T

Palm OS®
Programmer’s
Companion

CONTRIBUTORS

Written by Greg Wilson and Jean Ostrem

Engineering contributions by Jesse Donaldson, Noah Gibbs, Lee Taylor, Danny Epstein, Peter Epstein,
David Fedor, Roger Flores, Steve Lemke, Bob Ebert, Ken Krugler, Bruce Thompson, Tim Wiegman, Gavin
Peacock, Ryan Robertson, and Waddah Kudaimi

Copyright © 1996 - 2002, PalmSource, Inc. and its affiliates. All rights reserved. This documentation may
be printed and copied solely for use in developing products for Palm OS® software. In addition, two (2)
copies of this documentation may be made for archival and backup purposes. Except for the foregoing, no
part of this documentation may be reproduced or transmitted in any form or by any means or used to
make any derivative work (such as translation, transformation or adaptation) without express written
consent from PalmSource, Inc.

PalmSource, Inc. reserves the right to revise this documentation and to make changes in content from time
to time without obligation on the part of PalmSource, Inc. to provide notification of such revision or
changes.

PALMSOURCE, INC. AND ITS SUPPLIERS MAKE NO REPRESENTATIONS OR WARRANTIES THAT
THE DOCUMENTATION IS FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR
YOUR USE. THE DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. PALMSOURCE, INC. AND
ITS SUPPLIERS MAKE NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER
IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES,
TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
SATISFACTORY QUALITY. TO THE FULL EXTENT ALLOWED BY LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT,
SPECIAL, OR PUNITIVE DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS
OF BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF
OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN IF PALMSOURCE, INC. OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm OS, Palm Computing, HandFAX, HandSTAMP, HandWEB, Graffiti, HotSync, iMessenger,
MultiMail, Palm.Net, PalmPak, PalmConnect, PalmGlove, PalmModem, PalmPoint, PalmPrint, and
PalmSource are registered trademarks of PalmSource, Inc. or its affiliates. Palm, the Palm logo, MyPalm,
PalmGear, PalmPix, PalmPower, AnyDay, EventClub, HandMAIL, the HotSync logo, PalmGlove, Palm
Powered, the Palm trade dress, Smartcode, Simply Palm, ThinAir, WeSync, and Wireless Refresh are
trademarks of PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or
registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND

DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT
ACCOMPANYING THE COMPACT DISC.

Palm OS Programmer’s Companion, Volume | PalmSource, Inc.

Document Number 3004-006 5470 Great America Pkwy.
May 12, 2002 Santa Clara, CA 95054
For the latest version of this document, visit USA
http://www.palmos.com/dev/support/docs/. www.palmos.com

Document Number 3004-006

http://www.palmos.com/dev/support/docs/
http://www.palmos.com

Table of Contents

About This Document xiii
Palm OS SDK Documentation xiii
What This Volume Contains xiii
Additional Resources00 L. XV

1 Programming Palm OS in a Nutshell 1
Why Programming for Palm OS Is Different 1
ScreenSize00 L0 2
Quick Turnaround Expected 2
PC Connectivityo 3
InputMethods.o 3
Powero 3
Memoryo 4
FileSystem 0000 4
Backward Compatibility 4
Palm OS Programming Concepts 4
API Naming Conventions 6
Integrating Programs with the Palm OS Environment. 7
Writing RobustCode 9
Assigning a Database Type and Creator ID. 11
Making Your Application Run on Different Devices 12
Running New Applications on an Older Device 13
Backward Compatibility with PalmOSGlue 14
Compiling Older Applications with the Latest SDK. 14
Programming Tools. 15
Where to Go fromHere 16
2 Application Startup and Stop 19
Launch Codes and Launching an Application 20
Responding to Launch Codes 20
Responding to Normal Launch. 23
Responding to Other Launch Codes 25
Launching Applications Programmatically. 27
Creating Your Own Launch Codes 28

Palm OS Programmer’s Companion, Volume | iii

Stopping an Application. 0oL 29

Notifications 30
Registering for a Notification 31
Writing a Notification Handler. 34
Sleep and Wake Notifications 35

Helper Notifications 38
When to Use the Helper API. 39
Requesting a Helper Service 40
Implementing a Helper 42

Launch Code Summary 46

Notification Summary. 48

Launch and Notification Function Summary 50

3 Event Loop 53

The Application EventLoop 55

Low-Level Event Management 58
The Graffiti Manager 60
The Key Manager 62
The Pen Manager. 62
The System Event Manager 63

System Event Manager Summary. 66

4 User Interface 69

Palm OS Resource Summary 70

Drawing on the Palm Powered Handheld 72
The Draw State 73
Drawing Functions. 74
High-Density Displays 75

Forms, Windows, and Dialogs 83
AlertDialogs 85
Progress Dialogs 86
The Keyboard Dialog 87
Offscreen Windows. 91

Controls. 92
Buttons00 00000 92
Pop-Up Trigger 93

iv. Palm OS Programmer’s Companion, Volume |

Selector Trigger 94

Repeating Button.o L. 95
PushButtons 96
CheckBoxes. 0L 97
Sliders and Feedback Sliders. 98
Fields o000 102
Menuso 105
Checking Menu Visibility 107
DynamicMenus 108
Menu Shortcuts o000 109
Tables.o 11
TableEvent 112
Listso 112
Using Lists in Place of Tables. 114
Categories 116
Initializing Categories in a Database 117
Initializing the Category Pop-up Trigger. 119
Managing a Category Pop-up List 120
Bitmaps.o 0000000 123
Versions of Bitmap Support 123
Bitmap Families 130
DrawingaBitmap 135
Color Tables and Bitmaps 137
Labels.00 137
Scroll Barso 137
Custom UI Objects (Gadgets). 140
DynamicUI 142
Dynamic User Interface Functions 144
Color and Grayscale Support. 144
Indexed Versus Direct Color Display 145
ColorTable 145
UlColor List. 147
Direct Color Functions 149
Pixel Reading and Writing. 150
Direct Color Bitmaps 150

Palm OS Programmer’s Companion, Volume | v

InsertionPoint oL 153

Application Launcher 0oL 153
Icons in the Launcher. 153
Application Version String. 154
The Default Application Category 155
Opening the Launcher Programmatically 156

Summary of User Interface API. 157

5 Memory 169

Introduction to Palm OS Memory Use. 169
Hardware Architecture 169
PC Connectivity 0oL 170

Memory Architectureo 0L 171
Heap Overview 175

The Memory Manager. 178
Memory Manager Structures. 178
Using the Memory Manager. 181
Achieving Optimum Performance 184

Summary of Memory Management 186

6 Files and Databases 189

The Data Manager 189
Records and Databases 190
Structure of a Database Header 191
Using the Data Manager 195
DataManagerTips 197

The Resource Manager 198
Structure of a Resource Database Header 199
Using the Resource Manager. 200

File Streaming Application Program Interface 202
Using the File Streaming API 202

Summary of Files and Databases 203

7 Expansion 207

Expansion Support00 208

Primary vs. Secondary Storage. 208

vi Palm OS Programmer’s Companion, Volume |

ExpansionSlot.00 0L 209

Universal Connector 209
Architectural Overview 210
SlotDrivers 211
FileSystems 212
VESManager 212
Expansion Manager 214
Standard Directories L. 215
ApplicationsonCards. 216
Card Insertion and Removal 218
Startprc.o Lo 223
Checking for ExpansionCards 224
Verifying Handheld Compatibility 224
Checking for Mounted Volumes 225
EnumeratingSlots 226
Determining a Card’s Capabilities 227
Volume Operations 228
Hidden Volumes 229
Matching Volumes toSlots. 230
Naming Volumes. 230
File Operations. 232
Common Operations 232
Naming Files 234
Working with Palm Databases 234
Directory Operations 240
Directory Paths 240
Common Operations 240
Enumerating the Files in a Directory 241
Determining the Default Directory for a Particular File Type . 242
Default Directories Registered at Initialization 244
CustomCalls. 246
CustomI/O. oo 247
Debugging.o 248
Summary of Expansion and VFS Managers 248

Palm OS Programmer’s Companion, Volume | vii

8 Text 251
Text Manager and International Manager 252
Characters. 253

Declaring Character Variables 253
Using Character Constants 254
Missing and Invalid Characters 255
Retrieving a Character’s Attributes 256
Virtual Characters 256
Retrieving the Character Encoding 257
Stringso oL 258
Manipulating Stringso 259
Performing String Pointer Manipulation. 260
Truncating Displayed Text. 261
Comparing Strings 262
Global Find 263
Dynamically Creating String Content 265
Using the StrVPrintF Function 267
Fontso 268
Built-inFontso o000 269
Selecting Which FonttoUse 270
Fonts for High-Density Displays 271
Setting the Font Programmatically 273
Obtaining Font Information 274
Creating CustomFonts 275
Summaryof TextAPI 279

9 Attentions and Alarms 283

Getting the User’s Attention 283
The Role of the Attention Manager 283
Attention Manager Operation 285
Getting the User’s Attention. 291
Attentions and Alarmso 301
Detecting and Updating Pending Attentions. 302
Detecting Device Capabilities 304
Controlling the Attention Indicator 305

viii Palm OS Programmer’s Companion, Volume |

Alarms s 306

Settingan Alarm 307
Alarm Scenarioo 308
Setting a Procedure Alarm. 311
Summary of Attentions and Alarms. 313
10 Palm System Support 315
Features.o 315
The System Version Feature 316
Application-Defined Features 318
Using the Feature Manager 318
Feature Memory 319
Preferenceso 320
Accessing System Preferences 321
Setting System Preferences 323
Setting Application-Specific Preferences. 324
Sound.o 332
SimpleSoundo 332
Sampled Soundo 0000 L 333
Simplevs Sampled00 oL 333
Sound Preferenceso L. 334
Standard MIDI Files 335
Creating a Sound Stream 337
System Bootand Reset 337
SoftReset 338
Soft Reset + Up Arrow 338
HardReset 338
SystemResetCalls 339
ARM-Native Functions 339
Calling an ARM Function 340
ARM Function Definition 341
Accessing 68K Data From an ARM Function. 342
Embedding ARM Code in a 68K Application. 344
Calling Palm OS Functions From ARM Code. 345
Hardware Interaction 349

Palm OS Programmer’s Companion, Volume | ix

Palm OSPower Modes 349

Guidelines for Application Developers 351
Power ManagementCalls 351
The Microkernel 352
Retrieving the ROM Serial Number 353
Time00 355
Using Real-Time Clock Functions. 355
Using System Ticks Functions 356
Floating-Point 356
Summary of System Features. 358
11 Localized Applications 363
Localization Guidelines 364
Using Overlays to Localize Resources 365
Dateso 367
Numberso 368
Obtaining Locale Information 369
Notes on the Japanese Implementation 372
Japanese Character Encoding 372
Japanese Character Input 372
The Calculator Button. 373
Displaying Japanese Strings on UI Objects. 373
Displaying Error Messages 373
Summary of Localization 374
12 Debugging Strategies 375
Displaying Development Errors 375
Using the Error Manager Macros 376
The Try-and-Catch Mechanism 377
Using the Try and Catch Mechanism 378
Summary of Debugging API 379
13 Standard 10 Applications 381
Creating a Standard IO Application. 382
Creating a Standard IO Provider Application. 383
Summary of Standard1IO00 0L 385

x Palm OS Programmer’s Companion, Volume |

Index 387

Palm OS Programmer’s Companion, Volume | xi

xii Palm OS Programmer’s Companion, Volume |

About This
Document

Palm OS Programmer’s Companion is part of the Palm OS® Software
Development Kit. This introduction provides an overview of SDK
documentation, discusses what materials are included in this
document, and what conventions are used.

Palm OS SDK Documentation

The following documents are part of the SDK:

Document Description

Palm OS Programmer’s ~ An API reference document that contains descriptions of all
API Reference Palm OS function calls and important data structures.

Palm OS Programmer’s A multi-volume guide to application programming for
Companion Palm OS. This guide contains conceptual and “how-to”
information that complements the Reference.

Constructor for Palm OS A guide to using Constructor to create Palm OS resource
tiles.

Palm OS Programming A guide to writing and debugging Palm OS applications
Development Tools Guide with the various tools available.

What This Volume Contains

This volume is designed for random access. That is, you can read
any chapter in any order. You don’t necessarily have to read some
before others, though the first few chapters are designed for
programmers who are new to the Palm OS. The first three chapters
help you learn necessary tasks and possible features for your
application.

Palm OS Programmer’s Companion, Volume | xiii

About This Document
What This Volume Contains

Note that each chapter ends with a list of hypertext links into the
relevant function descriptions in the Reference book.

Here is an overview of this volume:

¢ Chapter 1, “Programming Palm OS in a Nutshell.” Provides
new Palm OS programmers with a summary of what tasks
and tools are involved in writing a Palm OS® application and
provides pointers to where to look for more information.

¢ Chapter 2, “Application Startup and Stop.” Describes how to
use and respond to launch codes to start and stop an
application and perform other actions. Describes how to
implement the PilotMain function, the entry point for all
applications.

¢ Chapter 3, “Event Loop.” Describes the Event Manager,
events, the event loop, and how to implement the event loop
in your application. Discusses how your application and the
system interact to handle events.

¢ Chapter 4, “User Interface.” Describes the user interface
elements that you can use in your application and how to use
them. Also covers related topics such as drawing, dynamic
Ul, receiving user input, and the Application Launcher.

¢ Chapter 5, “Memory.” Describes the memory architecture,

memory use on Palm Powered ™ handhelds, and the Memory
Manager.

¢ Chapter 6, “Files and Databases.” Describes the data storage
system, the Data Manager, Resource Manager, and the file
streaming APIL

¢ Chapter 7, “Expansion.” Describes how to work with
expansion cards and add-on devices using the Palm OS
Expansion and Virtual File System (VES) Managers.

¢ Chapter 8, “Text.” Describes how to manipulate characters
and strings in a way that makes your application easily
localizable.

¢ Chapter 9, “Attentions and Alarms.” Describes the Attention
Manager, which applications use to bring important events
to the user’s attention, and the Alarm Manager, which allows
applications to receive notification at some future point in
time.

xiv Palm OS Programmer’s Companion, Volume |

About This Document
Additional Resources

e Chapter 10, “Palm System Support.” Describes features
unique to the Palm hardware and OS such as the Feature
Manager, preferences, the Sound Manager, system boot and
reset, the microkernal, time, and floating point arithmetic.

e Chapter 11, “Localized Applications.” Discusses how to
make your application localizable. Includes information on
the Overlay Manager and the Locale Manager, and how to
work with numbers and dates.

¢ Chapter 12, “Debugging Strategies.” Describes
programmatlc approaches to debugging your application;

that is, using the Error Manager and the Palm OS try and
catch mechanism for debugging.

* Chapter 13, “Standard IO Applications.” Describes how to
create a command line application. On Palm OS, command
line applications are typically used by developers for
debugging purposes only.

Volume II of the Palm OS Programmer’s Companion discusses
communications.

Additional Resources

¢ Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

¢ Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http:/ /www.palmos.com/dev/training

* Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions

Palm OS Programmer’s Companion, Volume | xv

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training

About This Document
Additional Resources

(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

xvi Palm OS Programmer’s Companion, Volume |

http://www.palmos.com/dev/support/kb/

1

Programming Palm
OSin a Nutshell

This chapter is the place to start if you're new to Palm™
programming. It summarizes what’s unique about writing
applications for Palm Powered ™ handhelds and tells you where to
go for more in-depth information. It covers:

e Why Programming for Palm OS Is Different

Palm OS Programming Concepts

* Assigning a Database Type and Creator ID

Making Your Application Run on Different Devices

* Programming Tools
e Where to Go from Here

Read this chapter for a high-level introduction to Palm
programming. The rest of this book provides the details.

Why Programming for Palm OS Is Different

Like most programmers, you have probably written a desktop
application—an application that is run on a desktop computer such
as a PC or a Macintosh computer. Writing applications for
handhelds, specifically Palm Powered handhelds, is a bit different
from writing desktop applications because the Palm Powered
handheld is designed differently than a desktop computer. Also,
users simply interact with the handheld differently than they do
desktop computers.

This section describes how these differences affect the design of a
Palm OS® application.

Palm OS Programmer’s Companion, Volume | 1

Programming Palm OS in a Nutshell
Why Programming for Palm OS Is Different

Screen Size

Most Palm Powered handheld screens are only 160x160 pixels, so
the amount of information you can display at one time is limited.

For this reason, you must design your user interface carefully with
different priorities and goals than are used for large screens. Strive
for a balance between providing enough information and
overcrowding the screen. See the book Palm OS User Interface
Guidelines for more detailed guidelines on designing the user
interface.

Note that screen sizes of future Palm Powered handhelds may vary.
The Sony Clie already has a different screen resolution (320 X 320
pixels) than other Palm Powered handhelds although its screen is
still the same size as other handhelds. The HandEra 330 has
introduced the ability to rotate the display and the ability to collapse
the Graffiti® area. If the user collapses the Graffiti area, there is more
space available to the application.

Quick Turnaround Expected

On a PC, users don’t mind waiting a few seconds while an
application loads because they plan to use the application for an
extended amount of time.

By contrast, the average handheld user uses a handheld application
15 to 20 times per day for much briefer periods of time, usually just
a few seconds. Speed is therefore a critical design objective for
handhelds and is not limited to execution speed of the code. The
total time needed to navigate, select, and execute commands can
have a big impact on overall efficiency. (Also consider that Palm OS
does not provide a wait cursor.)

To maximize performance, the user interface should minimize
navigation between windows, opening of dialogs, and so on. The
layout of application screens needs to be simple so that the user can
pick up the product and use it effectively after a short time. It’s
especially helpful if the user interface of your application is
consistent with other applications on the handheld so users work
with familiar patterns.

The Palm OS development team has put together a set of design
guidelines that were used as the basis for the applications resident

2 Palm OS Programmer’s Companion, Volume |

Programming Palm OS in a Nutshell
Why Programming for Palm OS Is Different

on the handheld (Memo Pad, Address Book, and so on). These
guidelines are summarized in the book Palm OS User Interface
Guidelines.

PC Connectivity

PC connectivity is an integral component of the Palm Powered
handheld. The handheld comes with a cradle that connects to a
desktop PC and with software for the PC that provides “one-
button” backup and synchronization of all data on the handheld
with the user’s PC.

Many Palm OS applications have a corresponding application on
the desktop. To share data between the handheld’s application and
the desktop’s application, you must write a conduit. A conduit is a
plug-in to the HotSync® technology that runs when you press the
HotSync button. A conduit synchronizes data between the
application on the desktop and the application on the handheld. To
write a conduit, you use the Conduit SDK, which provides its own
documentation.

Input Methods

Most users of Palm Powered handhelds don’t have a keyboard or
mouse. Users enter data into the handheld using a pen. They can
either write Graffiti strokes or use the keyboard dialog provided on
the handheld.

While Graffiti strokes and the keyboard dialog are useful ways of
entering data, they are not as convenient as using the full-sized
desktop computer with its keyboard and mouse. Therefore, you
should not require users to enter a lot of data on the handheld itself.

Many Palm Powered handhelds support external keyboards, which
are sold separately. Do not rely on your users having an external
keyboard.

Power

Palm Powered handhelds run on batteries and thus do not have the
same processing power as a desktop PC. The handheld is intended
as a satellite viewer for corresponding desktop applications.

Palm OS Programmer’s Companion, Volume | 3

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

If your application needs to perform a computationally intensive
task, you should implement that task in the desktop application
instead of the handheld application.

Memory

Palm Powered handhelds have limited heap space and storage
space. Different versions of the handheld have between 512K and
8MB total of dynamic memory and storage available. The handheld
does not have a disk drive or PCMCIA support.

Because of the limited space and power, optimization is critical. To
make your application as fast and efficient as possible, optimize for
heap space first, speed second, code size third.

File System

Because of the limited storage space, and to make synchronization
with the desktop computer more efficient, Palm OS does not use a
traditional file system. You store data in memory chunks called
records, which are grouped into databases. A database is analogous
to a file. The difference is that data is broken down into multiple
records instead of being stored in one contiguous chunk. To save
space, you edit a database in place in memory instead of creating it
in RAM and then writing it out to storage.

Backward Compatibility

Different versions of Palm Powered handhelds are available, and
each runs a different version of Palm OS. Users are not expected to
upgrade their versions of Palm OS as rapidly as they would an
operating system on a desktop computer. Updates to the OS are
designed in such a way that you can easily maintain backward
compatibility with previous versions of the OS, and thus, your
application is available to more users. See “Making Your
Application Run on Different Devices” on page 12 for details.

Palm OS Programming Concepts

Palm OS applications are generally single-threaded, event-driven
programs. Only one program runs at a time. To successfully build a

4 Palm OS Programmer’s Companion, Volume |

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

Palm OS application, you have to understand how the system itself
is structured and how to structure your application.

¢ Each application has a PilotMain function that is
equivalent to main in C programs. To launch an application,
the system calls PilotMain and sends it a launch code. The
launch code may specify that the application is to become
active and display its user interface (called a normal launch),
or it may specify that the application should simply perform
a small task and exit without displaying its user interface.

The sole purpose of the PilotMain function is to receive
launch codes and respond to them. (See Chapter 2,

“Application Startup and Stop.”)

¢ Palm OS is an event-based operating system, so Palm OS
applications contain an event loop; however, this event loop
is only started in response to the normal launch. Your
application may perform work outside the event loop in
response to other launch codes. Chapter 3, “Event Loop,”
describes the main event loop.

* Most Palm OS applications contain a user interface made up
of forms, which are analogous to windows in a desktop
application. The user interface may contain both predefined
UI elements (sometimes referred to as UI objects), and
custom Ul elements. (See Chapter 4, “User Interface.”)

* All applications should use the memory and data
management facilities provided by the system. (See Chapter
5, “Memory,” and Chapter 6, “Files and Databases.”)

* You implement an application’s features by calling Palm OS
functions. Palm OS consists of several managers, which are
groups of functions that work together to implement a
feature. As a rule, all functions that belong to one manager
use the same prefix and work together to implement a certain
aspect of functionality.

Managers are available to, for example, generate sounds,
send alarms, perform network communication, and beam
information through an infrared port. A good way to find out
the capabilities of the Palm OS is to scan the Table of
Contents of both this book and Palm OS Programmer’s
Companion, vol. II, Communications.

Palm OS Programmer’s Companion, Volume | 5

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

IMPORTANT: The ANSI C libraries are not part of the Palm
development platform. In many cases, you can perform the same
function using a Palm OS API call as you can with a call to a
ANSI C function. For example, the Palm OS provides a string
manager that performs many of the string functions you’d expect
to be able to perform in an ANSI C program. If you do use a
standard C function, the code for the function is linked into your
application and results in a bigger executable.

APl Naming Conventions
The following conventions are used throughout the Palm OS API:

Functions start with a capital letter.

All functions belonging to a particular manager start with a
two- or three-letter prefix, such as “Ctl” for control functions
or “Ftr” for functions that are part of the Feature Manager.

Events and other constants start with a lowercase letter.
Structure elements start with a lowercase letter.
Global variables start with a capital letter.

Typedefs start with a capital letter and end with “Type” (for
example, DateFormatType, found in DateTime.h).

Macintosh ResEdit resource types usually start with a
lowercase letter followed by three capital letters, for example
tSTR or tTBL. (Customized Macintosh resources provided
with your developer package are all uppercase, for example,
MENU. Some resources, such as Talt, don’t follow the
conventions.)

Members of an enumerated type start with a lowercase prefix
followed by a name starting with a capital letter, as follows:

enum formObjects {
frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObj,

6 Palm OS Programmer’s Companion, Volume |

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleObj,
frmPopupObj,
frmGraffitiStateObj,
frmGadgetObj };
typedef enum formObjects FormObjectKind;

Integrating Programs with the Palm OS
Environment

When users work with a Palm OS application, they expect to be able
to switch to other applications, have access to Graffiti power writing
software and the onscreen keyboard, access information with the
global find, receive alarms, and so on. Your application will
integrate well with others if you follow the guidelines in this
section. Integrate with the system software as follows:

¢ Handle sysAppLaunchCmdNormalLaunch

* Handle or ignore other application launch codes as
appropriate. For more information, see the next chapter,
Chapter 2, “Application Startup and Stop.”

* Handle system preferences properly. System preferences
determine the display of

Date formats

Time formats

Number formats

First day of week (Sunday or Monday)

Be sure your application uses the system preferences for
numeric formats, date, time, and start day of week. See

“Accessing System Preferences” on page 321 for instructions
on how to do so.

¢ Allow the system to post these messages:
— alarms

— low-battery warnings

Palm OS Programmer’s Companion, Volume | 7

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

— system messages during synchronization

The normal event loop used by virtually all Palm OS
applications allows ample time for the system to post
messages and handle necessary events. You only need to take
special care if your application performs a lengthy
computational task. For example, if your application has a
large database with greater than 20,000 records and it must
search through each of these database records, you might
want to check for system events every so often during this
loop.

Be sure your application does not obscure or change the
Graffiti area, Graffiti area icons, and power button.

Don’t obscure Graffiti shift indicators.

In addition, follow these rules:

Store state information in the application preferences
database, not in the application record database. See “Setting
Application-Specific Preferences” on page 324 for more
information.

If your application uses the serial port, be sure to close the
port when you no longer need it so that the HotSync
application can use it.

Ensure that your application properly handles the global
find. Generally, searches and sorts aren’t case sensitive.

If your application supports private records, be sure they are
unavailable to the global find when they should be hidden.

Integrate with the Launcher application by providing an
application name, two application icons, and a version string
as described in “Application Launcher” on page 153.

Follow the guidelines detailed in the book Palm OS User
Interface Guidelines.

Ensure that your application properly handles system
messages during and after synchronization.

Ensure that deleted records are not displayed.

Ensure that your application doesn’t exceed the maximum
number of categories: 15 categories and the obligatory
category “Unfiled” for a total of 16.

8 Palm OS Programmer’s Companion, Volume |

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

* Ensure that your application uses a consistent default state
when the user enters it:

— Some applications have a fixed default; for example, the
Date Book always displays the current day when
launched.

— Other applications return to the place the user exited last.
In that case, remember to provide a default if that place is
no longer available. Because of HotSync operations and
Preferences, don’t assume the application data is the same
as it was when the user looked at it last.

e If your application uses sounds, be sure it uses the Warning
and Confirmation sounds properly.

Writing Robust Code

To make your programs more robust and to increase their
compatibility with the next generation of Palm OS products, it is
strongly recommended that you follow the guidelines and practices
outlined in this section.

* Check assumptions

You can write defensive code by adding frequent calls to the
ErrNonFatalDisplayIf function, which enables your
debug builds to check assumptions. Many bugs are caught in
this way, and these “extra” calls don’t weigh down your
shipping application. You can keep more important checks in
the release builds by using the ExrrFatalDisplayIf
function.

¢ Avoid continual polling

To conserve the battery, avoid continual polling. If your
application is in a wait loop, poll at short intervals (for
example, every tenth of a second) instead. The event loop of
the Hardball example application included with your Palm
OS SDK illustrates how to do this.

¢ Avoid reading and writing to NULL (or low memory)

When calling functions that allocate memory (MemSet,
MemMove and similar functions) make sure that the pointers
they return are non-NULL. (If you can do better validation
than that, so much the better.) Also check that pointers your

Palm OS Programmer’s Companion, Volume | 9

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

code obtains from structures or other function calls are not
NULL. Consider adding to your debug build a #define that
overrides MemMove (and similar functions) with a version
that validates the arguments passed to it.

¢ Use dynamic heap space frugally

It is important not to use the extra dynamic heap space
available on Palm units running 2.0 and higher unless it is
truly necessary to do so. Wasteful use of heap space may
limit your application to running only on the latest
handhelds—which prevents it from running on the very
large number of units already in the marketplace.

Note that some system services, such as the IrDA stack or the
Find window, can require additional memory while your
application is running; for example, if the unit starts to
receive a beam or other external input, the system may need
to allocate additional heap space for the incoming data. Don't
use all available dynamic memory just because it’s there;
instead, consider using the storage heap for working with
large amounts of temporary data.

* Check result codes when allocating memory

Because future handhelds may have larger or smaller
amounts of available memory, it is always a good idea to
check result codes carefully when allocating memory. It’s
also good practice to use the storage heap (and possibly file
streams) to work with large objects.

* Avoid allocating zero-length objects

It’s not valid to allocate a zero-byte buffer, or to resize a
buffer to zero bytes. Palm OS 2.0 and previous releases
allowed this practice, but later revisions of the OS do not
permit zero-length objects.

* Avoid making assumptions about the screen

The location of the screen bulffer, its size, and the number of
pixels per bit aren’t set in stone—they might well change.
Don’t hack around the windowing and drawing functions. If
you are going to hack the hardware to circumvent the APlIs,
save the state and return the system to that saved state when
you quit.

10 Palm OS Programmer’s Companion, Volume |

Programming Palm OS in a Nutshell
Assigning a Database Type and Creator ID

* Don’t access globals or hardware directly

Global variables and their locations can change; to avoid
mishaps, use the documented API functions and disable your
application if it is run on anything but a tested version of the
OS. Future handhelds might run on a different processor
than the current one.

Similarly, don’t hardcode references to cards. Although
current Palm OS hardware provides only a single card slot,
this may not always be the case. Thus, when calling functions
that manipulate cards, such as Data Manager and file
streaming functions, pass a variable that references the target
card, rather than passing a hardcoded reference to card 0.

* Built-in applications can change

The format and size of the preferences (and data) for the
built-in applications is subject to change. Write your code
defensively, and consider disabling your application if it is
run on an untested version of the OS.

Assigning a Database Type and Creator ID

Each Palm OS application is uniquely identified by a four-byte
creator ID. Assigning this same creator ID to all of the databases
related to an application associates those databases with the
application. The OS takes advantage of this; for instance, the
launcher’s Info panel uses the creator ID to calculate the total
memory used by each application.

Each database on the Palm Powered handheld has a type as well as
a creator ID. The database type allows applications and the OS to
distinguish among multiple databases with the same creator ID. For
applications, set the database type to sysFileTApplication
('appl'). For each database associated with an application, set the
database type to any other value (as long as it isn’t composed
entirely of lowercase letters, since those are reserved by Palm).
Certain predefined types—such as 'appl' (application) or '1ibxr
(library)—have special meaning to Palm OS. For instance, the
launcher looks at the database type to determine which databases
are applications.

Palm OS Programmer’s Companion, Volume | 11

Programming Palm OS in a Nutshell
Making Your Application Run on Different Devices

Types and creator IDs are case-sensitive, and are composed of four
ASCII characters in the range 32-126 (decimal). Types and creator
IDs consisting of all lowercase letters are reserved for use by Palm
Inc., so any type or creator ID that you choose must contain at least
one uppercase letter, digit, or symbol’.

To protect your application from conflicting with others, you need
to register your creator ID with Palm, which maintains a database of
registered IDs. To choose and register a creator ID, see this web

page:
http:/ /www.palmos.com /dev/creatorid /

Note that you don’t need to register database types as you do
creator IDs. Each creator ID in effect defines a new space of types, so
there is no connection between two databases with type 'Data’ but
with different creator IDs.

IMPORTANT: Applications with identical creator IDs cannot
coexist on the same handheld; during installation the new
application will replace the existing application that possesses the
same creator ID. Further, the new application could well corrupt
any databases that were associated with the preexisting
application. For this reason, all applications should have their own
unique creator ID.

Finally, creator IDs aren’t used only to identify databases. They are
also used, among other things, when getting or setting application
preferences, to register for notifications, and to identify features.

Making Your Application Run on Different

Devices

There are many different handhelds that run Palm OS, and each
may have a different version of the OS installed on it. Users are not
expected to upgrade the Palm OS as frequently as they would an OS

1.Palm has also reserved 'pga '.

12 Palm OS Programmer’s Companion, Volume |

http://www.palmos.com/dev/creatorid/

Programming Palm OS in a Nutshell
Making Your Application Run on Different Devices

on a desktop computer. This fact makes backward compatibility
more crucial for Palm OS applications.

This section describes how to make sure your application runs on as
many handhelds as possible by discussing;:

* Running New Applications on an Older Device
¢ Backward Compatibility with PalmOSGlue
¢ Compiling Older Applications with the Latest SDK

Running New Applications on an Older Device

Releases of the Palm OS are binary compatible with each other. If
you write a brand new application today, it can run on all versions
of the operating system provided the application doesn’t use any
new features. In other words, if you write your application using
only features available in Palm OS 1.0, then your application runs
on all handhelds. If you use 2.0 features, your application won’t run
on the earliest Palm Powered handhelds, but it will run on all
others, and so on.

How can you tell which features are available in each version of the
operating system? There are a couple of way to do so:

* The Palm OS Programmer’s API Reference has a “Compatibility
Guide” appendix. This guide lists the features and functions
introduced in each operating system version greater than 1.0.

¢ The header file SysTraps.h (or CoreTraps.h on Palm OS
3.5 and higher) lists all of the system traps available. Traps
are listed in the order in which they were introduced to the
system, and comments in the file clearly mark where each
operating system version begins.

Programmatically, you can use the Feature Manager to determine
which features are available on the system the application is
running on. Note that you can’t always rely on the operating system
version number to guarantee that a feature exists. For example,
Palm OS version 3.2 introduces wireless support, but not all Palm
Powered handhelds have that capability. Thus, checking that the
system version is 3.2 does not guarantee that wireless support
exists. Consult the “Compatibility Guide” in the Palm OS
Programmer’s API Reference to learn how to check for the existence of
each specific feature.

Palm OS Programmer’s Companion, Volume | 13

Programming Palm OS in a Nutshell
Making Your Application Run on Different Devices

Backward Compatibility with PalmOSGlue

The PalmOSGlue library can help you maintain backward
compatibility with earlier releases while still allowing you to use the
latest set of APIs. PalmOSGlue provides backward compatibility for
some of the user interface manager calls and the managers that
enable localization and internationalization.

PalmOSGlue can be used in any application that runs on Palm OS
2.0 and later. The library provides the latest support for localization
features and for accessing internal Ul data structures. Link your
application with the library PalmOSGlue (PalmOSGlue. 1ib or
1ibPalmOSGlue. a).

When you use PalmOSGlue, you use the functions in the same way
as described they are described in the Palm OS Programmer’s API
Reference, but their names are different. For example,
TxtFindStringis named TxtGlueFindString in PalmOSGlue.
When you make a call to a glue function (for example,
TxtGlueFunc, FntGlueFunc, or WinGlueFunc), the code in
PalmOSGlue either uses the appropriate function found in the ROM
or, if the function don’t exist, executes a simple equivalent of the
function.

To see a complete list of functions in PalmOSGlue, see the chapter
“PalmOSGlue Library” on page 1891 of the Palm OS Programmer’s
API Reference.

PalmOSGlue is a linkable library that is bound to your project at
link time. It is not a shared library. PalmOSGlue will increase your
application’s code size. The exact amount by which your code size
increases depends on the number of library functions you call; the
linker strips any unused routines and data.

Compiling Older Applications with the Latest
SDK

As a rule, all Palm OS applications developed with an earlier
version of the Palm OS platform SDK should run error-free on the
latest release.

If you want to compile your older application under the latest
release, you need to look out for functions with a changed API. For

14 Palm OS Programmer’s Companion, Volume |

Programming Palm OS in a Nutshell
Programming Tools

any of these functions, the old function still exists with an extension
noting the release that supports it, such as V10 or V20.

You can choose one of two options:

¢ Change the function name to keep using the old APIL. Your
application will then run error free on the newer handhelds.

¢ Update your application to use the new API. The application
will then run error free and have access to some new
functionality; however, it will no longer run on older
handhelds that use prior releases of the OS.

NOTE: If you want to compile a legacy application with the Palm
OS 3.5 or later SDK, note that some header file names have
changed, and the names used for basic types have changed. For
example, parameters previously declared as Word are now
UIntl6 or Intl6. To compile existing applications, you'll need to
make these changes in your code or include the header file
PalmOSCompatibility.h. See the “Compatibility Guide” in the
Palm OS Programmer’s API Reference for further details.

Programming Tools

Several tools are available that help you build, test, and debug Palm
OS applications. The most widely used tool is the CodeWarrior
Interactive Development Environment (IDE). Documentation for
the CodeWarrior IDE is provided with CodeWarrior. (See http: //
www.palmos.com/dev/tools/ for information about other
development tools.)

As with most applications, the user interface is generally stored in
one or more resource files. You use the Constructor for Palm OS to
create these resources. To learn how, refer to the Constructor
documentation.

To debug and test your application, there are several tools available:

* The CodeWarrior Debugger handles source-level debugging.
You can use it with an application running on the Palm
Powered handheld, or you can use it in conjunction with one
of the other debugging tools below.

Palm OS Programmer’s Companion, Volume | 15

http://www.palmos.com/dev/tools/
http://www.palmos.com/dev/tools/

Programming Palm OS in a Nutshell
Where to Go from Here

¢ The Palm OS Emulator tests your application on the desktop
computer before downloading it onto the handheld.

* On the Macintosh, you can build a Simulator version of your
application to test it. This is a standalone Mac OS application
that runs your Palm OS application on a Macintosh
computer.

* The Palm Debugger is an assembly-level tool. You can also
use it to enter commands directly to the Palm Powered
handheld.

The book Palm OS Programming Development Tools Guide describes
the Palm-provided debugging tools available on your development
platform. For CodeWarrior Debugger documentation, refer to the
CodeWarrior CD.

Where to Go from Here

This chapter provided you only with a general outline of the issues
involved in writing a Palm OS application. To learn the specifics,
refer to the following resources:

e This book

The rest of this book provides details on how to implement
common application features using the Palm OS SDK. If
you're new to Palm OS programming, you need to read the
next two chapters to learn the principles of Palm OS
application design, how to implement the main function, and
how to implement the standard event loop. The remaining
chapters you can read on an as-needed basis.

¢ Example applications

The actual source code for the applications on the Palm
Powered handheld is included with your SDK as examples.
The code can be a valuable aid when you develop your own
program. The software development kit provides a royalty-
free license that permits you to use any or all of the source
code from the examples in your application.

® Palm OS Programming Development Tools Guide

The Palm OS Programming Development Tools Guide provides
more details on using the tools to debug programs. (You

16 Palm OS Programmer’s Companion, Volume |

Programming Palm OS in a Nutshell
Where to Go from Here

might also be interested in the “Debugging Strategies”
chapter in this book, which describes programmatic
debugging solutions.)

Palm OS Programmer’s API Reference

The reference book provides the details on all of the public
data structures and API calls.

Palm OS User Interface Guidelines

The Palm OS User Interface Guidelines provides detailed
guidelines for creating a user interface that conforms to Palm
standards. You should read this book before you begin
designing your application’s interface.

Conduit Development Kits and documentation

If you need to write a conduit for your application, see the
documentation provided with the Conduit Development
Kits.

Palm OS Programmer’s Companion, Volume | 17

Programming Palm OS in a Nutshell
Where to Go from Here

18 Palm OS Programmer’s Companion, Volume |

2

Application Startup
and Stop

On desktop computers, an application starts up when a user
launches it and stops when the user chooses the Exit or Quit
command. These things occur a little bit differently on the Palm OS®
handheld. A Palm OS application does launch when the user
requests it, but it may also launch in response to some other user
action, such as a request for the global find facility. Palm OS
applications don’t have an Exit command; instead they exit when a
user requests another application.

This chapter describes how an application launches, how an
application stops, and the code you must write to perform these
tasks properly. It also covers notifications, which is another way for
the system to launch your code when certain events occur.
Notifications are available in later releases of the Palm OS. This
chapter covers:

¢ Launch Codes and Launching an Application

* Responding to Launch Codes

¢ Launching Applications Programmatically
¢ Creating Your Own Launch Codes

¢ Stopping an Application
e Notifications

¢ Helper Notifications

e Launch Code Summary

e Notification Summary

¢ [aunch and Notification Function Summary

This chapter does not cover the main application event loop. The
event loop is covered in Chapter 3, “Event Loop.”

Palm OS Programmer’s Companion, Volume | 19

Application Startup and Stop
Launch Codes and Launching an Application

Launch Codes and Launching an Application

An application launches when it receives a launch code. Launch
codes are a means of communication between the Palm OS and the
application (or between two applications).

For example, an application typically launches when a user presses
one of the buttons on the device or selects an application icon from
the application launcher screen. When this happens, the system
generates the launch code sysAppLaunchCmdNormalLaunch,
which tells the application to perform a full launch and display its
user interface.

Other launch codes specify that the application should perform
some action but not necessarily become the current application (the
application the user sees). A good example of this is the launch code
used by the global find facility. The global find facility allows users
to search all databases for a certain record, such as a name. In this
case, it would be very wasteful to do a full launch—including the
user interface—of each application only to access the application’s
databases in search of that item. Using a launch code avoids this
overhead.

Each launch code may be accompanied by two types of information:

* A parameter block, a pointer to a structure that contains
several parameters. These parameters contain information
necessary to handle the associated launch code.

* Launch flags indicate how the application should behave.
For example, a flag could be used to specify whether the
application should display UI or not. (See “Launch Flags” in
the Palm OS Programmer’s API Reference.)

A complete list of all launch codes is provided at the end of this
chapter in the section “Launch Code Summary.” That section
contains links into where each launch code is described in the Palm
OS Programmer’s API Reference.

Responding to Launch Codes

Your application should respond to launch codes in a function
named PilotMain. PilotMain is the entry point for all
applications.

20 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Responding to Launch Codes

When an application receives a launch code, it must first check
whether it can handle this particular code. For example, only
applications that have text data should respond to a launch code
requesting a string search. If an application can’t handle a launch
code, it exits without failure. Otherwise, it performs the action
immediately and returns.

Listing 2.1 shows parts of PilotMain from the Datebook
application as an example. To see the complete example, go to the
examples folder in the Palm OS SDK and look at the file
Datebook. c.

Listing 2.1 PilotMain in Datebook.c

UInt32 PilotMain (UIntl6é cmd, void *cmdPRBP,
UIntlé launchFlags)

{
}

static UInt32 DBPilotMain (UIntlé cmd, void *cmdPBP,
UIntlé launchFlags)

{

return DBPilotMain (cmd, cmdPBP, launchFlags) ;

UIntlé error;
Boolean launched;

// This app makes use of PalmOS 2.0 features.It will crash
// 1f run on an earlier version of PalmOS. Detect and warn
// if this happens, then exit.
error = RomVersionCompatible (version20, launchFlags);
if (error)

return error;

// Launch code sent by the launcher or the datebook
// button.
if (cmd == sysAppLaunchCmdNormalLaunch) {

error = StartApplication () ;

if (error) return (error);

FrmGotoForm (DayView) ;

EventLoop () ;
StopApplication ();

// Launch code sent by text search.

Palm OS Programmer’s Companion, Volume | 21

Application Startup and Stop
Responding to Launch Codes

else if
Search
}

// This launch code might be

(cmd == sysAppLaunchCmdFind) {
((FindParamsgPtr) cmdPBP) ;

sent to the app when it's

// already running if the user hits the "Go To" button in
// the Find Results dialog box.

else if (cmd == sysAppLaunchCmdGoTo) {
launched = launchFlags & sysAppLaunchFlagNewGlobals;
if (launched) {
error = StartApplication ();
if (error) return (error);
GoToItem ((GoToParamsPtr) cmdPBP, launched) ;
EventLoop () ;
StopApplication () ;
else
GoToItem ((GoToParamsPtr) cmdPBP, launched) ;
}
// Launch code sent by sync application to notify the
// datebook application that its database has been synced.
/...
// Launch code sent by Alarm Manager to notify the
// datebook application that an alarm has triggered.
/] ...
// Launch code sent by Alarm Manager to notify the
// datebook application that is should display its alarm
// dialog.
/...
// Launch code sent when the system time is changed.
/] ...
// Launch code sent after the system is reset. We use this
// time to create our default database if this is a hard
// reset
/]
// Launch code sent by the DesktopLink server when it
// creates a new database. We will initialize the new
// database.
return (0);

22 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Responding to Launch Codes

Responding to Normal Launch

When an application receives the launch code
sysAppLaunchCmdNormalLaunch, it begins with a startup
routine, then goes into an event loop, and finally exits with a stop
routine. (The event loop is described in Chapter 3, “Event Loop.”
The stop routine is shown in the section “Stopping an Application”
at the end of this chapter.)

During the startup routine, your application should perform these
actions:

1. Get system-wide preferences (for example for numeric or
date and time formats) and use them to initialize global
variables that will be referenced throughout the application.

2. Find the apé)lication database by creator type. If none exists,
create it and initialize it.

3. Get application-specific preferences and initialize related
global variables.

4. Initialize any other global variables.

As you saw in Listing 2.1, the Datebook application example
responds to sysAppLaunchCmdNormalLaunch by calling a
function named StartApplication. Listing 2.2 shows the

StartApplication function.

Listing 2.2 StartApplication from Datebook.c

static UIntlé StartApplication (void)
{
UIntl6é error = 0;
Err err = 0;
UIntl6é mode;
DateTimeType dateTime;
DatebookPreferenceType prefs;
SystemPreferencesType sysPrefs;
UIntle prefsSize;

// Step 1: Get system-wide preferences.
PrefGetPreferences (&sysPrefs);

// Determime if secret records should be

// displayed.

HideSecretRecords = sysPrefs.hideSecretRecords;

if (HideSecretRecords)

Palm OS Programmer’s Companion, Volume | 23

Application Startup and Stop
Responding to Launch Codes

mode = dmModeReadWrite;
else

mode dmModeReadWrite | dmModeShowSecret;

// Get the time formats from the system preferences.
TimeFormat = sysPrefs.timeFormat;

// Get the date formats from the system preferences.
LongDateFormat = sysPrefs.longDateFormat;
ShortDateFormat = sysPrefs.dateFormat;

// Get the starting day of the week from the system
// preferences.
StartDayOfWeek = sysPrefs.weekStartDay;

// Get today's date.

TimSecondsToDateTime (TimGetSeconds (), &dateTime) ;
Date.year = dateTime.year - firstYear;

Date.month = dateTime.month;

Date.day = dateTime.day;

// Step 2. Find the application's data file. If it
// doesn't exist, create it.
ApptDB = DmOpenDatabaseByTypeCreator (datebookDBType,
sysFileCDatebook, mode) ;
if (! ApptDB) {
error = DmCreateDatabase (0, datebookDBName,
sysFileCDatebook, datebookDBType, false);
if (error) return error;

ApptDB =
DmOpenDatabaseByTypeCreator (datebookDBType,
sysFileCDatebook, mode) ;

if (! ApptDB) return (1);

error = ApptAppInfoInit (ApptDB) ;
if (error) return error;

// Step 3. Get application-specific preferences.

// Read the preferences/saved-state information. There is
// only one version of the DateBook preferences so don't
// worry about multiple versions.

prefsSize = sizeof (DatebookPreferenceType) ;

if (PrefGetAppPreferences (sysFileCDatebook,

24 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Responding to Launch Codes

datebookPrefID, &prefs, &prefsSize, true)
I= noPreferenceFound) {
DayStartHour = prefs.dayStartHour;
DayEndHour = prefs.dayEndHour;
AlarmPreset = prefs.alarmPreset;
NoteFont = prefs.noteFont;
SaveBackup = prefs.saveBackup;
ShowTimeBars = prefs.showTimeBars;
CompressDayView = prefs.compressDayView;
ShowTimedAppts = prefs.showTimedAppts;
ShowUntimedAppts = prefs.showUntimedAppts;
ShowDailyRepeatingAppts =
prefs.showDailyRepeatingAppts;

}

// Step 4. Initialize any other global variables.
TopVisibleAppt = 0;
CurrentRecord = noRecordSelected;

// Load the far call jump table.
FarCalls.apptGetAppointments = ApptGetAppointments;
FarCalls.apptGetRecord = ApptGetRecord;
FarCalls.apptFindFirst = ApptFindFirst;
FarCalls.apptNextRepeat = ApptNextRepeat;
FarCalls.apptNewRecord = ApptNewRecord;
FarCalls.moveEvent = MoveEvent;

return (error) ;

Responding to Other Launch Codes

If an application receives a launch code other than
sysAppLaunchCmdNormalLaunch, it decides if it should respond
to that launch code. If it responds to the launch code, it does so by
implementing a launch code handler, which is invoked from its
PilotMain function.

In most cases, when you respond to other launch codes, you are not
able to access global variables. Global variables are generally only
allocated after an application receives
sysAppLaunchCmdNormalLaunch (see Listing 2.2) or
sysAppLaunchCmdGoto; so if the application hasn’t received
either of these launch codes, its global variables are usually not

Palm OS Programmer’s Companion, Volume | 25

Application Startup and Stop
Responding to Launch Codes

allocated and not accessible. In addition, if the application has
multiple code segments, you cannot access code outside of segment
0 (the first segment) if the application has no access to global
variables.

There is one other case where an application may have access to its
global variables (and to code segments other than 0). This is when
an application is launched with the code
sysAppLaunchCmdURLParams. If this launch code results from a
palm URL, then globals are available. If the launch code results
from a palmcall URL, then globals are not available. The URL is
passed to your application in the launch parameter block.

NOTE: Static local variables are stored with the global variables
on the system’s dynamic heap. They are not accessible if global
variables are not accessible.

Checking launch codes is generally a good way to determine if your
application has access to global variables. However, it actually
depends on the setting of the launch flags that are sent with the
launch code. In particular, if the sysAppLaunchFlagNewGlobals
flag is set, then your application’s global variables have been
allocated on this launch. This flag is set by the system and isn’t (and
shouldn’t be) set by the sender of a launch code.

Boolean appHasGlobals = launchFlags & sysAppLaunchFlagNewGlobals;

There’s one case where this flag won’t be set and your application
will still have access to global variables. This is when your
application is already running as the current application. In this
case, its global variables have already been allocated through a
previous launch.

If your application receives a launch code other than
sysAppLaunchCmdNormalLaunch or sysAppLaunchCmdGoTo,
you can find out if it is the current application by checking the
launch flags that are sent with the launch code. If the application is
the currently running application, the
sysAppLaunchFlagSubCall flag is set. This flag is set by the
system and isn’t (and shouldn’t be) set by the sender of a launch
code.

26 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Launching Applications Programmatically

Boolean appIsActive = launchFlags & sysAppLaunchFlagSubCall;

Launching Applications Programmatically

Applications can send launch codes to each other, so your
application might be launched from another application or it might
be launched from the system. An application can use a launch code
to request that another application perform an action or modify its
data. For example, a data collection application could instruct an
email application to queue up a particular message to be sent.

TIP: In Palm OS 4.0 and higher, there are other ways for
applications to communicate. See the section “When to Use the
Helper API” to help you decide which method to use.

Sending a launch code to another application is like calling a
specific subroutine in that application: the application responding to
the launch code is responsible for determining what to do given the
launch code constant passed on the stack as a parameter.

To send a launch code to another application, use the system
manager function SysAppLaunch. Use this routine when you want
to make use of another application’s functionality and eventually
return control of the system to your application. Usually,
applications use it only for sending launch codes to other user-
interface applications.

For example, you would use this function to request that the built in
Address Book application search its databases for a specified phone
number and return the results of the search to your application.
When calling SysAppLaunch do not set launch flags yourself—the
SysAppLaunch function sets launch flags appropriately for you.

An alternative, simpler method of sending launch codes is the
SysBroadcastActionCode call. This routine automatically finds
all other user-interface applications and calls SysAppLaunch to
send the launch code to each of them.

When an application is called using SysAppLaunch, the system
considers that application to be the current application even though

Palm OS Programmer’s Companion, Volume | 27

Application Startup and Stop
Creating Your Own Launch Codes

the application has not switched from the user’s perspective. Thus,
if your application is called from another application, it can still use
the function SysCurAppDatabase to get the card number and
database ID of its own database.

If you want to actually close your application and open another
application, use SysUIAppSwitch instead of SysAppLaunch. This
routine notifies the system which application to launch next and
feeds an application-quit event into the event queue. If and when
the current application responds to the quit event and returns, the
system launches the new application.

When you allocate a parameter block to pass to SysUIAppSwitch,
you must call MemPt rSetOwner to grant ownership of the
parameter block chunk to the OS (your application is originally set
as the owner). If the parameter block structure contains references
by pointer or handle to any other chunks, you also must set the
owner of those chunks by calling MemPtrSetOwner or
MemHandleSetOwner. If you don’t change the ownership of the
parameter block, it will get freed before the application you're
launching has a chance to use it.

In Palm OS 3.0 and higher, you can also use the Application
Launcher to launch any application. For more information, see the
section “Application Launcher” in the “User Interface” chapter.

WARNING! Do not use the SysUIAppSwitch or
SysAppLaunch functions to open the Application Launcher
application.

Creating Your Own Launch Codes

The Palm OS contains predefined launch codes, which are listed in
Table 2.1 at the end of this chapter. In addition, developers can
create their own launch codes to implement specific functionality.
Both the sending and the receiving application must know about
and handle any developer-defined launch codes.

The launch code parameter is a 16-bit word value. All launch codes
with values 0-32767 are reserved for use by the system and for

28 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Stopping an Application

future enhancements. Launch codes 32768-65535 are available for
private use by applications.

Stopping an Application

An application shuts itself down when it receives the event
appStopEvent. Note that this is an event, not a launch code. The
application must detect this event and terminate. (You'll learn more
about events in the next chapter.)

When an application stops, it is given an opportunity to perform
cleanup activities including closing databases and saving state
information.

In the stop routine, an application should first flush all active
records, then close the application’s database, and finally save those
aspects of the current state needed for startup. Listing 2.3 is an
example of a StopApplication routine from Datebook. c.

Listing 2.3 StopApplication from Datebook.c

static void StopApplication (void)

{

DatebookPreferenceType prefs;

// Write the preferences / saved-state information.
prefs.noteFont = NoteFont;

prefs.dayStartHour = DayStartHour;

prefs.dayEndHour = DayEndHour;

prefs.alarmPreset = AlarmPreset;

prefs.saveBackup = SaveBackup;

prefs.showTimeBars = ShowTimeBars;
prefs.compressDayView = CompressDayView;
prefs.showTimedAppts = ShowTimedAppts;
prefs.showUntimedAppts = ShowUntimedAppts;
prefs.showbDailyRepeatingAppts = ShowDailyRepeatingAppts;

// Write the state information.

PrefSetAppPreferences (sysFileCDatebook, datebookPrefID,
datebookVersionNum, &prefs, sizeof
(DatebookPreferenceType), true);

// Send a frmSave event to all the open forms.
FrmSaveAllForms () ;

Palm OS Programmer’s Companion, Volume | 29

Application Startup and Stop

Notifications
// Close all the open forms.
FrmCloseAllForms () ;
// Close the application's data file.
DmCloseDatabase (ApptDB) ;
}
Notifications

On systems where the Notification Feature Set is present, your
application can receive notifications and launch when certain
system-level events or application-level events occur. Notifications
are similar to application launch codes, but differ from them in two
important ways:

* Notifications can be sent to any code resource, such as a
shared library or a system extension (for example, a hack
installed with the HackMaster program). Launch codes can
only be sent to applications. Any code resource that is
registered to receive a notification is called a notification
client.

* Notifications are only sent to applications or code resources
that have specifically registered to receive them, making
them more efficient than launch codes. Many launch codes
are sent to all installed applications to give each application a
chance to respond.

The Palm OS system and the built-in applications send notifications
when certain events occur. See the “Notification Summary” in this
chapter for a complete list.

It’s also possible for your application to create and broadcast its own
notifications. However, doing so is rare. It's more likely that you’ll
want to register to receive the predefined notifications or that you'll
broadcast the predefined sysNotifyHelperEvent described in
the “Helper Notifications” section.

Three general types of event flow are possible using the notification
manager:

30 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Notifications

¢ Single consumer

Each client is notified that the event has occurred and
handles it in its own way without modifying any information
in the parameter block.

e Collaborative

The notification’s parameter block contains a handled flag.
Clients can set this flag to communicate to other clients that
the event has been handled, while still allowing them to
receive the notification. An example of this is the
sysNotifyAntennaRaisedEvent for Palm VII" series
handhelds. A client might decide to handle the antenna key
down event and in this case, sets handled to true to inform
other clients that the event has been handled.

e Collective

Each client can add information to the notification’s
parameter block, allowing the data to be accumulated for all
clients. This style of notification could be used, for example,
to build a menu dynamically by letting each client add its
own menu text. The sysNotifyMenuCmdBarOpenEvent is
similar to this style of notification.

Registering for a Notification

To receive notification that an event has occurred, you must register
for it using the SysNotifyRegister function. Once you register
for a notification, you remain registered until the system is reset or
until you explicitly unregister for this notification using
SysNotifyUnregister.

To register an application for the HotSync® notification, you’d use a
function call similar to the one in Listing 2.4.

Listing 2.4 Registering an application for a notification

SysNotifyRegister (myCardNo, appDBID, sysNotifySyncStartEvent,
NULL, sysNotifyNormalPriority, myDataP) ;

Palm OS Programmer’s Companion, Volume | 31

Application Startup and Stop
Notifications

If you are writing a shared library instead of an application and you
want to be notified about the HotSync event, your call to
SysNotifyRegister looks slightly different. See Listing 2.5.

Listing 2.5 Registering a shared library for a notification

SysNotifyRegister (myCardNo, shlibDBID,
sysNotifySyncStartEvent, SyncNotifyHandler,
sysNotifyNormalPriority, myDataP) ;

The parameters you pass to the SysNotifyRegister function
specify the following:

¢ The first two parameters are the card number and database
ID for the prc file. Be sure you're not passing the local ID of
the record database that your application accesses. You use
the record database’s local ID more frequently than you do
the application’s local ID, so this is a common mistake to
make.

* sysNotifySyncStartEvent specifies that you want to be
informed when a HotSync operation is about to start. There
is also a sysNotifySyncFinishEvent that specifies that a
HotSync operation has ended.

¢ The next parameter specifies how the notification should be
received. This is where Listing 2.4 and Listing 2.5 differ.

Applications use NULL for this parameter to specify that they
should be notified through the application launch code
sysAppLaunchCmdNotify. As with all other launch codes,
the system passes this to the application’s PilotMain
function.

The shared library has no PilotMain function and therefore
no way to receive a launch code, so it passes a pointer to a
callback function. Only use a callback function if your code
doesn’t have a PilotMain.

Note that it’s always necessary to pass the card number and
database ID of your prc file even if you specify a callback
function.

* sysNotifyNormalPriority means that you don’t want
your code to receive any special consideration when

32 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Notifications

receiving the notification. Notifications are broadcast
synchronously in priority order. The lower the number you
specify here, the earlier you receive the notification in the list.

In virtually all cases, you should use
sysNotifyNormalPriority. If you absolutely must
ensure that your code is notified in a certain order (either
before most notifications or after most notifications), be sure
to leave some space between priority values so that your
code won't collide with the system’s handling of notifications
or with another application’s handling of notifications. Never
use the extreme maximum or minimum allowed value. In
general, Palm™ recommends using a value whose least
significant bits are 0 (such as 32, 64, 96, and so on).

e myDataP is a pointer to any data you need to access in your
notification handler function. As with most launch codes,
sysAppLaunchCmdNotify does not provide access to
global variables, so you should use this pointer to pass
yourself any needed data.

After you've made the calls shown in Listing 2.4 and Listing 2.5 and
the system is about to begin a HotSync operation, it broadcasts the
sysNotifySyncStartEvent notification to both clients.

The application is notified through the sysAppLaunchCmdNotify
launch code. This launch code’s parameter block is a
SysNotifyParamType structure containing the notification name,
the broadcaster, and a pointer to your specific data (myDataP in the
example above). Some notifications contain extra information in a
notifyDetailsP field in this structure. The HotSync notifications
do not use the notifyDetailsP field.

The shared library is notified by a call to its SyncNotifyHandler
function. This function is passed the same SysNotifyParamType
structure that is passed through the launch code mechanism.

Palm OS Programmer’s Companion, Volume | 33

Application Startup and Stop

Notifications

IMPORTANT: Because the callback pointer is used to directly
call the function, the pointer must remain valid from the time
SysNotifyRegister is called to the time the notification is
broadcast. If the function is in a shared library, you must keep the
library open. If the function is in a separately loaded code
resource, the resource must remain locked while registered for
the notification. When you close a library or unlock a resource,
you must first unregister for any notifications. If you don’t, the
system will crash when the notification is broadcast.

Writing a Notification Handler

The application’s response to sysAppLaunchCmdNot ify and the
shared library’s callback function are called notification handlers.
A notification handler may perform any processing necessary,
including displaying a user interface or broadcasting other
notifications.

When displaying a user interface, consider the possibility that you
may be blocking other applications from receiving the notification.
For this reason, it’s generally not a good idea to display a modal
form or do anything else that requires waiting for the user to
respond. Also, many of the notifications are broadcast during
SysHandleEvent, which means your application event loop may
not have progressed to the point where it is possible for you to
display a user interface, or that you may overflow the stack.

If you need to perform some lengthy process in a notification
handler, one way to ensure that you aren’t blocking other events is
to send yourself a deferred notification. For example, Listing 2.6
shows a notification handler for the
sysNotifyTimeChangeEvent notification that performs no work
other than setting up a deferred notification
(myDeferredNotifyEvent) and scheduling it for broadcast.
When the application receives the myDeferredNotifyEvent, it
calls the MyNot i fyHandler function, which is where the
application really handles the time change event.

34 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Notifications

Listing 2.6 Deferring notification within a handler

case sysAppLaunchCmdNotify :
if (cmdPBP->notify-s>notifyType == sysNotifyTimeChangeEvent) {
SysNotifyParamType notifyParm;
MyGlobalsToAccess myData;

/* initialize myData here */

/* Create the notification block. */
notifyParam.notifyType = myDeferredNotifyEvent;
notifyParam.broadcaster = myCreatorID;
notifyParam.notifyDetailsP= NULL;
notifyParam.handled = false;

/* Register for my notification */
SysNotifyRegister (myCardNo, appDBID, myDeferredNotifyEvent, NULL,
sysNotifyNormalPriority, &myData) ;

/* Broadcast the notification */
SysNotifyBroadcastDeferred (¬ifyParam, NULL) ;

} else if (cmdPBP->notify-s>notifyType == myDeferredNotifyEvent)
MyNotifyHandler (cmdPBP->notify) ;
break;

The SysNotifyBroadcastDeferred function broadcasts the
specified notification to all interested parties; however, it waits to do
so until the current event has completed processing. Thus, by using
a separate deferred notification, you can be sure that all other clients
have had a chance to respond to the first notification.

There are several functions that broadcast notifications. Notification
handlers should use SysNotifyBroadcastDeferred to avoid
the possibility of overflowing the notification stack.

A special case of dealing with lengthy computations in a notification
handler occurs when the system is being put to sleep. See “Sleep
and Wake Notifications” below.

Sleep and Wake Notifications

Several notifications are broadcast at various stages when the
system goes to sleep and when the system wakes up. These are:

e sysNotifySleepRequestEvent

Palm OS Programmer’s Companion, Volume | 35

Application Startup and Stop

Notifications

¢ sysNotifySleepNotifyvEvent

e sysNotifyvEarlyvWakeupEvent

e sysNotifvlLateWakeupEvent

These notifications are not guaranteed to be broadcast. For example,
if the system goes to sleep because the user removes the batteries,
sleep notifications are not sent. Thus, these notifications are
unsuitable for applications where external hardware must be shut
off to conserve power before the system goes to sleep.

If you want to know when the system is going to sleep because you
have a small amount of cleanup that should occur beforehand, then
register for sysNotifySleepNotifyEvent.

It is recommended that you not perform any sort of prolonged
activity, such as displaying an alert panel that requests
confirmation, in response to a sleep notification. If you do, the alert
might be displayed long enough to trigger another auto-off event,
which could be detrimental to other handlers of the sleep notify
event.

In a few instances, you might need to prevent the system from going
to sleep. For example, your code might be in the middle of
performing some lengthy computation or in the middle of
attempting a network connection. If so, register for the
sysNotifySleepRequestEvent instead. This notification
informs all clients that the system might go to sleep. If necessary,
your handler can delay the sleep request by doing the following;:

((SleepEventParamType *)
(notify->notifyDetailsP)) ->deferSleep++;

The system checks the deferSleep value when each notification
handler returns. If it is nonzero, it cancels the sleep event.

After you defer sleep, your code is free to finish what it was doing.
When it is finished, you must allow the system to continue with the
sleep event. To do so, create a keyDownEvent with the
resumeSleepChr and the command key bit set (to signal that the
character is virtual) and add it to the event queue. When the system
receives this event, it will again broadcast the
sysNotifySleepRequestEvent to all clients. If deferSleepis
0 after all clients return, then the system knows it is safe to go to

36 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Notifications

sleep, and it broadcasts the sysNotifySleepNotifyEvent to all
of its clients.

Notice that you may potentially receive the
sysNotifySleepRequestEvent many times before the system
actually goes to sleep, but you receive the
sysNotifySleepNotifyEvent exactly once.

During a wake-up event, the other two notifications listed above are
broadcast. The sysNotifyEarlyWakeupEvent is broadcast very
early on in the wakeup process, generally before the screen has
turned on. At this stage, it is not guaranteed that the system will
fully wake up. It may simply handle an alarm or a battery charger
event and go back to sleep. Most applications that need notification
of a wakeup event will probably want to register for
sysNotifyLateWakeupEvent instead. At this stage, the screen
has been turned on and the system is guaranteed to fully wake up.

When the handheld receives the sysNotifyLateWakeupEvent
notification, it may be locked and waiting for the user to enter the
password. If this is the case, you must wait for the user to unlock the
handheld before you display a user interface. Therefore, if you
intend to display a user interface when the handheld wakes up, you
should make sure the handheld is not locked. If the handheld is
locked, you should register for sysNotifyDeviceUnlocked
notification and display your user interface when it is received. See

Listing 2.7.

Listing 2.7 Responding to Late Wakeup Notification

case sysNotifyLateWakeupEvent:
if ((Boolean)

PrefGetPreference (prefDeviceLocked)) {
SysNotifyRegister (myCardNo, myDbID,
sysNotifyDeviceUnlocked, NULL,

sysNotifyNormalPriority, NULL) ;
} else {
HandleDeviceWakeup () ;
}

case sysNotifyDeviceUnlocked:
HandleDeviceWakeup () ;

Palm OS Programmer’s Companion, Volume | 37

Application Startup and Stop

Helper Notifications

Helper Notifications

Ifthe4.0 New Feature Set is present, the helper notification,
sysNotifyHelperEvent, is defined. This notification is a way for
one application to request a service from another application. On
Palm OS 4.0, the Dial application is the only application that
performs a service through sysNotifyHelperEvent. Specifically,
the Dial application dials a phone in response to this notification.
The Address Book uses the Dial application to dial the phone
number that the user has selected. You can use the Dial application
in a similar way by broadcasting the sysNotifyHelperEvent
from your application. You may also choose to write a provider of
services.

In this section, the application that responds to the
sysNotifyHelperEvent notification is called the helper, and the
application that broadcasts the notification is called the broadcaster.

Ahelper registers for the sysNot i fyHelperEvent notification. In
the notification handler, the helper responds to action requests
pertaining to the service that it provides.

Actions are requests to provide information about the service or to
perform the service. The details structure for
sysNotifyHelperEvent (a HelperNotifyEventType
structure) defines three possible actions:

* kHelperNotifyActionCodeEnumerate is a request for
the helper to list the services that it can perform.

* kHelperNotifyActionCodeValidate isarequest for the
helper to make sure that it can perform the service.

® kHelperNotifyActionCodeExecute is a request to
actually perform the service.

The possible services are defined in HelperServiceClass.hand
described in the chapter “Helper API” on page 749 of the Palm OS
Programmer’s API Reference. These services are to dial a number,
email a message, send an SMS message, or send a fax. If you want to
define your own service, you must register a unique creator ID for
that service. Alternatively, you can use the creator ID of your
application.

38 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Helper Notifications

This section discusses the helper APIs, which include the
sysNotifyHelperEvent notification and the data structures that
it passes as the notifyDetailsP portion of the
SysNotifyParamType structure. It covers:

¢ When to Use the Helper API
* Requesting a Helper Service

¢ Implementing a Helper

When to Use the Helper API

If the 4.0 New Feature Set is present, there are several means by
which one application can communicate with another application
on the same handheld. Specifically, an application can send a launch
code to another application (see “Launching Applications
Programmatically” in this chapter), can use the Exchange Manager
and Local Exchange Library to send data to another application (see
the “Object Exchange” chapter), or can use the helper API to request
that a service be performed. It can be difficult to determine which is
the best method to use for your particular situation.

The helper API is best used in these circumstances:

® The 4.0 New Feature Set is present.
* You do not know anything about the receiving application.

The helper API provides a means of communication where
the sending and receiving application do not need to know
anything about each other. This contrasts with the launch
code mechanism, in which the sending application must
know the card number and local ID of the receiving database
as well as which launch code to send.

¢ You want to communicate with any type of program.

Because the helper API uses a notification, the helper can be a
shared library or another separately loaded code resource.
Launch codes can only be received by applications. Because
the Exchange Manager works through launch codes, it also
only works with applications.

Palm OS Programmer’s Companion, Volume | 39

Application Startup and Stop
Helper Notifications

Requesting a Helper Service

Listing 2.8 shows how an application should request the dial
service. In general, you should do the following to request a service:

® Broadcast a sysNotifyHelperEvent witha
kHelperNotifyActionCodeValidate action each time
you want to advertise that the service is available.

For example, when the Address Book initializes the List view
form, it checks to see if the dial service is available by
broadcasting the notification with the action code
kHelperNotifyActionCodeValidate. The Dial
application makes sure the Telephony Library is open. If so,
it sets handled to true in the SysNotifyParamType
structure. If not, it sets handled to false. If handledis
false after the notification is broadcast, the Address Book
does not display the Dial menu item.

¢ Broadcast a sysNotifyHelperEvent witha
kHelperNotifyActionCodeExecute action when you
want the service performed. See Listing 2.8.

¢ If you want to obtain a list of all possible services, broadcast a
sysNotifyHelperEvent with a
kHelperNotifyActionCodeEnumerate action. You
might do so when your application is launched, upon system
reset, or any time the user performs a task where you might
want to provide a service.

