| United States Patent |
6,322,375
|
|
Cole
,   et al.
|
November 27, 2001
|
Network interface device with circuit board architecture
Abstract
A network interface device includes a base, a cover and a circuit board
secured in the base. The circuit board includes terminations for input and
output communication lines. Each pair of input and output communication
lines corresponds to a single standard telephone line, a high speed data
line or other type of line. The communication line terminations may be
implemented as insulation displacement connectors, and the cover may
include projections on its inner surface such that closing the cover also
closes the insulation displacement connectors on the circuit board. For
each communication line, the circuit board may include a subscriber bridge
which establishes a breakable connection between the input and output line
terminations via traces in the circuit board. In fixed wireless,
fiber-to-the-home (FITI) and other similar applications, the circuit board
may also include terminations for input and output power lines, and the
base and cover may be extended to accommodate an uninterruptible power
supply. The power supply supplies the input power line to the
corresponding termination on the circuit board, and the output power line
is supplied to a power input of a remote unit in a fixed wireless system
or other electronic unit external to the network interface device. The
circuit board may also include power protection circuitry for protecting
against surges on the input and output communication and power lines. The
network interface device may further include a battery back-up associated
with the power supply.
| Inventors:
|
Cole; Thelma E. (Neshamic Station, NJ);
Cowan; Douglas Lewis (Snellville, GA);
Daoud; Bassel Hage (Parsippany, NJ);
Kerr; David Stevens (Morris Plains, NJ);
Kluska; Theodore Edward (Glen Rock, NJ);
Pawlenko; Ivan (Holland, PA);
Roach; Leonard Brian (Morrisville, PA);
Tancreto; Anthony Robert (Brooklyn, NY)
|
| Assignee:
|
Avaya Technology Corp. (Basking Ridge, NJ)
|
| Appl. No.:
|
939747 |
| Filed:
|
September 29, 1997 |
| Current U.S. Class: |
439/76.1; 439/409 |
| Intern'l Class: |
H01R 012/00 |
| Field of Search: |
439/76.1,409,410
379/399
361/119
|
References Cited [Referenced By]
U.S. Patent Documents
| 4945448 | Jul., 1990 | Bremenour et al. | 379/399.
|
| 4949376 | Aug., 1990 | Nieves et al. | 379/399.
|
| 4993970 | Feb., 1991 | Littrell | 439/535.
|
| 5177782 | Jan., 1993 | Henderson et al. | 379/399.
|
| 5189697 | Feb., 1993 | Das et al. | 379/399.
|
| 5359654 | Oct., 1994 | Jensen et al. | 379/399.
|
| 5404090 | Apr., 1995 | Shinbori | 429/97.
|
| 5528684 | Jun., 1996 | Schneider et al. | 379/399.
|
| 5572348 | Nov., 1996 | Carlson | 379/399.
|
| 5606489 | Feb., 1997 | Heidorn | 361/824.
|
| 5625686 | Apr., 1997 | Capper et al. | 379/399.
|
| 5704797 | Jan., 1998 | Meyerhoefer et al. | 439/188.
|
| 5828748 | Oct., 1998 | Akhteruzzaman | 379/399.
|
| 5844764 | Dec., 1998 | Meyerhoefer et al. | 361/111.
|
| 5901220 | May., 1999 | Garver | 379/399.
|
| 5903643 | May., 1999 | Bruhnke | 379/399.
|
| 5939672 | Aug., 1999 | Tang | 174/50.
|
| 6078661 | Jun., 2000 | Arnett et al. | 379/399.
|
Other References
1. Specification Sheet, "IDC Pivot Connector: The tool-less solution for
signal and low power connections," AMP Inc., Harrisburg, PA, 1997, 2
pages.
Specification Sheet, "Multi-Pair Pivot Connector," AMP Inc., Harrisburg,
PA, 1 page.
|
Primary Examiner: Abrams; Neil
Attorney, Agent or Firm: Ryan, Mason & Lewis, LLP
Parent Case Text
RELATED APPLICATIONS
The present application is related to U.S. patent application Ser. No.
08/939,330 of Jaime R. Arnett et al., entitled "Modular Network Interface
Device," now issued as U.S. Pat. No. 6,078,661, and U.S. patent
application Ser. No. 08/939,748 of David S. Kerr et al., entitled "Network
Interface Device with Automatic Connector Closure," now issued as U.S.
Pat. No. 6,229,890, both filed concurrently herewith.
Claims
What is claimed is:
1. A network interface device, comprising:
a base;
a cover attached to the base; and
a circuit board secured within the base, the circuit board including
terminations for at least one input communication line and at least one
output communication line, and terminations for at least one input power
line and at least one output power line, the power lines being separate
from the communication lines, wherein the circuit board farther includes
power protection circuitry for the input and output power lines, and
further wherein the power protection circuitry is connected between the
input and output power line terminations via traces associated with the
circuit board, the terminations for the input and output communication
lines, the terminations for the input and output power lines, and the
power protection circuitry thereby all being part of the same circuit
board.
2. The network interface device of claim 1 wherein at least a portion of
the communication line terminations are implemented as insulation
displacement connecting devices.
