

Palm OS

®

 Programmer’s
API Reference

Palm OS

®

 5 SDK

Document Number 3003-005

CONTRIBUTORS

Written by Greg Wilson, Jean Ostrem, Clif Liu, and Doug Fulton
Engineering contributions by Jesse Donaldson, Noah Gibbs, Lee Taylor, Danny Epstein, Peter Epstein,
Ludovic Ferrandis, Gilles Fabre, David Fedor, Roger Flores, Steve Lemke, Bob Ebert, Ken Krugler, Paul
Plaquette, Bruce Thompson, Tim Wiegman, Gavin Peacock, Ryan Robertson, and Waddah Kudaimi

Copyright © 1996 - 2002, PalmSource, Inc. and its affiliates. All rights reserved. This documentation may
be printed and copied solely for use in developing products for Palm OS

®

 software. In addition, two (2)
copies of this documentation may be made for archival and backup purposes. Except for the foregoing, no
part of this documentation may be reproduced or transmitted in any form or by any means or used to
make any derivative work (such as translation, transformation or adaptation) without express written
consent from PalmSource, Inc.

PalmSource, Inc. reserves the right to revise this documentation and to make changes in content from time
to time without obligation on the part of PalmSource, Inc. to provide notification of such revision or
changes.

PALMSOURCE, INC. AND ITS SUPPLIERS MAKE NO REPRESENTATIONS OR WARRANTIES THAT
THE DOCUMENTATION IS FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR
YOUR USE. THE DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. PALMSOURCE, INC. AND
ITS SUPPLIERS MAKE NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER
IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES,
TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
SATISFACTORY QUALITY. TO THE FULL EXTENT ALLOWED BY LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT,
SPECIAL, OR PUNITIVE DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS
OF BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF
OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN IF PALMSOURCE, INC. OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm OS, Palm Computing, HandFAX, HandSTAMP, HandWEB, Graffiti, HotSync, iMessenger,
MultiMail, Palm.Net, PalmPak, PalmConnect, PalmGlove, PalmModem, PalmPoint, PalmPrint, and
PalmSource are registered trademarks of PalmSource, Inc. or its affiliates. Palm, the Palm logo, MyPalm,
PalmGear, PalmPix, PalmPower, AnyDay, EventClub, HandMAIL, the HotSync logo, PalmGlove, Palm
Powered, the Palm trade dress, Smartcode, Simply Palm, ThinAir, WeSync, and Wireless Refresh are
trademarks of PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or
registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT
ACCOMPANYING THE COMPACT DISC.

L

Palm OS Programmer’s API Reference
Document Number 3003-005
May 13, 2002
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
5470 Great America Pkwy.
Santa Clara, CA 95054
USA
www.palmos.com

http://www.palmos.com/dev/support/docs/
http://www.palmos.com

Palm OS Programmer’s API Reference

iii

Table of Contents

 About This Document xvii

Palm OS SDK Documentation xvii
What This Volume Contains xvii
Additional Resources xviii
Conventions Used in This Guide xix

Part I: User Interface

1 Application Launch Codes 3

Launch Codes . 6
Launch Flags. 36

2 Palm OS Events 39

Event Data Structures 40
Event Reference . 43

3 Notifications 71

Notification Data Structures 74
Notification Reference 75

4 Attention Manager 105

Attention Manager Data Structures 105
Attention Manager Constants 115
Attention Manager Functions 119
Application-Defined Functions 130

5 Categories 133

Category Data Structures 133
Category Constants 134
Category Functions 136

6 Clipboard 153

Clipboard Data Structures 153
Clipboard Functions 154

iv

 Palm OS Programmer’s API Reference

7 Controls 157

Control Data Structures 157
Control Resources . 167
Control Functions. . 167

8 Date and Time Selector 185

Date and Time Selections Data Structures 185
Date and Time Selection Functions 186

9 Fields 195

Field Data Structures 195
Field Resources. . 204
Field Functions . . 204

10 Find 249

Find Functions . . 249

11 Forms 255

Form Data Structures 255
Form Constants . 274
Form Resources . 274
Form Functions. . 275
Application-Defined Functions 325

12 Graffiti Shift 331

GraffitiShift Functions 331

13 Insertion Point 335

Insertion Point Functions 335

14 Lists 339

List Data Structures 339
List Resources . 343
List Functions . 343
Application-Defined Function 355

Palm OS Programmer’s API Reference

v

15 Menus 359

Menu Data Structures 359
Menu Constants . 370
Menu Resources . 371
Menu Functions . 371

16 Private Records 389

Private Record Data Structures 389
Private Record Functions 390

17 Progress Manager 393

Progress Manager Functions 393
Application-Defined Functions 400

18 Scroll Bars 405

Scroll Bar Data Structures 405
Scroll Bar Resources. 410
Scroll Bar Functions 410

19 System Dialogs 417

System Dialog Functions 417

20 Tables 419

Table Data Structures 419
Table Constants . 432
Table Resource . 432
Table Functions. . 433
Application-Defined Functions 475

21 UI Color List 479

UI Color Data Types 479
UI Color Functions . 483

22 UI Controls 489

UI Control Functions 489

vi

 Palm OS Programmer’s API Reference

23 Miscellaneous User Interface Functions 493

Miscellaneous User Interface Data Structures 493
Miscellaneous User Interface Functions 498

Part II: System Management

24 Alarm Manager 505

Alarm Manager Functions 505
Application-Defined Functions 509

25 Bitmaps 513

Bitmap Data Structures 513
Bitmap Constants . . 535
Bitmap Resources. . 535
Bitmap Functions . . 536

26 Character Attributes 555

Character Attribute Functions 555

27 Data and Resource Manager 561

Data Manager Data Structures 561
Data Manager Constants. 562
Data Manager Functions. 571
Application-Defined Functions 640

28 Error Manager 643

ERROR_CHECK_LEVEL Define 643
Error Manager Data Structures 644
Error Manager Functions 644

29 Expansion Manager 653

Expansion Manager Data Structures. 653
Expansion Manager Constants 654
Expansion Manager Functions 656

30 Feature Manager 665

Feature Manager Functions 665

Palm OS Programmer’s API Reference

vii

31 File Streaming 673

File Streaming Constants 673
File Streaming Functions. 675
File Streaming Error Codes. 693

32 Float Manager 695

Float Manager Data Structures 695
Float Manager Functions 697

33 Fonts 709

Font Data Structures 709
Font Constants . . 717
Font Resources . . 718
Font Functions . 723

34 Graffiti Manager 737

Graffiti Manager Functions 737

35 Helper API 749

Helper Data Structures 749
Helper Constants . . 756

36 Key Manager 759

Key Manager Functions 759

37 Locale Manager 763

Locale Manager Data Types 763
Locale Manager Constants 765
Locale Manager Functions 768

38 Memory Manager 775

Memory Manager Functions 775

39 Notification Manager 801

Notification Constants. 801
Notification Functions. 802
Application-Defined Functions 810

viii

 Palm OS Programmer’s API Reference

40 Overlay Manager 811

Overlay Manager Data Structures 811
Overlay Manager Constants 812
Overlay Manager Functions 813

41 Password 823

Password Functions. 823

42 Pen Manager 825

Pen Manager Functions 825

43 Preferences 827

Preferences Data Types 827
Preferences Constants 839
Preferences Functions 842

44 Rectangles 853

Rectangle Data Structures 853
Rectangle Functions. 854

45 Sound Manager 859

Overview . 859
Simple Sound Structures and Constants 860
Simple Sound Functions 868
Simple Sound Application-Defined Functions 877
Sampled Sound Structures, Constants, and Data Types 879
Sampled Sound Functions 884
Sampled Sound Application-Defined Functions. 896

46 Standard IO 899

Standard IO Functions 899
Standard IO Provider Functions 914
Application-Defined Function 918

47 String Manager 919

String Manager Functions 919

Palm OS Programmer’s API Reference

ix

48 System Event Manager 941

System Event Manager Data Structures 941
System Event Manager Functions 942

49 System Manager 961

System Manager Data Structures 961
System Functions . . 962
Application-Defined Functions 995

50 Text Manager 997

Text Manager Data Structures 997
Text Manager Functions 998

51 Text Services Manager 1041

Text Services Manager Data Structures. 1041
Text Services Manager Functions 1042

52 Time Manager 1045

Time Manager Data Structures 1045
Time Manager Constants 1054
Time Manager Functions 1055

53 Virtual File System Manager 1075

VFS Manager Data Structures 1075
VFS Manager Constants 1079
VFS Manager Functions 1085
Application-Defined Functions 1145

54 Windows 1147

Window Data Structures. 1147
Window Constants 1163
Window Functions 1164

x

 Palm OS Programmer’s API Reference

55 Miscellaneous System Functions 1247

Part III: Communications

56 Connection Manager 1263

Connection Manager Data Types 1263
Connection Manager Constants. 1263
Connection Manager Functions. 1273

57 Exchange Manager 1297

Exchange Manager Data Structures 1297
Exchange Manager Constants 1306
Exchange Manager Functions 1309
Application-Defined Functions 1352

58 Exchange Library 1357

Exchange Library Functions 1357

59 IR Library 1373

IR Library Data Structures 1373
IR Library Constants 1378
IR Stack Callback Events. 1380
IR Library Functions 1383
IAS Functions . 1399
Application-Defined Functions 1409