Listing 2.8 Requesting a helper service

Boolean PrvDialListDialSelected (FormType* frmP) {
SysNotifyParamType param;
HelperNotifyEventType details;
HelperNotifyExecuteType execute;

param.notifyType = sysNotifyHelperEvent;
param.broadcaster = sysFileCAddress;
param.notifyDetailsP = &details;
param.handled = false;

details.version = kHelperNotifyCurrentVersion;
details.actionCode = kHelperNotifyActionCodeExecute;
details.data.executeP = &execute;

40 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Helper Notifications

execute.serviceClassID = kHelperServiceClassIDVoiceDial;

execute.helperAppID = 0;

execute.dataP = FldGetTextPtr (ToolsGetFrmObjectPtr (frmP,
DialListNumberField)) ;

execute.displayedName = gDisplayName;

execute.detailsP = 0;

execute.err = errNone;

SysNotifyBroadcast (¶m) ;

// Check error code

if (!param.handled)

// Not handled so exit the list - Unexpected error
return true;

else
return (execute.err == errNone) ;

When you broadcast the sysNot ifyHelperEvent, it's important
to note the following:

* Always use SysNotifyBroadcast, which broadcasts the
notification synchronously.

¢ The notification’s not ifyDetailsP parameter points to a
HelperNotifyEventType. This structure allows the
broadcaster to communicate with the helper.

* The helper may allocate memory and add it to the
HelperNotifyEventType structure. In particular, if the
action code is kHelperNotifyActionCodeEnumerate,
the helper allocates at least one structure of type
HelperNotifyEnumerateListType and adds it to the
data field in the HelperNotifyEventType structure. The
broadcaster must free this memory, even though the helper
allocated it.

¢ The broadcaster uses the helperAppID field to
communicate directly with a particular provider of the
requested service. For example, suppose two applications
provide a dial service. The broadcaster might discover these
two applications through the enumerate action and then
allow the user to specify which application should dial the
phone number. When broadcasting the enumerate action, no
helper ID is specified, so all helpers respond. After the user
has set the preferred helper, the broadcaster sets the

Palm OS Programmer’s Companion, Volume | 41

Application Startup and Stop
Helper Notifications

helperAppID field for the validate and execute actions to
that helper’s creator ID. A helper must check the
helperAppID field and only respond to the notification if its
creator ID matches the value in that field or if that field is 0.

* The dataP field contains the data required to perform the
service. For the dial service, dataP contains the phone
number to dial. If any extra information is required or
desired, then it is provided in the detailsP field. If you're
requesting the email or SMS service, you use detailsP to
provide the message to be sent. See the chapter “Helper API”
on page 749 of the Palm OS Programmer’s API Reference for
more information.

¢ The handled field of SysNotifyParamType and the err
field of the HelperNotifyEventType structure are used to
return the result. Always set handled to false and err to
errNone before broadcasting and check their values after
the broadcast is complete. The helper uses handled to
indicate if it attempted to handle the service. If handled is
true, it uses err to indicate the success or failure of
performing that service.

Implementing a Helper
To implement a helper, do the following:

* Register to receive the sysNotifyHelperEvent. It is best
to register for this notification in response to the
sysAppLaunchCmdSyncNotify and
sysAppLaunchCmdSystemReset launch codes. This
registers your helper when it is first installed and re-registers
it upon each system reset.

¢ In the notification handler, handle the three possible actions:
enumerate, execute, and validate. Note that even though the
enumerate action is optional and not currently used by
Address Book, a helper must respond to this action in its
handler because another third party application might send
the enumerate action.

Listing 2.9 and Listing 2.10 show how the Dial application responds
to the enumerate and validate actions. Note that the enumerate
action requires the helper to allocate memory and add that memory
to the HelperNotifyEventType structure pointed to by

42 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Helper Notifications

notifyDetailsPinthe SysNotifyParamType parameter block.
In this case, the notifyDetailsP->dataP field is a linked list of
HelperNotifyEnumerateListType structures. Each helper
must allocate one of these structure per service and add it to the end
of the list. The broadcaster is responsible for freeing all of these
structures after the notification broadcast is complete.

Listing 2.9 Enumerating services provided

Boolean PrvAppEnumerate
(HelperNotifyEventType *helperNotifyEventp)
HelperNotifyEnumerateListType* newNodeP;
MemHandle handle;
MemPtr stringP;

newNodeP = MemPtrNew
(sizeof (HelperNotifyEnumerateListType)) ;

// Get name to display in user interface.

handle = DmGetResource (strRsc, HelperAppNameString) ;
stringP = MemHandleLock (handle) ;

StrCopy (newNodeP->helperAppName, stringP) ;
MemHandleUnlock (handle) ;

DmReleaseResource (handle) ;

// Get name of service to display in UI.

handle = DmGetResource (strRsc, HelperActionNameString) ;
stringP = MemHandleLock (handle) ;

StrCopy (newNodeP->actionName, stringP) ;

MemHandleUnlock (handle) ;

DmReleaseResource (handle) ;

newNodeP->serviceClassID = kHelperServiceClassIDVoiceDial;
newNodeP->helperAppID = kDialCreator;

newNodeP->nextP = 0;

// Add the new node.

if (helperNotifyEventP->data.enumerateP == 0) {
helperNotifyEventP->data.enumerateP = newNodeP;
else {

HelperNotifyEnumerateListType* nodeP;
nodeP = helperNotifyEventP->data.enumerateP;
//Look for the end of the list.
while (nodeP->nextP != 0)
nodeP = nodeP->nextP;

Palm OS Programmer’s Companion, Volume | 43

Application Startup and Stop
Helper Notifications

nodeP->nextP = newNodeP;

}

return true;

Listing 2.10 show how the Dial application responds to the validate
action.

Listing 2.10 Responding to validate action

Boolean PrvAppValidate (SysNotifyParamType *sysNotifyParamP)

{

HelperNotifyEventType* helperNotifyEvent;

helperNotifyEvent = sysNotifyParamP->notifyDetailsP;
// Check version
if (helperNotifyEvent->version < 1)

return false;

// Check service
if (helperNotifyEvent-> data.validateP->serviceClassID
I= kHelperServiceClassIDVoiceDial)
return false;

// check appId (either null or me)
if ((helperNotifyEvent->data.validateP->helperAppID != 0)
&& (helperNotifyEvent->data.validateP->helperAppID !=
kDialCreator))
return false;

// Check Telephony library presence
if (!PrvAppCheckTelephony ())
return false;

sysNotifyParamP->handled = true;
return true;

When writing a helper, it is also important to note the following:

¢ Always check the helperAppID field and only respond if it
is 0 or if it matches your creator ID. For the validate and
execute actions, a broadcaster may use helperAppID to
only communicate with the desired helper.

44 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Helper Notifications

¢ If you handle the action, set handled to true. If the
handling of the service was unsuccessful, set the err field in
notifyDetailsPp.

¢ Always check the handled field before performing the
service. If any helper can perform the service, you must make
sure that the service has not already been performed before
you perform it. If handled is true, the service has already
been performed.

* Remember that, as with all notifications, your notification
handler does not have access to global variables. If there is
data you need to access, pass it in the userDataP parameter
to SysNotifyRegister. If you want to have the
notification handler return before the service is fully
complete, make a copy of any data in the parameter block
that you will need to complete the service.

Palm OS Programmer’s Companion, Volume | 45

Application Startup and Stop
Launch Code Summary

Launch Code Summary

Table 2.1 lists all Palm OS standard launch codes. These launch
codes are declared in the header SystemMgr . h. All the parameters
for a launch code are passed in a single parameter block, and the
results are returned in the same parameter block.

Table 2.1 Palm OS Launch Codes

Code

Request

scptLaunchCmdExecuteCmd

scptLaunchCmdListCmds

syvsAppLaunchCmdAddRecord

sysAppLaunchCmdAlarmTriggered

sysAppLaunchCmdAttention

syvsAppLaunchCmdCardLaunch

sysAppLaunchCmdCountryChange

sysAppLaunchCmdDisplayAlarm

sysAppLaunchCmdExgAskUser

sysAppLaunchCmdExgGetData

Execute the specified Network login
script plugin command.

Provide information about the
commands that your Network script
plugin executes.

Add a record to a database.

Schedule next alarm or perform quick
actions such as sounding alarm tones.

Perform the action requested by the
attention manager.

Launch the application. This launch
code signifies that the application is
being launched from an expansion
card.

Respond to country change.

Display specified alarm dialog or
perform time-consuming alarm-
related actions.

Let application override display of
dialog asking user if they want to
receive incoming data via the
Exchange Manager.

Notify application that it should send
data using the Exchange Manager.

46 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Launch Code Summary

Table 2.1 Palm OS Launch Codes (continued)

Code

Request

sysAppLaunchCmdExgPreview

sysAppLaunchCmdExgReceiveData

sysAppLaunchCmdFind

sysAppLaunchCmdGoto

sysAppLaunchCmdGoToURL

svsAppLaunchCmdHandleSyncCallApp

sysAppLaunchCmdInitDatabase

syvsAppLaunchCmdLookup

sysAppLaunchCmdNormalLaunch

sysAppLaunchCmdNotify

sysAppLaunchCmdOpenDB

sysAppLaunchCmdPanelCalledFromApp

svsAppLaunchCmdReturnFromPanel

Notify application that it should
display a preview using the Exchange
Manager.

Notify application that it should
receive incoming data using the
Exchange Manager.

Find a text string.

Go to a particular record, display it,
and optionally select the specified text.

Launch an application and open a
URL.

Perform some application-specific
operation at the behest of the
application’s conduit.

Initialize database.

Look up data. In contrast to
sysAppLaunchCmdFind, a level of
indirection is implied. For example,
look up a phone number associated
with a name.

Launch normally.
Broadcast a notification.

Launch application and open a
database.

Tell preferences panel that it was
invoked from an application, not the
Preferences application.

Tell an application that it’s restarting
after preferences panel had been
called.

Palm OS Programmer’s Companion, Volume | 47

Application Startup and Stop
Notification Summary

Table 2.1 Palm OS Launch Codes (continued)

Code Request
sysAppLaunchCmdSaveData Save data. Often sent before find
operations.
sysAppLaunchCmdSyncNotify Notify applications that a HotSync has
been completed.
sysAppLaunchCmdSystemLock Sent to the Security application to
request that the system be locked
down.
sysAppLaunchCmdSystemReset Respond to system reset. No Ul is
allowed during this launch code.
sysAppLaunchCmdTimeChange Respond to system time change.
sysAppLaunchCmdURLParams Launch an application with

parameters from the Web Clipping
Application Viewer.

Notification Summary

Table 2.2 lists all Palm OS standard notifications. These notifications
are declared in the header NotifyMgr.h. All the parameters for a
notification are passed in a SysNot ifyParamType structure and
the results are returned in that same structure.

Table 2.2 Notification Constants

Constant Description

cncNotifyProfileEvent The connection profile used by the
Connection Panel has changed.

sysExternalConnectorAttachEvent A device has been attached to an external
connector.

sysExternalConnectorDetachEvent A device has been detached from an
external connector.

48 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Notification Summary

Table 2.2 Notification Constants (continued)

Constant

Description

sysNotifyAntennaRaisedEvent

sysNotifyCardInsertedEvent

sysNotifyCardRemovedEvent

sysNotifyDBCreatedEvent

sysNotifyDBChangedEvent

sysNotifyDBDeletedEvent

sysNotifyDBDirtyEvent

sysNotifyDeleteProtectedEvent

sysNotifyDeviceUnlocked

sysNotifyDisplayChangeEvent

sysNotifvEarlyvWakeupEvent

sysNotifyForgotPasswordEvent

sysNotifyvGotUsersAttention

sysNotifvHelperEvent

sysNotifyIrDASniffEvent

sysNotifyvlLateWakeupEvent

The antenna has been raised on a Palm
VII series handheld.

An expansion card has been inserted into
the expansion slot.

An expansion card has been removed
from the expansion slot.

A database has been created.

Database info has been set on a database,
such as with DmSetDatabaseInfo.

A database has been deleted.

An overlay has been opened, a database
has been opened for write, or another
event has occurred which has made the
database info “dirty.”

The Launcher has attempted to delete a
protected database.

The user has unlocked the handheld.
The color table or bit depth has changed.
The system is starting to wake up.

The user has tapped the Lost Password
button in the Security application.

The Attention Manager has informed the
user of an event.

An application has requested that a
particular service be performed.

Not used.

The system has finished waking up.

Palm OS Programmer’s Companion, Volume | 49

Application Startup and Stop

Launch and Notification Function Summary

Table 2.2 Notification Constants (continued)

Constant

Description

sysNotifyLocaleChangedEvent

sysNotifyMenuCmdBarOpenEvent

sysNotifyNetLibIFMediaEvent

sysNotifyPhoneEvent
sysNotifyPOSEMountEvent

sysNotifyvResetFinishedEvent

sysNotifvRetrvEngueueKey

sysNotifySleepNotifyEvent

sysNotifySleepRequestEvent

sysNotifySyncFinishEvent

sysNotifySyncStartEvent

sysNotifyTimeChangeEvent

sysNotifyVolumeMountedEvent

sysNotifyVolumeUnmountedEvent

The system locale has changed.

The system is about to display the menu
command toolbar.

The system has been connected to or
disconnected from the network.

Reserved for future use.
System use only.
The system has finished a reset.

The Attention Manager has failed to post
a virtual character to the key queue.

The system is about to go to sleep.

The system has decided to go to sleep.

A HotSync operation has just completed.
A HotSync operation is about to begin.
The system time has just changed.

A file system has been mounted.

A file system has been unmounted.

Launch and Notification Function Summary

Launching Applications

SysAppLaunch

SysUIAppSwitch

SvsBroadcastActionCode

50 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Launch and Notification Function Summary

Launching Applications

Notification Manager Functions

SysNotifyRegister SysNotifyUnregister
SysNotifyBroadcast SysNotifyBroadcastDeferred
SysNotifyBroadcastFromInterrupt

Palm OS Programmer’s Companion, Volume | 51

Application Startup and Stop
Launch and Notification Function Summary

52 Palm OS Programmer’s Companion, Volume |

Event Loop

This chapter discusses the Event Manager, the main interface
between the Palm OS® system software and the application. It
discusses in some detail what an application does in response to
user input, providing code fragments as examples where needed.
The topics covered are:

* The Application Event Loop

e Low-Level Event Management

This chapter’s focus is on how to write your applications main
event loop. For more detailed information on events, consult the
Palm OS Programmer’s API Reference. Details for each event are given
in Chapter 2, “Palm OS Events.” In addition to the reference
material, consult the chapter “User Interface” in this book. It
provides the event flow for each user interface element.

Figure 3.1 illustrates control flow in a typical application.

Palm OS Programmer’s Companion, Volume | 53

Event Loop

Figure 3.1 Control Flow in a Typical Application

Remain in loop until

no

EvtGetEvent

there is an event. [

Process event,
—| generate other events

<

yes

Is there an event?

+ yes

SysHandleEvent

Is this a system function?

as necessary, return.

Handle menu interface,

yes Y

(e.g., power-off, Graffiti input)

*no

@enuHandleEverD

A

A then go on.

Is this a menu?

Y no

QpplicationHandleEveD

handler for form loaded.

Load from resources, set event

yes

Y

Is this a frmLoadEvent?

-

handler for form.

Dispatch event to application’s

yes

no

@Dispatch Event >

Y
Did application handler

complete event processing?
* no

@HandleEvent >

Y

Provide default processing
for event.

54 Palm OS Programmer’s Companion, Volume |

Event Loop
The Application Event Loop

The Application Event Loop

As described in the previous chapter, “Application Startup and
Stop,” an application performs a full startup when it receives the
launch code sysAppLaunchCmdNormalLaunch. It begins with a
startup routine, then goes into an event loop, and finally exits with a
stop routine.

In the event loop, the application fetches events from the queue and
dispatches them, taking advantage of the default system
functionality as appropriate.

While in the loop, the application continuously checks for events in
the event queue. If there are events in the queue, the application has
to process them as determined in the event loop. As a rule, the
events are passed on to the system, which knows how to handle
them. For example, the system knows how to respond to pen taps
on forms or menus.

The application typically remains in the event loop until the system
tells it to shut itself down by sending an appStopEvent (not a
launch code) through the event queue. The application must detect
this event and terminate.

Listing 3.1 Top-Level Event Loop Example from Datebook.c

static void EventLoop (void)

{

UIntl6é error;
EventType event;
do

{

EvtGetEvent (&event, evtWaitForever) ;

PreprocessEvent (&event) ;

if (! SysHandleEvent (&event))
if (! MenuHandleEvent (NULL, &event, &error))
if (! ApplicationHandleEvent (&event))

FrmDispatchEvent (&event) ;

#if EMULATION_ LEVEL != EMULATION_NONE
ECApptDBValidate (ApptDB) ;

Palm OS Programmer’s Companion, Volume | 55

Event Loop
The Application Event Loop

#endif

}

while (event.eType != appStopEvent) ;

In the event loop, the application iterates through these steps (see
Figure 3.1 and Listing 3.1)
1. Fetch an event from the event queue.

2. Call preprocessEvent to allow the datebook event
handler to see the command keys before any other event
handler gets them. Some of the datebook views display Ul
that disappears automatically; this UI needs to be dismissed
before the system event handler or the menu event handler
display any UI objects.

Note that not all applications need a PreprocessEvent

function. It may be appropriate to call SysHandleEvent
right away.

3. (Call SysHandleEvent to give the system an opportunity to
handle the event.

The system handles events like power on/power off,
Graffiti® input, tapping Graffiti area icons, or pressing
buttons. During the call to SysHandleEvent, the user may
also be informed about low-battery warnings or may find
and search another application.

Note that in the process of handling an event,
SysHandleEvent may generate new events and put them
on the queue. For example, the system handles Graffiti input
by translating the pen events to key events. Those, in turn,
are put on the event queue and are eventually handled by the
application.

SysHandleEvent returns true if the event was completely
handled, that is, no further processing of the event is
required. The application can then pick up the next event
from the queue.

4. If sysHandleEvent did not completely handle the event,
the application calls MenuHandleEvent.
MenuHandleEvent handles two types of events:

56 Palm OS Programmer’s Companion, Volume |

Event Loop
The Application Event Loop

— If the user has tapped in the area that invokes a menu,
MenuHandleEvent brings up the menu.

— If the user has tapped inside a menu to invoke a menu
command, MenuHandleEvent removes the menu from
the screen and puts the events that result from the
command onto the event queue.

MenuHandleEvent returns true if the event was
completely handled.

If MenuHandleEvent did not completely handle the event,
the application calls ApplicationHandleEvent, a
function your application has to provide itself.
ApplicationHandleEvent handles only the
frmLoadEvent for that event; it loads and activates
application form resources and sets the event handler for the
active form by calling the function FrmSetEventHandler.

If ApplicationHandleEvent did not completely handle
the event, the application calls FrmDispatchEvent.
FrmDispatchEvent first sends the event to the
application’s event handler for the active form. This is the
event handler routine that was established in
ApplicationHandleEvent. Thus the application’s code is
given the first opportunity to process events that pertain to
the current form. The application’s event handler may
completely handle the event and return true to calls from
FrmDispatchEvent.In that case, FrmDispatchEvent
returns to the application’s event loop. Otherwise,
FrmDispatchEvent calls FrmHandleEvent to provide the
system’s default processing for the event.

For example, in the process of handling an event, an
application frequently has to first close the current form and
then open another one, as follows:

— The application calls FrmGotoForm to bring up another
form. FrmGotoForm queues a frmCloseEvent for the
currently active form, then queues frml.oadEvent and
frmOpenEvent for the new form.

— When the application gets the frmCloseEvent, it closes
and erases the currently active form.

— When the application gets the frmLoadEvent, it loads
and then activates the new form. Normally, the form
remains active until it’s closed. (Note that this wouldn’t
work if you preload all forms, but preloading is really

Palm OS Programmer’s Companion, Volume | 57

Event Loop
Low-Level Event Management

discouraged. Applications don’t need to be concerned
with the overhead of loading forms; loading is so fast that
applications can do it when they need it.) The
application’s event handler for the new form is also
established.

— When the application gets the frmOpenEvent, it
performs any required initialization of the form, then
draws the form on the display.

After FrmGotoForm has been called, any further events that
come through the main event loop and to
FrmDispatchEvent are dispatched to the event handler for
the form that’s currently active. For each dialog or form, the
event handler knows how it should respond to events, for
example, it may open, close, highlight, or perform other
actions in response to the event. FrmHandleEvent invokes
this default UI functionality.

After the system has done all it can to handle the event for
the specified form, the application finally calls the active
form’s own event handling function. For example, in the
datebook application, it may call DayViewHandleEvent or
WeekViewHandleEvent.

Notice how the event flow allows your application to rely on system
functionality as much as it wants. If your application wants to know
whether a button is pressed, it has only to wait for
ctlSelectEvent. All the details of the event queue are handled
by the system.

Some events are actually requests for the application to do
something, for example, frmOpenEvent. Typically, all the
application does is draw its own interface, using the functions
provided by the system, and then waits for events it can handle to
arrive from the queue.

Only the active form should process events.

Low-Level Event Management

The five ways that a user interacts with an application are:

* by entering Graffiti

58 Palm OS Programmer’s Companion, Volume |

Event Loop
Low-Level Event Management

* by pressing a hardware button on the handheld

* by tapping the pen on a control in a form or dialog

* by tapping on an onscreen keyboard in the keyboard dialog.
* by tapping in the menu bar or in a particular menu.

For the first three types of input, the Palm OS provides a dedicated
manager: the Graffiti Manager, the Key Manager, and the Pen
Manager, respectively. Most applications do not need to access these
managers directly; instead, applications receive events from these
managers and respond to the events. There are cases, however,
where you might need to interact with one of these managers. The
following pages describe each of these managers and when you
might need to use them. To learn how to obtain user input from a Ul
object, refer to the section in Chapter 4, “User Interface,” on page 69
that covers that object.

The keyboard dialog allows users to input characters into a text field
by tapping an onscreen keyboard. When the keyboard dialog is
closed, the amended text is automatically displayed in the original
tield. As with the three managers just mentioned, you will probably
not need to access the keyboard dialog directly. The user can open
the keyboard from any text field. In certain limited circumstances,
however, you may wish to display the keyboard dialog
programmatically. For more information, see “The Keyboard

Dialog” on page 87.
The Menu Manager handles taps that display a menu and those that
select an item from a menu. For details, see “Menus” on page 105.

In addition to these managers, the System Event Manager is another
manager involved in low-level event handling. Most applications
have no need to call the System Event Manager directly because
most of the functionality they need comes from the higher-level
Event Manager or is automatically handled by the system.

This section provides information about the following managers:

The Graffiti Manager
The Key Manager

The Pen Manager

The System Event Manager

Palm OS Programmer’s Companion, Volume | 59

Event Loop
Low-Level Event Management

The Graffiti Manager

The Graffiti Manager provides an API to the Palm OS Graffiti
recognizer. The recognizer converts pen strokes into key events,
which are then fed to an application through the Event Manager.

Most applications never need to call the Graffiti Manager directly
because it’s automatically called by the Event Manager whenever it
detects pen strokes in the Graffiti area of the digitizer.

Special-purpose applications, such as a Graffiti tutorial, may want
to call the Graffiti Manager directly to recognize strokes in other
areas of the screen or to customize the Graftiti behavior.

Using GrfProcessStroke

GrfProcessStroke is a high-level Graffiti Manager call used by
the Event Manager for converting pen strokes into key events. The
call

¢ Removes pen points from the pen queue
* Recognizes the stroke
¢ Puts one or more key events into the key queue

GrfProcessStroke automatically handles Graffiti Shortcuts and
calls the user interface as appropriate to display shift indicators in
the current window.

An application can call GrfProcessStroke when it receives a
penUpEvent from the Event Manager if it wants to recognize
strokes entered into its application area (in addition to the Graffiti
area).

Using Other High-Level Graffiti Manager Calls

Other high-level calls provided by the Graffiti Manager include
routines for

¢ Getting and setting the current Graffiti shift state (caps lock
on/off, temporary shift state, etc.)

* Notifying Graffiti when the user selects a different field.
Graffiti needs to be notified when a field change occurs so
that it can cancel out of any partially entered shortcut and
clear its temporary shift state if it's showing a potentially
accented character.

60 Palm OS Programmer’s Companion, Volume |

Event Loop
Low-Level Event Management

Special-Purpose Graffiti Manager Calls

The remainder of Graffiti Manager API routines are for special-
purpose use. They are basically all the entry points into the Graffiti
recognizer engine and are usually called only by
GrfProcessStroke. These special-purpose uses include calls to
add pen points to the Graffiti recognizer’s stroke buffer, to convert
the stroke buffer into a Graffiti glyph ID, and to map a glyph into a
string of one or more key strokes.

Accessing Graffiti Shortcuts

Other routines provide access to the Graffiti Shortcuts database.
This is a separate database owned and maintained by the Graffiti
Manager that contains all of the shortcuts. This database is opened
by the Graffiti Manager when it initializes and stays open even after
applications quit.

The only way to modify this database is through the Graffiti
Manager API. It provides calls for getting a list of all shortcuts, and
for adding, editing, and removing shortcuts. The Shortcuts screen of
the Preferences application provides a user interface for modifying
this database.

Note on Auto Shifting

The Palm OS 2.0 and later automatically uses an upper-case letter
under the following conditions:

* Period and space or Return.
¢ Other sentence terminator (such as ? or !) and space

This functionality requires no changes by the developer, but should
be welcome to the end user.

Note that the auto-shifting rules are language-specific, since
capitalization differs depending on the region. These rules depend
on the version of the ROM, the market into which the handheld is
being sold, and so on.

Note on Graffiti Help

In Palm OS 2.0 and later, applications can pop up Graffiti help by
calling SysGraffitiReferenceDialog or by putting a virtual

Palm OS Programmer’s Companion, Volume | 61

Event Loop

Low-Level Event Management

character—graffitiReferenceChr from Chars.h—on the
queue.

Graffiti help is also available through the system Edit menu. As a
result, any application that includes the system Edit menu allows
users to access Graffiti Help that way.

The Key Manager

The Key Manager manages the hardware buttons on the Palm
Powered " handheld. It converts button presses into key events and
implements auto-repeat of the buttons. Most applications never
need to call the Key Manager directly except to change the key
repeat rate or to poll the current state of the keys.

The Event Manager is the main interface to the keys; it returns a
keyDownEvent to an application whenever a button is pressed.
Normally, applications are notified of key presses through the Event
Manager. Whenever a hardware button is pressed, the application
receives an event through the Event Manager with the appropriate
key code stored in the event record. The state of the hardware
buttons can also be queried by applications at any time through the
KeyCurrentState function call.

The KeyRates call changes the auto-repeat rate of the hardware
buttons. This might be useful to game applications that want to use
the hardware buttons for control. The current key repeat rates are
stored in the Key Manager globals and should be restored before the
application exits.

The Pen Manager

The Pen Manager manages the digitizer hardware and converts
input from the digitizer into pen coordinates. The Palm Powered
handheld has a built-in digitizer overlaid onto the LCD screen and
extending about an inch below the screen. This digitizer is capable
of sampling accurately to within 0.35 mm (.0138 in) with up to 50
accurate points/second. When the handheld is in doze mode, an
interrupt is generated when the pen is first brought down on the
screen. After a pen down is detected, the system software polls the
pen location periodically (every 20 ms) until the pen is again raised.

62 Palm OS Programmer’s Companion, Volume |

Event Loop
Low-Level Event Management

Most applications never need to call the Pen Manager directly
because any pen activity is automatically returned to the application
in the form of events.

Pen coordinates are stored in the pen queue as raw, uncalibrated
coordinates. When the System Event Manager routine for removing
pen coordinates from the pen queue is called, it converts the pen
coordinate into screen coordinates before returning.

The Preferences application provides a user interface for calibrating
the digitizer. It uses the Pen Manager API to set up the calibration
which is then saved into the Preferences database. The Pen Manager
assumes that the digitizer is linear in both the x and y directions; the
calibration is therefore a simple matter of adding an offset and
scaling the x and y coordinates appropriately.

The System Event Manager
The System Event Manager:
* manages the low-level pen and key event queues.
* translates taps on Graffiti area icons into key events.

* sends pen strokes in the Gratffiti area to the Graffiti
recognizer.

* puts the system into low-power doze mode when there is no
user activity.

Most applications have no need to call the System Event Manager
directly because most of the functionality they need comes from the
higher-level Event Manager or is automatically handled by the
system.

Applications that do use the System Event Manager directly might
do so to enqueue key events into the key queue or to retrieve each of
the pen points that comprise a pen stroke from the pen queue.

Event Translation: Pen Strokes to Key Events

One of the higher-level functions provided by the System Event
Manager is conversion of pen strokes on the digitizer to key events.
For example, the System Event Manager sends any stroke in the
Graftiti area of the digitizer automatically to the Graffiti recognizer
for conversion to a key event. Taps on Graffiti area icons, such as the

Palm OS Programmer’s Companion, Volume | 63

Event Loop
Low-Level Event Management

Application button, Menu button, and Find button, are also
intercepted by the System Event Manager and converted into the
appropriate key events.

When the system converts a pen stroke to a key event, it:

* Retrieves all pen points that comprise the stroke from the pen
queue

¢ Converts the stroke into the matching key event
* Enqueues that key event into the key queue

Eventually, the system returns the key event to the application as a
normal result of calling EvtGetEvent.

Most applications rely on the following default behavior of the
System Event Manager:

¢ All strokes in the predefined Graffiti area of the digitizer are
converted to key events

¢ All taps on the Graffiti area icons are convert to key events
¢ All other strokes are passed on to the application for
processing
Pen Queue Management

The pen queue is a preallocated area of system memory used for
capturing the most recent pen strokes on the digitizer. It is a circular
queue with a first-in, first-out method of storing and retrieving pen
points. Points are usually enqueued by a low-level interrupt routine
and dequeued by the System Event Manager or application.

Table 3.1 summarizes pen management.

Table 3.1 Pen queue management

The user... The system...

Brings the pen down Stores a pen-down sequence in the pen

on the digitizer. queue and starts the stroke capture.

Draws a character. Stores additional points in the pen queue
periodically.

Lifts the pen. Stores a pen-up sequence in the pen

queue and turns off stroke capture.

64 Palm OS Programmer’s Companion, Volume |

Event Loop
Low-Level Event Management

The System Event Manager provides an API for initializing and
flushing the pen queue and for queuing and dequeuing points.
Some state information is stored in the queue itself: to dequeue a
stroke, the caller must first make a call to dequeue the stroke
information (EvtDequeuePenStrokeInfo) before the points for
the stroke can be dequeued. Once the last point is dequeued,
another EvtDequeuePenStrokeInfo call must be made to get the
next stroke.

Applications usually don’t need to call
EvtDequeuePenStrokeInfo because the Event Manager calls
this function automatically when it detects a complete pen stroke in
the pen queue. After calling EvtDequeuePenStrokeInfo, the
System Event Manager stores the stroke bounds into the event
record and returns the pen-up event to the application. The
application is then free to dequeue the stroke points from the pen
queue, or to ignore them altogether. If the points for that stroke are
not dequeued by the time EvtGetEvent is called again, the System
Event Manager automatically flushes them.

Key Queue Management

The key queue is an area of system memory preallocated for
capturing key events. Key events come from one of two
occurrences:

* As a direct result of the user pressing one of the buttons on
the case

* As a side effect of the user drawing a Graffiti stroke on the
digitizer, which is converted in software to a key event

Table 3.2 summarizes key management.

Table 3.2 Key queue management

User action

System response

Hardware button
press.

Hold down key for

Interrupt routine enqueues the appropriate key event into
the key queue, temporarily disables further hardware button
interrupts, and sets up a timer task to run every 10 ms.

Timer task to supports auto-repeat of the key (timer task is

extended time period. also used to debounce the hardware).

Palm OS Programmer’s Companion, Volume | 65

Event Loop
System Event Manager Summary

Table 3.2 Key queue management (continued)

User action System response

Release key for certain ~ Timer task reenables the hardware button interrupts.
amount of time.

Pen stroke in Graffiti =~ System Manager calls the Graffiti recognizer, which then

area of digitizer. removes the stroke from the pen queue, converts the stroke
into one or more key events, and finally enqueues these key
events into the key queue.

Pen stroke on silk- System Event Manager converts the stroke into the
screened icons. appropriate key event and enqueues it into the key queue.

The System Event Manager provides an API for initializing and
flushing the key queue and for enqueuing and dequeuing key
events. Usually, applications have no need to dequeue key events;
the Event Manager does this automatically if it detects a key in the
queue and returns a keyDownEvent to the application through the
EvtGetEvent call.

Auto-Off Control

Because the System Event Manager manages hardware events like
pen taps and hardware button presses, it’s responsible for resetting
the auto-off timer on the handheld. Whenever the system detects a
hardware event, it automatically resets the auto-off timer to 0. If an
application needs to reset the auto-off timer manually, it can do so
through the System Event Manager call EvtResetAutoOffTimer.

System Event Manager Summary

System Event Manager Functions

Main Event Queue Management

EvtGetEvent EvtEventAvail
EvtSysEventAvail EvtAddEventToQueue
EvtAddUniqueEventToQueue EvtCopyEvent

66 Palm OS Programmer’s Companion, Volume |

Event Loop
System Event Manager Summary

System Event Manager Functions

EvtSetNullEventTick

Pen Queue Management

EvtPenQueueSize EvtDequeuePenPoint
EvtDequeuePenStrokelnfo EvtFlushNextPenStroke
EvtFlushPenQueue EvtGetPen
EvtGetPenBtnList

Key Queue Management

EvtKeyQueueSize EvtEnqueueKey
EvtFlushKeyQueue EvtKeyQueueEmpty
EvtKeydownlsVirtual

Handling pen strokes and key strokes

EvtEnableGraffiti EvtProcessSoftKeyStroke

Handling Graffiti area

EvtGetSilkscreenAreal.ist

Handling power on and off events

EvtResetAutoOffTimer EvtSetAutoOffTimer
EvtWakeup EvtWakeupWithoutNilEvent

Graffiti Manager Functions

Translate a Stroke into Keyboard Events

GrfProcessStroke

Shift State

GrfInitState GrfGetState
GrfCleanState GrfSetState
GrfFindBranch

Palm OS Programmer’s Companion, Volume | 67

Event Loop
System Event Manager Summary

Graffiti Manager Functions

Point Buffer

GrfGetNumPoints GrfGetPoint
GrfAddPoint GrfFilterPoints
GrfFlushPoints GrfGetGlyphMapping
GrfMatch GrfMatchGlyph
Working with Macros

GrfGetAndExpandMacro GrfAddMacro
GrfDeleteMacro GrfGetMacro
GrfGetMacroName

Key Manager Functions

KeyCurrentState KeyRates
KeySetMask

Pen Manager Functions

PenCalibrate PenResetCalibration

68 Palm OS Programmer’s Companion, Volume |

4

User Interface

This chapter describes the user interface (UI) elements that you can
use in your application. To create a user interface element, you
create a resource that defines what that element looks like and
where it is displayed. You interact with the element
programmatically as a Ul object. A Palm OS® UI object is a C
structure that is linked with one or more items on the screen. Note
that Palm UI objects are just structures, not the more elaborate
objects found in some systems. This is useful because in general a C
structure is more compact than these other objects.

This chapter introduces each of the user interface objects. It also
describes Palm system managers that aid in working with the user
interface. The chapter covers:

e Palm OS Resource Summary

¢ Drawing on the Palm Powered Handheld

¢ Forms, Windows, and Dialogs
e Controls

* Fields

* Menus

» Tables

e Lists

¢ Categories

¢ Bitmaps
e Labels

e Scroll Bars

* Custom UI Objects (Gadgets)

® Dynamic Ul
* Color and Grayscale Support

¢ Insertion Point

Palm OS Programmer’s Companion, Volume | 69

User Interface
Palm OS Resource Summary

¢ Application Launcher

For guidelines on designing a user interface, see the book Palm OS
User Interface Guidelines.

TIP: The Palm OS web site contains recipes for writing code to
work with the various user interface objects. See the following
URL: http://www.palmos.com/dev/tech/docs/recipes

Palm OS Resource Summary

The Palm OS development environment provides a set of resource
templates that application developers use to implement the buttons,
dialogs, and other UI elements. Table 4.1 maps user interface
elements to resources. The ResEdit name is included for developers
using that tool. It is not relevant for users of Constructor for Palm
OS.

All resources are discussed in detail in the chapter “Palm OS
Resources” on page 35 of the Palm OS Programmer’s API Reference.
Specific design recommendations for some of the elements are
provided in the book Palm OS User Interface Guidelines.

Table 4.1 Ul resource summary

Ul Element and Functionality = Example Resource(s)
Alert— Alert (Talt)
Display a warning, error, or (3) Deyoureallywant to
confirmation message delete this memo?
Application icon— Application icon
Icon to display in Launcher Qﬁi‘&.,_ (tAIB)
Application icon
family (taif)
Bitmap— Form bitmap (tFBM)
Display a bitmap Bitmap (Tbmp)
Bitmap family (tbmf)

70 Palm OS Programmer’s Companion, Volume |

http://www.palmos.com/dev/tech/docs/recipes

User Interface
Palm OS Resource Summary

Table 4.1 Ul resource summary (continued)

Ul Element and Functionality = Example Resource(s)
Command button— Button (tBTN)
Execute command Graphic button (tgbn)
Check box— [1 Show Due Dates Checkbox (tCBX)
Toggle on or off # Show Priorities

Form—

Window that displays other Ul G stz

objects i

Farrett, JB EEE-GEE-CEEEW

Rathjens, Lisa EEE-GEE-CEEEW
Schaller, Anna GEE-CEG-GEEC W
Schneider, Suson EEE-BEG-EEECIY
Wilson, Greg CEE-CEC-CEECW

Look Up: Mew

Gadget— Gadget (tGDT)
Custom control
Graffiti Shift Indicator— + Graffiti Shift Indicator
Display Graffiti shift status (tGSI)
Label_ ot Date: Label (tLBL)
Display noneditable text
List— Business List (tLST)
Display a series of items Fooees
Menu— Record (LTI Menu Bar (MBAR)
Execute commands ArtachNote /A Menu (MENU)
EEE?mnelctﬂet': OF! 5;
Pop-up list— ~ nfled Pop-up trigger (tPUT)
Choose a setting from a list Pop-up list (tPUL)
List (tLST)
Push button— Push button (tPBN)
Select a value Graphic push button
(tgpb)

Palm OS Programmer’s Companion, Volume | 71

User Interface
Drawing on the Palm Powered Handheld

Table 4.1 Ul resource summary (continued)

Ul Element and Functionality = Example Resource(s)

Repeating button — e Repeating button

Increment/decrement valuesor T (tREP)

scroll Graphic repeating
button (tgrb)

Scroll bar— - Scroll bar (tSCL)

Scroll fields or tables

Selector trigger — Celertar Selector trigger (tSLT)

Invoke dialog that changes text
of the control

Slider— —_—— Slider (tsld)

Adjust a setting prrariirrErnLn Feedback slider (tslf)
Table— T ; = Table (tTBL)
Display COlumns Of data —r—— .g_

Text field— Tect Field (tFLD)

Display text (single or multiple

lines)

Drawing on the Palm Powered Handheld

The first Palm Powered " handhelds had an LCD screen of 160x160
pixels. Since then, handhelds with screens resolutions of 320 X 320
pixels have been introduced. The built-in LCD controller maps a
portion of system memory to the LCD. The capabilities of the
controller depend on the particular handheld, but be aware that
hardware may still limit the actual displayable depths. Given that,
Table 4.2 lists the screen bit depths that the Palm OS supports.

72 Palm OS Programmer’s Companion, Volume |

User Interface
Drawing on the Palm Powered Handheld

Table 4.2 Supported bit depths

Palm OS Version Supported Resolutions

1.0 1 bit/pixel

2.0 1 bit/pixel

3.0 1 or 2 bits/pixel

3.3 1,2, or 4 bits/pixel

3.5 1,2, 4 or 8 bits /pixel
4.0,5.0 1,2,4,8, or 16 bits/pixel

(See “Color and Grayscale Support” for
more information.)

Usually, the Form Manager handles all necessary drawing and
redrawing to the screen when it receives certain events. (In Palm OS,
a form is analogous to a window in a desktop application, and a
window is an abstract drawing region.) You don’t have to explicitly
call drawing routines. However, if you're performing animation or
if you have any custom user interface objects (known as gadgets),
you might need to use the drawing functions provided by the
Window Manager.

The Window Manager defines a window object and provides
functions for drawing to windows. A window is a drawing region
that is either onscreen or offscreen. The window’s data structure
contains a bitmap that contains the actual data displayed in the
window. Windows add clipping regions over the top of bitmaps.

The Draw State

The Window Manager also defines a draw state: pen color, pattern,
graphics state, and so on. The draw state is handled differently
depending on the operating system version.

On pre-3.5 versions of Palm OS, the system maintains several
individual global variables that each track an element of the draw
state. If you want to change some aspect of the draw state, you use a
WinSet... function (such as WinSetUnderlineMode). Each

Palm OS Programmer’s Companion, Volume | 73

User Interface
Drawing on the Palm Powered Handheld

WinSet... function returns the old value. It’s your responsibility to
save the old value returned by the function and to restore the
variable’s value when you are finished by calling the function again.
Using such routines can be inconvenient because it means using
application stack space to track system state. Further, if a caller
forgets to restore the value, the entire look and feel of the handheld
may be altered.

Palm OS 3.5 and later has two improvements to make tracking
changes to the draw state easier. First, it groups the drawing-related
global variables and treats them as a single unit. This draw state is
the Palm OS implementation of a pen. It contains the current
transfer (or draw) mode, pattern mode and pattern data for
WinFill... routines, and foreground and background colors. It also
contains text-related drawing information: the font ID, the font
pointer, the underline mode, and the text color. (Palm OS does not
currently support other common pen-like concepts such as line
width, pen shape, or corner join.) Only one draw state exists in the
system.

Second, Palm OS 3.5 can track changes to the draw state by storing
states on a stack. Your application no longer needs to use its own
stack for pieces of the draw state. Instead, use WinPushDrawState
to push a copy of the current draw state on the top of the stack. Then
use the existing WinSet . . . functions to make your changes. When
you've finished your drawing and want to restore the draw state,
call WinPopDrawState.

The new drawing state stack allows for additional debugging help.
If an application exits without popping sufficiently or it pops too
much, this is detected and flagged on debug ROMs. When
switching applications, the system pops to a default state on
application exit, guaranteeing a consistent draw state when a new
application is launched.

Drawing Functions

The Window Manager can draw rectangles, lines, characters,
bitmaps, and (starting in version 3.5) pixels. The Window Manager
supports five flavors of most calls, as described in Table 4.3.

74 Palm OS Programmer’s Companion, Volume |

User Interface
Drawing on the Palm Powered Handheld

Table 4.3 Window Manager drawing operations

Mode Operation

Draw Render object outline only, using current foreground
color and pattern. For a bitmap, draws the bitmap.

Fill Render object internals only, using current foreground
color and pattern.

Erase Erase object outline and internals to window
background color.

Invert Swap foreground and background colors within region
defined by object.

Paint Supported only in version 3.5 and higher. Render

object using all of the current draw state: transfer
mode, foreground and background colors, pattern,
font, text color, and underline mode.

The drawing functions always draw to the current draw window.
This window may be either an onscreen window or an offscreen
window. Use WinSetDrawWindow to set the draw window before
calling these functions.

High-Density Displays

The screens on most Palm Powered handhelds are 160 pixels wide
and 160 pixels high. Prior to High-Density Display feature set, the
operating system provided little support for other screen sizes.
Palm OS 5, with the addition of the High-Density Display Feature
Set, adds support for 320 by 320, or double-density, screens and
resources. This support is designed so that a Palm Powered
handheld with a double-density screen runs, unaltered, nearly all
applications designed for a single-density (160 by 160) screen.

Display Density

The density of a display refers to the ratio of the screen’s width and
height, in number of pixels, to the width and height of a standard
160 by 160 pixel screen. The screen’s density has no relation to the

Palm OS Programmer’s Companion, Volume | 75

User Interface
Drawing on the Palm Powered Handheld

screen’s physical size; given the form factor of the typical Palm
Powered handheld screens tend to be roughly the same size
regardless of the display density.

A double-density screen packs twice as many pixels in each
dimension into the same physical space as a single-density screen.
Regardless of the screen density, graphic primitives have the same
footprint, taking up the same percentage of screen space. The
Address Book application, for example, shows 11 lines of text on
both single- and double-density screens. The text looks better on the
double-density screen, however, because the blitter uses double-
density font data when drawing the text, and each character is
composed of more pixels.

NOTE: The High-Density Display feature set is designed to
allow screen sizes of various densities. The blitter that is part of
the Palm OS 5 reference platform, however, only supports single-
and double-density displays.

When writing applications for Palm OS 5, you generally can stop
thinking in terms of pixels and start thinking in terms of screen
coordinates. The operating system takes care of mapping
coordinates to physical pixels, and drawing functions now work in
terms of coordinates. So, for example, if you draw a line of text
using one of the built-in fonts, that line of text is 12 standard
coordinates high. Depending on the display density, that text might
be 12 pixels high, 24 pixels high (on a double-density display), or
even some other multiple of 12.

Terminology

A clear understanding of the following terms is essential to
understanding the concepts introduced by the High-Density
Display feature set.

default density —a pixel layout with one pixel per standard
coordinate.

high density — a pixel layout that uses more pixels per standard
coordinate than a low-density layout.

76 Palm OS Programmer’s Companion, Volume |

User Interface
Drawing on the Palm Powered Handheld

low density — equivalent to default density; one pixel per standard
coordinate.

native coordinate system — a coordinate system based on physical
screen pixels. For offscreen windows, the native coordinates are
based on the offscreen bitmap rather than the physical screen.

standard coordinate system — The coordinate system used by most
handhelds that don’t have the High-Density Display feature set
installed. On a single density screen, there is one screen pixel per
standard coordinate. On a high-density screen, there is more than
one screen pixel per standard coordinate.

Implementation

Applications running on Palm OS 5 default to the standard
coordinate system, even if the handheld has a high-density screen.
When creating forms, you continue to use the standard coordinate
system for form dimensions and for the placement of UI widgets.

In Palm OS 5, every drawing operation uses a draw state. Added to
this draw state by the High-Density Display feature set is a scaling
tactor, which is used by the Window Manager to transform
coordinates passed as arguments to the drawing functions (such as
WinDrawLine, WinCopyRectangle, and WinPaintPixel) into
native coordinates. This scaling factor is a ratio of the active
coordinates to native coordinates.

Drawing is a function of the Window Manager, which initializes the
graphic state and then calls the blitter—the low-level code that
draws lines and rectangles and places all primitives at the
appropriate location on the screen. The Window Manager converts
coordinates passed as drawing function arguments from the
window’s coordinate system to the native coordinate system used
by the blitter. Because the blitter needs with integer coordinates,
most of the WinScale. .. and WinUnscale. .. functions have a
ceiling parameter that lets you control whether the integer results
are obtained by truncation or rounding. WinScaleRectangle and
WinUnscaleRectangle are the exceptions to this rule: the
calculated extent is always rounded up if either the extent or the top
left coordinate has a fractional part after scaling.

Using WinSetCoordinateSystem, an application can define the
coordinate system used by its calls to the drawing functions. On a

Palm OS Programmer’s Companion, Volume | 77

User Interface
Drawing on the Palm Powered Handheld

handheld with a high-density screen, this allows applications to
draw using either the standard coordinate system or the native
coordinate system. Note that the bounds and clippingBounds
tields in the WindowType data structure are always stored using
native coordinates. The various functions that access these fields
convert the native coordinates to the coordinate system being used
by the window.

Which coordinate system a window uses affects the placement and
dimensions of graphic primitives. It does not affect bitmap contents,
however. You can create bitmaps that contain either low- high-
density bitmap data; the bitmap’s density is recorded in the
BitmapTypeV3 data structure. The Window Manager uses the
window’s coordinate system to determine where to place the top
left corner of the bitmap on the screen, while the blitter uses the
bitmap structure’s density field to determine if it needs to stretch
or shrink the bitmap data as it blits.

As an example, suppose you have an application that draws a low-
density bitmap containing data 30 pixels wide and 70 pixels high on
a Palm Powered handheld with a double-density screen. Using the
standard coordinate system, the application instructs the Window
Manager to place the bitmap at window coordinates (10,20). The
Window Manager converts (10,20) to native coordinates and
instructs the blitter to draw the bitmap at native coordinates (20,40).
Recognizing that the bitmap is low density, the blitter pixel-doubles
the source data as it is blitted. The result is that on the double-
density screen, the bitmap is displayed with 60 pixels per row and
contains 140 rows.

Regardless of the coordinate system used for the placement and
dimensions of graphic primitives, no new functions are needed to
take advantage of high-density fonts. High-density fonts are used
by default when drawing text in a high-density window.

Maintaining Compatibility

The High-Density Display Feature Set is designed to ensure the
greatest degree of compatibility with applications that weren't
written using the High-Density Display feature set. When running
in low-density mode on a handheld with a high-density screen, the
window’s scale attribute is set to the ratio of the handheld’s screen
density to the default density. This causes the Window Manager to

78 Palm OS Programmer’s Companion, Volume |

User Interface
Drawing on the Palm Powered Handheld

scale the low-density coordinates used to position graphic
primitives into high-density ones used by the blitter. Because low-
density mode is the default on all Palm Powered handhelds,
applications not designed for high-density screens behave as
expected on handhelds with screens of both low and high-density.

Offscreen windows are allocated by default with low-density
bitmaps, so direct manipulation of offscreen bitmaps by
applications unaware of the High-Density Displays feature set
works consistently on handhelds with either low- high-density
screens.

On the other hand, applications that employ the High-Density
Display feature set need to include both low-density and high-
density bitmaps in order to function consistently on handhelds that
don’t have high-density displays.

Some Sony CLIE’™ handhelds have a double-density screen but
don’t have the High-Density Display feature set. The High-Density
Display feature set recognizes bitmaps created for these handhelds
and properly displays them as double-density bitmaps.

The one area of incompatibility involves applications that directly
access the handheld’s screen. Applications not designed for a high-
density screen that directly access the screen give unexpected
results when accessing a high-density screen. For example, if such
an application directly manipulates the screen pixels, expecting a
160 by 160 screen, modifying pixel 161 on a double-density screen
modifies a pixel in the middle of the first row, not the first pixel on
the second row. As well, if the handheld’s processor is ARM-
based, improper drawing can also result due to differences in
endianness between ARM-based platforms and those based upon
a 68k-family processor.

Text

By default, text is always drawn at the best possible density, even
for applications unaware of a handheld’s high-density capability.
Because of this, handhelds contain system fonts that match the
density of the screen. The high-density font metrics match those of
the low-density system fonts.

Palm OS Programmer’s Companion, Volume | 79

User Interface
Drawing on the Palm Powered Handheld

Because the system fonts match the screen density, the blitter does
not need to perform scaling when blitting text to the screen. If an
application running on a handheld with a high-density screen
allocates a low-density offscreen window, however, and there are no
low-density fonts available, the blitter shrinks the high-density
system font bitmaps. This results in poor quality text when the
offscreen bitmap is subsequently transferred, and pixel-doubled, to
a high-density display. If a low-density font is available, the blitter
substitutes a low-density font when drawing text to the window in
an attempt to produce the best possible aesthetic result.

The blitter uses the following selection algorithm when selecting the
font, from high to low priority:

1. Select the font with the correct density.

2. Select the font whose density is one-half of the correct
density.

3. Select the font with the closest density, with a tie going to the
lower-density font.

The Font Manager uses the stdToActiveScale field in the
offscreen window’s draw state to transform the font metrics. To
draw text using high-density coordinates, set the high-density
coordinate system by calling WinSetCoordinateSystem before
using the Font Manager functions to position text or extract font
metrics.

On a high-density screen, underline mode is always drawn using a
high-density pattern.

Lines and Rectangles

When drawing lines and rectangles with the standard coordinate
system on a double-density screen, the primitives are drawn with
improved resolution. This behavior prevents an inconsistent
appearance when drawing to and from offscreen windows, and
prevents unintended overlap and unintended gaps between
primitives.

As with other primitives, the Window Manager performs the
conversion to the destination coordinate system before calling the
blitter. This converts line coordinates as well as a rectangle’s
topLeft and extent fields.

80 Palm OS Programmer’s Companion, Volume |

User Interface
Drawing on the Palm Powered Handheld

The diagram on the left in Figure 4.1 results from drawing a
diagonal line from (2,1) to (6,3) in the screen’s standard coordinate
system. The diagram on the right shows the same line drawn in the
screen’s native coordinate system with the following code:

WinPushDrawState () ;

oldScale = WinSetCoordinateSystem(kCoordinatesNative) ;
WinDrawLine (2, 1, 6, 3); // x1, v1, x2, y2
WinPopDrawState () ;

NOTE: In these illustrations, the top-left grid coordinate is the
screen origin (0,0) on a double-density screen.

Figure 4.1 A diagonal line drawn using the standard
coordinate system (left) and the native coordinate
system (right)

The result of drawing a rectangle with a topLeft of (1,1) and an
extent of (4,4) when using the standard and native coordinate
systems on a double-density screen is shown in Figure 4.2.

Palm OS Programmer’s Companion, Volume | 81

User Interface
Drawing on the Palm Powered Handheld

Figure 4.2 A rectangle drawn using the standard coordinate
system (left) and the native coordinate system

(right)

A rounded rectangle would be pixel-doubled in a similar fashion
when drawn using the standard coordinate system on a double-
density screen. In double-density mode, the rounded corners are
drawn in the native double-density coordinates, resulting in more
detailed corners.

Patterns

In prior versions of the Palm OS, patterns are 8 by 8 bits, and are 1
bit deep. To support high-density patterns, a new Window Manager
function, WinPaintTiledBitmap, gives applications the ability to
fill a rectangle with an arbitrary pattern defined in a bitmap
argument.

Patterns are expanded to the destination bit depth by the blitter
when drawing patterned lines and filled rectangles. The blitter uses
the density fields in the pattern’s source bitmap and the destination
bitmap so that the pattern is drawn using the appropriate density.
This makes it possible for an application to define both low-density
and high-density patterns.

To supplement the standard PatternType grayPattern, the
High-Density Display feature set defines two additional gray
patterns: 1ightGrayPattern and darkGrayPattern. These
patterns are shown in Figure 4.3 and Figure 4.4, respectively.

82 Palm OS Programmer’s Companion, Volume |

User Interface
Forms, Windows, and Dialogs

Figure 4.3 lightGrayPattern

Figure 4.4 darkGrayPattern

These three standard gray patterns are always drawn by the blitter
using the screen density, improving the appearance of gray fills.
Custom 8 by 8 patterns, however, are stretched as appropriate by
the blitter based on the ratio of the destination density and
kDensityLow.

Forms, Windows, and Dialogs

A form is the GUI area for each view of your application. For
example the Address Book offers an Address List view, Address
Edit view, and so on. Each application has to have one form, and
most applications have more than one. To actually create the view,
you have to add other Ul elements to the form; either by dragging

Palm OS Programmer’s Companion, Volume | 83

User Interface

Forms, Windows, and Dialogs

them onto the form from the catalog or by providing their ID as the
value of some of the form’s fields.

Figure 4.5 shows an example of a form. Typical forms are as large as
the screen, as shown here. Other forms are modal dialogs, which are
shorter than the screen but just as wide.

Figure 4.5 Form

[Ediv Memo

Horse of different color

Ruby slippers .
ellow brick: r-:-u-:[

A window defines a drawing region. This region may be on the
display or in a memory buffer (an off-screen window). Off-screen
windows are useful for saving and restoring regions of the display
that are obscured by other Ul objects. All forms are windows, but
not all windows are forms.

The window object is the portion of the form object that determines
how the form’s window looks and behaves. A window object
contains viewing coordinates of the window and clipping bounds.

When a form is opened, a frmOpenEvent is triggered and the
form’s ID is stored. A winExitEvent is triggered whenever a form
is closed, and a winEnterEvent is triggered whenever a form is
drawn.

The following sections describe special types of forms:

¢ Alert Dialogs

* Progress Dialogs
¢ The Keyboard Dialog

84 Palm OS Programmer’s Companion, Volume |

User Interface
Forms, Windows, and Dialogs

Alert Dialogs

If you want to display an alert dialog (see Figure 4.6) or prompt the
user for a response to a question, use the alert manager. The alert
manager defines the following functions:

e FrmAlert
e FrmCustomAlert

Figure 4.6 Alert dialog

fMemo Delete

Do you really want to
delete this memo ¥

[oK) ([Cancel)

Given a resource ID that defines an alert, the alert manager creates
and displays a modal dialog box. When the user taps one of the
buttons in the dialog, the alert manager disposes of the dialog box
and returns to the caller the item number of the button the user

tapped.
There are four types of system-defined alerts:
¢ Question
¢ Warning
* Notification
¢ Error

The alert type determines which icon is drawn in the alert window
and which sound plays when the alert is displayed.

When the alert manager is invoked, it’s passed an alert resource (see
the chapter “Palm OS Resources” in the Palm OS Programmer’s API
Reference) that contains the following information:

¢ The rectangle that specifies the size and position of the alert
window

¢ The alert type (question, warning, notification, or error)

¢ The null-terminated text string; that is, the message the alert
displays

Palm OS Programmer’s Companion, Volume | 85

User Interface
Forms, Windows, and Dialogs

e The text labels for one or more buttons

Progress Dialogs

If your application performs a lengthy process, such as data transfer
during a communications session, consider displaying a progress
dialog to inform the user of the status of the process. The Progress
Manager provides the mechanism to display progress dialogs.

You display a progress dialog by calling PrgStartDialog. Then,
as your process progresses, you call PrgUpdateDialog to update
the dialog with new information for the user. In your event loop you
call PrgHandleEvent to handle the progress dialog update events
queued by PrgUpdateDialog. The PrgHandleEvent function
makes a callback to a textCallback function that you supply to
get the latest progress information.

Note that whatever operation you are doing that is the lengthy
process, you do the work inside your normal event loop, not in the
callback function. That is, you call EvtGetEvent and do work
when you get a nilEvent. Each time you getanilEvent,doa
chunk of work, but be sure to continue to call EvtGetEvent
frequently (like every half second), so that pen taps and other events
get noticed quickly enough.

The dialog can display a few lines of text that are automatically
centered and formatted. You can also specify an icon that identifies
the operation in progress. The dialog has one optional button that
can be a cancel or an OK button. The type of the button is
automatically controlled by the Progress Manager and depends on
the current progress state (no error, error, or user canceled
operation).

Progress textCallback Function

When you want to update the progress dialog with new
information, you call the function PrgUpdateDialog. To get the
current progress information to display in the progress dialog,
PrgHandleEvent makes a callback to a function, textCallback,
that you supplied in your call to PrgStartDialog.

The system passes the text Callback function one parameter, a
pointer to a PrgCallbackData structure. To learn what type of

86 Palm OS Programmer’s Companion, Volume |

User Interface
Forms, Windows, and Dialogs

information is passed in this structure, see the chapter “Progress
Manager” in the Palm OS Programmer’s API Reference.

Your textCallback function should return a Boolean. Return
true if the progress dialog should be updated using the values you
specified in the PrgCallbackData structure. If you specify false,
the dialog is still updated, but with default status messages.
(Returning false is not recommended.)

In the textCallback function, you should set the value of the
textP buffer to the string you want to display in the progress
dialog when it is updated. You can use the value in the stage field
to look up a message in a string resource. You also might want to
append the text in the message field to your base string. Typically,
the message field would contain more dynamic information that
depends on a user selection, such as a phone number, device name,
or network identifier, etc.

For example, the PrgUpdateDialog function might have been
called with a stage of 1 and a messageP parameter value of a
phone number string, “555-1212”. Based on the stage, you might
find the string “Dialing” in a string resource, and append the phone
number, to form the final text “Dialing 555-1212” that you place in
the text buffer textPp.

Keeping the static strings corresponding to various stages in a
resource makes it easier to localize your application. More dynamic
information can be passed in via the messageP parameter to
PrgUpdateDialog.

NOTE: The textCallback function is called only if the
parameters passed to PrgUpdateDialog have changed from
the last time it was called. If PrgUpdateDialog is called twice
with exactly the same parameters, the textCallback function is
called only once.

The Keyboard Dialog

The keyboard dialog is an onscreen keyboard on which the user
taps to input information into a text field. When the insertion point
is in a text field, the user can open the onscreen keyboard by tapping

Palm OS Programmer’s Companion, Volume | 87

User Interface

Forms, Windows, and Dialogs

on the silk-screen letters (“abc” or “123”) in the lower corners of the
Graffiti area. The keyboard dialog appears:

Figure 4.7 The Keyboard Dialog

Keyboard i)

The quick brown fox jumps over the
lazy dog. Mow is the time for all good

i mien to come to the ofd of their
Fleld country. The quick brown fox jurnps
BN RS
Kevs #l|als|d|fla|n|i|k][TTT
y Sotecl v b n[n[. Lpsa] —— Keys

shift | space | - | i
o EAIE
1l
N

Layout push buttons

Scroll buttons

The keyboard dialog’s text field contains the full text of the original
field, with the insertion point in the same position as in the original
field. Users can start inserting and deleting characters immediately,
or they can scroll up or down and then insert and delete. When one
of the software keys is tapped, the corresponding character is
inserted in the text field of the keyboard dialog.

As the user taps, the keyboard dialog code captures pen events,
maps them to characters, and posts keyDownEvents. The text field
in the keyboard dialog handles each keyDownEvent, displaying
the character onscreen and inserting it into the memory chunk
associated with the field. Since the keyboard dialog has its own
event loop, you cannot handle the key events yourself. If you need
to capture the key events, you should consider creating a custom
version of the onscreen keyboard dialog, as outlined in “Creating a
Custom Keyboard Layout” on page 90.

The keyboard code edits the text string of the original field in-place.
Each field has a text handle that points to the memory chunk
containing the text string for the field. When the keyboard dialog is
opened, the association between the text handle and the original
field is removed. The text handle is then assigned to the text field of
the keyboard dialog and edited according to user input. When the
keyboard dialog is closed, the text handle is reassigned to the
original field.

88 Palm OS Programmer’s Companion, Volume |

User Interface
Forms, Windows, and Dialogs

For details on how F1dHandleEvent manipulates the memory
chunk that holds a field’s text string, see Chapter 9, “Fields,” in the
Palm OS Programmer’s API Reference. Read about the
FldGetTextHandle and F1dSetText functions.

Opening the Keyboard Dialog Programmatically

In most applications, the keyboard dialog appears only when
explicitly opened by the user. There are occasions, however, when
you may wish to force the user to input characters via the onscreen
keyboard. For example, the service activation application shipped
with all Palm VIIs displays the keyboard dialog automatically. Palm
made this choice because the activation application must be usable
by completely new Palm users, who may not know how to write
Graftiti or open the keyboard dialog themselves. Other reasons for
imposing the keyboard dialog include accurate input of passwords
or account numbers.

To display the keyboard dialog programmatically, use one of the
following functions:

e SysKevboardDialog

e SysKeyvboardDialogVl10

Normally, use SysKeyboardDialog only.
SysKeyboardDialogV10 is for compatibility with Palm OS 1.0.

See Keyboard. h for the function prototypes and the
KeyboardType they use. Note that the rest of the functions listed in
Keyboard.h are for system use only and do not form part of the
Palm OS API.

Keyboard Layouts

The keyboard dialog has three views, one for each of the pre-
defined layouts: the English alphabet, numerals and punctuation,
and Latin characters with diacritic marks. The default is the English
alphabet. To display a particular layout, call the
SysKeyboardDialog function and pass it one of the following
constants, which are defined in an enumeration named
KeyboardType:

Palm OS Programmer’s Companion, Volume | 89

User Interface
Forms, Windows, and Dialogs

Table 4.4 Constants defined in KeyboardType

Constant Character Set

kbdAlpha The English language character set.

kbdNumbersAndPunc A set containing numbers and some
advanced punctuation.

kbdAccent The International character set, made
up of Latin characters with diacritic
marks.

kbdDefault The value of kbdDefault is the same

as kdbAlpha and cannot be changed.

Creating a Custom Keyboard Layout

You cannot add an extra keyboard layout or modify an existing one.
You can, however, create your own keyboard dialog module that
implements the functionality outlined below.

First, your application should intercept the keyDownEvent
generated when the user taps the “abc” or “123” letters in the
Graftfiti area. Create a custom keyboard dialog loader routine to
handle it. Your keyboard code should then do the following:

* Get the text handle of the original field and save itin a
variable. Use F1dGetTextHandle.

¢ Remove the association between the text handle and the
original field. Use F1dSetTextHandle or F1dSetText,
passing NULL as the second argument.

¢ Assign the text handle to the text field of the keyboard
dialog.

* Define a Keyboard event handler that:

— captures pen events in your onscreen keyboard region,
which may be a bitmap of a keyboard or may consist of
individual push buttons,

— maps pen events to characters,

90 Palm OS Programmer’s Companion, Volume |

User Interface
Forms, Windows, and Dialogs

— creates keyDownEvents and posts them to the event
queue so that the dialog’s text field can automatically
handle them and insert them in its text chunk.

* When the dialog is closed, remove the association between
the text handle and keyboard’s field, and then re-assign the
text handle to the original text field.

Finally, if you wish more than one layout, your custom keyboard
dialog must contain a button to open each layout.

Offscreen Windows

Offscreen windows are generally used for one of two reasons: to do
offscreen drawing (for double-buffering, smooth animations, or to
reduce flicker) or so that the application can capture or import
graphics.

WinCreateOffscreenWindow allocates a bitmap for the offscreen
window. Unless you specify a format of nativeFormat, the
offscreen window’s bitmap is always low density. This allows
applications that expect low-density bitmaps, and that directly
manipulate bitmap data, to still function as expected. If you call
WinCreateOffscreenWindow and specify a format of
nativeFormat, do not access the data in the offscreen window’s bitmap
directly: the format of bitmaps created by Palm OS can change from
release to release, from device to device, and may even differ on a
single device depending on the screen depth or compatibility mode.

Functions that return window dimensions—such as
WinScreenMode, WinGetBounds, and
WinGetDrawWindowBounds—use the window’s scaling factor to
return coordinates in terms of the active coordinate system. This
ensures that the window has the expected dimensions and that
graphic primitives have coordinates expected by the application.

WinCreateBitmapWindow gives you the ability to allocate a high-
density bitmap for an offscreen window. Use BmpCreate and
BmpSetDensity to allocate a high-density bitmap, then associate it
with a window by calling WinCreateBitmapWindow.

Palm OS Programmer’s Companion, Volume | 91

User Interface
Controls

Controls

Control objects allow for user interaction when you add them to the
forms in your application. Events in control objects are handled by
CtlHandleEvent. There are several types of control objects, which
are all described in this section.

NOTE: Palm OS 3.5 and later support graphical controls for all
control types other than check box. Graphical controls behave the
same as their non-graphical counterparts, but they display a
bitmap instead of a text label. On releases prior to Palm OS 3.5,
you can create a graphical control by setting the text label to the
empty string and placing the control on top of a bitmap.

Buttons

Buttons (see Figure 4.8) display a text or graphic label in a box. The
default style for a button is a text string centered within a rounded
rectangle. Buttons have rounded corners unless a rectangular frame
is specified. A button without a frame inverts a rectangular region
when pressed.

When the user taps a button with the pen, the button highlights
until the user releases the pen or drags it outside the bounds of the
button.

Table 4.5 shows the system events generated when the user interacts
with the button and Ct1HandleEvent’s response to the events.

Figure 4.8 Buttons

[oK][Cancel] [Delete... | [Mote |

92 Palm OS Programmer’s Companion, Volume |

User Interface

Controls
Table 4.5 Event flow for buttons
User Action System Response CtIHandleEvent Response
Pen goes downona penDownEvent with the x Adds the ct 1EnterEvent to
button. and y coordinates stored in the event queue.
EventType.
ctlEnterEvent with Inverts the button’s display.

Pen is lifted from
button.

button’s ID number.

penUpEvent with thexand Addsthe ctlSelectEvent
y coordinates stored in to the event queue.
EventType.

Pen is lifted outside penUpEvent with the xand Adds the ct1ExitEvent to

button.

y coordinates stored in the event queue.
EventType.

Pop-Up Trigger

A pop-up trigger (see Figure 4.9) displays a text label and a graphic
element (always on the left) that signifies the control initiates a pop-
up list. If the text label changes, the width of the control expands or
contracts to the width of the new label plus the graphic element.

Table 4.6 shows the system events generated when the user interacts
with the pop-up trigger and Ct 1HandleEvent’s response to the
events. Because pop-up triggers are used to display list objects, also
see the section “Lists” in this chapter.

Figure 4.9 Pop-up trigger

» Wark

Palm OS Programmer’s Companion, Volume | 93

User Interface
Controls

Table 4.6 Event flow for pop-up triggers

User Action

System Response

CtIHandleEvent Response

Pen goes down on the

pop-up trigger.

Pen is lifted from
button.

Pen is lifted outside
button.

penDownEvent with the x
and y coordinates stored in
EventType.

ctlEnterEvent with pop-
up trigger’s ID number.

penUpEvent with the x and
y coordinates stored in
EventType.

ctlSelectEvent with pop-
up trigger’s ID number.

penUpEvent with the x and
y coordinates stored in
EventType.

Addsthe ct1EnterEvent to
the event queue.

Inverts the trigger’s display.

Adds the ct1SelectEvent
to the event queue.

Adds a winEnterEvent for
the list object’s window to the
event queue. Control passes
to FrmHandleEvent, which
displays the list and adds a
popSelectEvent to the
event queue. Control then
passes to LstHandleEvent.

Adds the ct1ExitEvent to
the event queue.

TIP: To create a pop-up list in Constructor for Palm OS, add a
pop-up trigger to your form, then add a list at the same
coordinates, uncheck the usable check box in the list resource
settings, and then set the List ID in the pop-up trigger to match
the ID of the list resource.

Selector Trigger

A selector trigger (see Figure 4.10) displays a text label surrounded
by a gray rectangular frame. If the text label changes, the width of
the control expands or contracts to the width of the new label.

94 Palm OS Programmer’s Companion, Volume |

User Interface
Controls

Table 4.7 shows the system events generated when the user interacts
with the selector trigger and Ct 1HandleEvent’s response to the
events.

Figure 4.10 Selector trigger

Sele'i:tm*

Table 4.7 Event flow for selector triggers

User Action

System Response

CtIHandleEvent Response

Pen goes down on a
selector trigger.

Pen is lifted from the
selector trigger.

penDownEvent with the x
and y coordinates stored in
EventType.

ctlEnterEvent with
selector trigger’s ID number.

penUpEvent with the x and
y coordinates stored in
EventType.

ctlSelectEvent with
selector trigger’s ID number.

Addsthe ct1EnterEvent to
the event queue.

Inverts the button’s display.

Adds the ct1SelectEvent
to the event queue.

Adds a frmOpenEvent
followed by a
winExitEvent to the event
queue. Control is passed to
the form object.

Repeating Button

A repeat control looks like a button. In contrast to buttons, however,
users can repeatedly select repeat controls if they don’t lift the pen
when the control has been selected. The object is selected repeatedly
until the pen is lifted.

