18.701 Lecture Notes

2007-09-05

General Linear Group

$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1a+3c & 1b+3d \\ 2a+4c & 2b+4c \end{pmatrix}$$

- Associative: (AB)C = A(BC)
- Identity I = IA = A, AI = A
- Inverse matrix A^{-1}

$$\frac{1}{ab-bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

A is invertible iff $\det A \neq 0$

 GL_n = general linear group = $\{n \times n \text{ matrices, invertible }\}$ $GL_n(\mathbb{R})$ with real entries.

Elementary Matrices

$$1. \, \left(\begin{array}{cc} 1 \\ x & 1 \end{array}\right), \left(\begin{array}{cc} 1 & x \\ & 1 \end{array}\right)$$

$$2. \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$3. \, \left(\begin{array}{cc} y & \\ & 1 \end{array}\right), \left(\begin{array}{cc} 1 & \\ & y \end{array}\right)$$

$$\left(\begin{array}{cc} 1 \\ x & 1 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a & b \\ xa+c & xb+d \end{array}\right)$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ a & b \end{pmatrix}$$
$$\begin{pmatrix} y \\ 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ya & yb \\ c & d \end{pmatrix}$$

Thm. Every element of GL_n is a product of elementary matrices

aka "The elementary matrices generate the general linear group"

$$\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ -3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 \\ 0 & -10 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ \frac{-1}{10} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -4 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Symmetric Group

 $U, V \text{ sets } \phi: U \to V$

- ϕ injective iff $u \neq v \in U \Rightarrow \phi(u) \neq \phi(v)$
- ϕ surjective iff $v \in V \Rightarrow \exists u \in U \text{ s.t. } \phi(u) = v$
- ϕ bijective iff ϕ injective and surjective
- ϕ bijective iff $\exists \phi^{-1}$ s.t. $\phi \phi^{-1} = i d_V$ and $\phi^{-1} \phi = i d_U$
- if U,V finite and |U|=|V| then ϕ is bijective $\iff \phi$ injective $\iff \phi$ surjective

Defn. A permutation of a set U is a bijective map $b:U\to U$

 $ifq,p:U\to U$ a permutation, qp is a permutation.

- Multiplication is associative
- There is an identity

• Every permutation has an inverse (bijections)

Defn. The Symmetric Group S_n is {permutations of (1, 2, 3, ..., n)} $|S_n| = n!$

Defn. A group G is a set with a law of composition that

- Is associative
- Has an idenity
- Every element has an inverse

Cycle notation

A 4-cycle: (3,1,5,2) "Send 3 to 1, to 5, 5 to 2, and 2 to 3" $\frac{\mathbf{i} \mid 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6}{p(i) \mid 4 \quad 3 \quad 1 \quad 2 \quad 6 \quad 5}$ p = (1423)(56) Say q = (36542)(1). qp = (12643)(5)