
Lecture 29: Singular value decomposition

The singular value decomposition of a matrix is usually referred to as the SVD.
This is the final and best factorization of a matrix:

A = UΣVT

where U is orthogonal, Σ is diagonal, and V is orthogonal.
In the decomoposition A = UΣVT , A can be any matrix. We know that if A

is symmetric positive definite its eigenvectors are orthogonal and we can write
A = QΛQT . This is a special case of a SVD, with U = V = Q. For more general
A, the SVD requires two different matrices U and V.

We’ve also learned how to write A = SΛS−1, where S is the matrix of n
distinct eigenvectors of A. However, S may not be orthogonal; the matrices U
and V in the SVD will be.

How it works

We can think of A as a linear transformation taking a vector v1 in its row space
to a vector u1 = Av1 in its column space. The SVD arises from finding an
orthogonal basis for the row space that gets transformed into an orthogonal
basis for the column space: Avi = σiui.

It’s not hard to find an orthogonal basis for the row space – the Gram-
Schmidt process gives us one right away. But in general, there’s no reason
to expect A to transform that basis to another orthogonal basis.

You may be wondering about the vectors in the nullspaces of A and AT .
These are no problem – zeros on the diagonal of Σ will take care of them.

Matrix language

The heart of the problem is to find an orthonormal basis v1, v2, ...vr for the row
space of A for which

A
[

v1 v2 · · · vr
]
=
[

σ1u1 σ2u2 · · · σrur
]

=
[

u1 u2 · · · ur
]


σ1
σ2

. . .
σr

 ,

with u1, u2, ...ur an orthonormal basis for the column space of A. Once we
add in the nullspaces, this equation will become AV = UΣ. (We can complete
the orthonormal bases v1, ...vr and u1, ...ur to orthonormal bases for the entire
space any way we want. Since vr+1, ...vn will be in the nullspace of A, the
diagonal entries σr+1, ...σn will be 0.)

The columns of U and V are bases for the row and column spaces, respec-
tively. Usually U 6= V, but if A is positive definite we can use the same basis
for its row and column space!
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Calculation

Suppose A is the invertible matrix
[

4 4
−3 3

]
. We want to find vectors v1

and v2 in the row space R2, u1 and u2 in the column space R2, and positive
numbers σ1 and σ2 so that the vi are orthonormal, the ui are orthonormal, and
the σi are the scaling factors for which Avi = σiui.

This is a big step toward finding orthonormal matrices V and U and a di-
agonal matrix Σ for which:

AV = UΣ.

Since V is orthogonal, we can multiply both sides by V−1 = VT to get:

A = UΣVT .

Rather than solving for U, V and Σ simultaneously, we multiply both sides by
AT = VΣTUT to get:

AT A = VΣU−1UΣVT

= VΣ2VT

= V


σ2

1
σ2

2
. . .

σ2
n

VT .

This is in the form QΛQT ; we can now find V by diagonalizing the symmetric
positive definite (or semidefinite) matrix AT A. The columns of V are eigenvec-
tors of AT A and the eigenvalues of AT A are the values σ2

i . (We choose σi to be
the positive square root of λi.)

To find U, we do the same thing with AAT .

SVD example

We return to our matrix A =

[
4 4
−3 3

]
. We start by computing

AT A =

[
4 −3
4 3

] [
4 4
−3 3

]
=

[
25 7
7 25

]
.

The eigenvectors of this matrix will give us the vectors vi, and the eigenvalues
will gives us the numbers σi.
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Two orthogonal eigenvectors of AT A are
[

1
1

]
and

[
1
−1

]
. To get an or-

thonormal basis, let v1 =

[
1/
√

2
1/
√

2

]
and v2 =

[
1/
√

2
−1/
√

2

]
. These have eigen-

values σ2
1 = 32 and σ2

2 = 18. We now have:

A U Σ VT[
4 4
−3 3

]
=

[ ] [
4
√

2 0
0 3
√

2

] [
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
.

We could solve this for U, but for practice we’ll find U by finding orthonor-
mal eigenvectors u1 and u2 for AAT = UΣ2UT .

AAT =

[
4 4
−3 3

] [
4 −3
4 3

]
=

[
32 0
0 18

]
.

Luckily, AAT happens to be diagonal. It’s tempting to let u1 =

[
1
0

]
and u2 =[

0
1

]
, as Professor Strang did in the lecture, but because Av2 =

[
0

−3
√

2

]
we

instead have u2 =

[
0
−1

]
and U =

[
1 0
0 −1

]
. Note that this also gives us a

chance to double check our calculation of σ1 and σ2.
Thus, the SVD of A is:

A U Σ VT[
4 4
−3 3

]
=

[
1 0
0 −1

] [
4
√

2 0
0 3
√

2

] [
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
.

Example with a nullspace

Now let A =

[
4 3
8 6

]
. This has a one dimensional nullspace and one dimen-

sional row and column spaces.

The row space of A consists of the multiples of
[

4
3

]
. The column space

of A is made up of multiples of
[

4
8

]
. The nullspace and left nullspace are

perpendicular to the row and column spaces, respectively.

Unit basis vectors of the row and column spaces are v1 =

[
.8
.6

]
and u1 =
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[
1/
√

5
2/
√

5

]
. To compute σ1 we find the nonzero eigenvalue of AT A.

AT A =

[
4 8
3 6

] [
4 3
8 6

]
=

[
80 60
60 45

]
.

Because this is a rank 1 matrix, one eigenvalue must be 0. The other must equal
the trace, so σ2

1 = 125. After finding unit vectors perpendicular to u1 and v1
(basis vectors for the left nullspace and nullspace, respectively) we see that the
SVD of A is:[

4 3
8 6

]
= 1√
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[
1 2
2 −1

] [ √
125 0

0 0

] [
.8 .6
.6 −.8

]
.

A U Σ VT

The singular value decomposition combines topics in linear algebra rang-
ing from positive definite matrices to the four fundamental subspaces.

v1, v2, ...vr is an orthonormal basis for the row space.
u1, u2, ...ur is an orthonormal basis for the column space.
vr+1, ...vn is an orthonormal basis for the nullspace.
ur+1, ...um is an orthonormal basis for the left nullspace.

These are the “right” bases to use, because Avi = σiui.
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