|
|
|
|
|
|
|
|
| ( 1 of 1 ) |
| United States Patent | 6,611,372 |
| Peyghambarian ,   et al. | August 26, 2003 |
An optical fiber amplifier utilizing a phosphate glass optical fiber highly doped with rare-earth ions such as erbium to exhibit high gain per unit length, enabling the use of short fiber strands to achieve the needed gain in practical fiber optical communication networks. The high-gain phosphate optical glass fiber amplifiers are integrated onto substrates to form an integrated optics amplifier module. An optical pump such as a semiconductor laser of suitable wavelength is used to promote gain inversion of erbium ions and ultimately provide power amplification of a given input signal. Gain inversion is enhanced in the erbium doped phosphate glass fiber by co-doping with ytterbium. A phosphate fiber amplifier or an integrated optics amplifier module utilizing this power amplification can be combined with other components such as splitters, combiners, modulators, or arrayed waveguide gratings to form lossless or amplified components that do not suffer from insertion loss when added to an optical network. The fiber amplifier can be a single fiber or an array of fibers. Further, the phosphate glass fibers can be designed with a temperature coefficient of refractive index close to zero enabling proper mode performance as ambient temperatures or induced heating changes the temperature of the phosphate glass fiber. Large core 50-100 .mu.m fibers can be used for fiber amplifiers. The phosphate glass composition includes erbium concentrations of at least 1.5 weight percentage, preferably further including ytterbium at 1.5 weight percentage, or greater.
| Inventors: | Peyghambarian; Nasser (Tucson, AZ); Jiang; Shibin (Tucson, AZ) |
| Assignee: | The Arizona Board of Regents on behalf of the University of Arizona (Phoenix, AZ) |
| Appl. No.: | 589764 |
| Filed: | June 9, 2000 |
| Current U.S. Class: | 359/341.1 |
| Intern'l Class: | H01S 003/00 |
| Field of Search: | 359/341.1,341.3,341.5,342 372/6 |
| 4962067 | Oct., 1990 | Myers | 252/301. |
| 4962995 | Oct., 1990 | Andrews et al. | 350/96. |
| 4963832 | Oct., 1990 | Desurvire et al. | 385/40. |
| 5027079 | Jun., 1991 | Desurvire et al. | 359/341. |
| 5032315 | Jul., 1991 | Hayden et al. | 252/301. |
| 5200029 | Apr., 1993 | Bruce et al. | 216/24. |
| 5225925 | Jul., 1993 | Grubb et al. | 359/341. |
| 5322820 | Jun., 1994 | Myers et al. | 501/45. |
| 5334559 | Aug., 1994 | Hayden | 501/48. |
| 5425039 | Jun., 1995 | Hsu et al. | 372/6. |
| 5485480 | Jan., 1996 | Kleinerman | 372/6. |
| 5491708 | Feb., 1996 | Malone et al. | 372/41. |
| 5526459 | Jun., 1996 | Tanaka et al. | 385/142. |
| 5532870 | Jul., 1996 | Shigematsu et al. | 359/337. |
| 5555127 | Sep., 1996 | Abdelkader et al. | 359/341. |
| 5644589 | Jul., 1997 | Anthon | 372/92. |
| 5651022 | Jul., 1997 | Anthon et al. | 372/92. |
| 5729646 | Mar., 1998 | Miyagi et al. | 385/125. |
| 5745282 | Apr., 1998 | Negi | 359/322. |
| 5798306 | Aug., 1998 | Dickinson, Jr. | 507/57. |
| 5805332 | Sep., 1998 | Gopinath | 359/341. |
| 5805755 | Sep., 1998 | Amersfoort et al. | 385/131. |
| 5838487 | Nov., 1998 | Nilsson et al. | 359/341. |
| 5872650 | Feb., 1999 | Lee et al. | 359/341. |
| 5930030 | Jul., 1999 | Scifres | 359/341. |
| 5982973 | Nov., 1999 | Yan et al. | 372/40. |
| 6049415 | Apr., 2000 | Grubb et al. | 359/341. |
| 6192713 | Feb., 2001 | Zhang et al. | 65/390. |
| 6222974 | Apr., 2001 | Nagata | 385/129. |
| 6266181 | Jul., 2001 | Ohishi et al. | 359/341. |
| 6288835 | Sep., 2001 | Nilsson et al. | 359/341. |
| 6381392 | Apr., 2002 | Hayden et al. | 372/39. |
| Foreign Patent Documents | |||
| 0 843 424 | May., 1998 | EP | . |