60 Modem Manager 1411

Modem Manager Functions 1411

61 Net Library 1413
Net Library Data Structures 1413
Net Library Constants 1420
Net Library Functions 1422

62 Network Utilities 1507
Network Utility Functions 1507

Palm OS Programmer’s API Reference xi

63 Script Plugin 1511
Script Plugin Data Types. 1511
Script Plugin Constants 1516
Script Plugin Functions 1518

64 Virtual Drivers 1523
Driver Data Structures. 1523
Driver Constants . 1535
Virtual Driver-Defined Functions 1538
Serial Manager Queue Functions 1546

65 Serial Manager 1551
Serial Manager Data Structures 1551
Serial Manager Constants 1557
Serial Manager Functions 1563
Serial Manager Application-Defined Functions 1590

66 Old Serial Manager 1593
Serial Manager Data Structures 1593
Serial Manager Functions 1595

67 Serial Link Manager 1611
Serial Link Manager Functions 1611

68 Telephony Basic Services 1621
Telephony Service Types. 1621
Telephony Data Structures 1623
Telephony Constants 1630
Telephony Functions 1637
Feature Support Functions 1676

69 Telephony Security and Configuration 1681
Telephony Security and Configuration Data Structures . . . 1681
Telephony Security and Configuration Constants 1684
Telephony Security and Configuration Functions 1684

xii Palm OS Programmer’s API Reference

70 Telephony Network 1695
Telephony Network Data Structures. 1695
Telephony Network Constants 1698
Telephony Network Functions 1699

71 Telephony Calls 1715
Telephony Calls Data Structures 1715
Telephony Calls Functions 1720

72 Telephony SMS 1755
Telephony SMS Data Structures. 1755
Telephony SMS Constants 1781
Telephony SMS Functions 1784

73 Telephony Phone Book 1815
Telephony Phone Book Data Structures 1815
Telephony Phone Book Constants 1820
Telephony Phone Book Functions 1821

Part IV: Libraries

74 Internet Library 1839
Internet Library Data Structures 1839
Internet Library Constants 1850
Internet Library Functions 1853

75 PalmOSGlue Library 1891
PalmOSGlue Functions 1892

76 Bluetooth Library: General Functions 1925
Security Functions 1925
Utility Functions . 1929

77 Bluetooth Library: Management 1939
Bluetooth Management Data Structures 1940
Management Callback Events 1948
Management Event Status Codes 1957

Palm OS Programmer’s API Reference xiii

Library Management Functions. 1959
Management Functions 1962
Application-Defined Functions 1989

78 Bluetooth Library: Sockets and Service Discovery 1991
Socket-Related Data Structures 1992
Socket Callback Events 2011
Socket Disconnection Error Codes 2023
Socket Functions . 2024
Service Discovery Protocol Functions 2041
Application-Defined Functions 2076

79 Cryptography Provider Manager 2079
The Default Provider 2079
Fundamental CPM Functions 2080
Using the Crypto-Info Structures 2080
Using the Export Functions 2081
CPM and AP Constants 2082
CPM and AP Structures and Data Types 2091
CPM Functions . 2098
CPM Error Codes . 2132

80 SSL Functions 2135
SSL Attribute Functions and Macros. 2136
A Note on the Function Names 2136
SSL Library Functions 2137
Application-Defined Functions 2158

81 SSL Structures and Data Types 2163
SSL Data Types . 2163
SSL Structures . 2166

82 SSL Attributes and Macros 2181
SSL Macro Names 2181
SSL Attribute Data Types 2182
SSL Macro Pseudo-Protocol 2183

xiv Palm OS Programmer’s API Reference

SSL Attributes . 2187
SSL Attribute Constants 2210

83 SSL Error Codes 2213
SSL Function Protocol Errors 2213
SSL Alerts . 2214
SSL Handshake Errors. 2215
SSL Cryptography Errors 2215
SSL Illegal Message Errors 2216
SSL Certificate Errors 2216

84 SMS Exchange Library 2219
SMS Exchange Library Data Structures 2219
SMS Exchange Library Constants 2232

85 Personal Data Interchange Library 2237
PDI Library Data Structures 2237
PDI Library Constants. 2241
PDI Library Functions 2253

86 Unified Data Access Manager 2279
UDA Manager Data Structures 2279
UDA Manager Constants 2283
UDA Manager Functions 2284
UDA Object Creation Functions 2291

Part V: Appendixes

A System Use Only Functions 2297

B Compatibility Guide 2303
2.0 New Feature Set 2304
3.0 New Feature Set 2308
3.1 New Feature Set 2312
3.2 New Feature Set 2315
International Feature Set 2316

Palm OS Programmer’s API Reference xv

Japanese Feature Set 2318
Wireless Internet Feature Set 2318
New Serial Manager Feature Set 2320
Connection Manager Feature Set 2323
3.5 New Feature Set 2324
Notification Feature Set 2330
4.0 New Feature Set 2330
Expansion Manager Feature Set 2336
VFS Manager Feature Set 2337
Bluetooth Library Feature Set 2339
High-Density Display Feature Set 2342
Sound Stream Feature Set 2344
5.0 New Feature Set 2346
5.1 New Feature Set 2351

C 1.0 Float Manager 2355
Float Manager Functions 2355

 Index 2363

xvi Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference xvii

About This
Document
Palm OS Programmer’s API Reference is part of the Palm OS® Software
Development Kit. This introduction provides an overview of SDK
documentation, discusses what materials are included in this
document, and what conventions are used.

Palm OS SDK Documentation
The following documents are part of the SDK:

What This Volume Contains
This section provides an overview of this volume.

• Part I, “User Interface,” documents the API contained in the
header files in the \Incs\Core\UI\ folder. This part
contains chapters covering subjects such as application
launch codes, user interface resources, events, and all
window, form, and field object managers.

Document Description

Palm OS Programmer’s
API Reference

An API reference document that contains descriptions of all
Palm OS function calls and important data structures.

Palm OS Programmer’s
Companion

A multi-volume guide to application programming for the
Palm OS. This guide contains conceptual and “how-to”
information that complements the Reference.

Constructor for Palm OS A guide to using Constructor to create Palm OS resource
files.

Palm OS Programming
Development Tools Guide

A guide to writing and debugging Palm OS applications
with the various tools available.

About This Document
Additional Resources

xviii Palm OS Programmer’s API Reference

• Part II, “System Management,” documents the API contained
in the header files in the \Incs\Core\System\ folder. This
part contains chapters covering subjects such as the alarm
manager, data and resource manager, feature manager, float
manager, graffiti manager, key manager, memory manager,
preferences manager, sound manager, string manager, and
system manager.

• Part III, “Communications,” documents the API related to
communications, such as the exchange manager, IR library,
net library, Secure Sockets Layer (SSL) library, serial
manager, and serial drivers.

• Part IV, “Libraries,” documents the API contained in the
header files in the \Incs\Libraries\ folder. This part
contains chapters covering the Internet Library and the Palm
OS Glue library.

Additional Resources
• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

About This Document
Conventions Used in This Guide

Palm OS Programmer’s API Reference xix

Conventions Used in This Guide
This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, field, bitfield.

italic Emphasis (for other elements).

blue and underlined Hot links.

About This Document
Conventions Used in This Guide

xx Palm OS Programmer’s API Reference

Part I: User Interface

Palm OS Programmer’s API Reference 3

1
Application Launch
Codes
This chapter provides detailed information about the predefined
application launch codes. Launch codes are declared in the header
file SystemMgr.h. The associated parameter blocks are declared in
AppLaunchCmd.h, AlarmMgr.h, ExgMgr.h, and Find.h.

Table 1.1 lists all Palm OS® standard launch codes. More detailed
information is provided immediately after the table:

• Launch Codes

• Launch Flags

To learn what a launch code is and how to use it, see the chapter
titled “Application Startup and Stop” in the Palm OS Programmer’s
Companion, vol. I.

Table 1.1 Palm OS Launch Codes

Code Request

scptLaunchCmdExecuteCmd Execute the specified Network login
script plugin command.

scptLaunchCmdListCmds Provide information about the
commands that your Network script
plugin executes.

sysAppLaunchCmdAddRecord Add a record to a database.

sysAppLaunchCmdAlarmTriggered Schedule next alarm or perform quick
actions such as sounding alarm tones.

sysAppLaunchCmdAttention Perform the action requested by the
attention manager.

Application Launch Codes

4 Palm OS Programmer’s API Reference

sysAppLaunchCmdCardLaunch Launch the application. This launch
code signifies that the application is
being launched from an expansion
card.

sysAppLaunchCmdCountryChange Respond to country change.

sysAppLaunchCmdDisplayAlarm Display specified alarm dialog or
perform time-consuming alarm-
related actions.

sysAppLaunchCmdExgAskUser Let application override display of
dialog asking user if they want to
receive incoming data via the
Exchange Manager.

sysAppLaunchCmdExgGetData Notify application that it should send
data using the Exchange Manager.

sysAppLaunchCmdExgPreview Notify application that it should
display a preview using the Exchange
Manager.

sysAppLaunchCmdExgReceiveData Notify application that it should
receive incoming data using the
Exchange Manager.

sysAppLaunchCmdFind Find a text string.

sysAppLaunchCmdGoto Go to a particular record, display it,
and optionally select the specified text.

sysAppLaunchCmdGoToURL Launch an application and open a
URL.

sysAppLaunchCmdHandleSyncCallApp Perform some application-specific
operation at the behest of the
application’s conduit.

sysAppLaunchCmdInitDatabase Initialize database.