Table 4.8 shows the system events generated when the user interacts
with the repeating button and Ct1HandleEvent’s response to the
events.

Palm OS Programmer’s Companion, Volume | 95

User Interface
Controls

Table 4.8 Event flow for repeating buttons

User Action

System Response

CtIHandleEvent Response

Pen goes down on a
repeating button.

Pen remains on
repeating button.

Pen is dragged off the
repeating button.

Pen is dragged back
onto the button.

Pen is lifted from
button.

penDownEvent with the x
and y coordinates stored in
EventType.

ctlEnterEvent with
button’s ID number.

ctlRepeatEvent

ctlRepeatEvent

penUpEvent with the x and
y coordinates stored in
EventType.

Addsthe ct1EnterEvent to
the event queue.

Adds the ct1RepeatEvent
to the event queue.

Tracks the pen for a period of
time, then sends another
ct1lRepeatEvent if the pen
is still within the bounds of
the control.

No ctlRepeatEvent
occurs.

See above.

Adds the ct1ExitEvent to
the event queue.

Push Buttons

Push buttons (see Figure 4.11) look like buttons, but the frame
always has square corners. Touching a push button with the pen
inverts the bounds. If the pen is released within the bounds, the
button remains inverted.

Table 4.9 shows the system events generated when the user interacts
with the push button and Ct 1HandleEvent’s response to the
events.

Figure 4.11 Push buttons

Priorvity: gl |2 4[5
Priority

Sort by

96 Palm OS Programmer’s Companion, Volume |

User Interface

Controls
Table 4.9 Event flow for push buttons
User Action System Response CtIHandleEvent Response
Pen goesdownona penDownEvent with the x Adds the ct 1EnterEvent to
push button. and y coordinates stored in the event queue.
EventType.

Pen is lifted from
push button.

ctlEnterEvent with push If push button is grouped and

button’s ID number. highlighted, no change. If
push button is ungrouped
and highlighted, it becomes

unhighlighted.
penUpEvent with thexand Addsthe ctlSelectEvent
y coordinates stored in to the event queue.
EventType.

Check Boxes

Check boxes (see Figure 4.12) display a setting, either on (checked)
or off (unchecked). Touching a check box with the pen toggles the
setting. The check box appears as a square, which contains a check
mark if the check box’s setting is on. A check box can have a text
label attached to it; selecting the label also toggles the check box.

Table 4.10 shows the system events generated when the user
interacts with the check box and Ct 1HandleEvent’s response to
the events.

Figure 4.12 Check boxes

[Show Due Dates
0 Show Priorities

Palm OS Programmer’s Companion, Volume | 97

User Interface

Controls
Table 4.10 Event flow for check boxes
User Action Event Generated CtIHandleEvent Response
Pen goes down penDownEvent with the x Adds the ct 1EnterEvent to the
on check box. and y coordinates stored in event queue.

EventType.

ct1EnterEvent with check Tracks the pen until the user lifts
box’s ID number. it.

Pen is lifted from penUpEvent with the x and e If the check box is
check box. y coordinates stored in unchecked, a check
EventType. appears.

e If the check box is already
checked and is grouped,
there is no change in
appearance.

e If the check box is already
checked and is ungrouped,
the check disappears.

Adds the ct1SelectEvent to
the event queue.

Pen is lifted penUpEvent with thexand Adds the ct1ExitEvent to the
outside box. y coordinates stored in event queue.
EventType.

Sliders and Feedback Sliders

Starting in Palm OS 3.5, slider controls (see Figure 4.13) are
supported. Sliders represent a value that falls within a particular
range. For example, a slider might represent a value that can be
between 0 and 10.

Figure 4.13 Slider

J_llj_llj_ll[tllj_llj_

There are four attributes that are unique to slider controls:

* The minimum value the slider can represent

98 Palm OS Programmer’s Companion, Volume |

User Interface
Controls

¢ The maximum value the slider can represent
* The current value

¢ The page jump value, or the amount by which the value is
increased or decreased when the user clicks to the left or
right of the slider thumb

Palm OS supports two types of sliders: regular slider and feedback
slider. Sliders and feedback sliders look alike but behave differently.
Specifically, a regular slider control does not send events while the
user is dragging its thumb. A feedback slider control sends an event
each time the thumb moves one pixel, whether the pen has been
lifted or not.

Table 4.11 shows the system events generated when the user
interfaces with a slider and how Ct1HandleEvent responds to the
events.

Table 4.11 Event flow for sliders

User Action System Response CtIHandleEvent Response
Pen tap on slider’s penDownEvent with the x Adds the ct 1EnterEvent to
background. and y coordinates stored in the event queue.
EventType.
ctlEnterEvent with Adds or subtracts the slider’s
slider’s ID number. page jump value from its
current value, and adds a
ctlSelectEvent with the
new value to the event queue.
Pen goes downonthe penDownEvent with the x Adds the ct 1EnterEvent to
slider’s thumb. and y coordinates stored in the event queue.
EventType.
ctlEnterEvent with Tracks the pen.

slider’s ID number.

Palm OS Programmer’s Companion, Volume | 99

User Interface
Controls

Table 4.11 Event flow for sliders (continued)

User Action

System Response

CtiIHandleEvent Response

Pen drags slider’s
thumb to the left or
right.

Pen is lifted from
slider.

penUpEvent with the x and
y coordinates stored in
EventType.

Continues tracking the pen.

Adds the ct1SelectEvent
with the slider’s ID number
and new value if the
coordinates are within the
bounds of the slider.

Adds the ct1ExitEvent if
the coordinates are outside of
the slider’s bounds.

Table 4.12 shows the system events generated when the user
interacts with a feedback slider and Ct1HandleEvent’s response
to the events.

Table 4.12 Event flow for feedback sliders

User Action

System Response

CtIHandleEvent Response

Pen tap on slider’s
background.

penDownEvent with the x
and y coordinates stored in
EventType.

ctlEnterEvent with
slider’s ID number.

Addsthe ct1EnterEvent to
the event queue.

Adds or subtracts the slider’s
page jump value from its
current value and then sends
a ct1lRepeatEvent with the
slider’s new value.

100 Palm OS Programmer’s Companion, Volume |

User Interface
Controls

Table 4.12 Event flow for feedback sliders (continued)

User Action

System Response

CtiIHandleEvent Response

Pen goes down on the
slider’s thumb.

Pen drags slider’s
thumb to the left or
right.

Pen is dragged off the
slider vertically.

Pen is dragged back
onto the slider.

Pen is lifted from
slider.

ctlRepeatEvent

penDownEvent with the x
and y coordinates stored in
EventType.

ctlEnterEvent with
slider’s ID number.

ctlRepeatEvent with
slider’s ID number and new
value.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds or subtracts the slider’s
page jump value from its
current value repeatedly until
the thumb reaches the pen
position or the slider’s
minimum or maximum. Then
sendsa ctlSelectEvent
with slider’s ID number and
new value.

Addsthe ct1EnterEvent to
the event queue.

Tracks the pen and updates
the display.

Tracks the pen. Each time pen
moves to the left or right,
sends another
ct1lRepeatEvent if the pen
is still within the bounds of
the control.

ctlRepeatEvent with the
slider’s ID number and old
value.

ct1lRepeatEvent with the
slider’s ID number and new
value.

Adds the ct1ExitEvent to
the event queue.

Sliders are drawn using two bitmaps: one for the slider background,
and the other for the thumb. You may use the default bitmaps to

Palm OS Programmer’s Companion, Volume | 101

User Interface
Fields

draw sliders, or you may specify your own bitmaps when you
create the slider.

The background bitmap you provide can be smaller than the
slider’s bounding rectangle. This allows you to provide one bitmap
for sliders of several different sizes. If the background bitmap isn’t
as tall as the slider’s bounding rectangle, it’s vertically centered in
the rectangle. If the bitmap isn’t as wide as the slider’s bounding
rectangle, the bitmap is drawn twice. First, it’s drawn left-justified
in the left half of the bounding rectangle and clipped to exactly half
of the rectangle’s width. Then, it's drawn right-justified in the right
half of the bounding rectangle and clipped to exactly half of the
rectangle’s width. (See Figure 4.14.) Note that this means that the
bitmap you provide must be at least half the width of the bounding
rectangle.

Figure 4.14 Drawing a slider background

Background bitmap for slider

Draw in left half and clip

Draw in right half and clip

Result

Fields

A field object displays one or more lines of text. Figure 4.15 is an
underlined, left-justified field containing data.

102 Palm OS Programmer’s Companion, Volume |

User Interface
Fields

Figure 4.15 Field

The field object supports these features:
* Proportional fonts (only one font per field)
* Drag-selection
¢ Scrolling for multiline fields
¢ Cut, copy, and paste
¢ Left and right text justification
¢ Tab stops
* Editable/noneditable attribute

* Expandable field height (the height of the field expands as
more text is entered)

¢ Underlined text (each line of the field is underlined)

¢ Maximum character limit (the field stops accepting
characters when the maximum is reached)

e Special keys (Graffiti® strokes) to support cut, copy, and
paste

¢ Insertion point positioning with pen (the insertion point is
positioned by touching the pen between characters)

e Scroll bars

The field object does not support overstrike input mode; horizontal
scrolling; numeric formatting; or special keys for page up, page
down, left word, right word, home, end, left margin, right margin,
and backspace. On Palm OS versions earlier than 3.5, the field object
also does not support word selection. Starting in version 3.5,
double-tapping a word selects that word, and triple-tapping selects
the entire line.

NOTE: Field objects can handle line feeds—\0A—but not
carriage returns—\0D. PalmRez translates any carriage returns it
finds in any Palm OS resources into line feeds, but doesn’t touch
static data.

Palm OS Programmer’s Companion, Volume | 103

User Interface

Fields
Events in field objects are handled by F1dHandleEvent. Table 4.13
provides an overview of how FldHandleEvent deals with the
different events
Table 4.13 Event flow for fields
User Action Event Generated FldHandleEvent Response

Pen goes down on a
field.

Pen is lifted.

Enters characters
into selected field.

Presses up arrow

key

Presses down arrow

penDownEvent with the x
and y coordinates stored in
EventType.

fl1dEnterEvent with the
field’s ID number.

penUpEvent with the xand y
coordinates.

keyDownEvent with
character value in
EventType.

kevDownEvent

kevDownEvent

Adds the f1dEnterEvent to
the event queue.

Sets the insertion point
position to the position of the
pen and tracks the pen until it
is released. Drag-selection and
drag-scrolling are supported.

Starting in Palm OS 3.5,
double-tapping in a field
selects the word at that
location, and triple-tapping
selects the line.

Nothing happens; a field
remains selected until another
field is selected or the form
that contains the field is
closed.

Character added to field’s text
string.

Moves insertion point up a
line.

Moves insertion point down a
line; the insertion point
doesn’t move beyond the last
line that contains text.

104 Palm OS Programmer’s Companion, Volume |

User Interface
Menus

Table 4.13 Event flow for fields (continued)

User Action

Event Generated

FldHandleEvent Response

Presses left arrow

Presses right arrow

Cut command
Copy command

Paste command

kevDownEvent

kevDownEvent

kevDownEvent

kevDownEvent

kevDownEvent

Moves insertion point one
character position to the left.
When the left margin is
reached, move to the end of
the previous line.

Moves insertion point one
character position to the right.
When the right margin is
reached, move to the start of
the next line.

Cuts the current selection to
the text clipboard.

Copies the current selection to
the text clipboard.

Inserts clipboard text into the
field at insertion point.

Menus

A menu bar is displayed whenever the user taps a menu icon.
Starting in Palm OS 3.5, the menu bar is also displayed when the
user taps in a form’s titlebar. The menu bar, a horizontal list of menu
titles, appears at the top of the screen in its own window, above all
application windows. Pressing a menu title highlights the title and
“pulls down” the menu below the title (see Figure 4.16).

Palm OS Programmer’s Companion, Volume | 105

User Interface
Menus

Figure 4.16 Menu

Menu name ———— m —— Menu bar
Lndo « LU
. Cut o X
Menu item < Copy ~c1—— Shortcut
Paste + P
Separator ———— SelectAll 3 |
Keyboard " K
GraffitiHelp G

User actions have the following effect on a menu:

When... Then...

User drags the pen Command under the pen is highlighted
through the menu

Penisreleased overa That item is selected and the menu bar

menu item and menu disappear

Pen is released Both menu and menu bar disappear and
outside both the no selection is made

menu bar and the

menu

Pen is released in a Menu bar and Menu remain displayed
menu title (Palm OS until a selection is made from the menu.
3.5 and later only)

Penis tapped outside Both menu and menu bar are dismissed
menu and menu bar

A menu has the following features:
¢ Jtem separators, which are lines to group menu items.

* Menu shortcuts; the shortcut labels are right justified in
menu items.

¢ A menu remembers its last selection; the next time a menu is
displayed the prior selection appears highlighted.

e The bits behind the menu bar and the menus are saved and
restored by the menu routines.

106 Palm OS Programmer’s Companion, Volume |

User Interface
Menus

* When the menu is visible, the insertion point is turned off.

Menu events are handled by MenuHandleEvent. Table 4.14
describes how user actions get translated into events and what
MenuHandleEvent does in response.

Table 4.14 Event flow for menus

User Action

Event Generated MenuHandleEvent
Response

Pen enters menu
bar.

winEnterEvent identifying Tracks the pen.
menu’s window.

User selects amenu penUpEvent withthexandy Addsa menuEvent with the

item.

coordinates. item’s ID to the event queue.

Checking Menu Visibility

When the operating system draws a menu, the menu’s window
becomes the active drawing window. The operating system
generates a winExitEvent for the previous active drawing
window and a winEnterEvent for the menu’s window. When the
menu is erased, the system generates a winExitEvent for the
menu’s window and a winEnterEvent for the window that was
active before the menu was drawn.

It’s common to want to check if the menu is visible in applications
that perform custom drawing to a window. Such applications want
to make sure that they don’t draw on top of the menu. The
recommended way to do this is to stop drawing when you receive a
winExitEvent matching your drawing window and resume
drawing when you receive the corresponding winEnterEvent.
For example, the following code is excerpted from the Reptoids
example application’s main event loop:

EvtGetEvent (&event, TimeUntillNextPeriod()) ;

if (event.eType == winExitEvent) ({
if (event.data.winExit.exitWindow ==
(WinHandle) FrmGetFormPtr (MainView))

// stop drawing.

Palm OS Programmer’s Companion, Volume | 107

User Interface
Menus

else if (event.eType == winEnterEvent) {
if (event.data.winEnter.enterWindow ==
(WinHandle) FrmGetFormPtr (MainView) &&
event .data.winEnter.enterWindow ==
(WinHandle) FrmGetFirstForm ()) ({
// start drawing

Note that this technique is not specific to menus—your application
should stop drawing if any window obscures your drawing
window, and it will do so if you check for winEnterEvent and
winExitEvent.

Dynamic Menus

In releases of Palm OS prior to release 3.5, the menu was loaded
from a menu resource (created with Constructor or some other tool)
and could not be modified in code. Starting in Palm OS 3.5, you can
add, hide, or unhide menu items while the menu resource is being
loaded.

A menuOpenEvent is sent when the menu resource is loaded.
(Note that this event is new in version 3.5. Previous releases do not
use it.) In response to this event, you can call MenuAddItem to add
a menu item to one of the pull-down menus, MenuHideItem to
hide a menu item, or MenuShowItem to display a menu item.

You might receive menuOpenEvent several times during an
application session. The menu resource is loaded each time the
menu is made the active menu. A menu becomes active the first
time the user either requests that the menu be displayed or enters
the command keystroke on the current form. That menu remains
active as long as the form with which it is associated is active. A
menu loses its active status under these conditions:

* When FrmSetMenu is called to change the active menu on
the form.

* When a new form, even a modal form or alert panel, becomes
active.

Suppose a user selects your application’s About item from the
Options menu then clicks the OK button to return to the main form.

108 Palm OS Programmer’s Companion, Volume |

User Interface
Menus

When the About dialog is displayed, it becomes the active form,
which causes the main form’s menu state to be erased. This menu
state is not restored when the main form becomes active again. The
next time the user requests the menu, the menu resource is
reloaded, and a new menuOpenEvent is queued.

You should only make changes to a menu the first time it is loaded
after a form becomes active. You should not add, hide, or show
items based on user context. Such practice is discouraged in the
Palm OS user interface guidelines.

Menu Shortcuts

As an alternative to selecting a menu command through the user
interface, users can instead enter a menu shortcut. This support is
present in all versions of the Palm OS, but it was extended in Palm
0S3.5.

On all versions of Palm OS, the user can enter a Graffiti command
keystroke followed by another Graffiti character. If the next
character matches one of the shortcut characters for an item on the
active menu, a menuEvent with that menu item is generated. To
support this behavior, you simply specify a shortcut character when
you create a menu item resource. The default behavior of Palm OS
handles this shortcut appropriately.

Starting in Palm OS 3.5, entering the Graffiti command character
displays the command toolbar (see Figure 4.17). This toolbar is the
width of the screen. (Previous versions of Palm OS simply display
the string “Command:” in the lower-left portion of the screen.) The
command toolbar displays a status message on the left and buttons
on the right. After entering the command character, the user has the
choice of entering a Graffiti character or of tapping one of the
buttons on the command toolbar. Both of these actions cause the
status message to be briefly displayed and (in most cases) a
menuEvent to be added to the event queue.

Figure 4.17 Command toolbar

.. T &)

Palm OS Programmer’s Companion, Volume | 109

User Interface
Menus

The buttons displayed on the toolbar depend on the user context. If
the focus is in an editable field, the Field Manager displays buttons
for cut, copy, and paste on the command toolbar. If there is an action
to undo, the field manager also displays a button for undo.

The active application may also add its own buttons to the toolbar.
To do so, respond to the menuCmdBarOpenEvent and use
MenuCmdBarAddButton to add the button. Listing 4.1 shows some
code from the Memo application that adds to the command toolbar
a button that displays the security dialog and then prevents the field
manager from adding other buttons.

Listing 4.1 Responding to menuCmdBarOpenEvent

else if (event-s>eType == menuCmdBarOpenEvent) {

MenuCmdBarAddButton (menuCmdBarOnLeft,
BarSecureBitmap, menuCmdBarResultMenultem,
ListOptiongSecurityCmd, O0) ;

// Tell the field package to not add buttons

// automatically; we've done it all ourselves.

event - >data.menuCmdBarOpen.preventFieldButtons =
true;

// Don't set handled to true; this event must
// fall through to the system.

The system contains bitmaps that represent such commands as
beaming and deleting records. If your application performs any of
these actions, it should use the system bitmap. Table 4.15 shows the
system bitmaps and the commands they represent. If you use any of
these, you should use them in the order shown, from right to left.
That is, BarDeleteBitmap should always be the rightmost of
these bitmaps, and BarInfoBitmap should always be the leftmost.

Table 4.15 System command toolbar bitmaps

Bitmap Command

BarDeleteBitmap Delete record.

BarPasteBitmap Paste clipboard contents at insertion point.

110 Palm OS Programmer’s Companion, Volume |

User Interface
Tables

Tables

Table 4.15 System command toolbar bitmaps (continued)

Bitmap Command
BarCopyBitmap Copy selection.
BarCutBitmap Cut selection.
BarUndoBitmap Undo previous action.

BarSecureBitmap Show Security dialog.
BarBeamBitmap Beam current record.

BarInfoBitmap Show Info dialog (Launcher).

You should limit the buttons displayed on the command toolbar to 4
or 5. There are two reasons to limit the number of buttons. You must
leave room for the status message to be displayed before the action
is performed. Also, consider that the toolbar is displayed only
briefly. Users must be able to instantly understand the meaning of
each of the buttons on the toolbar. If there are too many buttons, it
reduces the chance that users can find what they need.

Note that the field manager already potentially displays 4 buttons
by itself. If you want to suppress this behavior and display your
own buttons when a field has focus, set the
preventFieldButtons flag of the menuCmdBarOpenEvent to
true as is shown in Listing 4.1.

Tables support multi-column displays. Examples are:
¢ the List view of the ToDo application
¢ the Day view in the Datebook

The table object is used to organize several types of Ul objects. The
number of rows and the number of columns must be specified for
each table object. A UI object can be placed inside a cell of a table.
Tables often consist of rows or columns of the same object. For
example, a table might have one column of labels and another

Palm OS Programmer’s Companion, Volume | 111

User Interface
Lists

Lists

column of fields. Tables can only be scrolled vertically. Tables can’t
include bitmaps.

A problem may arise if non-text elements are used in the table. For
example, assume you have a table with two columns. In the first
column is an icon that displays information, the second column is a
text column. The table only allows users to select elements in the
tirst column that are as high as one row of text. If the icon is larger,
only a narrow strip at the top of the column can be selected.

Table Event

The table object generates the event tblSelectEvent. This event
contains:

e The table’s ID number
e The row of the selected table

e The column of the selected table

When tblSelectEvent is sent to a table, the table generates an
event to handle any possible events within the item’s UI object.

The list object appears as a vertical list of choices in a box. The
current selection of the list is inverted.

Figure 4.18 List

Busineszs

Contacts

Enginesrs

Farnily

Friends=

Nluztrators

Falrn

Ferzonal

uickList ¥+

A list is meant for static data. Users can choose from a
predetermined number of items. Examples include:

e the time list in the time edit window of the datebook

¢ the Category pop-up list (see “Categories” in this chapter)

112 Palm OS Programmer’s Companion, Volume |

User Interface
Lists

If there are more choices than can be displayed, the system draws
small arrows (scroll indicators) in the right margin next to the first
and last visible choice. When the pen comes down and up on a
scroll indicator, the list is scrolled. When the user scrolls down, the
last visible item becomes the first visible item if there are enough
items to fill the list. If not, the list is scrolled so that the last item of
the list appears at the bottom of the list. The reverse is true for
scrolling up. Scrolling doesn’t change the current selection.

Bringing the pen down on a list item unhighlights the current
selection and highlights the item under the pen. Dragging the pen
through the list highlights the item under the pen. Dragging the pen
above or below the list causes the list to scroll if it contains more
choices than are visible.

When the pen is released over an item, that item becomes the
current selection. When the pen is dragged outside the list, the item
that was highlighted before the penDownEvent is highlighted
again if it’s visible. If it’s not, no item is highlighted.

An application can use a list in two ways:

e Initialize a structure with all data for all entries in the list and
let the list manage its own data.

* Provide list drawing functions but don’t keep any data in
memory. The list picks up the data as it’s drawing.

Not keeping data in memory avoids unacceptable memory
overhead if the list is large and the contents of the list
depends on choices made by the user. An example would be
a time conversion application that provides a list of clock
times for a number of cities based on a city the user selects.
Note that only lists can pick up the display information on
the fly like this; tables cannot.

The LstHandleEvent function handles list events. Table 4.16
provides an overview of how LstHandleEvent deals with the
different events.

Palm OS Programmer’s Companion, Volume | 113

User Interface
Lists

Table 4.16 Event flow for lists

User Action

System Response

LstHandleEvent Response

Pen goes down on

pop-up trigger
button.

Pen goes down on a
list box.

Pen is lifted from the
list box.

Pen is lifted outside
the list box.

winEnterEvent identifying
list’s window.

lstEnterEvent with list’s
ID number and selected item.

penDownEvent with the x
and y coordinates stored in
EventType.

penUpEvent with the x and
y coordinates stored in
EventType.

lstSelectEvent with list’s
ID number and number of
selected item.

penUpEvent with the x and
y coordinates stored in
EventType.

Addsthe 1stEnterEvent to
the event queue.

Tracks the pen.

Highlights the selection
underneath the pen.

Adds the 1stSelectEvent
to the event queue.

Stores the new selection. If
the list is associated with a
pop-up trigger, adds a
popSelectEvent to the
event queue. with the pop-up
trigger ID, the pop-up list ID,
and the item number selected
in Event Type. Control
passes to FrmHandleEvent.

Adds winExitEvent to
event queue.

Using Lists in Place of Tables

Lists really consist of single-column rows of text, but it is possible to
imitate a multi-column display if you provide a custom list drawing
function. Many programmers choose to use list objects instead of
tables for multi-column displays because lists are generally easier to
program than tables are. Doing so is acceptable, but it is somewhat
problematic because the list object always displays a rectangular
border around the list. If you choose to use lists to display multi-

114 Palm OS Programmer’s Companion, Volume |

User Interface
Lists

column data that would normally be displayed in a table, you must
suppress the drawing of the list border. The safest way to do so is to
set the draw window’s clipping rectangle to the bounds of the list
before drawing the list, as shown in Listing 4.2. See the Palm OS
User Interface Guidelines for more information.

Listing 4.2 Suppressing the list border

void DrawFormWithNoListBorder (FormType *frmP,
UIntlé listIndex)

{

}

RectangleType *clip;
RectangleType *newClip;
ListType *1listP = FrmGetObjectPtr (frmP, listIndex) ;

// Hide the list object and then draw the rest of the
// form.

FrmHideObject (frmP, listIndex) ;

FrmDrawForm (frmP) ;

// Set the clipping rectangle to the list boundaries and
// draw the list. This suppreses the list border.
WinGetClip (&clip) ;

FrmGetObjectBounds (frmP, listIndex, &newClip) ;
WinSetClip (&newClip) ;

LstSetSelection(listP, noListSelection) ;

FrmShowObject (frmP, listIndex) ;

// Reset the clipping rectangle.
WinSetClip (&clip) ;

Boolean MyFormHandleEvent (EventPtr eventP)

{

Boolean handled = false;
FormType *frmP;
UIntlé listIndex;

switch (eventP-s>eType) ({

case frmOpenEvent:
frmP = FrmGetActiveForm() ;
listIndex = FrmGetObjectIndex (frmP, MyListRscID) ;
// initialize form here.
DrawFormWithNoListBorder (frmP, listIndex) ;
handled = true;
break;

Palm OS Programmer’s Companion, Volume | 115

User Interface
Categories

case frmUpdateEvent:
frmP = FrmGetActiveForm() ;
listIndex = FrmGetObjectIndex (frmP, MyListRscID) ;
DrawFormWithNoListBorder (frmP, listIndex) ;
handled = true;
break;

Categories

Categories allow you to group records logically into manageable
lists. In the user interface, categories typically appear in a pop-up
list in a form’s titlebar and in dialogs that allow you to edit a single
database record.

You create a category pop-up list the same way you create any other
pop-up list: create the list resource, create the pop-up trigger control
resource with a width of 0, and set the trigger’s list ID to be the ID of
the list. You manage the category pop-up list using the category API
described in the chapter “Categories” on page 133 of the Palm OS
Programmer’s API Reference.

For the most part, you can handle a category pop-up list using only
these calls:

e Call CategoryInitialize when you create a new
database as described in “Initializing Categories in a

Database” below).

¢ Call CategorySetTriggerLabel to set the category pop-
up trigger’s label when the form is opened (as described in

“Initializing the Category Pop-up Trigger”).
¢ Call CategorySelect when the user selects the category
pop-up trigger (as described in “Managing a Category Pop-
up List”).
You typically don’t need to use the other functions declared in
Category.h unless you want more control over what happens
when the user selects the category trigger.

116 Palm OS Programmer’s Companion, Volume |

User Interface
Categories

This section focuses on the user interface aspects of categories. For
information on how categories are stored and how to manage
categories in a database, read Chapter 6, “Files and Databases.”

Initializing Categories in a Database

Before you can use the category API calls, you must set up the
database appropriately. The category functions expect to find
information at a certain location. If the information is not there, the
functions will fail.

Category information is stored in the AppInfoType structure
within the database’s application info block. As described in the
chapter titled “Files and Databases” in this book, the application
info block may contain any information that your database needs. If
you want to use the category AP], the first field in the application
info block must be an AppInfoType structure.

The AppInfoType structure maps category names to category
indexes and category unique IDs. Category names are displayed in
the user interface. Category indexes are used to associate a database
record with a category. That is, the database record’s attribute word
contains the index of the category to which the record belongs.
Category unique IDs are used when synchronizing the database
with the desktop computer.

To initialize the AppInfoType structure, you call
CategoryInitialize, passing a string list resource containing
category names. This function creates as many category indexes and
unique IDs as are necessary. You only need to make this call when
the database is first created or when you newly assign the
application info block to the database.

The string list resource is an appInfoStringsRsc ('tAIS"')
resource. It contains predefined categories that new users see when
they start the application for the first time. Note that the call to
CategoryInitialize is the only place where you use an
appInfoStringsRsc. Follow these guidelines when creating the
resource:

¢ Place any categories that you don’t want the user to be able
to change at the beginning of the list. For example, it’s

Palm OS Programmer’s Companion, Volume | 117

User Interface
Categories

common to have at least one uneditable category named
Unfiled, so it should be the first item in the list.

¢ The string list must have 16 entries. Typically, you don’t
want to predefine 16 categories. You might define one or two
and leave the remaining entries blank. The unused slots
should have 0 length.

¢ Keep in mind that there is a limit of 16 categories. That
includes both the predefined categories and the categories
your users will create.

¢ Each category name has a maximum length defined by the
dmCategoryLength constant (currently, 16 bytes).

* Don’t include strings for “All” or “Edit Categories.” While
these two items often appear in category lists, they are not
categories, and they are treated differently by the category
functions.

Listing 4.3 shows an example function that creates and initializes a
database with an application info block. Notice that because the
application info block is stored with the database, you allocate
memory for it using DmNewHandle, not with MemHandleNew.

Listing 4.3 Creating a database with an app info block

typedef struct ({
AppInfoType appInfo;
UIntlé myCustomAppInfo;
} MyAppInfoType;

Err CreateAndOpenDatabase (DmOpenRef *dbPP, UIntlé mode)
{

Err error = errNone;

DmOpenRef dbP;

UIntlé cardNo;

MemHandle h;

LocalID dbiID;

LocalID appInfolD;

MyAppInfoType *appInfoP;

// Create the database.

error = DmCreateDatabase (0, MyDBName, MyDBCreator, MyDBType,
false) ;

if (error) return error;

118 Palm OS Programmer’s Companion, Volume |

User Interface

Categories

// Open the database.

dbP = DmOpenDatabaseByTypeCreator (MyDBType, MyDBCreator,
mode) ;

if (!dbP) return (dmErrCantOpen) ;

// Get database local ID and card number. We need these to

// initialize app info block.

if (DmOpenDatabaseInfo (dbP, &dbID, NULL, NULL, &cardNo, NULL))
return dmErrInvalidParam;

// Allocate app info in storage heap.
h = DmNewHandle (dbP, sizeof (MyAppInfoType)) ;
if (!h) return dmErrMemError;

// Associate app info with database.

appInfoID = MemHandleToLocalID (h);

DmSetDatabaseInfo (cardNo, dbID, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, &appInfoID, NULL, NULL, NULL) ;

// Initialize app info block to 0.
appInfoP = MemHandleLock (h) ;
DmSet (appInfoP, 0, sizeof (MyAppInfoType), O0);

// Initialize the categories.
CategoryInitialize ((AppInfoPtr) appInfoP,
MyLocalizedAppInfoStr) ;

// Unlock the app info block.
MemPtrUnlock (appInfoP) ;

// Set the output parameter and return.
*dbPP = dbP;
return error;

Initializing the Category Pop-up Trigger

When a form is opened, you need to set the text that the category

pop-up trigger should display. To do this, use CategoryGetName
to look up the name in the AppInfoType structure and then use

CategorySetTriggerLabel to set the pop-up trigger.

For the main form of the application, it’s common to store the index
of the previously selected category in a preference and restore it

when the application starts up again.

Palm OS Programmer’s Companion, Volume | 119

User Interface
Categories

Forms that display information from a single record should show
that record’s category in the pop-up list. Each database record stores
the index of its category in its attribute word. You can retrieve the
record attribute using DmRecordInfo and then AND it with the
mask dmRecAttrCategoryMask to obtain the category index.

Listing 4.4 shows how to set the trigger label to match the category
for a particular database record.

Listing 4.4 Setting the category trigger label

UIntlé attr, category;
Char categoryName [dmCategoryLength] ;
ControlType *ctl;

// If current category is All, we need to look
// up category.

if (CurrentCategory == dmAllCategories) {
DmRecordInfo (AddrDB, CurrentRecord, &attr,
NULL, NULL) ;
category = attr & dmRecAttrCategoryMask;
} else

category = CurrentCategory;
CategoryGetName (AddrDB, category,
categoryName) ;
ctl = FrmGetObjectPtr (frm,
FrmGetObjectIndex (frm, objectID)) ;
CategorySetTriggerLabel (ctl, categoryName) ;

Managing a Category Pop-up List

When the user taps the category pop-up trigger, call
CategorySelect. Thatis, call CategorySelect in response to a
ctlSelectEvent when the ID stored in the event matches the ID
of the category’s trigger. The CategorySelect function displays
the pop-up list, manages the user selection, displays the Edit
Categories modal dialog as necessary, and sets the pop-up trigger
label to the item the user selected.

Calling CategorySelect
The following is a typical call to CategorySelect:

120 Palm OS Programmer’s Companion, Volume |

User Interface
Categories

Listing 4.5 Calling CategorySelect

categoryEdited = CategorySelect (AddrDB, frm,
ListCategoryTrigger, ListCategorylList, true, &category,
CategoryName, 1, categoryDefaultEditCategoryString) ;

This example uses the following as parameters:
* AddrDB is the database with the categories to be displayed.

e frm, ListCategoryTrigger, and ListCategoryList
identify the form, pop-up trigger resource, and list resource.

true indicates that the list should contain an “All” item. The
“All” item should appear only in forms that display multiple
records. It should not appear in forms that display a single
record because selecting it would have no meaning.

* category and CategoryName are pointers to the index and
name of the currently selected category. When you call this
function, these two parameters should specify the category
currently displayed in the pop-up trigger. Unfiled is the
default.

The number 1 is the number of uneditable categories.
CategorySelect needs this information when the user
chooses the Edit Categories list item. Categories that the user
cannot edit should not appear in the Edit Categories dialog.

Because uneditable categories are assumed to be at the
beginning of the category list, passing 1 for this parameter
means that CategorySelect does not allow the user to edit
the category at index 0.

® categoryDefaultEditCategoryStringis a constant
that means include an Edit Categories item in the list and use
the default string for its name (“Edit Categories” on US
English ROMs).

To use a different name (for example, if you don’t have
enough room for the default name), pass the ID of a string
resource containing the desired name.

In some cases, you might not want to include the Edit
Categories item. If so, pass the constant
categoryHideEditCategory.

Palm OS Programmer’s Companion, Volume | 121

User Interface
Categories

NOTE: The categoryDefaultEditCategoryString and
categoryHideEditCategory constants are only defined if 3.5
New Feature Set is present. See the CategorySelect function
description in the Palm OS Programmer’s APl Reference for
further compatibility information.

Interpreting the Return Value

The CategorySelect return value is somewhat tricky:
CategorySelect returns true if the user edited the category list,
false otherwise. That is, if the user chose the Edit Categories item
and added, deleted, or changed category names, the function
returns true. If the user never selects Edit Categories, the function
returns false. In most cases, a user simply selects a different
category from the existing list without editing categories. In such
cases, CategorySelect returns false.

This means you should not rely solely on the return value to see if
you need to take action. Instead, you should store the value that you
passed for the category index and compare it to the index that
CategorySelect passes back. For example:

Listing 4.6 CategorySelect return value

Intlé6 category;
Boolean categoryEdited;

category = CurrentCategory;

categoryEdited = CategorySelect (AddrDB, frm,
ListCategoryTrigger, ListCategoryList, true, &category,
CategoryName, 1, categoryDefaultEditCategoryString) ;

if (categoryEdited || (category != CurrentCategory)) {
/* user changed category selection or edited category list.
Do something. */

If the user has selected a different category, you probably want to do
one of two things:

122 Palm OS Programmer’s Companion, Volume |

User Interface
Bitmaps

Bitmaps

¢ Update the display so that only records in that category are
displayed. See the function ListViewUpdateRecords in
the Address Book example application for sample code.

¢ Change the current record’s category from the previous
category to the newly selected category. See the function
EditViewSelectCategory in the Address Book example
application for sample code.

Note that the CategorySelect function handles the results of the
Edit Categories dialog for you. It adds, deletes, and renames items
in the database’s AppInfoType structure. If the user deletes a
category that contains records, it moves those records to the Unfiled
category. If the user changes the name of an existing category to the
name of another existing category, it prompts the user and, if
confirmed, moves the records from the old category to the new
category. Therefore, you never have to worry about managing the
category list after a call to CategorySelect.

Abitmap is a graphic displayed by Palm OS. There are several ways
to create a bitmap resource in Constructor:

¢ If you simply want to display a bitmap at a fixed location on
a form, drag a Form Bitmap object to the form. Assign a
resource ID in the Bitmap ID field, and you can then create a
bitmap resource. The bitmap resource is a ' Tbmp ' resource,
and the Form Bitmap object that contains itisa ' t FBM'
resource.

¢ If you want to create a bitmap for some other purpose (for
example, to use in animation or to display a gadget), create
either a Bitmap resource or a Bitmap Family resource in the
main project window. In this case, Constructor creates a
"tbmf ' resource, and the PalmRez post linker converts it
and its associated PICTs to a ' Tbmp ' resource. (Constructor
creates PICT format images on both the Macintosh and
Microsoft Windows operating systems.)

Versions of Bitmap Support

There are four different bitmap encodings:

Palm OS Programmer’s Companion, Volume | 123

User Interface
Bitmaps

¢ Version 0 encoding is supported by all Palm OS releases.

* Version 1 encoding is supported on Palm OS 3.0 and later.
PalmRez creates version 1 bitmaps unless you've explicitly
specified a transparency index or a compression type when
creating the bitmap in Constructor.

¢ Version 2 encoding is supported on Palm OS 3.5 and later.
This encoding supports transparency indices and RLE
compression.

With a version 2 bitmap, you can specify one index value as a
transparent color at creation time. The transparency index is
an alternative to masking. The system does not draw bits that
have the transparency index value.

When a bitmap with a transparency index is rendered at a
depth other than the one at which it was created, the
transparent color is first translated to the corresponding
depth color, and the resulting color is named transparent.
This may result in a group of colors becoming transparent.

* Version 3 encoding is supported on Palm OS 5 and
handhelds running the High-Density Display Feature Set,
and adds support for displays of varying densities.

High-Density Bitmaps

The BitmapTypeV3 data structure contains a 16-bit density field.
For the screen bitmap, this field represents the screen density. An
enumerated list representing density is defined in Bitmap. h:

typedef enum {
kDensityLow = 72,
kDensityOneAndAHalf = 108,
kDensityDouble = 144,
kDensityTriple = 216,
kDensityQuadruple = 288

} DensityType;

The kDensityLow value of 72 is arbitrary. Although this value
doesn’t necessarily represent pixels per inch, it is useful to think of it
that way.

124 Palm OS Programmer’s Companion, Volume |

User Interface
Bitmaps

IMPORTANT: Not all densities listed in the DensityType
enum are supported by this version of the High-Density Display
feature set. For this release, only kDensityLow and
kDensityDouble are supported.

Palm OS 4.0 was released with a version 2 BitmapType structure.
The density field is defined only on BitmapType structures with a
version greater than 2. If a given bitmap structure is version 2 or
less, the operating system assumes that the bitmap contains low-
density data.

The blitter uses the density field in the source and destination
bitmaps to determine an appropriate scaling factor. Because default
density bitmaps must be scaled for high-density displays, some
handhelds with high-density screens may use graphic accelerators.
Nevertheless, the software blitter incorporates pixel-scaling logic for
when the destination is an offscreen window.

When scaling down from a density of kDensityDouble to
kDensityLow, the software shrinks the bitmap data. The result is
almost always a poorer quality image when compared with a
bitmap originally generated with a density of kDensityLow.

The following examples demonstrate the above concepts.

* An application draws a low-density bitmap to a double-
density screen.

The source data is a 16 by 16 bitmap. The application calls
WinDrawBitmap (bitmapP, 31, 23);

with the intention of placing the bitmap on the screen
beginning at screen coordinate (31, 23), assuming the
standard 160 by 160 coordinate system.

Since Palm OS by default uses the standard coordinate
system and since the handheld has a double-density screen,
the draw window’s draw state contains a scale field value of
2.0. WinDrawBitmap transforms (31, 23) to high-density

Palm OS Programmer’s Companion, Volume | 125

User Interface
Bitmaps

coordinates by multiplying (31, 23) by the scale field, and
then calls the blitter with coordinates (62, 46).

The blitter receives the screen coordinates (62, 46) along with
the low-density bitmap. The blitter recognizes the bitmap as
low density, based upon the version of its BitmapType
structure, and pixel-doubles the source data when blitting to
the double-density screen.

The following illustration shows the source data on the left,
with low-density window coordinates for the top-left and
bottom-right corners. The illustration on the right shows the
result as displayed on the screen, with top-left coordinates
scaled by the Window Manager and bitmap data pixel-
doubled by the blitter.

Figure 4.19 Low-density bitmap on a double-density screen

31,23 62,46

4739 9478

* A new application draws a double-density bitmap to a
double-density screen.

The source data is a 32 by 32 double-density bitmap.
Recognizing that the bitmap is being drawn to a double-
density screen, the application uses the new functions to

126 Palm OS Programmer’s Companion, Volume |

User Interface
Bitmaps

establish the double-density coordinate system, and calls
WinDrawBitmap with high-density coordinates:

WinPushDrawState () ;

oldScale =

WinSetCoordinateSystem (kCoordinatesNative) ;
WinDrawBitmap (bitmapP, 61, 45);
WinPopDrawState () ;

Figure 4.20 Double-density bitmap on a double-density
screen

6145

The double-density coordinates (61, 45) allow the application
to position the bitmap more precisely on the screen; these
coordinates are equivalent to coordinates (30.5, 22.5) in the
standard coordinate system.

Since the window’s native coordinate system is active, the
Window Manager leaves the double-density coordinates

Palm OS Programmer’s Companion, Volume | 127

User Interface
Bitmaps

(61, 45) unchanged. The blitter receives these coordinates
along with the double-density source bitmap. Because the
screen bitmap has the same density, the blitter copies the
source data to the screen unchanged.

Note that the point of calling WinSetCoordinateSystemis
not to have the OS draw the double-density bitmap, but to
place the top-left corner of the bitmap at a double-density
coordinate. If the application does not need the precision of
double-density coordinates, the application can simply call
WinDrawBitmap:

WinDrawBitmap (bitmapP, x, V) ;

and pass standard coordinates for x and y. The Window
Manager transforms (x, y) to the screen coordinate system,
and the blitter draws the double-density bitmap at that
location.

If standard coordinates are acceptable, and if the
application’s bitmap family contains both low-density and
double-density bitmaps, WinDrawBitmap selects the
appropriate bitmap from the bitmap family based on the
destination window’s density; no additional logic is needed
in the application. By providing both double-density and
low-density bitmaps in a bitmap family, applications can
display images properly on handhelds with various screen
densities without separate code paths.

See “High-Density Bitmap Families” on page 131 for a more
complete description of bitmap families.

A new application draws a double-density bitmap to a low-
density screen.

If an application includes only high-density bitmaps, the
blitter needs to shrink them when drawing them to the
screen. The application can determine the screen density like
this:

128 Palm OS Programmer’s Companion, Volume |

User Interface
Bitmaps

UInt32 density;

err = WinScreenGetAttribute (winScreenDensity, &density) ;

Understanding that the destination is low density, the
application calls WinDrawBitmap using the standard
coordinate system:

WinDrawBitmap (bitmapP, 31, 23);

Because the destination window is low density, and because
the passed coordinates are standard coordinates, the
Window Manager does not scale the passed coordinates. The
blitter, however, recognizes that the source bitmap has a
density of kDensityDouble and shrinks the data to one-
half the original size when blitting it to the low-density
screen.

Figure 4.21 Double-density bitmap on a low-density screen

3123

Palm OS Programmer’s Companion, Volume | 129

User Interface
Bitmaps

The result, shown above on the right, is poor. Because of this,
for an application to look good on both low and high-density
screens it should include both low and high-density bitmaps.

Note that although the blitter included with the High-
Density Display feature set can expand or shrink a bitmap as
necessary, on handhelds without this feature set if an
application contains a bitmap family with only high-density
bitmaps, nothing is drawn.

Bitmap Families

A 'Tbmp' resource defines either a single bitmap or a bitmap
family. A bitmap family is a group of bitmaps, each containing the
same drawing but at a different pixel depth (see Figure 4.22). When
requested to draw a bitmap family, the operating system chooses
the version of the bitmap with the pixel depth equal to the display. If
such a bitmap doesn’t exist, the bitmap with the pixel depth closest
to but less than the display depth is chosen. If there are no bitmaps
less than the display depth, then the bitmap with the pixel depth
closest to the display depth is used.

Programmatically, a bitmap or bitmap family is represented by a
BitmapType structure. This structure is simply a header. It is
followed by the bitmap data in the same memory block. Bitmaps in
Palm OS 3.0 and higher are also allowed to have their own color
tables. When a bitmap has its own color table, it is stored between
the bitmap header and the bitmap data.

130 Palm OS Programmer’s Companion, Volume |

User Interface

Bitmaps
Figure 4.22 Single-density bitmap family
> —» » >
B;tmap PixelDepth = 1 PixelDepth = 2 PixelDepth = 4 PixelDepth = 8 PixelDepth = 16
ype
Header nextDepthOffset nextDepthOffset nextDepthOffset nextDepthOffset nextDepthOffset = 0
Color Direct InfoType
Table
Bitmap Data
Bitmap

Data

High-Density Bitmap Families

Bitmap families represent a single image across a variety of Palm
handhelds with screens of different bit depths. Prior to the High-
Density Display Feature Set, a bitmap family is a null-terminated
linked list of bitmaps ordered from low to high bit depth.
WinDrawBitmap iterated through the linked list and selected the
bitmap with the greatest bit depth less than or equal to the draw
window’s bit depth.

Although bitmap families are still represented using a null-
terminated linked list of bitmaps, the algorithm used to select the
appropriate bitmap for a given situation changes with the High-
Density Display feature set. There are two reasons for this change.
First, when the draw window is 8-bit, it is better to select a 16-bit
image over a grayscale image. Second, density must now be taken
into account when selecting a bitmap.

The algorithm that is used in the High-Density Display feature set
depends upon the density of the draw window. If the draw window
is low density, low-density bitmaps are always favored over double-
density bitmaps, regardless of source bitmap depth. If the draw
window is double density, however, the color domain match (color

Palm OS Programmer’s Companion, Volume | 131

User Interface
Bitmaps

vs. grayscale) is favored over a double-density bitmap with a color
domain mismatch. The following algorithm is used on a handheld
with a double-density screen:

If draw window is low density ({
Favor low-density over double-density
If draw window is color {
Favor color bitmap
} else {

Favor grayscale, picking greatest depth
less than or equal to draw window’s
depth

}
} else {
If draw window is color {
Favor color
} else {
Favor grayscale
}

)

The following table provides the results of applying this double-
density algorithm. The two left columns represent the draw
window’s depth and density. The third column lists the bitmap
selection preferences, ordered from best to worst (a ‘d” in this third
column indicates double-density).

Table 4.17 Double-density algorithm results

Draw Window

Depth Density Bitmap selection preferences

1 Single 1,2,4,8,16
2 Single 2,1,4,8,16
4 Single 4,2,1,8,16
8 Single 8,16,4,2,1
16 Single 16,8,4,2,1
1 Double 1d,2d,4d,1,2,4,8d,16d,8, 16

132 Palm OS Programmer’s Companion, Volume |

User Interface
Bitmaps

Table 4.17 Double-density algorithm results

Draw Window

Depth Density Bitmap selection preferences

2 Double 2d,1d,4d, 2,1, 4, 8d, 16d, 8, 16
4 Double 4d,2d, 1d,4,2,1,8d, 164, 8, 16
8 Double 8d, 16d, 8, 16,4d,2d, 1d, 4, 2,1
16 Double 16d, 8d, 16, 8,4d, 2d, 1d, 4,2, 1

Bitmaps in a bitmap family are grouped by density. For backward
compatibility, the linked list of default density bitmaps occur first,
and remain ordered from low to high bit depths. If the family
contains high-density bitmaps, the high-density bitmaps follow the
low-density bitmaps, again ordered from low to high bit depths. If
the family contains multiple densities, then the density sets are
ordered from low to high density.

IMPORTANT: A bitmap family used for a graphic button, slider,
or form bitmap must include at least one low-density version of
the image in the bitmap family. This restriction doesn’t apply to
bitmaps used for custom gadgets: if your application will only run
on handhelds with high-density displays, you don’t need to have
any low-density images in your custom gadget bitmap families.

Handhelds that don’t have the High-Density Display feature set
don’t display high-density bitmaps. They do, however, display any
low-density bitmaps in applications that contain both low and high-
density bitmaps. This is because the older versions of the OS don’t
attempt to follow the linked list of bitmaps in a bitmap family as it
crosses over from low-density to high-density bitmaps. This is
accomplished by inserting a dummy version 1 bitmap structure
between the low-density and high-density bitmaps within a bitmap
family. The dummy bitmap contains no bitmap data, no color table,
and an invalid bit depth. By setting the bit depth of the dummy
bitmap to OxFF, the logic in older versions of the OS that traverse the
linked list of bitmaps stops at the appropriate place in the list.

Palm OS Programmer’s Companion, Volume | 133

User Interface
Bitmaps

The High-Density Display feature set recognizes that the dummy
bitmap is followed by high-density bitmaps and continues the
traversal, skipping over the dummy bitmap. Note that the dummy
bitmap is only present if there are one or more high-density
bitmaps, and is always present if there are any high-density
bitmaps. The dummy bitmap is the first bitmap if there are high-
density bitmaps but no low-density bitmaps.

Figure 4.23 illustrates the process of traversing the bitmaps in a
bitmap family. The dotted line indicates a step that is taken only in
handhelds running the High-Density Display feature set.

134 Palm OS Programmer’s Companion, Volume |

User Interface
Bitmaps

Figure 4.23 Linked list of bitmaps in a bitmap family

Low-density bitmaps High-density bitmaps

I
I
BitmapTypeV1 (or V2) [BitmapTypeV3
pixelSize = 1 I pixelSize = 1
| density = 144
nextDepthOffset nextBitmapOffset =
I
I
\4 | \ 4
BitmapTypeV1 (or V2) | BitmapTypeV3
pixelSize = 4 I pixelSize = 8
I density = 144
nextDepthOffset nextBitmapOffset
I
I
\4 | \ 4
BitmapTypeV2 [BitmapTypeV3
pixelSize = 16 I pixelSize = 4
I density = 288
nextDepthOffset nextBitmapOffset = 0
I
I
\4 |
BitmapTypeV1 |
width = 0 I
height =0 |
rowBytes = 0
pixelSize = OxFF I
nextDepthOffset =0 =—= = == — —

Drawing a Bitmap

If you use a Form Bitmap object, your bitmap is drawn when the
form is drawn. No extra coding is required on your part.

If you're not using a Form Bitmap object, to draw the bitmap you
obtain it from the resource database and then call either

Palm OS Programmer’s Companion, Volume | 135

User Interface
Bitmaps

WinDrawBitmap or WinPaintBitmap. (The form manager code
uses WinDrawBitmap to draw Form Bitmap objects.) If passed a
bitmap family, these two functions draw the bitmap that has the
depth equal to the current draw window depth or the closest depth
that is less than the current draw window depth if available, or the
closest depth greater than the current draw depth if not.

Listing 4.7 Drawing a bitmap

MemHandle resH = DmGetResgource (bitmapRsc, rscID);
BitmapType *bitmap = MemHandleLock (resH) ;
WinPaintBitmap (bitmap, 0, 0);

If you want to modify a bitmap, starting in Palm OS 3.5 you can
create the bitmap programmatically with BmpCreate, create an
offscreen window wrapper around the bitmap using
WinCreateBitmapWindow, set the active window to the new
bitmap window, and use the window drawing functions to draw to
the bitmap:

Listing 4.8 Programmatically creating a bitmap

BitmapType *bmpP;
WinHandle win;
Err error;

bmpP = BmpCreate (10, 10, 8, NULL, &error) ;
if (bmpP) {
win = WinCreateBitmapWindow (bmpP, &error) ;
if (win) |
WinSetDrawWindow (win) ;
WinDrawLines (win, ...);
/* etc */
}
}

Note that BmpCreate always creates a version 2 bitmap

To learn how to modify a bitmap in releases prior to Palm OS 3.5,
download the Signatures example application from the Knowledge
Base on the Palm OS Developer website.

136 Palm OS Programmer’s Companion, Volume |

User Interface
Labels

Color Tables and Bitmaps

As mentioned previously, bitmaps can have their own color tables
attached to them. A bitmap might have a custom color table if it
requires a palette that differs from the default system palettes. If a
bitmap has its own color table, the system must create a conversion
table to convert the color table of the current draw window before it
can draw the bitmap. This conversion is a drain on performance, so
using custom color tables with bitmaps is not recommended if
performance is critical.

As an alternative, if your bitmap needs a custom palette, use the
WinPalette function to change the system palette that is currently
in use, then draw your bitmap. After the bitmap is no longer visible,
use WinPalette again to set the system palette back to its previous
state.

Labels

You can create a label in a form by creating a label resource.

The label resource displays noneditable text or labels on a form
(dialog or full-screen). It’s used, for example, to have text appear to
the left of a checkbox instead of the right.

You don’t interact with a label as a programmatic entity; however,
you can use Form API to create new labels or to change labels
dynamically. See the “Summary of User Interface API” at the end of
this chapter.

Scroll Bars

Palm OS 2.0 and later provides vertical scroll bar support. As a
result, you can attach scroll bars to fields, tables, or lists, and the
system sends the appropriate events when the end user interacts
with the scroll bar (see Figure 4.24).

Palm OS Programmer’s Companion, Volume | 137

User Interface
Scroll Bars

Figure 4.24 Scroll bar

Edre piemo) = nfed

J_ ... SCI’O” car

[Done][Detals..

Here’s what you have to do to include a scroll bar in your user
interface:

1. Create a scroll bar (tSCL) UI resource.

Provide the ID and the bounds for the scroll bar rectangle.
The height has to match the object you want to attach it to.
The width should be 7.

2. Provide a minimum and maximum value as well as a page
size.

* Minimum is usually 0.
¢ Maximum is usually 0 and set programmatically.

* The page size determines how many lines the scroll bar
moves when the text scrolls.

3. Make the scroll bar part of the form.

When you compile your application, the system creates the
appropriate scroll bar UI object. (See the chapter “Scroll Bars”
in the Palm OS Programmer’s API Reference for more
information on the scroll bar UI object.)

There are two ways in which the scroll bar and the user interface
object that it’s attached to need to interact:

138 Palm OS Programmer’s Companion, Volume |

User Interface
Scroll Bars

¢ When the user adds or removes text, the scroll bar needs to
know about the change in size.

To get this functionality, set the hasScrollbar attribute of
the field, table, or list. (For tables, you must set this
programmatically with the function TolHasScrollBar.)

If hasScrollbar is set for a field, you'll receive a
fldChangedEvent whenever the field’s size changes. Your
application should handle these events by computing new
values for the scroll bar’s minimum, maximum, and current
position and then use SclSetScrollBar to update it.

If hasScrollbar is set for a table, you should keep track of
when the table’s size changes. Whenever it does, you should
compute new values for the scroll bar’s minimum,
maximum, and current position and then use
SclSetScrollBar to update it.

Lists are intended for static data, so you typically don’t have
to worry about the size of a list changing.

You should also call Sc1SetScrollBar when the form is
initialized to set the current position of the scroll bar.

¢ When the user moves the scroll bar, the text needs to move
accordingly. This can either happen dynamically (as the user
moves the scroll bar) or statically (after the user has released
the scroll bar).

The system sends the following scroll bar events:

— sclEnterEvent is sent when a penDownEvent occurs
within the bounds of the scroll bar.

— sclRepeatEvent is sent when the user drags the scroll
bar.

— sclExitEvent is sent when the user lifts the pen. This
event is sent regardless of previous sc1RepeatEvents.

Applications that want to support immediate-mode scrolling
(that is, scrolling happens as the user drags the pen) need to
watch for occurrences of sc1RepeatEvent. In response to
this event, call the scrolling function associated with the Ul

Palm OS Programmer’s Companion, Volume | 139

User Interface
Custom UI Objects (Gadgets)

object (F1dScrollField, LstScrollList, or your own
scrolling function in the case of tables).

Applications that don’t support immediate-mode scrolling
should ignore occurrences of sclRepeatEvent and wait
only for the sc1ExitEvent.

Custom Ul Objects (Gadgets)

A gadget resource lets you implement a custom UI object. The
gadget resource contains basic information about the custom
gadget, which is useful to the gadget writer for drawing and
processing user input.

You interact with gadgets programmatically using the Form APIL
See the “Summary of User Interface AP1” at the end of this chapter.

A gadget is best thought of as simply a reserved rectangle at a set
location on the form. You must provide all drawing and event
handling code. There is no default behavior for a gadget.

Starting in Palm OS 3.5, you can create an extended gadget. An
extended gadget is simply a gadget with a callback routine
(FormGadgetHandlerType) that provides drawing and event
handling code for the gadget. Use FrmSetGadgetHandler to set
the callback function. (A pointer to the gadget is passed to the
callback, so you can use the same function for multiple gadgets.)
When the form receives certain requests to draw itself, delete itself,
or to hide or show a gadget object, the form manager calls the
gadget handler function you provide. When the form receives
events intended for the gadget, it passes those to the gadget handler
function as well.

In versions prior to 3.5, gadgets do not have a callback function.
Instead, you must write code to draw the gadget and respond to
pen down events in the form’s event handler. Listing 4.9 shows the
event handler for the main form in the Rock Music sample
application. This code makes calls to draw the gadget in response to
a frmOpenEvent or frmUpdateEvent, and if there is a
penDownEvent within the bounds of the gadget, it calls a function
to handle that event as well. Listing 4.10 shows how a gadget
handler function might be written for Rock Music.

140 Palm OS Programmer’s Companion, Volume |

User Interface
Custom Ul Objects (Gadgets)

Listing 4.9 Pre-Palm OS 3.5 gadget example

Boolean MainViewHandleEvent (EventPtr event)
Boolean handled = false;
Word objIndex;
FormPtr frm;
RectangleType r;

switch (event-s>eType) (
case frmOpenEvent:

MainViewInit () ;
frm = FrmGetActiveForm () ;
FrmDrawForm (frm) ;
DrawGadget () ;
handled = true;
break;

case frmUpdateEvent:
frm = FrmGetActiveForm () ;
FrmDrawForm (frm) ;
DrawGadget () ;
handled = true;
break;

case penDownEvent:
frm = FrmGetActiveForm () ;
objIndex = FrmGetObjectIndex (frm,
RockMusicMainInputGadget) ;

FrmGetObjectBounds (frm, objIndex, &r);

if (RctPtInRectangle (event->screenX,
event-s>screenY, &r))
GadgetTapped () ;
handled=true;

}

break;

Listing 4.10 Palm OS 3.5 gadget example

Boolean GadgetHandler (struct FormGadgetType *gadgetPp,

UIntlé cmd, void *paramP)

{

Boolean handled = false;

Palm OS Programmer’s Companion, Volume | 141

User Interface
Dynamic Ul

switch (cmd) {
case formGadgetDrawCmd:
//Sent to active gadgets any time form is
//drawn or redrawn.
DrawGadget () ;
gadgetP->attr.visible = true;
handled = true;
break;

case formGadgetHandleEventCmd:
//Sent when form receives a gadget event.
//paramP points to EventType structure.

if (paramP->eType == frmGadgetEnterEvent) (
// penDown in gadget’s bounds.
GadgetTapped () ;

handled = true;
}
if (paramP->eType == frmGadgetMiscEvent) {
//This event is sent by your application
//when it needs to send info to the gadget
}
break;
case formGadgetDeleteCmd:
//Perform any cleanup prior to deletion.
break;
case formGadgetEraseCmd:
//FrmHideObject takes care of this if you
//return false.
handled = false;
break;

}

return handled;

Dynamic Ul

Palm OS 3.0 and higher provide functions that can be used to create
forms and form elements at runtime. Most applications will never
need to change any user interface elements at runtime—the built-in
applications don’t do so, and the Palm user interface guidelines
discourage it. The preferred method of having UI objects appear as
needed is to create the objects in Constructor and set their usable
attributes to false. Then use FrmShowObject and

142 Palm OS Programmer’s Companion, Volume |

User Interface
Dynamic Ul

FrmHideObject to make the object appear and disappear as
needed.

Some applications, such as forms packages, must create their
displays at runtime—it is for applications such as these that the
Dynamic UI API is provided. If you're not absolutely sure that you
need to change your Ul dynamically, don’t do it—unexpected
changes to an application’s interface are likely to confuse or
frustrate the end user.

You can use the FrmNewForm function to create new forms
dynamically. Palm’s Ul guidelines encourage you to keep modal
dialogs at the bottom of the screen, using the entire screen width.
This isn’t enforced by the routine, but is strongly encouraged in
order to maintain a look and feel that is consistent with the built-in
applications.

The FrmNewLabel, FrmNewBitmap, FrmNewCGadget,
LstNewList, F1dNewField and Ct1NewContzrol functions can
be used to create new objects on forms.

It is fine to add new items to an active form, but doing so is very
likely to move the form structure in memory; therefore, any pointers
to the form or to controls on the form might change. Make sure to
update any variables or pointers that you are using so that they
refer to the form’s new memory location, which is returned when
you create the object.

The FrmRemoveObject function removes an object from a form.
This function doesn’t free memory referenced by the object (if any)
but it does shrink the form chunk. For best efficiency when
removing items from forms, remove items in order of decreasing
index values, beginning with the item having the highest index
value. When removing items from a form, you need to be mindful of
the same concerns as when adding items: the form pointer and
pointers to controls on the form may change as a result of any call
that moves the form structure in memory.

When creating forms dynamically, or just to make your application
more robust, use the FrmValidatePtr function to ensure that
your form pointer is valid and the form it points to is valid. This
routine can catch lots of bugs for you—use it!

Palm OS Programmer’s Companion, Volume | 143

User Interface
Color and Grayscale Support

Dynamic User Interface Functions
The following API can be used to create forms dynamically:

e CtlNewControl

e CtlValidatePointer
e F1dNewField

¢ FrmNewBitmap

o FrmNewForm

e FrmNewGadget

e FrmNewLabel

® FrmRemoveObiject

® FrmValidatePtr

e I,.stNewlList

e WinValidateHandle

* FrmNewGsi (available only if 3.5 New Feature Set is present)

Color and Grayscale Support

Starting in Palm OS version 3.5, the operating system supports
system palettes of 1, 2, 4, or 8 bits-per-pixel, as follows:

¢ 1-bit: white (0) and black (1)
¢ 2-bit: white (0), light gray (1), dark gray (2), and black (3)
* 4-bit: 16 shades of gray, from white (0) to black (0xF)

¢ 8-bit: 216 color “Web-safe” palette, which includes all
combinations of red, green, and blue at these levels: 0x00,
0x33, 0x66, 0x99, 0xCC, and OxFF. Also, it includes all 16 gray
shades at these levels: 0x00, 0x11, 0x22, ... OxFF. Finally, it
includes these extra named HTML colors: 0xCOCO0CO (silver),
0x808080 (gray), 0x800000 (maroon), 0x800080 (purple),
0x008000 (green), and 0x008080 (teal). The remaining 24
entries (indexes OxE7 through OxFE) are unspecified and
tilled with black. These entries may be defined by an
application.

Generalized support for color tables in all bit depths is included,
with performance degrading if the color tables are not standard.

144 Palm OS Programmer’s Companion, Volume |

User Interface
Color and Grayscale Support

Starting in Palm OS version 4.0, the operating system supports 16-
bit color. However, support is not provided to allow the Ul layer of
the OS to utilize 16-bit color mode. Buttons, controls, and other
gadgets continue to be displayed with a color bit depth of no more
than 8-bits.

Indexed Versus Direct Color Display

Displays that support 1, 2, 4, or 8 bits per pixel rely on a color
lookup table in the display hardware in order to map pixel values
into colors. The only colors that can be displayed on the screen at
any given time are those that are found in the display’s color lookup
table.

Direct color displays on the other hand, do not rely on a color
lookup table because the value stored into each pixel location
specifies the amount of red, green, and blue components directly.
For example, a 16-bit direct color display could have 5 bits of each
pixel assigned as the red component, 6 bits as the green component,
and 5 bits as the blue component. With this type of display, the
application is no longer limited to drawing with a color that is in the
color lookup table.

The color indexed mode for setting the foreground, background,
and text colors used previous to Palm OS release 4.0 continues to
work even with direct color displays because the system uses a
translation table for mapping color index values into direct colors.

When the screen is a direct color display, the color lookup table for
the screen is present only for compatibility with the indexed mode
color calls. The lookup table has no effect on the display hardware,
since the hardware derives the color from the red, green, and blue
bits stored in each pixel location of the frame buffer.

Color Table

The system color table is stored ina 'tclt' resource (symbolically
named colorTableRsc). The color table is a count of the number
of entries, followed by an array of RGBColorType colors. An
RGBColorType struct holds 8 bits each of red, green, and blue plus
an “extra” byte to hold an index value.

Palm OS Programmer’s Companion, Volume | 145

User Interface
Color and Grayscale Support

A color’s index is used in different ways by different software
layers. When querying for a color or doing color fitting, the index
holds the index of the closest match to the RGB value in the
reference color table. When setting a color in a color table, the index
can specify which slot the color should occupy. In some routines, the
index is ignored.

Generally, the drawing routines and the operating system use
indexed colors rather than RGB. Indexed colors are used for
performance reasons; it allows the RGB-to-index translation to be
skipped for most drawing operations.

Care should be taken not to confuse a full color table (which
includes the count) with an array of RGB color values. Some
routines operate on entire color tables, others operate on lists of
color entries.

Color Translation Table

When rendering requires a translation from one depth to another, a
color translation table is used. For example, suppose you are trying
to display an 8-bit color bitmap image on a 2-bit display. Palm OS
must translate the color bitmap to a grayscale bitmap in order to
display it. To do so, it creates the translation table by stepping
through each element of the source color table (the 8-bit bitmap) and
finding the best fit for the RGB value in the destination color table
(which has exactly 4 values). This table is generated once and is
reused for all drawing operations until it is no longer valid.

Palm OS uses one of two algorithms to build the translation table:
¢ Luminosity fitting if the destination color table is grayscale.

¢ Shortest distance in the RGB space if the destination color
table is color.

Although shortest distance RGB fitting does not always produce the
best perceptual match, it is fast, and it works well for the available
palettes on Palm OS.

Color Table Management

If you want to change the color table used by the current draw
window, you can do so with the WinPalette function. If the
current draw window is onscreen, the palette for the display

146 Palm OS Programmer’s Companion, Volume |

User Interface
Color and Grayscale Support

hardware is also changed. For more information see the
WinPalette function description in the Palm OS Programmer’s API
Reference.

If your application needs to know which RGB color corresponds to
which index color in the current palette, it can do so with the
function calls WinRGBToIndex and WinIndexToRGB. When
calling WinRGBToIndex, an exact match may not be available. That
is, you may be calling WinRGBToIndex with an RGB value that is
not in the palette and thus does not have an index. If there is no
exact RGB match, the best-fit algorithm currently in place is used to
determine the index value. For WinIndexToRGB, the RGB value
returned is always the exact match. (An error is displayed on debug
ROMs if the index is out of range.)

Ul Color List

The system builds a UI color list in addition to the system color
table. The UI color list contains the colors used by the various user
interface elements. Each UI color is represented by a symbolic color
constant. See Table 4.18 for a list of colors used.

Each bit depth has its own list of UI colors, allowing for a different
color scheme in monochrome, grayscale, and color modes. This is
important because even with a default monochrome look and feel,
highlighted field text is black-on-yellow in color and white-on-black
in other modes.

To obtain the color list, the system first tries to load it from the
synchronized preferences database using the value
sysResIDPrefUIColorTableBase plus the current screen
depth. The use of a preference allows for the possibility that
individual users could customize the look using a third party
“personality” or “themes” editor. If the preference is not defined, it
loads the default color table from the system color table resource
plus the current screen depth.

Using a list allows easy variation of the colors of Ul elements to
either personalize the overall color scheme of a given Palm Powered
handheld or to adjust it within an application. Defining these as
color classes ensures that the user interface elements are consistent
with each other.

Palm OS Programmer’s Companion, Volume | 147

User Interface
Color and Grayscale Support

Table 4.18 Ul objects and colors

Ul Object Symbolic Colors Used

Forms UIFormFrame, UIFormFill
Modal dialogs UIDialogFrame, UIDialogFill
Alert dialogs UIAlertFrame, UIAlertFill

Buttons (push
button, repeating
button, check boxes,
and selector triggers)

Fields

Menus

Tables

Lists and pop-up
triggers

Labels

Scroll bars

UIObjectFrame, UIObjectFill,
UIObjectForeground,
UIObjectSelectedFill,
UIObjectSelectedForeground

UIFieldBackground, UIFieldText,
UIFieldTextLines,
UIFieldTextHighlightBackground,
UIFieldTextHighlightForeground

UIMenuFrame, UIMenuFill,
UIMenuForeground,
UIMenuSelectedFill,
UIMenuSelectedForeground

Uses UIFieldBackground for the
background, other colors controlled by
the object in the table cell.

UIObjectFrame, UIObjectFill,
UIObjectForeground,
UIObjectSelectedFill,
UIObjectSelectedForeground

Labels on a control and noneditable fields
use UIObjectForeground, and text
written to a form using WinDrawChars
or WinPaintChars use the current text
setting in the draw state.

UIObjectFill,
UIObjectForeground,
UIObjectSelectedFill,
UIObjectSelectedForeground

148 Palm OS Programmer’s Companion, Volume |

User Interface
Color and Grayscale Support

Table 4.18 Ul objects and colors (continued)

Ul Object Symbolic Colors Used

Insertion point UIFieldCaret

Front-end processor =~ UIFieldFepRawText,

(currently only used = UIFieldFepRawBackground,

on Japanese systems) UIFieldFepConvertedText,
UIFieldFepConvertedBackground,
UIFieldFepUnderline

Should your application need to change the colors used by the Ul
color list, it can do so with UIColorSetTableEntry. If you need
to retrieve a color used, it can do so with
UIColorGetTableEntryIndex or
UIColorGetTableEntryRGB.

If you change the Ul color list, your changes are in effect only while
your application is active. The Ul color list is reset as soon as control
switches to another application. When control switches back to your
application, you'll have to call UIColorSetTableEntry again.

Direct Color Functions

The direct color function calls are more generic than their indexed
forms and can be used with both indexed (1, 2, 4, or 8 bit) or direct
16-bit color displays. The system automatically looks up the color

index value of the closest color if necessary.