Barbier et al. Amplifying Four-Wavelength Combiner, Based on Erbium/Ytterbium-Doped Waveguide Amplifiers and Integrated Splitters. IEEE Photonics Technology Letters, vol. 9, No. 3, Mar. 1997. pp. 315-317.* Jiang et al. Laser and thermal performance of a new erbium doped phosphate laser glass. SPIE. vol. 2138. Longer Wavelengt Lasers and Applications. 1994.* Fournier et al. Potassium ion-exchanged Er-Yb doped phosphate glass amplifier. Electronics Letters, Feb. 13th 1997, vol. 33, No. 4, pp. 293-295.* Overview of Nd- and Er-Doped Glass Integrated Optics Amplifiers and Lasers, S. Iraj Najafi, SPIE, vol. 2996, pp. 54-61, 1997. Park et al., High-Power Er-Yb-Doped Fiber Amplifier with Multichannel Gain Flatness within 0.2 dB over 14 nm, vol. 8, No. 9, Sep. 1996, pp. 1148-1150. Vienne et al., Fabrication and Characterization of Yb3+: Er3+ Phosphosilicate Fibers for Lasers, Nov. 1998 vol. 10, No. 9. pp. 1990-2001. Hofer et al., High-Power Side-Pumped Passively Mode-Locked Er-Yb Fiber Laser, vol. 10, No. 9, Sep. 1998, pp. 1247-1249. D. Barbier, et al., OFC '98 Technical Digest, pp. 45-46, "Net Gain of 27 Db With a 8.6-CM Long Er/Yb-Doped Glass-Planar-Ampliferr", 1998. M.R.X. De Barros, et al., IEEE Photonics Letters, vol. 8, No. 6, pp. 761-763, "Performance of a High Concentration Er.sup.3+ -Doped Alumino Silicate Fiber Amplifier", Jun. 1996. O. Blum, et al., CLEO '96, pp. 462-463, "Selective Oxidation of Integrated Optical Elements", 1996. J.L. Doualan, et al., Journal of Luminescence, vol. 72, No. 74, pp. 179-182, "Excited State Absorption of Erbium-Doped Laser Crystals", 1997. B.C, Hwang, et al., Electronics Letters, vol. 35, No. 12, pp. 1-2, "Erbium-Doped Phosphate Glass Fibre Amplifiers with Gain Per Unit Length of 2.1 Db-CM", Jun. 10, 1999. Shibin Jiang, et al., Journal of Non-Crystalline Solids, vol. 239, pp. 143-148, "Er.sup.3+ Doped Phosphate Glasses and Lasers", 1998. Shibin Jiang, et al., Journal of Non-Crystalline Solids, vol. 263 & 264, pp. 364-368, "Er.sup.3+ Doped Phosphate Glasses for Fiber Amplifiers With High Gain Per Unit Length", 2000. Shibin Jiang, et al., Optical Engineering, vol. 37, No. 12, pp. 3282-3286, "New Er.sup.3+ -Doped Phosphate Glass for Ion-Exchanged Waveguide Amplifiers", Dec. 1998. Shibin Jiang, et al., 25.sup.th Anniversary of Optical Communication Conference, pp. PD5-1 to PD5-3, "Net Gain of 15.5 dB From a 5.1CM-Long Er.sup.3+ -Doped Phosphate Glass Fiber", Mar. 7-10, 2000. Shibin Jiang, et al., SPIE, vol. 3280, pp. 40-45, "Development and Characterization of a New Er.sup.3+ Doped Phosphate Glass for Planar Waveguide Lasers and Amplifiers", 1998. T. Kitagawa, et al., Electronics Letters, vol. 29, No. 1, pp. 131-132, "Erbium-Doped Composite Glass Waveguide Amplifier", Jan. 7, 1993. J.-P. Laine, et al., Optical Engineering, vol. 37, No. 4, pp. 1182-1187, "Modiling of Planar Ion-Exchanged Er.sup.3+ -Doped Glass Waveguide Amplifiers", Apr. 1998. Y.L. Lu, et al., Applied Physics B, vol. 62, pp. 287-291, "Fluorescence and Attenuation Properties of Er.sup.3+ -Doped Phosphate-Glass Fibers and Efficient Infrared-to-Visible Up-Conversion", 1996. Ya-Lin Lu, et al., Chapman & Hall, pp. 5705-5710, "Properties of Er.sup.3+ -Doped Phosphate Glasses and Glass Fibers and Efficient Infrared to Visible Upconversion", 1995. D.E. McCumber, Physical Review, vol. 134, No. 2A, pp. 13-20, "Theory of Phonon-Terminated Optical Masers", Apr. 20, 1964. J. McDougall, et al., Physics and Chemistry of Glasses, vol. 37, No. 2, pp. 73-75, "Spectroscopic Properties of Er.sup.3+ in Fluorozirconate, Germanate, Tellurite and Phosphate Glasses", 1996. R.J. Mears, et al., Electronics Letters, vol. 23, No. 19, pp. 1026-1028, "Low-Noise