Table 1.1 Palm OS Launch Codes (continued)

Code Request

Application Launch Codes

Palm OS Programmer’s API Reference 5

sysAppLaunchCmdLookup Look up data. In contrast to
sysAppLaunchCmdFind, a level of
indirection is implied. For example,
look up a phone number associated
with a name.

sysAppLaunchCmdNormalLaunch Launch normally.

sysAppLaunchCmdNotify Notify about an event.

sysAppLaunchCmdOpenDB Launch application and open a
database.

sysAppLaunchCmdPanelCalledFromApp Tell preferences panel that it was
invoked from an application, not the
Preferences application.

sysAppLaunchCmdReturnFromPanel Tell an application that it’s restarting
after preferences panel had been
called.

sysAppLaunchCmdSaveData Save data. Often sent before find
operations.

sysAppLaunchCmdSyncNotify Notify applications that a HotSync®
has been completed.

sysAppLaunchCmdSystemLock Sent to the Security application to
request that the system be locked
down.

sysAppLaunchCmdSystemReset Respond to system reset. No UI is
allowed during this launch code.

sysAppLaunchCmdTimeChange Respond to system time change.

sysAppLaunchCmdURLParams Launch an application with
parameters from the Web Clipping
Application Viewer.

Table 1.1 Palm OS Launch Codes (continued)

Code Request

Application Launch Codes
Launch Codes

6 Palm OS Programmer’s API Reference

Launch Codes
This section provides supplemental information about launch
codes. For some launch codes, it lists the parameter block, which in
some cases provides additional information about the launch code.

sysAppLaunchCmdAddRecord
Add a record to an application’s database.

This launch code is used to add a message to the Mail or
iMessenger™ (on the Palm VII™ organizer) application’s outbox. You
pass information about the message such as address, body text, etc.
in the parameter block. For iMessenger, you can set the edit field
of the parameter block to control whether or not the iMessenger
editor is displayed. Set it to true to display the editor or false not
to display it.

For more information on sending messages via iMessenger, see
“Sending Email Messages” on page 210 in the Palm OS Programmer’s
Companion, vol. II, Communications.

IMPORTANT: Implemented for iMessenger only if Wireless
Internet Feature Set is present. Implemented for Mail only on OS
version 3.0 or later.

sysAppLaunchCmdAddRecord Parameter Block for Mail
Application

Prototype typedef enum {
 mailPriorityHigh,
 mailPriorityNormal,
 mailPriorityLow
} MailMsgPriorityType;

typedef struct {
 Boolean secret;
 Boolean signature;
 Boolean confirmRead;
 Boolean confirmDelivery;
 MailMsgPriorityType priority;
 UInt8 padding
 Char* subject;

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 7

 Char* from;
 Char* to;
 Char* cc;
 Char* bcc;
 Char* replyTo;
 Char* body;
} MailAddRecordParamsType;

Fields secret True means that the message should be
marked secret.

signature True means that the signature from the Mail
application’s preferences should be attached to
the message.

confirmRead True means that a confirmation should be sent
when the message is read.

confirmDelivery
True means that a confirmation should be sent
when the message is delivered.

priority Message priority. Specify one of the
MailMsgPriorityType enumerated types.

padding Reserved for future use.

subject Message’s subject, a null-terminated string
(optional).

from Message’s sender, a null-terminated string (not
used on outgoing mail).

to Address of the recipient, a null-terminated
string (required).

cc Addresses of recipients to be copied, a null-
terminated string (optional).

bcc Addresses of recipients to be blind copied, a
null-terminated string (optional).

replyTo Reply to address, a null-terminated string
(optional).

body The text of the message, a null-terminated
string (required).

Application Launch Codes
Launch Codes

8 Palm OS Programmer’s API Reference

sysAppLaunchCmdAddRecord Parameter Block for
iMessenger Application

Prototype typedef struct {
 UInt16 category;
 Boolean edit;
 Boolean signature;
 Char *subject;
 Char *from;
 Char *to;
 Char *replyTo;
 Char *body;
} MsgAddRecordParamsType;

Fields category Category in which to place the message.
Specify one of the following categories:

MsgInboxCategory

MsgOutboxCategory

MsgDeletedCategory

MsgFiledCategory

MsgDraftCategory

edit True means that the message should be
opened in the editor. False means that the
message should simply be placed into the
outbox and the editor not opened. You can
specify true only if the category is set to
MsgOutboxCategory.

signature True means that the signature from the
iMessenger application preferences should be
attached to the message.

subject Message’s subject, a null-terminated string
(optional).

from Message’s sender, a null-terminated string (not
used on outgoing mail).

to Address of the recipient, a null-terminated
string (required).

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 9

replyTo Reply to address, a null-terminated string
(optional).

body The text of the message, a null-terminated
string (required).

sysAppLaunchCmdAlarmTriggered
Performs quick action such as scheduling next alarm or sounding
alarm.

This launch code is sent as close to the actual alarm time as possible.
An application may perform any quick, non-blocking action at this
time. Multiple alarms may be pending at the same time for multiple
applications, and one alarm display shouldn’t block the system and
prevent other applications from receiving their alarms in a timely
fashion. An opportunity to perform more time-consuming actions
will come when sysAppLaunchCmdDisplayAlarm is sent.

sysAppLaunchCmdAlarmTriggered Parameter Block

Prototype typedef struct SysAlarmTriggeredParamType {
 UInt32 ref;
 UInt32 alarmSeconds;
 Boolean purgeAlarm;
 UInt8 padding;
} SysAlarmTriggeredParamType;

Fields -> ref The caller-defined value specified when the
alarm was set with AlmSetAlarm.

-> alarmSeconds
The date/time specified when the alarm was
set with AlmSetAlarm. The value is given as
the number of seconds since 1/1/1904.

<- purgeAlarm Upon return, set to true if the alarm should be
removed from the alarm table. Use this as an
optimization to prevent the application from
receiving sysAppLaunchCmdDisplayAlarm
if you don’t wish to perform any other
processing for this alarm. If you do want to
receive the launch code, set this field to false.

Application Launch Codes
Launch Codes

10 Palm OS Programmer’s API Reference

 padding Not used.

sysAppLaunchCmdAttention
Perform the action requested by the attention manager. This launch
code is accompanied by a value of the AttnCommand type; this type
specifies the set of possible commands that can be sent to the
application that requested the alarm.

typedef UInt16 AttnCommand;

The following table lists the values that AttnCommand can assume.

Table 1.2 sysAppLaunchCmdAttention Commands

Constant Value Description

AttnCommand_drawDeta
il

((AttnCommand)
1)

Indicates that the application
needs to draw the detailed
contents of the attention dialog.
The command arguments
parameter points to a structure of
type
AttnCommandDrawDetailArgs
Type.

AttnCommand_drawList ((AttnCommand)
2)

Indicates that the application
needs to draw the appropriate list
item in the attention dialog. The
command arguments parameter
points to a structure of type
AttnCommandDrawListArgsTy
pe.

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 11

AttnCommand_customEf
fect

((AttnCommand)
3)

Indicates that the Attention
Manager is doing something to
get the user’s attention, and any
application-specific special effect
should be done. This command is
only sent to attention items that
set the
AttnFlags_CustomEffectBit
when they call
AttnGetAttention, which
most applications won’t do.

AttnCommand_goThere ((AttnCommand)
4)

Tells the application to navigate to
the item. The command
arguments parameter is NULL. An
application commonly calls
SysAppLaunch upon receipt of
this command to have itself
launched.

AttnCommand_gotIt ((AttnCommand)
5)

Tells the application that the user
is dismissing the item. The
command arguments parameter is
NULL. The application may choose
to clean up memory at this point.

Table 1.2 sysAppLaunchCmdAttention Commands

Constant Value Description

Application Launch Codes
Launch Codes

12 Palm OS Programmer’s API Reference

AttnCommandDrawDetailArgsType

When AttnCommand_drawDetail is passed to the application,
either via the callback function or as a parameter accompanying the
sysAppLaunchCmdAttention launch code, the application needs
to draw the detailed contents of the attention dialog. The
AttnCommandDrawDetailArgsType structure accompanies the
AttnCommand_drawDetail command, and provides the
information needed to draw the contents of that dialog.

typedef struct {
 RectangleType bounds;
 Boolean firstTime;
 AttnFlagsType flags;
} AttnCommandDrawDetailArgsType;

AttnCommand_snooze ((AttnCommand)
6)

Indicates to the application that
the user is snoozing. The
command arguments parameter is
NULL. Most applications do
nothing upon receipt of this
command. This command is
passed to each and every item
currently pending, insistent or
subtle. Applications with more
than one attention item pending
are called more than once.

AttnCommand_iterate ((AttnCommand)
7)

This command is passed to the
application during the
enumeration of attention items.
This command is particularly
useful after HotSync operations,
as it allows the application to
examine each item, updating or
removing those that are stale or
invalid.

