Lecture 29: Singular value decomposition

The singular value decomposition of a matrix is usually referred to as the SVD.
This is the final and best factorization of a matrix:

A=UuxvT

where U is orthogonal, ¥ is diagonal, and V is orthogonal.

In the decomoposition A = UZVT, A can be any matrix. We know that if A
is symmetric positive definite its eigenvectors are orthogonal and we can write
A = QAQT. Thisisa special case of a SVD, with U = V = Q. For more general
A, the SVD requires two different matrices U and V.

We've also learned how to write A = SAS~!, where S is the matrix of n
distinct eigenvectors of A. However, S may not be orthogonal; the matrices U
and V in the SVD will be.

How it works

We can think of A as a linear transformation taking a vector v; in its row space
to a vector u; = Avj in its column space. The SVD arises from finding an
orthogonal basis for the row space that gets transformed into an orthogonal
basis for the column space: Av; = o;u;.

It's not hard to find an orthogonal basis for the row space — the Gram-
Schmidt process gives us one right away. But in general, there’s no reason
to expect A to transform that basis to another orthogonal basis.

You may be wondering about the vectors in the nullspaces of A and AT.
These are no problem — zeros on the diagonal of X will take care of them.

Matrix language

The heart of the problem is to find an orthonormal basis vy, vy, ...v; for the row
space of A for which
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with uy,up,..u, an orthonormal basis for the column space of A. Once we
add in the nullspaces, this equation will become AV = UZX. (We can complete
the orthonormal bases v1, ...v; and uy, ...u, to orthonormal bases for the entire
space any way we want. Since v,41,...v; will be in the nullspace of A, the
diagonal entries 0,1, ...0, will be 0.)

The columns of U and V are bases for the row and column spaces, respec-
tively. Usually U # V, but if A is positive definite we can use the same basis
for its row and column space!



Calculation
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and v; in the row space R2, u; and uy in the column space R2, and positive
numbers ¢y and o0, so that the v; are orthonormal, the u; are orthonormal, and
the o; are the scaling factors for which Av; = oju;.
This is a big step toward finding orthonormal matrices V and U and a di-
agonal matrix X for which:

Suppose A is the invertible matrix [ } We want to find vectors v;

AV = UL,
Since V is orthogonal, we can multiply both sides by V! = VT to get:

A=UuxvT

Rather than solving for U, V and X simultaneously, we multiply both sides by
AT = vETUT to get:
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This is in the form QAQT; we can now find V by diagonalizing the symmetric
positive definite (or semidefinite) matrix AT A. The columns of V are eigenvec-
tors of AT A and the eigenvalues of AT A are the values (712. (We choose 0; to be
the positive square root of A;.)

To find U, we do the same thing with AAT.

SVD example

We return to our matrix A = [ _; g } . We start by computing
T, |4 -3 4 4
AA= [ 43 ] [ -3 3 ]
[25 7
| 7 25|

The eigenvectors of this matrix will give us the vectors v;, and the eigenvalues
will gives us the numbers o;.



Two orthogonal eigenvectors of AT A are [ i } and [ _1
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thonormal basis, let v; = [ 1;@ } and v, = [ _1;% ] These have eigen-

} . To get an or-

values (712 = 32 and 022 = 18. We now have:

A u X vT
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We could solve this for U, but for practice we’ll find U by finding orthonor-
mal eigenvectors u; and up for AAT = ux2ur.
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Luckily, AAT happens to be diagonal. It's tempting to let u; = [ (1) } and upy =

[ (1) ], as Professor Strang did in the lecture, but because Av, = [ _3 \/(Q) } we

instead have up = { _? and U = (1) _(1) . Note that this also gives us a
chance to double check our calculation of g7 and 0».
Thus, the SVD of A is:
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Example with a nullspace
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sional row and column spaces.

Now let A = [ } . This has a one dimensional nullspace and one dimen-

The row space of A consists of the multiples of [ ;L ] . The column space

of A is made up of multiples of [ g

perpendicular to the row and column spaces, respectively.

] . The nullspace and left nullspace are

Unit basis vectors of the row and column spaces are vi = 2 } and u; =



[ 1/+/5

2//5 } . To compute 07 we find the nonzero eigenvalue of A" A.
T, |4 8 4 3
AA= [ 3 6 ] [ 8 6
| 80 60
| 60 45 |°
Because this is a rank 1 matrix, one eigenvalue must be 0. The other must equal
the trace, so 07 = 125. After finding unit vectors perpendicular to u; and vq

(basis vectors for the left nullspace and nullspace, respectively) we see that the
SVD of A is:
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The singular value decomposition combines topics in linear algebra rang-
ing from positive definite matrices to the four fundamental subspaces.

V1i,Vy,..Vr is an orthonormal basis for the row space.
uj, up,..u, is an orthonormal basis for the column space.
Vit1,..Vy  is an orthonormal basis for the nullspace.
U,41,..Uy  is an orthonormal basis for the left nullspace.

These are the “right” bases to use, because Av; = o;u;.



