structure in the matrices and vectors than appears in the examples we
make up in class. There are many applications of linear algebra; for example,
chemists might use row reduction to get a clearer picture of what elements
go into a complicated reaction. In this lecture we explore the linear algebra
associated with electrical networks.

Graphs and networks

A graph is a collection of nodes joined by edges; Figure 1 shows one small
graph.
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Figure 1: A graph with n = 4 nodes and m = 5 edges.

We put an arrow on each edge to indicate the positive direction for currents
running through the graph.
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Figure 2: The graph of Figure 1 with a direction on each edge.

Incidence matrices

The incidence matrix of this directed graph has one column for each node of the
graph and one row for each edge of the graph:

A =


−1 1 0 0

0 −1 1 0
−1 0 1 0
−1 0 0 1

0 0 −1 1

 .

If an edge runs from node a to node b, the row corresponding to that edge has
−1 in column a and 1 in column b; all other entries in that row are 0. If we were
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studying a larger graph we would get a larger matrix but it would be sparse;
most of the entries in that matrix would be 0. This is one of the ways matrices
arising from applications might have extra structure.

Note that nodes 1, 2 and 3 and edges ¬, ­ and ® form a loop. The matrix
describing just those nodes and edges looks like: −1 1 0 0

0 −1 1 0
−1 0 1 0

 .

Note that the third row is the sum of the first two rows; loops in the graph
correspond to linearly dependent rows of the matrix.

To find the nullspace of A, we solve Ax = 0:

Ax =


x2 − x1
x3 − x2
x3 − x1
x4 − x1
x4 − x3

 =


0
0
0
0
0

 .

If the components xi of the vector x describe the electrical potential at the nodes
i of the graph, then Ax is a vector describing the difference in potential across
each edge of the graph. We see Ax = 0 when x1 = x2 = x3 = x4, so the
nullspace has dimension 1. In terms of an electrical network, the potential
difference is zero on each edge if each node has the same potential. We can’t tell
what that potential is by observing the flow of electricity through the network,
but if one node of the network is grounded then its potential is zero. From that
we can determine the potential of all other nodes of the graph.

The matrix has 4 columns and a 1 dimensional nullspace, so its rank is 3.
The first, second and fourth columns are its pivot columns; these edges connect
all the nodes of the graph without forming a loop – a graph with no loops is
called a tree.

The left nullspace of A consists of the solutions y to the equation: ATy = 0.
Since AT has 5 columns and rank 3 we know that the dimension of N(AT) is
m− r = 2. Note that 2 is the number of loops in the graph and m is the number
of edges. The rank r is n− 1, one less than the number of nodes. This gives us
# loops = # edges− (# nodes− 1), or:

number of nodes− number of edges + number of loops = 1.

This is Euler’s formula for connected graphs.

Kirchhoff’s law

In our example of an electrical network, we started with the potentials xi of
the nodes. The matrix A then told us something about potential differences.
An engineer could create a matrix C using Ohm’s law and information about
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Figure 3: The currents in our graph.

the conductance of the edges and use that matrix to determine the current yi
on each edge. Kirchhoff’s Current Law then says that ATy = 0, where y is
the vector with components y1, y2, y3, y4, y5. Vectors in the nullspace of AT

correspond to collections of currents that satisfy Kirchhoff’s law.

x = x1, x2, x3, x4 ATy = 0
potentials at nodes Kirchhoff’s Current Law

e = Ax ↓ ↑ ATy

x2 − x1, etc. y = Ce y1, y2, y3, y4, y5
potential differences −→ currents on edges

Ohm’s Law

Written out, ATy = 0 looks like:
−1 0 −1 −1 0

1 −1 0 0 0
0 1 1 0 −1
0 0 0 1 1




y1
y2
y3
y4
y5

 =


0
0
0
0

 .

Multiplying the first row by the column vector y we get −y1 − y3 − y4 = 0.
This tells us that the total current flowing out of node 1 is zero – it’s a balance
equation, or a conservation law. Multiplying the second row by y tells us y1 −
y2 = 0; the current coming into node 2 is balanced with the current going out.
Multiplying the bottom rows, we get y2 + y3 − y5 = 0 and y4 + y5 = 0.

We could use the method of elimination on AT to find its column space, but
we already know the rank. To get a basis for N(AT) we just need to find two
independent vectors in this space. Looking at the equations y1 − y2 = 0 we
might guess y1 = y2 = 1. Then we could use the conservation laws for node 3
to guess y3 = −1 and y5 = 0. We satisfy the conservation conditions on node 4

with y4 = 0, giving us a basis vector


1
1
−1

0
0

. This vector represents one unit
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of current flowing around the loop joining nodes 1, 2 and 3; a multiple of this
vector represents a different amount of current around the same loop.

We find a second basis vector for N(AT) by looking at the loop formed by

nodes 1, 3 and 4:


0
0
1
−1

1

. The vector


1
1
0
−1

1

 that represents a current around

the outer loop is also in the nullspace, but it is the sum of the first two vectors
we found.

We’ve almost completely covered the mathematics of simple circuits. More
complex circuits might have batteries in the edges, or current sources between
nodes. Adding current sources changes the ATy = 0 in Kirchhoff’s current law
to ATy = f. Combining the equations e = Ax, y = Ce and ATy = f gives us:

ATCAx = f.

4