3. The network interface device of claim 1 wherein at least a portion of
the communication line terminations are implemented as binding post
contacts.
4. The network interface device of claim 1 wherein the input and output
communication lines comprise a telephony line.
5. The network interface device of claim 1 wherein the input and output
communication lines comprise a data line.
6. The network interface device of claim 1 wherein the input and output
communication lines comprise a video line.
7. The network interface device of claim 1 wherein the input and output
communication lines comprise an interactive signal line.
8. The network interface device of claim 1 wherein the circuit board
further includes a subscriber bridge comprising a communication line jack
and a corresponding communication line plug connected between the input
line termination and output line termination, such that inserting the plug
in the jack establishes a connection through traces in the circuit board
between the input line termination and the output line termination.
9. The network interface device of claim 8 wherein the subscriber bridge is
accessible when the cover is in a closed position through an access door
in the cover, such that the plug can be disconnected from the jack for
testing the communication line.
10. The network interface device of claim 1 wherein the circuit board
further includes a subscriber bridge comprising a self-disconnecting jack.
11. The network interface device of claim 1 further including a compartment
adapted to at least partially enclose a power supply, wherein at least one
connection between a power line associated with the power supply and a
corresponding power line termination on the circuit board is implemented
via a trace in the circuit board.
12. The network interface device of claim 11 wherein an extension of the
base at least partially defines the compartment.
13. The network interface device of claim 1 wherein the input power line is
supplied from a power supply and the output power line is supplied to a
power input of an external electronic device.
14. The network interface device of claim 1 wherein at least a portion of
the power line terminations are implemented as insulation displacement
connecting devices.
15. The network interface device of claim 1 wherein at least a portion of
the power line terminations are implemented as binding post contacts.
16. A network interface device, comprising:
a base;
a cover attached to the base;
a circuit board secured within the base, the circuit board including
terminations for at least one input communication line and at least one
output communication line, and a termination for at least one power line
separate from the communication lines; and
a compartment associated with the base and adapted to at least partially
enclose a power supply for supplying the at least one power line to the
power line termination on the circuit board.
17. The network interface device of claim 16 wherein the power supply
serves as a power source for an electronic unit external to the network
interface device.
18. The network interface device of claim 16 wherein the compartment is
further configured to at least partially enclose a battery back-up
associated with the power supply.
19. The network interface device of claim 16 wherein the power supply is at
least partially implemented on the circuit board.
20. The network interface device of claim 16 wherein the compartment is at
least partially defined by an extension of the base.
21. The network interface device of claim 16 wherein the circuit board
further includes terminations for at least one input power line and at
least one output power line.
22. The network interface device of claim 21 wherein the power supply
supplies the input power line to the corresponding termination on the
circuit board, and the output power line is supplied to a power input of
an electronic unit external to the network interface device.
23. The network interface device of claim 21 wherein the input power line
is supplied from the power supply to the corresponding termination on the
circuit board at least in part through a trace in the circuit board.
24. The network interface device of claim 21 wherein at least a portion of
the power line terminations are implemented as insulation displacement
connecting devices.
25. The network interface device of claim 21 wherein at least a portion of
the power line terminations are implemented as binding post contacts.
26. The network interface device of claim 21 wherein the circuit board
further includes power protection circuitry for the input and output power
lines, and further wherein the power protection circuitry is connected
between the input and output power line terminations via traces in the
circuit board.
27. The network interface device of claim 26 wherein the power protection
circuitry further includes a series circuit connected between a first and
second power line, the series circuit comprising a series connection of a
first fuse, a first varistor, a second varistor and a second fuse, wherein
the interconnection of the first and second varistor in the series
connection is further connected to ground potential.
28. The network interface device of claim 26 wherein the power protection
circuitry further includes a series circuit connected between a first and
second power line, the series circuit comprising a series connection of a
first varistor, a first fuse, a second fuse and a second varistor, wherein
the interconnection of the first and second fuse in the series connection
is further connected to ground potential.
29. A network interface device, comprising:
a base;
a cover attached to the base;
a circuit board secured in the base, the circuit board including
terminations for one or more communication lines and terminations for at
least one input power line and at least one output power line, the input
and output power lines being separate from the one or more communication
lines; and
power protection circuitry for protecting the input and output power lines,
wherein the power protection circuitry is mounted on the circuit board and
connected between the input and output power line terminations,
the terminations for the input and output communication lines, the
terminations for the input and output power lines, and the power
protection circuitry thereby all being part of the same circuit board.
30. The network interface device of claim 29 wherein the circuit board
further includes terminations for at least one input communication line
and at least one output communication line.
31. The network interface device of claim 29 wherein the power protection
circuitry further includes a series circuit connected between a first and
second power line, the series circuit comprising a series connection of a
first fuse, a first varistor, a second varistor and a second fuse, wherein
the interconnection of the first and second varistor in the series
connection is further connected to ground potential.
32. The network interface device of claim 29 wherein the power protection
circuitry further includes a series circuit connected between a first and
second power line, the series circuit comprising a series connection of a
first varistor, a first fuse, a second fuse and a second varistor, wherein
the interconnection of the first and second fuse in the series connection
is further connected to ground potential.
