|
|
|
|
|
|
|
|
| ( 1 of 1 ) |
| United States Patent | H2,075 |
| Gnauck ,   et al. | August 5, 2003 |
The present invention provides a local access network, having a switching node, a passive remote node connected to an optical network unit, a first optical fiber that provides a dedicated connection between the switching node and the passive remote node, and a second optical fiber that provides a dedicated connection between the switching node and the passive remote node. A first portion of a first fiber-optic cable containing the first optical fiber does not contain any part of the second optical fiber, such that there are independent paths from the switching node to the passive remote node.
| Inventors: | Gnauck; Alan H. (Middletown, NJ); Saleh; Adel Abdel Moneim (Holmdel, NJ); Woodward; Sheryl Leigh (Holmdel, NJ) |
| Assignee: | AT&T Corp. (New York, NY) |
| Appl. No.: | 170517 |
| Filed: | October 13, 1998 |
| Current U.S. Class: | 398/58 |
| Intern'l Class: | H04J 014/00; H04B 010/20 |
| Field of Search: | 359/118,124,125,127 |
| 5349457 | Sep., 1994 | Bears | 359/118. |
| 5539564 | Jul., 1996 | Kumozaki et al. | 359/137. |
| 5550666 | Aug., 1996 | Zirngibl | 359/124. |
| 5579421 | Nov., 1996 | Duvall et al. | 359/124. |
| 5898801 | Apr., 1999 | Braun et al. | 359/119. |
| 6108112 | Aug., 2000 | Touma | 359/110. |
| 6226111 | May., 2001 | Chang et al. | 359/110. |
C. Desem, "Optical Interference in Lightwave Subcarrier Multiplexing Systems Employing Multiple Optical Carriers," Electronics Letters, Jan. 7, 1988, vol. 24, No. 1, pp. 50-52. C. Dragone, et al., "Integrated Optics N X N Multiplexer On Silicon," IEEE Photonics Technology Letters, Oct. 10, 1991, vol. 3, No. 10, pp. 896-899. N. J. Frigo, et al., "A Wavelength-Division Multiplexed Passive Optical Network With Cost-Shared Components," IEEE Photonics Technology Letters, Nov. 11, 1994, vol. 6, No. 11, pp. 1365-1367. X. Lu, et al., OFC, Mini-Fiber-Node Hybrid Fiber Coax Networks For Two-Way Broadband Access, OFC '96 Technical Digest, pp. 143-144. Stuart S. Wagner, et al., "Multiwavelength Ring Networks For Switch Consolidation And Interconnection", International Conference on Communications, IEEE, pp. 1173-1179. T. Song-Ho Wu, "Sonet Self-Healing, Rings (SHRs)", Fiber Network Service Survivability, Chapter 4, pp. 123-211. Nicholas J. Frigo, "A Survey Of Fiber Optics In Local Access Architures", in Optical Fiber Telecommunications IIIA, Chapter 13, pp. 461-522, (1997). "Route Diversity in Fiber Networks Using Optical Switching", M. Corke, A. Beaudet, P. Dwyer, D. Haynes, R. Kleckowski, R. Moran, D. Werthman and N. Ronan. SPIE vol. 1577 High-Speed Fiber Network and Channels (1991) pp. 41-51. |
TABLE 1
Summary for Broadcast PON
Network
Architecture ONU COT Failure optical
(FIG. #) FIG. # FIG. # Coupler(s) Cost Group loss
Unprotected (1) 11 16 .sup. 1 .times. N reference
>>N .eta.
Fully Redundant (3) 12 17 two 1 .times. N .apprxeq. double 0
.eta. 3 dB
Fully Redundant (3) 13* 17 two 1 .times. N .apprxeq. double 0
.eta.
(Most expensive)
Cable Redundant (4) 11 17 .sup. 2 .times. N <double N
.eta.
Cable Ring (6) 11 17 .sup. 2 .times. N <<double N
<3 .eta.
*ONU 13 requires switching at the ONU.
TABLE 2
Summary
Network Architecture ONU COT WGR
Modulator-Based ONUs
Unprotected (1) 18 26 or 27 30*
Fully Redundant (3) 19 28 30* (two).sup.i
Fully Redundant (3) 19 28.sup.r 30* (two).sup.i
Cable Redundant (4) or 18 28.sup.r 31*
Cable Ring (6) 18 28 32*.sup..dagger.
Laser-Based ONU's
Baseline (1a, unprotected) 20 26 or 27 30
Fully Redundant (1b) 21 28 30 (two).sup.i
22.sup.s,t 28.sup.r 30 (two)
22.sup..dagger. 28.sup.r 30 (two)
Cable Redundant (1c) or 20.sup.s,t 28.sup.r 31
Cable Ring (1d) 20 28 32
24 28.sup.r 31
25.sup.s 28.sup.r 33
25.sup.s 28 34
*ports should be assigned for use will ONUs having modulators
.sup.i two routers are preferably configured identically
.sup.r COT preferably reassigns wavelengths
.sup.s has switching at the ONU
.sup.t ONU has a tunable source
.sup..dagger. not preferred due to high loss of signal
|
|
|
|