Table 1.2 sysAppLaunchCmdAttention Commands

Constant Value Description

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 13

Field Descriptions

AttnCommandDrawListArgsType

When AttnCommand_drawList is passed to the application, either
via the callback function or as a parameter accompanying the
sysAppLaunchCmdAttention launch code, the application is to
draw the appropriate list item in the attention dialog. The
AttnCommandDrawListArgsType structure accompanies the
AttnCommand_drawList command, and provides the
information needed to draw the contents of that dialog.

typedef struct {
 RectangleType bounds;
 Boolean firstTime;
 AttnFlagsType flags;

bounds Contains the window-relative
bounding box for the area to
draw. The clipping region is also
set to the dimensions of this box
to prevent accidental drawing
outside.

firstTime Set to true if the user has not yet
seen this item. The value of this
field could be used, for example,
to display attentions that the user
hasn’t seen before in some special
way.

flags The global user preferences for
this attention attempt combined
with the custom flags passed in
by the developer. For example, if
the global preference is to mute
sounds, and the developer flags
are both zero, then the
AttnFlags_NoSound flag is on
and the
AttnFlags_AlwaysSound flag
is off.

Application Launch Codes
Launch Codes

14 Palm OS Programmer’s API Reference

} AttnCommandDrawListArgsType;

Field Descriptions

AttnCommandGotItArgsType

When AttnCommand_gotIt is passed to the application, either via
the callback function or as a parameter accompanying the
sysAppLaunchCmdAttention launch code, it is accompanied by
an AttnCommandGotItArgsType structure. This structure
indicates whether the AttnCommand_gotIt command was
generated because the user dismissed the attention, or whether the
system is simply informing your application that AttnForgetIt
was called. Your application normally ignores the latter case if your
application made the call to AttnForgetIt.

bounds Contains the window-relative
bounding box for the area to
draw. The clipping region is also
set to the dimensions of this box
to prevent accidental drawing
outside.

firstTime Set to true if the user has not yet
seen this item. The value of this
field could be used, for example,
to trigger a custom sound the first
time this attention item is
presented to the user.

flags The global user preferences for
this attention attempt combined
with the custom flags passed in
by the developer. For example, if
the global preference is to mute
sounds, and the developer flags
were both zero, then the
AttnFlags_NoSound flag is on
and the
AttnFlags_AlwaysSound flag
is off.

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 15

typedef struct {
 Boolean dismissedByUser;
} AttnCommandGotItArgsType;

Field Descriptions

sysAppLaunchCmdCardLaunch
This launch code is sent to applications that are being run from an
expansion card. The application is copied into the device’s main
memory prior to being sent this launch code. If the application
doesn’t respond to sysAppLaunchCmdCardLaunch, it is then sent
a sysAppLaunchNormalLaunch launch code. Applications that
can profit from the knowledge that they are being launched from an
expansion card may want to consult the fields in the parameter
block that accompanies sysAppLaunchCmdCardLaunch.

When the Launcher sends sysAppLaunchCmdCardLaunch to an
application, it also sends sysAppLaunchFlagNewGlobals, and
sysAppLaunchFlagUIApp flags. These two flags are not sent to
start.prc, however. Applications should never interact with the
user upon receiving this launch code, and should not depend on
globals being available. This launch code is intended to notify the
application that it is being launched from a card. Applications
typically save some state information upon receiving this launch
code and do the bulk of their processing when they receive
sysAppLaunchNormalLaunch.

sysAppLaunchCmdCardLaunch Parameter Block

Prototype typedef struct {
 Err err;
 UInt16 volRefNum;
 const Char *path;
 UInt16 startFlags;

dismissedByUser true indicates that the user
dismissed the attention. false
indicates that the
AttnCommand_gotIt command
was generated by a call to
AttnForgetIt.

Application Launch Codes
Launch Codes

16 Palm OS Programmer’s API Reference

 } SysAppLaunchCmdCardType;

Fields <- err Initially set to
expErrUnsupportedOperation,
applications that recognize
sysAppLaunchCmdCardLaunch and that
don’t want to receive the subsequent
sysAppLaunchNormalLaunch launch code
should set this field to errNone.

-> volRefNum The reference number of the volume from
which the application is being launched.

-> path The complete path to the application being
launched.

<-> startFlags This field is made up of a combination of the
following flags.

sysAppLaunchStartFlagAutoStart
Indicates that the application is being run
automatically upon card insertion.

sysAppLaunchStartFlagNoUISwitch
Set this bit to prevent a UI switch to the
application.

sysAppLaunchStartFlagNoAutoDelete
Set this bit to prevent the VFS Manager
from deleting the copy of the application
in main memory when the associated
volume is unmounted.

sysAppLaunchCmdCountryChange
Responds to country change.

Applications should change the display of numbers to use the
proper number separators. To do this, call
LocGetNumberSeparators, StrLocalizeNumber, and
StrDelocalizeNumber.

sysAppLaunchCmdDisplayAlarm
Performs full, possibly blocking, handling of alarm.

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 17

This is the application’s opportunity to handle an alarm in a lengthy
or blocking fashion. Alert dialogs are usually displayed when this
launch code is received. This work should be done here, not when
sysAppLaunchCmdAlarmTriggered is received. Multiple alarms
may be pending at the same time for multiple applications, and one
alarm display shouldn’t block the system and prevent other
applications from receiving their alarms in a timely fashion.

sysAppLaunchCmdDisplayAlarm Parameter Block

Prototype typedef struct SysDisplayAlarmParamType {
 UInt32 ref;
 UInt32 alarmSeconds;
 Boolean soundAlarm;
 UInt8 padding;
 } SysDisplayAlarmParamType;

Fields -> ref The caller-defined value specified when the
alarm was set with AlmSetAlarm.

-> alarmSeconds
The date/time specified when the alarm was
set with AlmSetAlarm. The value is given as
the number of seconds since 1/1/1904.

-> soundAlarm true if the alarm should be sounded, false
otherwise. This value is currently not used.

 padding Not used.

sysAppLaunchCmdExgAskUser
The Exchange Manager sends the sysAppLaunchCmdExgAskUser
launch code to the application when data has arrived for that
application. This launch code allows the application to tell the
Exchange Manager not to display the exchange dialog, which it uses
to have the user confirm the receipt of data. If the application does
not handle this launch code, the default course of action is that the
Exchange Manager displays the exchange dialog.

Applications may want to respond to this launch code under these
circumstances:

Application Launch Codes
Launch Codes

18 Palm OS Programmer’s API Reference

• To reject all incoming data or to reject data under certain
circumstances without first prompting the user. To reject
incoming data, set the result field of the parameter block to
exgAskCancel and then return.

• To receive incoming data without confirmation. To
automatically receive incoming data, set the result field to
exgAskOk.

• To provide a user confirmation dialog with extra
functionality. This is described in more detail below.

Starting with Palm OS 3.5, the Exchange Manager allows
applications to provide extra functionality in the exchange dialog.
You can have the dialog include a category pop-up list from which
the user chooses a category in which to file the incoming data. If you
want to provide a category pop-up list, call the ExgDoDialog
function in response to this launch code and pass it a database that
contains the categories to be listed. See the description of that
function for more information.

Applications may also bypass the call to ExgDoDialog altogether
and provide their own dialogs.

If an application responds to this launch code, it must set the
result field in the parameter block to the appropriate value.
Possible values are:

exgAskDialog Display the default exchange dialog provided
by Exchange Manager.

exgAskOk Accept the incoming data.

exgAskCancel Reject the incoming data.

On Palm OS 3.5 or higher if you don’t use the default version of the
dialog, return exgAskOk if the user confirmed or exgAskCancel if
the user canceled. If you don’t set the result field properly, two
dialogs are displayed.

IMPORTANT: Implemented only if 3.0 New Feature Set is
present.

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 19

sysAppLaunchCmdExgAskUser Parameter Block

Prototype typedef struct {
 ExgSocketPtr socketP;
 ExgAskResultType result;
 UInt8 reserved;
 } ExgAskParamType;

Fields <-> socketP Socket pointer (see ExgSocketType)

<- result Show dialog, auto-confirm, or auto-cancel

-> reserved Reserved for future use

sysAppLaunchCmdExgGetData
The Exchange Manager sends the sysAppLaunchCmdExgGetData
launch code when the exchange library requests data to be sent to a
remote device. That is, an application on a remote device has
performed an ExgGet function to request data, and the Exchange
Manager has determined that the launched application should
handle the request.

To respond to this launch code, applications should initiate a
connection with ExgPut, use ExgSend to send the data, and call
ExgDisconnect when finished.

The parameter block sent with this launch code is a pointer to the
ExgSocketType structure corresponding to the Exchange
Manager connection on which the data is to be sent. You pass this
socket pointer to ExgPut. For more details, see the “Exchange
Manager” chapter.

IMPORTANT: Implemented only if 4.0 New Feature Set is
present.

sysAppLaunchCmdExgPreview
Following the launch code sysAppLaunchCmdExgAskUser, the
Exchange Manager sends the sysAppLaunchCmdExgPreview
launch code to have the application display the preview in the
exchange dialog.

Application Launch Codes
Launch Codes

20 Palm OS Programmer’s API Reference

sysAppLaunchCmdExgPreview Parameter Block

Prototype typedef struct {
 UInt16 version;
 ExgSocketType *socketP;
 UInt16 op;
 Char *string;
 UInt32 size;
 RectangleType bounds;
 UInt16 types;
 Err error;
} ExgPreviewInfoType;

Fields -> version Set this field to 0 to specify version 0 of this
structure.