The direct color functions are: WinSetForeColorRGB,
WinSetBackColorRGB, WinSetTextColorRGB, and
WinGetPixelRGB

Because these calls are only available on systems with the direct
color enhancements present, applications should generally stick to
using the indexed form of these calls: WinSetForeColor,
WinSetBackColor, WinSetTextColor, and WinGetPixel
unless they need finer control over the choice and dynamic range of
colors.

Palm OS Programmer’s Companion, Volume | 149

User Interface
Color and Grayscale Support

Pixel Reading and Writing

The Palm OS 3.5 API call for reading a pixel value, WinGetPixel,
is designed to return a color index value. When this call is
performed on a direct color display, it must first get the actual pixel
value (a 16 or 24 bit direct color value). The system then looks up the
closest color from the system’s virtual 8-bit color lookup table, and
returns the index of the closest color from that table. This mode of
operation ensures compatibility for applications that take the return
value from WinGetPixel and use it as an indexed color to
WinSetForeColor, WinSetBackColor, and
WinSetTextColor.

Applications that need to copy pixels exactly from one location to
another on direct color displays should use WinGetPixelRGB
instead of WinGetPixel. If you use WinGetPixel on a direct
color display, it can result in a loss of color because of the closest-
match color table lookup operation that WinGetPixel performs.

WinGetPixelRGB returns the pixel as an RGBColorType with a
tull 8 bits each of red, green, and blue, assuring no loss of color
resolution. This call is more generic than the WinGetPixel call and
can be used with both indexed (1, 2, 4, or 8 bit) or direct color
modes. The system automatically looks up the RGB components of
indexed color pixels as necessary.

The pixel setting API calls (WinPaintPixel, WinDrawPixel, and
so on) all rely on using the current foreground and background
colors and do not require new forms for the direct color mode. An
application can simply pass in the return RGBColorType from
WinGetPixelRGB to WinSetForeColorRGB and then call
WinDrawPixel in order to copy a direct color pixel.

Direct Color Bitmaps

In Palm OS release 4.0 the Window Manager supports16 bits per
pixel direct color bitmaps, as well as the previously supported 1, 2,
4, and 8 bit indexed color bitmaps. A direct color bitmap is indicated
by the new directColor bitin the BitmapFlagsType bit-field of
the BitmapType data structure. In addition to this flag, a direct
color bitmap must also include the BitmapDirect InfoType

150 Palm OS Programmer’s Companion, Volume |

User Interface
Color and Grayscale Support

fields: redBits, greenBits, blueBits, reserved, and
transparentColor.

The redBits, greenBits, and blueBits fields indicate the
number of bits in each pixel for each color component. The current
implementation only supports 16 bits per pixel, with 5 bits of red, 6
bits of green, and 5 bits of blue:

RRRR RGGG GGGB BBBB
MSB LSB

The transparentColor field contains the red, green, and blue
components of the transparent color of the bitmap. For direct color
bitmaps, this field is used instead of the t ransparent Index field
to designate the transparent color value of the bitmap, because the
transparent Index field is only 8 bits wide and can only
represent an indexed color. The transparentColor field, like the
transparentIndex field, is ighored unless the
hasTransparency bit is set in the bitmap's flags field.

With Palm OS 4.0, a 16-bit direct color bitmap can always be
rendered, regardless of the actual screen depth. The 16-bit color
functions automatically perform the necessary bit depth conversion
to render the bitmap into whatever depth the destination is in.

Bitmap resources can be built to contain multiple depth images in
the same bitmap resource, one image for each possible depth. A
potential incompatibility could arise if an application includes only
a direct color version of a bitmap. Therefore, applications need to
either check that version 4.0 of Palm OS is present before drawing a
direct color bitmap, or they must always include a 1, 2, 4, or 8 bit per
pixel image of the bitmap in the bitmap resource along with the
direct color version.

Special Drawing Modes

The special drawing modes of winErase, winMask, winInvert,
and winOverlay introduce a complication when it comes to direct
color models. These drawing modes were originally designed for
use with monochrome bitmaps where black is designated by 1 bits
and white is designated by 0 bits. With these color assignments,
these various modes can be described as:

Palm OS Programmer’s Companion, Volume | 151

User Interface

Color and Grayscale Support

* WinErase becomes an AND operation (black pixels in the
source leave the destination alone whereas white pixels in
the source make the destination white).

* WinMask becomes an AND NOT operation (black pixels in
the source make the destination white whereas white pixels
leave the destination alone)

* WinInvert becomes an XOR operation (black pixels in the
source invert the destination whereas white pixels leave the
destination alone)

* WinOverlay becomes an OR operation (black pixels in the
source make the destination black, white pixels in the source
leave the destination alone)

In a direct color bitmap, black is designated by all 0Os and white is
designated by all 1s. Because of this, if all the drawing modes were
implemented as logical operations in the same way as they are for
indexed color modes, the desired effect would not be achieved.

The assumption made by direct color functions is that the desired
effect is more important to the caller than the actual logical
operation that is performed. Thus, the various drawing modes,
when drawing to a direct color bitmap, become:

* WinErase becomes an OR operation (black pixels in the
source leave the destination alone whereas white pixels in
the source make the destination white).

* WinMask becomes an OR NOT operation (black pixels in the
source make the destination white whereas white pixels
leave the destination alone)

* WinInvert becomes an XOR NOT operation (black pixels in
the source invert the destination whereas white pixels leave
the destination alone)

* WinOverlay becomes an AND operation (black pixels in the
source make the destination black, white pixels in the source
leave the destination alone)

As long as the source and destination bitmaps contain only black
and white colors, the new interpretations of the drawing modes in
direct color modes produce the same effects as they would have
with an indexed color mode.

152 Palm OS Programmer’s Companion, Volume |

User Interface
Insertion Point

With non-black and white pixels however, an application may get
unexpected results from these drawing modes if they assume that
the direct color function calls perform the same logical operation in
direct color mode as they do in indexed color mode.

Insertion Point

The insertion point is a blinking indicator that shows where text is
inserted when users write Graffiti characters or paste clipboard text.

In general, an application doesn’t need to be concerned with the
insertion point; the Palm OS Ul manages the insertion point.

Application Launcher

The Application Launcher is the screen from which most
applications are launched. Users navigate to the Launcher by
tapping the Applications icon in the Graffiti area. They then launch
a specific application by tappings its icon.

To integrate well with the Application Launcher, you must provide
application icons and a version string as described in the following
sections. In rare cases, you may need to provide a default
application category as well.

Icons in the Launcher

Applications installed on the Palm Powered handheld (resource
databases of type 'appl ') appear in the Application Launcher
automatically. Specifically, the Launcher displays an application
icon and an application name.

Your application needs to have two icons:

¢ A large icon of type tAIB, with an ID of 1000. For
compatibility with Palm OS 2.0, this icon should be 22 x 32
pixels; for all other Palm OS versions, you can make this icon
22 x 22 pixels.

¢ A smaller icon, also of type tAIB, with an ID of 1001. This
icon should be 15 x 9 pixels.

Palm OS Programmer’s Companion, Volume | 153

User Interface
Application Launcher

NOTE: The Constructor program supplied with Palm OS SDK
versions 3.5 and later allows you to create an Application Icon
Family. You should not use the App Icon or Multi-bit Icon
resources if the Application Icon Family is available.

The application name is defined in two ways:

* The application name (required) is specified in the PalmRez
panel of your CodeWarrior project and used by HotSync
application, the About box, the Memory display, and the
database header.

* The application icon name (optional) is a string resource in
the application’s resource file. It is used by the Launcher
screen and in the Button Assignment preferences panel
(available in OS versions 2.0 and later). You assign the name
using Constructor.

The application icon name is technically optional, but if you
want the name to appear with the icon in the Launcher’s
main view, you must supply it.

Note: If you use an application icon name, make it short!

* Together with the application name, each application
displays a application icon in the launcher.

Application Version String

The Launcher displays a version string from each application’s
tver resource, ID 1000. This short string (usually 3 to 7 characters)
is displayed in the Info dialog.

A version string should have the format:
major.minor.[stage.change]

where major is the major version number, minor is a minor version
number, stage is a letter denoting a development stage (a for alpha b
for beta or d for developer release) and change is the build number.
Remove the stage and change numbers for the final release.

154 Palm OS Programmer’s Companion, Volume |

User Interface
Application Launcher

The Default Application Category

Launcher divides applications into categories starting in Palm OS
3.5. You can store an application’s category ina 'taic' resource
(symbolically named defaultCategoryRscType) with the ID
1000 in the PRC file. Starting in Palm OS 3.5, the Launcher
application installs your application into the specified category. In
Constructor, you can specify the 'taic' resource by providing a
value for the Default App Category field in the main window.

Most applications should not specify a ' taic' resource. By default,
Launcher installs applications in the Unfiled category, and each user
chooses where to file the application.

Only specify a 'taic!' resource in these instances:

* Your application is intended for consumers and clearly
belongs to one of the Launcher predefined categories (see
Table 4.19).

Always specify the Launcher predefined categories in US
English in ASCII characters. Launcher provides the
appropriate translations for localized ROMs.

* Your application is intended for a vertical market or you've
created a suite of custom applications that work together to
provide a complete custom solution.

In this case, you might definea 'taic' resource with a
custom category name. Launcher creates the category if it
doesn’t already exist in the Launcher database. When you're
not identifying one of Launcher’s predefined categories, you
may identify the category in any language.

Table 4.19 Launcher predefined categories

Default Description

Launcher

Category

Games Any game.

Main Applications that would be used on a daily

basis, such as Date Book or Address Book.

Palm OS Programmer’s Companion, Volume | 155

User Interface
Application Launcher

Table 4.19 Launcher predefined categories (continued)

Default Description

Launcher

Category

System Applications that control how the system

behaves, such as the Preferences, HotSync,
and Security.

Utilities Applications that help the user with system
management.
Unfiled The default category.

Do not treat the default application category as something
analogous to the Microsoft Windows Start menu category. On a
Palm Powered handheld, the user is limited to 16 categories
including Unfiled. Obviously, that limit would be quickly reached if
each application defines its own category. Only assign a default
category where it is a clear benefit to your users.

Opening the Launcher Programmatically

Situations in which you need to open the Application Launcher
programmatically are rare, but the system does provide an API for
doing so. To activate the Launcher from within your application,
enqueue a keyDownEvent that contains a launchChr, as shown in

Listing 4.11.

WARNING! Do not use the SysUIAppSwitch or
SysAppLaunch functions to open the Application Launcher
application.

Listing 4.11 Opening the Launcher

EventType newEvent;

MemSet (&newEvent, sizeof (newEvent), O0);
newEvent .eType = keyDownEvent;
newEvent .data.keyDown.chr = launchChr;

156 Palm OS Programmer’s Companion, Volume |

User Interface
Summary of User Interface API

newEvent .data.keyDown.modifiers = commandKeyMask;
EvtAddEventToQueue (&newEvent) ;

Note that this technique will run whatever is run whenever you tap
on the Applications icon. For information on launching other
applications programmatically, see “Launching Applications
Programmatically” in the chapter “Application Startup and Stop.”

NOTE: Versions of Palm OS prior to 3.0 implemented the
Launcher as a pop-up. The SysAppLauncherDialog function,
which provides the API to the old pop-up launcher, is still present
in Palm OS for compatibility purposes, but it has not been
updated and, in most cases, should not be used.

Summary of User Interface API

Progress Manager Functions

PrgHandleEvent PrgStartDialog
PrgStopDialog PrgUpdateDialog

PrgUserCancel

Form Functions

Initialization
FrmInitForm
Event Handling

FrmSetEventHandler FrmDispatchEvent
FrmHandleEvent

Displaying a Form

FrmGotoForm FrmPopupForm
FrmDrawForm FrmNewForm
FrmSetActiveForm

Palm OS Programmer’s Companion, Volume | 157

User Interface
Summary of User Interface API

Form Functions

Displaying a Modal Dialog

FrmCustomAlert FrmHelp
FrmCustomResponseAlert FrmSaveActiveState
FrmAlert FrmRestoreActiveState
FrmDoDialog FrmNewGsi

Updating the Display

FrmUpdateForm FrmReturnToForm
FrmShowObject FrmHideObject
FrmRemoveObject FrmUpdateScrollers

Form Attributes

FrmVisible FrmSaveAllForms

Accessing a Form Programmatically

FrmGetActiveForm ErmGetActiveFormID
FrmGetFirstForm FrmGetFormld
FrmGetFormPtr FrmGetWindowHandle
FrmValidatePtr

Accessing Objects Within a Form

FrmGetFocus FrmSetFocus
FrmGetObjectld FrmGetObjectIndex
FrmGetObjectType FrmGetObjectPosition
FrmGetObjectPtr FrmGetNumberOfObjects

Title and Menu

FrmCopyTitle FrmGetTitle
FrmPointInTitle FrmSetTitle
FrmSetMenu

Labels

FrmCopylLabel FrmSetCategorylabel
FrmGetLabel FrmNewlLabel

158 Palm OS Programmer’s Companion, Volume |

User Interface
Summary of User Interface API

Form Functions

Controls

FrmGetControlValue FrmSetControlValue
FrmGetControlGroupSelection FrmSetControlGroupSelection
Gadgets

FrmGetGadgetData FrmSetGadgetData
FrmNewGadget FrmSetGadgetHandler
Bitmaps

FrmNewBitmap

Coordinates and Boundaries

FrmGetObjectBounds FrmSetObjectBounds
FrmSetObjectPosition FrmGetFormBounds
Removing a Form From the Display

FrmCloseAllForms FrmFEraseForm
Releasing a Form’s Memory

FrmDeleteForm

Window Functions

Initialization

WinCreateWindow

Making a Window Active

WinSetActiveWindow WinSetDrawWindow
Accessing a Window Programmatically
WinGetActiveWindow WinGetDrawWindow
WinGetDisplayWindow WinGetFirstWindow
WinValidateHandle

Palm OS Programmer’s Companion, Volume | 159

User Interface
Summary of User Interface API

Window Functions

Offscreen Windows

WinRestoreBits
WinCreateOffscreenWindow

Displaying Characters

WinDrawChar
WinlnvertChars

WinDrawTruncChars
WinPaintChar

Bitmaps

WinDrawBitmap
WinPaintBitmap

Lines

WinDrawLine
WinFilll ine
WinFraseLine
WinPaintlLines

Rectangles

WinDrawRectangle
WinInvertRectangle
WinFillRectangle
WinFraseRectangle
WinDrawGrayRectangleFrame

WinPaintRectangle

Pixels

WinDrawPixel
WinErasePixel
WinGetPixel

Clipping Rectangle

WinGetClip
WinResetClip

WinSaveBits

WinCreateBitmapWindow

WinDrawChars
WinDrawlInvertedChars
WinEraseChars
WinPaintChars

WinGetBitmap

WinDrawGravLine
WinlnvertLine
WinPaintLine

WinCopyRectangle
WinDrawRectangleFrame
WinInvertRectangleFrame
WinScrollRectangle

WinEraseRectangleFrame
WinPaintRectangleFrame

WinlnvertPixel
WinPaintPixel
WinPaintPixels

WinSetClip
WinClipRectangle

160 Palm OS Programmer’s Companion, Volume |

User Interface

Summary of User Interface API

Window Functions

Setting the Drawing State

WinPopDrawState
WinModal
WinSetPattern
WinGetPatternType
WinSetBackColor
WinSetPatternType

Coordinates and Boundaries

WinDisplayToWindowPt
WinGetDisplayExtent
WinSetBounds
WinGetFramesRectangle

Working with the Screen

WinScreenMode
WinScreenUnlock

WinPushDrawState
WinGetPattern
WinSetUnderlineMode
WinSetDrawMode
WinSetForeColor
WinSetTextColor

WinWindowToDisplayPt
WinGetWindowExtent
WinGetBounds
WinGetWindowFrameRect

WinScreenlL.ock

Removing a Window From the Display

WinEraseWindow

Releasing a Window’s Memory

WinDeleteWindow

Working with Colors

WinlndexToRGB
WinRGBTolndex

WinGetPixelRGB
WinSetBackColor
WinSetForeColor
WinSetTextColor

WinPalette

WinSetForeColorRGB
WinSetBackColorRGB
WinSetTextColorRGB

Palm OS Programmer’s Companion, Volume | 161

User Interface
Summary of User Interface API

Window Functions

High-Density Displays

WinGetCoordinateSystem
WinGetSupportedDensity
WinPaintRoundedRectangleFrame

WinScaleRectangle
WinScreenGetAttribute
WinSetCoordinateSystem

WinPaintTiledBitmap WinUnscaleCoord
WinScaleCoord WinUnscalePoint
WinScalePoint WinUnscaleRectangle
Control Functions

Displaying a Control

CtlShowControl CtlDrawControl
CtlSetUsable CtINewControl
CtINewGraphicControl CtlNewSliderControl
Control’s Value

CtlGetValue CtlSetValue
CtlGetSliderValues

Label

CtlSetLabel CtlGetLabel
Enabling/Disabling

CtlSetEnabled CtlEnabled
CtlHideControl CtlEraseControl
Event Handling

CtlHandleEvent

Setting up controls

CtlGetSliderValues CtlSetSliderValues
CtlSetGraphics

Debugging

CtlHitControl CtlValidatePointer

162 Palm OS Programmer’s Companion, Volume |

User Interface
Summary of User Interface API

Field Functions

Obtaining User Input

FldGetTextPtr

FldSetDirty
FldGetSelection

Updating the Display

FldDrawField
FldSetSelection
FldRecalculateField

Displaying Text
FldSetTextPtr
Editing Text

FldSetText
FldInsert
FldEraseField

Cut/Copy/Paste

FldCopy
FldPaste

Scrolling

FldScrollField
FldSetScrollPosition
FldGetVisibleLines

FldGetNumberOfBlankl ines

Field Attributes

FldGetAttributes
FldGetFont
FldGetMaxChars
FldSetAttributes

FldGetTextHandle
FldDirt

FldMakeFullyVisible
FldSetBounds

FldSetTextHandle
FldDelete

FldCut
FldUndo

FldScrollable
FldGetScrollPosition
FldGetScrollValues

FldSetFont
FldSetMaxChars
FldSetMaxVisibleLines
FldGetBounds

Palm OS Programmer’s Companion, Volume | 163

User Interface
Summary of User Interface API

Field Functions

Text Attributes

FldCalcFieldHeight
FldGetTextAllocatedSize

FldSetTextAllocatedSize

Working With the Insertion Point

FldGetInsPtPosition
FldSetInsertionPoint

Releasing Memory

FldCompactText
Event Handling

FldHandleEvent
FldSendHeightChangeNotification

Dynamic Ul
FldNewField

FldGetTextHeight
FldGetTextLength
FldWordWrap

FldSetInsPtPosition

FldFreeMemory

FldSendChangeNotification

Menu Functions

MenuDispose

MenuEraseStatus
MenuHandleEvent
MenuSetActiveMenu
MenuAddItem
MenuCmdBarDisplay
MenuHideltem

MenuDrawMenu

Menulnit
MenuGetActiveMenu
MenuSetActiveMenuRscID
MenuCmdBarAddButton
MenuCmdBarGetButtonData
MenuShowltem

Table Functions

Drawing Tables

TblDrawTable
TblSetLoadDataProcedure

TblSetCustomDrawProcedure

164 Palm OS Programmer’s Companion, Volume |

User Interface
Summary of User Interface API

Table Functions

Updating the Display

TblRedrawTable
TblReleaseFocus
TbIRemoveRow
TbiMarkTableInvalid

TblUnhighlightSelection
Retrieving Data

TblGetltemPtr
TblFindRowData
TblGetSelection
TblSetSaveDataProcedure

Displaying Data

TblSetltemInt
TblSetltemPtr
TblSetRowData

Retrieving a Row
TblFindRowID

Table Information

TblEditin
TblGetltemBounds

TblGetNumberOfRows
TblHasScrollBar

Row Information

ThlGetRowHeight
TblRowSelectable
TblRowUsable
TblSetRowStaticHeight

Masked Records

TblRowMasked
TblSetColumnMasked

TblGrabFocus

TblUnhighlightSelection
TblMarkRowInvalid

TblSelectltem

TblGetRowData
TblGetltemInt
TblGetCurrentField

TblSetltemStyle
TblSetRowlID

TblGetRowID

TblGetBounds
TblGetLastUsableRow
TblSetBounds

TblSetRowHeight
TblSetRowSelectable
TblSetRowUsable
TblRowInvalid

TblSetRowMasked

Palm OS Programmer’s Companion, Volume | 165

User Interface
Summary of User Interface API

Table Functions

Column Information

TblGetColumnSpacing TblSetColumnSpacing
TblGetColumnWidth TblSetColumnWidth
TblSetColumnUsable TblSetColumnEditIndicator

Removing a Table From the Display
TblEraseTable

Event Handling

TblHandleEvent

Private Record Functions

SecSelectViewStatus SecVerifyPW

List Functions

Displaying a List

LstDrawList LstSetDrawFunction
LstPopuplList LstNewlList
Updating the Display

LstMakeltemVisible LstSetHeight
LstSetListChoices LstSetTopltem
LstSetSelection LstSetPosition
LstScrolllist

List Data and Attributes

LstGetNumberOfltems LstGetTopltem
LstGetSelection LstGetVisibleltems
LstGetSelectionText

Removing a List From the Display

LstErasel.ist

166 Palm OS Programmer’s Companion, Volume |

User Interface
Summary of User Interface API

List Functions

Event Handling
LstHandleEvent

Category Functions

CategoryCreatel ist Categorylnitialize
CategoryEdit CategorySelect
CategoryFind CategorySetName
CategoryFreelist CategorySetTriggerLabel
CategoryGetName CategorySelect
CategoryGetNext CategoryTruncateName

Bitmap Functions

BmpBitsSize BmpGetDensity
BmpColortableSize BmpGetNextBitmap AnyDensity
BmpCompress BmpGetTransparentValue
BmpCreate BmpGetVersion
BmpCreateBitmapV3 BmpSetDensity

BmpDelete BmpSetTransparentValue
BmpGetBits BmpSize

BmpGetColortable ColorTableEntries

BmpGetCompressionType

Scroll Bar Functions

SclSetScrollBar SclGetScrollBar
SclHandleEvent SclDrawScrollBar

Ul Color List Functions

UlColorGetTableEntrvindex UIColorGetTableEntrvRGB
UlColorSetTableEntry

Palm OS Programmer’s Companion, Volume | 167

User Interface
Summary of User Interface API

Ul Controls

UlBrightnessAdjust UlContrastAdjust

UIPickColor

Insertion Point Functions

InsPtEnable InsPtEnabled
InsPtGetHeight InsPtSetHeight
InsPtGetLocation InsPtSetLocation

Keyboard Dialog Functions

SysKeyboardDialog
SysKevboardDialogV10

168 Palm OS Programmer’s Companion, Volume |

Memory

This chapter helps you understand memory use on Palm OS®.

¢ Introduction to Palm OS Memory Use provides information
about Palm OS hardware relevant to memory management.

* Memory Architecture discusses in detail how memory is
structured on Palm OS. It also examines the structure of the
basic building blocks of Palm OS memory: heaps, chunks,
and records.

* The Memory Manager discusses how to use the Palm OS
Memory Manager in your applications. The Memory
Manager maintains the location and size of each memory
chunk in nonvolatile storage, volatile storage, and ROM. It
provides functions for allocating chunks, disposing of
chunks, resizing chunks, locking and unlocking chunks, and
compacting the heap when it becomes fragmented.

Introduction to Palm OS Memory Use

The Palm OS system software supports applications on low-cost,
low-power, handhelds. Given these constraints, Palm OS is efficient
in its use of both memory and processing resources. This section
presents two aspects of Palm Powered ™ handheld that contribute to
this efficiency: Hardware Architecture and PC Connectivity.

Hardware Architecture

The first implementation of Palm OS provided nearly instantaneous
response to user input while running on a 16 MHz Motorola® 68000
type processor with a minimum of 128 KB of nonvolatile storage
memory and 512 KB of ROM. Subsequent Palm Powered handhelds
provide additional RAM and ROM in varying amounts.

The ROM and RAM for each Palm Powered handheld resides on a
memory module known as a card. Each memory card can contain
ROM, RAM, or both. A “card” is really just a logical construct used

Palm OS Programmer’s Companion, Volume | 169

Memory
Introduction to Palm OS Memory Use

by the operating system—Palm Powered handhelds can have one
card, multiple cards, or no cards. For example, the Simulator
provided by the Palm OS SDK on Macintosh can simulate a
handheld that has two cards.

IMPORTANT: Do not confuse memory cards with expansion
cards, such as SD cards or MemoryStick cards. You access
expansion cards through a different APIl. See Chapter 7,
“Expansion,” on page 207 for more information.

The main suite of applications provided with each Palm Powered
handheld is built into ROM. This design permits the user to replace
the operating system and the entire applications suite simply by
installing a single replacement module. Additional or replacement
applications and system extensions can be loaded into RAM, but
doing so is not always practical in this RAM-constrained
environment.

PC Connectivity

PC connectivity is an integral component of Palm Powered
handhelds. The handheld comes with a cradle that connects to a
desktop PC and with software for the PC that provides “one-
button” backup and synchronization of all data on the handheld
with the user’s PC.

Because all user data can be backed up on the PC, replacement of
the nonvolatile storage area of the Palm Powered handheld
becomes a simple matter of installing the new module in place of
the old one and resynchronizing with the PC. The format of the
user’s data in storage RAM can change with a new version of the
ROM; the connectivity software on the PC is responsible for
translating the data into the correct format when downloading it
onto a handheld with a new ROM.

170 Palm OS Programmer’s Companion, Volume |

Memory
Memory Architecture

Memory Architecture

IMPORTANT: This section describes the current
implementation of Palm OS memory architecture. This
implementation may change as the Palm OS evolves. Do not rely
on implementation-specific information described here; instead,
always use the API provided to manipulate memory.

The Palm OS system software is designed around a 32-bit
architecture. The system uses 32-bit addresses, and its basic data
types are 8, 16, and 32 bits long.

The 32-bit addresses available to software provide a total of 4 GB of
address space for storing code and data. This address space affords
a large growth potential for future revisions of both the hardware
and software without affecting the execution model. Although a
large memory space is available, Palm OS was designed to work
efficiently with small amounts of RAM. For example, the first
commercial Palm Powered handheld has less than 1 MB of memory,
or 0.025% of this address space.

The Motorola 68328 processor’s 32-bit registers and 32 internal
address lines support a 32-bit execution model as well, although the
external data bus is only 16 bits wide. This design reduces cost
without impacting the software model. The processor’s bus
controller automatically breaks down 32-bit reads and writes into
multiple 16-bit reads and writes externally.

Each memory card in the Palm Powered handheld has 256 MB of
address space reserved for it. Memory card 0 starts at address
$1000000, memory card 1 starts at address $2000000, and so on.

The Palm OS divides the total available RAM store into two logical
areas: dynamic RAM and storage RAM. Dynamic RAM is used as
working space for temporary allocations, and is analogous to the
RAM installed in a typical desktop system. The remainder of the
available RAM on the card is designated as storage RAM and is
analogous to disk storage on a typical desktop system.

Because power is always applied to the memory system, both areas
of RAM preserve their contents when the handheld is turned “oft”
(i.e., is in low-power sleep mode). See “Palm OS Power Modes” in

Palm OS Programmer’s Companion, Volume | 171

Memory
Memory Architecture

the chapter “Palm System Support” in this book. All of storage
memory is preserved even when the handheld is reset explicitly. As
part of the boot sequence, the system software reinitializes the
dynamic area, and leaves the storage area intact.

The entire dynamic area of RAM is used to implement a single heap
that provides memory for dynamic allocations. From this dynamic

heap, the system provides memory for dynamic data such as global
variables, system dynamic allocations (TCP/IP, IrDA, and so on, as
applicable), application stacks, temporary memory allocations, and
application dynamic allocations (such as those performed when the
application calls the MemHand1eNew function).

The entire amount of RAM reserved for the dynamic heap is always
dedicated to this use, regardless of whether it is actually used for
allocations. The size of the dynamic area of RAM on a particular
handheld varies according to the OS version running, the amount of
physical RAM available, and the requirements of pre-installed
software such as the TCP/IP stack or IrDA stack. Table 5.1 provides
more information about the dynamic heap space that currently
available combinations of OS and hardware provide.

Table 5.1 Dynamic Heap Space

RAM Usage >20S 3.5 >0S 3.5 0S3.0>33 0S20 0S 2.0/1.0
<4 MB <2MB >1MB 1MB 512 KB
TCP/IP & TCP/IP& TCP/IP & TCP/IP only no TCP/IP
IrDA IrDA IrDA (Professional) or IrDA

(Palm III™) (Personal)

Total dynamic area 256 KB 128 KB 96 KB 64 KB 32 KB

System Globals 40 KB 40 KB ~2.5KB ~2.5KB ~2.5KB

(screen buffer, Ul (0S) (0S)

globals, database

references, etc.)

TCP/IP stack 32 KB 32 KB 32 KB 32 KB 0 KB

System dynamic variable variable variable ~15 KB ~15 KB

allocation amount (no IrDA in

(IrDA, “Find” this OS)

window, temporary
allocations)

172 Palm OS Programmer’s Companion, Volume |

Memory
Memory Architecture

Table 5.1 Dynamic Heap Space (continued)

RAM Usage >0S 3.5 >0S 3.5 0S3.0>33 0S2.0 0S 2.0/1.0
<4 MB <2MB >1MB 1MB 512 KB
TCP/IP & TCP/IP & TCP/IP & TCP/IP only no TCP/IP
IrDA IrDA IrDA (Professional) or IrDA

(Palm III™) (Personal)

Application stack N/A(see N/A(see 4KB 2.5 KB 2.5 KB

(call stack and local note) note) (default)

vars)

Remaining dynamic 184 KB 56 KB <36 KB <12KB <12KB

space

(dynamic allocations,

application global
variables, and static
variables)

NOTE: Starting with Palm OS 3.5, the dynamic heap is sized
based on the amount of memory available to the system.

The remaining portion of RAM not dedicated to the dynamic heap
is configured as one or more storage heaps used to hold nonvolatile
user data such as appointments, to do lists, memos, address lists,
and so on. An application accesses a storage heap by calling the
Data Manager or Resource Manager, according to whether it needs
to manipulate user data or resources.

The size and number of storage heaps available on a particular
handheld varies according to the OS version that is running; the
amount of physical RAM that is available; and the storage
requirements of end-user application software such as the Address
Book, Date Book, or third-party applications.

Versions 1.0 and 2.0 of Palm OS subdivide storage RAM into
multiple storage heaps of 64 KB each. Palm OS 3.0 and later
configure all storage RAM on a card as a single storage heap. Under
all versions of Palm OS, system overhead limits the maximum

usable data storage available in a single chunk to slightly less than
64 KB.

Palm OS Programmer’s Companion, Volume | 173

Memory
Memory Architecture

In the Palm OS environment, all data are stored in Memory
Manager chunks. A chunk is an area of contiguous memory
between 1 byte and slightly less than 64 KB in size that has been
allocated by the Palm OS Memory Manager. (Because system
overhead requirements may vary, an exact figure for the maximum
amount of usable data storage for all chunks cannot be specified.)
Currently, all Palm OS implementations limit the maximum size of
any chunk to slightly less than 64 KB; however, the API does not
have this constraint, and it may be relaxed in the future.

Each chunk resides in a heap. Some heaps are ROM-based and
contain only nonmovable chunks; some are RAM-based and may
contain movable or nonmovable chunks. A RAM-based heap may
be a dynamic heap or a storage heap. The Palm OS Memory
Manager allocates memory in the dynamic heap (for dynamic
allocations, stacks, global variables, and so on). The Palm OS Data
Manager allocates memory in one or more storage heaps (for
nonvolatile user data).

Every memory chunk used to hold storage data (as opposed to
memory chunks that store dynamic data) is a record in a database
implemented by the Palm OS Data Manager. In the Palm OS
environment, a database is simply a list of memory chunks and
associated database header information. Normally, the items in a
database share some logical association; for example, a database
may hold a collection of all address book entries, all datebook
entries, and so on.

A database is analogous to a file in a desktop system. Just as a
traditional file system can create, delete, open, and close files, Palm
OS applications can create, delete, open, and close databases as
necessary. There is no restriction on where the records for a
particular database reside as long as they are all on the same
memory card. The records from one database can be interspersed
with the records from one or more other databases in memory.

Storing data by database fits nicely with the Palm OS Memory
Manager design. Each record in a database is in fact a Memory
Manager chunk. The Data Manager can use Memory Manager calls
to allocate, delete, and resize database records. All heaps except for
the dynamic heap are nonvolatile, so database records can be stored
in any heap except the dynamic heap. Because records can be stored

174 Palm OS Programmer’s Companion, Volume |

Memory
Memory Architecture

anywhere on the memory card, databases can be distributed over
multiple discontiguous areas of physical RAM, but all records
belonging to a particular database must reside on the same card.

To understand how database records are manipulated, it helps to
know something about the way the Memory Manager allocates and
tracks memory chunks, as the next section describes.

Heap Overview

IMPORTANT: This section describes the current
implementation of Palm OS memory architecture. This
implementation may change as the Palm OS evolves. Do not rely
on implementation-specific information described here; instead,
always use the API provided to manipulate memory.

Recall that a heap is a contiguous area of memory used to contain
and manage one or more smaller chunks of memory. When
applications work with memory (allocate, resize, lock, etc.) they
usually work with chunks of memory. An application can specify
whether to allocate a new chunk of memory in the storage heap or
the dynamic heap. The Memory Manager manages each heap
independently and rearranges chunks as necessary to defragment
heaps and merge free space.

Heaps in the Palm OS environment are referenced through heap
IDs. A heap ID is a unique 16-bit value that the Memory Manager
uses to identify a heap within the Palm OS address space. Heap IDs
start at 0 and increment sequentially by units of 1. Values are
assigned beginning with the RAM heaps on card 0, continuing with
the ROM heaps on card 0, and then continuing through RAM and
ROM heaps on subsequent cards. The sequence of heap IDs is
continuous; that is, no values in the sequence are skipped.

The first heap (heap 0) on card 0 is the dynamic heap. This heap is
reinitialized every time the Palm Powered handheld is reset. When
an application quits, the system frees any chunks allocated by that
application in the dynamic heap. All other heaps are nonvolatile
storage heaps that retain their contents through soft reset cycles.

Palm OS Programmer’s Companion, Volume | 175

Memory
Memory Architecture

When a Palm Powered handheld is presented with multiple
dynamic heaps, the first heap (heap 0) on card 0 is the active
dynamic heap. All other potential dynamic heaps are ignored. For
example, it is possible that a future Palm Powered handheld
supporting multiple cards might be presented with two cards, each
having its own dynamic heap; if so, only the dynamic heap residing
on card 0 would be active—the system would not treat any heaps on
other cards as dynamic heaps, nor would heap IDs be assigned to
these heaps. Subsequent storage heaps would be assigned IDs in
sequential order, as always beginning with RAM heaps, followed by
ROM heaps.

NOTE: In Palm OS 3.5, the dynamic heap is sized based on the
amount of memory available to the system.

Overview of Memory Chunk Structure

Memory chunks can be movable or nonmovable. Applications need
to store data in movable chunks whenever feasible, thereby
enabling the Memory Manager to move chunks as necessary to
create contiguous free space in memory for allocation requests.

When the Memory Manager allocates a nonmovable chunk it
returns a pointer to that chunk. The pointer is simply that chunk’s
address in memory. Because the chunk cannot move, its pointer
remains valid for the chunk’s lifetime; thus, the pointer can be
passed “as is” to the caller that requested the allocation.

When the Memory Manager allocates a moveable chunk, it
generates a pointer to that chunk, just as it did for the nonmovable
chunk, but it does not return the pointer to the caller. Instead, it
stores the pointer to the chunk, called the master chunk pointer, in a
master pointer table that is used to track all of the moveable chunks
in the heap, and returns a reference to the master chunk pointer.
This reference to the master chunk pointer is known as a handle. It
is this handle that the Memory Manager returns to the caller that
requested the allocation of a moveable chunk.

Using handles imposes a slight performance penalty over direct
pointer access but permits the Memory Manager to move chunks
around in the heap without invalidating any chunk references that

176 Palm OS Programmer’s Companion, Volume |

Memory
Memory Architecture

an application might have stored away. As long as an application
uses handles to reference data, only the master pointer to a chunk
needs to be updated by the Memory Manager when it moves a
chunk during defragmentation.

An application typically locks a chunk handle for a short time while
it has to read or manipulate the contents of the chunk. The process
of locking a chunk tells the Memory Manager to mark that data
chunk as immobile. When an application no longer needs the data
chunk, it should unlock the handle immediately to keep heap
fragmentation to a minimum.

Note that any handle is good only until the system is reset. When
the system resets, it reinitializes all dynamic memory areas and
relaunches applications. Therefore, you must not store a handle in a
database record or a resource.

Each chunk on a memory card is actually located by means of a
card-relative reference called a local ID. A local ID is a reference to a
data chunk that the system computes from the base address of the
card. The local ID of a nonmovable chunk is simply the offset of the
chunk from the base address of the card. The local ID of a movable
chunk is the offset of the master pointer to the chunk from the base
address of the card, but with the low-order bit set. Since chunks are
always aligned on word boundaries, only local IDs of movable
chunks have the low-order bit set. Once the base address of the card
is determined at runtime, a local ID can be converted quickly to a
pointer or handle.

For example, when an application needs the handle to a particular
data record, it calls the Data Manager to retrieve the record by index
from the appropriate database. The Data Manager fetches the local
ID of the record out of the database header and uses it to compute
the handle to the record. The handle to the record is never actually
stored in the database itself.

Although currently available Palm Powered handhelds do not
provide hardware support for multiple cards, the use of local IDs
provides support in software for future handhelds that may allow
the user to remove or insert memory cards. If the user moves a
memory card to a slot having a different base address, the handle to
a memory chunk on that card is likely to change, but the local ID
associated with that chunk does not change.

Palm OS Programmer’s Companion, Volume | 177

Memory
The Memory Manager

IMPORTANT: Do not confuse memory cards with expansion
cards, such as SD cards or MemoryStick cards. You access
expansion cards through a different APIl. See Chapter 7,
“Expansion,” on page 207 for more information.

The Memory Manager

The Palm OS Memory Manager is responsible for maintaining the
location and size of every memory chunk in nonvolatile storage,
volatile storage, and ROM. It provides an API for allocating new
chunks, disposing of chunks, resizing chunks, locking and
unlocking chunks, and compacting heaps when they become
fragmented. Because of the limited RAM and processor resources of
the Palm Powered handheld, the Memory Manager is efficient in its
use of processing power and memory.

This section provides background information on the organization
of memory in Palm OS and provides an overview of the Memory
Manager API, discussing these topics:

* Memory Manager Structures

¢ Using the Memory Manager

Memory Manager Structures

This section discusses the different structures the Memory Manager
uses:

¢ Heap Structures
e Chunk Structures

e [ocal ID Structures

Heap Structures

IMPORTANT: Expect the heap structure to change in the future.
Use the API to work with heaps.

178 Palm OS Programmer’s Companion, Volume |

Memory
The Memory Manager

A heap consists of the heap header, master pointer table, and the
heap chunks.

* Heap header. The heap header is located at the beginning of
the heap. It holds the size of the heap and contains flags for
the heap that provide certain information to the Memory
Manager; for example, whether the heap is ROM-based.

* Master pointer table. Following the heap header is a master
pointer table. It is used to store 32-bit pointers to movable
chunks in the heap.

— When the Memory Manager moves a chunk to compact
the heap, the pointer for that chunk in the master pointer
table is updated to the chunk’s new location. The handles
an application uses to track movable chunks reference the
address of the master pointer to the chunk, not the chunk
itself. In this way, handles remain valid even after a
chunk is moved. The OS compacts the heap automatically
when available contiguous space is not sufficient to fulfill
an allocation request.

— If the master pointer table becomes full, another is
allocated and its offset is stored in the
nextMstrPtrTable field of the previous master pointer
table. Any number of master pointer tables can be linked
in this way. Because additional master pointer chunks are
nonmovable, they are allocated at the end of the heap,
according to the guidelines described in the “Heap
chunks” section following immediately.

¢ Heap chunks. Following the master pointer table are the
actual chunks in the heap.

— Movable chunks are generally allocated at the beginning
of the heap, and nonmovable chunks at the end of the
heap.

— Nonmovable chunks do not need an entry in the master
pointer table since they are never relocated by the
Memory Manager.

— Applications can easily walk the heap by hopping from
chunk to chunk because each chunk header contains the
size of the chunk. All free and nonmovable chunks can be

Palm OS Programmer’s Companion, Volume | 179

Memory
The Memory Manager

found in this manner by checking the flags in each chunk
header.

Because heaps can be ROM-based, there is no information in
the header that must be changed when using a heap. Also,
ROM-based heaps contain only nonmovable chunks and
have a master pointer table with 0 entries.

Chunk Structures

IMPORTANT: Expect the chunk structure to change in the
future. Use the API to work with chunks.

Each chunk begins with an 8-byte header followed by that chunk’s
data. The chunk header consists of a Flags: size adjustment byte,
3 bytes of size information, a lock : owner byte, and 3 bytes of
hof fset information.

* Flags:sizeAdj byte.This byte contains flags in the high
nibble and a size adjustment in the low nibble.

— The flags nibble has 1 bit currently defined, which is set
for free chunks.

— The size adjustment nibble can be used to calculate the
requested size of the chunk, given the actual size. The
requested size is computed by taking the size as stored in
the chunk header and subtracting the size of the header
and the size adjustment field. The actual size of a chunk is
always a multiple of two so that chunks always start on a
word boundary.

* size field (3 bytes). This three-byte value describes the size
of the chunk, which is larger than the size requested by the
application and includes the size of the chunk header itself.
The maximum data size for a chunk is slightly less than 64
KB.

* Lock:owner byte. Following the size information is a byte
that holds the lock count in the high nibble and the owner ID
in the low nibble.

— The lock count is incremented every time a chunk is
locked and decremented every time a chunk is unlocked.
A movable chunk can be locked a maximum of 14 times

180 Palm OS Programmer’s Companion, Volume |

Memory
The Memory Manager

before being unlocked. Nonmovable chunks always have
15 in the lock field.

— The owner ID determines the owner of a memory chunk
and is set by the Memory Manager when allocating a new
chunk. Owner ID information is useful for debugging and
for garbage collection when an application terminates
abnormally.

* hoffset field (3 bytes). The last three bytes in the chunk
header is the distance from the master pointer for the chunk
to the chunk’s header, divided by two. Note that this offset
could be a negative value if the master pointer table is at a
higher address than the chunk itself. For nonmovable chunks
that do not need an entry in the master pointer table, this
field is 0.

Local ID Structures

IMPORTANT: Expect the local ID structure to change in the
future. Use the API to work with chunks.

Chunks that contain database records or other database information
are tracked by the Data Manager through local IDs. A local ID is
card relative and is always valid no matter what memory slot the
card resides in. A local ID can be easily converted to a pointer or the
handle to a chunk once the base address of the card is known.

The upper 31 bits of a local ID contain the offset of the chunk or
master pointer to the chunk from the beginning of the card. The
low-order bit is set for local IDs of handles and clear for local IDs of
pointers.

The MemLocal IDToGlobal function converts a local ID and card
number (either 0 or 1) to a pointer or handle. It looks at the card
number and adds the appropriate card base address to convert the
local ID to a pointer or handle for that card.

Using the Memory Manager

Use the Memory Manager API to allocate memory in the dynamic
heap (for dynamic allocations, stacks, global variables, and so on)
and use the Data Manager API to allocate memory in one or more

Palm OS Programmer’s Companion, Volume | 181

Memory

The Memory Manager

storage heaps (for user data). The Data Manager calls the Memory
Manager as appropriate to perform low-level allocations. (See The
Data Manager for more information.)

Overview of the Memory Manager API

To allocate a movable chunk, call MemHandleNew and pass the
desired chunk size. Before you can read or write data to this chunk,
you must call MemHandleLock to lock it and get a pointer to it.
Every time you lock a chunk, its lock count is incremented. You can
lock a chunk a maximum of 14 times before an error is returned.
(Recall that unmovable chunks hold the value 15 in the lock field.)
MemHandleUnlock reverses the effect of MemHandleLock—it
decrements the value of the lock field by 1. When the lock count is
reduced to 0, the chunk is free to be moved by the Memory
Manager.

When an application allocates memory in the dynamic heap, the
Memory Manager uses an owner ID to associate that chunk with the
application. The system further distinguishes chunks belonging to
the currently active allocation by setting a special bit in the owner
ID information. When the application quits, all chunks in the
dynamic heap having this bit set are freed automatically.

If the system needs to allocate a chunk that is not disposed of when
an application quits, it changes the chunk’s owner ID to 0 by calling
the system functions MemHandleSetOwner or MemPtrSetOwner.
These functions are not generally used by applications, except in
special circumstances. For example, when the current application is
passing a parameter block to a new application that it is launching
with SysUIAppSwitch, the owner of the block must be set to the
system; otherwise, when the current application exits, the system
deletes the block when it frees all memory allocated by the current
application.

To determine the size of a movable chunk, pass its handle to
MemHandleSize. To resize it, call MemHandl eResize. You
generally cannot increase the size of a chunk if it’s locked unless
there happens to be free space in the heap immediately following
the chunk. If the chunk is unlocked, the Memory Manager is
allowed to move it to another area of the heap to increase its
size.When you no longer need the chunk, call MemHandleFree,
which releases the chunk even if it is locked.

182 Palm OS Programmer’s Companion, Volume |

Memory
The Memory Manager

If you have a pointer to a locked, movable chunk, you can recover
the handle by calling MemPt rRecoverHandle. In fact, all of the
MemPtrXxx calls, including MemPt rSize, also work on pointers to
locked, movable chunks.

To allocate a nonmovable chunk, call MemPt rNew and pass the
desired size of the chunk. This call returns a pointer to the chunk,
which can be used directly to read or write to it.

NOTE: You cannot allocate a zero-size chunk.

To determine the size of a nonmovable chunk, call MemPtrSize.
To resize it, call MemPt rResize. You generally can’t increase the
size of a nonmovable chunk unless there is free space in the heap
immediately following the chunk. When you no longer need the
chunk, call MemPtrFree, which releases the chunk even if it’s
locked.

Use the Memory Manager utility routines MemMove and MemSet to
move memory from one place to another or to fill memory with a
specific value.

In most situations, the proper way to free memory is by calling one
of the MemPtrFree or MemHandleFree functions.

NOTE: Forimportant cautions and practical advice regarding
the proper use of memory on Palm Powered handhelds, be sure
to read “Writing Robust Code” on page 9 in Chapter 1,
“Programming Palm OS in a Nutshell,” in this book.

Storage Heap Sizes and Memory Management Schemes

In Palm OS version 1.0, individual storage heaps were limited to a
maximum size of 64 KB each and the Memory Manager moved
objects automatically among multiple storage heaps to prevent any
of them from becoming too full. This strategy tended to decrease the
availability of contiguous space for large objects. The version 2.0
Memory Manager abandoned this approach, increasing the
availability of contiguous heap space; however, it still limited the
maximum size of individual heaps to 64 KB each. Palm OS version
3.0 removed the 64 KB maximum size restriction on individual

Palm OS Programmer’s Companion, Volume | 183

Memory
The Memory Manager

heaps and creates just two heaps: one 96 KB dynamic heap and one

storage heap that is the size of all remaining RAM on the card.

Starting with Palm OS 3.5, the dynamic heap is sized based on the
amount of memory available to the system, as follows:

Device RAM size Heap size
< 2 MB of ram 64 KB
>=2 MB 128 KB
>=4 MB 256 KB

Achieving Optimum Performance

Because the Palm Powered handheld has limited heap space and
storage, optimization is critical. To make your application as fast

and efficient as possible, optimize for heap space first, speed second,

code size third.

Follow these guidelines to optimize memory use:

¢ Allocate handles for your memory to avoid heap

fragmentation. That is, use MemHandl eNew to allocate
memory rather than MemPt rNew as much as possible.

Sort on demand; don’t keep different sort lists around. This
makes your program simpler and requires less storage.

Dynamic memory is a potential bottleneck. Don’t put large
structures on the stack.

Arrange subroutines within the application to avoid 32K
jumps.

Because Palm OS applications must perform well in a RAM-
constrained environment, proper code segmentation is
critical to achieving optimum performance.

If your application segments are too large, your application
may not perform well (or to run at all) when large contiguous
blocks of memory are not available. Conversely, if your
application segments are too small, performance may be

184 Palm OS Programmer’s Companion, Volume |

Memory
The Memory Manager

hindered by the overhead required to find and load
resources too frequently.

Unfortunately, it’s impossible to specify a single size for
memory chunks that will perform optimally for all
applications.You will need to experiment with segmenting
your code in different ways while measuring your
application’s performance in order to discover the size and
arrangement of resource chunks that will optimize your
particular application’s responsiveness and overall
performance. The Metrowerks CodeWarrior Debugger, Palm
OS Debugger, and the Simulator provide tools for examining
the internal structure of heaps, viewing the amount of free
space available, manipulating blocks, and so on.

To have your application run well within the constraints of
the limited dynamic heap, follow these guidelines:

— Allocate memory chunks instead of using global variables
where possible.

— Switch from one Ul form to another instead of stacking
up dialogs. To accomplish this, use FrmGotoForm to
switch to forms and FrmboDialog to switch to modal
dialogs. Avoid FrmPopupForm.

— Edit database records in place; don’t make extra copies on
the dynamic heap.

Avoid placing large amounts of data on the stack. Heap
corruption is hard to debug. Global variables are preferable
to local variables; however, chunks are preferable to global
variables. Your application has a limited amount of stack
space depending on the system software version.

Palm OS Programmer’s Companion, Volume | 185

Memory
Summary of Memory Management

Summary of Memory Management

Memory Manager Functions

Allocating and Freeing Memory

MemHandleNew MemPtrNew
MemHandleLock MemHandleUnlock
MemlLocallDToLockedPtr MemPtrUnlock
MemHandleFree MemPtrFree

Resizing Chunks

MemHandleResize MemHandleSize
MemPtrResize MemPtrSize
MemHeapFreeBytes MemHeapSize
Working With Memory

MemMove MemSet

MemCmp MemHeapCompact
Converting Pointers

MemPtrRecoverHandle MemHandleToLocallD
MemLocallDKind MemLocallDToGlobal
MemPtrToLocallD MemlLocallDToPtr
Chunk Information

MemHandleCardNo MemHandleDataStorage
MemHandleHeapID MemHandleSetOwner
MemPtrCardNo MemPtrDataStorage
MemPtrSetOwner

Heap Information

MemPtrHeaplID MemHeapID
MemHeapDynamic MemHeapCheck
MemHeapFlags

186 Palm OS Programmer’s Companion, Volume |

Memory
Summary of Memory Management

Memory Manager Functions

Card Information

MemCardInfo
MemNumHeaps
MemStorelnfo

Debugging

MemDebugMode
MemSetDebugMode

MemNumCards
MemNumRAMHeaps

MemHeapScramble

Palm OS Programmer’s Companion, Volume | 187

Memory
Summary of Memory Management

188 Palm OS Programmer’s Companion, Volume |

6

Files and Databases

This chapter describes how to work with databases using Palm OS®
managers.

* The Data Manager manages user data, which is stored in
databases for convenient access.

* The Resource Manager can be used by applications to
conveniently retrieve and save chunks of data. It’s similar to
the Data Manager, but has the added capability of tagging
each chunk with a unique resource type and ID. These
tagged data chunks, called resources, are stored in resource
databases. Resources are typically used to store the
application’s user interface elements, such as images, fonts,
or dialog layouts.

e File Streaming Application Program Interface can be used by
applications to handle large blocks of data.

IMPORTANT: To access data or resources on secondary
storage (such as expansion cards), you use a different set of
APIs. See Chapter 7, “Expansion,” on page 207 for more
information.

The Data Manager

A traditional file system first reads all or a portion of a file into a
memory buffer from disk, using and/or updating the information
in the memory buffer, and then writes the updated memory buffer
back to disk. Because Palm Powered " handhelds have limited
amounts of dynamic RAM and use nonvolatile RAM instead of disk
storage, a traditional file system is not optimal for storing and
retrieving Palm OS user data.

Palm OS accesses and updates all information in place. This works
well because it reduces dynamic memory requirements and

Palm OS Programmer’s Companion, Volume | 189

Files and Databases

The Data Manager

eliminates the overhead of transferring the data to and from another
memory buffer involved in a file system.

As a further enhancement, data in the Palm Powered handheld is
broken down into multiple, finite-size records that can be left
scattered throughout the memory space; thus, adding, deleting, or
resizing a record does not require moving other records around in
memory. Each record in a database is in fact a Memory Manager
chunk. The Data Manager uses Memory Manager functions to
allocate, delete, and resize database records.

This section explains how to use the Data Manager by discussing
these topics:

e Records and Databases

e Structure of a Database Header

e Using the Data Manager

Records and Databases

Databases organize related records; every record belongs to one and
only one database. A database may be a collection of all address
book entries, all datebook entries, and so on. A Palm OS application
can create, delete, open, and close databases as necessary, just as a
traditional file system can create, delete, open, and close a
traditional file. There is no restriction on where the records for a
particular database reside as long as they all reside on the same
memory card. The records from one database can be interspersed
with the records from one or more other databases in memory.

Storing data by database fits nicely with the Palm OS Memory
Manager design. All heaps except for the dynamic heap(s) are
nonvolatile, so database records can be stored in any heap except
the dynamic heap(s) (see “Heap Overview” in the “Memory”
chapter). Because records can be stored anywhere on the memory
card, databases can be distributed over multiple discontiguous
areas of physical RAM.

Accessing Data With Local IDs

A database maintains a list of all records that belong to it by storing
the local ID of each record in the database header. Because local IDs
are used, the memory card can be placed into any memory slot of a

190 Palm OS Programmer’s Companion, Volume |

Files and Databases
The Data Manager

Palm Powered handheld. An application finds a particular record in
a database by index. When an application requests a particular
record, the Data Manager fetches the local ID of the record from the
database header by index, converts the local ID to a handle using
the card number that contains the database header, and returns the
handle to the record.

Structure of a Database Header

A database header consists of some basic database information and
a list of records in the database. Each record entry in the header has
the local ID of the record, 8 attribute bits, and a 3-byte unique ID for
the record.

This section provides information about database headers,
discussing these topics:

e Database Header Fields

e Structure of a Record Entry in a Database Header

IMPORTANT: Expect the database header structure to change
in the future. Use the API to work with database structures.

Database Header Fields
The database header has the following fields:
¢ The name field holds the name of the database.
* The attributes field has flags for the database.

* The version field holds an application-specific version
number for that database.

* The modificationNumber is incremented every time a
record in the database is deleted, added, or modified. Thus
applications can quickly determine if a shared database has
been modified by another process.

® The appInfoID is an optional field that an application can
use to store application-specific information about the
database. For example, it might be used to store user display
preferences for a particular database.

Palm OS Programmer’s Companion, Volume | 191

Files and Databases
The Data Manager

¢ The sortInfoIDis another optional field an application can
use for storing the local ID of a sort table for the database.

* The type and creator fields are each 4 bytes and hold the
database type and creator. The system uses these fields to
distinguish application databases from data databases and to
associate data databases with the appropriate application.

192 Palm OS Programmer’s Companion, Volume |

Files and Databases
The Data Manager

¢ The numRecords field holds the number of record entries
stored in the database header itself. If all the record entries
cannot fit in the header, then nextRecordList has the local
ID of a recordList that contains the next set of records.

Each record entry stored in a record list has three fields and is
8 bytes in length. Each entry has the local ID of the record
which takes up 4 bytes: 1 byte of attributes and a 3-byte
unique ID for the record. The attribute field, shown in
Figure 6.1, is 8 bits long and contains 4 flags and a 4-bit
category number. The category number is used to place
records into user-defined categories like “business” or
“personal.”

Figure 6.1 Record Attributes

Category (4)

L_secret bit
busy bit
dirty bit
delete bit

Structure of a Record Entry in a Database Header

Each record entry has the local ID of the record, 8 attribute bits, and
a 3-byte unique ID for the record.

¢ Local IDs make the database slot-independent. Since all
records for a database reside on the same memory card as the
header, the handle of any record in the database can be
quickly calculated. When an application requests a specific
record from a database, the Data Manager returns a handle to
the record that it determines from the stored local ID.

A special situation occurs with ROM-based databases.
Because ROM-based heaps use nonmovable chunks
exclusively, the local IDs to records in a ROM-based database
are local IDs of pointers, not handles. So, when an
application opens a ROM-based database, the Data Manager

Palm OS Programmer’s Companion, Volume | 193

Files and Databases
The Data Manager

allocates and initializes a fake handle for each record and
returns the appropriate fake handle when the application
requests a record. Because of this, applications can use
handles to access both RAM- and ROM-based database
records.

* The unique ID must be unique for each record within a
database. It remains the same for a particular record no
matter how many times the record is modified. It is used
during synchronization with the desktop to track records on
the Palm Powered handheld with the same records on the
desktop system.

When the user deletes or archives a record on Palm OS:

* The delete bit is set in the attributes flags, but its entry
in the database header remains until the next
synchronization with the PC.

* The dirty bit is set whenever a record is updated.

* The busy bit is set when an application currently has a
record locked for reading or writing.

e The secret bit is set for records that should not be

displayed before the user password has been entered on the
handheld.

When a user “deletes” a record on the Palm Powered handheld, the
record’s data chunk is freed, the local ID stored in the record entry is
set to 0, and the delete bit is set in the attributes. When the user
archives a record, the deleted bit is also set but the chunk is not
freed and the local ID is preserved. This way, the next time the user
synchronizes with the desktop system, the desktop can quickly
determine which records to delete (since their record entries are still
around on the Palm Powered handheld). In the case of archived
records, the desktop can save the record data on the PC before it
permanently removes the record entry and data from the Palm
Powered handheld. For deleted records, the PC just has to delete the
same record from the PC before permanently removing the record
entry from the Palm Powered handheld.

194 Palm OS Programmer’s Companion, Volume |

Files and Databases
The Data Manager

Using the Data Manager

Using the Data Manager is similar to using a traditional file
manager, except that the data is broken down into multiple records
instead of being stored in one contiguous chunk. To create or delete
a database, call DmCreateDatabase and DmDeleteDatabase.

Each memory card is akin to a disk drive and can contain multiple
databases. To open a database for reading or writing, you must first
get the database ID, which is simply the local ID of the database
header. Calling DmFindDatabase searches a particular memory
card for a database by name and returns the local ID of the database
header. Alternatively, calling DmGetDatabase returns the database
ID for each database on a card by index.

After determining the database ID, you can open the database for
read-only or read /write access. When you open a database, the
system locks down the database header and returns a reference to a
database access structure, which tracks information about the open
database and caches certain information for optimum performance.
The database access structure is a relatively small structure (less
than 100 bytes) allocated in the dynamic heap that is disposed of
when the database is closed.

Call DmDatabaseInfo, DmSetDatabaseInfo, and
DmDatabaseSize to query or set information about a database,
such as its name, size, creation and modification dates, attributes,
type, and creator.

Call DmGetRecord, DmQueryRecord, and DmReleaseRecord
when viewing or updating a database.

* DmGetRecord takes a record index as a parameter, marks
the record busy, and returns a handle to the record. If a
record is already busy when DmGetRecord is called, an
error is returned.

* DmQueryRecord is faster if the application only needs to
view the record; it doesn’t check or set the busy bit, so it’s not
necessary to call DmReleaseRecord when finished viewing
the record.

* DmReleaseRecord clears the busy bit, and updates the
modification number of the database and marks the record
dirty if the dirty parameter is true.

Palm OS Programmer’s Companion, Volume | 195

Files and Databases
The Data Manager

To resize a record to grow or shrink its contents, call
DmResizeRecord. This routine automatically reallocates the
record in another heap of the same card if the current heap does not
have enough space for it. Note that if the Data Manager needs to
move the record into another heap to resize it, the handle to the
record changes. DmResizeRecord returns the new handle to the
record.

To add a new record to a database, call DmNewRecord. This routine
can insert the new record at any index position, append it to the
end, or replace an existing record by index. It returns a handle to the
new record.

There are three methods for removing a record: DmRemoveRecord,
DmDeleteRecord, and DmArchiveRecord.

* DmRemoveRecord removes the record’s entry from the
database header and disposes of the record data.

* DmDeleteRecord also disposes of the record data, but
instead of removing the record’s entry from the database
header, it sets the deleted bit in the record entry attributes
field and clears the local chunk ID.

* DmArchiveRecord does not dispose of the record’s data; it
just sets the deleted bit in the record entry.

Both DmDeleteRecord and DmArchiveRecord are useful for
synchronizing information with a desktop PC. Since the unique ID
of the deleted or archived record is still kept in the database header,
the desktop PC can perform the necessary operations on its own

copy of the database before permanently removing the record from
the Palm OS database.

Call DmRecordInfo and DmSetRecordInfo to retrieve or set the
record information stored in the database header, such as the
attributes, unique ID, and local ID of the record. Typically, these
routines are used to set or retrieve the category of a record, which is
stored in the lower four bits of the record’s attribute field (see

Listing 6.1).

Listing 6.1 Determining the category for a record

UIntlé category;

196 Palm OS Programmer’s Companion, Volume |

Files and Databases
The Data Manager

DmRecordInfo (MyDB, CurrentRecord, &attr, NULL, NULL) ;
category = attr & dmRecAttrCategoryMask;

//category now contains the index of the category to which
// CurrentRecord belongs.

To move records from one index to another or from one database to
another, call DmMoveRecord, DmAttachRecord, and
DmDetachRecord. DmDetachRecord removes a record entry from
the database header and returns the record handle. Given the
handle of a new record, DmAt tachRecord inserts or appends that
new record to a database or replaces an existing record with the new
record. DmMoveRecord is an optimized way to move a record from
one index to another in the same database.

Data Manager Tips

Working properly with databases makes your application run faster
and synchronize without problems. Follow these suggestions:

¢ Database names can be up to 31 characters in length, and on
the handheld can be composed of any valid ASCII characters.
Conduits—in particular, the backup conduit—impose
additional limitations, however. The following characters are
replaced with an underscore (“_") when the database is
transferred to the desktop by the backup conduit:

* v, ./, <=>2 11]\N"n

As well, the backup conduit stores databases in case-
insensitive format, so you should avoid filenames that
depend on case for distinction.

By convention, filename extensions are not used on the
handheld. Instead, database types are used to identify
databases as members of a certain type or class. Note that
when the backup conduit transfers a file to the desktop, it
automatically appends a .pdb or .prc extension, as
appropriate, to the database filename. This extension is
removed when the file is transferred back to the handheld.

¢ When the user deletes a record, call DmDeleteRecord to
remove all data from the record, not DmRemoveRecord to
remove the record itself. That way, the desktop application

Palm OS Programmer’s Companion, Volume | 197

Files and Databases
The Resource Manager

can retrieve the information that the record is deleted the
next time there is a HotSync.

Note: If your application doesn’t have an associated conduit,
call DmRemoveRecord to completely remove the record.

¢ Keep data in database records compact. To avoid
performance problems, Palm OS databases are not
compressed, but all data are tightly packed. This pays off for
storage and during HotSync operations.

¢ All records in a database should be of the same type and
format. This is not a requirement, but is highly recommended
to avoid processing overhead.

* Be sure your application modifies the flags in the database
header appropriately when the user deletes or otherwise
modifies information. This flag modification is only required
if you're synchronizing with the Palm PIM applications.

* Don’t display deleted records.

¢ Call DmSetDatabaseInfo when creating a database to
assign a version number to your application. Databases
default to version 0 if the version isn’t explicitly set.

e Call DmbatabaseInfo to check the database version at
application start-up.

The Resource Manager

Applications can use the Resource Manager much like the Data
Manager to retrieve and save chunks of data conveniently. The
Resource Manager has the added capability of tagging each chunk
of data with a unique resource type and resource ID. These tagged
data chunks, called resources, are stored in resource databases.
Resource databases are almost identical in structure to normal
databases except for a slight amount of increased storage overhead
per resource record (two extra bytes). In fact, the Resource Manager
is nothing more than a subset of routines in the Data Manager that
are broken out here for conceptual reasons only.

Resources are typically used to store the user interface elements of
an application, such as images, fonts, dialog layouts, and so forth.
Part of building an application involves creating these resources and
merging them with the actual executable code. In the Palm OS

198 Palm OS Programmer’s Companion, Volume |

Files and Databases
The Resource Manager

environment, an application is, in fact, simply a resource database
with the executable code stored as one or more code resources and
the graphics elements and other miscellaneous data stored in the
same database as other resource types.

Applications may also find the Resource Manager useful for storing
and retrieving application preferences, saved window positions,
state information, and so forth. These preferences settings can be
stored in a separate resource database.

This section explains how to work with the Resource Manager and
discusses these topics:

e Structure of a Resource Database Header

¢ Using the Resource Manager
* Resource Manager Functions

Structure of a Resource Database Header

A resource database header consists of some general database
information followed by a list of resources in the database. The first
portion of the header is identical in structure to a normal database
header. Resource database headers are distinguished from normal
database headers by the dmHdrAt t rResDB bit in the attributes
field.

IMPORTANT: Expectthe resource database header structure to
change in the future. Use the API to work with resource database
structures.

¢ The name field holds the name of the resource database.

* The attributes field has flags for the database and always
has the dmHdrAt trResDB bit set.

* The modificationNumber is incremented every time a
resource in the database is deleted, added, or modified. Thus,
applications can quickly determine if a shared resource
database has been modified by another process.

* The appInfoIDand sortInfoID fields are not normally
needed for a resource database but are included to match the

Palm OS Programmer’s Companion, Volume | 199

Files and Databases
The Resource Manager

structure of a regular database. An application may
optionally use these fields for its own purposes.

* The type and creator fields hold 4-byte signatures of the
database type and creator as defined by the application
that created the database.

e The numResources field holds the number of resource info
entries that are stored in the header itself. In most cases, this
is the total number of resources. If all the resource info entries
cannot fit in the header, however, then nextResourcelList
has the chunkID of a resourcelList that contains the next
set of resource info entries.

Each 10-byte resource info entry in the header has the resource type,
the resource ID, and the local ID of the Memory Manager chunk that
contains the resource data.

Using the Resource Manager

You can create, delete, open, and close resource databases with the
routines used to create normal record-based databases (see Using
the Data Manager). This includes all database-level (not record-
level) routines in the Data Manager such as DmCreateDatabase,
DmDeleteDatabase, DmDatabaseInfo, and so on.

When you create a new database using DmCreateDatabase, the
type of database created (record or resource) depends on the value
of the resDB parameter. If set, a resource database is created and the
dmHdrAttrResDB bit is set in the attributes field of the
database header. Given a database header ID, an application can
determine which type of database it is by calling DmDatabaseInfo
and examining the dmHdrAt t rResDB bit in the returned
attributes field.

Once a resource database has been opened, an application can read
and manipulate its resources by using the resource-based access
routines of the Resource Manager. Generally, applications use the
DmGetResource and DmReleaseResource routines.

DmGetResource returns a handle to a resource, given the type
and ID. This routine searches all open resource databases for a
resource of the given type and ID, and returns a handle to it. The
search starts with the most recently opened database. To search only

200 Palm OS Programmer’s Companion, Volume |

Files and Databases
The Resource Manager

the most recently opened resource database for a resource instead of
all open resource databases, call DmGet 1Resource.

DmReleaseResource should be called as soon as an application
finishes reading or writing the resource data. To resize a resource,
call DmResizeResource, which accepts a handle to a resource and
reallocates the resource in another heap of the same card if
necessary. It returns the handle of the resource, which might have
been changed if the resource had to be moved to another heap to be
resized.

The remaining Resource Manager routines are usually not required
for most applications. These include functions to get and set
resource attributes, move resources from one database to another,
get resources by index, and create new resources. Most of these
functions reference resources by index to optimize performance.
When referencing a resource by index, the DmOpenRef of the open
resource database that the resource belongs to must also be
specified. Call DmSearchResource to find a resource by type and
ID or by pointer by searching in all open resource databases.

To get the DmOpenRef of the topmost open resource database, call
DmNextOpenResDatabase and pass NULL as the current
DmOpenRef. To find out the DmOpenRef of each successive
database, call DmNextOpenResDatabase repeatedly with each
successive DmOpenRef.

Given the access pointer of a specific open resource database,
DmFindResource can be used to return the index of a resource,
given its type and ID. DmFindResourceType can be used to get
the index of every resource of a given type. To get a resource handle
by index, call DmGetResourceIndex.

To determine how many resources are in a given database, call
DmNumResources. To get and set attributes of a resource including
its type and ID, call DmResourceInfo and DmSetResourcelInfo.
To attach an existing data chunk to a resource database as a new
resource, call DmAttachResource. To detach a resource from a
database, call DmDetachResource.

To create a new resource, call DmNewResource and pass the desired
size, type, and ID of the new resource. To delete a resource, call
DmRemoveResource. Removing a resource disposes of its data
chunk and removes its entry from the database header.

Palm OS Programmer’s Companion, Volume | 201

Files and Databases
File Streaming Application Program Interface

File Streaming Application Program Interface

The file streaming functions in Palm OS 3.0 and later let you work
with large blocks of data. File streams can be arbitrarily large—they
are not subject to the 64 KB maximum size limit imposed by the
Memory Manager on allocated objects. File streams can be used for
permanent data storage; in Palm OS 3.0, their underlying
implementation is a Palm OS database. You can read, write, seek to
a specified offset, truncate, and do everything else you'd expect to
do with a desktop-style file.

Other than backup /restore, Palm OS does not provide direct
HotSync support for file streams, and none is planned at this time.

The use of double-buffering imposes a performance penalty on file
streams that may make them unsuitable for certain applications.
Record-intensive applications tend to obtain better performance
from the Data Manager.

Using the File Streaming API

The File Streaming API is derived from the C programming
language’s <stdio.h> interface. Any C book that explains the
<stdio.hs> interface should serve as a suitable introduction to the
concepts underlying the Palm OS File Streaming API. This section
provides only a brief overview of the most commonly used file
streaming functions.

The FileOpen function opens a file, and the FileRead function
reads it. The semantics of FileRead and FileWrite are just like
their <stdio.h> equivalents, the fread and fwrite functions.
The other <stdio.h> routines have obvious analogs in the File
Streaming API as well.

For example,

theStream =

FileOpen (cardId, "KillerAppDataFile",
'"KILR', 'KILD', fileModeReadOnly,
&err) ;

As on a desktop, the filename is the unique item. The creator ID and
file type are for informational purposes and your code may require
that an opened file have the correct type and creator.