33. The network interface device of claim 29 wherein the power protection
circuitry is connected between the input and output power line
terminations via traces in the circuit board.
34. The network interface device of claim 29 wherein a compartment at least
partially defined by an extension of the base is configured to at least
partially enclose a power supply.
35. The network interface device of claim 34 wherein the power supply
serves as a power source for an electronic unit external to the network
interface device.
36. The network interface device of claim 34 wherein the compartment is
further configured to at least partially enclose a battery back-up
associated with the power supply.
37. The network interface device of claim 34 wherein the power supply
supplies the input power line to the corresponding power line termination,
and the output power line is supplied to a power input of an electronic
unit external to the network interface device.
38. The network interface device of claim 29 wherein at least a portion of
the power line terminations are implemented as insulation displacement
connecting devices on the circuit board.
39. The network interface device of claim 29 wherein at least a portion of
the power line terminations are implemented as binding post contacts on
the circuit board.
Description
FIELD OF THE INVENTION
This invention relates generally to telecommunications equipment and more
particularly to devices which are used to provide an interface between
network lines of a service provider and customer premises equipment.
BACKGROUND OF THE INVENTION
A network interface device (NID) installed at a home or business serves as
an interface between a service provider network and the telephones,
facsimile machines and other customer premises equipment within the home
or business. The NID generally includes a customer-accessible bridge which
connects the customer premises equipment to the network via the service
provider communication lines. The NID also typically provides termination
points for the communication lines from the customer and the service
provider, as well as electrical protection in accordance with applicable
code requirements.
In conventional NIDs, the discrete bridges, terminations, electrical
protection units and other internal components are usually wired together
manually by either the manufacturer or installer. This unduly increases
the complexity and cost associated with manufacturing, installing,
servicing and replacing the NID, while also significantly reducing its
reliability. In addition, the conventional manually-wired NED is difficult
to adapt to variations in customer line requirements. For example, it is a
labor-intensive process to add or remove individual line interfaces from
an existing conventional NID. As a result, it may be necessary to replace
an otherwise workable NID simply because the customer requirements change.
Furthermore, the conventional NID architecture is not readily adaptable
for use in increasingly important applications such as fixed wireless
installations, fiber-to-the-home (FTTH) and other types of broadband, high
speed data access applications.
A need therefore exists for an improved NID which avoids the problems
associated with conventional manually-wired NIDs and has a flexible
architecture which can accommodate the line requirements of fixed wireless
installations, high speed data and other important applications.
SUMMARY OF THE INVENTION
An improved NID in accordance with an exemplary embodiment of the invention
includes a base, a cover attached to the base, and a circuit board secured
within the base. The circuit board includes terminations for input and
output communication lines. The terminations may be implemented as
insulation displacement connecting devices, binding posts, screw terminals
or other suitable connectors mounted on the circuit board. Each pair of
input and output communication lines corresponds to a single standard
telephone line, high speed data line or other type of line. A given input
line supplied from a service provider network is connected to an input
line termination on the circuit board, while the corresponding output line
termination is connected to customer premises wiring. The circuit board
also provides a subscriber bridge between a given set of input and output
line terminations. The bridge may include a jack and a corresponding plug
connected between the given input and output line terminations, such that
inserting the plug in the jack establishes a connection between the input
and output line terminations via traces in the circuit board. The bridge
is accessible when the cover is in a closed position through an access
door in the cover, such that the plug can be disconnected from the jack
for testing the communication line. Other types of bridges may also be
used, including self-disconnecting jacks. The incorporation of input and
output line terminations and the bridge onto a single circuit board
considerably simplifies manufacturing, installation and servicing of the
NID, while increasing both reliability and flexibility.
In a NID configured for use in a fixed wireless installation, the circuit
board may also include terminations for input and output power lines. Like
the communication line terminations, the power line terminations may also
be implemented using insulation displacement connecting devices, binding
posts or other suitable connectors. An input power line from a power
supply is connected to an input power line termination on the circuit
board, and a connection is established through traces of the circuit board
to the corresponding output power line termination. An output power line
connected to this termination may be delivered to a remote unit of a
wireless system. In accordance with the invention, the base and cover of
the NID may be extended to define an additional compartment, adjacent the
circuit board, for holding the power supply. The circuit board may further
include power protection circuitry for protecting the input and output
power lines. This a power protection circuitry can be connected between
the input and output power line terminations via traces in the circuit
board. Similar embodiments may be used in fiber-to-the-home (FTTH)
applications as well as any other application which requires connections
between a power line termination within the NID and a power line input of
an external electronic unit. Other alternative embodiments may incorporate
a power supply into the NID itself, such that connections between the
power supply and power line terminations on the circuit board may be
established through traces in the circuit board.
Another aspect of the invention relates to ensuring proper contacts at the
internal terminations of the NID. In accordance with this aspect of the
invention, an inner surface of the NID cover may include projections
corresponding to the terminations, such that closing the cover
automatically applies pressure to the terminations and ensures a reliable
contact at each termination. Embodiments of the invention which utilize
insulation displacement connecting devices or any other termination in
which a contact with a wire is made by applying pressure to the
termination may make use of this aspect of the invention.