-> socketP A pointer to the socket structure (see
ExgSocketType). The libraryRef field
must point to the exchange library from which
preview data should be received.

-> op A constant that identifies the operation. This
can be one of the following:

exgPreviewDialog
Display a form or modal dialog
containing the preview. This constant is
only used in situations where one
application launches another to display
data.

exgPreviewDraw
Draw the preview as a graphic in the
bounds rectangle.

exgPreviewLongString
Return the preview as a long string in the
string field.

exgPreviewQuery
Return the list of preview modes the
application supports in the types field.

exgPreviewLongString
Return the preview as a short string in
the string field.

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 21

<- string A buffer into which the preview string is placed
if one of the string preview operations is
specified.

-> size The allocated size of the string field.

-> bounds The bounds of the rectangle in which to draw
the graphic if the preview operation is
exgPreviewDraw.

<- types Upon return from exgPreviewQuery, a bit
field identifying the types of previews the
library supports (exgPreviewDraw,
exgPreviewLongString, or
exgPreviewShortString).

<- error The error code returned from the library. If this
is errNone, the preview operation was
successful.

Applications that respond to this launch code should check the
parameter block’s op field and respond as described above.

Applications can define and use their own constants for the preview
operation. Operations specific to an application are numbered
starting at exgPreviewFirstUser and should be no greater than
exgPreviewLastUser.

Applications respond to this launch in much the same way they
respond to sysAppLaunchCmdExgReceiveData. Use
ExgAccept to accept the preview connection, ExgReceive to
receive the data, and then ExgDisconnect to end the connection.
The only difference is what is done with the data when it is received.
With this launch code, the application should return the data in the
string field or draw it in the bounds rectangle. With the
sysAppLaunchCmdExgReceiveData launch code, the application
stores the received data.

IMPORTANT: Implemented only if 4.0 New Feature Set is
present.

Application Launch Codes
Launch Codes

22 Palm OS Programmer’s API Reference

sysAppLaunchCmdExgReceiveData
The Exchange Manager sends the
sysAppLaunchCmdExgReceiveData launch code following the
sysAppLaunchCmdExgAskUser and
sysAppLaunchCmdExgPreview launch codes to notify the
application that it should receive the data (assuming that the
application and/or the user has indicated the data should be
received).

The application should use Exchange Manager functions to receive
the data and store it or do whatever it needs to with the data.
Specifically, most applications should respond to this launch code
by calling ExgAccept to accept the connection and then
ExgReceive to receive the data.

Note that the application may not be the active application, and
thus may not have globals available when it is launched with this
launch code. You can check if you have globals by using this code in
the PilotMain routine:

Boolean appIsActive = launchFlags & sysAppLaunchFlagSubCall;

The appIsActive value is true if your application is active and
globals are available; otherwise, you won’t be able to access any of
your global variables during the receive operation.

The parameter block sent with this launch code is a pointer to the
ExgSocketType structure corresponding to the Exchange
Manager connection on which the data is arriving. Pass this pointer
to the ExgAccept function to begin receiving the data. For more
details, refer to the “Exchange Manager” chapter.

IMPORTANT: Implemented only if 3.0 New Feature Set is
present.

sysAppLaunchCmdFind
This launch code is used to implement the global find. When the
user enters a text string in the Find dialog, the system sends this
launch code with the FindParamsType parameter block to each

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 23

application. The application should search for the string that the
user entered and return any records matching the find request.

The system displays the results of the query in the Find results
dialog. The system continues the search with each application until
it has a full screen of matching records or until all of the applications
on the device have had a chance to respond. If the screen is full, a
Find More button appears at the bottom of the dialog. If the user
clicks the Find More button, the search resumes. Applications can
test whether the current find is a continuation of a previous one by
checking the continuation field in the parameter block.

Most applications that use text records should support this launch
code. When they receive it, they should search all records for
matches to the find string and return all matches. Functions that you
can use to respond to this launch code are described in Chapter 10,
“Find.”

An application can also integrate the find operation in its own user
interface and send the launch code to a particular application.

Applications that support this launch code should support
sysAppLaunchCmdSaveData and sysAppLaunchCmdGoto as
well.

sysAppLaunchCmdFind Parameter Block

Prototype typedef struct {
 UInt16 dbAccesMode;
 UInt16 recordNum;
 Boolean more;
 Char strAsTyped [maxFindStrLen+1];
 Char strToFind [maxFindStrLen+1];
 UInt8 reserved1;
 UInt16 numMatches;
 UInt16 lineNumber;
 Boolean continuation;
 Boolean searchedCaller;
 LocalID callerAppDbID;
 UInt16 callerAppCardNo;
 LocalID appDbID;
 UInt16 appCardNo;
 Boolean newSearch;
 UInt8 reserved2;
 DmSearchStateType searchState;

Application Launch Codes
Launch Codes

24 Palm OS Programmer’s API Reference

 FindMatchType match [maxFinds];
} FindParamsType;

Fields dbAccesMode Mode in which to open the application’s
database. Pass this directly to
DmOpenDatabase as the mode parameter. Its
value is either dmModeReadOnly or
dmModeReadOnly | dmModeShowSecret.
(See “Open Mode Constants” for more
information.)

recordNum Index of last record that contained a match.
Start the search from this location. Do not set
this value directly. Instead, call
FindSaveMatch when you have a matching
record.

more If true, the Find results dialog displays the
Find More button indicating that there may be
more results to display.

Typically FindSaveMatch handles setting the
more field. Applications with large databases
to search may want to periodically check for
and stop the search if an event is pending. If so,
they should set this field to true before
stopping.

strAsTyped Search string as the user entered it.

strToFind Normalized version of the search string. The
method by which a search string is normalized
varies depending on the version of Palm OS
and the character encoding supported by the
device. You pass strToFind directly to the
search function (either FindStrInStr,
TxtFindString, or TxtGlueFindString).

reserved1 Reserved for future use.

numMatches The current number of matches. Do not set this
field directly. Instead, call FindSaveMatch,
which increments it for you.

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 25

lineNumber Line number of the next line that displays the
results. Do not set this field directly. It is
incremented by a call to FindDrawHeader.

continuation If true, the launch code is being sent as part of
a continuation of a previous Find. If false,
this is a new Find. Do not set this field directly;
the system sets it when the Find results dialog
is full.

searchedCaller
If true, the application that was active at the
time the user tapped the Find button has
responded to this launch code. This application
is always searched before any others.

callerAppDbID Database ID of the application that was active
when the user tapped the Find button. Do not
change the value of this field; the system sets it
and uses it when searching for application
databases.

callerAppCardNo
Card number of the application that was active
when the user tapped the Find button. Do not
change the value of this field; the system sets it
and uses it when searching for application
databases.

appDbID The ID of your application’s resource database.
Do not set this field directly; the system sets it
and uses it when searching for application
databases.

appCardNo The card number of your application’s resource
database. Do not set this field directly; the
system sets it and uses it when searching for
application databases.

newSearch System use only.

reserved2 Reserved for future use.

searchState System use only.

match System use only.

Application Launch Codes
Launch Codes

26 Palm OS Programmer’s API Reference

sysAppLaunchCmdGoto
Sent in conjunction with sysAppLaunchCmdFind or
sysAppLaunchCmdExgReceiveData to allow users to actually
inspect the record that the global find returned or that was received
by the Exchange Manager.

Applications should do most of the normal launch actions, then
display the requested item. The application should continue
running unless explicitly closed.

An application launched with this code does have access to global
variables, static local variables, and code segments other than
segment 0 (in multi-segment applications).

Applications that receive this launch code should test the
sysAppLaunchFlagNewGlobals launch flag to see if they need to
initialize global variables. sysAppLaunchFlagNewGlobals
indicates that the system has just allocated your global variables.

For example:

case sysAppLaunchCmdGoTo:
 if (launchFlags & sysAppLaunchFlagNewGlobals)
 StartApplication();

Note that you shouldn’t automatically initialize the global variables
in response to this launch code. Test the launch flag first. Your
application receives this launch code when the user selects a record
in the global find results. If your application was the current
application before the user selected the Find command, the launch
flag is clear to indicate that your globals should not be re-initialized.

sysAppLaunchCmdGoto Parameter Block

Prototype typedef struct {
 Int16 searchStrLen;
 UInt16 dbCardNo;
 LocalID dbID;
 UInt16 recordNum;
 UInt16 matchPos;
 UInt16 matchFieldNum;
 UInt32 matchCustom;
} GoToParamsType;

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 27

Fields searchStrLen Length of normalized search string. This is not
the length of the matching string. See below for
a full explanation.

dbCardNo Card number of the database to open.

dbID Local ID of the database to open.

recordNum Index of record containing a match.

matchPos Position of the match within the field.

matchFieldNum Field number string was found in.

matchCustom Application-specific information.

Often, applications highlight the search string when displaying the
resulting record. Localizable applications commonly store the
length of the string to select in the matchCustom field for this
purpose. Some multi-byte character encodings represent certain
characters both as a single-byte character and a multi-byte character.
When the search is performed, the single-byte character is
accurately matched against its multi-byte equivalent. For this
reason, the length of the string searched for does not always equal
the length of the matching string. Applications that support being
localized to multi-byte character sets often set the matchCustom
field to the length of the matching string in the call to
FindSaveMatch so that they know the length of the string to
select.

sysAppLaunchCmdGoToURL
Applications can respond to this launch code to retrieve and display
the specified URL.