202

Palm OS Programmer’s Companion, Volume |

Files and Databases
Summary of Files and Databases

Normally, the FileOpen function returns an error when it attempts
to open or replace an existing stream having a type and creator that
do not match those specified. To suppress this error, pass the
fileModeAnyTypeCreator selector as a flag in the openMode
parameter to the FileOpen function.

To read data, use the FileRead function as in the following
example:

FileRead (theStream, &buf, objSize, numObjs,
&err) ;

To free the memory used to store stream data as the data is read, you
can use the FileControl function to switch the stream to
destructive read mode. This mode is useful for manipulating
temporary data; for example, destructive read mode would be ideal
for adding the objects in a large data stream to a database when
sufficient memory for duplicating the entire file stream is not
available. You can switch a stream to destructive read mode by
passing the fileOpDestructiveReadMode selector as the value
of the op parameter to the FileControl function.

The FileDmRead function can read data directly into a Data
Manager chunk for immediate addition to a Palm OS database.

Summary of Files and Databases

Data Manager Functions

Creating Databases

DmCreateDatabase DmCreateDatabaseFromImage
Opening and Closing Databases

DmOpenDatabase DmCloseDatabase
DmDatabaseProtect DmOpenDatabaseByTypeCreator
Creating Records

DmNewHandle DmNewRecord

Palm OS Programmer’s Companion, Volume | 203

Files and Databases

Summary of Files and Databases

Data Manager Functions

Accessing Records

DmGetRecord
DmPFindRecordByID

Adding Records
DmAttachRecord

Unlocking Records

DmReleaseRecord

Changing Records

DmMoveRecord
DmSet
DmWrite

Deleting Records

DmArchiveRecord
DmDeleteRecord
DmRemoveRecord

Sorting

DmlinsertionSort
DmFindSortPosition

Categories

DmMoveCategory

DmbDeleteCategory
DmOQueryNextInCategory

Locating Databases

DmFindDatabase
DmGetDatabase
DmNextOpenDatabase

DmQuervRecord
DmSearchRecord

DmResizeRecord

DmStrCopy
DmWriteCheck

DmDeleteDatabase
DmDetachRecord
DmRemoveSecretRecords

DmFindSortPositionV10
DmQuickSort

DmNumRecordsInCategory

DmPositionInCategory
DmSeekRecordInCategory

DmGetNextDatabaseByTypeCreator

204 Palm OS Programmer’s Companion, Volume |

Files and Databases
Summary of Files and Databases

Data Manager Functions

Database Information

DmDatabaselnfo DmSetDatabaselnfo
DmRecordInfo DmSetRecordInfo
DmOpenDatabaselnfo DmDatabaseSize
DmNumDatabases DmNumRecords
Application Information

DmGetApplnfolD

Error Handling

DmGetLastErr

Resource Manager Functions

DmOpenDBNoOverlay DmAttachResource
DmNewResource DmRemoveResource
DmReleaseResource DmGetResourcelndex
DmDetachResource DmFindResource
DmSearchResource DmGetlResource
DmFindResourceType DmNextOpenResDatabase
DmGetResource DmResizeResource
DmNumResources DmSetResourcelnfo
DmResourcelnfo

File Streaming Function Summary

Opening and Closing

FileOpen FileClose

FileSeek

Reading Files

FileRead FileDmRead
FileRewind FileControl

Writing to Files

Palm OS Programmer’s Companion, Volume | 205

Files and Databases
Summary of Files and Databases

File Streaming Function Summary

FileWrite FileTruncate
File Information

FileEOF FileTell
Deleting Files

FileDelete FileFlush

Error Handling

FileError FileGetLastError
FileClearerr

206 Palm OS Programmer’s Companion, Volume |

7

Expansion

This chapter describes how to work with expansion cards and add-
on devices using the Palm OS® Expansion and Virtual File System
(VFS) Managers.

Expansion Support introduces basic terminology and
discusses the hardware and file systems supported by the
Expansion and VFS Managers.

Architectural Overview illustrates the Palm OS expansion
architecture and discusses the differences between primary
and secondary storage.

Standard Directories lists directories that are treated specially
by the Palm OS and describes their use.

Applications on Cards covers the various implications of
running Palm OS applications from an expansion card.

Card Insertion and Removal covers, in detail, the sequence of
events that occur when an expansion card is inserted into or
removed from an expansion slot.

Checking for Expansion Cards shows you how to verify that
the handheld supports expansion, how to check each of the
handheld’s slots for expansion cards, and how to determine
the capabilities of a card in a given slot.

Volume Operations discusses the various ways in which you
can work with volumes on an expansion card.

File Operations discusses the various ways in which you can
work with files on an expansion card.

Directory Operations discusses the various ways in which
you can work with directories on an expansion card.

Custom Calls briefly discusses how you can go beyond the
functions provided by the Expansion and VFS Managers and
interact with specialized I/O devices.

Debugging briefly introduces the process of debugging an
application that relies on the presence of an expansion card.

Palm OS Programmer’s Companion, Volume | 207

Expansion
Expansion Support

Expansion Support

Beginning with Palm OS 4.0', a set of optional system extensions
provide a standard mechanism by which Palm OS applications can
take advantage of the expansion capabilities of various Palm
Powered " handhelds. This capability not only augments the
memory and I/O of the handheld, but facilitates data interchange
with other Palm Powered handhelds and with devices that aren’t
running the Palm OS. These other devices include digital cameras,
digital audio players, desktop or laptop computers, and the like.

Primary vs. Secondary Storage

All Palm Powered handhelds contain primary storage—directly
addressable memory that is used for both long-term and temporary
storage. This includes storage RAM, used to hold nonvolatile user
data and applications; and dynamic RAM, which is used as working
space for temporary allocations.

On most handhelds, primary storage is contained entirely within
the device itself. The Palm OS memory architecture doesn’t limit
devices to this, however; devices can be designed to accept
additional storage RAM. The products developed by Handspring™
work this way; memory modules plugged into the Springboard slot
are fully-addressable and appear to a Palm OS application as
additional storage RAM.

Secondary storage, by contrast, is designed primarily to be add-on
nonvolatile storage. Although not limited to any particular
implementation, most secondary storage media:

¢ can be inserted and removed from the expansion slot at will

¢ are based upon a third-party standard, such as Secure Digital
(SD) memory cards, MultiMedia (MMC) cards,
CompactFlash, Sony’s Memory Stick™, and others

* present a serial interface, accessing data one bit, byte, or
block at a time

1. The Sony CLIE™ handheld running Palm OS 3.5 runs a binary-compatible ver-
sion of these extensions.

208 Palm OS Programmer’s Companion, Volume |

Expansion
Expansion Support

Applications access primary storage either directly, in the case of
most dynamic RAM, or through the Database and Resource
Managers. To access secondary storage, however, applications use
the Expansion and VFS Managers. These have been designed to
support as broad a range of serial expansion architectures as
possible.

Expansion Slot

The expansion slots found on many Palm Powered handhelds vary
depending on the manufacturer. While some may accept SD and
MMC cards, others may accept Memory Stick or CompactFlash.
Note that there is no restriction on the number of expansion slots
that a given handheld can have.

Depending on the expansion technology used, there can be a wide
variety of expansion cards usable with a given handheld:

* Storage cards provide secondary storage and can either be
used to hold additional applications and data, or can be used
for a specific purpose, for instance as a backup mechanism.

* ROM cards hold dedicated applications and data.

* 1/0 cards extend the handheld’s I/O capabilities. A modem,
for instance, could provide wired access, while a Bluetooth™
transceiver could add wireless capability.

* “Combo” cards provide both additional storage or ROM
along with some I/O capability.

Universal Connector

Certain newer Palm Powered handhelds may be equipped with a
universal connector that connects the handheld to a HotSync®
cradle. This connector can be used to connect the handheld to snap-
on I/O devices as well. A special slot driver dedicated to this
connector allows handheld-to-accessory communication using the
serial portion of the connector. This “plug and play” slot driver
presents the peripheral as a card in a slot, even to the extent of
providing the card insertion notification when the peripheral is
attached.

Because the universal connector’s slot driver makes a snap-on
peripheral appear to be a card in a slot, such peripherals can be

Palm OS Programmer’s Companion, Volume | 209

Expansion
Architectural Overview

treated as expansion cards, at least from an application developer’s
perspective. For the remainder of this chapter, wherever an1/0O card
could be used, the phrase “expansion card” can be taken to mean
both “expansion card” and “plug and play peripheral.”

Architectural Overview

Figure 7.1 illustrates the Palm OS expansion architecture. It is
designed to be flexible enough to support multiple file systems and
diverse physical expansion mechanisms while still presenting a
consistent set of APIs to applications and to other parts of the Palm
OS. The following sections describe the major components of the
Palm OS expansion architecture. Working from the bottom up, those
components are: slot drivers, file systems, the VFS Manager, and the
Expansion Manager.

210 Palm OS Programmer’s Companion, Volume |

Expansion
Architectural Overview

Figure 7.1 Palm OS expansion architecture

Applications and System
+r VFS Manager
Expansion
Manager
FAT Other
File File
System System
Other
Slot Slot File System
Driver Driver Support

Slot Drivers

A slot driver is a standard Palm OS shared library of type
sysFileTSlotDriver ('libs"'). Itis a special library that
encapsulates direct access to the hardware and provides a standard
set of services to the Expansion Manager and, optionally, to file
system libraries. Adding support for a new type of hardware
expansion is usually simply a matter of writing a slot driver for it.
As illustrated in Figure 7.1, applications don’t normally interact
directly with slot drivers.

Each expansion slot has a slot driver associated with it. Slots are
identified by a unique slot reference number, which is assigned by
the Expansion Manager. Expansion cards themselves are not
numbered individually; applications typically reference the slot into

Palm OS Programmer’s Companion, Volume | 211

Expansion

Architectural Overview

which a card is inserted. Note, however, that a slot may or may not
have a card in it at any given time, and that a card can be inserted
and removed while an application is running.

NOTE: “Card number”is a Palm OS Memory Manager term,
and is not to be confused with “slot reference number.”

The current implementation only supports one volume per slot.

File Systems

The Palm OS expansion architecture defines a common interface for
all file system implementations on the Palm OS. This interface
consists of a complete set of APIs for interacting with the file
system, including the ability to open, close, read, write, and delete
both files and directories on named volumes.

File system implementations are packaged as shared libraries of
type sysFileTFileSystem('1libf'). They are modular plug-ins
that add support for a particular type of file system, such as VFAT,
HFS, or NFS. The Palm OS expansion architecture allows multiple
tile system libraries to be installed at any given time. Typically, an
implementation of the VFAT file system is present.

VFAT is the industry standard for flash memory cards of all types. It
enables easy transfer of data and or applications to desktops and
other devices. The VFAT file system library included with Palm OS
4.0 natively supports VFAT file systems on secondary storage
media. It is able to recognize and mount FAT and VFAT file systems,
and offers to reformat unrecognizable or corrupted media.

Because the VFAT file system requires long filenames to be stored in
Unicode/UCS2 format, the standard VFAT file system library
supports conversion between UCS2 and Shift-JIS (the standard
Palm OS multi-byte character encoding), and the Palm/Latin
encoding.

VFS Manager

The VES (Virtual File System) Manager provides a unified API that
gives applications access to many different file systems on many
different media types. It abstracts the underlying file systems so that

212 Palm OS Programmer’s Companion, Volume |

Expansion
Architectural Overview

applications can be written without regard to the actual file system
in use. The VFS Manager includes APIs for manipulating files,
directories, and volumes.

NOTE: Although the great majority of the functions in the VFS
Manager can be used by any application, some are intended only
for use by slot drivers and file systems. Others are not intended
for use by third-party applications but are designed primarily for
system use.

The VFS Manager, the Data Manager, and File Streaming APIs

With the addition of the VFS Manager to the Palm OS, there are now
three distinct ways applications can store and retrieve Palm OS user
data:

* The Data Manager manages user data in the storage heap. It
was specifically designed to make the most of the limited
dynamic RAM and the nonvolatile RAM used instead of disk
storage on most handhelds. Use the Data Manager to store
and retrieve Palm OS user data when storage on the
handheld is all that is needed, or when efficient access to data
is paramount.

¢ The File Streaming APl is a layer on top of the Data Manager
that provides file functionality with all data being read from
or written to a database in the storage heap. Most
applications have no need for the File Streaming APlIs; they
are primarily used by applications that need to work with
large blocks of data.

* The VFS and Expansion Managers were designed specifically
to support many types of expansion memory as secondary
storage. The VFS Manager APIs present a consistent interface
to many different types of file systems on many types of
external media. Applications that use the VFS APIs can
support the widest variety of file systems. Use the VFS
Manager when your application needs to read and write data
stored on external media.

Palm OS applications should use the appropriate APIs for each
given situation. The Data Manager, being an efficient manager of
storage in the storage heap, should be used whenever access to

Palm OS Programmer’s Companion, Volume | 213

Expansion
Architectural Overview

external media is not absolutely needed. Use the VFS API when
interoperability and file system access is needed. Note, however,
that the VFS Manager adds the extra overhead of buffering all reads
and writes in memory when accessing data, so only applications
that specifically need this functionality should use the VFS
Manager.

For more information on the Data and Resource Managers, as well
as on the File Streaming APIs, see Chapter 6, “Files and Databases.”
For details of the APIs presented by the VFS Manager, see Chapter
53, “Virtual File System Manager,” in the Palm OS Programmer’s API
Reference.

Expansion Manager

The Expansion Manager is a software layer that manages slot
drivers on Palm OS handhelds. Supported expansion card types
include, but are not limited to, Memory Stick and SD cards. The
Expansion Manager does not support these expansion cards
directly; rather, it provides an architecture and higher level set of
APIs that, with the help of low level slot drivers and file system
libraries, support these types of media.

The Expansion Manager:
* broadcasts notification of card insertion and removal
* plays sounds to signify card insertion and removal

e mounts and unmounts card-resident volumes

NOTE: Some of the other functions provided by the Expansion
Manager are for use by slot drivers and file systems and are not
generally used by their-party applications.

For details of the APIs presented by the VFS Manager, see Chapter
29, “Expansion Manager,” in the Palm OS Programmer’s API
Reference.

214 Palm OS Programmer’s Companion, Volume |

Expansion
Standard Directories

Standard Directories

The user experience presented by the Palm OS is simpler and more
intuitive than that of a typical desktop computer. Part of this
simplicity arises from the fact that the Palm OS doesn’t present a file
system to the user. Users don’t have to understand the complexities
of a typical file system; applications are readily available with one or
two taps of a button or icon, and data associated with those
applications is accessible only through each application.
Maintaining this simplicity of user operation while supporting a file
system on an expansion card is made possible through a standard
set of directories on the expansion card.

The following table lists the standard directory layout for all
“standards compliant” Palm OS secondary storage. All Palm OS
relevant data should be in the /PALM directory (or in a subdirectory
of the /PALM directory), effectively partitioning off a private name

space.

Directory Description

/ Root of the secondary storage.

/PALM Most data written by Palm™ applications
lives in a subdirectory of this directory.
start.prc lives directly in /PALM. This
optional file is automatically run when the
secondary storage volume is mounted.
Other applications may also reside in this
directory.

/PALM/Backup Reserved by the Palm OS for backup
purposes.

/PALM/Programs Catch-all for other applications and data.

/PALM/Launcher Home of Launcher-visible applications.

The Palm OS Launcher has been enhanced to be expansion card
aware. When an expansion card containing a file system is inserted,
all applications listed in the card’s /PALM/Launcher directory are
automatically added to a new Launcher category. This new category
takes the name of the expansion card volume. Note that the name

Palm OS Programmer’s Companion, Volume | 215

Expansion
Applications on Cards

Application

displayed in the Launcher for a given application is the name in the
application’s tAIN (application icon name) resource or, if this
resource is empty, the database name, which may or may not match
the name of the file.

NOTE: Whenever possible give the same name to the . prc file
and to the database. If the . prc filename differs from the
database name, and users copy your application from the card to
the handheld and then to another card, the filename may change.
This is because the database name is used when an application
is copied from the handheld to the card.

When a writable volume is mounted, the Launcher automatically
creates the /PALM and /PALM/Launcher directories if they don’t
already exist. If they do, and if there are applications present in the /
PALM/Launcher directory, the Launcher automatically switches to
the card’s list of applications unless it runs start . prc.

In addition to these standard directories, the VFS Manager supports
the concept of a default directory; a directory in which data of a
particular type is typically stored. See “Determining the Default
Directory for a Particular File Type” on page 242 for more

information.

s on Cards

Palm OS applications located in the /PALM/Launcher directory of
an expansion card volume appear in a separate Launcher category
when the card is inserted into the handheld’s expansion slot. If you
tap the icon for one of these applications, it is copied to main
memory and then launched.

Applications launched from a card (“card-launched” applications)
are first sent a sysAppLaunchCmdCardLaunch launch code, along
with a parameter block that includes the reference number of the
volume on which the application resides and the complete path to
the application. When processing this launch code, the application
shouldn’t interact with the user or access globals. Unless the
application sets the sysAppLaunchStartFlagNoUISwitch bitin
the start flags (which are part of the parameter block), the

216 Palm OS Programmer’s Companion, Volume |

Expansion
Applications on Cards

application is then sent a sysAppLaunchCmdNormalLaunch
launch code. This is when the application should, if it needs to,
interact with user. Applications may want to save some state when
sysAppLaunchCmdCardLaunch is received, then act upon that
state information when sysAppLaunchCmdNormalLaunch is
received.

When the user switches to a new application, the card-launched
application is removed from main memory. Note, however, that any
databases created by the card-launched application remain.

There are certain implications to this “copy and run” process.

¢ There must be sufficient memory for the application. If the
handheld doesn’t have enough memory to receive the
application, it isn’t copied from the expansion card and it
isn’t launched.

* The copying process takes time. For large applications, this
can cause a noticeable delay before the application is actually
launched.

* If some version of the application on the card is already
present in main memory, the Launcher puts up a dialog that
requires the user to choose whether or not to overwrite the
In-memory version.

Palm OS Programmer’s Companion, Volume | 217

Expansion
Card Insertion and Removal

¢ Card-launched applications have a limited lifetime:
applications reside in main memory only while they are
running. When the user switches to a different application,
the card-launched application that was just running is
removed from main memory. If the card-launched
application is then re-launched, it is once again copied into
the handheld’s memory.

* “Legacy” applications—those that are unaware that they are
being launched from a card—only work with databases in
main memory. Associated databases aren’t copied to main
memory along with the application unless the database is
bundled with the application. Databases created by card-
launched applications are not removed along with the
application, however, so this data is available to the
application when it is subsequently run. Applications that
are written to take advantage of the VFS Manager can read
and write data on the expansion card, so this limitation
generally only applies to legacy applications.

Bundled databases, although copied to main memory along
with their associated application, are meant for static data
that doesn’t change, such as a game level database. Bundled
databases are not copied back to the card; they are simply
deleted from memory when the user chooses another
application. To bundle a database with an application, give it
the same creator ID as the owning application, set the
dmHdrAttrBundle bit, and place it in the /PALM/
Launcher directory along with the application.

* Unless a card-launched application is running, it doesn’t
receive notifications or launch codes since it isn’t present on
the handheld. In particular, these applications don’t receive
notifications and aren’t informed when an alarm is triggered.

Card Insertion and Removal

The Expansion Manager supports the insertion and removal of
expansion media at any time. The handheld continues to run as
before, though an application switch may occur upon card insertion.
The handheld need not be reset or otherwise explicitly informed
that a card has been inserted or removed.

218 Palm OS Programmer’s Companion, Volume |

Expansion
Card Insertion and Remouval

WARNING! Due to the way certain expansion cards are
constructed, if the user removes an expansion card while it is
being written to, in certain rare circumstances it is possible for the
card to become damaged to the point where either it can no
longer be used or it must be reformatted. To the greatest extent
possible, applications should only write to the card at well-defined
points, and the application should warn the user—perhaps with a
“Please Wait” or progress dialog—at that time not to remove the
expansion card. The card can be removed while an application is
reading from it without fear of damage.

The Palm OS uses a series of notifications to indicate that a card has
been inserted or removed, or that a volume has been mounted or
unmounted. The following table lists these notifications, and the
priority for which they have been registered by the Expansion and
VFS Managers. Note that the priorities may change in a future
release, so applications shouldn’t depend on these precise values.
Applications that register for these using normal priority get the
correct behavior.

Table 7.1 Expansion card notifications

Notification Registered by Priority
sysNotifyCardInsertedEvent Exp. Manager 20
sysNotifyCardRemovedEvent Exp. Manager -20
sysNotifyVolumeMountedEvent Exp. Manager -20

sysNotifyVolumeMountedEvent VFS Manager 10

sysNotifyVolumeUnmountedEvent Exp.Manager -20

The following diagram shows the sequence of events that occur
when an expansion card is inserted into a Palm Powered handheld’s
expansion slot. For clarity, it assumes that no errors occur. If the card
doesn’t contain a mountable volume, and if the card cannot be
formatted and then mounted, this sequence is aborted and the card

Palm OS Programmer’s Companion, Volume | 219

Expansion
Card Insertion and Removal

remains unmounted, although the card insertion notification is still
broadcast.

Figure 7.2 Sequence of events upon card insertion

Expansion Manager VFS Manager

|

|

! |
ExpCardinserted

broadcasts 1

sysNotifyCardInsertedEvent |

1

1

1
Expansion Manager
mounts card with
VFSVolumeMount

1
VFSVolumeMount

broadcasts
sysNotifyVolumeMountedEvent

1
VFS Manager copies
start.prg,if it exists, to
the storage heap

[

sysAppLaunchCmdCardLaunch

issentto start.prg,if it exists
1

[
sysAppLaunchCmdNormalLaunch
is sent to start . prg, if it exists, or
to the Launcher

Expansion Manager
plays "mount" sound
1

The Expansion Manager registers for
sysNotifyCardInsertedEvent with a priority of 20, ensuring
that it is notified after other handlers that may have registered with
normal priority. To override the Expansion Manager’s default
handler, register your handler to receive
sysNotifyCardInsertedEvent with normal priority, and have
it set the appropriate bits in the handled member of the
SysNotifyParamType structure:

¢ expHandledVolume indicates that any volumes associated
with the card have been dealt with, and prevents the

220 Palm OS Programmer’s Companion, Volume |

Expansion
Card Insertion and Remouval

Expansion Manager from mounting or unmounting the
card’s volumes.

* expHandledSound indicates that your application has
handled the playing of an appropriate sound, and prevents
the Expansion Manager from playing a sound when the card
is inserted or removed.

Note that the number of the slot into which the card was inserted is
passed to your handler using the notifyDetailsP member—
which isa UInt16, casttoavoid *—of the
SysNotifyParamType structure.

Although most applications only register for volume mount and
unmount notifications, if you need to receive notifications when the
user removes a card from a slot managed by the Expansion
Manager, have your application register to receive
sysNotifyCardRemovedEvent. Unlike with
sysNotifyCardInsertedEvent, the Expansion Manager
registers for sysNotifyCardRemovedEvent with a priority of -20,
ensuring that it receives the notification before other handlers that
are registered for it with normal priority. This notification, too,
passes the number of the slot from which the card was removed to
your handler using the notifyDetailsP member—whichis a
UInt16, casttoavoid *—of the SysNotifyParamType
structure.

The VFS Manager registers for sysNot ifyVolumeMountedEvent
with a priority of 10. To override the VFS Manager’s default
handler, register your handler to receive
sysNotifyVolumeMountedEvent with normal priority, and have
it set the appropriate bits in the handled member of the
SysNotifyParamType structure:

¢ visHandledUIAppSwitch indicates that your application
has handled SysUIAppSwitch to start.prc. This bit
prevents the VFS Manager from performing its own
SysUIAppSwitchto start.prc (although start.prcis
still loaded and a SysAppLaunch is performed), and also
prevents the launcher from switching to itself.

¢ visHandledStartPrc indicates that your handler has
dealt with the automatic running of start . prc. The VFS
Manager won't load it and won't call either SysAppLaunch
or SysUIAppSwitch.

Palm OS Programmer’s Companion, Volume | 221

Expansion
Card Insertion and Removal

Note that if your application handles the running of start .prc,
you need to keep security in mind. If the handheld is locked when
an expansion card is inserted, the VFS Manager’s own handler

defers the execution of start . prc until the user unlocks the
handheld.

Card removal follows a similar sequence, although there is no
equivalent to start . prc that is automatically run. This sequence is
illustrated in the following diagram.

Figure 7.3 Sequence of events upon card removal

Expansion Manager
1

VFS Manager

'

ExpCardRemoved

broadcasts

sysNotifyCardRemovedEvent
1

Expansion Manager
plays "removed" sound
|

1
Expansion Manager
unmounts card with
VFSVolumeUnmount

1
VFSVolumeUnmount
removes start.prc from main
memory

'
1
broadcasts

sysNotifyVolumeUnmountedEvent

1

1

1

| VFSVolumeUnmount
1

I ____________ I

1

Upon card removal, the Expansion Manager broadcasts a
notification to all applications that have registered to receive card
removal notifications and unmounts any mounted volumes on the
card. This causes the VFS Manager to issue a card unmounted
notification. Each application must register for the card unmounted
notification and provide the necessary error handling code if card
removal at any time will cause a problem for the application.

Note that the card insertion and removal notifications are intended
primarily for system use, although they can be registered for by
applications that need them. Applications that deal only with file
systems and the VFS Manager should confine themselves to the
volume mounted and unmounted notifications.

222 Palm OS Programmer’s Companion, Volume |

Expansion
Card Insertion and Remouval

Start.prc

Upon receipt of a sysNotifyVolumeMountedEvent that hasn’t
already been handled (as indicated by the state of the
visHandledStartPrc bit, as described in the previous section),
the VFS Manager copies /Palm/start .prc—and its overlay, if
there is one—to the storage heap and launches it. This process
enables “application cards”—single-function cards that execute
automatically upon card insertion. It also allows for combo cards
that automatically load any necessary drivers and applications to
support card I/0.

To launch start.prc, the VFS Manager first sends it a special
launch code, sysAppLaunchCmdCardLaunch. If the application
only needs to do a bit of work and return, it should do it here and
then set the sysAppLaunchStartFlagNoUISwitch bitin the
start flags, which are part of the sysAppLaunchCmdCardLaunch
parameter block. Note that the application doesn’t have access to
globals and it shouldn’t interact with the user here. If the
sysAppLaunchStartFlagNoUISwitch bit is not set, as it isnt if
the application ignores the sysAppLaunchCmdCardLaunch
launch code, the VES Manager then sends it a
sysAppLaunchCmdNormalLaunch launch code to run the
application normally. This ensures backwards compatibility with
applications that do not understand the
sysAppLaunchCmdCardLaunch launch code. This is where the
application can interact with the user; an application may want to
save state when it receives sysAppLaunchCmdCardLaunch, and
then act upon that state when it receives
sysAppLaunchCmdNormalLaunch.

To avoid running out of stack space, the VFS Manager sets the “new
stack” bit when launching start .prc. The start .prc
application remains in system memory until the volume from which
it was copied is removed. start . prc is deleted before
VFSVolumeUnmount broadcasts
sysNotifyVolumeUnmountedEvent but after the Expansion
Manager broadcasts sysNotifyCardRemovedEvent. By
registering for sysNotifyCardRemovedEvent, start.prc can
react to the volume being removed before it is deleted.

Palm OS Programmer’s Companion, Volume | 223

Expansion
Checking for Expansion Cards

NOTE: If an expansion card is inserted while the handheld is
locked, start .prc is not executed until the user unlocks the
handheld.

Checking for Expansion Cards

Before looking for an expansion card, your program should first
make sure that the handheld supports expansion by verifying the
presence of the Expansion and VFS Managers. It can then query for
mounted volumes. Finally, your program may want to ascertain the
capabilities of the card; whether it has memory, whether it does 1/0O,
and so on. The following sections describe each of these steps.

Verifying Handheld Compatibility

There are many different Palm OS handhelds, and in the future
there will be many more. Some will have expansion slots to support
secondary storage, and some will not. Hardware to support
secondary storage is optional, and may or may not be present on a
given handheld. Since the Expansion and VFS Managers are of no
use on a handheld that has no physical expansion capability, they
are optional system extensions that are not present on every Palm
Powered handheld.

Due to the great variability both in handheld configuration and in
the modules which can be plugged into or snapped onto the
handheld, applications shouldn’t attempt to detect the
manufacturer or model of a specific handheld when determining if
it supports secondary storage. Instead, check for the presence and
capabilities of the underlying operating system.

The VES Manager and the Expansion Manager are individual
system extensions that are both optional. They both make use of
other parts of the operating system that were introduced in Palm OS
4.0. Thus, in order to be fully capable of running an application that
relies on the Expansion and VFS Managers, the following all have to
be true for a given handheld:

¢ The handheld must be running Palm OS 4.0%

224 Palm OS Programmer’s Companion, Volume |

Expansion
Checking for Expansion Cards

¢ The Expansion Manager must be present.
¢ The VFS Manager must be present.

Appendix B, “Compatibility Guide,” details how to verify the
presence of each:

¢ 4.0 New Feature Set begins by illustrating how to verify that
the handheld is running Palm OS 4.0.

¢ Expansion Manager Feature Set shows how to check for the
presence of the Expansion Manager.

¢ VFES Manager Feature Set shows how to check for the
presence of the VFS Manager.

Although your program could check for the presence of all of the
above, it can take advantage of the fact that the VFS Manager relies
on the Expansion Manager and won't be present without it. Thus, if
the VFS Manager is present, you can safely assume that the
Expansion Manager is present as well.

Checking for Mounted Volumes

Many applications rely on the handheld’s expansion capabilities for
additional storage. Applications that don’t care about the physical
characteristics of the secondary storage module, and that don’t need
to know the slot into which the module is inserted, can rely on the
fact that the Palm OS automatically mounts any recognized
volumes inserted into or snapped onto the handheld. Thus, many
applications can simply enumerate the mounted volumes and select
one as appropriate. The following code illustrates how to do this:

Listing 7.1 Enumerating mounted volumes

UIntl6é volRefNum;
UInt32 volIterator = vfsIteratorStart;

while (volIterator != vfsIteratorStop) {
err = VFSVolumeEnumerate (&volRefNum, &volIterator) ;
if (err == errNone) {

2. The Sony CLIE™ handheld running Palm OS 3.5 uses a version of the Expansion
and VFS Managers. Sony’s version of these managers is binary compatible with
those included with Palm OS 4.0.

Palm OS Programmer’s Companion, Volume | 225

Expansion
Checking for Expansion Cards

// Do something with the volRefNum
} else {

// handle error... possibly by

// breaking out of the loop

The volume reference number obtained from
VEFSVolumeEnumerate can then be used with many of the volume,
directory, and file operations that are described later in this chapter.

Occasionally an application needs to know more than that there is
secondary storage available for use. Those applications likely need
to take a few extra steps, beginning with checking each of the

handheld’s slots.

Enumerating Slots

Before you can determine which expansion modules are attached to
a Palm OS handheld, you must first determine how those modules
could be attached. Expansion cards and some I/O devices could be
plugged into physical slots, and snap-on modules could be
connected through the handheld’s universal connector. Irrespective
of how they’re physically connected, the Expansion Manager
presents these to the developer as slots. Enumerating these slots is
made simple due to the presence of the ExpSlotEnumerate
function. The use of this function is illustrated here:

Listing 7.2 Iterating through a handheld’s expansion slots

UIntl6é slotRefNum;
UInt32 slotIterator = explteratorStart;

while (slotIterator != explteratorStop) {
// Get the slotRefNum for the next slot
err = ExpSlotEnumerate (&slotRefNum, &slotIterator);

if (err == errNone) {
// perform slot-specific processing here
} else {

// handle error... possibly by
// breaking out of the loop

226 Palm OS Programmer’s Companion, Volume |

Expansion
Checking for Expansion Cards

The slot reference number returned by ExpSlotEnumerate
uniquely identifies a given slot. This can be supplied to various
Expansion Manager functions to obtain information about the slot,
such as whether there is a card or other expansion module present
in the slot.

Checking a Slot for the Presence of a Card

Use the ExpCardPresent function to determine if a card is present
in a given slot. Given the slot reference number, this function
returns errNone if there is a card in the slot, or an error if either
there is no card in the slot or there is a problem with the specified
slot.

Determining a Card’s Capabilities

Just knowing that an expansion card is inserted into a slot or
connected to the handheld isn’t enough; your application needs to
know something about the card to ensure that the operations it
needs to perform are compatible with the card. For instance, if your
application needs to write data to the card, its important to know if
writing is permitted.

The capabilities available to your application depend not only on
the card but on the slot driver as well. Handheld manufacturers will
provide one or more slot drivers that define standard interfaces to
certain classes of expansion hardware. Card and device
manufacturers may also choose to provide card-specific slot drivers,
or they may require that applications use the slot custom control
function and a registered creator code to access and control certain
cards.

The slot driver is responsible for querying expansion cards for a
standard set of capabilities. When a slot driver is present for a given
expansion card, you can use the ExpCardInfo function to
determine the following;:

¢ the name of the expansion card’s manufacturer
¢ the name of the expansion card

¢ the “device class,” or type of expansion card. Values
returned here might include “Ethernet” or “Backup”

* a unique identifier for the device, such as a serial number

Palm OS Programmer’s Companion, Volume | 227

Expansion
Volume Operations

* whether the card supports both reading and writing, or
whether it is read-only

* whether the card supports a simple serial interface

Note that the existence of the ExpCardInfo function does not
imply that all expansion cards support these capabilities. It only
means that the slot driver is able to assess a card and report its
findings up to the Expansion Manager.

Volume Operations

If an expansion card supports a file system, the VFS Manager allows
you to perform a number of standard volume operations. To
determine which volumes are currently mounted and available, use
VFSVolumeEnumerate. This function, the use of which is
illustrated in “Checking for Mounted Volumes” on page 225,
returns a volume reference number that you then to supply to the
remainder of the volume operations.

When the user inserts a card containing a mountable volume into a
slot (note that the current implementation only supports one
volume per slot), the VFS Manager attempts to mount the volume
automatically. You should rarely, if ever, have to mount volumes
directly. You can attempt to mount a volume using a different file
system, however, perhaps after installing a new file system driver
on the handheld. To explicitly mount or unmount a volume, use
VFSVolumeMount and VFSVolumeUnmount. When mounting a
volume, you can either specify an explicit file system with which to
mount the volume, or you can request that the VFS Manager try to
determine the appropriate file system. If the VFS Manager cannot
mount the volume using any of the available file systems, it
attempts to format the volume using a file system deemed
appropriate for the slot, and then mount it. See the description of
VFSVolumeMount in the Palm OS Programmer’s API Reference for
the precise arguments you must supply when explicitly mounting a
volume.

Use VFSVolumeFormat to format a volume. This function can be
used to change the file system on the expansion card; you can
explicitly indicate a file system to use when formatting it. Once the
card has been formatted, the VFS Manager automatically mounts it;

228 Palm OS Programmer’s Companion, Volume |

Expansion
Volume Operations

a new volume reference number is returned from
VEFSVolumeFormat.

The VFSVolumeGetLabel and VFSVolumeSetLabel functions
get and set the volume label, respectively. Since the file system is
responsible for verifying the validity of strings, you can try to set
the volume label to any desired value. If the file system doesn’t
natively support the name given, the VFS Manager creates the /
VOLUME . NAM file used to support long volume names (see “Naming
Volumes” on page 230 for more information) or you get an error
back if the file system doesn’t support the supplied string.

Additional information about the volume can be obtained through
the use of VFSVolumeSize and VFSVolumeInfo. As the name
implies, VFSVolumeSize returns size information about the
volume. In particular, it returns both the total amount of space on
the volume, in bytes, and the amount of that volume’s space that is
currently in use, again in bytes. VFSVolumeInfo returns various
pieces of information about the volume, including;:

* whether the volume is hidden
* whether the volume is read-only

¢ whether the volume is supported by a slot driver, or is being
simulated by the Palm OS Emulator

¢ the type and creator of the underlying file system

¢ the slot with which the volume is associated, and the
reference number of the slot driver controlling the slot

¢ the type of media on which this volume is located, such as
SD, CompactFlash, or Memory Stick

All of the above information is returned encapsulated within a
VolumeInfoType structure. Whether the volume is hidden or
read-only is further encoded into a single field within this structure;
see Volume Attributes in the Palm OS Programmer’s API Reference for
the bits that make up this field.

Hidden Volumes

Included among the volume attributes is a “hidden” bit,
vEsVolumeAttrHidden, that indicates whether the volume on the
card is to be visible or hidden. Hidden volumes are typically not

Palm OS Programmer’s Companion, Volume | 229

Expansion
Volume Operations

meant to be directly available to the user; the Launcher and the
CardInfo application both ignore all hidden volumes.

To make a volume hidden, simply create an empty file named
HIDDEN.VOL in the /PALM directory. The VFSVolumeInfo
function looks for this file and, if found, returns the
vEsVolumeAttrHidden bit along with the volume’s other
attributes.

Matching Volumes to Slots

Many applications don’t need to know the specifics of an expansion
card as provided by the ExpCardInfo function. Often, the
information provided by the VFSVolumeInfo function is enough.
Some applications need to know more about a particular volume,
however. The name of the manufacturer or the type of card, for
instance, may be important.

The VolumeInfoType structure returned from VFSVolumeInfo
contains a slotRefNum field that can be passed to ExpCardInfo.
This allows you to obtain specific information about the card on
which a particular volume is located.

Although slot drivers currently only support one volume per slot,
obtaining volume information that corresponds to a given slot
reference number isn’t quite so simple, since there isn’t a function
that returns the volume reference number given a slot reference
number. You can, however, iterate through the mounted volumes
and check each volume’s slot reference number. This is the
technique that the CardInfo application uses.

Naming Volumes

Different file system libraries support volume names of different
maximum lengths and have different restrictions on character sets.
The file system library is responsible for verifying whether or not a
given volume name is valid, and returns an error if it is not. From a
Palm OS developer’s standpoint, volume names can be up to 255
characters long, and can include any printable character.

The file system library is responsible for translating the volume
name into a format that is acceptable to the underlying file system.
For example, in a file system where the 8.3 naming convention is

230 Palm OS Programmer’s Companion, Volume |

Expansion
Volume Operations

used for filenames, to translate a long volume name the first eleven
valid, non-space characters are used. Valid characters in this
instance are A-Z,0-9,%,%,’,-, _ @, ~,",!,(,), N, # and &.

When the underlying file system doesn’t support a long volume
name, VFSVolumeSetLabel creates the file /VOLUME . NAM in an
effort to preserve the long volume name. This file contains the
following, in order:

Field Description

Char cookie[4] 4 byte cookie that identifies
this file. The value of this
cookie is
visVolumeNameFileCook
ie.

UIntl6 cacheLen Big-endian length, in bytes,
of the cached file-system-
level volume label.

Char cacheLabel [cacheLen] Unicode UCS-2format string
containing the volume label
as it is stored in the file
system layer. This is
compared with the file
system volume label to see if
the user has changed the
volume label on a device that
doesn’t support the /
VOLUME . NAM file. In this
event, the file system volume
label is used; the contents of
/VOLUME . NAM are ignored.

UIntl6 length Big-endian length, in bytes,
of the long volume label.

Char label [length] Unicode UCS-2 format string
containing the long volume
label.

Palm OS Programmer’s Companion, Volume | 231

Expansion
File Operations

File Operations

All of the familiar operations you’d use to operate on files in a
desktop application are supported by the VES Manager; these are
listed in “Common Operations,” below. In addition, the VFS
Manager includes a set of functions that simplify the way you work
with files that represent Palm databases (. pdb) or Palm resource
databases (.prc). These are covered in “Working with Palm
Databases” on page 234.

Common Operations

The VFS Manager provides all of the standard file operations that
should be familiar from desktop and larger computer systems.
Because these functions work largely as you would expect, their use
isn’t detailed here. See the descriptions of each individual function
in the Palm OS Programmer’s API Reference for the arguments, return
values, and side effects of each.

Note that some of these functions can be applied to both files and
directories, while others work only with files.

Table 7.2 Common file operations

Function Description

VFSFileOpen Open a file, given a volume
reference number and a file path.

VFSFileClose Close an open file.

VFSFileRead Read data from a file into the
dynamic heap or any writable
memory.

VFSFileReadData Read data from a file into a chunk

of memory in the storage heap.

VFSFileWrite Write data to an open file.

VFSFileSeek Set the position within an open file
from which to read or write.

232 Palm OS Programmer’s Companion, Volume |

Expansion
File Operations

Table 7.2 Common file operations (continued)

Function Description

VFSFileTell Get the current position of the file
pointer within an open file.

VFSFileEOF Get the end-of-file status for an
open file.

VFSFileCreate Create a file, given a volume
reference number and a file path.

VFSFileDelete Delete a closed file.

VFSFileRename Rename a closed file.

VFSFileSize Obtain the size of an open file.

VFSFileResize Change the size of an open file.

VESFileGetAttributes

VEFSFileSetAttributes

Obtain the attributes of an open file,
including hidden, read-only,
system, and archive bits. See “File
and Directory Attributes” in the
Palm OS Programmer’s API Reference
for the bits that make up the
attributes field.

Set the attributes of an open file,
including hidden, read-only,
system, and archive bits.

VFSFileGetDate Get the created, modified, and last
accessed dates for an open file.
VFSFileSetDate Set the created, modified, and last

accessed dates for an open file.

Once a file has been opened, it is identified by a unique reference
number: a FileRef. Functions that work with open files take a file
reference. Others, such as VFSFileOpen, require a volume
reference and a path that identifies the file within the volume. Note
that all paths are volume relative, and absolute within that volume:
the VFS Manager has no concept of a “current working directory,”

Palm OS Programmer’s Companion, Volume | 233

Expansion
File Operations

so relative path names are not supported. The directory separator
character is the forward slash: ”/”. The root directory for the
specified volume is specified by a path of “/”.

Naming Files

Different file systems support filenames and paths of different
maximum lengths. The file system library is responsible for
verifying whether or not a given path is valid and returns an error if
it is not valid. From an application developer’s standpoint,
filenames can be up to 255 characters long and can include any
normal character including spaces and lower case characters in any
character set. They can also include the following special characters:

$s ' - _ @~ "'l ()" #&+, ;=11

The file system library is responsible for translating each filename
and path into a format that is acceptable to the underlying file
system. For example, when the 8.3 naming convention is used to
translate a long filename, the following guidelines are used:

* The name is created from the first six valid, non-space
characters which appear before the last period. The only
valid characters are A-Z,0-9,%$,%,’,-, _, @, ~,",!,(,), ", # and
&.

e The extension is the first three valid characters after the last
period.

* The end of the six byte name has “~1” appended to it for the
tirst occurrence of the shortened filename. Each subsequent
occurrence uses the next unique number, so the second
occurrence would have “~2” appended, and so on.

The standard VFAT file system library provided with all Palm
Powered handhelds that support expansion uses the above rules to
create FAT-compliant names from long filenames.

Working with Palm Databases

Expansion cards are often used to hold Palm applications and data
in .prcand . pdb format. Due to the way that secondary storage
media are connected to the Palm Powered handheld, applications
cannot be run directly from the expansion card, nor can databases
be manipulated using the Data Manager without first transferring

234 Palm OS Programmer’s Companion, Volume |

Expansion
File Operations

them to main memory. Applications written to use the VFS
Manager, however, can operate directly on files located on an
expansion card.

NOTE: Whenever possible give the same name to the . prc file
and to the database. If the . prc filename differs from the
database name, and the user copies your application from the
card to the handheld and then to another card, the filename may
change. This is because the database name is used when an
application is copied from the handheld to the card.

Stand-Alone Applications

To allow the user to run an application that is self-contained—that
isn’t accompanied by a separate database—you need only do one of
two things:

¢ If the application is to be run whenever the card is inserted
into the expansion slot, simply name the application
start.prc and place it in the /PALM directory. The
operating system takes care of transferring the application to
main memory and starting it automatically.

e If the application is to be run on-demand, place it in the /
PALM/Launcher directory. All applications located in this
directory appear in the launcher when the user selects the
category bearing the name of the expansion card.

Both of these mechanisms allow applications that were written
without any knowledge of the VFS or Expansion Manager APIs to
be run from a card. Because they are transferred to main memory
prior to being run, such applications need not know that they are
being run from an expansion card. Databases created by these
applications are placed in the storage heap, as usual. When the card
containing the application is removed, the application disappears
from main memory unless it is running, in which case it remains
until such time as the application is no longer running. Any
databases it created remain. When the card is re-inserted and the
application re-run, it is once again copied into main memory and is
able to access those databases.

Palm OS Programmer’s Companion, Volume | 235

Expansion
File Operations

Applications with Static Data

Many applications are accompanied by one or more associated Palm
databases when installed. These applications, at least to a limited
degree, need to be cognizant of the fact that they reside on an
expansion card.

If there is no specific requirement for the application’s data to be
stored in Palm database format, you may want to use the VFS
Manager’s many file I/O operations to read and write the data on
the card. Because of the large data storage capabilities of the
expansion media relative to the handheld’s memory;, this latter
solution is the one preferred by applications where large capacity
data storage is a key feature.

Bundled Databases

When an application is launched from a card using the launcher,
any bundled databases present in the /PALM/Launcher directory
are also imported. Bundled databases have the same creator as the
“owning” application and have the dmHdrAttrBundle bit set.
Note that bundled databases are intended only for read-only data,
such as a game-level database. Bundled databases are removed
from main memory along with the application when the user
switches to another application and are not copied back to the
expansion card.

Transferring Palm Databases to and from Expansion Cards

The VFSExportDatabaseToFile function converts a database
from its internal format on the handheld to its equivalent . prc or
.pdb file format and transfers it to an expansion card. The
VESImportDatabaseFromFile function does the reverse; it
transfers the . prc or . pdb file to main memory and converts it to
the internal format used by the Palm OS. Use these functions when
moving Palm databases between main memory and an expansion
card. These two functions rely upon Exchange Manager routines to
convert and transfer the data; see Chapter 1, “Object Exchange” in
Palm OS Programmer’s Companion, vol. II, Communications for more
information on using the Exchange Manager to send and receive
data.

The VFSExportDatabaseToFile and
VFSImportDatabaseFromFile routines are atomic and,

236 Palm OS Programmer’s Companion, Volume |

Expansion
File Operations

depending on the size of the database and the mechanism by which
it is being transferred, can take some time. Use
VFSExportDatabaseToFileCustomand
VFSImportDatabaseFromFileCustom if you want to display a
progress dialog or allow the user to cancel the operation. These
routines make repeated calls to a callback function that you specity;
within this callback function you can update a progress indicator.
The return value from your callback determines whether the
database transfer should proceed; return errNone if it should
continue, or return any other value to abort the process. See the
documentation for VESExportProcPtr and VFSImportProcPtr
in the Palm OS Programmer’s API Reference for the format of each
callback function.

The following code excerpt illustrates the use of
VFSImportDatabaseFromFileCustom With a progress tracker.

Listing 7.3 Using VFSImportDatabaseFromFileCustom

typedef struct {
ProgressType *progresspP;
const Char *namebpP;

} CBDataType, *CBDataPtr;

static Boolean ProgressTextCB (PrgCallbackDataPtr cbP)
const Char *nameP = ((CBDataPtr) cbP->userDataP)->namebP;

// Set up the progress text to be displayed
StrPrintF (cbP->textP, "Importing %s.", nameP) ;

cbP->textChanged = true;

return true; // So what we specify here is used to update the dialog

}

static Err CopyProgressCB(UInt32 size, UInt32 offset, void *userDataP)

CBDataPtr CBDataP = (CBDataPtr) userDatalP;
if (offset == 0) { // If we're just starting, we need to set up the dialog
CBDataP->progressP = PrgStartDialog("Importing Database", ProgressTextCB,
CBDataP) ;

if (!CBDataP->progressP)
return memErrNotEnoughSpace;
} else {
EventType event;

Palm OS Programmer’s Companion, Volume | 237

Expansion
File Operations

}

Boolean handled;

do {
EvtGetEvent (&event, 0); // Check for events

handled = PrgHandleEvent (CBDataP->progressP, &event) ;

if ('handled) { // Did the user tap the "Cancel" button?
if (PrgUserCancel (CBDataP->progressP))
return exgErrUserCancel;

}

} while(event.eType != sysEventNilEvent) ;

}

return errNone;

static Err ImportFile(UIntlé volRefNum, Char *pathP, Char *nameP,

{

UIntl6é *cardNoP, LocallID *dbIDP)
CBDataType userData;
Char fullPathP [256] ;

Err err;

userData.progressP = NULL;
userData.nameP = nameP;

StrPrintF (fullPathP, "%s/%s", pathP, nameP); // rebuild full path to the

file

err = VFSImportDatabaseFromFileCustom(volRefNum, fullPathP, cardNoP, dbIDP,
CopyProgressCB, &userData) ;

if (userData.progressP) // If the progress dialog was displayed, remove it.
PrgStopDialog (userData.progressP, (err == exgErrUserCancel));

return err;

Exploring Palm Databases on Expansion Cards

The VFS Manager includes functions specifically designed for
exploring the contents of a Palm database located on an expansion
card. This access is read-only, however. You can extract individual
records and resources from a database, and you can determine
information such as the last modification date of a database on an
expansion card. But there aren’t parallel functions to write records

238 Palm OS Programmer’s Companion, Volume |

Expansion
File Operations

and resources to a database or to update database-specific
information for a database that is located on an expansion card. To
do this you need to import the database into main memory, make
the necessary changes, and then export it back to the expansion
card.

To obtain a single record from a database located on an expansion
card without first importing the database into main memory, use
VEFSFileDBGetRecord. This function is analogous to
DmGetRecord but works with files on an external card rather than
with databases in main memory. It transfers the specified record to
the storage heap after allocating a handle of the appropriate size.
Note that you'll need to free this memory, using MemHandleFree,
when the record is no longer needed.

The VESFileDBGetResource function operates in a similar
tashion, but instead of loading a particular database record it loads a
specified resource from a resource database located on an expansion
card. This resource is put onto the storage heap. Again, free this
memory once the resource is no longer needed.

To obtain more general information about a database on an external
card, use VESFileDBInfo. In addition to the information you
could obtain about any file on an external card using the
VESFileGetAttributes and VESFileGetDate functions,
VFSFileDBInfo returns:

¢ the database name

¢ the version of the database

¢ the number of times the database was modified
¢ the application info block handle

e the sort info block handle

¢ the database’s type

¢ the database’s creator

¢ the number of records in the database

Palm OS Programmer’s Companion, Volume | 239

Expansion
Directory Operations

NOTE: The functions described in this section incur a lot of
overhead in order to parse the database file format. Frequent use
of these functions is not recommended. Also, if you request either
the application info block handle or the sort info block handle, you
must free the handle when it is no longer needed.

Directory Operations

All of the familiar operations you’d use to operate on directories are
supported by the VFS Manager; these are listed in “Common
Operations”, below. One common operation—determining the files
that are contained within a given directory—is covered in some
detail in “Enumerating the Files in a Directory” on page 241. To
improve data interchange with devices that aren’t running the Palm
OS, expansion card manufacturers have specified default directories
for certain file types. “Determining the Default Directory for a
Particular File Type” on page 242 discusses how you can both
determine and set the default directory for a given file type.

Directory Paths

All paths are volume relative, and absolute within that volume: the
VES Manager has no concept of a “current working directory,” so
relative path names are not supported. The directory separator
character is the forward slash: ”/”. The root directory for the
specified volume is specified by a path of “/”.

Common Operations

The VFS Manager provides all of the standard directory operations
that should be familiar from desktop and larger computer systems.

Because these functions work largely as you would expect, their use
isn’t detailed here. See the descriptions of each individual function

in the Palm OS Programmer’s API Reference for the arguments, return
values, and side effects of each.

240 Palm OS Programmer’s Companion, Volume |

Expansion
Directory Operations

Note that most of these functions can be applied to files as well as

directories.

Table 7.3 Common directory operations

Function Description

VFSDirCreate Create a new directory.
VFSFileDelete Delete a directory, given a path.
VFSFileRename Rename a directory.
VFSFileOpen Open the file or directory.
VFSFileClose Close the file or directory.

VESFileGetAttributes

VEFSFileSetAttributes

VESFileGetDate

VESFileSetDate

Obtain the attributes of an open
directory, including hidden, read-
only, system, and archive bits. See
“File and Directory Attributes” in
the Palm OS Programmer’s API
Reference for the bits that make up
the attributes field.

Set the attributes of an open
directory, including hidden, read-
only, system, and archive bits.

Get the created, modified, and last
accessed dates for an open file.

Set the created, modified, and last
accessed dates for an open file.

Enumerating the Files in a Directory

Enumerating the files within a directory is made simple due to the

presence of the VFSDirEntryEnumerate function. The use of this
function is illustrated below. Note that volRefNum and
dirPathStr must be declared and initialized prior to the following

code.

Palm OS Programmer’s Companion, Volume | 241

Expansion
Directory Operations

Listing 7.4 Enumerating a directory’s contents

// Open the directory and iterate through the files in it.
// volRefNum must have already been defined.
err = VFSFileOpen (volRefNum, "/", visModeRead, &dirRef) ;
if (err == errNone) ({
// Iterate through all the files in the open directory
UInt32 filelIterator;
FileInfoType fileInfo;
FileRef dirRef;
Char *fileName = MemPtrNew (256) ; // should check for err

fileInfo.nameP = fileName; // point to local buffer
fileInfo.nameBufLen = sizeof (fileName) ;
fileIterator = explteratorStart;
while (filelIterator != explteratorStop) {

// Get the next file

err = VFSDirEntryEnumerate (dirRef, &filelterator,

&filelInfo) ;
if (err == errNone)
// Process the file here.
}

} else {
// handle directory open error here
}

MemPtrFree (fileName) ;

Each time through the while loop, VFSDirEntryEnumerate sets
the FileInfoType structure as appropriate for the file currently
being enumerated. Note that if you want the file name it isn’t
enough to simply allocate space for the FileInfoType structure;
you must also allocate a buffer for the filename, set the appropriate
pointer to it in the FileInfoType structure, and specify your
buffer’s length. Since the only other information encapsulated
within FileInfoType is the file’s attributes, most applications will
want to also know the file’s name.

Determining the Default Directory for a
Particular File Type
As explained in “Standard Directories” on page 215, the expansion

capabilities of Palm OS 4.0 include a mechanism to map MIME
types or file extensions to specific directory names. This mechanism

242 Palm OS Programmer’s Companion, Volume |

Expansion
Directory Operations

is specific to the slot driver: where an image might be stored in the
“/Images” directory on a Memory Stick, on an MMC card it may be
stored in the “/DCIM” directory. The VFS Manager includes a
function that enables you to get the default directory on a particular
volume for a given file extension or MIME type, along with
functions that allow you to register and un-register your own
default directories.

The VESGetDefaul tDirectory function takes a volume
reference and a string containing the file extension or MIME type
and returns a string containing the full path to the corresponding
default directory. When specifying the file type, either supply a
MIME media type/subtype pair, such as “image/jpeg”, “text/
plain”, or “audio/basic”; or a file extension, such as “. jpeg”. As
with most other Palm OS functions, you’ll need to pre-allocate a
buffer to contain the returned path. Supply a pointer to this buffer
along with the buffer’s length. The length is updated upon return to
indicate the actual length of the path, which won’t exceed the
originally-specified buffer length.

The default directory registered for a given file type is intended to
be the “root” default directory. If a given default directory has one
or more subdirectories, applications should also search those
subdirectories for files of the appropriate type.

VFSGetDefaultDirectory allows you to determine the directory
associated with a particular file suffix. However, there’s no way to
get the entire list of file suffixes that are mapped to default
directories. For this reason, CardInfo keeps its own list of possible
tile suffixes. It iterates through this list, calling
VFSGetDefaultDirectory for each file suffix to get the full path
to the corresponding default directory. It then looks into each
default directory for files that match the expected suffix or suffixes
for that directory.

Registering New Default Directories

In addition to the default directories that the underlying slot driver
is already aware of, you can create your own mappings between
files of a given type and a specific directory on a particular kind of
external storage card. Most applications don’t need this
functionality; it is generally used by a slot driver to register those
files and media types that are supported by that slot driver.

Palm OS Programmer’s Companion, Volume | 243

Expansion
Directory Operations

However, VESRegisterDefaultDirectory and its opposite,
VFSUnregisterDefaultDirectory, are available to those
applications that need them. Such applications should generally
register the desired file types for expMediaType Any. Thisisa
wildcard which works for all media types; it can be overridden by a
registration that specifies a real media type.

If a default directory has already been registered for a given file/
media type combination, applications should use the pre-existing
registration instead of establishing a new one. Existing registrations
should generally not be removed.

Default Directories Registered at Initialization

The VFES Manager registers the following under the
expMediaType Any media type, which
VFSGetDefaultDirectory reverts to when there is no default
registered by the slot driver for a given media type.

Table 7.4 Default registrations

File Type Path

.prc /PALM/Launcher/
.pdb /PALM/Launcher/
.pga /PALM/Launcher/
application/vnd.palm /PALM/Launcher/
-JpPg /DCIM/

.Jpeg /DCIM/
image/jpeg /DCIM/

.gif /DCIM/
image/gif /DCIM/

.qt /DCIM/

.mov /DCIM/
video/quicktime /DCIM/

244 Palm OS Programmer’s Companion, Volume |

Expansion
Directory Operations

Table 7.4 Default registrations (continued)

File Type Path

.avi /DCIM/
video/x-msvideo /DCIM/
.mpg /DCIM/
.mpeg /DCIM/
video/mpeg /DCIM/
.mp3 /AUDIO/
.wav /AUDIO/
audio/x-wav /AUDIO/

The SD slot driver provided by PalmSource, Inc. registers the
following, since it has an appropriate specification for these file

types:

Table 7.5 Directories registered by the SD slot driver
File Type Path
-Jp9 /DCIM/
.Jpeg /DCIM/
image/jpeg /DCIM/
gt /DCIM/
.mov /DCIM/
video/quicktime /DCIM/
.avi /DCIM/
video/x-msvideo /DCIM/

Although the directories registered by Palm’s SD slot driver all
happen to be duplicates of the default registrations made by the VFS

Palm OS Programmer’s Companion, Volume | 245

Expansion
Custom Calls

Manager, they are also registered under the SD media type since the
SD specification explicitly includes them.

Slot drivers written by other Palm Powered handheld
manufacturers that support different media types, such as Memory
Stick, will register default directories appropriate to their media’s
specifications. In some cases these registrations will override the
expMediaType Any media type registration, or in some cases
augment the expMediaType Any registrations with file types not
previously registered.

These registrations are intended to aid applications developers, but
you aren’t required to follow them. Although you can choose to
ignore these registrations, by following them you’ll improve
interoperability between applications and other devices. For
example, a digital camera which conforms to the media
specifications will put its pictures into the registered directory (or a
subdirectory of it) appropriate for the image format and media type.
By looking up the registered directory for that format, an image
viewer application on the handheld can easily find the images
without having to search the entire card. These registrations also
help prevent different developers from hard-coding different paths
for specific file types. Thus, if a user has two different image viewer
applications, both will look in the same location and find the same
set of images.

Registering these file types at initialization allows you to use
HotSync to transfer files of these types to an expansion card. During
the HotSync process, files of the registered types are placed directly
in the specified directories on the card.

Custom Calls

Recognizing that some file systems may implement functionality
not covered by the APIs included in the VFS and Expansion
Managers, the VFS Manager includes a single function that exists
solely to give developers access to the underlying file system. This
function, VFSCustomControl, takes a registered creator code and
a selector that together identify the operation that is to be
performed. VFSCustomControl can either request that a specific
tile system perform the specified operation, or it can iterate through

246 Palm OS Programmer’s Companion, Volume |

Expansion
Custom Calls

all of the currently-registered file systems in an effort to locate one
that responds to the desired operation.

Parameters are passed to the file system’s custom function through
a single VFSCustomControl parameter. This parameter, valueP,
is declared as a void * so you can pass a pointer to a structure of
any type. A second parameter, valueLenP, allows you to specify
the length of valueP. Note that these values are simply passed to
the file system and are in reality dependent upon the underlying file
system. See the description of VFSCustomControl in the Palm OS
Programmer’s API Reference for more information.

Because VFSCustomControl is designed to allow access to non-
standard functionality provided by a particular file system, see the
documentation provided with that file system for a list of any
custom functions that it provides.

Custom I/O

While the Expansion and VFS Managers provide higher-level OS
support for secondary storage applications, they don’t attempt to
present anything more than a raw interface to custom I/O
applications. Since it isn’t really possible to envision all uses of an
expansion mechanism, the Expansion and VFS Managers simply try
to get out of the way of custom hardware.

The Expansion Manager provides insertion and removal
notification and can load and unload drivers. Everything else is the
responsibility of the application developer. Palm has defined a
common expansion slot driver API which is extensible by licensees.
This API is designed to support all of the needs of the Expansion
Manager, the VFS Manager, and the file system libraries.
Applications that need to communicate with an I/O device,
however, may need to go beyond the provided APIs. Such
applications should wherever possible use the slot custom call,
which provides direct access to the expansion slot driver. See the
developer documentation provided to licensees for more
information on slot drivers and the slot custom call. For
documentation on functions made available by a particular I/O
device, along with how you access those functions, contact the I/O
device manufacturer.

Palm OS Programmer’s Companion, Volume | 247

Expansion
Debugging

Debugging

The Palm OS Emulator has been extended to support the expansion
capabilities of the VFS Manager. It can be configured to present a
directory on the host file system as a volume to the virtual file
system. You can populate this directory on your host system and
then simulate a volume mount. Changes made to the emulated
expansion card’s contents can be verified simply by examining the
directory on the host.

For more information on configuring and operating the Palm OS
Emulator, see the Palm OS Programming Development Tools Guide.

Summary of Expansion and VFS Managers

Expansion Manager Functions

ExpCardGetSerialPort ExpSlotDriverRemove
ExpCardInfo ExpSlotEnumerate
ExpCardPresent ExpSlotLibFind

ExpSlotDriverInstall

VFS Manager Functions

Working with Files

VESFileClose VESFileRename
VESFileCreate VESFileResize
VESFileDelete VESFileSeek
VESFileEOF VESFileSetAttributes
VESFileGetAttributes VESFileSetDate
VESFileGetDate VESFileSize
VESFileOpen VESFileTell
VESFileRead VESFileWrite
VESFileReadData

248 Palm OS Programmer’s Companion, Volume |

Expansion
Summary of Expansion and VFS Managers

VFS Manager Functions

Working with Directories

VESDirCreate
VESDirEntryEnumerate
VESFileClose
VESFileDelete
VESFileGetAttributes
VESFileGetDate

VESFileOpen
VESFileRename

Working with Volumes

VESVolumeEnumerate
VFESVolumeFormat
VESVolumeGetlabel
VESVolumelnfo

Miscellaneous Functions

VESCustomControl
VESExportDatabaseToFile
VESExportDatabaseToFileCustom

VESFileSetAttributes
VESFileSetDate
VESGetDefaultDirectory
VESRegisterDefaultDirectory
VESUnregisterDefaultDirectory

VESVolumeMount
VESVolumeSetLabel
VESVolumeSize
VESVolumeUnmount

VESImportDatabaseFromFile
VESImportDatabaseFromFileCustom
VESInstallFSLib

VIESFileDBInfo
VESFileDBGetRecord
VESFileDBGetResource

VEFSRemoveFSLib

Palm OS Programmer’s Companion, Volume | 249

Expansion
Summary of Expansion and VFS Managers

250 Palm OS Programmer’s Companion, Volume |

3
Text

This chapter describes how to work with text in the user interface—
whether it’s text the user has entered or text that your application
has created to display on the screen. When you work with text, you
must take special care to do so in a way that makes your application
easily localizable. This chapter describes how to write code that
manipulates characters and strings in such a way that it works
properly for any language that is supported by Palm OS®. It covers:

¢ Text Manager and International Manager

e Characters

e Strings
e Fonts

When you work with text, you work mainly with the Text Manager
and the String Manager. Text Manager support begins in Palm OS
3.1. If you want to support releases earlier than Palm OS 3.1, use the
PalmOSGlue library described in “Backward Compatibility with
PalmOSGlue” on page 14. This chapter notes all functions that have
a glue equivalent in parentheses and shows code examples using
the PalmOSGlue equivalents.

IMPORTANT: Palm OS version 3.1 introduced some changes
to the Latin character encoding and to some of the String
Manager functions. If you are updating a legacy application
written before the release of Palm OS 3.1, these changes may
affect your application. See “3.1 New Feature Set” on page 2312
of the Palm OS Programmer’s API Reference for details about
these changes.

Palm OS Programmer’s Companion, Volume | 251

Text
Text Manager and International Manager

Text Manager and International Manager

The Palm OS provides two managers that help you work with
localizable strings and characters. These managers are called the
Text Manager and the International Manager.

Computers represent the characters in an alphabet with a numeric
code. The set of numeric codes for a given alphabet is called a
character encoding. Of course, a character encoding contains more
than codes for the letters of an alphabet. It also encodes
punctuation, numbers, control characters, and any other characters
deemed necessary. The set of characters that a character encoding
represents is called, appropriately enough, a character set.

Different languages use different alphabets. Most European
languages use the Latin alphabet. The Latin alphabet is relatively
small, so its characters can be represented using a single-byte
encoding ranging from 32 to 255. On the other hand, Asian
languages such as Chinese, Korean, and Japanese require their own
alphabets, which are much larger. These larger character sets are
represented by a combination of single-byte and double-byte
numeric codes ranging from 32 to 65,535.

A given Palm Powered ™ handheld supports one character
encoding. Although Palm OS supports multiple character
encodings, a given handheld uses only one of those encodings. For
example, a French handheld uses the Palm"™ Latin encoding, which
is identical to the Microsoft® Windows® code page 1252 character
encoding (an extension of ISO Latin 1) but includes Palm-specific
characters in the control range. A Japanese handheld, on the other
hand would use the Palm Shift JIS character encoding, which is
identical to Microsoft Windows code page 932 (an extension of Shift
JIS) but includes Palm-specific characters in the control range. Code
page 932 is not supported on the French handheld, and code page
1252 is not supported on the Japanese handheld even though they
both use the same version of Palm OS. No matter what the encoding
is on a handheld, Palm guarantees that the low ASCII characters (0
to 0x7F) are the same. The exception to this rule is 0x5C, which is a
yen symbol on Japanese handhelds and a backslash on all others.

The Text Manager allows you to work with text, strings, and
characters independent of the character encoding. If you use Text
Manager routines and don’t work directly with string data, your

252 Palm OS Programmer’s Companion, Volume |

Text
Characters

code should work on any system, regardless of which language and
character encoding the handheld supports (as long as it supports
the Text Manager).

The International Manager’s job is to detect which character
encoding a handheld uses and initialize the corresponding version
of the Text Manager. The International Manager also sets system
features that identify which encoding and fonts are used. For the
most part, you don’t work with the International Manager directly.

Characters

Depending on the handheld’s supported languages, Palm OS may
encode characters using either a single-byte encoding or a multi-
byte encoding. Because you do not know which character encoding
is used until runtime, you should never make an assumption about
the size of a character.

For the most part, your application does not need to know which
character encoding is used, and in fact, it should make no
assumptions about the encoding or about the size of characters.
Instead, your code should use Text Manager functions to
manipulate characters. This section describes how to work with
characters correctly. It covers:

* Declaring Character Variables
Using Character Constants

Missing and Invalid Characters

e Retrieving a Character’s Attributes

Virtual Characters

Retrieving the Character Encoding

Declaring Character Variables

Declare all character variables to be of type WChar. WChar is a 16-bit
unsigned type that can accommodate characters of any encoding.
Don’t use Char. Char is an 8-bit variable that cannot accommodate
larger character encodings. The only time you should ever use Char
is to pass a parameter to an older Palm OS function.

Palm OS Programmer’s Companion, Volume | 253

Text
Characters

WChar ch; // Right. 16-bit character.
Char ch; // Wrong. 8-bit character.

When you receive input characters through the keyDownEvent,
you’ll receive a WChar value. (That is, the data.keyDown. chr
field is a WChar.)

Even though character variables are now declared as WChar, string
variables are still declared as Char *, even though they may
contain multi-byte characters. See the section “Strings” for more
information on strings.

Using Character Constants

Character constants are defined in several header files. The header
file Chars . h contains characters that are guaranteed to be
supported on all systems regardless of the encoding. Other header
tiles exist for each supported character encoding and contain
characters specific to that encoding. The character encoding-specific
header files are not included in the PalmOS . h header by default
because they define characters that are not available on every
system.

To make it easier for the compiler to find character encoding
problems with your project, make a practice of using the character
constants defined in these header files rather than directly assigning
a character variable to a value. For example, suppose your code
contained this statement:

WChar ch = 'a'; // WRONG! Don’t use.

This statement may work on a Latin system, but it would cause
problems on an Asian-language system because the 4 character does
not exist. If you instead assign the value this way:

WChar ch = chrSmall A RingAbove;

you'll find the problem at compile time because the
chrSmall A RingAbove constantis defined in CharLatin.h,
which is not included by default.

254 Palm OS Programmer’s Companion, Volume |

Text
Characters

Missing and Invalid Characters

If during application testing, you see an open rectangle, a shaded
rectangle, or a gray square displayed on the screen, you have a
missing character.

A missing character is one that is valid within the character
encoding but the current font is not able to display it. In this case,
nothing is wrong with your code other than you have chosen the
wrong font. The system displays an open rectangle in place of a
missing single-byte rectangle (see Figure 8.1).

Figure 8.1 Missing characters

D Missing single-byte character

In multi-byte character encodings, a character may be missing as
described above, or it may be invalid. In single-byte character
encodings, there’s a one-to-one correspondence between numeric
values and characters to represent. This is not the case with multi-
byte character encodings. In multi-byte character encodings, there
are more possible values than there are characters to represent.
Thus, a character variable could end up containing an invalid
character—a value that doesn’t actually represent a character.

If the system is asked to display an invalid character, it prints an
open rectangle for the first invalid byte. Then it starts over at the
next byte. Thus, the next character displayed and possibly even the
remaining text displayed is probably not what you want. Check
your code for the following:

¢ Truncating strings. You might have truncated a string in the
middle of a multi-byte character.

¢ Appending characters from one encoding set to a string in a
different encoding.

e Arithmetic on character variables that could result in an
invalid character value.

* Arithmetic on a string pointer that could result in pointing to
an intra-character boundary. See “Performing String Pointer
Manipulation” for more information.

* Assumptions that a character is always a single byte long.

Palm OS Programmer’s Companion, Volume | 255

Text
Characters

Use the Text Manager function TxtCharIsvalid
(TxtGlueCharIsValid) to determine whether a character is valid
or not.