A NID in accordance with the invention may also be configured such that the
base accommodates a number of distinct modules, each including input and
output terminations for a given communication line. Each of the modules
may be implemented as a circuit board or in the form of a lead frame
module, and each may support a different type of communication line. For
example, a modular NID of this type may include a first module including
input and output terminations, a subscriber bridge and power protection
for a standard telephone line, and one or more additional modules
containing similar components for high speed data lines as well as other
types of lines. This modular arrangement makes it very easy to upgrade or
otherwise alter the characteristics of the NID in accordance with changing
customer requirements, without replacing or substantially rewiring the
existing NID. One or more of the modules may include input and output
power line terminations, as well as corresponding power protection
circuitry, for use in fixed wireless, FTTH and other applications. Like
the other embodiments of the invention, the modules of the modular NID may
make use of insulation displacement connecting devices, binding posts or
other suitable connectors.
The power protection circuitry of a NID configured for use in a fixed
wireless or FTTH application may include a series circuit connected
between a first power line and a second power line. The series circuit may
be arranged as a series connection of a first fuse, a first varistor, a
second varistor and a second fuse, with the interconnection of the first
and second varistor in the series connection also connected to ground.
This arrangement ensures that either or both of the varistors can be
effectively disconnected in the event of overheating or other type of
failure, without entirely disconnecting power to the remote unit of the
fixed wireless system. As a result, emergency calls can be made even in
the event of a varistor failure. The power line terminations may be
mounted on a circuit board secured to the base of the NID, such that the
power protection circuitry is connected between the input and output power
line terminations via traces in the circuit board.
The invention eliminates many of the problems associated with conventional
manually-wired NIDs, ensures more reliable connections, and provides
sufficient implementation flexibility to accommodate fixed wireless, FTTH
and a wide variety of other important applications. These and other
features and advantages of the present invention will become more apparent
from the accompanying drawings and the following detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an exemplary network interface device (NID) in accordance with
one embodiment of the invention.
FIG. 2 is an exploded view of the exemplary NID of FIG. 1.
FIG. 3 is a view of the NID of FIG. 1 with the customer access door opened.
FIG. 4 is a view of the NID of FIG. 1 with the NID cover opened.
FIG. 5 shows an exemplary printed circuit board suitable for use in the NID
of FIG. 1.
FIG. 6 shows the response of an MOV element on the circuit board of FIG. 5.
FIG. 7 is a schematic of an improved electrical protection circuit for use
in a NID in accordance with the invention.
FIG. 8 shows an alternative embodiment of the NID of FIG. 1 in which the
NID base and cover are extended to accommodate an uninterruptible power
supply (UPS).
FIG. 9 is an exploded view of another exemplary NID in accordance with the
invention.
FIG. 10 shows a portion of a NID configured to include a modular
arrangement of circuit boards in accordance with the invention.
FIGS. 11A-11D illustrate an exemplary lead frame module for use in a
modular NID in accordance with the invention.
FIGS. 12A-12D illustrate an aspect of the invention in which closing a NID
cover automatically ensures proper closure and contact for internal
connectors.
DETAILED DESCRIPTION
The present invention will be illustrated herein using exemplary network
interface devices (NIDs) which support standard telephone lines. It should
be understood, however, that the invention is suitable for use with a wide
variety of other types of communication lines, including but not limited
to twisted pairs, coaxial lines, broadband lines including optical fiber
lines, Category 5 and other high speed data lines, interactive signal
lines and power lines for fixed wireless installations, fiber-to-the-home
(FTTH) and other applications. The term "communication line" as used
herein should be understood to include a telephony line, a video line, a
data line or any other type of signal line including an interactive signal
line. In addition, although the circuit board terminations are illustrated
herein primarily as insulation displacement connectors (IDCs) or binding
posts, other suitable board terminations may be used, including screw
terminals and other types of terminal blocks or splice connectors. The
term "base" is used generally herein to describe the portion of a NID
housing in which a circuit board, module or lead frame is mounted, while
the term "cover" refers to the portion of the housing which serves to
cover at least part of the base when the NID is closed. Although the
exemplary NID embodiments described herein are configured such that the
base may be mounted to a wall or other surface, other embodiments could be
configured in which the cover is mounted to a surface and the base swings
open to expose the internal NID components. The terms "base" and "cover"
should therefore not be construed as requiring a particular mounting
arrangement for the NID, or a particular relative size and shape of these
elements.
FIG. 1 shows a NID 10 in accordance with an illustrative embodiment of the
invention. The NID 10 includes a base 12 and a cover 14. The cover 14 is
attached to the base 12 by hinges 16. A customer access door 18 is
attached to the cover 14 by hinges 20. The NID 10 can be mounted on a wall
or other suitable indoor or outdoor location at a home, business or other
customer premises. The customer access door 18 is configured to provide
customer access to, for example, internal RJ11 jacks or other similar
customer-serviceable internal connections, as will be illustrated in
conjunction with FIG. 3. The NID cover 14 is typically configured to be
opened only by an installer or other technician, and therefore provides
access to all internal connections and components, as will be illustrated
in conjunction with FIG. 4.