Erbium-Doped Fibre Amplifier Operating at 1.54 .mu.M", Sep. 10, 1987. W.J. Miniscalco, et al., Optical Letters, vol. 16, No. 4, pp. 258-260, "General Procedure for the Analysis of Er.sup.3+ Cross Sections", Feb. 15, 1991. S. Iraj Najafi, et al., SPIE, vol. 2996, pp. 54-61, "Overview of Nd-And Er-Doped Glass Integrated Optics Amplifiers and Lasers", 1997. Toshihiro Nishi, et al., Jpn. J. Appl. Phys., vol. 31, No. 2B, pp. L177-L179, "The Amplification Properties of a Highly Er.sup.3+ -Doped Phosphate Fiber", Feb. 15, 1992. T. Ohtsuki, et al., J. Appl. Phus., vol. 78, No. 6, pp. 3617-3621, "Gain Characteristics of a High Concentration Er.sup.3+ -Doped Phosphate Glass Waveguide", Sep. 15, 1995. T. Ohtsuki et al., Journal of Optical Society of America B, vol. 14, No. 7, pp. 1838-1845, "Cooperative Upconversion Effects on the Performance of Er.sup.3+ -Doped Phsophate Glass Waveguide Amplifiers", Jul. 1997. H. Ono, et al., Electronic Letters, vol. 32, No. 17, pp. 1586-1587, "Er.sup.3+- Doped Fluorophosphate Glass Fibre Amplifier for WDM Systems", Aug. 15, 1996. P.M. Peters, et al., Appl. Phys. Lett., vol. 70, No. 5, pp. 541-543, "X-Ray Absorption Fine Structure Determination of the Local Environment of Er.sup.3+ in Glass", Feb. 3, 1997. W.Q. Shi, et al., Journal of Optical Society of America, vol. 7, No. 8, pp. 1456-1462, "Effect of Energy Transfer Among Er.sup.3+ Ions on the Fluorescence Decay and Lasing Properties of Heavily Doped Er: Y.sub.3 Al.sub.5 O.sub.12 ", Aug. 1990. A. Shooshtari, et al., SPIE, vol. 3278, pp. 149-165, "Yb.sup.3+ Sensitized Er.sup.3+ -Doped Waveguide Amplifiers: A Theoretical Approach", 1998. G.G Vienne, et al., Journal of Lightwave Technology, vol. 16, No. 11, pp. 1990-2001, "Fabrication and Characterization of YB.sup.3+ :Er.sup.3+ Phosphosilicate Fibers For Lasers", Nov. 1998. Y.C. Yan, et al., Appl. Phys. Lett., vol. 71, No. 20, pp. 2922-2924, "Erbium-Doped Phosphate Glass Waveguide on Silicon With 4.1 dB/cm Gain at 1.535 .mu.M", Nov. 17, 1997. D.C. Yeh, et al., J. Appl. Phys., vol. 69, No. 3, pp. 1648-1653, "Intensity-Dependent Upconversion Efficiencies of Er.sup.3+ Ions in Heavy-Metal Fluoride Glass", Feb. 1, 1991. |
TABLE 1
Glass compositions designed and fabricated
Glass P2O5 Al2O3 Er.sub.2 O.sub.3 + Yb.sub.2 O.sub.3 + La.sub.2
O.sub.3 BaO ZnO
PZI 63 8.5 3.0 25.5 0
PZ2 63 8.5 3.0 25.5CaO* 0
PZ3 63 8.5 3.0 25.5MgO* 0
PZ4 63 8.5 3.0 0 25.5
PZ5 63 8.5 3.0 9.0 16.5
PZ6 63 8.5 3.0 19 6.5
PZ7 63 9.5 3.0 21 4.5
PZ8 63 8.5 3.0 23 2.5
*where 25.5 CaO indicates CaO has been substituted for the BaO additive and
25.5 MgO indicates MgO has been substituted for the BaO additive.
TABLE 2
The temperature coefficient of refractive index
of common phosphate glasses
Glass dn/dt (10.sup.-6)
Al(PO).sub.3 +5.0
Ba(PO).sub.2 -10.6
Zn(PO).sub.2 +5.1
TABLE 3
Predicted temperature coefficient of refractive index
of the fabricated glasses
dn/dt (10.sup.-6)
Glass Using Reference [1] Using Reference [2]
PZI -1.8 -1.4
PZ2 +0.3 +3.4
PZ3 +1.6 +5.5
PZ4 +2.2 +6.5
PZ5 +0.8 +3.7
PZ6 -0.8 +0.6
PZ7 -1.1 0
PZ8 -1.4 -0.6
TABLE 4
Glass transition and softening temperatures of core and cladding glasses
Glass transition Softening temperature
Glass type temperature (T.sub.g) (T.sub.f)
Core glass (P25) 439.degree. C. 480.degree. C.
Cladding 1-1 435.degree. C. 479.degree. C.
Cladding 2-1 436.degree. C. 470.degree. C.
Cladding 3-1 443.degree. C. 486.degree. C.
TABLE 5
Refractive index of core and cladding glasses
Refractive index
Glass type 632.8 nm 830 nm 1300 nm 1550 nm
Core glass (P25) 1.5431 1.5389 1.5318 1.5290
Cladding 1-1 1.5365 1.5309 1.5249 1.5217
Cladding 2-1 1.5298 1.5250 1.5187 1.5158
Cladding 3-1 1.5257 1.5206 1.5150 1.5116
|
|
|
|