Retrieving a Character’s Attributes

The Text Manager defines certain functions that retrieve a
character’s attributes, such as whether the character is
alphanumeric, and so on. You can use these functions on any
character, regardless of its size and encoding.

A character also has attributes unique to its encoding. Functions to
retrieve those attributes are defined in the header files specific to the
encoding.

WARNING! In previous versions of the Palm OS, the header file
CharAttr.h defined character attribute macros such as
IsAscii. Using these macros on double-byte characters
produces incorrect results. Use the Text Manager macros instead
of the CharAttr.h macros.

Virtual Characters

Virtual characters are nondisplayable characters that trigger special
events in the operating system, such as displaying low battery
warnings or displaying the keyboard dialog. Virtual characters
should never occur in any data and should never appear on the
screen.

The Palm OS uses character codes 256 decimal and greater for
virtual characters. The range for these characters may actually
overlap the range for “real” characters (characters that should
appear on the screen). The keyDownEvent distinguishes a virtual
character from a displayable character by setting the command bit
in the event record.

The best way to check for virtual characters, including virtual
characters that represent the hard keys, is to use the
TxtGlueCharIsVirtual function defined in the PalmOSGlue
library. See Listing 8.1.

256 Palm OS Programmer’s Companion, Volume |

Text
Characters

Listing 8.1 Checking for virtual characters

if (TxtGlueCharIsVirtual (eventP->data.keyDown.modifiers,

eventP->data.keyDown.chr)) {

if (TxtCharIsHardKey (event->data.keyDown.modifiers,
event->data.keyDown.chr)) {
// Handle hard key virtual character.

} else {
// Handle standard virtual character.

}

} else {
// Handle regular character.
}

Retrieving the Character Encoding

Occasionally, you may need to determine which character encoding
is being used. For example, your application may need to do some
unique text manipulation if it is being run on a European handheld.
You can retrieve the character encoding from the system feature set
using the FtrGet function as shown in Listing 8.2.

Listing 8.2 Retrieving the character encoding

UInt32 encoding;

Char* encodingName;

if (FtrGet (sysFtrCreator, sysFtrNumEncoding, &encoding) != 0)
encoding = charEncodingPalmLatin;
//default encoding

if (encoding == charEncodingPalmSJIS) {
// encoding for Palm Shift-JIS
} else if (encoding == charEncodingPalmLatin)

// extension of ISO Latin 1

}

// The following Text Manager function returns the
// official name of the encoding as required by

// Internet applications.

encodingName = TxtGlueEncodingName (encoding) ;

Palm OS Programmer’s Companion, Volume | 257

Text
Strings

Strings

When working with text as strings, you use the String Manager and
the Text Manager.

The String Manager is supported in all releases of Palm OS. It is
closely modeled after the standard C string-manipulation functions
like strcpy, strcat, and so on. Note that the standard C functions
are not built in to Palm OS. Use String Manager calls instead of
standard C calls to make your application smaller.

The Text Manager was added in Palm OS 3.1 to provide support for
multi-byte strings. On systems that support the Text Manager,
strings are made up of characters that are either a single-byte long
or multiple bytes long, up to four bytes. As stated previously,
character variables are always two bytes long. However, when you
add a character to a string, the operating system may shrink it down
to a single byte if it’s a low ASCII character. Thus, any string that
you work with may contain a mix of single-byte and multi-byte
characters.

Applications can use both the Text Manager and the String Manager
to work with strings. The String Manager functions in Palm OS 3.1
and later can work with strings containing multi-byte characters.
Use the Text Manager functions when:

¢ A String Manager equivalent is not available.

* The length of the matching strings are important. For
example, to compare two strings, you can use either
StrCompare or TxtCompare. The difference between the
two is that St rCompare does not return the length of the
characters that matched. Txt Compare does.

This section discusses the following topics:

* Manipulating Strings
Performing String Pointer Manipulation

Truncating Displayed Text
¢ Comparing Strings

Global Find
Dynamically Creating String Content
Using the StrVPrintF Function

258 Palm OS Programmer’s Companion, Volume |

Text
Strings

TIP: Many of the pre-3.1 Palm OS functions have been modified
to work with strings containing multi-byte characters. All Palm OS
functions that return the length of a string, such as
FldGetTextLength and StrLen, always return the size of the
string in bytes, not the number of characters in the string.
Similarly, functions that work with string offsets always use the
offset in bytes, not characters.

Manipulating Strings

Any time that you want to work with character pointers, you need
to be careful not to point to an intra-character boundary (a middle
or end byte of a multi-byte character). For example, any time that
you want to set the insertion point position in a text field or set the
text field’s selection, you must make sure that you use byte offsets
that point to inter-character boundaries. (The inter-character
boundary is both the start of one character and the end of the
previous character, except when the offset points to the very
beginning or very end of a string.)

Suppose you want to iterate through a string character by character.
Traditionally, C code uses a character pointer or byte counter to
iterate through a string a character at a time. Such code will not
work properly on systems with multi-byte characters. Instead, if
you want to iterate through a string a character at a time, use Text
Manager functions:

* TxtGetNextChar (TxtGlueGetNextChar) retrieves the
next character in a string.

® TxtGetPreviousChar (TxtGlueGetPreviousChar)
retrieves the previous character in a string.

* TxtSetNextChar (TxtGlueSetNextChar) changes the
next character in a string and can be used to fill a string

buffer.

Each of these three functions returns the size of the character in
question, so you can use it to determine the offset to use for the next
character. For example, Listing 8.3 shows how to iterate through a
string character by character until a particular character is found.

Palm OS Programmer’s Companion, Volume | 259

Text
Strings

Listing 8.3 Iterating through a string or text

Char* buffer; // assume this exists

UIntlé buflLen = StrLen (buffer);

// Length of the input text.

WChar ch = 0;

UIntlé 1 = 0;

while ((i < bufLen) && (ch != chrAsterisk))
i+= TxtGlueGetNextChar (buffer, i, &ch));

The Text Manager also contains functions that let you determine the
size of a character in bytes without iterating through the string:

e TxtCharSize (TxtGlueCharsSize) returns how much
space a given character will take up inside of a string.

e TxtCharBounds (TxtGlueCharBounds) determines the
boundaries of a given character within a given string.

Listing 8.4 Working with arbitrary limits

UInt32* charStart, charEnd;
Char* f1dTextP = F1ldGetTextPtr (fld) ;
TxtGlueCharBounds (f1dTextP,
min (kMaxBytesToProcess, FldGetTextLength(£fld)),
&charStart, &charEnd) ;
// process only the first charStart bytes of text.

Performing String Pointer Manipulation

Never perform any pointer manipulation on strings you pass to the
Text Manager unless you use Text Manager calls to do the
manipulation. For Text Manager functions to work properly, the
string pointer must point to the first byte of a character. If you use
Text Manager functions when manipulating a string pointer, you
can be certain that your pointer always points to the beginning of a
character. Otherwise, you run the risk of pointing to an inter-
character boundary.

260 Palm OS Programmer’s Companion, Volume |

Text
Strings

Listing 8.5 String pointer manipulation

// WRONG! buffer + kMaxStrLength is not
// guaranteed to point to start of character.
buffer [kMaxStrLength] = '\0';

// Right. Truncate at a character boundary.

UInt32 charStart, charEnd;

TxtCharBounds (buffer, kMaxStrLength,
&charStart, &charEnd) ;

TxtGlueSetNextChar (buffer, charStart, chrNull) ;

Truncating Displayed Text

If you're performing drawing operations, you often have to
determine where to truncate a string if it’s too long to fit in the
available space. Two functions help you perform this task on strings
with multi-byte characters:

¢ WinDrawTruncChars (WinGlueDrawTruncChars) —
This function draws a string within a specified width,
determining automatically where to truncate the string. If it
can, it draws the entire string. If the string doesn’t fit in the
space, it draws one less than the number of characters that fit
and then ends the string with an ellipsis (...).

e FntWidthToOffset (FntGlueWidthToOffset) — This
function returns the byte offset of the character displayed at a
given pixel position. It can also return the width of the text
up to that offset.

Listing 8.6 shows how you can use FntWidthToOffset to
determine how many lines are necessary to write a string to
the screen. This example passes 160 as the pixel position so
that upon return, widthToOf fset contains the byte offset
of the last character in the string that can be displayed on a
single line. The characters up to and including the one at
widthToOffset are drawn, then the msg pointer is
advanced in the string by widthToOf fset characters, and
FntWidthToOffset is called again to find out how many
characters fit on the next line of text. The process is repeated
until all of the characters in the string have been drawn.

Palm OS Programmer’s Companion, Volume | 261

Text
Strings

Listing 8.6 Drawing multiple lines of text

Coord vy;

Char *msg;

Intl6 msgWidth;

Intlé widthToOffset = 0;

Intlé pixelWidth = 160;

Intl6 msglLength = StrLen (msg) ;

while (msg && *msg)
widthToOffset = FntGlueWidthToOffset (msg, msgLength,
pixelWidth, NULL, &msgWidth) ;
WinDrawChars (msg, widthToOffset, 0, Vy);
y += FntLineHeight () ;
msg += widthToOffset;
msgLength = StrLen (msg) ;

Comparing Strings

Use the Text Manager functions Txt Compare (TxtGlueCompare)
and TxtCaselessCompare (TxtGlueCaselessCompare) to
perform comparisons of strings.

In character encodings that use multi-byte characters, some
characters are accurately represented as either single-byte
characters or multi-byte characters. That is, a character might have
both a single-byte representation and a double-byte representation.
One string might use the single-byte representation and another
might use the multi-byte representation. Users expect the characters
to match regardless of how many bytes a string uses to store that
character. Txt Compare and TxtCaselessCompare can accurately
match single-byte characters with their multi-byte equivalents.

Because a single-byte character might be matched with a multi-byte
character, two strings might be considered equal even though they
have different lengths. For this reason, Txt Compare and
TxtCaselessCompare take two parameters in which they pass
back the length of matching text in each of the two strings. See the
function descriptions in the Palm OS Programmer’s API Reference for
more information.

262 Palm OS Programmer’s Companion, Volume |

Text
Strings

Note that the String Manager functions St rCompare and
StrCaselessCompare are equivalent, but they do not pass back
the length of the matching text.

Global Find

A special case of performing string comparison is implementing the
global system find facility. To implement this facility, you should
call TxtFindString (TxtGlueFindString). As with
TxtCompare and TxtCaselessCompare, TxtFindString
accurately matches single-byte characters with their corresponding
multi-byte characters. Plus, it passes back the length of the matched
text. You'll need this value to highlight the matching text when the
system requests that you display the matching record.

Older versions of Palm OS use the function FindStrInStr.
FindStrInStr is not able to return the length of the matching text.
Instead, it assumes that characters within the string are always one
byte long.

When the user taps the Find icon, the system sends the launch code
sysAppLaunchCmdFind to each application. Listing 8.7 shows an
example of a function that should be called in response to that
launch code. This function implements a global find that works on
all systems whether the Text Manager exists or not. When the user
taps one of the results displayed in the Find Results dialog, the
system sends a sysAppLaunchCmdGoto launch code to the
application containing the matching record. Listing 8.8 shows how
to respond to the sysAppLaunchCmdGoto launch code.

These two listings are only code excerpts. For the complete
implementation of these two functions, see the example code in the
Palm OS SDK.

Note that if you want to use Txt FindString to implement a
search within your application (as opposed to the global find
facility), you need to call TxtGluePrepFindString before you
call Txt FindString to ensure that the string is in the proper
format. (In the global find facility, the system has already prepared
the string before your code is executed.)

Palm OS Programmer’s Companion, Volume | 263

Text
Strings

Listing 8.7 Implementing global find

static void Search (FindParamsPtr findParams)
{

UIntlé recordIndex = 0;

DmOpenRef dbP;

UIntl6é cardNo = 0;

LocalID dbiID;

MemoDBRecordPtr memoPadRecP;

// Open the database to be searched.

dbP = DmOpenDatabaseByTypeCreator (memoDBType,
sysFileCMemo, findParams->dbAccesMode) ;

DmOpenDatabaseInfo (dbP, &dbID, 0, 0, &cardNo,
0);

// Get first record to search.
memoRecP = GetRecordPtr (dbP, recordIndex) ;
while (memoRecP != NULL)

Boolean done;

Boolean match;

UInt32 matchPos, matchLength;

// TxtGlueFindString calls TxtFindString if it

// exists, or else it implements the Latin

// equivalent of it.

match = TxtGlueFindString (& (memoRecP->note),
findParams->strToFind, &matchPos,
&matchLength) ;

if (match) {
done = FindSaveMatch (findParams,
recordIndex, matchPos, 0, matchLength,
cardNo, dbIDP) ;

}

MemPtrUnlock (memoRecP) ;

if (done) break;
recordIndex += 1;

}

DmCloseDatabase (dbP) ;

264 Palm OS Programmer’s Companion, Volume |

Text
Strings

Listing 8.8 Displaying the matching record

static void GoToRecord (GoToParamsPtr goToParams, Boolean
launchingApp)

{

UIntlé recordNum;
EventType event;

recordNum = goToParams->recordNum;

// Send an event to goto a form and select the
// matching text.

MemSet (&event, sizeof (EventType), 0);
event.eType = frmLoadEvent;
event .data.frmLoad.formID = EditView;
EvtAddEventToQueue (&event) ;
MemSet (&event, sizeof (EventType), 0);

event .eType = frmGotoEvent;
event.data.frmGoto.recordNum
event.data.frmGoto.matchPos =
goToParams->matchPos;
event.data.formGoto.matchLen
goToParams->matchCustom;
event .data.frmGoto.matchFieldNum =
goToParams->matchFieldNum;
event .data.frmGoto.formID = EditView;
EvtAddEventToQueue (&event) ;

recordNum;

Dynamically Creating String Content

When working with strings in a localized application, you never
hard code them. Instead, you store strings in a resource and use the
resource to display the text. If you need to create the contents of the
string at runtime, store a template for the string as a resource and
then substitute values as needed.

For example, consider the Edit view of the Memo application. Its
title bar contains a string such as “Memo 3 of 10.” The number of the
memo being displayed and the total number of memos cannot be
determined until runtime.

Palm OS Programmer’s Companion, Volume | 265

Text
Strings

To create such a string, use a template resource and the Text
Manager function Txt ParamString (TxtGlueParamString).
TxtParamString allows you to search for the sequence 0, 1, up
to 73 and replace each of these with a different string. If you need
more parameters, you can use TxtReplaceStr
(TxtGlueReplaceStr), which allows you to replace up to 9;
however, TxtReplaceStr only allows you to replace one of these
sequences at a time.

In the Memo title bar example, you'd create a string resource that
looks like this:

Memo “0 of

A

1
And your code might look like this:

Listing 8.9 Using string templates

static void EditViewSetTitle (void)
{
Char* titleTemplateP;
FormPtr frm;
Char posStr [maxStrIToALen] ;
Char totalStr [maxStrIToALen] ;
UIntlé6 pos;
UIntlé length;

// Format as strings, the memo's postion within

// its category, and the total number of memos

// in the category.

pos = DmPositionInCategory (MemoPadDB,
CurrentRecord, RecordCategory) ;

StrIToA (posStr, pos+l);

if (MemosInCategory == memosInCategoryUnknown)
MemosInCategory = DmNumRecordsInCategory
(MemoPadDB, RecordCategory) ;
StrIToA (totalStr, MemosInCategory) ;

// Get the title template string. It contains

// '7“0' and '“1' chars which we replace with the

// position of CurrentRecord within

// CurrentCategory and with the total count of

// records in CurrentCategory ().

titleTemplateP = MemHandleLock (DmGetResource
(strRsc, EditViewTitleTemplateStringString)) ;

266 Palm OS Programmer’s Companion, Volume |

Text
Strings

EditViewTitlePtr =
TxtGlueParamString (titleTemplateP, posStr,
totalStr, NULL, NULL) ;

// Now set the title to use the new title
// string.

frm = FrmGetFormPtr (MemoPadEditForm) ;
FrmSetTitle (frm, EditViewTitlePtr) ;
MemPtrUnlock (titleTemplateP) ;

Using the StrVPrintF Function

Like the C vsprintf function, the StrVPrintF function is
designed to be called by your own function that takes a variable
number of arguments and passes them to StrVPrintF for
formatting. This section gives a brief overview of how to use
StrVPrintF. For more details, refer to vsprintf and the use of
the stdarg.h macros in a standard C reference book.

When you call StrVPrintF, you must use the special macros from
stdarg.h to access the optional arguments (those specified after
the fixed arguments) passed to your function. This is necessary,
because when you declare your function that takes an optional
number of arguments, you declare it using an ellipsis at the end of
the argument list:

MyPrintF (CharPtr s, CharPtr formatStr, ...);

The ellipsis indicates that zero or more optional arguments may be
passed to the function following the formatStr argument. Since
these optional arguments don’t have names, the stdarg.h macros
must be used to access them before they can be passed to
StrVPrintF.

To use these macros in your function, first declare an args variable
as typeva_list:

va_list args;

Next, initialize the args variable to point to the optional argument
list by using va_start:

Palm OS Programmer’s Companion, Volume | 267

Text
Fonts

Fonts

va_start (args, formatStr);

Note that the second argument to the va_start macro is the last
required argument to your function (last before the optional
arguments begin). Now you can pass the args variable as the last
parameter to the StrVPrintF function:

StrVPrintF (text, formatStr, args);

When you are finished, invoke the macro va_end before returning
from your function:

va_end(args) ;

Note that the StrPrintF and StrVPrintF functions implement
only a subset of the conversion specifications allowed by the ANSI
C function vsprintf. See the StrVPrintF function reference for
details.

All fonts in Palm OS are bitmapped fonts. A bitmapped font is one
that provides a separate bitmap for each glyph in each size and
style. Scalable fonts such as TrueType or PostScript fonts are not
supported.

Each font is associated with a particular character encoding. The
font contains glyphs that define how to draw each character in the
encoding.

Palm OS provides built-in fonts, and in Palm OS 3.0 and later,
allows you to create your own fonts. If the High-Density Display
Feature Set is present, high-density fonts are supported and used on
high-density displays. This section describes the font support in
Palm OS 3.0 and later. It covers:

¢ Built-in Fonts
Selecting Which Font to Use
Fonts for High-Density Displays

Setting the Font Programmatically

Obtaining Font Information

Creating Custom Fonts

268 Palm OS Programmer’s Companion, Volume |

Text
Fonts

Built-in Fonts

There are several fonts built into Palm OS. The Font . h file defines
constants that can be used to access the built-in fonts
programmatically. These constants are defined on all versions of
Palm OS no matter what language or character code; however, they
may point to different fonts. For example, stdFont on a Japanese
system may be quite different from stdFont on a Latin system.

Table 8.1 lists and describes the built-in fonts that may be used to

display text.
Table 8.1 Built-in text fonts
Constant Description
stdFont A small standard font used to display user
input. This font is small to display as much
text as possible.
largeFont A larger font provided as an alternative for
users who find the standard font too small to
read.
boldFont Same size as stdFont but bold for easier
reading. Used for text labels in the user
interface.
largeBoldFont InPalm OS 3.0 and later only. Same size as

largeFont but bold.

Figure 8.2 shows what each of the fonts in Table 8.1 looks like.

Palm OS Programmer’s Companion, Volume | 269

Text
Fonts

Figure 8.2 Built-in text fonts

Standard Fant {stdFont)

Large Font (largeFont)

Baold Font (boldFont)

Large Bold Font (largeBoldFont)

Palm OS also defines the fonts listed in Table 8.2. These fonts do not
contain most letters of the alphabet. They are used only for special
purposes.

Table 8.2 Built-in symbol fonts

Constant Description

symbolFont Contains many special characters such as
arrows, Graffiti® Shift Indicators, and so on.

symbolllFont Contains the check boxes, the large left
arrow, and the large right arrow.

symbol7Font Contains the up and down arrows used for
the repeating button scroll arrows and the
dimmed version of the same arrows.

ledFont Contains the numbers 0 through 9, —, ., and
the comma (,). Used by the Calculator
application for its numeric display.

Selecting Which Font to Use

The default fonts used to display normal text and bold text vary
based on the handheld’s character encoding. Handhelds with the
Palm Latin encoding typically use stdFont and boldFont, while
Japanese handhelds use largeFont and largeBoldFont as the
default. When your application starts up for the first time, it should

270 Palm OS Programmer’s Companion, Volume |

Text
Fonts

respect the system defaults. Use the FntGlueGetDefaultFontID
function to determine what the default fonts are (see Listing 8.10).

Listing 8.10 Determining the default system fonts

FontID textFont = FntGlueGetDefaultFontID (defaultSystemFont) ;
FontID labelFont = FntGlueGetDefaultFontID (defaultBoldFont) ;

In general, where users can enter text, you should allow them to
select the font through the Select Font dialog (see Figure 8.3).

Figure 8.3 Select Font dialog

Font:

[oK][cancel

The FontSelect function displays the Select Font dialog. This
function takes as an argument a Font ID, which specifies the value
that is initially selected in the dialog. It returns the Font ID that the
user selected.

newFontID = FontSelect (textFont) ;

Because the default fonts vary based on the character encoding, the
font size choices displayed in the Font Select dialog also vary based
on character encoding. For this reason, you must call
FntGlueGetDefaultFontID to obtain the default system font
and pass the returned value to Font Select when you call it for the
tirst time. On subsequent calls to FontSelect, you can pass the
user’s current font choice.

Fonts for High-Density Displays
If the High-Density Display Feature Set is defined, Palm OS
supports both low-density (160 X 160) and double-density (320 X

320) displays. Double-density displays pack more pixels into the
same space to create a finer resolution.

To support multiple display densities, Palm OS uses an extended
font resource. An extended font resource contains a separate set of

Palm OS Programmer’s Companion, Volume | 271

Text
Fonts

glyphs for each supported density. At runtime, Palm OS determines
the current display density and then draws text using the glyphs
that match the display density. On a double-density display, text is
drawn using the double-density glyphs. On a low-density display,
text is drawn using the low-density glyphs.

Palm OS includes extended font resources for each of the built-in
fonts when the high-density display feature set is defined. If your
application uses only these fonts, your text is drawn using double-
density glyphs on double-density displays. You do not have to
make any changes to your code for this to occur.

Figure 8.4 Low-density and high-density fonts

Fonts

Standard Font {stdFont) Standard Font (stdFont)

Large Font (largeFont) Large Font (largeFont)

Bold Font {boldFont} Bold Font {boldFont}
Large Bold Font (largeBoldFont) Large Bold Font (largeBoldFont)

You only need to be concerned about the font density if you use
custom fonts.

¢ When creating a custom font, you’ll want to create an
extended font resource. See “Creating Custom Fonts” on
page 275.If an extended font resource is not available or does
not contain a double-density glyphs, Palm OS pixel doubles
the low-density glyphs when drawing to a double-density
display.

¢ When drawing text in a custom font to an off-screen window,
you must take care. Off-screen windows also have a display
density. If you create a low-density off-screen window and
draw text to it, you must use a low-density font. If you use an
extended font, it must contain low-density glyphs. If the
resource contains only double-density glyphs, Palm OS does

272

Palm OS Programmer’s Companion, Volume |

Text
Fonts

not scale the glyphs. The result is undefined and may cause a
system crash.

Because Palm OS includes low-density and double-density
glyphs for each of the built-in fonts, this is only a potential
problem if you are using a custom font.

Setting the Font Programmatically

To set the font that a user interface element uses for its label or for its
textual contents, you use different functions depending on the
element. Table 8.3 shows which functions set fonts for which user
interface elements.

Table 8.3 Setting the font

Ul object Function
Field FldSetFont
Field within a table TblSetItemFont

Command button, push button, CtlGlueSetFont
pop-up trigger, selector trigger,
or check box

Label resource FrmGlueSetLabelFont
List items LstGlueSetFont
All other text (text drawn FntSetFont

directly on the screen)

The FntSetFont function changes the font that the system uses by
default. It returns the previously used font. You should save the font
returned by FntSetFont and restore it once you are done. Listing
8.11 shows an example of setting the font to draw items in the
custom list drawing function.

Listing 8.11 Setting the font programmatically

void DrawOneRowInList (Intlé itemNum, RectangleType *bounds,
Char **itemsText)

{

Palm OS Programmer’s Companion, Volume | 273

Text
Fonts

Boolean didSetFont = false;
FontID oldFont;

if ((itemNum % 5) == 0) {
oldFont = FntSetFont (boldFont) ;
didSetFont = true;

}

WinDrawChars (itemsText [itemNum] ,

StrLen (itemsText [itemNum]), bounds.topLeft.x,

bounds.topLeft.y) ;
if (didSetFont)
FntSetFont (oldFont) ;

Obtaining Font Information

Use functions in the Font Manager to obtain information about a
font and how it is drawn to the screen. Figure 8.5 shows graphically
the characteristics of a font. Table 8.4 describes the types of
information that can be retrieved with the Font Manager.

Figure 8.5 Font characteristics

- —0 i

font |
height

—ascent - height above baseline

—descent - height below baseline

\Ieading - space between lines of text
(not used by Palm OS)

max character width

274 Palm OS Programmer’s Companion, Volume |

Text

Fonts
Table 8.4 Obtaining font information

Characteristic Function
Font height FntCharHeight
Ascent FntBaseLine
Descent FntDescenderHeight
Leading + font height FntLineHeight
Maximum width of a character FntAverageCharWidth
in the font
Width of a specific character FntWCharWidth

(FntGlueWCharWidth)
Character displayed at FntWidthToOffset
particular location (FntGlueWidthToOffset)

The functions listed in Table 8.4 all work on the current font, that is,
the font listed in the draw state. To change the current font, use
FntSetFont. For example, to determine the line height of the font
used for text in a field, do the following:

Listing 8.12 Obtaining characteristics of a field font

FieldType *fieldpP;
FontID oldFont;
Intlé6 lineHeight;

oldFont = FntSetFont (FldGetFont (fieldP)) ;
lineHeight = FntLineHeight () ;
FntSetFont (oldFont) ;

Creating Custom Fonts

Palm OS 3.0 and later supports the use of custom fonts. You can
create your own font resource (' NFNT ') and use it within your
application.

If the High-Density Display Feature Set is present, you can use an
extended font resource ('nfnt ') instead. The extended font

Palm OS Programmer’s Companion, Volume | 275

Text
Fonts

resource contains a separate set of glyphs for each of the supported
display densities.

Both the font and extended font resources are only large enough to
support a font for the Palm Latin character encoding (256
characters). Defining a custom font for larger character sets is not
supported.

Creating a Font Resource

The Palm OS SDK does not provide tools to create a custom font;
however, several third party applications, such as xFont and PilRC,
are available that support the creation of custom fonts.

TIP: Leave a vertical column of blank space on the right side of
each glyph in a font. Palm OS draws characters side by side, in
contrast to the Mac OS, which draws a character, clears the
pixels to its right and then draws the next character. If your font
requires leading, you should leave blank space at the bottom of
each glyph as well because Palm OS does not support leading.

To create an extended font resource, you use Constructor for Palm
OS:

1. Create two font resources using a third party tool (such as
xFont). Every aspect of the second font must be exactly
double that of the first font. That is, the second font must be
twice as many pixels high, twice as many pixels wide, and so
on.

2. Create a font family using Constructor for Palm OS as
described in the book Constructor for Palm OS.

3. Use the first 'NFNT' resource as the Normal density font.

Use the second 'NFNT' resource as the Double density font.
The PalmRez post linker uses the font family resource to create the
extended font resource that you use on the device.

Using a Custom Font in Your Application

Once you have defined a custom font in a resource file, you must
assign it a font ID before you can use the font in your application.
The font ID is different from the font’s resource ID. It’s a number

between 0 and 255. The font ID you use must be greater than or

276 Palm OS Programmer’s Companion, Volume |

Text
Fonts

equal to fntAppFontCustomBase. All IDs less than that are
reserved for system use. The function FntDefineFont assigns a
font ID to a font resource. The font resource must be locked for the
entire time that the font is in use. It's a good idea to load the font
resource, lock it, and assign a font ID in your application’s
AppStart function. Unlock and release the font resource in the
AppStop function.

Listing 8.13 shows code that loads a font resource, assigns a font ID
to that resource, and then draws characters to the screen using the
new font.

Listing 8.13 Loading and using a custom font

#define customFontID ((FontID) fntAppFontCustomBase)

MemHandle customFontH;
FontType *customFontP;

Err AppStart (void)

{

// Load the font resource and assign it a font ID.
customFontH = DmGetResource (fontRscType, MyCoolFontRscID) ;
customFontP = (FontType *)MemHandleLock (customFontH) ;
FntDefineFont (customFontID, customFontP) ;

}

void AppStop (void)

{

//Release the font resource when app quits.
MemHandleUnlock (customFontH) ;
DmReleaseResource (customFontH) ;

}

void DrawCharsInNewFont (void)

{
FontID oldFont = FntSetFont (customFontID) ;
Char *msg = "Look, Mom. It’s a new font!");
WinDrawChars (msg, StrLen(msg), 28, 0);
FntSetFont (oldFont) ;

Palm OS Programmer’s Companion, Volume | 277

Text
Fonts

To use a extended font, you use essentially the same code as above,
except that you must change the resource type used in the
DmGetResource call to fontExtRscType:

customFontH = DmGetResource (fontExtRscType,
MyCoolExtFontRscID) ;
// rest as shown above.

Note that you still use a pointer to a Font Type structure to access
the extended font.

The 'NFNT' resources you created to build the extended font are
discarded after the extended font is created. For a backward
compatible application, you need to define a separate ' NFNT'
resource containing the low-density glyphs in your font.

It’s possible to create an extended font resource that contains only
double-density glyphs and not low-density glyphs. You could
define an 'NFNT ' resource for the low-density glyphs and an
extended font resource with just the double-density glyphs. Then
you could load and use the 'NFNT' resource on all handhelds with
low-density screens (including those that don’t support the high-
density feature set) and load and use the extended font resource
when the display is not low-density. If you do this, you must
carefully check the display density before deciding which resource

to load (see Listing 8.14).

WARNING! If you write text to a low-density off-screen window
using a double-density glyphs, the result is undefined and may
cause Palm OS to crash. If you load your fonts as shown in
Listing 8.14, load and use the old font resource when drawing text
to a low-density off-screen window. See “Fonts for High-Density
Displays” on page 271 for more information.

Listing 8.14 Conditionally loading a font resource

#define customFontID ((FontID) fntAppFontCustomBase)
MemHandle fontH = NULL;

FontType *fontP;

UIntlé winVersion;

Err error;

278 Palm OS Programmer’s Companion, Volume |

Text
Summary of Text API

error

//
//

//
if

}

if

}

FtrGet (sysFtrCreator, sysFtrNumWinVersion,
&winVersion) ;

If winVersion is >= 4, the high-density feature set
is present. Check what type of display we are on

and load the appropriate font resource.

(lerror && (winVersion >= 4))

UInt32 density;

error = WinScreenGetAttribute (winScreenDensity, &density);
if (lerror && (density != kDensityLow)) {

// load and use the extended font

// resource.

fontH DmGetResource (fontExtRscType,
MyNewFontRscID) ;

fontP MemHandleLock (fontH) ;

(! fontH) {
// Either the feature set is not present or we’re on a
// low-density screen. Load and use the 'NFNT' resource.
fontH DmGetResource (fontRscType, MyOldFontRscID) ;
fontP (FontType *)MemHandleLock (fontH) ;

FntDefineFont (customFontID, fontP) ;
Summary of Text API

Text Manager
Accessing Text
TxtCharBounds TxtGetPreviousChar
TxtPreviousCharSize TxtCharSize
TxtGetNextChar TxtNextCharSize
TxtGetChar
Changing Text
TxtReplaceStr TxtSetNextChar
TxtConvertEncoding TIxtTransliterate

Segmenting Text

Palm OS Programmer’s Companion, Volume | 279

Text
Summary of Text API

Text Manager

TxtGetTruncationOffset TxtWordBounds
TxtGetWordWrapOffset

Searching/Comparing Text

TxtCaselessCompare TxtCompare
TxtFindString TxtGluePrepFindString

Obtaining a Character’s Attributes

TxtCharlsAINum TxtCharlsAlpha
TxtCharlsDigit TxtCharlsGraph
TxtCharlsLower TxtCharlsPrint
TxtCharlsSpace TxtCharlsUpper
TxtCharlsValid TxtCharXAttr
TxtCharlsCntrl TxtCharlsHex
TxtCharlsPunct TxtCharAttr

Obtaining Character Encoding information

TxtStrEncoding TxtEncodingName
TxtMaxEncoding TxtCharEncoding
TxtNameToEncoding

Working With Multi-Byte Characters
IxtByteAttr

String Manager Functions

Length of a String
StrLen

Comparing Strings

StrCompare StrNCompare
StrCaselessCompare StrNCaselessCompare

280 Palm OS Programmer’s Companion, Volume |

Text
Summary of Text API

String Manager Functions

Changing Strings

StrPrintF StrVPrintF

StrCat StrNCat

StrCopy StrNCopy
StrToLower

Searching Strings

StrStr StrChr

Converting

StrATol StrIToA

StrIToH

Localized Numbers

StrDelocalizeNumber StrLocalizeNumber
Font Functions

Changing the Font

FontSelect FntSetFont
FldSetFont TblSetltemFont
CtlGlueSetFont FrmGlueSetLabelFont
LstGlueSetFont

Accessing the Font Programmatically

FntGetFont FntGetFontPtr

Wrapping Text
FntWordWrap
String Width

FntCharsinWidth
FntLineWidth

FntWordWrapReverseNLines

FntCharsWidth
FntWidthToOffset

Palm OS Programmer’s Companion, Volume | 281

Text
Summary of Text API

Font Functions

Character Width

EntAverageCharWidth
FntWCharWidth

Height

FntCharHeight
FntBaselLine

Scrolling

FntGetScrollValues

Creating a Font

FntDefineFont

FntCharWidth

FntLineHeight
EntDescenderHeight

FntlsAppDefined

282 Palm OS Programmer’s Companion, Volume |

Attentions and
Alarms

In this chapter you learn how to get the user’s attention and how to
set real-time alarms that can be used to either perform some
periodic activity or display a reminder to the user.

This chapter is divided into the following broad topics:

* Getting the User’s Attention begins with an introduction to
the Attention Manager. This is followed by a detailed
description of the Attention Manager from a user’s
perspective. Finally, it details what developers need to do in
order to use the Attention Manager in their applications.

¢ Alarms covers the Alarm Manager, which can notify your
programs when a specified point in time is reached.

Getting the User’s Attention

Palm OS® 4.0 introduces a standard mechanism that manages
competing demands for the user’s attention by both applications
and drivers. This mechanism is known as the Attention Manager.

The Role of the Attention Manager

This section provides a brief introduction to the Attention Manager.
It covers the relationship between the Attention, Alarm and
Notification Managers, and then discusses when it is appropriate to
make use of the Attention Manager.

The Attention Manager provides a standard mechanism by which
applications can tell the user that something of significance has
occurred. It is designed to support communications devices which
can receive data without explicit user interaction. The Attention
Manager is responsible only for interacting with the user; it is not
responsible for generating those events. In particular, the Alarm

Palm OS Programmer’s Companion, Volume | 283

Attentions and Alarms
Getting the User’s Attention

Manager can be used in conjunction with the Attention Manager to
inform the user that a particular point in time has been reached.

By maintaining a single list of all “alarm-like” things, the Attention
Manager also improves the user’s experience when returning to the
handheld after being gone for a while: he no longer has to click
through a series of old alarm dialogs. Often the user doesn't care
about most of the missed appointments—although he might care
about a few of them. Without the Attention Manager, the user
cannot selectively dismiss or follow up on dialogs.

Applications have complete control over the types of attention they
can ask for. They can query the handheld for the set of special effects
available—possibly including sound, vibration, and an LED—and
then act on that set. The default option is to beep. All other options
are either on or off; different vibrating patterns or multicolored
LEDs are currently not supported. Note that the set of special effects
is extensible; manufacturers may choose to add other means to get
the user’s attention beyond the anticipated LED and vibration.

IMPORTANT: The Attention Manager was introduced in Palm
OS 4.0. Applications running on earlier versions of the Palm OS
need to use the techniques described under “Alarms” on

page 306.

In Palm OS 4.0, the Datebook, SMS, and Clock applications use the
Attention Manager. Refer to the Datebook application’s source code
for real-world examples of how you might use the Attention and
Alarm Managers.

Attentions, Alarms and Notifications

The Attention, Alarm, and Notification Managers are distinct
subsystems that are often used in combination.

¢ The Attention Manager is designed solely to interact with the
user when an event must be brought to the user’s attention.

* The Alarm Manager simply sends an event to an application
when a particular point in time is reached. The application
can then use the Attention Manager or some other
mechanism to bring the alarm to the user’s attention, if
appropriate.

284 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

* The Notification Manager informs those applications that
have registered their interest whenever certain system-level
or application-level events occur. If the user is to be informed
of the event, the executable can use the Attention Manager.
The Attention Manager itself uses the Notification Manager
to broadcast notifications when getting the user’s attention or
nagging him about an existing attention item.

When the Attention Manager Isn’t Appropriate

The Attention Manager is only designed for attempts to get
attention that can be effectively suspended. It is not suitable for
anything requiring an immediate response, such as a request to
connect to another user or the “put away” dialog that is used during
beaming. The Attention Manager also doesn’t attempt to replace
error messages. Applications must use modal dialogs and other
existing OS facilities to handle these cases.

The Attention Manager is also not intended to replace the ToDo
application, or to act as a universal inbox. Applications must make
it clear that an item appearing in the Attention Manager is simply a
reminder, and that dismissing it does not delete the item itself. That
is, saying “OK” to an alarm does not delete the appointment, and
dismissing an SMS reminder does not delete the SMS message from
the SMS inbox.

Attention Manager Operation

This section provides a detailed introduction to the Attention
Manager from a user’s point of view, introducing some of the
terminology used throughout the rest of the chapter and pointing
out operational subtleties that you should be aware of when
developing applications that use the Attention Manager.

Attention-getting attempts can either be insistent or subtle. They
differ only in the lengths to which each goes to get your attention.
Insistent attempts get “in your face” by popping up a dialog and
triggering other visible and audible special effects in an effort to
bring important events to your attention. A meeting reminder or
incoming high-priority email message might warrant interrupting
your work in this fashion. Subtle attentions substitute a small on-
screen attention indicator for the dialog, allowing you to be made
aware of less-critical events without interrupting your current work

Palm OS Programmer’s Companion, Volume | 285

Attentions and Alarms
Getting the User’s Attention

flow. Although they can also trigger various special effects, subtle
attentions don’t typically do so. Examples of subtle events might
include a reminder of an upcoming birthday or holiday, or an
incoming SMS message.

Insistent Attentions

When an application makes an insistent attempt to get the user’s
attention, the detail dialog opens:

Figure 9.1 Detail Dialog

{0y Thursday, 174401
4:30 pm - 5:00 pm
) The application
Doctor's Appointment draws this

EBESEES

The Attention Manager draws the title and the buttons. The
application is responsible for drawing the rest. Most applications
draw text and an appropriate icon, as shown in Figure 9.1.

When a second application attempts to get attention, or when the
first application makes a second attempt, and the first has not yet
been dismissed or snoozed, the window changes to the list dialog,
presenting a list of things that require the user’s attention:

286 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

Figure 9.2 List Dialog

4:24 prn Rerninders

O, 5= 4:30 pra-5:00 pron Today The application
Doctor's Appointrnent draws this
O =3 3 Messages

[Cone] [Snooze | [Clear All

In this dialog, the Attention Manager draws the title and the
buttons, and manages the list of items including the checkbox in the
left-hand column. Items are listed in order of occurrence, with the
newest at the top. The application is responsible for drawing some
part of each line, giving it some flexibility over what to display.
Applications have space to draw an icon and two lines of text in the
standard font on the right-hand side of the list area.

In the detail dialog the OK button dismisses the item. In the list
dialog, tapping the checkbox to the left of the item dismisses it. The
Clear All button can be used to dismiss all items in the list view.
Dismissing an item removes it from the list or closes the detail
dialog. Note that although it is gone from the Attention Manager,
the item itself remains in the application.

Unique to the list view is a “Done” button which simply closes the
list view. It makes no changes to items in the Attention Manager list,
nor to any snooze timer.

In either dialog, the “Snooze” button temporarily dismisses the
Attention Manager dialog. The attention indicator remains visible
and the user can redisplay the dialog at any time. After an interval
of five minutes, if any attempts to get attention are still pending the
Attention Manager redisplays the dialog. Snooze does not remove
attempts to get attention.

There is just one “Snooze” timer, and the snooze operation applies
to the Attention Manager as a whole. This can lead to seemingly

Palm OS Programmer’s Companion, Volume | 287

Attentions and Alarms
Getting the User’s Attention

odd behavior when new attention items are coming in while there is
currently a snooze in progress. This situation should be rare,
however.

To “go to” an individual item, tap the text or icon of the item in the
list dialog or tap the “Go To” button in the detail dialog. This
temporarily dismisses the Attention Manager and launches the
appropriate application to display details about the item. For an
SMS message, this could take you to the detail dialog showing the
message, or, if there are more than one, it could take you to the list of
pending SMS messages. For an alarm, this could take you to the
Datebook view for the current day, with the current meeting
scrolled into view. A successful “go to” also removes the attention
item from the list.

Note that while the Attention Manager dialogs are displayed, hard
and soft buttons are ignored. This is to prevent you from missing an
attention item when you turn on the handheld by pressing one of
the hard keys.

Subtle Attentions

When an application makes a subtle attempt to get the users
attention, no dialog appears. Instead, the title bar of all applications
that use the standard form title object show a blinking indicator.

Figure 9.3 Attention indicator

 [ilain

To Do List

288 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

When the list contains one or more items, all of which have been
seen by the user, the “star” indicator blinks on and off until the list is
empty. When the list contains one or more unseen items, the
attention indicator performs an “exploding star” animation.

Tapping this indicator opens the Attention Manager in the list
mode, even if there is only one item. Tapping to the right of the
indicator, or tapping in the indicator’s area when there are no
pending attention attempts opens the menu bar as expected.

The attention indicator only functions with applications which use a
standard form title object. The indicator doesn’t appear when:

¢ there are no items in the Attention Manager’s queue.
* the current application uses a custom title.

¢ the current application draws in the title area.

¢ the current form uses the Dialog title style.

¢ the current application’s form title is too narrow to include
the attention indicator.

Special Effects

When a new attention item is added, the Attention Manager
performs some combination of special effects, which can include
playing sounds, flashing a LED, and triggering vibration. The exact
combination of effects depends on user settings and on the
application itself.

The Attention Manager attempts to open the dialog before
performing any special effects so you know immediately why it is
trying to get your attention. However, it may not be possible to open
the Attention Manager dialog. If this is the case, the Attention
Manager performs the special effects as soon as possible. It’s better
for the user to be made aware that something is happening, even if
the handheld cannot say exactly what it is.

System-wide user preferences control the special effects: the volume
at which to play alarms, whether or not to flash the LED (if any),
whether or not to vibrate (if equipped). Applications can override
these system-wide settings in either a positive or a negative way.
For instance, an application could always blink the LED, even if the

Palm OS Programmer’s Companion, Volume | 289

Attentions and Alarms
Getting the User’s Attention

user said not to, or never blink the LED, even if the user desires it in
general.

Nagging

As with Datebook alarms in Palm OS 3.5 and earlier, if you don’t
explicitly dismiss or snooze an attention item it continues to “nag”
you at predefined intervals, using the item’s specified special
effects. Applications control how frequently the user should be
reminded, and how many times before the Attention Manager gives
up.

When there are multiple attention items competing for nagging, the
Attention Manager respects the nag settings for the most recent
insistent item, or if there are none then for the most recent subtle
item. Each special effect is handled separately; if one reminder
wants sound but no vibration, and another wants vibration but no
sound, the combination results in the sound from the first one and
the vibration from the second one.

Attention Manager and Existing Applications

The Attention Manager makes no attempt to override existing
application behavior. If an application written for Palm OS 3.5 or
earlier puts up a dialog to get the user’s attention, the Attention
Manager doesn’t get involved. Applications must be specifically
written to use the Attention Manager in order to take advantage of
its features and seamless integration with the Palm ™ user
experience.

Some existing third-party applications put up modal alarm-like
dialogs. These dialogs can potentially interfere with the Attention
Manager. However, issuing of the Ul launch code by the Alarm
Manager is deferred until after the Attention Manager is closed.
This prevents existing applications from putting up their dialogs
while the Attention Manager is being displayed. If the reverse
happens, and the Attention Manager pops up while an existing
application is displaying an alarm-like dialog, only a “go to”
becomes problematic: the third-party dialog may consume events
required to perform the “go to,” preventing it from taking place.
This is acceptable, however, since the attention item remains in the
Attention Manager’s queue. Once the third-party dialog has been

290 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

dismissed, you can then re-open the Attention Manager and re-
initiate the “go to.”

Effectively, this means the Attention Manager always shows up on
top of any existing application’s alarm dialogs that use the Alarm
Manager. This ensures that you'll most likely be greeted by the
Attention Manager’s list after a prolonged period of inactivity.

Getting the User’s Attention

This section shows how your applications request the user’s
attention through the Attention Manager.

Getting the user’s attention is simply a matter of calling
AttnGetAttention with the appropriate parameters and then
handling various callbacks made by the Attention Manager. These
callbacks allow your application to control what is displayed in the
Attention Manager dialogs, to play sounds or perform other special
effects, and to do any necessary processing when the user takes
action on an existing attention item.

The AttnGetAttention prototype looks like this:

Err AttnGetAttention (UIntlé cardNo,

LocalID dbID, UInt32 userData,

AttnCallbackProc *callbackFnP,

AttnLevelType level, AttnFlagsType flags,
UIntl6é nagRateInSeconds, UIntlé nagRepeatLimit)

Specify the application requesting the user’s attention in the
cardNo and dbID arguments. You can use the
DmGetNextDatabaseByTypeCreator function to obtain these
values.

userData is used to distinguish a given attention attempt from
others made by the same application; most applications pass the
unique ID or other key for the record which caused the attention
request. This value is passed to your code through the callback
function, and can be an integer, a pointer, or any other 32-bit value
as needed by your application.

The callbackFnP argument controls whether the Attention
Manager invokes a callback function or issues a launch code to
request services from your application. Applications typically

Palm OS Programmer’s Companion, Volume | 291

Attentions and Alarms
Getting the User’s Attention

supply NULL for this parameter, causing launch codes to be sent to
the application specified by the cardNo and dbID arguments. See
“Callback or Launch Code?” on page 293 for a discussion of
callback functions and launch codes.

For the level argument, supply kAttnLevelInsistent or
kAttnLevelSubtle depending on whether the given attention
attempt is to be insistent or subtle.

Regardless of the level of the attention attempt, set the appropriate
bits in the f£1ags argument to cause sounds to play, LEDs to blink,
or other physical effects to be performed. Depending on which flags
you specify, the effect can always occur or can be suppressed by the
user. For instance, to trigger a sound while honoring the user’s
preferences, you need only supply kAttnFlagsSoundBit. Or, to
blink the LED but suppress any sounds, regardless of any
preferences the user may have set, supply a value of
kAttnFlagsAlwaysLED | kattnFlagsNoSound. Finally, to
choose only vibrate, do something like:

A

flags = kAttnFlagsNothing kAttnFlagsNoVibrate
| kAttnFlagsAlwaysVibrate;

While the above is somewhat complex, it does ensure that you
override all defaults in the negative except vibration, which is
overridden in the positive. See the definition of At tnFlagsType in
the Palm OS Programmer’s API Reference for a complete set of
constants that can be used in combination for the f1ags argument.

NOTE: Applications may want to verify that the handheld is
properly equipped to perform the desired effect. See “Detecting
Device Capabilities” on page 304 for information on how to do
this. If the handheld isn’t properly equipped to handle a given
special effect, the effect isn’t performed. For example, if you set
the kAttnFlagsLEDBit flag and the Palm Powered " handheld
doesn’t have an LED, the attention attempt is processed as if the
kAttnFlagsLEDBit had never been set.

Assuming that the handheld is capable of getting the user’s
attention using the requested special effect, the
nagRateInSeconds and nagRepeatLimit arguments control

292 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

how often and how many times the special effect is triggered in an
attempt to get the user’s attention. As the name implies, specify the
amount of time, in seconds, the Attention Manager should wait
between special effect triggers with nagRateInSeconds. Indicate
the desired number of times the effect should be triggered using
nagRepeatLimit. Applications typically supply a value of 300 for
nagRateInSeconds and a value of 3 for nagRepeatLimit,
indicating that the special effect should be triggered three times
after the initial attempt, at five minute intervals.

The following line of code shows how the SMS application calls the
Attention Manager upon receiving a new SMS message. Note that a
subtle attention is generated so that the user isn’t interrupted every
time an SMS message is received. Also note that the application
doesn’t override the user’s settings when getting his attention.
Finally, if the user doesn’t respond to the first attention-getting
attempt, the special effects are repeated three additional times in
tive-minute intervals.

err = AttnGetAttention (cardNo, dbID, NULL,
NULL, kAttnLevelSubtle,
kAttnFlagsUseUserSettings, 300, 3);

Callback or Launch Code?

For a given attention item, the Attention Manager calls back to the
code resource that created that item whenever the Attention
Manager needs the resource to draw the attention dialog contents or
whenever it needs to inform the code resource of activity relating to
the attention item. The Attention Manager calls back using one of
two mechanisms:

¢ If a callback routine has been specified for a given attention
item, the Attention Manager invokes it. This callback routine
doesn’t have application globals available to it, so it is
important that anything necessary to draw or otherwise
display be available through commandArgspP. A callback
routine is typically used by libraries and system extensions.
See the description of the AttnCallbackProc in the Palm
OS Programmer’s API Reference for the specifics of the callback
routine.

¢ If a callback routine has not been specified for a given
attention item, the Attention Manager instead sends a

Palm OS Programmer’s Companion, Volume | 293

Attentions and Alarms
Getting the User’s Attention

sysAppLaunchCmdAttention launch code to the
application that registered the attention item. Accompanying
that launch code is an At tnlL.aunchCodeArgsType
structure containing the three parameters documented
above. Applications typically use the launch-code
mechanism due to the restrictions that are placed on callback
routines.

IMPORTANT: Itis your responsibility to ensure that the callback
procedure is still in the same place when it gets called, dealing
with the possibility that the code resource might be unlocked and
moved in memory, and with the possibility that the database
containing the code resource might be deleted. For the most part,
these problems don’t exist when using launch codes.

Attention Manager Commands

In addition to calling At tnGetAttention, your code must also
respond to commands from the Attention Manager. The Attention
Manager issues these commands either by invoking a callback
function or issuing a launch code, depending on what you supplied
for the callbackFnP argument in the AttnGetAttention call.
Among the possible commands are requests for your application to
draw the contents of the detail and list dialogs, play application-
specific sounds or perform other special effects, navigate to the item
in your application that caused the attention item to be posted, and
so forth.

Draw Detail and List Dialogs

The Attention Manager’s detail and list dialogs are drawn as a joint
effort between the Attention Manager and applications requesting
the user’s attention. The shell of each dialog, the title, and the
buttons and checkboxes are drawn by the Attention Manager, while
the remainder—text specific to each attention attempt, and
frequently an accompanying icon—is drawn by the application
itself. This gives each application full control over what sort of
information to display.

294 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

Figure 9.4 Attention Manager dialogs

4:24pmn Reminder 4:24 prin Reminders

5'::@::'5 Thursday. 124f01 O & 4:30 |:-_m-_5:III_III p_m_'l'n:n_:Iu; o
0 230 pm - 5:00 pm

: Doctor's Appointrient
|
Doctor’s Appuintment:
|
|
|

O =3 3 Messages

[ok] [snooze] [Ga To] [Cone][Snooze | [Clear All |

Although your application has full control over the display of its
attention items, it may only draw in the designated area; active Ul
elements, such as scroll bars, custom buttons, or other widgets
cannot be included. Users should be encouraged to launch the
application with the “Go To” button and use the richer Ul provided
there. The clipping region is appropriately set so that your
application cannot accidentally draw outside the designated area.

The kAt tnCommandDrawDetail command indicates that your
application is to draw the contents of the detail dialog. Along with
the command, the Attention Manager passes a structure of type
drawDetail. This structure contains the window-relative
boundaries of the screen rectangle in which your application is to
draw, a flag indicating whether this is the first time the user has seen
this attention item, and a set of flags indicating which special effects
will also be triggered.

NOTE: Unlessthe firstTime bitis set, the portion of the detalil
dialog in which your application draws is not guaranteed to be
blank. If firstTime is not set, erase the area indicated by the
bounds rectangle prior to drawing the contents of the detail
dialog.

The following code excerpt shows how a simple application might
render the contents of the detail dialog in response to

Palm OS Programmer’s Companion, Volume | 295

Attentions and Alarms
Getting the User’s Attention

sysAppLaunchCmdAttention launch code accompanied by a
kAttnCommandDrawDetail command:

Listing 9.1 Drawing the contents of the detail dialog

// Draw the icon

resH = DmGetResource (bitmapRsc, MyIconBitmap) ;

WinDrawBitmap (MemHandleLock (resH) ,
paramsPtr->drawDetail .bounds.topLeft.x,
paramsPtr->drawDetail .bounds.topLeft.y + 4);

MemHandleUnlock (resH) ;

DmReleaseResource (resH) ;

// Draw the text. The content of the string depends on the
// uniquelID that accompanies the kAttnCommandDrawDetail

// command

curFont = FntSetFont (largeBoldFont) ;

X = paramsPtr->drawDetail.bounds.toplLeft.x + 37;

y = paramsPtr->drawDetail .bounds.topLeft.y + 4;
WinDrawChars (alertString, StrLen(alertString), x, V);
FntSetFont (curFont) ;

For a more complex, real-world example, see the
DrawDetailAlarm function in the Datebook application. In
particular, note how that application adjusts the displayed text so
that it all fits in the allocated space.

Note that because subtle attention items are only shown using the
list view, your application doesn’t need to respond to
kAttnCommandDrawDetail if it doesn’t produce insistent
attention attempts.

The kAttnCommandDrawList command is similar; it indicates
that your application is to draw a portion of the contents of the list
dialog. Along with this command, the Attention Manager passes a
structure of type drawList, which contains a selected flag in
addition to the bounds, firstTime, and flags fields described
above. The selected flag indicates whether the item has been
selected. Before sending your application the
kAttnCommandDrawList command, the Attention Manager sets
the background, foreground, and text colors as follows, depending
on whether or not the item is selected:

296 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

Affected Color

Not Selected Selected

Background Color
Foreground Color

Text Color

UIFieldBackground UIObjectSelectedFill
UIObjectForeground UIObjectSelectedForeground

UIObjectForeground UIObjectSelectedForeground

Particularly if your attention item icon is in color, you may need to
draw the attention item differently when it is selected. The
selected flag exists to allow you to do this.

The code to draw an attention item in the list dialog is very similar
to the code you use to draw the same item in the detail dialog. Here
is an excerpt:

Listing 9.2 Drawing the contents of the list dialog

// Draw the icon. Ignore the ‘selected’ flag for this example
resH = DmGetResource (bitmapRsc, MySmallIconBitmap) ;

iconP = (BitmapPtr) (MemHandleLock (resH)) ;

// center it in the space allotted

iconOffset = (kAttnListMaxIconWidth - iconP->width)/2;

X = paramsPtr->drawList.bounds.toplLeft.x;

y = paramsPtr->drawlList.bounds.toplLeft.y;

WinDrawBitmap (iconP, x + iconOffset, vy);
MemHandleUnlock (resH) ;

DmReleaseResource (resH) ;

// Draw the text

curFont = FntSetFont (stdFont) ;

WinDrawChars (alertString, StrLen(alertString),
X + kAttnListTextOffset, vy);

FntSetFont (curFont) ;

The primary differences arise from the fact that the list dialog
provides a smaller, more structured area in which to draw. Also, the
area in which you draw will always have been erased before you are
asked to draw in it, so you don’t ever have to erase it beforehand.

The icon should be no wider than kAttnListMaxIconWidth
pixels, and should be centered within this width if it is smaller than
kAttnListMaxIconWidth. The text should honor a left-hand

Palm OS Programmer’s Companion, Volume | 297

Attentions and Alarms
Getting the User’s Attention

margin of kAttnListTextOffset pixels. In the above example,
the alert string is assumed to fit within the available space; see the
DrawListAlarm function in the Datebook application for an
example of how that application adjusts the displayed text in the
event that it doesn’t all fit in the allocated space.

NOTE: Applications may, in certain rare circumstances, receive
a kAttnCommandDrawDetail or kKAttnCommandDrawList
command for an item which is no longer valid. Respond by either
calling AttnForgetIt, by drawing nothing, or by drawing an
error message.

Play Sound or Perform a Custom Effect

Most applications play a sound when attempting to get the user’s
attention. If the kAt tnFlagsAlwaysSound is set when your
application calls At tnGetAttention, the Attention Manager
sends a kAt tnCommandPlaySound command to your application
when attempting to get the user’s attention. Your application
should simply play the appropriate sound in response to this
command. Both the Datebook and SMS applications play sounds
based upon the user’s preferences when getting the user’s attention;
see the Datebook application’s source code for an example of how to
respond to the kAt tnCommandPlaySound command.

Because the Attention Manager can potentially play a sound, blink
an LED, and vibrate in addition to displaying a dialog or blinking
the attention indicator, most applications don’t request that some
other application-specific custom effect be performed. If your
application needs to do something different, you can specify
kAttnFlagsAlwaysCustomEffect when calling
AttnGetAttention. This causes a
kAttnCommandCustomEffect command to be sent to your
application, at which time it should perform the desired effect. If
your application is like most, however, it won’t ever receive a
kAttnCommandCustomEffect command, so you needn’t worry
about responding to it.

Neither kAt tnCommandPlaySound nor
kAttnCommandCustomEffect are accompanied by any kind of
data structure indicating the sound or effect to be performed. If your

298 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

application doesn’t hard-wire this information, you may want to
store it in the application’s preferences database.

Go There

When the user taps on the “Go To” button in the detail view or on
the item text or icon (not the checkbox) in the list view, your
application receives a kAt tnCommandGoThere command. It then
needs to switch to your application and display the information
relating to the chosen attention item. The kAt tnCommandGoThere
command is similar to the sysAppLaunchCmdGoto launch code,
but you don’t have globals when your application receives the
kAttnCommandGoThere command and your application is called
using SysAppLaunch, rather than SysUIAppSwitch. Because of
this, most applications perform a SysUIAppSwitch upon receiving
kAttnCommandGoThere.

Note that your application should verify that the data that triggered
the attention attempt is still relevant. In the Datebook, for instance,
the user could:

1. Be alerted to an appointment by the Attention Manager.
2. Tap “Snooze.”

3. Press the Datebook button and delete the appointment that
was just brought to the user’s attention.

4. Tap the blinking attention indicator.

5. Tap the attention item corresponding to the now-deleted
appointment.

In this scenario, the Datebook application could theoretically receive
a kAt tnCommandGoThere command along with a unique ID
referencing a Datebook record that has been deleted. Whenever the
Datebook application receives kAt tnCommandGoThere along with
a unique ID for a deleted Datebook database record, it calls
AttnForgetIt for the now defunct attention item and then
returns.

In reality, the Datebook calls At tnForget It whenever the user
deletes an alarm, and whenever an alarm is determined to be no
longer valid. It can do this without even checking to see if the alarm
is among those that the Attention Manager is currently tracking; if
you pass a combination of card number, database ID, and unique ID
to AttnForgetIt that doesn’t correspond to an item in the

Palm OS Programmer’s Companion, Volume | 299

Attentions and Alarms
Getting the User’s Attention

Attention Manager’s queue, AttnForget It does nothing and
returns a value of false.

Most applications will choose to call At tnForgetIt once the user
has viewed the data corresponding to the attention item. This is
how the SMS application operates: incoming messages are brought
to the user’s attention via the Attention Manager, and are removed
from the Attention Manager’s queue once they’ve been read.

Got It

When the user dismisses a particular attention item, a
kAttnCommandGot It command is sent to the application. Along
with this command is a boolean that indicates if the item was
explicitly dismissed by the user, since kAt tnCommandGotIt is also
issued as the result of a successful AttnForgetIt call. Upon
receipt of this command, you may want to clean up memory, delete
an alarm, or do other application-specific processing.

Iterate

When something happens that may potentially cause an
application’s attention items to become invalid, that application
should call AttnIterate. AttnIterate generates a series of
kAttnCommandIterate commands, one for each of the
application’s pending attention items. Thus, when your application
receives a kAt tnCommandIterate command it should validate
the indicated attention item and take appropriate action if the item
is no longer valid—up to and including calling At tnForget It for
the item.

The SMS application does not respond to kAt tnCommandIterate.
The Datebook does; this command is generated whenever the user
updates his preferences. Many applications call AttnIterate after
receiving a sysAppLaunchCmdSyncNotify launch code so that
they can update (with At tnUpdate) or remove (with
AttnForgetIt) items which were affected by the HotSync®
operation.

Note that you can safely call AttnForgetIt from within the
iteration since At tnForget It only marks the record for deletion
and thus doesn’t confuse the iteration.

300 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

Snooze

Most applications—including the Datebook and SMS applications—
ignore kAt tnCommandSnooze, which indicates that the user has
tapped the Snooze button. Beyond the unique ID that identifies the
attention item, nothing accompanies the Snooze command.
kAttnCommandSnooze is passed to each and every item currently
pending, insistent or subtle. This means that applications with more
than one attention item pending receive this command more than
once.

Triggering Special Effects

The Attention Manager activates any requested special effects for
each attention item, but your application might want to activate
those special effects without also posting an attention item to the
queue. You can do this through a call to AttnDoSpecialEffects.
Supply the appropriate combination of flags to trigger the desired
effects. See At tnFlagsType for a complete list of flags.

Attentions and Alarms

The Attention Manager is often used in conjunction with the Alarm
Manager to get the user’s attention at a particular time. The basic
use of the Alarm Manager is covered in “Alarms” on page 306, but
because the Attention Manager handles Ul synchronization, do the
following when using the Alarm Manager with the Attention
Manager:

e Call AttnGetAttention when your application receives
the sysAppLaunchCmdAlarmTriggered launch code.

¢ In your sysAppLaunchCmdAlarmTriggered handling
code, set the purgeAlarm field in the launch code’s
parameter block to t rue before returning. This removes the
alarm from the queue, so your application won't receive the
sysAppLaunchCmdDisplayAlarm launch code.

Don’t wait until the sysAppLaunchCmdDisplayAlarm launch
code is received to call AttnGetAttention:
sysAppLaunchCmdDisplayAlarmis not issued while another
Alarm Manager dialog is open, so the Attention Manager is
prevented from doing anything if a “legacy” application is
displaying an Alarm Manager dialog.

Palm OS Programmer’s Companion, Volume | 301

Attentions and Alarms
Getting the User’s Attention

NOTE: If you want to use the Alarm Manager to force periodic
updates of your application’s attention items, don’t call
AttnUpdate after receiving an Alarm Manager launch code
since this keeps the handheld from sleeping. Instead, use a
procedure alarm a described under “Setting a Procedure Alarm’
on page 311 and call AttnUpdate from within your procedure
alarm callback function.

Detecting and Updating Pending Attentions

Once your application has requested that the Attention Manager get
the user’s attention, it may later need to update that attention
request. For instance, if your application uses a single attention item
to indicate that a number of unread messages have been received, it
should update that item as additional items are received and read.
The Attention Manager provides a handful of functions that allow
applications to examine the Attention Manager’s queue and update
the items within that queue.

The At tnGetCounts function allows you to determine how many
items are currently competing for the user’s attention. It always
returns the total number of items, but can return the number of
subtle and/or insistent items as well. It can also return the counts
for all applications. For instance, the following would set numItems
to the total number of pending attention items from all sources:

numItems = AttnGetCounts (0, 0, NULL, NULL) ;

Or, to get the number of subtle and insistent attention items in
addition to the total requested by a single application, use
something like:

numItems = AttnGetCounts (cardNo, dbID,
&insistentItems, &subtlelItems) ;

To verify each pending attention item for a given application, use
the Attention Manager’s AttnIterate function as described
under “Iterate” on page 300.

After a HotSync is a popular time to invoke AttnIterate; the
HotSync operation may have altered the application’s underlying

302 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

data in such a way as to render pending attention items obsolete or
invalid.

Deleting Pending Attention Items

In many cases you'll need to delete an attention item. For instance, a
HotSync may alter the underlying application data in such a way so
as to invalidate the attention attempt. Or, the user might switch to
your application and manually update the data in a similar way, for
example by deleting an appointment for which there is a pending
alarm. The AttnForget It function exists for this purpose. Simply
invoke this function and supply the card number, database ID, and
user data that uniquely identify the attention attempt. You don’t
even have to verify that the attention attempt is still in the Attention
Manager’s queue: At tnForget It doesn’t complain if the attention
attempt doesn’t exist, merely returning a value of false to indicate
this condition.

Updating Pending Attention ltems

To update an existing attention item, use At tnUpdate. This
function is very similar to At tnGetAttention, though instead of
actual values you pass pointers to those values you want to update.
Supply NULL pointers for f1agsP, nagRateInSecondsP, and/or
nagRepeatLimitP to leave them untouched. For instance, to
change the flags that control the special effects used to get the user’s
attention, do the following;:

Listing 9.3 Updating an existing attention item

// This assumes that cardNo, dbID, and myUserData are

// declared and set elsewhere to values that identify the
// attention item we’re trying to update

Boolean updated;

AttnFlagsType newFlags;

// set newFlags appropriately

updated = AttnUpdate (cardNo, dbID, myUserData, NULL,
&newFlags, NULL, NULL) ;

if (updated) {
// update succeeded

} else {

Palm OS Programmer’s Companion, Volume | 303

Attentions and Alarms
Getting the User’s Attention

// update failed - attention item may no longer exist

NOTE: Although AttnUpdate may cause a given attention item
to redraw, it does not rerun the special effects (if any) that
occurred when that attention item was added. If you want to
trigger Attention Manager effects for a particular item, call
AttnForgetIt followed by AttnGetAttention.

When calling At tnUpdate, note that you must not only supply the
card number, database ID, and user data that uniquely identifies the
attention attempt; you must also supply a pointer to the callback
procedure if one is used.

While updating the attention item, if the handheld is on and the
Attention Manager dialog is currently showing then AttnUpdate
forces the item to be redrawn. This in turn calls back to the client
application so that it can update its portion of the dialog.
AttnUpdate causes the specified item to be redrawn if it is visible,
regardless of the flags, nagRateInSeconds, and
nagRepeatLimit parameters.Thus, AttnUpdate isn’t limited to
updating one or more aspects of an attention item; it also allows an
application to update the text of an attention attempt without
having to destroy and then rebuild the Attention Manager dialog.

Note that if the handheld is off, the update is delayed until the
handheld is next turned on; At tnUpdate doesn’t itself turn the
screen on.

Detecting Device Capabilities

Although you can blindly request that a given special effect, such as
vibration, be used to get the user’s attention without checking to see
if that special effect is supported on the Palm Powered handheld,
you may want your application to behave differently in the absence
of a particular device feature. The Attention Manager defines a
feature that you use with the FtrGet function to determine the
handheld’s physical capabilities. You can also use this feature to
determine the user’s attention-getting preferences. For example:

304 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Getting the User’s Attention

Listing 9.4 Checking for vibrate capability

// See if the device supports vibration
FtrGet (kAttnFtrCreator, kAttnFtrCapabilities, &capabilities);
if (capabilities & kAttnFlagsHasVibrate) {

// Vibrate-specific processing goes here

See “Attention Manager Feature Constants” in the Palm OS
Programmer’s API Reference for descriptions of all of the relevant
flags.

Controlling the Attention Indicator

For the most part, applications can ignore the attention indicator,
which consumes a small portion of a form’s title bar. If the
currently-displayed form doesn’t have a title bar, or if the form is
modal, the attention indicator isn’t drawn. However, if an
application takes over the entire screen or does something special
with the form’s title bar, it should explicitly disable the attention
indicator while the form is displayed.

As an example, the Datebook application disables the attention
indicator when:

* anote associated with a Datebook entry is displayed.
* an entry’s description is being displayed in the week view.
¢ the time is being displayed in the title bar in place of the date.

To disable the attention indicator, simply call
AttnIndicatorEnable and supply a value of false for the
enableIt argument. To re-enable it, simply call
AttnIndicatorEnable again, this time supplying an argument
value of true.

If your application disables the attention indicator, it may want to
provide some means for the user to open the Attention Manager’s
dialog in list mode. The At tnL.istOpen function can be used to do
this.

Palm OS Programmer’s Companion, Volume | 305

Attentions and Alarms
Alarms

Alarms

The Palm OS Alarm Manager provides support for setting real-time
alarms, for performing some periodic activity, or for displaying a
reminder. The Alarm Manager:

* Works closely with the Time Manager to handle real-time
alarms.

* Sends launch codes to applications that set a specific time
alarm to inform the application the alarm is due.

¢ Allows only one alarm to be set per application.
* Handles alarms by application in a two cycle operation:

— First, it notifies each application that the alarm has
occurred; the application verifies that the alarm is still
valid at this point. Applications that don’t use the
Attention Manager typically play a sound here.

— Second, after all pending alarms have received their first
notification, it sends another notification to each
application, allowing it to display some UL

The Alarm Manager doesn’t have any Ul of its own; applications
that need to bring an alarm to the user’s attention must do this
themselves. It doesn’t provide reminder dialog boxes, and it doesn’t
play the alarm sound. Applications running on Palm OS 4.0 should
use the Attention Manager to interact with the user; see “Attentions
and Alarms” on page 301 for tips on doing this. Applications
running on earlier versions of the Palm OS need to provide their
own Ul, as explained in the following sections.

IMPORTANT: When the handheld is in sleep mode, alarms can
occur almost a minute late. This is particularly important to note
when utilizing procedure alarms (discussed in “Setting a
Procedure Alarm” on page 311); although procedure alarms will
continue to fire when the handheld is in sleep mode, they may fire
less frequently.

306 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Alarms

Setting an Alarm

The most common use of the Alarm Manager is to set a real-time
alarm within an application. Often, you set this type of alarm
because you want to inform the user of an event. For example, the
Datebook application sets alarms to inform users of their
appointments.

Implementing such an alarm is a two step process. First, use the
function AlmSetAlarm to set the alarm. Specify when the alarm
should trigger and which application should be informed at that
time.

Listing 9.5 shows how the Datebook application sets an alarm.