FIG. 2 is an exploded view illustrating the internal components of the NID
10 of FIG. 1. The NID 10 includes a printed circuit board 22 which is
mounted or otherwise secured into the base 12. The circuit board 22
includes a first RJ11 jack 24 with a corresponding plug 25, and a second
RJ11 jack 26 with a corresponding plug 27. The jacks 24, 26 and plugs 25,
27 provide a subscriber bridge which is accessible to the customer through
the customer access door 18. In the event of a communication line failure,
the customer can be instructed by the service provider to disconnect one
or both of the plugs 25, 27 from the jacks 24, 26 in order to isolate the
failure to either the customer premises equipment or the service provider
network. Alternative embodiments may implement the above-described bridge
using a self-disconnecting RJ11 jack. This type of jack connects the
customer and network lines using spring contacts. When the customer
inserts a plug into the jack to test the network line, the spring is
opened and disconnects the customer line while allowing the inserted plug
to contact the network line. Other alternative bridge arrangements which
permit disconnection of customer lines, so that network lines may be
tested at the NID, may also be used.
The circuit board 22 also includes a set of input line connectors 28, a set
of output line connectors 30 and a ground terminal 32. The sets of
connectors 28, 30 are each configured in this embodiment to include two
insulation displacement connectors (IDCs), one for a tip wire (T) and the
other for a ring wire (R) of a single standard telephone line. The input
IDC connectors 28 are connected to tip and ring wires from the service
provider network, while the output IDC connectors 30 are connected to tip
and ring wires of a customer premises telephone line. A connection of a
given wire to an IDC connector involves inserting the wire into a wire
entry opening in the IDC connector with an upper portion of the connector
raised, and then depressing the upper portion. Depressing the upper
portion causes the wire insulation to be displaced and securely connects
the underlying conductor of the wire to an internal contact. The input and
output IDC connectors may be of the type commercially available from AMP
Inc. of Harrisburg, Pa. The use of IDCs simplifies installation and
servicing of the NID 10 by eliminating the manual wire stripping and
terminating operations typically required in conventional NIDs.
The exemplary NID 10, although suitable for use with standard telephony
installations, may also be configured to operate with a "fixed" wireless
installation. In a fixed wireless installation, the NID 10 interfaces
between a remote unit of a wireless telephone system and the telephone
lines of the customer premises. The remote unit, which is considered part
of the service provider network, is installed in a fixed position at the
customer premises and communicates over wireless signal channels with base
stations of the wireless system. This allows a customer to place calls
over the wireless system using the standard wired telephone equipment
within the customer premises. The telephone line wires from the remote
unit are connected to the input line connectors 28 on circuit board 22,
and the telephone line wires of the customer premises are connected to the
output line connectors 30. The NID 10 also receives input power lines from
an uninterruptible power supply (UPS) within the customer premises and
provides connections for the input power lines so as to deliver power via
output power lines to the remote unit of the wireless system. The circuit
board 22 of NID 10 includes a first set of power connectors 34 and a
second set of power connectors 36. Each of the sets of connectors 34, 36
includes four separate single-wire IDCs, numbered 1 through 4. The
single-wire IDCs may be used for either input or output connections. In
one possible embodiment, the first set of connectors 34 may be connected
to output power line wires from the customer premises power supply, while
the second set of connectors 36 are connected to input power line wires of
the remote unit. Numerous other configurations of the input and output
power lines may also be used.
The exemplary NID 10 also incorporates power protection circuitry for
protecting against current surges, over-voltage or other undesirable
conditions on the input and output power lines. The power protection
circuitry is arranged in this embodiment on a portion of the circuit board
22 beneath a cover 38. The operation and arrangement of these power
protection components will be described in greater detail below in
conjunction with FIGS. 5, 6 and 7. The input and output telephone line and
power line wires enter or exit the NID 10 through openings 40, 42 in the
base 12. The openings 40, 42 may include corresponding grommets 41, 43.
FIG. 3 shows the NID 10 with the customer access door 18 in an open
position. It can be seen that the customer access door 18 in this
embodiment allows the customer to access the RJ11 jacks 24, 26 and the
corresponding plugs 25, 27. As previously noted, this provides the
customer with the ability to isolate failures to either the customer
premises equipment or the service provider network. FIG. 4 shows the NID
10 with the NID cover 14 in an open position. In this position, all
internal components and connections are easily accessible. The power
protection components beneath cover 38 may be accessed when the NID cover
14 is opened by simply removing the cover 38. In many applications, it may
be desirable for the NID cover 14 and base 12 to incorporate a locking
mechanism which will prevent the NID cover 14 from being opened by
unauthorized individuals.