The parameter block for this launch command is simply a pointer to
a string containing the URL.

This launch code may be sent in the following instances:

• If the Wireless Internet Feature Set is, applications can send
this launch code directly to the Web Clipping Application
Viewer application.

• If 4.0 New Feature Set is present, the ExgRequest function
launches an application with this launch code if it cannot find
an exchange library that is registered for the URL it has

Application Launch Codes
Launch Codes

28 Palm OS Programmer’s API Reference

received. To receive the launch code, the application must
first use ExgRegisterDatatype to register for a URL
scheme.

IMPORTANT: Implemented only if Wireless Internet Feature Set
is present.

sysAppLaunchCmdHandleSyncCallApp
This launch command is sent by the Desktop Link server when
SyncCallRemoteModule is called from a conduit to request that
the handheld application do some processing on the conduit’s
behalf.

Along with this launch code you receive a
sysAppLaunchCmdHandleSyncCallApp parameter block which
contains all of the information passed to SyncCallRemoteModule
on the desktop plus the fields needed to pass the result back to the
desktop. Pass the results back to the conduit by calling
DlkControl. See the comments section for DlkControl in the
Palm OS Programmer’s API Reference for an example of how to
handle this launch code.

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 29

sysAppLaunchCmdHandleSyncCallApp Parameter Block

Prototype typedef struct
SysAppLaunchCmdHandleSyncCallAppType {
 UInt16 pbSize;
 UInt16 action;
 void *paramP;
 UInt32 dwParamSize;
 void *dlRefP;
 Boolean handled;
 UInt8 reserved1;
 Err replyErr;
 UInt32 dwReserved1;
 UInt32 dwReserved2;
} SysAppLaunchCmdHandleSyncCallAppType;

Fields pbSize Size, in bytes, of this parameter block. Set to
sizeof(SysAppLaunchCmdHandle
SyncCallAppType).

action Call action ID (application-specific).

paramP Pointer to parameter block (call action ID
specific).

dwParamSize Parameter block size, in bytes.

dlRefP DesktopLink reference pointer. Supply this
value in the DlkCallAppReplyParamType
structure when calling DlkControl with the
dlkCtlSendCallAppReply control code.

handled Initialized to false by DLServer; if handled,
your application must set it to true (and your
handler the handler must call DlkControl
with the dlkCtlSendCallAppReplycontrol
code). If your handler is not going to send a
reply back to the conduit, leave this field set to
false, in which case the DesktopLink Server
will send the default "unknown request" reply.

reserved1 Reserved. Set to NULL.

Application Launch Codes
Launch Codes

30 Palm OS Programmer’s API Reference

replyErr Error code returned from the call to
DlkControl with the
dlkCtlSendCallAppReply control code.

dwReserved1 Reserved. Set to NULL.

dwReserved2 Reserved. Set to NULL.

sysAppLaunchCmdInitDatabase
This launch code is sent by the Desktop Link server in response to a
request to create a database. It is sent to the application whose
creator ID matches that of the requested database.

The most frequent occurrence of this is when a 'data' database is
being installed or restored from the desktop. In this case, HotSync
creates a new database on the device and passes it to the application
via a sysAppLaunchCmdInitDatabase command, so that the
application can perform any required initialization. HotSync will
then transfer the records from the desktop database to the device
database.

When a Palm OS application crashes while a database is installed
using HotSync, the reason may be that the application is not
handling the sysAppLaunchCmdInitDatabase command
properly. Be especially careful not to access global variables.

The system will create a database and pass it to the application for
initialization. The application must perform any initialization
required, then pass the database back to the system, unclosed.

sysAppLaunchCmdInitDatabase Parameter Block

Prototype typedef struct {
 DmOpenRef dbP;
 UInt32 creator;
 UInt32 type;
 UInt16 version;
} SysAppLaunchCmdInitDatabaseType;

Fields dbP Database reference.

creator Database creator.

type Database type.

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 31

version Database version.

sysAppLaunchCmdLookup
The system or an application sends this launch command to retrieve
information from another application. In contrast to Find, there is a
level of indirection; for example, this launch code could be used to
retrieve the phone number based on input of a name.

This functionality is currently supported by the standard Palm OS
Address Book.

Applications that decide to handle this launch code must search
their database for the string the user entered and perform the match
operation specified in the launch code’s parameter block.

If an application wants to allow its users to perform lookup in other
applications, it has to send it properly, including all information
necessary to perform the match. An example for this is in
Address.c and AppLaunchCmd.h, which are included in your
SDK.

sysAppLaunchCmdLookup Parameter Block

The parameter block is defined by the application that supports this
launch code. See AppLaunchCmd.h for an example.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

sysAppLaunchCmdNotify
The system or an application sends this launch code to notify
applications that an event has occurred. The parameter block
specifies the type of event that occurred, as well as other pertinent
information. To learn which notifications are broadcast by the
system, see the chapter titled “Notifications” in this book.

IMPORTANT: Implemented only if Notification Feature Set is
present.

Application Launch Codes
Launch Codes

32 Palm OS Programmer’s API Reference

sysAppLaunchCmdNotify Parameter Block

The SysNotifyParamType structure declared in NotifyMgr.h
defines the format of this launch code’s parameter block. See its
description in the “Notifications” chapter.

sysAppLaunchCmdOpenDB
You can send this launch code to the Web Clipping Application
Viewer application to launch the application and cause it to open
and display a Palm™ query application stored on the device. This is
the same mechanism that the Launcher uses to launch query
applications.

IMPORTANT: Implemented only if Wireless Internet Feature Set
is present.

sysAppLaunchCmdOpenDB Parameter Block

Prototype typedef struct {
 UInt16 cardNo;
 LocalID dbID;
 } SysAppLaunchCmdOpenDBType;

Fields cardNo Card number of database to open.

dbID Database id of database to open.

sysAppLaunchCmdPanelCalledFromApp
sysAppLaunchCmdPanelCalledFromApp and
sysAppLaunchCmdReturnFromPanel allow an application to let
users change preferences without switching to the Preferences
application. For example, for the calculator, you may launch the
Formats preferences panel, set up a number format preference, then
directly return to the calculator that then uses the new format.

sysAppLaunchCmdPanelCalledFromApp lets a preferences
panel know whether it was switched to from the Preferences
application or whether an application invoked it to make a change.
The panel may be a preference panel owned by the application or a
system preferences panel.

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 33

Examples of these system panels that may handle this launch code
are:

• Network panel (called from network applications)

• Modem panel (called if modem selection is necessary)

All preferences panels must handle this launch code. If a panel is
launched with this command, it should:

• Display a Done button.

• Not display the panel-switching pop-up trigger used for
navigation within the preferences application.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

sysAppLaunchCmdReturnFromPanel
This launch code is used in conjunction with
sysAppLaunchCmdPanelCalledFromApp. It informs an
application that the user is done with a called preferences panel. The
system passes this launch code to the application when a
previously-called preferences panel exists.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

sysAppLaunchCmdSaveData
Instructs the application to save all current data. For example,
before the system performs a global find, an application should save
all data.

Any application that supports the Find command and that can have
buffered data should support this launch code. The system sends
this launch code to the currently active application before it begins
the search. The application receiving this launch code should
respond by saving all buffered data so that the search is able to find
matches in the text just entered.

Application Launch Codes
Launch Codes

34 Palm OS Programmer’s API Reference

sysAppLaunchCmdSaveData Parameter Block

Prototype typedef struct {
 Boolean uiComing;
 UInt8 reserved1;
} SysAppLaunchCmdSaveDataType;

Fields uiComing true if the system dialog is displayed before
launch code arrives.

reserved1 Reserved for future use.

sysAppLaunchCmdSyncNotify
This launch code is sent to applications to inform them that a
HotSync operation has occurred.

This launch code is sent only to applications whose databases were
changed during the HotSync operation. (Installing the application
database itself is considered a change.) The record database(s) must
have the same creator ID as the application in order for the system
to know which application to send the launch code to.

This launch code provides a good opportunity to update, initialize,
or validate the application’s new data, such as resorting records,
setting alarms, and so on.

Because applications only receive sysAppLaunchCmdSyncNotify
when their databases are updated, this launch code is not a good
place to perform any operation that must occur after every HotSync
operation. Instead, you may register to receive the
sysNotifySyncFinishEvent on systems that have the
Notification Feature Set. This notification is sent at the end of a
HotSync operation, and it is sent to all applications registered to
receive it, whether the application’s data changed or not. Note that
there is also a sysNotifySyncStartEvent notification.

sysAppLaunchCmdSystemLock
Launch code sent to the system-internal security application to lock
the device.

Application Launch Codes
Launch Codes

Palm OS Programmer’s API Reference 35

As a rule, applications don’t need to do respond to this launch code.
If an application replaces the system-internal security application, it
must handle this launch code.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

sysAppLaunchCmdSystemReset
Launch code to respond to system soft or hard reset.

Applications can respond to this launch code by performing
initialization, indexing, or other setup that they need to do when the
system is reset. For more information about resetting the device, see
“System Boot and Reset” in the Palm OS Programmer’s Companion,
vol. I.

sysAppLaunchCmdSystemReset Parameter Block

Prototype typedef struct {
 Boolean hardReset;
 Boolean createDefaultDB;
} SysAppLaunchCmdSystemResetType;

Fields hardReset true if system was hardReset. false if
system was softReset.

createDefaultDB
If true, application has to create default
database.

sysAppLaunchCmdTimeChange
Launch code to respond to a time change initiated by the user.