Listing 9.5 Setting an alarm

static void SetTimeOfNextAlarm (UInt32 alarmTime, UInt32 ref)

{

UIntl6é cardNo;
LocalID dbID;
DmSearchStateType searchInfo;

DmGetNextDatabaseByTypeCreator (true, &searchInfo,
sysFileTApplication, sysFileCDatebook, true, &cardNo,
&db1ID) ;

AlmSetAlarm (cardNo, dbID, ref, alarmTime, true) ;

Second, have your PilotMain function respond to the launch
codes sysAppLaunchCmdAlarmTriggered and
sysAppLaunchCmdDisplayAlarm.

When an alarm is triggered, the Alarm Manager notifies each
application that set an alarm for that time via the
sysAppLaunchCmdAlarmTriggered launch code. After each
application has processed this launch code, the Alarm Manager
sends each application sysAppLaunchCmdDisplayAlarm so that
the application can display the alarm. The section “Alarm Scenario”
gives more information about when these launch codes are received
and what actions your application might take. For a specific
example of responding to these launch codes, see the Datebook
sample code included with Palm OS 3.5.

Palm OS Programmer’s Companion, Volume | 307

Attentions and Alarms
Alarms

It's important to note the following:

* An application can have only one alarm pending at a time. If
you call AlmSetAlarm and then call it again before the first
alarm has triggered, the Alarm Manager replaces the first
alarm with the second alarm. You can use the AlmGetAlarm
function to find out if the application has any alarms
pending.

* You do not have access to global variables or code outside
segment 0 (in a multi-segment application) when you
respond to the launch codes. AlmSetAlarm takes a UInt32
parameter that you can use to pass a specific value so that
you have access to it when the alarm triggers. (This is the ref
parameter shown in Listing 9.5.) The parameter blocks for
both launch codes provide access to this reference parameter.
If the reference parameter isn’t sufficient, you can define an
application feature. See the “Features” section in the “Palm
System Support” chapter.

* The database ID that you pass to AlmSetAlarm is the local
ID of the application (the . prc file), not of the record
database that the application accesses. You use record
database’s local ID more frequently than you do the
application’s local ID, so this is a common mistake to make.

¢ In AlmSetAlarm, the alarm time is given as the number of
seconds since 1/1/1904. If you need to convert a
conventional date and time value to the number of seconds
since 1/1/1904, use TimDateTimeToSeconds.

If you want to clear a pending alarm, call AlmSetAlarm with 0
specified for the alarm seconds parameter.

Alarm Scenario

Here’s how an application and the Alarm Manager typically interact
when processing an alarm:

1. The application sets an alarm using AlmSetAlarm.

The Alarm Manager adds the new alarm to its alarm queue.
The alarm queue contains all alarm requests. Triggered
alarms are queued up until the Alarm Manager can send the
launch code to the application that created the alarm.
However, if the alarm queue becomes full, the oldest entry

308 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Alarms

that has been both triggered and notified is deleted to make
room for a new alarm.

When the alarm time is reached, the Alarm Manager searches
the alarm queue for the first application that set an alarm for
this alarm time.

The Alarm Manager sends this application the
sysAppLaunchCmdAlarmTriggered launch code.

The application can now:
— Set the next alarm.
— Play a short sound.
— Perform some quick maintenance activity.

The application should not perform any lengthy tasks in
response to sysAppLaunchCmdAlarmTriggered because
doing so delays other applications from receiving alarms that
are set to trigger at the same time.

If the application is using the Attention Manager to bring this
alarm to the user’s attention, call At tnGetAttention here
and set the purgeAlarm field in the launch codes’ parameter
block to true before returning.

If this alarm requires no further processing, the application
should set the purgeAlarm field in the launch code’s
parameter block to t rue before returning. Doing so removes
the alarm from the queue, which means it won’t receive the
sysAppLaunchCmdDisplayAlarm launch code.

The Alarm Manager finds in the alarm queue the next
application that set an alarm and repeats steps 2 and 3.

This process is repeated until no more applications are found
with this alarm time.

The Alarm Manager then finds once again the first
anlication in the alarm queue who set an alarm for this
alarm time and sends this application the launch code
sysAppLaunchCmdDisplayAlarm. Note that alarms that
had their purgeAlarm field set to t rue during the
processing of sysAppLaunchCmdAlarmTriggered—
including all alarms that are being brought to the user’s
attention through the Attention Manager—are no longer in
the queue at this point.

The application can now:

Palm OS Programmer’s Companion, Volume | 309

Attentions and Alarms

Alarms

10.

— Display a dialog box.
— Display some other type of reminder.

Applications typically create a nested event loop at this point
to handle the dialog’s events. This nested event loop ignores
virtually all events that would cause the dialog to go away,
causing the dialog to be fixed on the screen; it can’t be
dismissed until one of the embedded buttons is tapped. Note
that the currently active application remains active. You may
not be able to see it (if the alarm dialog is full screen) and you
cannot interact with it because the dialog's nested event loop
is processing all events. It is effectively suspended, waiting
for an event to occur.

The Alarm Manager processes the alarm queue for the next
application that set an alarm for the alarm being triggered
and steps 7 and 8 are repeated.

This process is repeated until no more applications are found
with this alarm time.

If a new alarm time is triggered while an older alarm is still
being displayed, all applications with alarms scheduled for
this second alarm time are sent the
sysAppLaunchCmdAlarmTriggered launch code, but the
display cycle for the second set of alarms is postponed until
all earlier alarms have finished displaying.

Note that when a second alarm goes off before the first has been
dismissed, the alarm manager sends the

sysAppLaunchCmdAlarmTriggered launch code for the second

alarm but waits to send the sysAppLaunchCmdDisplayAlarm
launch code until after the first alarm’s dialog has been dismissed.

For applications that put up dialogs, this typically means that only
one dialog at a time will appear on the screen. The Alarm Manager
doesn’t return to the event loop between the issuing of launch
codes, so when the first alarm’s dialog has been dismissed, the
second alarm’s dialog is immediately displayed. The net result for
the user is that each alarm dialog in turn must be dismissed before
the handheld can be used.

310 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Alarms

Setting a Procedure Alarm

Beginning with Palm OS version 3.2, the system supports setting
procedure alarms in addition to the application-based alarms
described in the previous sections. The differences between a
procedure alarm and an application-based alarm are:

* When you set a procedure alarm, you specify a pointer to a
function that should be called when the alarm triggers
instead of an application that should be notified.

* When the alarm triggers, the Alarm Manager calls the
specified procedure directly instead of using launch codes.

¢ If the system is in sleep mode, the alarm triggers without
causing the LCD display to light up.

You might use procedure alarms if:

* You want to perform a background task that is completely
hidden from the user.

* You are writing a shared library and want to implement an
alarm within that library.

* You want to use At tnUpdate to update an attention item,
but you don’t want the display to turn on if the handheld is
currently sleeping.

To set a procedure alarm, you call AlmSet ProcAlarm instead of
AlmSetAlarm. (Similarly, you use the AlmGet ProcAlarm
function instead of AlmGetAlarm to see if any alarms are pending
for this procedure.)

AlmSetProcAlarmis currently implemented as a macro that calls
AlmSetAlarm using a special value for the card number parameter
to notify the Alarm Manager that this is a procedure alarm. Instead
of specifying the application’s local ID and card number, you
specify a function pointer. The other rules for AlmSetAlarmstill
apply. Notably, a given function can only have one alarm pending at
a time, and you can clear any pending alarm by passing 0 for the
alarm time.

When the alarm triggers, the Alarm Manager calls the function you
specified. The function should have the prototype:

Palm OS Programmer’s Companion, Volume | 311

Attentions and Alarms

Alarms

void myAlarmFunc (UIntlé almProcCmd,
SysAlarmTriggeredParamType *paramP)

IMPORTANT: The function pointer must remain valid from the
time AlmSetProcAlarm is called to the time the alarm is
triggered. If the procedure is in a shared library, you must keep
the library open. If the procedure is in a separately-loaded code
resource, the resource must remain locked until the alarm fires.
When you close a library or unlock a resource, you must remove
any pending alarms. If you don’t, the system crashes when the
alarm is triggered.

The first parameter to your function specifies why the Alarm
Manager has called the function. Currently, the Alarm Manager
calls the function in two instances:

¢ The alarm has triggered.

* The user has changed the system time, so the alarm time
should be adjusted.

The second parameter is the same structure that is passed with the
sysAppLaunchCmdAlarmTriggered launch code. It provides
access to the reference parameter specified when the alarm was set,
the time specified when the alarm was set, and the purgeAlarm
tield, which specifies if the alarm should be removed from the
queue. In the case of procedure alarms, the alarm should always be
removed from the queue. The system sets the purgeAlarm value to
true after calling your function.

It is important to note that your procedure alarm function should
not access global variables if the alarm could be triggered after the
application that contains the procedure alarm function has
terminated (even if the code remains locked in memory), since the
globals no longer exist at this point.

Procedure Alarms and Menus

Procedure alarms are often used to update the handheld’s display
on a regular basis. Menus aren’t automatically informed when an
alarm is triggered, so if a menu is open when your procedure alarm
code updates the display, your code may overwrite the open menu.

312 Palm OS Programmer’s Companion, Volume |

Attentions and Alarms
Summary of Attentions and Alarms

To detect an open menu, watch for winExitEvent and
winEnterEvent as described in “Checking Menu Visibility” on
page 107 of the Palm OS Programmer’s Companion, vol. 1.

Summary of Attentions and Alarms

Attention Manager Functions

AttnDoSpecialEffects AttnIndicatorEnabled
AttnForgetlt Attnlterate
AttnGetAttention AttnlistOpen
AttnGetCounts AttnUpdate
AttnIndicatorEnable

Alarm Manager Functions

AlmSetAlarm AlmGetAlarm
AlmSetProcAlarm AlmGetProcAlarm

Palm OS Programmer’s Companion, Volume | 313

Attentions and Alarms
Summary of Attentions and Alarms

314 Palm OS Programmer’s Companion, Volume |

Features

10

Palm System
Support

In this chapter, you learn how to work with the miscellaneous
supporting functionality that the Palm OS® system provides, such as
sound, time, and floating-point operations. Most parts of the Palm
OS are controlled by a manager, which is a group of functions that
work together to implement a certain functionality. As a rule, all
functions that belong to one manager use the same prefix and work
together to implement a certain aspect of functionality.

This chapter discusses these topics:
e Features
e Preferences
* Sound
e System Boot and Reset
e ARM-Native Functions
e Hardware Interaction
e The Microkernel
¢ Retrieving the ROM Serial Number
e Time
* Floating-Point

e Summary of Syvstem Features

A feature is a 32-bit value that has special meaning to both the
feature publisher and to users of that feature. Features can be
published by the system or by applications.

Each feature is identified by a feature creator and a feature number:

Palm OS Programmer’s Companion, Volume | 315

Palm System Support

Features

¢ The feature creator is a unique creator registered with
PalmSource, Inc. You usually use the creator type of the
application that publishes the feature.

¢ The feature number is any 16-bit value used to distinguish
between different features of a particular creator.

Once a feature is published, it remains present until it is explicitly
unregistered or the handheld is reset. A feature published by an
application sticks around even after the application quits.

This section introduces the feature manager by discussing these
topics:

e The System Version Feature

* Application-Defined Features

e Using the Feature Manager

e Feature Memory

The System Version Feature

An example for a feature is the system version. This feature is
published by the system and contains a 32-bit representation of the
system version. The system version has a feature creator of
sysFtrCreator and a feature number of
sysFtrNumROMVersion). Currently, the different versions of the
system software have the following numbers:

0x01003001 Palm OS 1.0
0x02003000 Palm OS 2.0
0x03003000 Palm OS 3.0
0x03103000 Palm OS 3.1
0x03203000 Palm OS 3.2
0x03503000 Palm OS 3.5
0x04003000 Palm OS 4.0

Rather than hard wiring an obscure constant like one of the above
into your code, however, you can use the sysMakeROMVersion

316 Palm OS Programmer’s Companion, Volume |

Palm System Support
Features

macro (defined in SystemMgr . h) to construct a version number for
comparison purposes. It takes five parameters:

* Major version number
e Minor version number
e Fix level

* Build stage (either sysROMStageDevelopment,
sysROMStageAlpha, sysROMStageBeta, or
sysROMStageRelease)

¢ Build number

The fix level and build number parameters are normally set to zero,
while build stage is usually set to sysROMStageRelease. Simply
check to see whether sysFtrNumROMVersion is greater than or
equal to the version number constructed with
sysMakeROMVersion, as shown here:

// See if we're on ROM version 3.1 or later.

FtrGet (sysFtrCreator, sysFtrNumROMVersion, &romVersion) ;

if (romVersion >= sysMakeROMVersion(3, 1, O,
sysROMStageRelease, 0)) {

Other system features are defined in SystemMgr . h. System
features are stored in a feature table in the ROM. (In Palm OS 3.1
and higher, the contents of this table are copied into the RAM
feature table at system startup.) Checking for the presence of system
features allows an application to be compatible with multiple
versions of the system by refining its behavior depending on which
capabilities are present or not. Future hardware platforms may lack
some capabilities present in the first platform, so checking the
system version feature is important.

IMPORTANT: For best results, we recommend that you check
for specific features rather than relying on the system version
number to determine if a specific APl is available. For more
details on checking for features, see the appendix Compatibility
Guide in Palm OS Programmer’s API Reference.

Palm OS Programmer’s Companion, Volume | 317

Palm System Support

Features

Application-Defined Features

Applications may find the feature manager useful for their own
private use. For example, an application may want to publish a
feature that contains a pointer to some private data it needs for
processing launch codes. Because an application’s global data is not
generally available while it processes launch codes, using the
feature manager is usually the easiest way for an application to get
to its data.

The feature manager maintains one feature table in the RAM as well
as the feature table in the ROM. Application-defined features are
stored in the RAM feature table.

Using the Feature Manager

To check whether a particular feature is present, call FtrGet and
pass it the feature creator and feature number. If the feature exists,
FtrGet returns the 32-bit value of the feature. If the feature doesn’t
exist, an error code is returned.

To publish a new feature or change the value of an existing one, call
FtrSet and pass the feature creator, number, and the 32-bit value
of the feature. A published feature remains available until it is
explicitly removed by a call to FtrUnregister or until the system
resets; simply quitting an application doesn’t remove a feature
published by that application.

Call FtrUnregister to remove features that were created by
calling FtrSet.

You can get a complete list of all published features by calling
FtrGetByIndex repeatedly. Passing an index value starting at 0 to
FtrGetByIndex and incrementing repeatedly by 1 eventually
returns all available features. Ft rGet ByIndex accepts a parameter
that specifies whether to search the ROM feature table or RAM
feature table. Note that in Palm OS version 3.1 and higher, the
contents of the ROM table are copied into the RAM table at system
startup; thus the RAM table serves the entire system.

318 Palm OS Programmer’s Companion, Volume |

Palm System Support
Features

Feature Memory

Palm OS 3.1 adds support for feature memory. Feature memory
provides quick, efficient access to data that persists between
invocations of an application. The values stored in feature memory
persist until the handheld is reset or until you explicitly free the
memory. Feature memory is memory allocated from the storage
heap. Thus, you write to feature memory using DmWrite, which
means that writing to feature memory is no faster than writing to a
database. However, feature memory can provide more efficient
access to that data in certain circumstances.

To allocate a chunk of feature memory, call FtrPt rNew, specifying
a feature creator, a feature number, the number of bytes to allocate,

and a location where the feature manager can return a pointer to the
newly allocated memory chunk. For example:

FtrPtrNew (appCreator,
myFtrMemFtr, 32, &ftrMem) ;

Elsewhere in your application, you can obtain the pointer to the
feature memory chunk using FtrGet.

NOTE: Starting with Palm OS 3.5 FtrPtrNew allows allocating
chunks larger than 64KB. Do keep in mind standard issues with
allocating large chunks of memory: there might not be enough
contiguous space, and it can impact system performance.

Feature memory is considered a performance optimization. The
conditions under which you'd use it are not common, and you
probably won't find them in a typical application. You use feature
memory in code that:

¢ Is executed infrequently
* Does not have access to global variables

* Needs access to data whose contents change infrequently
and that cannot be stored in a 32-bit feature value

For example, suppose you've written a function that is called in
response to a launch code, and you expect to receive this launch
code frequently. Suppose that function needs access to the
application's preferences database. At the start of the function, you'd

Palm OS Programmer’s Companion, Volume | 319

Palm System Support

Preferences

need to open the database and read the data from it. If the function
is called frequently, opening the database each time can be a drain
on performance. Instead, you can allocate a chunk of feature
memory and write the values you need to that chunk. Because the
chunk persists until the handheld is reset, you only need to open the
database once. Listing 10.1 illustrates this example.

Listing 10.1 Using feature memory

MyAppPreferencesType prefs;
if (FtrGet (appCreator, myPrefFtr, (UInt32*)s&prefs) != 0)

// Feature memory doesn't exist, so allocate it.
FtrPtrNew (appCreator, myPrefFtr, 32, &thePref);

// Load the preferences database.
PrefGetAppPreferences (appCreator, prefID, &prefs,
sizeof (prefs), true);

// Write it to feature memory.
DmWrite (thePref, 0, &prefs, sizeof (prefs));

}

// Now prefs is guaranteed to be defined.

Another potential use of feature memory is to “publish” data from
your application or library to other applications when that data
doesn’t fit in a normal 32-bit feature value. For example, suppose
you are writing a communications library and you want to publish
an icon that client applications can use to draw the current
connection state. The library can use FtrPtrNew to allocate a
feature memory chunk and store an icon representing the current
state in that location. Applications can then use FtrGet to access
the icon and pass the result to WinDrawBitmap to display the
connection state on the screen.

Preferences

The Preferences Manager handles both system-wide preferences
and application-specific preferences. The Preferences Manager
maintains preferences in two separate databases:

320 Palm OS Programmer’s Companion, Volume |

Palm System Support
Preferences

* The “saved” preferences database contains preferences that
are backed up during a HotSync operation. There is one
“saved” preferences database that all applications use. This
database contains all system-wide preferences as well as
application-specific preferences.

¢ The “unsaved” preferences database contains application-
specific preferences that are not to be backed up during a
HotSync operation. There is one “unsaved” preferences
database that all application use.

This section describes how to obtain and set values for each of these
preferences databases. It covers:

* Accessing System Preferences

* Setting System Preferences

* Setting Application-Specific Preferences

Accessing System Preferences

The system preferences specify how users want their Palm
Powered " handhelds to behave. For example, system preferences
specify how dates and times are displayed and whether the system
plays a sound when an alarm fires. These values are typically set
using the built-in Preferences or Security application. Applications
should, as a rule, respect the values stored in the system
preferences.

To obtain the value of a system preference, use the
PrefGetPreference function and pass one of the
SystemPreferencesChoice enum constants. For example, if an
application’s user interface displays the current date and time, it
could do the following to find out how the user wants the date and
time displayed:

TimeFormatType timeFormat = (TimeFormatType)
PrefGetPreference (prefTimeFormat) ;

DateFormatType dateFormat = (DateFormatType)
PrefGetPreference (prefDateFormat) ;

Palm OS Programmer’s Companion, Volume | 321

Palm System Support
Preferences

WARNING! Do not confuse PrefGetPreference with
PrefGetPreferences. The latter function is obsolete and
retrieves the 1.0 version of the system preferences structure.

Note that the PrefGetPreference function by default returns a
UInt32 value. This return value must be cast to the appropriate
type for the preference being returned.

Also note that the system preferences structure has been updated
many times and maintains its own version information. Each Palm
OS release that modifies the system preferences structure adds its
new values to the end and increments the structure’s version
number. See Table 10.1.

Table 10.1 System preference version numbers

Palm OS System Preference
Version Version

2.0 2
3.0
3.0
3.1
3.2
3.3
3.5
4.0

O 0 NN O U1 B~ W

To learn which preferences were added in which version, as well as
the return type expected for each preference, see Table 43.1 on
page 830 in the Palm OS Programmer’s API Reference.

To maintain backward compatibility, check the preference version
number before checking the value of any preference added after
Palm OS 2.0. For example, Palm OS 4.0 added a preference that
allows you to access the handheld’s locale information (the country
and language) as an LmLocaleType structure. Before you try to

322 Palm OS Programmer’s Companion, Volume |

Palm System Support
Preferences

access that preference, you should check the preference version, as

shown in Listing 10.2.

Listing 10.2 Checking the system preference version

LmLocaleType currentLocale;
CountryType currentCountry;
if (PrefGetPreference (prefVersion) >= preferenceDataVer9)
currentLocale = (LmLocaleType)
PrefGetPreference (preflocale) ;
} else { /* make do with the country */
currentCountry = (CountryType)
PrefGetPreference (prefCountry) ;

In some cases, a newer preference is intended to replace an existing
preference. For example, the prefAutoOf fDuration preference is
replaced by prefAutoOffDurationSecs in version 8 of the
preference structure. The older preference stored the auto-off time
in minutes, and the newer one stores the time in seconds. If you use
prefAutoOffDuration in Palm OS 4.0, the system still returns
the current auto-off time in minutes; however, to obtain this value,
the system converts the value in seconds to minutes and rounds the
result if necessary. You'll receive a more precise value if you use
prefAutoOffDurationSecs.

Setting System Preferences

Occasionally, an application may need to set the value of a system-
wide preference. It is strongly recommended that you not override
the system preferences without user input.

For example, suppose you are writing a replacement for the built-in
Address Book application. The Preferences application contains a
panel where the user can remap the Address Book hard key to open
any application they choose. However, you want to make it more
convenient for your users to remap the Address Book button, so you
might display an alert that asks first-time users if they want the
button remapped. If they tap Yes, then you should call
PrefSetPreference with the new value. The code might look
like the following:

Palm OS Programmer’s Companion, Volume | 323

Palm System Support

Preferences

Listing 10.3 Setting a system preference

if (PrefGetPreference (prefHard2CharAppCreator !=
myAppCreatorId))
if (FrmAlert (MakeMeTheDefaultAlert) == 0) {
/* user pressed Yes */
PrefSetPreference (prefHard2CharAppCreator ,
myAppCreatorId) ;

WARNING! Do not confuse PrefSetPreference with
PrefSetPreferences. The latter function is obsolete and sets
the entire system preferences structure for version 1.0.

Setting Application-Specific Preferences

You can use the Preferences Manager to set and retrieve preferences
specific to your application. You do this by storing the preferences in
one of two databases: the “saved” preferences database or the
“unsaved” preferences database.

To write application preferences, you use
PrefSetAppPreferences. To read them back in, you use
PrefGetAppPreferences. Typically, you write the preferences in
response to the appStopEvent when control is about to pass to
another application. You read the preferences in response to a
normal launch.

PrefSetAppPreferences and PrefGetAppPreferences take
roughly the same parameters: the application creator ID, a
preference ID that uniquely identifies this preference resource, a
pointer to a structure that holds the preference values, the size of the
preferences structure, and a Boolean that indicates whether the
“saved” or the “unsaved” preferences database is to be used.
PrefSetAppPreferences also takes a version number for the
preference structure. This value is the return value for
PrefGetAppPreferences.

The following sections discuss the issues involved in using
application-specific preferences:

324 Palm OS Programmer’s Companion, Volume |

Palm System Support
Preferences

When to Use Application Preferences

How to Store Preferences
Which Preferences Database to Use

Updating Preferences Upon a New Release

When to Use Application Preferences

You use application preferences to store state specific to your
application that should persist across invocations of your
application. For example, the built-in applications store information
about the last form and the last record or records displayed before
control switched to another application. This way, the user can be
returned to the same view when he or she goes back to that
application.

You can also use preferences for other values. You might allow the
user to customize the way the application behaves and store such
information in the preferences database. You might also use the
preferences database as a way to share information with other
applications.

Make sure that the preference values you choose are as concise as
possible. In games, for example, it is often tempting to store a
bitmap for the current state of the screen. Such a bitmap is over
25KB on a color handheld, and it is therefore best avoided. Instead,
it is better to store items that let you recreate the current state, such
as the player’s position in pixels and the current level.

There are other ways to store values pertinent to your application.
For example, you can store a single value as a feature using the
Feature Manager. The differences between storing application value
as preferences and storing application values as features are:

¢ Preferences (including those stored in the “unsaved”
database) survive a soft reset because they reside in the
storage heap. Features are deleted upon a soft reset. For this
reason, preferences are more appropriate for storing
application state than feature are.

* An application preference is a database record, so it has a size
limit of 64KB. Multiple application preferences are allowed.

Palm OS Programmer’s Companion, Volume | 325

Palm System Support

Preferences

The features that are supported by all releases of Palm OS
have a maximum size of 4KB.

In Palm OS 3.1 and higher, you can create features greater
than 4KB by using feature memory. Feature memory has a
maximum size of 64KB before Palm OS 3.5. Palm OS 3.5 and
higher allows allocating a chunk of feature memory that is
larger than 64KB. However, feature memory is intended to
be used in different situations than an application preference
is. See the section “Feature Memory” on page 319 for more
information.

Instead of storing application state values as preferences or features,
you could also use a database that your application creates and
maintains itself. If you choose this method of storing application
preference values, you must write your own functions to read the
preferences from the database and write the preferences to the
database. If you want the preferences backed up, you need to set the
backup bit. However, there may be cases where using your own
database has advantages. See “Which Preferences Database to Use”
on page 327.

How to Store Preferences

Most applications store a single preference structure under a single
preference resource ID. When the application receives an
appStopEvent, it writes the entire structure to the resource using
PrefSetAppPreferences. When it receives a
sysAppLaunchCmdNormalLaunch, it reads the structure back in
using PrefGetAppPreferences.

Storing a single preference structure in the database is a convention
that most applications follow because it is convenient to access the
all preferences at once. The Preferences Manager does allow an
application to store more than one preference resource. This
requires more calls to PrefSetAppPreferences and
PrefGetAppPreferences, but you may find it more convenient
to use several preference resources if you have several variable-
length preferences.

326 Palm OS Programmer’s Companion, Volume |

Palm System Support
Preferences

Which Preferences Database to Use

Both PrefGetAppPreferences and PrefSetAppPreferences
take a Boolean value that indicates whether the value is to be read
from and written to the “saved” or the “unsaved” preferences
database. To write the preference to the “saved” preferences
database, use true. To write to the “unsaved” preferences database,
use false.

The only difference between the two databases is that the “saved”
preferences database is backed up when a user performs the
HotSync operation, and the “unsaved” preferences database is not
backed up by default. (The user can use a third-party tool to set the
backup bit in the “unsaved” preferences database, which would
cause it to be backed up.) Both the “saved” and the “unsaved”
preferences reside in the storage heap and thus persist across soft
resets. The only way that preferences are lost is if a hard reset is
performed.

Use the “saved” preferences only for items that must be restored
after a hard reset, and use the “unsaved” preferences for the current
state of the application. For example, if your application has a
registration code, you might write that to the “saved” preferences
database so that the user does not have to look up the registration
code and re-enter it after a hard reset. However, such items as the
current form being displayed and the current database record being
displayed can be lost, so they are written to the “unsaved”
preferences database. For games, you might write the high score to
the “saved” preferences database and any information about the
current game to the “unsaved” preferences database.

It is important to use the “saved” preferences database sparingly.
Any time that any application stores or changes a preference in the
“saved” preferences database, the entire database is backed up
during the next HotSync operation. For users with a large number
of applications, this practice can seriously impact the time that it
takes to perform a HotSync operation.

Listing 10.4 shows the preferences structures and the
StopApplication function from the HardBall application. The
HardBallPreferenceType, which is written to the “saved”
preferences database, only stores the high score information and
accumulated time. All other preferences are stored in

Palm OS Programmer’s Companion, Volume | 327

Palm System Support

Preferences

GameStatusType, which is written to the “unsaved” preferences
database.

Listing 10.4 Saving application-specific preferences

typedef struct ({
SavedScore highScore [highScoreMax] ;
UInt8 lastHighScore;
UInt8 startLevel;
UInt32 accumulatedTime;
} HardBallPreferenceType;

typedef struct ({
enum gameProgress status;
UInt8 periodLength;
UInt32 nextPeriodTime;
UInt32 periodsToWait;
Boolean paused;
UInt32 pausedTime;
BrickType Dbrick[rowsOfBricks] [columnsOfBricks];
UInt8 bricksRemaining;
UInt8 level;
WorldState last;
WorldState next;
RemovedBrick brokenBricks [brokenBricksMax] ;
Intlé brokenBricksCount;
UInt8 ballsRemaining;
Boolean movePaddleLeft;
Boolean movePaddleRight;
SoundType soundToMake;
Int8 soundPeriodsRemaining;
Int32 scoreToAwardBonusBall;
Boolean lowestHighScorePassed;
Boolean highestHighScorePassed;
Boolean gameSpedUp;
Boolean cheatMode;
UInt32 startTime;

} GameStatusType;

HardBallPreferenceType Prefs;
static GameStatusType GameStatus;

static void StopApplication (void)

{

// Update the time accounting.
Prefs.accumulatedTime += (TimGetTicks() -

328 Palm OS Programmer’s Companion, Volume |

Palm System Support
Preferences

GameStatus.startTime) ;

// If we are saving a game resuming (it hasn't started

// playing yet) then preserve the game status.

if (GameStatus.status == gameResuming) {
GameStatus.status = SavedGameStatus;

}

// Save state/prefs.
PrefSetAppPreferences (appFileCreator, appPreflID,
appPrefVersion, &Prefs, sizeof (Prefs), true);

PrefSetAppPreferences (appFileCreator, appSavedGamelD,
appSavedGameVersion, &GameStatus, sizeof (GameStatus),
false) ;

// Close all the open forms.
FrmCloseAllForms () ;

If you have a large amount of preference data that must be backed
up during a HotSync operation and is frequently changed, you
could, as a performance optimization, store the preferences in a
database that your own application creates and maintains rather
than in the “saved” preferences database. This saves the user from
having to have the entire “saved” preferences database backed up
on every HotSync operation. The disadvantage of this method of
saving application preferences is that you must write all code to
maintain the database and to retrieve information from it.

Updating Preferences Upon a New Release

When you update your application, you may have new items that
you want to store in the preferences database. You may choose to
write a separate preference record to the database. However, it is
better to update the current preference structure, size permitting.

The PrefSetAppPreferences and PrefGetAppPreferences
functions use a versioning system that allows you to update an
existing preference structure. To use it, keep track of the version
number that you pass to PrefSetAppPreferences. Add any new
preferences to the end of the preferences structure, and then
increment the version number. You might use a macro for this
purpose:

Palm OS Programmer’s Companion, Volume | 329

Palm System Support
Preferences

#define CurrentPrefsVersion 2

When a user launches the new version of the application,
PrefGetAppPreferences is called before
PrefSetAppPreferences. The PrefGetAppPreferences
function returns the version number of the preference structure that
it retrieved from the database. For example, if the new version is
version 2, PrefGetAppPreferences returns 1 the first time that
version 2 is run. If the returned version does not match the current
version, you know that the user does not have values for the new
preferences introduced in version 2. You can then decide to provide
default values for those new preferences.

The first time any version of your application is run,
PrefGetAppPreferences returns noPreferenceFound. This
indicates that the user does not have any preferences for the current
application and the application must supply default values for the
entire preferences structure. Listing 10.5 shows how the Datebook
handles retrieving the version number from
PrefGetAppPreferences.

Listing 10.5 Checking the preference version number

#define datebookPrefsVersionNum 4

Intl6 DatebookLoadPrefs (DatebookPreferenceType* prefsP)
{

UIntlé prefsSize;

Intlée prefsVersion = noPreferenceFound;

Boolean haveDefaultFont = false;

UInt32 defaultFont;

ErrNonFatalDisplayIf (!prefsP, "null prefP arg");

// Read the preferences / saved-state information. Fix-up if no prefs or

// older/newer version

prefsSize = sizeof (DatebookPreferenceType) ;

prefsVersion = PrefGetAppPreferences (sysFileCDatebook, datebookPreflID,
prefsP, &prefsSize, true);

// If the preferences version is from a future release (as can happen when
// going back and syncing to an older version of the device), treat it the
// same as "not found" because it could be significantly different

if (prefsVersion > datebookPrefsVersionNum)

330 Palm OS Programmer’s Companion, Volume |

Palm System Support
Preferences

if

if

if

prefsVersion = noPreferenceFound;

(prefsVersion == noPreferenceFound) ({
// Version 1 and 2 preferences
prefsP->dayStartHour = defaultDayStartHour;
prefsP->dayEndHour = defaultDayEndHour;
prefsP->alarmPreset.advance = defaultAlarmPresetAdvance;
prefsP->alarmPreset.advanceUnit = defaultAlarmPresetUnit;
prefsP->saveBackup = defaultSaveBackup;
prefsP->showTimeBars = defaultShowTimeBars;
prefsP->compressDayView = defaultCompressDayView;
prefsP->showTimedAppts = defaultShowTimedAppts;
prefsP->showUntimedAppts = defaultShowUntimedAppts;
prefsP->showDailyRepeatingAppts =
defaultShowDailyRepeatingAppts;

// We need to set up the note font with a default value for the system.

FtrGet (sysFtrCreator, sysFtrDefaultFont, &defaultFont) ;
haveDefaultFont = true;

prefsP->v20NoteFont = (FontID)defaultFont;

((prefsVersion == noPreferenceFound) || (prefsVersion <
datebookPrefsVersionNum)) {

// Version 3 preferences

prefsP->alarmSoundRepeatCount = defaultAlarmSoundRepeatCount;

prefsP->alarmSoundRepeatInterval = defaultAlarmSoundRepeatInterval;

prefsP->alarmSoundUniqueRecID = defaultAlarmSoundUniqueRecID;

prefsP->noteFont = prefsP->v20NoteFont;

// Fix up the note font if we copied from older preferences.
if ((prefsVersion != noPreferenceFound) && (prefsP->noteFont ==
largeFont))
prefsP->noteFont = largeBoldFont;

if (!'haveDefaultFont)
FtrGet (sysFtrCreator, sysFtrDefaultFont, &defaultFont) ;

prefsP->apptDescFont = (FontID)defaultFont;
((prefsVersion == noPreferenceFound) || (prefsVersion <
datebookPrefsVersionNum)) {

// Version 4 preferences
prefsP->alarmSnooze = defaultAlarmSnooze;

Palm OS Programmer’s Companion, Volume | 331

Palm System Support
Sound

return prefsvVersion;

}

Sound

The Palm OS 5 Sound Manager controls two independent sound
facilities:

* Simple sound: Single voice, monophonic, square-wave
sound synthesis, useful for system beeps. This is the
traditional (pre-OS 5) PalmSource sound.

¢ Sampled sound: Stereo, multi-format, sampled data
recording and playback (new in Palm OS 5). Sampled sounds
can be generated programmatically or read from a soundfile.

These facilities are independent of each other. Although you can
play a simple sound and a sampled sound at the same, their
respective APIs have no effect on each other. For example, you can’t
use the sampled sound volume-setting function
(SndStreamSetVolume) to change the volume of a simple sound.

The following sections take a look at the concepts introduced by the
Sound Manager. For detailed API descriptions, and for more
guidance with regard to the sampled data concepts presented here,

see Chapter 45, “Sound Manager.”

Simple Sound
There are three ways to play a simple sound:

* You can play a single tone of a given pitch, amplitude, and
duration by calling SndDoCmd.

* You can play a pre-defined system sound (“Information,”
“Warning,” “Error,” and so on) through
SndPlaySystemSound.

* You can play a tune by passing in a Level 0 Standard MIDI
File (SMF) through the SndPlaySmf function. For example,
the alarm sounds used in the built-in Date Book application
are MIDI records stored in the System MIDI database. MIDI
support is included with Palm OS 3.0 and later. For
information on MIDI and the SMF format, go to the official
MIDI website, http://www.midi.org.

332 Palm OS Programmer’s Companion, Volume |

Palm System Support
Sound

Sampled Sound

Over in the sampled sound facilities, there are two fundamental
functions:

* SndStreamCreate opens a new sampled sound “stream”
from/into which you record/playback buffers of “raw” data.
The trick is that you first have to configure the stream to tell
it how to interpret the data.

* SndPlayResource is used to playback sound data that’s
read from a (formatted) soundfile. The function configures
the playback stream for you, based on the format information
in the soundfile header. Currently, only uncompressed WAV
and IMA ADPCM WAV formats are recognized.

The Sound Manager also provides functions that let you set the
volume and stereo panning for individual recording and playback
streams. See SndStreamSetVolume and SndStreamSetPan.

Simple vs Sampled

Comparing the two facilities, simple sound is easy to understand
and requires very little programming: In most cases, you load up a
structure, call a function, and out pops a beep. Unfortunately, the
sound itself is primitive. (An example of simple sound
programming is given in “Sound Preferences,” below.)

Sampled sound, on the other hand, is (or can be) much more
satisfying, but requires more planning than simple sound. How
much more depends on what you're doing. Playing samples from a
soundfile isn’t much more difficult than playing a simple sound, but
you have to supply a soundfile. Generating samples
programmatically—and recording sound—requires more work: You
have to implement a callback function that knows something about
sound data.

IMPORTANT: One significant difference between simple
sounds and sampled sounds is that they use different volume
scales: Simple sound volumes are in the range [0, 64]; sampled
sound volumes are [0, 1024].

Palm OS Programmer’s Companion, Volume | 333

Palm System Support
Sound

Sound Preferences

If you're adding short, “informative” sounds to your application,
such as system beeps, alarms, and the like, you should first consider
using the (simple) system sounds that are defined by the Palm OS,
as listed in the reference documentation for
SndPlaySystemSound/

If you want to create your own system-like sounds, you should at
least respect the user’s preferences settings with regard to sound
volume. In Palm OS 3.0 and later, there are three sound preference
constants:

* prefSysSoundvVolume is the default system volume.
¢ prefGameSoundVolume is used for game sounds.
e prefAlarmSoundVolume is used for alarms.

To apply a sound preference setting to a simple sound volume, you
have to retrieve the setting and apply it yourself. For example, here
we retrieve the alarm sound and use it to set the volume of a simple
sound:

/* Create a ‘sound command’ structure. This will encode the parameters of the
tone we want to generate.
*/

SndCommandType sndCommand;

/* Ask for the ‘play a tone’ command. */
sndCommand.cmd = sndCmdFregDurationAmp;

/* Set the frequency and duration. */
sndCommand.paraml = 1760;
sndCommand .param2 = 500;

/* Now get the alarm volume and set it in the struct. */
sndCommand .param3 = PrefGetPreference (prefAlarmSoundVolume) ;

/* Play the tone. */
SndDoCmd (0, &sndCommand, true) ;

The sampled sound API, on the other hand, provides volume
constants (sndSystemVolume, sndGameVolume, and
sndSysVolume) that look up a preference setting for you:

./* Point our sound data pointer to a record that contains WAV data (record

334 Palm OS Programmer’s Companion, Volume |

Palm System Support
Sound

retrieval isn’t shown) .
*/
SndPtr soundData = MemHandleLock(...);

/* Play the data using the default alarm volume setting. */
SndPlayResource (soundData, sndAlarmVolume, sndFlagNormal) ;

/* Unlock the data. */
MemPtrUnlock (soundData) ;

For greatest compatibility with multiple versions of the sound
preferences mechanism, your application should check the version
of Palm OS on which it is running. See “The System Version
Feature” for more information.

Standard MIDI Files

Although you an use a Level 0 Standard MIDI File to control simple
sound generation, this doesn’t imply broad support for MIDI
messages: Only key down, key up, and tempo change messages are
recognized.

You can store your MIDI data in a MIDI database:

* The database type sysFileTMid1i identifies MIDI record
databases.

* The system MIDI database is further identified by the creator
sysFileCSystem. The database holds a number of system
alarm sounds.

You can add MIDI records to the system MIDI database, or you can
store them in your own.

Each record in a MIDI database is concatenation of a PalmSource-
defined MIDI record header, the human-readable name of the MIDI
data, and then the MIDI data itself.

The following code creates a new MIDI record and adds it to the
system MIDI database.

/* We need three things: A header, a name, and some data. We’ll get the name
and data from somewhere, and create the header ourselves.

*/

char *midiName = ...;

MemHandle midiData = ...;

Palm OS Programmer’s Companion, Volume | 335

Palm System Support
Sound

SndMidiRecHdrType midiHeader;

/* Database and record gadgetry. */
DmOpenRef database;

MemHandler record;

UIntlé *recordIndex = dmMaxRecordIndex;
UInt8* recordPtr;

UInt8* midiPtr;

/* MIDI header values: Always set the signature to sndMidiRecSignature, and
reserved to 0. bDataOffset is an offset from the beginning of the header to the
first byte of actual MIDI data. The name includes a null-terminator, hence the
‘4010,

*/

midiHeader.signature = sndMidiRecSignature;

midiHeader.reserved = 0;

midiHeader.bDataOffset = sizeof (SndMidiRecHdrType) + StrLen(midiName) + 1;

/* Open the database and allocate a record. */

database = DmOpenDatabaseByTypeCreator(sysFileTMidi, sysFileCSystem,
dmModeReadWrite | dmModeExclusive) ;

record = DmNewRecord(database, &recordIndex,
midiHeader .bDataOffset + MemHandleSize (midiData)) ;

/* Lock the data and the record. */
midiDataPtr = MemHandleLock (midiData) ;
recordPtr = MemHandlelLock (record) ;

/* Write the MIDI header. */
DmWrite (recordPtr, 0, &smidiHeader, sizeof (midiHeader)) ;

/* Write the track name. */
DmStrCopy (recordPtr, ((Uint32) (&((SndMidiRecType *)0)->field, midiName) ;

/* Write the MIDI data. */
DmWrite (recordPtr, midiHeader.bDataOffset, midiDataPtr,
MemHandleSize (midiData)) ;

/* Unlock the handles, release the record, close the database. */
MemHandleUnlock (midiData) ;

MemHandleUnlock (record) ;
DmReleaseRecord(database, recordIndex, 1);
DmCloseDatabase (database) ;

To retrieve a MIDI record, you can use the SndCreateMidiList
function if you know the record’s creator, or you can use the Data
Manager functions to iterate through all MIDI records.

336 Palm OS Programmer’s Companion, Volume |

Palm System Support
System Boot and Reset

Creating a Sound Stream

The sound stream API, part of the sampled sound facility, is the
most flexible part of the Sound Manager. A sound stream sends
sampled data to or reads sampled data from the sound hardware.
There are 15 sound output streams and one input stream, all
running (or potentially running) concurrently.

To use a sound stream, you have to tell it what sort of data you're
going to give it or that you expect to get from it. All of the sound
format information that you need to supply to set up the stream—
data quantization, sampling rate, channel count, and so on—is
passed in the SndStreamCreate function.

You also have to pass the function a pointer to a callback function
(see SndStreamBufferCallback); implementing this function is
where you'll be doing most of your work. When you tell your
stream to start running (SndStreamStart), the callback function is
called automatically, once per buffer of data. If you're operating on
an input stream (in other words, if you're recording), your callback
function is expected to empty the buffer, do something with the
data, and then return before the next buffer shows up. Output
stream callbacks do the opposite—they fill the buffer with data.

Because of the amount of data involved, the callbacks must operate
as quickly as possible. This is particularly important for output
stream callbacks: Not only can there be more than one stream
competing for attention, but all output callbacks run in the same
task (which is created and managed by the Sound Manager). If the
callback for (output) stream A takes to long to fill the stream with
data, the callbacks for stream B, C, and so on, will starve. Starving
threads make glitchy sounds.

The formats that are supported by the sampled sound functions are
described in the functions themselves.

System Boot and Reset

Any reset is normally performed by sticking a bent-open paper clip
into the small hole in the back of the handheld. This hole, known as
the “reset switch” is above and to the right of the serial number

Palm OS Programmer’s Companion, Volume | 337

Palm System Support
System Boot and Reset

sticker (on Palm III handhelds). Depending on additional keys held
down, the reset behavior varies, as follows:

Soft Reset

A soft reset clears all of the dynamic heap (Heap 0, Card 0). The
storage heaps remain untouched. The operating system restarts
from scratch with a new stack, new global variables, restarted
drivers, and a reset communication port. All applications on the
handheld receive a sysAppLaunchCmdSystemReset launch code.

Soft Reset + Up Arrow

Holding the up-arrow down while pressing the reset switch with a
paper clip causes the same soft reset logic with the following two
exceptions:

¢ The sysAppLaunchCmdSystemReset launch code is not
sent to applications. This is useful if there is an application on
the handheld that crashes upon receiving this launch code
(not uncommon) and therefore prevents the system from
booting.

* The OS won’t load any system patches during startup. This is
useful if you have to delete or replace a system patch
database. If the system patches are loaded and therefore
open, they cannot be replaced or deleted from the system.

Hard Reset

A hard reset is performed by pressing the reset switch with a paper
clip while holding down the power key. This has all the effects of the
soft reset. In addition, the storage heaps are erased. As a result, all
programs, data, patches, user information, etc. are lost. A
confirmation message is displayed asking the user to confirm the
deletion of all data.

The sysAppLaunchCmdSystemReset launch code is sent to the
applications at this time. If the user selected the “Delete all data”
option, the digitizer calibration screen comes up first. The default
databases for the four main applications is copied out of the ROM.

If you hold down the up arrow key when the “Delete all data”
message is displayed, and then press the other four application

338 Palm OS Programmer’s Companion, Volume |

Palm System Support
ARM-Native Functions

buttons while still holding the up arrow key, the system is booted
without reading the default databases for the four main applications
out of ROM.

System Reset Calls

The system manager provides support for rebooting the Palm
Powered handheld. It calls SysReset to reset the handheld. This
call does a soft reset and has the same effect as pressing the reset
switch on the unit. Normally applications should not use this call.

SysReset is used, for example, by the Sync application. When the
user copies an extension onto the Palm Powered handheld, the Sync
application automatically resets the handheld after the sync is
completed to allow the extension to install itself.

ARM-Native Functions

Palm OS 5 includes the Palm Application Compatibility
Environment (PACE), within which all Palm OS applications run.
PACE emulates the 68K-family processor traditionally used in Palm
Powered handhelds, enabling both new and existing applications to
run on Palm Powered handhelds that employ an ARM processor.

Palm OS 5 itself is entirely ARM-native, so all operating system
functions run at the full speed of the underlying processor. Because
most applications spend the bulk of their time executing operating
system functions, they get the performance benefit of the ARM
processor with no effort. Occasionally, however, you'll write a
processor-intensive function that could benefit from being
recompiled as ARM code, and Palm OS 5 has a mechanism to allow
this. These ARM functions can call back into the operating system
and can call user-defined 68K functions as well, but because it is
difficult to debug both the “68K side” and the “ARM side” of an
application, and because of the overhead involved in byte-
swapping the parameters, functions that make many calls into the
operating system typically aren’t good candidates to make ARM-
native.

Palm OS 5 includes PceNativeCall which, when given a pointer
to an ARM function and a pointer to a parameter block, calls the

Palm OS Programmer’s Companion, Volume | 339

Palm System Support
ARM-Native Functions

ARM function. Due to endianness differences between the 68K and
ARM processors, PceNativeCall byte-swaps the parameter
pointer and return value. Because the operating system has no
knowledge of the structure of the parameter block, however, it
performs no byte-swapping in this block. Your ARM code must do
this as necessary for your application (see “Accessing 68K Data
From an ARM Function” on page 342 for more information). Also
note that the context in which the code is called is undefined other
than to include enough stack space for “reasonable” algorithms.

You typically store the ARM code in a resource in the calling 68K
application, and locate it using the DmGetResource and
MemHandleLock functions.

Calling an ARM Function

Calling an ARM function is usually just a matter of passing the
proper parameters to PceNativeCall, as defined in the Palm OS
Programmer’s API Reference. However, before calling
PceNativeCall you must test the processor type:

e If the processor is ARM, the 68K application should call the
ARM function.

¢ If the processor is an x86 family processor (that is, the
application is running in Palm OS Simulator on Windows),
the 68K application should call the Windows DLL that
represents the ARM function.

¢ Otherwise, the 68K application should either call a 68K
version of the function or fail gracefully if the functionality
cannot be reasonably incorporated into a 68K application.
Note that in this instance your application may be running
on a version of Palm OS earlier than Palm OS 5.

Listing 10.6 illustrates this process. For simplicity, in this example
no parameters are passed to the ARM function.

Listing 10.6 Calling an ARM function

static UInt32 PceNativeResourceCall (DmResType resType, DmResID resID,
char *DLLEntryPointP, void *userCPB)

UInt32 processorType;
MemHandle armH;
MemPtr armP;

340 Palm OS Programmer’s Companion, Volume |

Palm System Support
ARM-Native Functions

UInt32 result;

// get the processor type
FtrGet (sysFileCSystem, sysFtrNumProcessorID, &processorType) ;

if (sysFtrNumProcessorIsARM (processorType)) {
// running on ARM; call the actual ARM resource
armH = DmGetResource (resType, reslID);
armP = MemHandleLock (armH) ;

result = PceNativeCall (armP, userCPB) ;

MemHandleUnlock (armH) ;

DmReleaseResource (armH) ;
} else if (processorType == sysFtrNumProcessorx86) {

// running on Simulator; call the DLL

result = PceNativeCall ((NativeFuncType *)DLLEntryPointP, userCPB) ;
} else {

// some other processor; fail gracefully

ErrNonFatalDisplay ("Unsupported processor type");

result = -1;

}

return result;

Note that the #defines for the various processor types (all of
which are named sysFtrNumProcessor. . .) can be found in
SystemMgr.h.

ARM Function Definition

ARM functions that are to be called from the 68K side—that is,
functions that serve as entry points into your ARM code—must use
the following function prototype (defined in PceNativeCall.h):

typedef unsigned long NativeFuncType (const void *emulStateP,
void *userData68KP, Call68KFuncType *call68KFuncP)

The function parameters are defined as follows:

Palm OS Programmer’s Companion, Volume | 341

Palm System Support
ARM-Native Functions

-> emulStateP

A pointer to the (opaque) PACE emulation
state. This pointer is used when calling Palm
OS functions and application callbacks; see
“Calling Palm OS Functions From ARM Code”

on page 345 for more information.

<-> userData68KP

-> callé8KFunc

The userDataP argument that was passed in
to PceNativeCall, byte-swapped so it can be
dereferenced directly by the ARM code. See
“Accessing 68K Data From an ARM Function,”
below, for tips on accessing the data block
indicated by this pointer.

A hook to call back into the PACE emulated
environment from ARM code. It is used for
both OS function calls and application
callbacks. See “Calling a Function via a
Function Pointer” on page 347 for more
information.

ARM entry-point functions should return a value that is meaningful
to the 68K side, since that value is passed back to the calling code. If
no value is meaningful, return 0. Both register A0 and DO are set to
this return value, making it meaningful to code that is expecting
either a pointer or an immediate result.

Accessing 68K Data From an ARM Function

When writing an ARM function that accesses data in the parameter
block passed in from the 68K side, you need to be aware of
differences in endianness, word alignment, and structure packing.

¢ The 68K processor is big endian, while Palm OS 5 uses the
ARM processor in little-endian mode. Because of this, you'll
need to byte-swap all 2- and 4-byte integers and pointers
(other than userData68KP, which is already byte-swapped

for you).

* 68K structures generally are aligned to 2-byte boundaries.
(This includes stack-based structures.) The ARM processor
expects 4-byte values to be aligned on a 4-byte boundary.
Copy 4-byte integers into local variables before using them,
but note that because of possible alignment problems a

342 Palm OS Programmer’s Companion, Volume |

Palm System Support
ARM-Native Functions

simple pointer dereference won’t do when copying the
values; you must provide your own unaligned read and
write functions. Note that MemPt rNew returns chunks
beginning on 4-byte boundaries; careful structure layout can
avoid alignment (but not endian) problems.

¢ Depending on the compiler options specified, a given
compiler can add padding bytes to align structure
components on a given byte boundary. If the ARM compiler
you use expects structures to be aligned other than how they
are by the 68K compiler, errors in alignment will result.
You'll generally want to make a local copy of any structures
that you use.

The macros in Listing 10.7 can prove very useful in your ARM code.
ByteSwapl6 and ByteSwap32 perform byte swapping on 2- and
4-byte quantities, respectively. Write68KUnaligned32 and
Read68KUnaligned32 copy 4-byte integers to and from a location
in memory that is not necessarily aligned on a 4-byte boundary.

Listing 10.7 Byte-swapping macros

#define ByteSwaplé6 (n) (((((unsigned int) n) << 8) & O0xFF00) | \
((((unsigned int) n) >> 8) & O0x00FF))

#define ByteSwap32(n) (((((unsigned long) n) << 24) & O0xFF000000) | \
((((unsigned long) n) << 8) & 0x00FF0000) | \
((((unsigned long) n) >> 8) & 0x0000FF00) | \
((((unsigned long) n) >> 24) & 0x000000FF))
#define Read68KUnaligned32 (addr) \
(((((unsigned char *) (addr)) [0]) << 24) | \
((((unsigned char *) (addr)) [1]) << 16) | \
((((unsigned char *) (addr)) [2]) << 8) | \
((((unsigned char *) (addr)) [3])))
#define Write68KUnaligned32 (addr, value) \

(((unsigned char *) (addr)) [0]=(unsigned char) ((unsigned long) (value) >>24), \
((unsigned char *) (addr)) [1]=(unsigned char) ((unsigned long) (value) >>16), \
((unsigned char *) (addr)) [2]=(unsigned char) ((unsigned long) (value)>>8), \
((*) (addr)) [() (() (value))

unsigned char 3]=(unsigned char unsigned long)

Palm OS Programmer’s Companion, Volume | 343

Palm System Support
ARM-Native Functions

Embedding ARM Code in a 68K Application

Regardless of the mechanism that you use to generate the ARM
binary, there are a couple of different ways to get it into a . prc file:

¢ Use CodeWarrior or a tool such as PilRC to place the raw
ARM binary into a resource file. Then simply include this
resource file in your 68K project. This is the easiest of the
alternatives by far.

¢ Copy the resulting binary data into a different resource file as
hex data. Use a hex dump utility to process the ARM binary
file into a resource.

¢ Include the ARM code directly in your application’s source
as integer arrays. Note, however, that the arrays are
interpreted as big-endian by the 68K compiler, and as little-
endian by the ARM processor. Thus you must byte swap the
integer values to get appropriate opcodes. Also, the array
itself must be 4-byte aligned in your source, so insure that
your compiler settings are appropriate to produce this.

Native-ARM Code and the Palm OS Simulator

Palm OS Simulator doesn’t run ARM code. Instead, it provides an
implementation of Palm OS 5 running as a native Windows
application. Similarly, any ARM function you write must be
compiled as a Windows DLL in order to be used with Simulator.
Your 68K code must recognize that it is running on Simulator (as
described in “Calling an ARM Function” on page 340) and supply a
pointer to the name of the DLL and the function within that DLL
when calling your “ARM” function. These two names must be
separated by a null character, and the entire sequence must be
terminated by a null character. For example, to load the DLL found
at C:\TEST DLL\Debug\Simple.dll and call the function
TestNativeCall within that DLL, you might pass a pointer to the
following character string literal:

"C:\\TEST DLL\\Debug\\Simple.dl1l\0TestNativeCall"

Note that if you don’t supply an absolute path, Simulator looks for
the DLL in (or relative to) the directory from which PalmSim. exe
is running. Thus, if the DLL is located in the same directory as
PalmSim.exe, you can call the above function with:

"Simple.dl1\0TestNativeCall"

344 Palm OS Programmer’s Companion, Volume |

Palm System Support
ARM-Native Functions

Calling Palm OS Functions From ARM Code

In Palm OS 5, native ARM code can call back into the 68K world,
either to call Palm OS functions or to call developer-provided
callbacks. A single entry point, Call68KFuncType, provides the
mechanism for calling both developer-specified 68K functions and
OS functions via traps. This function is declared in
PceNativeCall.h as follows:

typedef unsigned long Call68KFuncType (const void *emulStateP,
unsigned long trapOrFunction, const void *argsOnStackP,
unsigned long argsSizeAndwantAO0)

The function parameters are defined as follows:

-> emulStateP Pointer to the PACE emulation state. Supply
the pointer that was passed to your ARM
function by PACE.

-> trapOrFunction
The trap number AND’ed with
kPaceNativeTrapNoMask, or a pointer to the
function to call. Any value less than
kPceNativeTrapNoMask is treated as a trap
number.

-> argsOnStackP
Native (little-endian) pointer to a block of
memory to be copied to the 68K stack prior to
the function call. This memory normally
contains the arguments for the 68K function
being called. Call68KFuncType pops these
values from the 68K stack before returning.

-> argsSizeAndwantA0
The number of bytes, in little-endian format,
from argsOnStackP that are to be copied to
the 68K emulator stack. If the function or trap
returns its result in 68K register A0 (as when
the result is a pointer type), you must OR the
byte count with kPceNativeWantAo0.

Palm OS Programmer’s Companion, Volume | 345

Palm System Support
ARM-Native Functions

The return value from the 68K function (passed either in the 68K
register DO or AQ) is returned as the result of this function, based on
argsSizeAndwantA0. It is returned in native (little-endian) form.

Because of the amount of effort involved in getting parameters byte-
swapped and properly aligned, if your ARM code routinely needs
to call a series of operating system functions you may find it easier
to write a small 68K callback function that calls the operating
system functions, and then call this 68K function instead.

Calling a Trap

Listing 10.8 shows how to call an operating system function from
ARM native code using the function’s trap number. This sample
calls MemPt rNew to allocate a block of 10 bytes, initializes that
block, and returns it as the result of the ARM function.

Listing 10.8 Calling a Palm OS function from ARM code

/* This armlet makes a call (through PACE) to MemPtrNew to allocate a buffer.
* The arguments to the 0OS function (here just size) must be on the stack, and
* must be in big-endian format.

*/
#include "PceNativeCall.h"
#include "endianutils.h" // byte-swapping macros

// from CoreTraps.h
#define sysTrapMemPtrNew 0xA013 // we need this in order to call into MemPtrNew

// prototype for our OS call convenience function
void *PalmOS MemPtrNew (const void *emulStateP, Call68KFuncType *call68KFuncP,
unsigned long sizeLE) ;

// This is the main entry point into the armlet. It's the first function in
// the file so we can calculate its address easily.
unsigned long NativeFunction (const void *emulStateP, void *userDataé68KP,
Call68KFuncType *call68KFuncP) {

unsigned char *bufferP;

int 1i;

// allocate 10 bytes of memory using a convenience function
bufferP = (unsigned char*)PalmOS_ MemPtrNew (emulStateP, call68KFuncP, 10);

// Do something with the bytes in the buffer

346 Palm OS Programmer’s Companion, Volume |

Palm System Support
ARM-Native Functions

for (1 = 0; 1 < 9; i++) bufferP[i] = i+'A'; // write in "ABCDEFGHI"
bufferP[9] = 0; // terminate the string

return (unsigned long)bufferP;

// Convenience function for calling MemPtrNew within ARM code
void *PalmOS_MemPtrNew (const void *emulStateP, Call68KFuncType *call68KFuncP,
unsigned long sizeLE) {
// First, declare the argument (s) that will be passed to the 0S call.
// In this case, we're calling MemPtrNew, so we need a size argument.
// Because this code is compiled by an ARM compiler (little endian),
// and MemPtrNew expects its argument to be big endian, swap it.
unsigned long sizeBE = ByteSwap32 (sizelE) ;

// Call the trap. Note that because MemPtrNew returns a pointer, the byte
// count (the last parameter) must be “OR’d” with kPceNativeWantAO.
return ((void *) ((call68KFuncP) (emulStateP,

PceNativeTrapNo (sysTrapMemPtrNew), &sizeBE, 4 | kPceNativeWantAO0))) ;

Calling a Function via a Function Pointer

The code excerpt in Listing 10.9 shows how to pass a 68K callback
function pointer to ARM native code, and Listing 10.10 shows how
to call that 68K function from within the ARM code. The ARM code
ultimately accomplishes the same result as in the previous example
(calling MemPtrNew), but this example lets the 68K-side callback
function do the allocation. Note that the pointer to the callback
function is passed to the ARM code as data, embedded in a
structure.

The following is implemented on the 68K side:

Listing 10.9 Calling PACE application code from ARM code
(68K side)

typedef struct MyParamsTag {
void *myAllocateFunctionP;
UInt32 anotherValue;

} MyParamsType;

// function to allocate 10 bytes
void *MyAllocateFunction() {

Palm OS Programmer’s Companion, Volume | 347

Palm System Support
ARM-Native Functions

return MemPtrNew (10) ;

}

// code to call the native function, defined in the next listing
MyParamsType myParams;

MemHandle armChunkH;

void *myNativeFuncP;

Byte *result;

armChunkH = DmGetResource (‘armc’, 0);
myNativeFuncP = MemHandleLock (armChunkH) ;

myParams.myAllocateFunctionP = &MyAllocateFunction;

result = (Byte *)PceNativeCall (myNativeFuncP, &myParams) ;

In the ARM file, the following code accepts the callback function
pointer and uses the 68K function to allocate the 10-byte memory
block:

Listing 10.10 Calling PACE application code from ARM code
(ARM side)

typedef struct MyParamsTag {
void *myAllocateFunctionP;
unsigned long anotherValue;
} MyParamsType;

unsigned long MyNativeFunc (const void *emulStateP,
void *userData68KP, Callé68KFuncType *callé68KFunc)
unsigned char *buffer68K; // array of Byte
unsigned char i; // Byte
void *my68KFuncP;

// get the function pointer out of the passed parameter block
my68KfuncP = ByteSwap4 (userData68KP->myAllocateFunctionP) ;

// invoke the callback function to allocate 10 bytes
buffer68K = (void *) ((callée8KFunc) (emulStateP, my68KFuncP,
&size, 4 | kPceNativeWantAo0)) ;

// do something with the bytes in the buffer
for (i = 10; 1 > 0; i--)
buffer68K[i] = 1i;

348 Palm OS Programmer’s Companion, Volume |

Palm System Support
Hardware Interaction

return (unsigned long)buffer68K;

Hardware Interaction

Palm OS differs from a traditional desktop system in that it's never
really turned off. Power is constantly supplied to essential
subsystems and the on/off key is merely a way of bringing the
handheld in or out of low-power mode. The obvious effect of
pressing the on/off key is that the LCD turns on or off. When the
user presses the power key to turn the handheld off, the LCD is
disabled, which makes it appear as if power to the entire unit is
turned off. In fact, the memory system, real-time clock, and the
interrupt generation circuitry are still running, though they are
consuming little current.

This section looks at Palm OS power management, discussing the
following topics:

¢ Palm OS Power Modes

* Guidelines for Application Developers

* Power Management Calls

Palm OS Power Modes

To minimize power consumption, the operating system
dynamically switches between three different modes of operation:
sleep mode, doze mode, and running mode. The system manager
controls transitions between different power modes and provides
an API for controlling some aspects of the power management.

¢ In sleep mode, the handheld looks like it’s turned off: the
display is blank, the digitizer is inactive, and the main clock
is stopped. The only circuits still active are the real-time clock
and interrupt generation circuitry.

The handheld enters this mode when there is no user activity
for a number of minutes or when the user presses the off
button. The handheld comes out of sleep mode only when

Palm OS Programmer’s Companion, Volume | 349

Palm System Support
Hardware Interaction

there is an interrupt, for example, when the user presses a
button.

To enter sleep mode, the system puts as many peripherals as
possible into low-power mode and sets up the hardware so
that an interrupt from any hard key or the real-time clock
wakes up the system. When the system gets one of these
interrupts while in sleep mode, it quickly checks that the
battery is strong enough to complete the wake-up and then
takes each of the peripherals, for example, the LCD, serial
port, and timers, out of low-power mode.

* In doze mode, the main clock is running, the handheld
appears to be turned on, the LCD is on, and the processor’s
clock is running but it’s not executing instructions (that is, it’s
halted). When the processor receives an interrupt, it comes
out of halt and starts processing the interrupt.

The handheld enters this mode whenever it’s on but has no
user input to process.

The system can come out of doze mode much faster than it
can come out of sleep mode since none of the peripherals
need to be woken up. In fact, it takes no longer to come out of
doze mode than to process an interrupt. Usually, when the
system appears on, it is actually in doze mode and goes into
running mode only for short periods of time to process an
interrupt or respond to user input like a pen tap or key press.

¢ In running mode, the processor is actually executing
instructions.

The handheld enters this mode when it detects user input
(like a tap on the screen) while in doze mode or when it
detects an interrupt while in doze or sleep mode. The
handheld stays in running mode only as long as it takes to
process the user input (most likely less than a second), then it
immediately reenters doze mode. A typical application puts
the system into running mode only about 5% of the time.

To maximize battery life, the processor on the Palm Powered
handheld is kept out of running mode as much as possible. Any
interrupt generated on the handheld must therefore be capable of
“waking” up the processor. The processor can receive interrupts
from the serial port, the hard buttons on the case, the button on the

350 Palm OS Programmer’s Companion, Volume |

Palm System Support
Hardware Interaction

cradle, the programmable timer, the memory module slot, the real-
time clock (for alarms), the low-battery detector, and any built-in
peripherals such as a pager or modem.

Guidelines for Application Developers

Normally, applications don’t need to be aware of power
management except for a few simple guidelines. When an
application calls EvtGet Event to ask the system for the next event
to process, the system automatically puts itself into doze mode until
there is an event to process. As long as an application uses
EvtGetEvent, power management occurs automatically. If there
has been no user input for the amount of time determined by the
current setting of the auto-off preference, the system automatically
enters sleep mode without intervention from the application.

Applications should avoid providing their own delay loops.
Instead, they should use SysTaskDelay, which puts the system
into doze mode during the delay to conserve as much power as
possible. If an application needs to perform periodic work, it can
pass a time out to EvtGetEvent; this forces the unit to wake up out
of doze mode and to return to the application when the time out
expires, even if there is no event to process. Using these mechanisms
provides the longest possible battery life.

Power Management Calls

The system calls SysSleep to put itself immediately into low-
power sleep mode. Normally, the system puts itself to sleep when
there has been no user activity for the minimum auto-off time or
when the user presses the power key.

The SysSetAutoOffTime routine changes the auto-off time value.
This routine is normally used by the system only during boot, and
by the Preferences application. The Preferences application saves
the user preference for the auto-off time in a preferences database,
and the system initializes the auto-off time to the value saved in the
preferences database during boot. While the auto-off feature can be
disabled entirely by calling SysSetAutoOffTime with a time-out
of 0, doing this depletes the battery.

Palm OS Programmer’s Companion, Volume | 351

Palm System Support

The Microkernel

The current battery level and other information can be obtained
through the SysBatteryInfo routine. This call returns
information about the battery, including the current battery voltage
in hundredths of a volt, the warning thresholds for the low-battery
alerts, the battery type, and whether external power is applied to
the unit. This call can also change the battery warning thresholds
and battery type.

The Microkernel

Palm OS has a preemptive multitasking kernel that provides basic
task management.

Most applications don’t need the microkernel services because they
are handled automatically by the system. This functionality is
provided mainly for internal use by the system software or for
certain special purpose applications.

In this version of the Palm OS, there is only one user interface
application running at a time. The User Interface Application Shell
(UIAS) is responsible for managing the current user-interface
application. The UIAS launches the current user-interface
application as a subroutine and doesn’t get control back until that
application quits. When control returns to the UIAS, the UIAS
immediately launches the next application as another subroutine.
See “Power Management Calls” for more information.

Usually, the UIAS is the only task running. Occasionally though, an
application launches another task as a part of its normal operation.
One example of this is the Sync application, which launches a
second task to handle the serial communication with the desktop.
The Sync application creates a second task dedicated to the serial
communication and gives this task a lower priority than the main
user-interface task. The result is optimal performance over the serial
port without a delay in response to the user-interface controls.

Normally, there is no user interaction during a sync, so that the
serial communication task gets all of the processor’s time. However,
if the user does tap on the screen, for example, to cancel the sync,
the user-interface task immediately processes the tap, since it has a
higher priority. Alternatively, the Sync application could have been
written to use just one task, but then it would have to periodically

352 Palm OS Programmer’s Companion, Volume |

Palm System Support
Retrieving the ROM Serial Number

poll for user input during the serial communication, which would
hamper performance and user-interface response time.

NOTE: Only system software can launch a separate task. The
multi-tasking API is not available to developer applications.

Retrieving the ROM Serial Number

Some Palm™ handhelds, beginning with the Palm III product, hold a
12-digit serial number that identifies the handheld uniquely. (Earlier
handhelds do not have this identifier.) The serial number is held in a
displayable text buffer with no null terminator. The user can view
the serial number in the Application Launcher application. (The
pop-up version of the Launcher does not display the serial number.)
The Application Launcher also displays to the user a checksum digit
that you can use to validate user entry of the serial number.

To retrieve the ROM serial number programmatically, pass the
sysROMTokenSnum selector to the SysGetROMToken function. If
the SysGetROMToken function returns an error, or if the returned
pointer to the buffer is NULL, or if the first byte of the text buffer is
0xFF, then no serial number is available.

The DrawSerialNumOrMessage function shown in Listing 10.11
retrieves the ROM serial number, calculates the checksum, and
draws both on the screen at a specified location. If the handheld has
no serial number, this function draws a message you specify. This
function accepts as its input a pair of coordinates at which it draws
output, and a pointer to the message it draws when a serial number
is not available.

Listing 10.11 DrawSerialNumOrMessage

static void DrawSerialNumOrMessage (Intlé6 x, Intlé y, Char*
noNumberMessage)
{

Char* bufp;

UIntlée* buflen;

Exrr retval;

Intle6 count;

UInts8 checkSum;

Palm OS Programmer’s Companion, Volume | 353

Palm System Support
Retrieving the ROM Serial Number

Char checksumStr[2] ;
// holds the dash and the checksum digit

retval = SysGetROMToken (0, sysROMTokenSnum,
(UInt8**) &bufp,
&buflen) ;
if ((!retval) && (bufP) && ((UInt8) *bufP != OxFF))
// there's a valid serial number!
// Calculate the checksum: Start with zero, add each

digit,
// then rotate the result one bit to the left and
repeat.
checkSum = 0;
for (count=0; count<buflen; count++) {
checkSum += bufP[count];
checkSum = (checkSum<<l) | ((checkSum & 0x80) >>
7) ;

}

// Add the two hex digits (nibbles) together, +2

// (range: 2 - 31 ==> 2-9, A-W)

// By adding 2 to the result before converting to
ascii,

// we eliminate the numbers 0 and 1, which can be

// difficult to distinguish from the letters O and I.

checkSum = ((checkSum>>4) & 0x0F) + (checkSum & O0xO0F) +
2;

// draw the serial number and find out how wide it was

WinDrawChars (bufP, buflen, x, y);

X += FntCharsWidth (bufP, bufLen) ;

// draw the dash and the checksum digit right after it

checksumStr [0] = '-';

checksumStr[1] =

((checkSum < 10) ? (checkSum +'0'): (checkSum -10

+'A"));

WinDrawChars (checksumStr, 2, x, Vy);
}
else // there's no serial number
// draw a status message if the caller provided one
if (noNumberMessage)
WinDrawChars (noNumberMessage,
StrLen (noNumberMessage) ,x, V) ;

}

354 Palm OS Programmer’s Companion, Volume |

Palm System Support
Time

Time

The Palm Powered handheld has a real-time clock and
programmable timer as part of the 68328 processor. The real-time
clock maintains the current time even when the system is in sleep
mode (turned off). It’s capable of generating an interrupt to wake
the handheld when an alarm is set by the user. The programmable
timer is used to generate the system tick count interrupts (100
times/second) while the processor is in doze or running mode. The
system tick interrupts are required for periodic activity such as
polling the digitizer for user input, key debouncing, etc.