FIG. 5 shows an illustrative embodiment of the circuit board 22 in greater
detail. The circuit board 22 includes the RJ11 jacks 24, 26 and the
corresponding plugs 25, 27, the input and output line connectors 28, 30,
and the first and second sets of power line connectors 34, 36, all
arranged as previously described in conjunction with FIG. 2. The traces on
the circuit board 22 are shown as solid dark lines. The circuit board 22
includes a ground pad area 45 which is provides a contact with the ground
terminal 32, and a set of protection circuitry 48. The set of input
connectors 28 include IDCs designated IDC2 and IDC4, while the set of
output connectors 30 include IDCs designated IDC1 and IDC3. The tip and
ring contacts of the RJ11 jack 24 are connected via traces on board 22 to
the tip and ring contacts of the input connector IDC2, while the tip and
ring contacts of the RJ11 jack 26 are connected via traces on board 22 to
the tip and ring contacts of the input connector IDC4. The tip and ring
wires of the plug 25 are wired to terminals E1 and E2 of the board 22, and
are connected via traces on board 22 to the corresponding tip and ring
contacts of the input connector IDC1l. Similarly, the tip and ring wires
of the plug 27 are wired to terminals E3 and E4 of board 22, and are
connected via traces to the corresponding tip and ring contacts of the
input connector IDC3. When the plugs 25, 27 are plugged into the
corresponding jacks 24, 26, the service provider telephone line wires at
input connectors 28 are connected to the customer premises telephone line
wires at output connectors 30. It should be noted that the use of a
circuit board of the type illustrated in FIG. 5 provides considerable
flexibility in terms of the connections which can be established within
the NID. Connections which would be very difficult to wire into a
conventional NID can be easily accommodated through the use of appropriate
circuit board traces.
The protection circuitry 48 on circuit board 22 in this embodiment includes
a pair of gas discharge tubes (GDTs) designated GAS1 and GAS2, one for
each of the two standard telephone lines in the NID 10. The GDTs are
conventional three-terminal devices which are designed to divert surges on
the tip and ring wires to ground. The central terminals of both GAS1 and
GAS2 are connected via a trace on the board 22 to the ground pad area 45.
The other two terminals of GAS1 are connected via traces on board 22 to
the tip and ring contacts of IDC2 and thereby to the tip and ring
terminals of the RJ11 jack 24. Similarly, the other two terminals of GAS2
are connected via traces on board 22 to the tip and ring contacts of IDC4
and thereby to the tip and ring terminals of the RJ11 jack 26. The
protection circuitry 48 may incorporate other conventional protection for
the tip and ring wires, such as a thermal overload mechanism which shorts
the tip and ring wires to ground in the event of a sustained surge in
order to prevent fire hazards, or a back-up gap which provides protection
if a GDT loses gas.
The protection circuitry 48 also includes power line protection for the
input and output power lines in NID 10. This power line protection is
implemented in the illustrative embodiment of FIG. 5 using four series
fuses designated F1, F2, F3 and F4 and four metal oxide varistors (MOVs)
designated MOV1, MOV2, MOV3 and MOV4. The MOVs clamp voltage surges on the
power lines to acceptable levels, while the fuses in this embodiment are
arranged to stop the flow of current to the MOVs in the event of MOV
overheating. Additional fuses, which are not shown in FIG. 5, may be
included to protect against current surges on the power lines. FIG. 6
shows an exemplary MOV voltage characteristic as a function of time in the
presence of a voltage surge. The MOV clamps the power line voltage during
the surge to 70 volts. After the surge, the power line voltage returns to
the normal pre-surge level of 28 volts. The power line wires connected to
input and output power line connectors 34, 36 are connected as shown via
traces on the board 22 to the fuses and MOVs.
FIG. 7 is a schematic illustrating an alternative arrangement of the fuses
and MOVs which may be used in the protection circuitry 48 of FIG. 5. In
this arrangement, power lines P1 and P2 are connected from a UPS through
the protection circuitry of the NID to power supply inputs of the
above-noted remote unit (RU) of a wireless system. An MOV 64-1, fuses 60-1
and 60-2, and an MOV 64-2 are connected in series between the lines P1 and
P2 as shown. Fuses 60-1 and 60-2 are connected to ground at their
interconnection, and may be implemented as standard current-sensitive
fuses or temperature sensitive fuses such as thermal-cutoff fuses or
positive temperature coefficient (PTC) devices. Fuses 62-1, 62-3 and 62-2,
62-4 are connected in series in the respective power lines P1 and P2 as
shown. In an alternative embodiment, the positions of the fuses 60-1, 60-2
and the MOVs 64-1, 64-2 may be interchanged, such that fuses 60-1 and 60-2
are connected between respective power lines P1 and P2 and respective MOVs
64-1 and 64-2, and the MOVs are connected to ground at their
interconnection. The fuses 60-1 and 60-2 in either embodiment serve to
isolate the respective MOVs 64-1 and 64-2 in the event of MOV overheating,
while allowing sufficient power flow via power lines P1 and P2 to permit
emergency calls to be made. Conventional power protection circuitry
generally includes only series fuses such as 62-1 and 62-2, which serve to
shut off the main power connection of lines P1 and P2 in the event of MOV
overheating.
