Lecture 15: Projections onto subspaces

Projections

If we have a vector b and a line determined by a vector a, how do we find the
point on the line that is closest to b?

Figure 1: The point closest to b on the line determined by a.

We can see from Figure 1 that this closest point p is at the intersection
formed by a line through b that is orthogonal to a. If we think of p as an
approximation of b, then the length of e = b — p is the error in that approxi-
mation.

We could try to find p using trigonometry or calculus, but it’s easier to use
linear algebra. Since p lies on the line through a, we know p = xa for some
number x. We also know that a is perpendicular to e = b — xa:

al(b—xa) = 0
xala = a'b
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and p = ax = a%. Doubling b doubles p. Doubling a does not affect p.

Projection matrix
We’d like to write this projection in terms of a projection matrix P: p = Pb.

T

aa“ a

= Xa =
P aTa’

so the matrix is:

aaT

T ala’
Note that aa’ is a three by three matrix, not a number; matrix multiplication is
not commutative.
The column space of P is spanned by a because for any b, Pb lies on the
line determined by a. The rank of P is 1. P is symmetric. P*b = Pb because



the projection of a vector already on the line through a is just that vector. In
general, projection matrices have the properties:

Pf=pP and P?2=P.

Why project?

As we know, the equation Ax = b may have no solution. The vector Ax is
always in the column space of A, and b is unlikely to be in the column space.
So, we project b onto a vector p in the column space of A and solve A% = p.

Projection in higher dimensions

In R3, how do we project a vector b onto the closest point p in a plane?

If a; and ap form a basis for the plane, then that plane is the column space
of thematrix A = | a1 ap |.

We know that p = %1a; + £,a) = AX. We want to find X. There are many
ways to show that e = b — p = b — A% is orthogonal to the plane we’re pro-
jecting onto, after which we can use the fact that e is perpendicular to a; and
ar:

al(b-A%) =0 and al(b— Ax)=0.

In matrix form, AT (b — A%) = 0. When we were projecting onto a line, A only
had one column and so this equation looked like: a” (b — xa) = 0.

Note that e = b — Ax is in the nullspace of AT and so is in the left nullspace
of A. We know that everything in the left nullspace of A is perpendicular to
the column space of A, so this is another confirmation that our calculations are
correct.

We can rewrite the equation AT (b — A%X) = 0 as:

ATAx = ATp.

When projecting onto a line, AT A was just a number; now it is a square matrix.
So instead of dividing by a’a we now have to multiply by (ATA)~!
In n dimensions,

x = (ATA)tATp
p=Ax = A(ATA)'ATb
A(ATA) AT

It's tempting to try to simplify these expressions, but if A isn’t a square
matrix we can’t say that (ATA)~! = A=1(AT)~1. If A does happen to be a
square, invertible matrix then its column space is the whole space and contains
b. In this case P is the identity, as we find when we simplify. It is still true that:

PT=p and P?2=P.
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Figure 2: Three points and a line close to them.

Least Squares

Suppose we're given a collection of data points (t,b):

{(1L,1),(2,2),(3,2)}

and we want to find the closest line b = C + Dt to that collection. If the line
went through all three points, we’d have:

C+D =1
C+2D = 2
C+3D = 2,

which is equivalent to:

W N =

|

In our example the line does not go through all three points, so this equation
is not solvable. Instead we’ll solve:

[ —
N

ATAx = ATp.



