
Lecture 15: Projections onto subspaces

Projections

If we have a vector b and a line determined by a vector a, how do we find the
point on the line that is closest to b?
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Figure 1: The point closest to b on the line determined by a.

We can see from Figure 1 that this closest point p is at the intersection
formed by a line through b that is orthogonal to a. If we think of p as an
approximation of b, then the length of e = b− p is the error in that approxi-
mation.

We could try to find p using trigonometry or calculus, but it’s easier to use
linear algebra. Since p lies on the line through a, we know p = xa for some
number x. We also know that a is perpendicular to e = b− xa:

aT(b− xa) = 0
xaTa = aTb

x =
aTb
aTa

,

and p = ax = a
aTb
aTa

. Doubling b doubles p. Doubling a does not affect p.

Projection matrix

We’d like to write this projection in terms of a projection matrix P: p = Pb.

p = xa =
aaTa
aTa

,

so the matrix is:

P =
aaT

aTa
.

Note that aaT is a three by three matrix, not a number; matrix multiplication is
not commutative.

The column space of P is spanned by a because for any b, Pb lies on the
line determined by a. The rank of P is 1. P is symmetric. P2b = Pb because
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the projection of a vector already on the line through a is just that vector. In
general, projection matrices have the properties:

PT = P and P2 = P.

Why project?

As we know, the equation Ax = b may have no solution. The vector Ax is
always in the column space of A, and b is unlikely to be in the column space.
So, we project b onto a vector p in the column space of A and solve Ax̂ = p.

Projection in higher dimensions

In R3, how do we project a vector b onto the closest point p in a plane?
If a1 and a2 form a basis for the plane, then that plane is the column space

of the matrix A =
[

a1 a2
]
.

We know that p = x̂1a1 + x̂2a2 = Ax̂. We want to find x̂. There are many
ways to show that e = b− p = b− Ax̂ is orthogonal to the plane we’re pro-
jecting onto, after which we can use the fact that e is perpendicular to a1 and
a2:

aT
1 (b− Ax̂) = 0 and aT

2 (b− Ax̂) = 0.

In matrix form, AT(b− Ax̂) = 0. When we were projecting onto a line, A only
had one column and so this equation looked like: aT(b− xa) = 0.

Note that e = b− Ax̂ is in the nullspace of AT and so is in the left nullspace
of A. We know that everything in the left nullspace of A is perpendicular to
the column space of A, so this is another confirmation that our calculations are
correct.

We can rewrite the equation AT(b− Ax̂) = 0 as:

AT Ax̂ = ATb.

When projecting onto a line, AT A was just a number; now it is a square matrix.
So instead of dividing by aTa we now have to multiply by (AT A)−1

In n dimensions,

x̂ = (AT A)−1 ATb

p = Ax̂ = A(AT A)−1 ATb

P = A(AT A)−1 AT .

It’s tempting to try to simplify these expressions, but if A isn’t a square
matrix we can’t say that (AT A)−1 = A−1(AT)−1. If A does happen to be a
square, invertible matrix then its column space is the whole space and contains
b. In this case P is the identity, as we find when we simplify. It is still true that:

PT = P and P2 = P.
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Figure 2: Three points and a line close to them.

Least Squares

Suppose we’re given a collection of data points (t, b):

{(1, 1), (2, 2), (3, 2)}

and we want to find the closest line b = C + Dt to that collection. If the line
went through all three points, we’d have:

C + D = 1
C + 2D = 2
C + 3D = 2,

which is equivalent to: 1 1
1 2
1 3

 [
C
D

]
=

 1
2
2


A x b

.

In our example the line does not go through all three points, so this equation
is not solvable. Instead we’ll solve:

AT Ax̂ = ATb.
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