The elements 66-1 and 66-2 represent conventional voltage clamp devices,
such as silicon avalanche diodes (SADs), and are protected by fuses 60-3
and 60-4, respectively. The elements 66-1 and 66-2 may alternatively be
implemented as MOVs. In alternative embodiments of the power protection
circuitry of FIG. 7, the elements 60-3, 66-1 and 60-4, 66-2 may be
eliminated. The power protection elements 62-1, 62-2, 66-1 and 60-3 may be
implemented within the UPS or on the circuit board of the NID. Similarly,
the power protection elements 62-3, 62-4, 66-2 and 60-4 may be implemented
within the RU or on the circuit board of the NID. It should be noted that
the functions of fuses 62-1, 62-2, 62-3 and 62-4 may be implemented in the
NID through the use of fuse links. The fuse links may be implemented using
a length of wire that exits a cable within the NID and is terminated to
the circuit board, or alternatively may be built on the circuit board or
designed into circuit board traces.
The NID circuit board architecture of the present invention also simplifies
implementation of enhanced communication line protection circuitry. The
exemplary embodiment described in conjunction with FIG. 5 utilized
three-terminal GDTs, in which input and output lines are tied to the same
point, for communication line protection. The use of the circuit board for
communication line protection circuitry permits implementation of more
sophisticated protectors, such as five-terminal protectors, in which
separation of input and output lines allows the insertion of additional
components between the input and output lines. These protectors may
include the following: (1) current limiting devices, such as fuses or PTC
devices which act as resettable fuses, (2) maintenance termination units
(MTUs), which are circuits used by service providers for fault
sectionalization, (3) additional impedances, which may be in the form of
resistors, inductors or PTC devices, that assist in coordinating the
generally robust protection in a NID with the weaker secondary protection
circuits located in fax machines, modems and the like, and (4) filters for
removing radio interference or other signals, as required by a given
application. Moreover, the circuit board architecture facilitates the use
of solid state protection devices, which may be used in place of or in
conjunction with GDTs and MOVs.
FIG. 8 shows a NID 80 in accordance with an alternative embodiment of the
invention. The NID 80 includes a base 82, a cover 84 and a customer access
door 88, configured in a manner generally similar to that described above
in conjunction with the NID 10. The NID 80 also includes the circuit board
22 and its corresponding components as previously described. The base 82
and cover 84 of the NID 80 are both extended in this embodiment to provide
an additional compartment 85 which is designed to accommodate the
above-noted UPS. The UPS in the NID 80 may be completely separate from the
circuit board 22, or partially or completely implemented on a portion of
the circuit board 22 which extends into the compartment 85. Connections
between the UPS and the NID circuit board may therefore be established
through traces in the circuit board. The compartment 85 may be completely
enclosed or only partially enclosed. The power supply may be accessible
through a separate access door having a separate lock or other security
device.
Conventional NIDs, which are typically designed for use in wired systems,
generally do not include a UPS because all the required power is supplied
over the wired telephone lines. However, a NID suitable for use in a fixed
wireless installation can benefit greatly from incorporation of a UPS. As
noted above, the power lines in the NID 10 are supplied from a UPS which
is external to the NID 10. The NID 80 is configured to permit the
incorporation of a UPS directly into the NID itself, thereby further
simplifying the power line interconnections. The UPS within the NID 80 may
utilize AC power from the customer premises. The UPS will typically
include a DC power source driven by the customer AC power, as well as a
suitable battery backup for supplying DC power in the event of AC power
source failure. Conventional MDs have apparently not heretofore
incorporated a UPS into the NID itself This feature of the invention can
provide significant reductions in installation wiring requirements, in
that all UPS power line connections to the NID can be incorporated during
NID manufacture.
FIG. 9 shows a NID 90 in accordance with another alternative embodiment of
the invention. Like the NID 10, the NID 90 includes a base 92, a cover 94
and a customer access door 98. The cover 94 in this embodiment is arranged
to open using hinges 96, while the customer access door is arranged to
open using hinges 100. The cover 94 thus opens in a direction
substantially perpendicular to that of the access door 98, in contrast to
the NID 10 in which the cover opened in a direction substantially parallel
to that of the access door. The circuit board 102 includes a pair of RJ11
jacks 104 and a corresponding pair of RJ11 plugs 105, arranged to provide
the subscriber bridge feature previously described.
The IDCs associated with the input and output line connectors and input and
output power connectors in NID 10 are replaced in this embodiment with
binding post contacts 106 and corresponding binding post screws 108. The
binding post contacts 106 are soldered into the appropriate holes in the
circuit board 22. A connection may be made between a stripped wire and a
given binding post contact 106 using conventional techniques. Although the
binding post connection arrangement of FIG. 9 is more labor intensive at
the installation phase than the IDC connector arrangement used in the NID
10, the incorporation of binding posts onto a printed circuit board with
other NID components nonetheless facilitates manufacture and installation
relative to conventional manually-wired NIDs. The circuit board 102
further includes a pair of ground contacts 112, and four GDTs 110. Each of
the GDTs includes three terminals and provides power protection on the tip
and ring wires of a telephone line in the manner previously described.
Grommets 114 are used to protect wires passing through the openings 115.
FIG. 10 shows a portion of a NID 120 and illustrates a modularity feature
of the present invention. The NID 120 includes a base 122. The base 122
supports four separate circuit boards, 124-1, 124-2, 124-3 and 124-4. Each
of the circuit boards 124-n is used to support a single standard telephone
line, and includes an RJ11 jack 130, an RJ11 plug 131, an input line
connector 132, an output line connector 133, a ground terminal 134 and a
GDT 138 for power protection. The boards 124-n are mounted or otherwise
secured within the base 122 using any suitable conventional technique. The
RJ11 jack 130 and plug 131 provide the previously-described subscriber
bridge feature. The input and output line connectors 132, 133 are
implemented as IDCs in this embodiment. The input connector 132 receives
tip (T) and ring (R) wires from the service provider network, while the
output connector receives tip and ring wires from the customer premises.
