Lecture 26: Complex matrices; fast Fourier transform

Matrices with all real entries can have complex eigenvalues! So we can’t avoid
working with complex numbers. In this lecture we learn to work with complex
vectors and matrices.

The most important complex matrix is the Fourier matrix F,, which is used
for Fourier transforms. Normally, multiplication by F, would require n? mul-
tiplications. The fast Fourier transform (FFT) reduces this to roughly nlog, n
multiplications, a revolutionary improvement.

Complex vectors
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Given a vector z = . € C" with complex entries, how do we find its
Zn

length? Our old definition:
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is no good; this quantity isn’t always positive. For example:
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We don’t want to define the length of [ 11 } to be 0. The correct definition is:

|z|? =Z"z = |21 + |z2|> + - - - + |z4|%. Then we have:

s ]} =10 1[1] -2

To simplify our notation we write |z|> = zHz, where z = ZT. The H comes

from the name Hermite, and zz is read “z Hermitian z”.

Inner product

Similarly, the inner or dot product of two complex vectors is not just y’x. We
must also take the complex conjugate of y:

ny = VTx =yt Yoxo+ - Y, X0



Complex matrices
Hermitian matrices

Symmetric matrices are real valued matrices for which AT = A. If A is com-
. . =T e s (s
plex, a nicer property is A° = A; such a matrix is called Hermitian and we

abbreviate A' as AH. Note that the diagonal entries of a Hermitian matrix
must be real. For example,
=T . 2 3+i
A-a=|,2, %

Similar to symmetric matrices, Hermitian matrices have real eigenvalues and
perpendicular eigenvectors.
Unitary matrices

What does it mean for complex vectors q1,qa, ..., qx to be perpendicular (or
orthonormal)? We must use our new definition of the inner product. For a
collection of q; in complex space to be orthonormal, we require:

[0 j#k
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We can again define Q = [ q1 q» -+ qu |, and then QHQ = I. Just as

“Hermitian” is the complex equivalent of “symmetric”, the term “unitary” is
analogous to “orthogonal”. A unitary matrix is a square matrix with perpen-
dicular columns of unit length.

Discrete Fourier transform

A Fourier series is a way of writing a periodic function or signal as a sum of
functions of different frequencies:

f(x) =ap+ajcosx + bysinx + ap cos2x + by sin2x + - - - .

When working with finite data sets, the discrete Fourier transform is the key to
this decomposition.

In electrical engineering and computer science, the rows and columns of a
matrix are numbered starting with 0, not 1 (and ending with n — 1, not n). We’ll
follow this convention when discussing the Fourier matrix:
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Notice that F, = F! and (F,,)]-k = wk, where j,k=0,1,..,n—1and the com-
plex number w is w = €>7/"
orthogonal.

All the entries of F; are on the unit circle in the complex plane, and rais-
ing each one to the nth power gives 1. We could write w = cos(27t/n) +

isin(27/n), but that would just make it harder to compute w/*.

(so w" = 1). The columns of this matrix are

Because w? = 1 and w = €2™/4 = i our best example of a Fourier matrix is:
1 1 1 1 1 1 1 1
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To find the Fourier transform of a vector with four components (four data
points) we multiply by Fj.

It’s easy to check that the columns of F; are orthogonal, as long as we re-
member to conjugate when computing the inner product. However, F; is not
quite unitary because each column has length 2. We could divide each entry
by 2 to get a matrix whose columns are orthonormal:

1
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An example

The signal corresponding to a single impulse at time zero is (roughly) described

1
by 8 . To find the Fourier transform of this signal we compute:
0
1 1 1 1 1 1
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A single impulse has all frequencies in equal amounts.
If we multiply by F; again we almost get back to (1,0,0,0):

1 1 1 1771 4 1
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1 -1 1 -1||1 0 0
1 —i -1 i1 0 0

Because %Fn is unitary, multiplying by F, and dividing by the scalar #n inverts
the transform.



Fast Fourier transform

Fourier matrices can be broken down into chunks with lots of zero entries;
Fourier probably didn’t notice this. Gauss did, but didn’t realize how signifi-
cant a discovery this was.

There’s a nice relationship between F, and F», related to the fact that w3, =
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where D is a diagonal matrix and P is a 2n by 2n permutation matrix:

(100 0 --- 0 07
0010 --- 00
p_ |0 000 10
“lo0o 100 0 0
000 1 0 0
0000 -~ 0 1]

S0, a 2n sized Fourier transform F times x which we might think would require
(2n)? = 4n? operations can instead be performed using two size n Fourier
transforms (2n? operations) plus two very simple matrix multiplications which
require on the order of n multiplications. The matrix P picks out the even com-
ponents Xq, X2, X4, ... of a vector first, and then the odd ones — this calculation
can be done very quickly.

Thus we can do a Fourier transform of size 64 on a vector by separating
the vector into its odd and even components, performing a size 32 Fourier
transform on each half of its components, then recombining the two halves
through a process which involves multiplication by the diagonal matrix D.
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Of course we can break each of those copies of F3; down into two copies of
Fi4, and so on. In the end, instead of using n> operations to multiply by F, we
get the same result using about %n log, 1 operations.

A typical case is n = 1024 = 210, Simply multiplying by F,; requires over
a million calculations. The fast Fourier transform can be completed with only
Inlog,n = 51024 calculations. This is 200 times faster!

This is only possible because Fourier matrices are special matrices with or-
thogonal columns. In the next lecture we’ll return to dealing exclusively with
real numbers and will learn about positive definite matrices, which are the ma-
trices most often seen in applications.