Applications that are dependent on the current time or date need to
respond to this launch code. For example, an application that sets
alarms may want to cancel an alarm or set a different one if the
system time changes.

On systems that have the Notification Feature Set, applications
should register to receive the sysNotifyTimeChangeEvent

Application Launch Codes
Launch Flags

36 Palm OS Programmer’s API Reference

notification instead of responding to this launch code. The
sysAppLaunchCmdTimeChange launch code is sent to all
applications. The sysNotifyTimeChangeEvent notification is
sent only to applications that have specifically registered to receive
it, making it more efficient than sysAppLaunchCmdTimeChange.

sysAppLaunchCmdURLParams
This launch code is sent from the Web Clipping Application Viewer
application to launch another application.

The parameter block consists of a pointer to a special URL string,
which the application must know how to parse. The string is the
URL used to launch the application and may contain encoded
parameters.

An application launched with this code may or may not have access
to global variables, static local variables, and code segments other
than segment 0 (in multi-segment applications). It depends on the
URL that caused the Web Clipping Application Viewer to send this
launch code. If this launch code results from a palm URL, then
globals are available. If the launch code results from a palmcall
URL, then globals are not available.

The best way to test if you have global variable access is to test the
sysAppLaunchFlagNewGlobals launch flag sent with this
launch code. If this is flag is set, then you have global variable
access.

IMPORTANT: Implemented only if Wireless Internet Feature Set
is present.

Launch Flags
When an application is launched with any launch command, it also
is passed a set of launch flags.

An application may decide to ignore the flags even if it handles the
launch code itself. For applications that decide to use the launch
flags, the following table provides additional information:

Application Launch Codes
Launch Flags

Palm OS Programmer’s API Reference 37

IMPORTANT: Applications should never set launch flags when
sending a launch code to another application. They should only
be set by the system. In particular, note that you should never
pass sysAppLaunchFlagNewGlobals as a launch flag for
SysAppLaunch. If you do and you make repeated calls to
SysAppLaunch, the system eventually runs out of owner IDs,
and the new application fails to launch.

Table 1.3 Launch Flags

Flag Functionality

sysAppLaunchFlagNewGlobals Set when the system has created and initialized
a new globals world for the application. Implies
new owner ID for memory chunks.

sysAppLaunchFlagUIApp Set when a UI application is being launched.

sysAppLaunchFlagSubCall Set when the application is calling its entry
point as a subroutine call. This tells the launch
code that it’s OK to keep the A5 (globals)
pointer valid through the call. If this flag is set, it
indicates that the application is already running
as the current application.

Application Launch Codes
Launch Flags

38 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 39

2
Palm OS Events
Palm OS® events are structures (defined in the header files
Event.h, SysEvent.h, and INetMgr.h) that the system passes to
the application when the user interacts with the graphical user
interface. Chapter 3, “Event Loop,” on page 53, in the Palm OS
Programmer’s Companion, vol. I discusses in detail how this works.
This chapter provides reference-style information about each event.
First it shows the types used by Palm OS events. Then it discusses
the following events in alphabetical order:

Event UI Object

appStopEvent N.A.

ctlEnterEvent, ctlExitEvent, ctlRepeatEvent,
ctlSelectEvent

Control

daySelectEvent N.A.

fldChangedEvent, fldEnterEvent,
fldHeightChangedEvent

Field

frmCloseEvent, frmGotoEvent, frmLoadEvent,
frmOpenEvent, frmSaveEvent, frmUpdateEvent,
frmTitleEnterEvent, frmTitleSelectEvent

Form

frmGadgetEnterEvent, frmGadgetMiscEvent Extended gadget

inetSockReadyEvent, inetSockStatusChangeEvent N.A. (INetLib)

keyDownEvent N.A.

lstEnterEvent, lstExitEvent, lstSelectEvent List

menuEvent, menuOpenEvent, menuCloseEvent,
menuCmdBarOpenEvent

Menu

nilEvent N.A.

penDownEvent, penMoveEvent, penUpEvent N.A. (pen)

Palm OS Events
Event Data Structures

40 Palm OS Programmer’s API Reference

Event Data Structures

eventsEnum
The eventsEnum enum specifies the possible event types.

enum events {
 nilEvent = 0,
 penDownEvent,
 penUpEvent,
 penMoveEvent,
 keyDownEvent,
 winEnterEvent,
 winExitEvent,
 ctlEnterEvent,
 ctlExitEvent,
 ctlSelectEvent,
 ctlRepeatEvent,
 lstEnterEvent,
 lstSelectEvent,
 lstExitEvent,
 popSelectEvent,
 fldEnterEvent,
 fldHeightChangedEvent,
 fldChangedEvent,
 tblEnterEvent,
 tblSelectEvent,
 daySelectEvent,
 menuEvent,
 appStopEvent = 22,
 frmLoadEvent,

popSelectEvent Popup (Control)

sclEnterEvent, sclRepeatEvent, sclExitEvent Scroll bar

tblEnterEvent, tblExitEvent, tblSelectEvent Table

winEnterEvent, winExitEvent Window

Event UI Object

Palm OS Events
Event Data Structures

Palm OS Programmer’s API Reference 41

 frmOpenEvent,
 frmGotoEvent,
 frmUpdateEvent,
 frmSaveEvent,
 frmCloseEvent,
 frmTitleEnterEvent,
 frmTitleSelectEvent,
 tblExitEvent,
 sclEnterEvent,
 sclExitEvent,
 sclRepeatEvent,
 tsmFepModeEvent,

 menuCmdBarOpenEvent = 0x0800,
 menuOpenEvent,
 menuCloseEvent,
 frmGadgetEnterEvent,
 frmGadgetMiscEvent,

 firstINetLibEvent = 0x1000,
 firstWebLibEvent = 0x1100,

 firstUserEvent = 0x6000,
 lastUserEvent = 0x7FFF
} eventsEnum;

Each of these event types is discussed in alphabetical order below.

EventType
The EventType structure contains all the data associated with a
system event. All event types have some common data. Most events
also have data specific to those events. The specific data uses a
union that is part of the EventType data structure. The union can
have up to 8 words of specific data.

The common data is documented below the structure. The Event
Reference section gives details on the important data associated
with each type of event.

Palm OS Events
Event Data Structures

42 Palm OS Programmer’s API Reference

typedef struct {
 eventsEnum eType;
 Boolean penDown;
 UInt8 tapCount;
 Int16 screenX;
 Int16 screenY;
 union{
 ...
 } data;
} EventType;

Common Field Descriptions

eType One of the eventsEnum constants. Specifies the type
of the event.

penDown true if the pen was down at the time of the event,
otherwise false.

tapCount The number of taps received at this location. This
value is used mainly by fields. When the user taps in a
text field, two taps selects a word, and three taps
selects the entire line.

screenX Window-relative position of the pen in pixels (number
of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number
of pixels from the top left of the window).

data The specific data for an event, if any. The data is a
union, and its exact contents depend on the eType
field. The Event Reference section in this chapter
shows what the data field contains for each event.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 43

NOTE: Remember that the data field is part of the access path
to an identifier in the EventType structure. As an example, the
code to access the controlID field of a ctlEnterEvent would
be:
EventType *event;

//...

if (event->data.ctlEnter.controlID ==

 MyAppLockButton)

Compatibility The tapCount field is only defined if 3.5 New Feature Set is
present. Because of the tapCount field, it’s particularly important
that you clear the event structure before you use it to add a new
event to the queue in Palm OS 3.5 and higher. Otherwise, the
tapCount value may be incorrect for the new event.

EventPtr
The EventPtr defines a pointer to an EventType.

typedef EventType *EventPtr;

Event Reference

appStopEvent
When the system wants to launch a different application than the
one currently running, the event manager sends this event to
request the current application to terminate. In response, an
application has to exit its event loop, close any open files and forms,
and exit.

If an application doesn’t respond to this event by exiting, the system
can’t start the other application.

Palm OS Events
Event Reference

44 Palm OS Programmer’s API Reference

ctlEnterEvent
The control routine CtlHandleEvent sends this event when it
receives a penDownEvent within the bounds of a control.

For this event, the data field contains the following structure:

struct ctlEnter {
 UInt16 controlID;
 struct ControlType *pControl;
} ctlEnter;

Field Descriptions

ctlExitEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of a control, a ctlSelectEvent is added to the event
queue; if not, a ctlExitEvent is added to the event queue. The
penDown, screenX, and screenY fields of the EventType
structure are set appropriately for the ctlExitEvent. As well, the
data field contains the following structure:

struct ctlExit {
 UInt16 controlID;
 struct ControlType *pControl;
} ctlExit;

Field Descriptions

ctlRepeatEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent in a repeating

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 45

button (tREP) or a feedback slider control (tslf), it sends a
ctlRepeatEvent. When CtlHandleEvent receives a
ctlRepeatEvent in a repeating button, it sends another
ctlRepeatEvent if the pen remains down within the bounds of
the control for 1/2 second beyond the last ctlRepeatEvent.