The interconnections between the components on the boards 124-n are
similar to those described previously in conjunction with the circuit
board 22 of FIG. 5. Although shown in FIG. 10 as providing standard
telephone line functions, the boards 124-n in alternative embodiments can
each be designed to provide a different type of service. For example, one
or more of the boards 124-n may include fixed wireless power line
protection circuitry of the type described in conjunction with FIG. 5.
The NID 120 can be configured to support many different numbers and types
of customer lines. For example, the same NID 120 can be used when a
customer with one existing line wants to upgrade to three lines, when a
customer wants to add a high speed line, or when a customer wants to drop
from three lines to two. These and numerous other configuration changes
are facilitated by the modular nature of the NID 120. Adding, removing or
upgrading a line can be accomplished by simply adding, removing or
upgrading a corresponding circuit board 124. This is a considerable
improvement over conventional NIDs, which are typically designed to
support only certain specific configurations and are therefore highly
inflexible. Configuration changes in conventional NIDs often require
either replacing the NID itself or manually re-wiring its internal
components, both of which are time-consuming and costly operations. The
modular NID 120 of FIG. 10 overcomes these problems without unduly
increasing the complexity and cost of the NID itself.
An alternative embodiment of the modular NID 120 may be implemented by
replacing the individual circuit boards 124-n with one or more lead frame
modules. The lead frame modules incorporate the functionality of the
boards 124-n described above, but utilize a lead frame module rather than
a printed circuit board to support the components. FIGS. 11A through 11D
illustrate an exemplary implementation of a lead frame module 150 suitable
for installation with one or more other modules into a modular NID in
accordance with the invention. The lead frame module 150 as shown in FIG.
1A includes a lead frame base 152, which is shown separately in FIG. 1D,
and a lead frame cover 154 which is shown separately in FIG. 1B. The lead
frame cover includes a customer wiring block 156 at which a connection is
made between tip and ring wires 158 from the customer premises and the
underlying portions of the lead frame, a network wiring block 160 at which
a connection is made between tip and ring wires from the service provider
and the underlying portions of the lead frame. The lead frame cover also
includes a protection block 164 at which a GDT 166 is connected to
underlying portions of the lead frame. The jack 168 is a
self-disconnecting jack which implements a bridge function as previously
described. FIG. 11C shows the lead frame 170 which is supported between
the lead frame base 152 and the lead frame cover 154. The portion 172 of
the lead frame 170 contacts the customer premises wiring 158 in block 156.
The portion 174 of the lead frame 170 can be partially seen within the
jack 168 in FIG. 11A and is used to provide the self-disconnecting jack
feature. The portion 176 of the lead frame 170 contacts the network wiring
in block 160, and the portion 178 contacts the terminals of the GDT 166 in
the block 164. The lead frame module 150 incorporates the subscriber
bridge, input and output connection and communication line protection
functions described previously in connection with the circuit board
modules of FIG. 10.
Embodiments of the invention which incorporate IDCs, such as the NID 10 of
FIGS. 1 through 4, the NID 80 of FIG. 8 and the NID 120 of FIG. 10, may
each incorporate another feature of the invention. In accordance with this
feature, the NID cover is configured such that closing the NID cover
automatically applies the appropriate pressure to depress the upper
portion of each of the IDCs. This ensures that the required connections
are established automatically upon closing the NID door, and ensures that
a technician cannot close the NID cover while inadvertently leaving an IDC
open or only partially closed.
FIGS. 12A-12D illustrate this feature as implemented in the NID) 10 of
FIGS. 1 through 4. FIGS. 12A and 12B show different views of the NID 10
with the cover 14 in a partially-closed position. It can be seen from FIG.
12B that an inner surface of the cover 14 incorporates a number of
projections. These projections include, for example, three projections
designated 180-1, 180-2 and 180-3, which correspond generally to the
positions of the three sets of IDCs 36, 34 and 28, respectively, as well
as other projections corresponding to other IDCs. Closing the NID cover 14
brings the projections 180-1, 180-2 and 180-3 into contact with
corresponding upper portions 182-1, 182-2 and 182-3 of the IDCs 36, 34 and
28, respectively, in order to ensure that each IDC is properly closed.
FIGS. 12C and 12D show different views of the NID 10 with the cover 14
fully closed. It can be seen from FIG. 12D that the projections 180-1,
180-2 and 180-3 have fully depressed the corresponding upper portions of
the IDCs, thereby ensuring a proper contact between the IDCs and the
associated wiring. This feature of the invention may be utilized with any
other type of connector in which the connection is made by applying
pressure to a portion of the connector.
The above-described embodiments of the invention are intended to be
illustrative only. Numerous alternative embodiments within the scope of
the following claims will be apparent to those skilled in the art.
* * * * *