
Lecture 20: Cramer’s rule, inverse matrix, and volume

We know a formula for and some properties of the determinant. Now we see
how the determinant can be used.

Formula for A−1

We know: [
a b
c d

]−1
=

1
ad− bc

[
d −b
−c a

]
.

Can we get a formula for the inverse of a 3 by 3 or n by n matrix? We expect
that 1

det A will be involved, as it is in the 2 by 2 example, and by looking at the

cofactor matrix
[

d −c
−b a

]
we might guess that cofactors will be involved.

In fact:
A−1 =

1
det A

CT

where C is the matrix of cofactors – please notice the transpose! Cofactors of
row one of A go into column 1 of A−1, and then we divide by the determinant.

The determinant of A involves products with n terms and the cofactor ma-
trix involves products of n− 1 terms. A and 1

det A CT might cancel each other.
This is much easier to see from our formula for the determinant than when
using Gauss-Jordan elimination.

To more formally verify the formula, we’ll check that ACT = (det A)I.

ACT =

 a11 · · · a1n
...

. . .
...

an1 · · · ann


 C11 · · · Cn1

...
. . .

...
C1n · · · Cnn

 .

The entry in the first row and first column of the product matrix is:

n

∑
j=1

a1jCj1 = det A.

(This is just the cofactor formula for the determinant.) This happens for every
entry on the diagonal of ACT .

To finish proving that ACT = (det A)I, we just need to check that the off-
diagonal entries of ACT are zero. In the two by two case, multiplying the en-
tries in row 1 of A by the entries in column 2 of CT gives a(−b)+ b(a) = 0. This

is the determinant of As =

[
a b
a b

]
. In higher dimensions, the product of the

first row of A and the last column of CT equals the determinant of a matrix
whose first and last rows are identical. This happens with all the off diagonal
matrices, which confirms that A−1 = 1

det A CT .
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This formula helps us answer questions about how the inverse changes
when the matrix changes.

Cramer’s Rule for x = A−1b

We know that if Ax = b and A is nonsingular, then x = A−1b. Applying the
formula A−1 = CT/det A gives us:

x =
1

det A
CTb.

Cramer’s rule gives us another way of looking at this equation. To derive
this rule we break x down into its components. Because the i’th component
of CTb is a sum of cofactors times some number, it is the determinant of some
matrix Bj.

xj =
det Bj

det A
,

where Bj is the matrix created by starting with A and then replacing column j
with b, so:

B1 =

 b
last n-1

columns
of A

 and

Bn =

 first n-1
columns

of A
b

 .

This agrees with our formula x1 = det B1
det A . When taking the determinant of B1

we get a sum whose first term is b1 times the cofactor C11 of A.
Computing inverses using Cramer’s rule is usually less efficient than using

elimination.

|det A| = volume of box

Claim: |det A| is the volume of the box (parallelepiped) whose edges are the
column vectors of A. (We could equally well use the row vectors, forming a
different box with the same volume.)

If A = I, then the box is a unit cube and its volume is 1. Because this agrees
with our claim, we can conclude that the volume obeys determinant property
1.

If A = Q is an orthogonal matrix then the box is a unit cube in a different
orientation with volume 1 = |det Q|. (Because Q is an orthogonal matrix,
QTQ = I and so det Q = ±1.)

Swapping two columns of A does not change the volume of the box or (re-
membering that det A = det AT) the absolute value of the determinant (prop-
erty 2). If we show that the volume of the box also obeys property 3 we’ll have
proven |det A| equals the volume of the box.
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Figure 1: The box whose edges are the column vectors of A.

If we double the length of one column of A, we double the volume of the
box formed by its columns. Volume satisfies property 3(a).

Property 3(b) says that the determinant is linear in the rows of the matrix:∣∣∣∣ a + a′ b + b′

c d

∣∣∣∣ = ∣∣∣∣ a b
c d

∣∣∣∣+ ∣∣∣∣ a′ b′

c d

∣∣∣∣ .

Figure 2 illustrates why this should be true.

(c, d)

(a, b)

(a + a′, b + b′)

Figure 2: Volume obeys property 3(b).

Although it’s not needed for our proof, we can also see that determinants
obey property 4. If two edges of a box are equal, the box flattens out and has
no volume.
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Important note: If you know the coordinates for the corners of a box, then
computing the volume of the box is as easy as calculating a determinant. In

particular, the area of a parallelogram with edges
[

a
b

]
and

[
c
d

]
is ad− bc.

The area of a triangle with edges
[

a
b

]
and

[
c
d

]
is half the area of that paral-

lelogram, or 1
2 (ad− bc). The area of a triangle with vertices at (x1, y1), (x2, y2)

and (x3, y3) is:

1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .
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