The date and time manager (called time manager in this chapter)
provides access to both the 1-second and 0.01-second timing
resources on the Palm Powered handheld.

¢ The 1-second timer keeps track of the real-time clock (date
and time), even when the unit is in sleep mode.

¢ The 0.01-second timer, also referred to as the system ticks,
can be used for finer timing tasks. This timer is not updated
when the unit is in sleep mode and is reset to 0 each time the
unit resets.

The basic time-manager API provides support for setting and
getting the real-time clock in seconds and for getting the current
system ticks value (but not for setting it). The system manager
provides more advanced functionality for setting up a timer task
that executes periodically or in a given number of system ticks.

This section discusses the following topics:

¢ Using Real-Time Clock Functions

¢ Using System Ticks Functions

Using Real-Time Clock Functions

The real-time clock functions of the time manager include
TimSetSeconds and TimGetSeconds. Real time on the Palm
Powered handheld is measured in seconds from midnight, Jan. 1,
1904. Call TimSecondsToDateTime and
TimDateTimeToSeconds to convert between seconds and a
structure specifying year, month, day, hour, minute, and second.

Palm OS Programmer’s Companion, Volume | 355

Palm System Support

Floating-Point

Using System Ticks Functions

The Palm Powered handheld maintains a tick count that starts at 0
when the handheld is reset. This tick increments

* 100 times per second when running on the Palm Powered
handheld

* 60 times per second when running on the Macintosh under
the Simulator

For tick-based timing purposes, applications should use the macro
SysTicksPerSecond, which is conditionally compiled for
different platforms. Use the function TimGetTicks to read the
current tick count.

Although the TimGetTicks function could be used in a loop to
implement a delay, it is recommended that applications use the
SysTaskDelay function instead. The SysTaskDelay function
automatically puts the unit into low-power mode during the delay.
Using TimGetTicks in a loop consumes much more current.

Floating-Point

The Palm OS supports IEEE-754 single and double precision
floating-point numbers declared with the C types f1oat and
double. Numbers of type f1loat occupy four bytes and have an
effective range of 1.17549e-38 to 3.40282e+38. Numbers of type
double occupy eight bytes and have an effective range of
2.22507e-308 to 1.79769e+308.

You can use basic arithmetic operations to add, subtract, multiply,
and divide numbers of type £loat and double. Higher-level
functions such as those in the standard C header file math . h are not
part of the core OS; you must either write them yourself, or you
must employ a third-party math library.

The standard IEEE-754 special “non-number” values of NaN (not a
number), +INF (positive infinity), and -INF (negative infinity) are
generated as appropriate if you perform an operation that produces
a result outside the range of numbers that can be represented. For
instance, dividing a positive number by 0 returns +INF.

356 Palm OS Programmer’s Companion, Volume |

Palm System Support
Floating-Point

The Float Manager contains functions that convert double-precision
floating-point numbers to and from a string using scientific
notation. It also contains FlpBufferCorrectedAdd and
FlpBufferCorrectedSub, which perform the indicated
operation and correct the result in those situations where the result
should be zero but isn’t due to the way that floating-point numbers
are represented. All of the Float Manager functions that either
accept or return a floating-point number require it to be declared as
an FlpDouble. The Float Manager defines a union,
FlpCompDouble, that you use to declare values that can be
interpreted either as a double or as an FlpDouble. You use this
union as shown here:

double dblFlpCorrectedAdd (double dl, double d2, Intlé acc) ({
FlpCompDouble fcdl, fcd2, fcdResult;

fcdl.d = di;

fcd2.d = d2;

FlpBufferCorrectedAdd (&fcdResult.fd, fcdl.fd, fcd2.fd,
acce) ;

return fcdResult.d;

NOTE: If you are using CodeWarrior, you have the option of
using F1pAToF, FlpCorrectedAdd, and FlpCorrectedSub
instead of F1pBufferAToF, FlpBufferCorrectedAdd, and
FlpBufferCorrectedSub. These “non-buffer’ functions all
return their results directly, rather than updating a value pointed to
by the first parameter. Because they return an FlpDouble—
which is a struct—and because the GCC compiler’s convention
for returning structures from functions is incompatible with Palm
OS, GCC users can only use the FlpBuffer... versions.

In the rare event that you need to work with the binary
representation of a double, the Float Manager also contains a
number of functions and macros that allow you to obtain and in
some cases alter the sign, mantissa, and exponent of a 64-bit
floating-point number. See Chapter 32, “Float Manager,” on

Palm OS Programmer’s Companion, Volume | 357

Palm System Support
Summary of System Features

page 695 of the Palm OS Programmer’s API Reference for the functions
and macros that make up the Float Manager.

The Float Manager, which was introduced in Palm OS 2.0, is
sometimes referred to as the New Float Manager to distinguish it
from the Float Manager that was part of Palm OS 1.0. The 1.0 Float
Manager, which is less accurate and less convenient to use (simple
operations such as addition require a call to a Float Manager
function), remains in the ROM solely for backward compatibility; its
functions are no longer publicly declared in the Palm OS SDK and
should no longer be used. The functions in the old Float Manager all
begin with “Fpl” rather than the current “Flp”; see Appendix C, “1.0
Float Manager.” on page 2353 of the Palm OS Programmer’s API
Reference for the functions that make up the original Float Manager.

Summary of System Features

Feature Manager Functions

FtrGet FtrGetByIndex
FtrSet FtrUnregister
FtrPtrNew FtrPtrFree
FtrPtrResize

Preferences Functions

PrefGetAppPreferences PrefGetAppPreferencesV10
PrefSetAppPreferences PrefSetAppPreferencesV10
PrefGetPreference PrefSetPreference
PrefOpenPreferenceDB PrefOpenPreferenceDBV10
PrefGetPreferences PrefSetPreferences

358 Palm OS Programmer’s Companion, Volume |

Palm System Support
Summary of System Features

Sound Manager Functions

SndCreateMidil ist SndDoCmd
SndGetDefaultVolume SndInterruptSmflrregardless
SndPlaySmf SndPlaySmflIrregardless
SndPlaySmfResource SndPlaySmfResourcelrregardless
SndPlaySystemSound

System Manager Functions

System Dialogs

SysGraffitiReferenceDialog SysKeyboardDialog
SysKeyboardDialogV10

Power Management

SysBatteryInfo SysBatteryInfoV20
SysSetAutoOffTime SysTaskDelay

System Management

SysLibFind SysLibl.oad
SysRandom SysReset

SysGremlins
Working With Strings and Resources

SysBinarySearch SysInsertionSort
SysQSort SysCopyStringResource
SysCreatePanelL ist SysStringBylndex

SysFormPointerArrayToStrings
Database Support

SysCreateDataBaseList SysCurAppDatabase

Error Handling
Event Handling
SysHandleEvent

Palm OS Programmer’s Companion, Volume | 359

Palm System Support
Summary of System Features

System Manager Functions

System Information

SysGetOSVersionString SysGetStackInfo
SvsGetROMToken SysTicksPerSecond

Time Manager Functions

Allowing User to Change Date and Time

DavDrawDays SelectDay
DavDrawDavSelector SelectTimeV33
DayHandleEvent SelectDayV10

Changing the Date

DateAdjust TimAdjust
TimSetSeconds

Converting to Date Format

DateDavysToDate DateSecondsToDate
TimSecondsToDateTime

Converting Dates to Other Formats

DateToAscii TimeToAscii
DateToDays DateToDOWDMFormat
TimGetSeconds TimDateTimeToSeconds
TimGetTicks

Date Information

DayOfMonth DayOfWeek
DavysInMonth

360 Palm OS Programmer’s Companion, Volume |

Palm System Support
Summary of System Features

Float Manager Functions

FlpAToF FlpBufferAToF
FlpBufferCorrected Add FlpBufferCorrectedSub
FlpCorrected Add FlpCorrectedSub
FlpFToA FlpNegate
FlpSetNegative FlpSetPositive

Palm OS Programmer’s Companion, Volume | 361

Palm System Support
Summary of System Features

362 Palm OS Programmer’s Companion, Volume |

11

Localized
Applications

When you write an application, or any other type of software, you
need to take special care when working with characters, strings,
numbers, and dates, as different countries represent these items in
different ways. This chapter describes how to write code that works
properly for any language that is supported by Palm OS®. he
chapter covers:

e | ocalization Guidelines

¢ Using Overlays to Localize Resources

e Dates
e Numbers

¢ Obtaining Locale Information

* Notes on the Japanese Implementation

e Summary of Localization

In addition to this chapter, also see Chapter 8, “Text,” on page 251,
which describes how to work with text and characters in a way that
makes your application easily localizable.

NOTE: PalmOSGilue provides backward compatibility for many
of the functions described in this chapter. When a function has a
PalmOSGilue equivalent, that equivalent is shown in parentheses
following the function name. See “Backward Compatibility with

PalmOSGlue” on page 14 for more information on PalmOSGilue.

This chapter does not cover how to actually perform localization of
resources. For more information on this subject, see the Palm OS
Programming Development Tools Guide.

Palm OS Programmer’s Companion, Volume | 363

Localized Applications
Localization Guidelines

Localization Guidelines

If there is a possibility that your application is going to be localized,
you should follow these guidelines when you start planning the
application. It’s a good idea to follow these guidelines even if you
don’t think your application is going to be localized.

* If you use the English language version of the software as a
guide when designing the layout of the screen, try to allow:

— extra space for strings
— larger dialogs than the English version requires

¢ Don’t put language-dependent strings in code. If you have to
display text directly on the screen, remember that a one-line
warning or message in one language may need more than
one line in another language. See the section “Strings” on
page 258 in Chapter 8, “Text,” for further discussion.

* Don’t depend on the physical characteristics of a string, such
as the number of characters, the fact that it contains a
particular substring, or any other attribute that might
disappear in translation.

¢ Database names must use only 7-bit ASCII characters (0x20
through 0x7E). If an actual PDB name is displayed to the
user, the application should have a way of associating a
localizable name (resource based, if possible) with each
database.

¢ Use the functions described in this chapter when working
with characters, strings, numbers, and dates.

* Consider using string templates as described in the section
“Dynamically Creating String Content” on page 265 in
Chapter 8. Use as many parameters as possible to give
localizers greater flexibility. Avoid building sentences by
concatenating substrings together, as this often causes
translation problems.

¢ Abbreviations may be the best way to accommodate the

particularly scarce screen real estate on the Palm Powered™
handheld.

e Remember that user interface elements such as lists, fields,
and tips scroll if you need more space.

364 Palm OS Programmer’s Companion, Volume |

Localized Applications
Using Overlays to Localize Resources

The book Palm OS User Interface Guidelines provides further user
interface guidelines.

Using Overlays to Localize Resources

Palm OS version 3.5 adds support for localizing resource databases
through overlays. Localization overlays provide a method for
localizing a software module without requiring a recompile or
modification of the software. Each overlay database is a separate
resource database that provides an appropriately localized set of
resources for a single software module (the PRC file, or base
database) and a single target locale (language and country).

No requirements are placed on the base database, so for example,
third parties can construct localization overlays for existing
applications without forcing any modifications by the original
application developer. In rare cases, you might want to disable the
use of overlays to prevent third parties from creating overlays for
your application. To do so, you should include an 'xprf'=0
resource (symbolically named sysResTExtPrefs) in the database
and set its disableOverlays flag. This resource is defined in
UIResources.r.

An overlay database has the same creator as the base database, but
its type is 'ovly', and a suffix identifying the target locale is
appended to its name. For example, Datebook . prc might be
overlaid with a database named Datebook jpJP, which indicates
that this overlay is for Japan. Each overlay database has an
'ov1ly'=1000 resource specifying the base database’s type, the
target locale, and information necessary to identify the correct
version of the base database for which it was designed.

The Palm OS SDK provides tools that you can use to create overlays.
See the “PRC to Overlay Tool” chapter in the Palm OS Programming
Development Tools Guide for more information on creating overlays.

When a PRC file is opened on a system that supports overlays, the
Overlay Manager determines what the current locale is for this
handheld, and it looks for an overlay matching the base database
and the locale. The overlay database’s name must match the base
database’s name, its suffix must match the locale’s suffix, and it
must have an ' ovly'=1000 resource that matches the base

Palm OS Programmer’s Companion, Volume | 365

Localized Applications
Using Overlays to Localize Resources

database. If the name, suffix, and overlay resource are all correct, the
overlay is opened in addition to the PRC file. When the PRC file is
closed, its overlay is closed as well.

The overlay is opened in read-only mode and is hidden from the
programmer. When you open a database, you'll receive a reference
to the base database, not the overlay. You can simply make Resource
Manager calls like you normally would, and the Resource Manager
accesses the overlay where appropriate.

When accessing a localizable resource, do not use functions that
search for a resource only in the database you specify. For example:

// WRONG! searches only one database.

DmOpenRef dbP = DmNextOpenResDatabase (NULL) ;

UIntlé resIndex = DmFindResource (dpP, strRsc,
strRscID) ;

MemHandle resH = DmGetResourcelIndex (dbP,
resIndex) ;

In the example above, dbP is a reference to the most recently opened
database, which is typically the overlay version of the database.
Passing this reference to DmFindDatabase means that you are
searching only the overlay database for the resource. If you're
searching for a non-localized resource, DmFindResource won't be
able to locate it. Instead, you should use DmGet 1Resource, which
searches the most recently opened database and its overlay for a
resource, or DmGetResource, which searches all open databases
and their overlays.

// Right. DmGetlResource searches both

// databases.

MemHandle resH = DmGetlResource (strRsc,
strRscID) ;

// Or use DmGetResource to search all open

// databases.

MemHandle resH = DmGetResource (strRsc,
strRscID) ;

The Data Manager only opens an overlay if the resource database is
opened in read-only mode. If you open a resource database in read-
write mode, the associated overlay is not opened. What’s more, if
you modify the an overlaid resource in the base database, the

366 Palm OS Programmer’s Companion, Volume |

Localized Applications
Dates

checksum in the overlay’s 'ovly' resource becomes invalid, which
prevents the overlay from being used at all. Thus if you change the
resource database, you must also change the overlay database.

You typically don’t work with the Overlay Manager directly
although it does provide a few public functions. One potentially
useful function is OmGet CurrentLocale (or
OmGlueGetCurrentLocale), which returns a structure
identifying the locale on this handheld.

Dates

If your application deals with dates and times, it should abide by
the values the user has set in the system preference for date and
time display. The default preferences at startup are vary among
locales, and the default values can be overridden by the user.
To check the system preferences call PrefGetPreference with
one of the values listed in the second column of Table 11.1. The third
column lists an enumerated type that helps you interpret the value.
Table 11.1 Date and time preferences

Preference Name Returns a value of type

Date formats prefDateFormat, DateFormatType

(i.e., month first prefLongDateFormat

or day first)

Time formats prefTimeFormat TimeFormatType

(i.e., use a 12-

hour clock or

use a 24-hour

clock)

Start day of prefWeekStartDay 0 (Sunday) or 1 (Monday)

week (i.e.,

Sunday or

Monday)

Palm OS Programmer’s Companion, Volume | 367

Localized Applications

Numbers
Table 11.1 Date and time preferences (continued)
Preference Name Returns a value of type
Local time zone prefMinutesWestOfGMT Minutes east of Greenwich
(before Palm OS 4.0), Mean Time (GMT), also
prefTimeZone (Palm OS 4.0 and known as Universal
higher) Coordinated Time (UTC).
Daylight prefDaylightSavings (before Before 4.0, the
savings time Palm OS 4.0), DaylightSavingsTypes
adjustment prefDaylightSavingAdjustment described the daylight
(Palm OS 4.0 and higher) savings adjustment. In
Palm OS 4.0 and higher,
the preference is stored as
the number of minutes by
which to adjust the current
time.
IMPORTANT: The prefMinutesWestOfGMT preference
mentioned above is not the same as the prefTimeZone
preference. The prefMinutesWestOfGMT returns an unsigned
value ranging from 0 to 1440. The prefTimeZone preference
ranges from -720 to 720.
To work with dates in your code, use the Date and Time Manager
APIL. It contains functions such as DateToAscii, DayOfMonth,
DayOfWeek, DaysInMonth, and DateTemplateToAscii, which
allow you to work with dates independent of the user’s preference
settings.
Numbers

If your application displays large numbers or floating-point
numbers, you must check and make sure you are using the

368 Palm OS Programmer’s Companion, Volume |

Localized Applications
Obtaining Locale Information

appropriate thousands separator and decimal separator for the
handheld’s country by doing the following (see Listing 11.1):

1. Store numbers using US conventions, which means using a
‘" 7

, as the thousands separator and a decimal point (.) as the
decimal separator.

2. Use PrefCGetPreference and
LocGetNumberSeparators to retrieve information about
how the number should be displayed.

3. Use StrLocalizeNumber to perform the localization.

4. If a user enters a number that you need to manipulate in
some way, convert it to the US conventions using
StrDelocalizeNumber.

Listing 11.1 Working with numbers

// store numbers using US conventions.
Char *jackpot = "20,000,000.00";

Char thou; // thousand separator

Char dp; // decimal separator

// Retrieve user’s preferred number format.
LocGetNumberSeparators ((NumberFormatType)

PrefGetPreference (prefNumberFormat), &thou,
&dp) ;
// Localize jackpot number. Converts "," to thou
// and "." to dp.

StrLocalizeNumber (jackpot, thou, dp);

// Display string.

// Assume inputString is a number user entered,

// convert it to US conventions this way. Converts
// thou to "," and dp to "."

StrDelocalizeNumber (inputNumber, thou, dp);

Obtaining Locale Information

Some applications may require information about the current locale.
For example, many applications need to know the format for
displaying dates or numbers, which is determined in part by the
current locale (and described in more detail in the section “Dates”
and “Numbers” in this chapter). Other applications may need other
information, such as the country name.

Palm OS Programmer’s Companion, Volume | 369

Localized Applications
Obtaining Locale Information

The information that most applications require is stored in the
system preferences structure and can be obtained using
PrefGetPreference. This is the recommended way of obtaining
locale-specific settings because the user can override many of these
settings. Applications should always honor the user’s preferences
rather than the locale defaults.

Other locale-specific settings can not be set by the user and are not
stored in the system preferences. Instead, these settings are stored in
a private resource that contains information about several possible
locales, including the locale currently used by the system. For
example, the user cannot change the symbol used for the local
currency. If your application needs this information, it must use the
Locale Manager function LmGetLocaleSetting to retrieve it. The
Locale Manager is new in Palm OS 4.0, but for backwards
compatibility you can use the corresponding PalmOSGlue function
LmGlueGetLocaleSetting. Listing 11.2 shows how to use
LmGlueGetLocaleSetting.

Listing 11.2 Retrieving a locale setting using Locale Manager

LmLocaleType locale;
Char currencySymbol [kMaxCurrencySymbolLen+1] ;
UIntlé index;

// Find out what the current locale is.
OmGlueGetCurrentLocale (&locale) ;

// Find out which index in the locale resource
// contains info about that locale.
LmGluelLocaleToIndex (&locale, &index) ;

// Get the currency symbol stored in the locale at

// that index.

LmGlueGetLocaleSetting (index, lmChoiceCurrencySymbol,
currencySymbol, sizeof (currencySymbol)) ;

Table 11.2 shows which types of information about the current
locale should be retrieved from the system preferences and which
types should be retrieved from the locale resource. Of course, if you
want to retrieve information about a different locale or if you want
to look up the default used for the current locale, you would always
use the Locale Manager instead of the Preferences Manager.

370 Palm OS Programmer’s Companion, Volume |

Localized Applications
Obtaining Locale Information

Table 11.2 Obtaining locale information

Value

Function used to retrieve value

Language code

Locale
description

Country code

Country name

Currency name

Currency symbol

Unique currency

symbol

Measurement

system (metric or

English)

Number formats

Number of
decimal places
for monetary
values

Starting day of
the week

Date formats

Time format

PrefGetPreference (preflanguage)

PrefGetPreference (preflocale)

PrefGetPreference (prefCountry)

LmGlueGetLocaleSetting (. .
)

LmGlueGetLocaleSetting (...,
1lmChoiceCurrencyName, ...)

., lmChoiceCountryName,

LmGlueGetLocaleSetting (...,
1lmChoiceCurrencySymbol, ...)

LmGlueGetLocaleSetting (...,
IlmChoiceUniqueCurrencySymbol, ...)

PrefGetPreference (prefMeasurementSystem)

PrefGetPreference (prefNumberFormat)

LmGlueGetLocaleSetting (...,
IlmChoiceCurrencyDecimalPlaces, ...)

PrefGetPreference (prefWeekStartDay)

PrefGetPreference (prefDateFormat)
PrefGetPreference (prefLongDateFormat)

PrefGetPreference (prefTimeFormat)

Palm OS Programmer’s Companion, Volume | 371

Localized Applications
Notes on the Japanese Implementation

Table 11.2 Obtaining locale information (continued)

Value Function used to retrieve value

Time zone PrefGetPreference (prefMinutesWestOfGMT) (pre 4.0)
PrefGetPreference (prefTimeZone) (4.0 and higher)

Daylight savings PrefGetPreference (prefDaylightSavings) (pre 4.0)
time PrefGetPreference (prefDaylightSavingAdjustment)
(4.0 and higher)

Notes on the Japanese Implementation

This section describes programming practices for applications that
are to be localized for Japanese use. It covers:

¢ Japanese Character Encoding

¢ Japanese Character Input
The Calculator Button

Displaying Japanese Strings on Ul Objects
Displaying Error Messages

Japanese Character Encoding

The character encoding used on Japanese systems is based on
Microsoft code page 932. The complete 932 character set (JIS level 1
and 2) is supported in both the standard and large font sizes. The
bold versions of these two fonts contain bolded versions of the
glyphs found in the 7-bit ASCII range, but on some handhelds, the
single-byte Katakana characters and the multi-byte characters are
not bolded.

Japanese Character Input

On current Japanese handhelds, users enter Japanese text using
Latin (ASCII) characters, and special software called a front-end
processor (FEP) transliterates this text into Hiragana or Katakana
characters. The user can then ask the FEP to phonetically convert
Hiragana characters into a mixture of Hiragana and Kanji (Kana-
Kanji conversion).

372 Palm OS Programmer’s Companion, Volume |

Localized Applications
Notes on the Japanese Implementation

Four Graffiti® area icons added to the Japanese handheld control the
FEP transliteration and conversion process. These four FEP buttons
are arranged vertically between the current left-most icons and the
Graffiti area. The top-most FEP button tells the FEP to attempt
Kana-Kanji conversion on the inline text. The next button confirms
the inline text and terminates the inline conversion session. The
third button toggles the transliteration mode between Hiragana and
Katakana. The last button toggles the FEP on and off.

Japanese text entry is always inline, which means that
transliteration and conversion happen directly inside of a field. The
tield code passes events to the FEP, which then returns information
about the appropriate text to display.

During inline conversion, the Graffiti space stroke acts as a shortcut
for the conversion FEP button and the Graffiti return stroke acts as a
shortcut for the confirm FEP button.

The Calculator Button

On current Japanese handhelds, the Calculator silkscreen button
doesn’t generate a calcChr. Instead, it generates a keyDown event
with the event’s data.keyDown. chr field set to keyboardChr
and it’s data.keyDown.modifiers field set to
commandKeyMask.

Displaying Japanese Strings on Ul Objects

To conserve screen space, you should use half-width Katakana
characters on user interface elements (such as buttons, menu items,
labels, and pop-up lists) whenever the string contains only
Katakana characters. If the string contains a mix of Katakana and
either Hiragana, Kanji, or Romaji, then use the full-width Katakana
characters instead.

Displaying Error Messages

You may have code that uses the macros ExrrFatalDisplayIf and
ErrNonFatalDisplayIf to determine error conditions. If the
error condition occurs, the system displays the file name and line
number at which the error occurred along with the message that
you passed to the macro. Often these messages are hard-coded

Palm OS Programmer’s Companion, Volume | 373

Localized Applications
Summary of Localization

strings. On Japanese systems, the Palm OS traps the messages
passed to these two macros and displays a generic message
explaining that an error has occurred.

You should only use ErrFatalDisplayIf and
ErrNonFatalDisplayIf for totally unexpected errors. Do not use
them for errors that you believe your end users will see. If you wish
to inform your users of an error, use a localizable resource to display
the error message instead of ErrFatalDisplayIf or

ErrNonFatalDisplayIf.

Summary of Localization

Localizing Numbers

StrLocalizeNumber
LocGetNumberSeparators

StrDelocalizeNumber

Locale Manager

LmGetlocaleSetting
Lml.ocaleTolndex

LmGetNuml.ocales

International Manager

IntlGetRoutineAddress

IntlSetRoutineAddress

Overlay Manager

OmGetCurrentlLocale
OmGetIndexedl ocale
OmGetRoutineAddress
OmSetSysteml ocale

OmGetSysteml ocale
OmlLocaleToOverlayDBName
OmOverlayDBNameTol ocale
OmGetNextSystemI ocale

374 Palm OS Programmer’s Companion, Volume |

Displaying

12

Debugging
Strategies

You can use a Palm OS® system manager called the error manager to
display unexpected runtime errors such as those that typically show
up during program development. Final versions of applications or
system software won’t use the error manager.

The error manager API consists of a set of functions for displaying
an alert with an error message, file name, and the line number
where the error occurred. If a debugger is connected, it is entered
when the error occurs.

The error manager also provides a “try and catch” mechanism that
applications can use for handling such runtime errors as out of
memory conditions, user input errors, etc.

This section helps you understand and use the error manager,
discussing the following topics:

¢ Displaying Development Errors
¢ Using the Error Manager Macros
¢ The Try-and-Catch Mechanism

* Summary of Debugging API

This chapter only describes programmatic debugging strategies; to
learn how to use the available tools to debug your application, see
the book Palm OS Programming Development Tools Guide.

Development Errors

The error manager provides some compiler macros that can be used
in source code. These macros display a fatal alert dialog on the
screen and provide buttons to reset the handheld or enter the
debugger after the error is displayed. There are three macros:

Palm OS Programmer’s Companion, Volume | 375

Debugging Strategies
Using the Error Manager Macros

ErrDisplay, ErrFatalDisplavIf, and
ErrNonFatalDisplavIf.

* ErrDisplay always displays the error message on the
screen.

® ErrFatalDisplayIf and ErrNonFatalDisplayIf
display the error message only if their first argument is
TRUE.

The error manager uses the compiler define ERROR CHECK LEVEL
to control the level of error messages displayed. You can set the
value of the compiler define to control which level of error checking
and display is compiled into the application. Three levels of error
checking are supported: none, partial, and full.

If you set The compiler...

ERR _CHECK LEVEL to...

ERROR CHECK NONE (0) Doesn’t compile in any error calls.
ERROR_CHECK_PARTIAL Compiles in only ErrDisplay
(1) and ErrFatalDisplayIf calls.
ERROR_CHECK FULL (2) Compiles in all three calls.

During development, it makes sense to set full error checking for
early development, partial error checking during alpha and beta test
periods, and no error checking for the final product. At partial error
checking, only fatal errors are displayed; error conditions that are
only possible are ignored under the assumption that the application
developer is already aware of the condition and designed the
software to operate that way.

Using the Error Manager Macros

Calls to the error manager to display errors are actually compiler
macros that are conditionally compiled into your program. Most of
the calls take a boolean parameter, which should be set to true to
display the error, and a pointer to a text message to display if the
condition is true.

376 Palm OS Programmer’s Companion, Volume |

Debugging Strategies
The Try-and-Catch Mechanism

Typically, the boolean parameter is an in-line expression that
evaluates to true if there is an error condition. As a result, both the
expression that evaluates the error condition and the message text
are left out of the compiled code when error checking is turned off.
You can call ErrFatalDisplayIf, or ErrDisplay, but using
ErrFatalDisplayIf makes your source code look neater.

For example, assume your source code looks like this:

result = DoSomething() ;
ErrFatalDisplayIf (result < O,
"unexpected result from DoSomething") ;

With error checking turned on, this code displays an error alert
dialog if the result from DoSomething () is less than 0. Besides the
error message itself, this alert also shows the file name and line
number of the source code that called the error manager. With error
checking turned off, both the expression evaluation err < 0 and
the error message text are left out of the compiled code.

The same net result can be achieved by the following code:

result = DoSomething() ;
#if ERROR_CHECK LEVEL != ERROR CHECK NONE
if (result < 0)

ErrDisplay ("unexpected result from
DoSomething") ;
#endif

However, this solution is longer and requires more work than
simply calling ExrrFatalDisplayIf.Italso makes the source code
harder to follow.

The Try-and-Catch Mechanism

The error manager is aware of the machine state of the Palm
Powered™ handheld and can therefore correctly save and restore
this state. The built-in try and catch of the compiler can’t be used
because it’s machine dependent.

Try and catch is basically a neater way of implementing a goto if an
error occurs. A typical way of handling errors in the middle of a
routine is to go to the end of the routine as soon as an error occurs
and have some general-purpose cleanup code at the end of every

Palm OS Programmer’s Companion, Volume | 377

Debugging Strategies
The Try-and-Catch Mechanism

routine. Errors in nested routines are even trickier because the result
code from every subroutine call must be checked before continuing.

When you set up a try/catch, you are providing the compiler with a
place to jump to when an error occurs. You can go to that error
handling routine at any time by calling ExrThrow. When the
compiler sees the ErrThrow call, it performs a goto to your error
handling code. The greatest advantage to calling ExrrThrow,
however, is for handling errors in nested subroutine calls.

Even if ErrThrow is called from a nested subroutine, execution
immediately goes to the same error handling code in the higher-
level call. The compiler and runtime environment automatically
strip off the stack frames that were pushed onto the stack during the
nesting process and go to the error handling section of the higher-
level call. You no longer have to check for result codes after calling
every subroutine; this greatly simplifies your source code and
reduces its size.

Using the Try and Catch Mechanism

The following example illustrates the possible layout for a typical
routine using the error manager’s try and catch mechanism.

Listing 12.1 Try and Catch Mechanism Example

ErrTry {

p
if

MemSet (p,

MemPtrNew (1000) ;
(!p) ErrThrow (errNoMemory) ;
1000, 0);

CreateTable (p) ;
PrintTable (p) ;

}

ErrCatch(err) {

//
//
//

//
//

//
//

Recover or cleanup aftera failure in the
above Try block."err" is an int
identifying the reason for the failure.

You may call ErrThrow() if you want to
jump out to the next Catch block.

The code in this Catch block doesn’t
execute 1f the above Try block completes

378 Palm OS Programmer’s Companion, Volume |

Debugging Strategies
Summary of Debugging API

// without a Throw.

if (err == errNoMemory)
ErrDisplay ("Out of Memory") ;
else
ErrDisplay ("Some other error");
} ErrEndCatch
// You must structure your code exactly as
// above. You can’t have an ErrTry without an
//ErrCatch { } ErrEndCatch, or vice versa.

Any call to ExrrThrow within the ExrTry block results in control
passing immediately to the ErrCatch block. Even if the subroutine
CreateTable called ErrThrow, control would pass directly to the
ErrCatch block. If the ErrTry block completes without calling
ErrThrow, the ErrCatch block is not executed.

You can nest multiple ExrrTry blocks. For example, if you wanted to
perform some cleanup at the end of CreateTable in case of error,

e Put ErrTry/ErrCatch blocks in CreateTable
¢ Clean up in the ExrrCatch block first
¢ Call ExxThrow to jump to the top-level ExrrCatch

Summary of Debugging API

Error Manager Functions

Displaying Errors

ErrAlert ErrDisplay
ErrDisplayFileLineMsg ErrFatalDisplaylf

ErrNonFatalDisplaylf

Catching Exceptions

ErrCatch ErrEndCatch
ErrExceptionlist ErrThrow
ErrTry

Palm OS Programmer’s Companion, Volume | 379

Debugging Strategies
Summary of Debugging API

380 Palm OS Programmer’s Companion, Volume |

13

Standard |10
Applications

The Palm OS® supports command line (UNIX style) applications for
debugging and special purposes such as communications utilities.
This capability is not intended for general users, but for developers.
This feature is not implemented in the Palm OS, but rather by
additional C modules that you must link with your application.

NOTE: Don’t confuse this standard IO functionality with the file
streaming API. They are unrelated.

There are two parts necessary for a standard IO application:
¢ The standard IO application itself.

A standard IO application is not like a normal Palm™
application. It is executed by a command line and has
minimal user interface. It can take character input from the
stdin device (the keyboard) and write character output to the
stdout window.

¢ The standard IO provider application.

A standard IO provider application is necessary to execute
and see output from a standard IO application. The standard
IO provider application is a normal Palm application that
provides a field in which you can enter commands to execute
standard IO applications. The field also serves as a stdout
window where output from the executing application is
written.

The details of creating these two different applications are described
in the following sections.

Palm OS Programmer’s Companion, Volume | 381

Standard 10 Applications
Creating a Standard 10 Application

Creating a Standard |0 Application

To create a standard IO application, you must include the header file
StdIOPalm.h. In addition to including this header, you must link
the application with the module StdI0Palm. c. This module
provides a PilotMain routine that extracts the command line
arguments from the cmd and cmdPBP parameters and the glue code
necessary for executing the appropriate callbacks supplied by the
standard IO provider application.

You build the application normally, but give it a database type of
sioDBType ('sdio’) instead of 'appl'. In addition, it must be named
“Cmd-cmdname” where cmdname is the name of the command used
to execute the application. For example, the ping command would
be placed in a database named “Cmd-ping”.

™

In the Palm VII' handheld, the Network panel, whose log window
is a standard IO provider application, has two standard IO
commands built-in: info and finger. The ROM has two additional
ones: ping and nettrace.

When compiling for the Palm Powered " handheld, the entry point
must be named SioMain and must accept two parameters: argc
and argv. Here’s the simplest possible example of a standard IO
application.

#include <StdIOPalm.h>
Intlé SioMain (UIntlé argc, Char* argv[1)

{
}

printf (“Hello World\n”) ;

Standard IO applications can use several input and output functions
that mimic their similarly named UNIX counterparts. These are
listed in the summary table at the end of this chapter.

Your standard IO application can accept input from stdin and write
output to stdout. The stdin device corresponds to the text field in
the standard IO provider application that is used for input and
output. The stdout device corresponds to that same text field.

382

Palm OS Programmer’s Companion, Volume |

Standard 10 Applications
Creating a Standard 10 Provider Application

Creating a Standard 10 Provider Application

In order for a standard IO application to be invoked and able to
provide results, you need a standard 1O provider application. This
application provides the user interface support; that is, the stdin
device support and the stdout window that the standard IO
application reads from and writes to.

The standard IO provider launches the standard IO application
when the user types in a command line and Return (using Graffiti®).
The provider application passes a structure pointer that contains the
callbacks necessary for performing IO to the standard 10
application through the cmdPBP parameter of PilotMain.

To create a standard IO provider application, you must link the
application with the module StdIOProvider.c.

To handle input and output, the standard IO provider application
must provide a form with a text field and a scroll bar. The standard
IO provider application must do the following:

1. Call SioInit during application initialization. SioInit
saves the object ID of the form that contains the input/output
field, the field itself, and the scroll bar.

2. Call sioHandleEvent from the form's event handler before
doing application specific processing of the event. In other
words, the form event handler that the application installs
with FrmSetEventHandler should calFSioHandl eEvent
before it does anything else with the event.

3. Call sioFree during application shutdown.

The application is free to call any of the standard IO macros and
functions between the SioInit and SioFree calls. If the current
form is not the standard IO form when these calls are made, they
will record changes to the active text and display it the next time the
form becomes active.

A typical standard IO provider application will have a routine
called ApplicationHandleEvent, which gets called from its
main event loop after SysHandleEvent and MenuHandleEvent.
An example is shown in Listing 13.1.

Palm OS Programmer’s Companion, Volume | 383

Standard 10 Applications
Creating a Standard 10 Provider Application

Listing 13.1 Standard 10 Provider ApplicationHandleEvent
Routine

static Boolean ApplicationHandleEvent (EventPtr event)

{

FormType* frm;
UIntlé formId;

if (event-s>eType == frmLoadEvent)
formId = event->data.frmLoad.formID;
frm = FrmInitForm (formId) ;
FrmSetActiveForm (frm) ;

switch (formId) ({
case myViewWithStdIO:
FrmSetEventHandler (frm, MyViewHandleEvent) ;
break;

}

return (true) ;

}

return (false);

}

A typical application form event handler is shown in Listing 13.2.

Listing 13.2 Standard 10 Provider Form Event Handler

static Boolean MyViewHandleEvent (EventPtr event)
{

FormType* frm;

Boolean handled = false;

// Let StdIO handler do its thing first.
if (SioHandleEvent (event)) return true;

// If StdIO did not completely handle the event...
if (event-s>eType == ctlSelectEvent) {
switch (event->data.ctlSelect.controlID) {
case myViewDoneButtonID:
FrmGotoForm (networkFormID) ;
handled = true;
break;

384 Palm OS Programmer’s Companion, Volume |

Standard 10 Applications
Summary of Standard 10

else if (event->eType == menuEvent)

return MyMenuDoCommand (event->data.menu.itemID) ;
else if (event-s>eType == frmUpdateEvent) {
MyViewDraw (FrmGetActiveForm()) ;
handled true;

}

else if (event->eType == frmOpenEvent)
frm FrmGetActiveForm() ;
MyViewInit (frm) ;
MyViewDraw(frm);
handled true;

}

else if (event->eType frmCloseEvent)
frm FrmGetActiveForm() ;
MyViewClose (frm) ;

}

return

{

{

(handled) ;

Summary of Standard 10

Standard 10 Macros and Functions

fgetc Siofgets
fgets Siofprintf
fprintf Siofputc
fputc Siofputs
fputs Siogets
getchar Sioprintf
gets Sioputs
printf Siosystem
putc Siovfprintf
putchar sprintf
puts system
SioAddCommand viprintf
Siofgetc vsprintf

Palm OS Programmer’s Companion, Volume | 385

Standard 10 Applications
Summary of Standard 10

Application-Defined Functions

SioMain

Standard 10 Provider Functions

SioClearScreen SioHandleEvent
SioExecCommand Siolnit
SioFree

386 Palm OS Programmer’s Companion, Volume |

Index

Numerics

0.01-second timer 355
1.0 heaps 183

16-bit color 145
1-second timer 355
2.0 heaps 183

3.0 heaps 183

32K jumps 184
68328 processor 171

A

Alarm Manager 306-312
alarm sound 306
and Attention Manager 290, 301
and sleep mode 311
procedure alarms 302, 311
reminder dialog boxes 306
alarms 7
and expansion 218
delayed in sleep mode 306
displaying 301
interaction with menus 312
multiple 284
playing a sound 306
setting 307
alert manager 85
alerts, system-defined 85
allocating handles 184
AlmGetAlarm 308
AlmGetProcAlarm 311
AlmSetAlarm 307, 308
AlmSetProcAlarm 311
ANSI C libraries 6
API naming conventions 6
appInfoStringsRsc 117
ApplnfoType 117
appl database 11
application design
assigning version number 198
handling system messages 8
removing deleted records 198
using lists 112
application icon 154
name 154

size 8
application launcher 20
and expansion 215
application name 154
on expansion cards 216, 235
application preferences database 8
application record database 8
application startup 19-51
application-defined features 318
applications
control flow 4
event driven 4
running from a card 235
architecture
expansion 210
architecture of memory 171
ARM-native code
calling 339
attention indicator 285, 288, 289
enabling and disabling 305
Attention Manager 283-305
and Alarm Manager 290, 301
and existing applications 290, 301
and hard and soft buttons 288
and HotSync 300, 302
and procedure alarms 311
and SMS application 293
attention indicator 285, 288, 289, 305
callback function 291, 293
deleting items 303
detail dialog 286
dismissing items 287
displaying 289, 305
displaying alarms 301
enumerating items 300
first time flag 295
getting the user’s attention 291
go to item 288
insistent items 285, 286, 302
invalid items 299
launch codes 293
list dialog 286
multiple items 290, 300
operation 285
periodically updating 302
redrawing items 304

Palm OS Programmer’s Companion, Volume | 387

sleep mode operation 304
snoozing items 287, 301
sounds 298

special effects 298

subtle items 285, 288, 302
triggering a custom effect 298
updating items 302, 303, 311
validating items 300

Attention Manager commands 294, 298

draw detail 295

draw list 296

go there 299

got it 300

iterate 300

play sound 298

snooze 301

trigger special effects 301
Attention Manager dialogs

detail dialog 286

drawing 294

drawing selected item 296

list dialog 286

text and background colors 296

AttnDoSpecialEffects 301
AttnForgetlt 298, 299, 300, 303
AttnGetAttention 291, 298, 301
AttnGetCounts 302
Attnlterate 300
AttnListOpen 305
AttnUpdate 303, 311
auto-off 351

timer 66
auto-repeat 65

back-up of data to PC 170
BarBeamBitmap 111
BarCopyBitmap 111
BarCutBitmap 111
BarDeleteBitmap 110
BarInfoBitmap 111
BarPasteBitmap 110
BarSecureBitmap 111
BarUndoBitmap 111
battery 352

conservation using modes 351
life, maximizing 350
bitmap family 130
BitmapFlagsType 150
bitmapped font 268
bitmaps 123
bitmap family 130
masking 124
transparent 124
BitmapType 130, 150
bits behind menu bar 106
blueBits 151
BmpCreate 136
boldFont 269
booting 337
button objects 92
Button resource 71
highlighting 92

C

Calculator Button 373
calibrating digitizer 63
card insertion and removal 218
CardInfo application 230, 243
cards

expansion 209
carriage returns 103
categories

maximum number 8
CategoryGetName 119
categoryHideEditCategory 121
Categorylnitialize 117
CategorySetTriggerLabel 119
Char 253
character encoding 252
character set 252
CharAttr.h 256
Chars.h 254
check box object 97
Checkbox 71
checking menu visibility 107
chunks 179

resizing 182

size 182

388 Palm OS Programmer’s Companion, Volume |

clock, real-time 355

CodeWarrior IDE 15

color translation table 146
colorTableRsc 145

command line applications 381
command toolbar 109
CompactFlash 208

conduit 3

conserving battery using modes 351
Constructor 15

control flow 4

control objects 92

conventions for API naming 6
CoreTraps.h 13

creating a chunk 182

creating database 195

creating resources 201

creator ID 11

ctlEnterEvent 93, 94, 95, 96, 97, 98, 99, 101
ctlExitEvent 96, 101

CtlGlueSetFont 273
CtlHandleEvent 92

CtINewControl 143

ctlRepeatEvent 96, 101
ctlSelectEvent 94,95, 97,98, 101, 120
custom Ul element 140

D

Data Manager
and the VFS Manager 213
data manager 189
using 195
database headers 191
fields 191
database ID
and launch codes 28
database version number 198
databases 4,174, 190
getting and setting information 195
on expansion cards 234
overlays 365
date and time manager 355
debugging with expansion cards 248
default directories 216

determining by file type 242
for SD slot driver 245
registered upon initialization 244
registering new 243
defaultCategoryRscType 155
deleted records 8, 198
deleting database 195
deleting records 197
dialog boxes
Attention Manager 286, 294
reminder 306
dialogs 185
digitizer 60
after reset 338
and pen manager 62
and pen queue 64
calibrating 63
dimensions 62
pen stroke to key event 64
polling 355
sampling accuracy 62
Direct color 145
direct color bitmaps 150
direct color functions 149
directColor 150
directories
basic operations 240
default for file type 242
enumerating files within 241
dmCategoryLength 118
DmCreateDatabase 195, 200
DmDatabaselnfo 195, 198, 200
DmbDatabaseSize 195
DmDeleteDatabase 195, 200
DmDeleteRecord 197
DmFindDatabase 195
DmFindResource 366
DmGet1Resource 366
DmGetDatabase 195
DmGetRecord 195
DmGetResource 366
DmGetResourcelndex 366
DmNewHandle 118
DmNewResource 201
DmNextOpenResDatabase 366

Palm OS Programmer’s Companion, Volume | 389

DmQueryRecord 195
dmRecAttrCategoryMask 120
DmRecordInfo 120
DmReleaseRecord 195
DmReleaseResource 200
DmRemoveRecord 197
DmResizeRecord 196
DmSetDatabaseInfo 195, 198
DmWrite 319
down arrow 104
doze mode 350
draw state 73
draw window 75
drawing state 73
drivers, restarting 338
dynamic heap

soft reset 338
dynamic memory 184
dynamic menus 108
dynamic RAM 171

E
edit-in-place 185
ErrDisplay 376, 377
ErrFatalDisplaylf 373, 376, 377
ErrNonFatalDisplaylf 373
error manager 375-379

try-and-catch mechanism 377
ERROR_CHECK_LEVEL 376, 377
ErrThrow 378
event loop 55-58

example 55

example program 9
event-driven applications 4
events

naming conventions 6

overview 53-68
EvtGetEvent 86, 351
EvtResetAutoOffTimer 66
examples

event loop 55

startup routine 23

stop routine 29
expansion 207-248

and legacy applications 218
and Palm databases 234
and security 224
and the launcher 215
applications on cards 216
architecture 210
auto-start PRC 215, 235
card-launched applications 216
custom calls 246
custom I/O 247
debugging 248
default directories 216
enumerating slots 226
file system operations 232
file systems 212
lifetime of card-launched applications 218
mounted volumes 225
naming apps on expansion cards 216, 235
notifications 218, 219
ROM 209
slot driver 211
slot reference number 211
standard directories 215
standard directory layout 215
start.prc 223
volume operations 228
expansion cards 209
capabilities 227
checking for 224
in slots 227
insertion and removal 218
reading and writing 236
Expansion Manager 209, 214
checking card capabilities 227
custom I/O 247
enumerating slots 226
functions 214
overriding notification handlers 220
purpose 214
registered notifications 219
slot reference number 211, 221
verifying presence of 224
expansion slot 209
ExpCardInfo 227
ExpCardPresent 227
ExpSlotEnumerate 226

390 Palm OS Programmer’s Companion, Volume |

extended font resource 271, 276, 278

F

FAT 212

feature manager 315-320

feature memory 319

features
application-defined 318
feature memory 319
system version 316

feedback slider 99

Field 72

field objects 102
events 104

line feeds vs. carriage returns 103

file streaming
and the VFS Manager 213
file streaming functions 205-206
file systems 212
and filenames 234
and volume names 230
and volumes 228
basic operations 232
custom calls to 246
FAT 212
implementation 212
long filenames 212
multiple 212
nonstandard functionality 246
VFAT 212,234
filenames
long 212
files
enumerating 241
naming 212, 230, 234
paths to 233
reading and writing 236
referencing 233
finding database 195
FindStrInStr 263
flags, launch flags 20
fldEnterEvent 104
FldHandleEvent 104
FldNewField 143
FldSetFont 273

fntAppFontCustomBase 277
FntAverageCharWidth 275
FntBaseLine 275
FntCharHeight 275
FntDefineFont 277
FntDescenderHeight 275
FntGlueGetDefaultFontID 271
FntLineHeight 275
FntSetFont 273, 275
FntWCharWidth 275
FntWidthToOffset 261, 275
font family resource 276
font ID 276
fontExtRscType 278
fonts 268

characteristics 274

custom 275

extended font resource 271

high-density displays 271
FontSelect 271
Form Bitmap 123
form objects 83

event flow 84
formatting volumes 228
formGadgetDeleteCmd 142
formGadgetDrawCmd 142
formGadgetEraseCmd 142
formGadgetHandleEventCmd 142
FormGadgetHandler 140
forms 5
FrmAlert 85
FrmCustomAlert 85
FrmDoDialog 185
frmGadgetEnterEvent 142
frmGadgetMiscEvent 142
FrmGlueSetLabelFont 273
FrmGotoForm 185
FrmNewBitmap 143
FrmNewForm 143
FrmNewGadget 143
FrmNewLabel 143
frmOpenEvent 84, 95
FrmPopupForm 185
FrmRemoveObject 143

Palm OS Programmer’s Companion, Volume | 391

FrmSetGadgetHandler 140
FrmSetMenu 108
FrmValidatePtr 143

FtrGet 257, 318, 319

FtrPtrNew 319

FtrSet 318

FtrUnregister 318

function naming conventions 6

G

gadget resource 140
global find 8
and private records 8
global variables 185
erasing 338
glyphs 268
Graffiti
customizing behavior 60
Help 61
Help character 62
Graffiti manager 60
Graffiti recognizer 63
Graffiti Shift
getting and setting state 60
Graffiti shortcut 109
Graffiti ShortCuts database 61
graffitiReferenceChr 62
greenBits 151
GrfProcessStroke 60, 61

H

handles, allocation 184
hard reset 337, 338
hardware button presses and key manager 62
hasTransparency 151
heap fragmentation 184
heap header 179
heap space 184
heaps
and soft reset 175
in Palm OS 1.0 183
in Palm OS 2.0 183
in Palm OS 3.0 183
overview 175

RAM and ROM based 169

structure 179
HelperNotifyEventType 38, 41
HelperServiceClass.h 38
highlighting button objects 92
HotSync 198, 209, 300, 302

icons, application 154
ID

local 177

See Also creator ID
IDE 15
initialization

global variables 23
input devices 3
insertion point object 153
inter-character boundary 259
International Manager 252
international manager 363
interrupting Sync application 352
invalid character 255

K

kAttnCommandCustomEffect 298
kAttnCommandDrawDetail 295
kAttnCommandDrawList 296
kAttnCommandGoThere 299
kAttnCommandGotIt 300
kAttnCommandlterate 300
kAttnCommandPlaySound 298
kAttnCommandSnooze 301
kernel 352
key events

from pen strokes 63
key manager 62
key queue 65
KeyCurrentState 62
keyDownEvent 36, 62, 104, 105, 156, 254
KeyRates 62
kHelperNotifyActionCodeEnumerate 38
kHelperNotify ActionCodeExecute 38
kHelperNotifyActionCodeValidate 38

392 Palm OS Programmer’s Companion, Volume |

L

label resource 137
largeBoldFont 269
largeFont 269
launch codes 5, 2048

and returned database ID 28

code example 21
creating 28
handling 7

launch flags 20
parameter blocks 20
predefined 46
summary 46, 48

SysBroadcastActionCode 27

use by application 27
launch flags 20
launcher

and expansion 215

application icon name 154
launching applications 20
LCD screen 72
ledFont 270
left arrow 105
libPalmOSGlue.a 14
line feeds 103
list objects 112
List resource 71
LmGetLocaleSetting 370
LmGlueGetLocaleSetting 370
local IDs 177, 190
localization

general guidelines 364
LocGetNumberSeparators 369
locking a chunk 182
low-battery warnings 7
IstEnterEvent 114
LstGlueSetFont 273
LstHandleEvent 113
LstNewList 143
IstSelectEvent 114

managers
naming convention 315

overview 6
mapping file types to directories 242
masking 124
master pointer table 179
maximizing battery life 350
MemHandleFree 182
MemHandleLock 182
MemHandleNew 118, 182
MemHandleResize 182
MemHandleSize 182
MemHandleUnlock 182
MemMove 183
memory architecture 171
memory management

architecture 171

Introduction 169
memory manager

chunks 174
memory manager See Also data manager
memory manager See Also resource manager
Memory Stick 208, 243
MemPtrNew 183
MemPtrRecoverHandle 183
MemSet 183
menu bar objects 105
Menu Bar resource 71
menu bars

and user actions 106

bits behind 106
Menu Resource 71
MenuAddItem 108
MenuCmdBarAddButton 110
menuCmdBarOpenEvent 110
menuDownEvent 109
menuEvent 107, 109
MenuHandleEvent 107
MenuHideltem 108
menuOpenEvent 108
menus

checking visibility of 107

dynamic 108

shortcut 109
MenuShowlItem 108
MIME types 242

Palm OS Programmer’s Companion, Volume | 393

missing character 255
modes 349

efficient use 351
modifying Graffiti shortcuts 61
moving memory 183
MultiMedia (MMC) 208
multitasking kernel 352

N

naming conventions 230, 234
nilEvent 86
notification client 30
notification handlers 33, 34
notifications 30
expansion 218, 219
predefined 48
registering for expansion 220
NotifyMgr.h 48

o)

off-screen windows 272

OmGetCurrentLocale 367

optimization 184
dynamic memory 184
sorting 184

overlays 365

ovly resource 365

P

palettes 144
PalmOSCompatibility.h 15
PalmOSGlue.lib 14
parameter blocks 20
patches, loading during reset 338
PC connectivity 3,170
PDB files
exploring on expansion cards 238
on expansion cards 234
pen 74
pen location polling 62
pen manager 62
pen queue 63, 64
pen strokes and key events 63

penDownEvent 93, 94, 95, 96, 97, 98, 99, 100, 101,

104,113, 114

penUpEvent 60, 93, 94, 95, 96, 97, 98, 100, 101, 104,

107,114

performance 184
PICT 123
PilotMain 20

code example 21
pixel reading and writing 150
plug and play slot driver 209
popSelectEvent 114
Popup list 71
Popup trigger 71
popup trigger object 93
power 3
power modes 349
PRC files

exploring on expansion cards 239

on expansion cards 234
predefined launch codes 46
predefined notifications 48
prefDateFormat 367
preferences

application-specific 23

auto-off 351

restoring 8

saving 8

short cuts 61

system 23
PrefGetPreference 321, 367, 369, 370
prefMinutesWestOfGMT 368
prefTimeFormat 367
prefTimeZone 368
prefWeekStartDay 367
PrgHandleEvent 86
PrgStartDialog 86
PrgUpdateDialog 86
primary storage 208
private records 8
procedure alarms 311
progress manager 86
Push button 71
push button objects 96

event flow 97

394 Palm OS Programmer’s Companion, Volume |

R

RAM 4

expansion 208
RAM store 169
RAM use 170
real-time clock 355
records 4, 190
redBits 151
registering for a notification 31
reminder dialog boxes 306
repeat control objects 95
Repeating button 72
ResEdit

resource naming conventions 6
reset 337

digitizer screen 338

hard reset 338

loading patches 338

soft reset 338
resource database header 199
resource manager 198

using 200
resources

gadget 140

label 137

storing 198
response time 353
restoring preferences 8
resumeSleepChr 36
RGBColorType 145, 150
right arrow 105
ROM

expansion 209
ROM store 169
ROM use 170
ROM, retrieving serial number 353
running mode 350

S

saving preferences 8
sclEnterEvent 139
sclExitEvent 139
sclRepeatEvent 139
SclSetScrollBar 139

scptLaunchCmdExecuteCmd 46
scptLaunchCmdListCmds 46
screen size 2,72
scrollbar objects 137
SD slot driver 245
secondary storage 208
Secure Digital (SD) 208
security
and expansion 224
Select Font dialog 271
Selector trigger 72
selector trigger object 94
serial number, retrieving 353
serial port 8
shortcut for menus 109
shortcuts, Graffiti 61
sleep mode 349
and current time 355
and real-time clock 355
sliders 98
slot custom call 247
slot driver 211, 230, 246
accessing directly 247
plug and play 209
slot reference number 221, 227
slots 209
and volumes 229, 230
checking for a card 227
enumerating 226
referring to 211
SMS application
and Attention Manager 293

snooze timer (Attention Manager) 287
snoozing items in Attention Manager 301

soft reset 175, 337, 338
dynamic heap 338

sorting 184

sound manager 332-??

special drawing modes 151

stack space 185

standard directories on expansion media 215

standard IO applications 381
start.prc 215, 223, 235
startup 19-51

Palm OS Programmer’s Companion, Volume | 395

startup routine, example 23
state information, storing 8
stdFont 269
stop routine example 29
storage

primary 208

secondary 208
storage heaps, erasing 338
storage RAM 171
StrCompare 258
StrDelocalizeNumber 369
String Manager 258
StrLocalizeNumber 369
strokes

capturing 64
structure elements, naming convention 6
StrVPrintF 267
summary of launch codes 46, 48
symbol11Font 270
symbol7Font 270
symbolFont 270
Sync application 352
synchronization messages 7, 8
SysAppLaunch 27, 156, 299
sysAppLaunchCmdAddRecord 46

sysAppLaunchCmdAlarmTriggered 46, 301, 307,
309
sysAppLaunchCmdAttention 46, 294
sysAppLaunchCmdCardLaunch 46, 216, 223
sysAppLaunchCmdCountryChange 46
sysAppLaunchCmdDisplayAlarm 46, 301, 307,
309
sysAppLaunchCmdExgAskUser 46
sysAppLaunchCmdExgGetData 46
sysAppLaunchCmdExgPreview 47
sysAppLaunchCmdExgReceiveData 47
sysAppLaunchCmdFind 47
sysAppLaunchCmdGoto 47, 263, 299
sysAppLaunchCmdGoToURL 47
sysAppLaunchCmdInitDatabase 47
sysAppLaunchCmdLookup 47
sysAppLaunchCmdNormalLaunch 7, 20, 23, 217,
223
sysAppLaunchCmdNotify 32

sysAppLaunchCmdOpenDB 47
sysAppLaunchCmdPanelCalledFromApp 47
SysAppLaunchCmdReset 338
sysAppLaunchCmdReturnFromPanel 47
sysAppLaunchCmdSaveData 48
sysAppLaunchCmdSyncNotify 42, 48
sysAppLaunchCmdSystemLock 48
sysAppLaunchCmdSystemReset 42, 48, 338
sysAppLaunchCmdTimeChange 48
sysAppLaunchCmdURLParams 48
SysAppLauncherDialog 157
sysAppLaunchStartFlagNoUISwitch 216, 223
SysBatterylnfo 352
SysBroadcastActionCode 27
SysCurAppDatabase 28

sysFtrCreator 316
sysFtrNumROMVersion 316
SysGraffitiReferenceDialog 61
sysMakeROMVersion 316
SysNotifyBroadcast 41
sysNotifyCardInsertedEvent 219
sysNotifyCardRemovedEvent 219
sysNotifyDeviceUnlocked 37
sysNotifyEarlyWakeupEvent 36
sysNotifyHelperEvent 38, 42
sysNotifyLateWakeupEvent 36
sysNotifyNormalPriority 32
SysNotifyParamType 33, 40
SysNotifyRegister 31
sysNotifySleepNotifyEvent 36, 37
sysNotifySleepRequestEvent 35
sysNotifySyncFinishEvent 32
sysNotifySyncStartEvent 32
SysNotifyUnregister 31
sysNotifyVolumeMountedEvent 219, 223
sysNotifyVolumeUnmountedEvent 219
SysReset 339
sysResIDPrefUIColorTableBase 147
sysResTExtPrefs 365
SysSetAutoOffTime 351

SysTaskDelay 351, 356

system event manager 59-67

system extensions

396 Palm OS Programmer’s Companion, Volume |

expansion 208
system messages 7, 8
system preferences 7, 23
system tick interrupts 355
system ticks 355

and Simulator 356

on Palm OS device 356
system version feature 316
SystemMgr.h 46, 317
SystemPreferencesChoice 321
SysTicksPerSecond 356
SysTraps.h 13
SysUIAppSwitch 28, 156

T

table objects 111

tAIB resource 154

tAIN resource 216

tblSelectEvent 112

TblSetltemFont 273

Tbmp 123

Text Manager 252

text manager 363

tFBM 123

TimDateTimeToSeconds 308, 355

time manager 355

timer 355

TimGetSeconds 355

TimGetTicks 356

timing 356

TimSecondsToDateTime 355

TimSetSeconds 355

transparent bitmap 124

transparentColor 151

transparentIndex 151

try-and-catch mechanism 377
example 378

TxtCaselessCompare 262

TxtCharBounds 260

TxtCharlsValid 256

TxtCharSize 260

TxtCompare 258, 262

TxtFindString 263
TxtGetNextChar 259
TxtGetPrevChar 259
TxtGlueCharlIsValid 256
TxtParamString 266
TxtPrepFindString 263
TxtReplaceStr 266
TxtSetNextChar 259

U

Ul design 2

avoiding dialog box stacking 185

design elements 70

design philosophy 2
Ul objects 5

buttons 92

check box 97

control objects 92

field 102

form 83

insertion point 153

list 112

menu bars 105

popup trigger 93

push button 96

repeat control 95

scrollbar 137

selector trigger 94

table 111

windows 84
Ul resources

custom 140
Ul resources, storing 198
UIAS 352
UlColorGetTableEntryIndex 149
UIColorGetTableEntryRGB 149
UlColorSetTableEntry 149
UlResources.r 365
universal connector 209
unlocking a chunk 182
up arrow 104
User Interface Application Shell 352
user interface elements

storing (resource manager) 198

Palm OS Programmer’s Companion, Volume | 397

\')

version number 198
VFAT 212
VFS Manager 209, 213

and file streaming 213

and the Data Manager 213

custom calls 246

custom I/0 247

debugging applications 248

directory operations 240

enumerating files 241

file paths 233

file system operations 232

filenames 234

functions 213

overriding notification handlers 221

registered notifications 219

starting apps automatically 223

verifying presence of 224

volume operations 228
VFSCustomControl 246
VESDirCreate 241
VESDirEntryEnumerate 241
VESExportDatabaseToFile 236
VESExportDatabaseToFileCustom 237
VFESFileClose 232,241
VFSFileCreate 233
VFSFileDBGetRecord 239
VFSFileDelete 233, 241
VESFileEOF 233
VESFileGetAttributes 233, 241
VESFileGetDate 233, 241
VESFileOpen 232, 241
VFSFileRead 232
VFSFileReadData 232
VESFileRename 233, 241
VEFSFileResize 233
VFSFileSeek 232
VFESFileSetAttributes 233, 241
VFSFileSetDate 233, 241
VFSFileSize 233
VFSFileTell 233
VFSFileWrite 232
VFSGetDefaultDirectory 243

VESImportDatabaseFromFileCustom 237
VESVolumeEnumerate 226
VESVolumeFormat 228
VESVolumeGetLabel 229
VFSVolumelnfo 229, 230
VESVolumeMount 228
VESVolumeSetLabel 229
VESVolumeSize 229
VESVolumeUnmount 228
Virtual File System. See VES Manager
volumes

and file systems 228

and slots 212, 229

automatically mounted 228

basic operations 228

enumerating 225

formatting 228

hidden 229

labeling 229

matching to slots 230

mounted 225

mounting 228

naming 230

read-only 229

size 229

space available 229

unmounting 228

w

wait cursor 184
WChar 253
WinCreateBitmapWindow 136
window objects 84

off-screen 84
windowobjects

off-screen 272
WinDrawBitmap 136
WinDrawTruncChars 261
winEnterEvent 84,94, 107, 114, 313
winErase 151
winExitEvent 84, 95,107, 114, 313
WinGetPixel 149, 150
WinGetPixelRGB 149
WinIndexToRGB 147
winlnvert 151

398 Palm OS Programmer’s Companion, Volume |

winMask 151
winOverlay 151
WinPaintBitmap 136
WinPalette 137, 146
WinPopDrawState 74
WinPushDrawState 74
WinRGBTolndex 147

WinSetBackColor 149, 150
WinSetBackColorRGB 149
WinSetDrawWindow 75

WinSetForeColor 149, 150
WinSetForeColorRGB 149
WinSetTextColor 149, 150
WinSetTextColorRGB 149

Palm OS Programmer’s Companion, Volume | 399

400 Palm OS Programmer’s Companion, Volume |

	Palm OS® Programmer’s Companion
	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Volume Contains
	Additional Resources

	Programming Palm OS in a Nutshell
	Why Programming for Palm OS Is Different
	Screen Size
	Quick Turnaround Expected
	PC Connectivity
	Input Methods
	Power
	Memory
	File System
	Backward Compatibility

	Palm OS Programming Concepts
	API Naming Conventions
	Integrating Programs with the Palm OS Environment
	Writing Robust Code

	Assigning a Database Type and Creator ID
	Making Your Application Run on Different Devices
	Running New Applications on an Older Device
	Backward Compatibility with PalmOSGlue
	Compiling Older Applications with the Latest SDK

	Programming Tools
	Where to Go from Here

	Application Startup and Stop
	Launch Codes and Launching an Application
	Responding to Launch Codes
	Responding to Normal Launch
	Responding to Other Launch Codes

	Launching Applications Programmatically
	Creating Your Own Launch Codes
	Stopping an Application
	Notifications
	Registering for a Notification
	Writing a Notification Handler
	Sleep and Wake Notifications

	Helper Notifications
	When to Use the Helper API
	Requesting a Helper Service
	Implementing a Helper

	Launch Code Summary
	Notification Summary
	Launch and Notification Function Summary

	Event Loop
	The Application Event Loop
	Low-Level Event Management
	The Graffiti Manager
	The Key Manager
	The Pen Manager
	The System Event Manager

	System Event Manager Summary

	User Interface
	Palm OS Resource Summary
	Drawing on the Palm Powered Handheld
	The Draw State
	Drawing Functions
	High-Density Displays

	Forms, Windows, and Dialogs
	Alert Dialogs
	Progress Dialogs
	The Keyboard Dialog
	Offscreen Windows

	Controls
	Buttons
	Pop-Up Trigger
	Selector Trigger
	Repeating Button
	Push Buttons
	Check Boxes
	Sliders and Feedback Sliders

	Fields
	Menus
	Checking Menu Visibility
	Dynamic Menus
	Menu Shortcuts

	Tables
	Table Event

	Lists
	Using Lists in Place of Tables

	Categories
	Initializing Categories in a Database
	Initializing the Category Pop-up Trigger
	Managing a Category Pop-up List

	Bitmaps
	Versions of Bitmap Support
	Bitmap Families
	Drawing a Bitmap
	Color Tables and Bitmaps

	Labels
	Scroll Bars
	Custom UI Objects (Gadgets)
	Dynamic UI
	Dynamic User Interface Functions

	Color and Grayscale Support
	Indexed Versus Direct Color Display
	Color Table
	UI Color List
	Direct Color Functions
	Pixel Reading and Writing
	Direct Color Bitmaps

	Insertion Point
	Application Launcher
	Icons in the Launcher
	Application Version String
	The Default Application Category
	Opening the Launcher Programmatically

	Summary of User Interface API

	Memory
	Introduction to Palm OS Memory Use
	Hardware Architecture
	PC Connectivity

	Memory Architecture
	Heap Overview

	The Memory Manager
	Memory Manager Structures
	Using the Memory Manager
	Achieving Optimum Performance

	Summary of Memory Management

	Files and Databases
	The Data Manager
	Records and Databases
	Structure of a Database Header
	Using the Data Manager
	Data Manager Tips

	The Resource Manager
	Structure of a Resource Database Header
	Using the Resource Manager

	File Streaming Application Program Interface
	Using the File Streaming API

	Summary of Files and Databases

	Expansion
	Expansion Support
	Primary vs. Secondary Storage
	Expansion Slot
	Universal Connector

	Architectural Overview
	Slot Drivers
	File Systems
	VFS Manager
	Expansion Manager

	Standard Directories
	Applications on Cards
	Card Insertion and Removal
	Start.prc

	Checking for Expansion Cards
	Verifying Handheld Compatibility
	Checking for Mounted Volumes
	Enumerating Slots
	Determining a Card’s Capabilities

	Volume Operations
	Hidden Volumes
	Matching Volumes to Slots
	Naming Volumes

	File Operations
	Common Operations
	Naming Files
	Working with Palm Databases

	Directory Operations
	Directory Paths
	Common Operations
	Enumerating the Files in a Directory
	Determining the Default Directory for a Particular File Type
	Default Directories Registered at Initialization

	Custom Calls
	Custom I/O

	Debugging
	Summary of Expansion and VFS Managers

	Text
	Text Manager and International Manager
	Characters
	Declaring Character Variables
	Using Character Constants
	Missing and Invalid Characters
	Retrieving a Character’s Attributes
	Virtual Characters
	Retrieving the Character Encoding

	Strings
	Manipulating Strings
	Performing String Pointer Manipulation
	Truncating Displayed Text
	Comparing Strings
	Global Find
	Dynamically Creating String Content
	Using the StrVPrintF Function

	Fonts
	Built-in Fonts
	Selecting Which Font to Use
	Fonts for High-Density Displays
	Setting the Font Programmatically
	Obtaining Font Information
	Creating Custom Fonts

	Summary of Text API

	Attentions and Alarms
	Getting the User’s Attention
	The Role of the Attention Manager
	Attention Manager Operation
	Getting the User’s Attention
	Attentions and Alarms
	Detecting and Updating Pending Attentions
	Detecting Device Capabilities
	Controlling the Attention Indicator

	Alarms
	Setting an Alarm
	Alarm Scenario
	Setting a Procedure Alarm

	Summary of Attentions and Alarms

	Palm System Support
	Features
	The System Version Feature
	Application-Defined Features
	Using the Feature Manager
	Feature Memory

	Preferences
	Accessing System Preferences
	Setting System Preferences
	Setting Application-Specific Preferences

	Sound
	Simple Sound
	Sampled Sound
	Simple vs Sampled
	Sound Preferences
	Standard MIDI Files
	Creating a Sound Stream

	System Boot and Reset
	Soft Reset
	Soft Reset + Up Arrow
	Hard Reset
	System Reset Calls

	ARM-Native Functions
	Calling an ARM Function
	ARM Function Definition
	Accessing 68K Data From an ARM Function
	Embedding ARM Code in a 68K Application
	Calling Palm OS Functions From ARM Code

	Hardware Interaction
	Palm OS Power Modes
	Guidelines for Application Developers
	Power Management Calls

	The Microkernel
	Retrieving the ROM Serial Number
	Time
	Using Real-Time Clock Functions
	Using System Ticks Functions

	Floating-Point
	Summary of System Features

	Localized Applications
	Localization Guidelines
	Using Overlays to Localize Resources
	Dates
	Numbers
	Obtaining Locale Information
	Notes on the Japanese Implementation
	Japanese Character Encoding
	Japanese Character Input
	The Calculator Button
	Displaying Japanese Strings on UI Objects
	Displaying Error Messages

	Summary of Localization

	Debugging Strategies
	Displaying Development Errors
	Using the Error Manager Macros
	The Try-and-Catch Mechanism
	Using the Try and Catch Mechanism

	Summary of Debugging API

	Standard IO Applications
	Creating a Standard IO Application
	Creating a Standard IO Provider Application
	Summary of Standard IO

	Index

