
Lecture 23: Differential equations and eAt

The system of equations below describes how the values of variables u1 and u2
affect each other over time:

du1

dt
= −u1 + 2u2

du2

dt
= u1 − 2u2.

Just as we applied linear algebra to solve a difference equation, we can use it
to solve this differential equation. For example, the initial condition u1 = 1,

u2 = 0 can be written u(0) =
[

1
0

]
.

Differential equations du
dt = Au

By looking at the equations above, we might guess that over time u1 will de-
crease. We can get the same sort of information more safely by looking at the

eigenvalues of the matrix A =

[
−1 2

1 −2

]
of our system

du
dt

= Au. Because

A is singular and its trace is −3 we know that its eigenvalues are λ1 = 0 and
λ2 = −3. The solution will turn out to include e−3t and e0t. As t increases,
e−3t vanishes and e0t = 1 remains constant. Eigenvalues equal to zero have
eigenvectors that are steady state solutions.

x1 =

[
2
1

]
is an eigenvector for which Ax1 = 0x1. To find an eigenvector

corresponding to λ2 = −3 we solve (A− λ2 I)x2 = 0:[
2 2
1 1

]
x2 = 0 so x2 =

[
1
−1

]
and we can check that Ax2 = −3x2. The general solution to this system of
differential equations will be:

u(t) = c1eλ1tx1 + c2eλ2tx2.

Is eλ1tx1 really a solution to du
dt = Au? To find out, plug in u = eλ1tx1:

du
dt

= λ1eλ1tx1,

which agrees with:
Au = eλ1t Ax1 = λ1eλ1tx1.

The two “pure” terms eλ1tx1 and eλ2tx2 are analogous to the terms λk
i xi we

saw in the solution c1λk
1x1 + c2λk

2x2 + · · ·+ cnλk
nxn to the difference equation

uk+1 = Auk.
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Plugging in the values of the eigenvectors, we get:

u(t) = c1eλ1tx1 + c2eλ2tx2 = c1

[
2
1

]
+ c2e−3t

[
1
−1

]
.

We know u(0) =
[

1
0

]
, so at t = 0:

[
1
0

]
= c1

[
2
1

]
+ c2

[
1
−1

]
.

c1 = c2 = 1/3 and u(t) = 1
3

[
2
1

]
+ 1

3 e−3t
[

1
−1

]
.

This tells us that the system starts with u1 = 1 and u2 = 0 but that as
t approaches infinity, u1 decays to 2/3 and u2 increases to 1/3. This might
describe stuff moving from u1 to u2.

The steady state of this system is u(∞) =

[
2/3
1/3

]
.

Stability

Not all systems have a steady state. The eigenvalues of A will tell us what sort
of solutions to expect:

1. Stability: u(t)→ 0 when Re(λ) < 0.

2. Steady state: One eigenvalue is 0 and all other eigenvalues have negative
real part.

3. Blow up: if Re(λ) > 0 for any eigenvalue λ.

If a two by two matrix A =

[
a b
c d

]
has two eigenvalues with negative

real part, its trace a + d is negative. The converse is not true:
[
−2 0

0 1

]
has

negative trace but one of its eigenvalues is 1 and e1t blows up. If A has a
positive determinant and negative trace then the corresponding solutions must
be stable.

Applying S

The final step of our solution to the system du
dt = Au was to solve:

c1

[
2
1

]
+ c2

[
1
−1

]
=

[
1
0

]
.

In matrix form: [
2 1
1 −1

] [
c1
c2

]
=

[
1
0

]
.
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or Sc = u(0), where S is the eigenvector matrix. The components of c deter-
mine the contribution from each pure exponential solution, based on the initial
conditions of the system.

In the equation du
dt = Au, the matrix A couples the pure solutions. We set

u = Sv, where S is the matrix of eigenvectors of A, to get:

S
dv
dt

= ASv

or:
dv
dt

= S−1 ASv = Λv.

This diagonalizes the system: dvi
dt = λivi. The general solution is then:

v(t) = eΛtv(0), and

u(t) = SeΛtS−1v(0) = eAtu(0).

Matrix exponential eAt

What does eAt mean if A is a matrix? We know that for a real number x,

ex =
∞

∑
n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+ · · · .

We can use the same formula to define eAt:

eAt = I + At +
(At)2

2
+

(At)3

6
+ · · · .

Similarly, if the eigenvalues of At are small, we can use the geometric series
1

1− x
=

∞

∑
n=0

xn to estimate (I − At)−1 = I + At + (At)2 + (At)3 + · · · .

We’ve said that eAt = SeΛtS−1. If A has n independent eigenvectors we can
prove this from the definition of eAt by using the formula A = SΛS−1:

eAt = I + At +
(At)2

2
+

(At)3

6
+ · · ·

= SS−1 + SΛS−1t +
SΛ2S−1

2
t2 +

SΛ3S−1

6
t3 + · · ·

= SeΛtS−1.

It’s impractical to add up infinitely many matrices. Fortunately, there is an
easier way to compute eΛt. Remember that:

Λ =


λ1 0 · · · 0

0 λ2 0
...

. . .
...

0 · · · 0 λn

 .
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When we plug this in to our formula for eAt we find that:

eΛt =


eλ1t 0 · · · 0

0 eλ2t 0
...

. . .
...

0 · · · 0 eλnt

 .

This is another way to see the relationship between the stability of u(t) =
SeΛtS−1v(0) and the eigenvalues of A.

Second order

We can change the second order equation y′′ + by′ + ky = 0 into a two by two
first order system using a method similar to the one we used to find a formula

for the Fibonacci numbers. If u =

[
y′

y

]
, then

u′ =
[

y′′

y′

]
=

[
−b −k

1 0

] [
y′

y

]
.

We could use the methods we just learned to solve this system, and that would
give us a solution to the second order scalar equation we started with.

If we start with a kth order equation we get a k by k matrix with coefficients
of the equation in the first row and 1’s on a diagonal below that; the rest of the
entries are 0.
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