
Lecture 5: Transposes, permutations, spaces Rn

In this lecture we introduce vector spaces and their subspaces.

Permutations

Multiplication by a permutation matrix P swaps the rows of a matrix; when
applying the method of elimination we use permutation matrices to move ze-
ros out of pivot positions. Our factorization A = LU then becomes PA = LU,
where P is a permutation matrix which reorders any number of rows of A.
Recall that P−1 = PT , i.e. that PT P = I.

Transposes

When we take the transpose of a matrix, its rows become columns and its
columns become rows. If we denote the entry in row i column j of matrix
A by Aij, then we can describe AT by:

(
AT)

ij = Aji. For example:

 1 3
2 3
4 1

T

=

[
1 2 4
3 3 1

]
.

A matrix A is symmetric if AT = A. Given any matrix R (not necessarily
square) the product RT R is always symmetric, because

(
RT R

)T
= RT (RT)T

=

RT R. (Note that
(

RT)T
= R.)

Vector spaces

We can add vectors and multiply them by numbers, which means we can dis-
cuss linear combinations of vectors. These combinations follow the rules of a
vector space.

One such vector space is R2, the set of all vectors with exactly two real

number components. We depict the vector
[

a
b

]
by drawing an arrow from

the origin to the point (a, b) which is a units to the right of the origin and b
units above it, and we call R2 the “x − y plane”.

Another example of a space is Rn, the set of (column) vectors with n real
number components.

Closure

The collection of vectors with exactly two positive real valued components is
not a vector space. The sum of any two vectors in that collection is again in
the collection, but multiplying any vector by, say, −5, gives a vector that’s not
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in the collection. We say that this collection of positive vectors is closed under
addition but not under multiplication.

If a collection of vectors is closed under linear combinations (i.e. under
addition and multiplication by any real numbers), and if multiplication and
addition behave in a reasonable way, then we call that collection a vector space.

Subspaces

A vector space that is contained inside of another vector space is called a sub-
space of that space. For example, take any non-zero vector v in R2. Then the
set of all vectors cv, where c is a real number, forms a subspace of R2. This

collection of vectors describes a line through
[

0
0

]
in R2 and is closed under

addition.
A line in R2 that does not pass through the origin is not a subspace of R2.

Multiplying any vector on that line by 0 gives the zero vector, which does not
lie on the line. Every subspace must contain the zero vector because vector
spaces are closed under multiplication.

The subspaces of R2 are:

1. all of R2,

2. any line through
[

0
0

]
and

3. the zero vector alone (Z).

The subspaces of R3 are:

1. all of R3,

2. any plane through the origin,

3. any line through the origin, and

4. the zero vector alone (Z).

Column space

Given a matrix A with columns in R3, these columns and all their linear combi-

nations form a subspace of R3. This is the column space C(A). If A =

[
1 3
2 3
4 1

]
,

the column space of A is the plane through the origin in R3 containing

[
1
2
4

]

and

[
3
3
1

]
.

Our next task will be to understand the equation Ax = b in terms of sub-
spaces and the column space of A.
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