When CtlHandleEvent receives a ctlRepeatEvent in a
feedback slider control, it sends a ctlRepeatEvent each time the
slider’s thumb moves by at least one pixel. Feedback sliders do not
send ctlRepeatEvents at regular intervals like repeating buttons
do.

If you return true in response to a ctlRepeatEvent, it stops the
ctlRepeatEvent loop. No further ctlRepeatEvents are sent.

For this event, the data field contains the following structure:

struct ctlRepeat {
 UInt16 controlID;
 struct ControlType *pControl;
 UInt32 time;
 UInt16 value;
} ctlRepeat;

Field Descriptions

Compatibility The value field is only present if 3.5 New Feature Set is present.

ctlSelectEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of the
same control it went down in, a cltSelectEvent is added to the
event queue; if not, a ctlExitEvent is added to the event queue.

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

time System-ticks count when the event is added to the
queue.

value Current value if the control is a feedback slider.

Palm OS Events
Event Reference

46 Palm OS Programmer’s API Reference

It usually doesn’t matter whether you return true or false from
your event handler since the operating system doesn’t handle this
event. The default event handler for popup triggers does handle this
event, however, so you must return false in this instance to ensure
that the list is actually displayed.

For this event, the data field contains the following structure:

struct ctlSelect {
 UInt16 controlID;
 struct ControlType *pControl;
 Boolean on;
 UInt8 reserved1;
 UInt16 value;
} ctlSelect;

Field Descriptions

Compatibility The value field is only present if 3.5 New Feature Set is present.

daySelectEvent
The system-internal DayHandleEvent routine, which handles
events in the day selector object, handles this event. When the day
selector object displays a calendar month, the user can select a day
by tapping on it.

This event is sent when the pen touches and is lifted from a day
number.

For this event, the data field contains the following structure:

struct daySelect {
 struct DaySelectorType *pSelector;

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

on true when the control is depressed; otherwise,
false.

reserved1 Unused.

value Current value if the control is a slider.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 47

 Int16 selection;
 Boolean useThisDate;
 UInt8 reserved1;
} daySelect;

Field Descriptions

fldChangedEvent
The field routine FldHandleEvent sends this event when the text
of a field has or might have been scrolled. This event actually can be
triggered from any call to the field code that causes scrolling to
happen; most often, this happens during FldHandleEvent.

When FldHandleEvent receives a fldEnterEvent, it positions
the insertion point and tracks the pen until it’s lifted. Text is selected
(highlighted) appropriately as the pen is dragged.

For this event, the data field contains the following structure:

struct fldChanged {
 UInt16 fieldID;
 struct FieldType *pField;
} fldChanged;

Field Descriptions

fldEnterEvent
The field routine FldHandleEvent sends this event when the field
receives a penDownEvent within the bounds of a field. For this
event, the data field contains the following structure:

pSelector Pointer to a day selector structure
(DaySelectorType).

selection Not used.

useThisDate Set to true to automatically use the selected date.

reserved1 Unused.

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

Palm OS Events
Event Reference

48 Palm OS Programmer’s API Reference

struct fldEnter {
 UInt16 fieldID;
 struct FieldType *pField;
} fldEnter;

Field Descriptions

fldHeightChangedEvent
Several field routines, including FldHandleEvent, send this event
when the number of lines in the field changes. These functions send
a fldHeightChangedEvent to notify your application that the
height of a field needs to change.

If the field is contained in a table, the table’s code handles the
fldHeightChangedEvent. If the field is directly on a form, your
application code should handle the fldHeightChangedEvent
itself. The form code does not handle the event for you.

For this event, the data field contains the following structure:

struct fldHeightChanged {
 UInt16 fieldID;
 struct FieldType *pField;
 Int16 newHeight;
 UInt16 currentPos;
} fldHeightChanged;

Field Descriptions

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

newHeight New visible height of the field, in number of lines.

currentPos Current position of the insertion point.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 49

frmCloseEvent
The form routines FrmGotoForm and FrmCloseAllForms send
this event. FrmGotoForm sends a frmCloseEvent to the currently
active form; FrmCloseAllForms sends a frmCloseEvent to all
forms an application has loaded into memory. If an application
doesn’t intercept this event, the routine FrmHandleEvent erases
the specified form and releases any memory allocated for it.

For this event, the data field contains the following structure:

struct frmClose {
 UInt16 formID;
} frmClose;

Field Descriptions

frmGadgetEnterEvent
The function FrmHandleEvent sends this event when there is a
penDownEvent within the bounds of an extended gadget. The
gadget handler function (see FormGadgetHandlerType) should
handle this event.

For this event, the data field contains the following structure:

struct gadgetEnter {
 UInt16 gadgetID;
 struct FormGadgetType *gadgetP;
} gadgetEnter;

Field Descriptions

Compatibility Implemented only if 3.5 New Feature Set is present.

formID Developer-defined ID of the form.

gadgetID Developer-defined ID of the gadget.

gadgetP Pointer to the FormGadgetType object
representing this gadget.

Palm OS Events
Event Reference

50 Palm OS Programmer’s API Reference

frmGadgetMiscEvent
An application may choose to send this event when it needs to pass
information to an extended gadget. The FrmHandleEvent function
passes frmGadgetMiscEvents on to the extended gadget’s
handler function (see FormGadgetHandlerType).

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 51

For this event, the data field contains the following structure:

struct gadgetMisc {
 UInt16 gadgetID;
 struct FormGadgetType *gadgetP;
 UInt16 selector;
 void *dataP;
} gadgetMisc;

Field Descriptions

Compatibility Implemented only if 3.5 New Feature Set is present.

frmGotoEvent
An application may choose to send itself this event when it receives
a sysAppLaunchCmdGoto launch code. sysAppLaunchCmdGoto
is generated when the user selects a record in the global find facility.
Like frmOpenEvent, frmGotoEvent is a request that the
application initialize and draw a form, but this event provides extra
information so that the application may display and highlight the
matching string in the form.

The application is responsible for handling this event.

For this event, the data field contains the following structure:

struct frmGoto {
 UInt16 formID;
 UInt16 recordNum;
 UInt16 matchPos;
 UInt16 matchLen;
 UInt16 matchFieldNum;

gadgetID Developer-defined ID of the gadget.

gadgetP Pointer to the FormGadgetType object
representing this gadget.

selector Any necessary integer value to pass to the gadget
handler function.

dataP A pointer to any necessary data to pass to the
gadget handler function.

Palm OS Events
Event Reference

52 Palm OS Programmer’s API Reference

 UInt32 matchCustom;
} frmGoto;

Field Descriptions

frmLoadEvent
The form routines FrmGotoForm and FrmPopupForm send this
event. It’s a request that the application load a form into memory.

The application is responsible for handling this event. In response to
this event, applications typically initialize the form, make it active,
and set the event handler.

For this event, the data field contains the following structure:

struct frmLoad {
 UInt16 formID;
} frmLoad;

Field Descriptions

frmOpenEvent
The form routines FrmGotoForm and FrmPopupForm send this
event. It is a request that the application initialize and draw a form.

The application is responsible for handling this event.

formID Developer-defined ID of the form.

recordNum Index of record containing the match string.

matchPos Position of the match.

matchLen Length of the matched string.

matchFieldNum Number of the field the matched string was
found in.

matchCustom Application-specific information. You might use
this if you need to provide extra information to
locate the matching string within the record.

formID Developer-defined ID of the form.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 53

For this event, the data field contains the following structure:

struct frmOpen {
 UInt16 formID;
} frmOpen;

Field Descriptions

frmSaveEvent
The form routine FrmSaveAllForms sends this event. It is a
request that the application save any data stored in a form.

The application is responsible for handling this event.

No data is passed with this event.

frmTitleEnterEvent
The control routine FrmHandleEvent sends this event when it
receives a penDownEvent within the bounds of the title of the form.
Note that only the written title, not the whole title bar is active.

For this event, the data field contains the following structure:

struct frmTitleEnter {
 UInt16 formID;
 } frmTitleEnter;

Field Descriptions

frmTitleSelectEvent
The control routine FrmHandleEvent sends this event.
FrmHandleEvent receives a frmTitleEnterEvent, it tracks the
pen until the pen is lifted. If the pen is lifted within the bounds of
the active same title bar region, a frmTitleSelectEvent is added
to the event queue.

For this event, the data field contains the following structure:

formID Developer-defined ID of the form.

formID Developer-defined ID of the form.

Palm OS Events
Event Reference

54 Palm OS Programmer’s API Reference

struct frmTitleSelect {
 UInt16 formID;
} frmTitleSelect;

Field Descriptions

Compatibility In Palm OS version 3.5 and higher, FrmHandleEvent responds to
frmTitleSelectEvent. Its response is to enqueue a
keyDownEvent with a vchrMenu character to display the form’s
menu.

frmUpdateEvent
The form routine FrmUpdateForm, or in some cases the routine
FrmEraseForm, sends this event when it needs to redraw the
region obscured by the form being erased.

Generally, the region obscured by a form is saved and restored by
the form routines without application intervention. However, in
cases where the system is running low on memory, the form’s
routine may not save obscured regions itself. In that case, the
application adds a frmUpdateEvent to the event queue. The form
receives the event and redraws the region using the updateCode
value.

An application can define its own updateCode and then use this
event to also trigger behavior in another form, usually when
changes made to one form need to be reflected in another form.

For this event, the data field contains the following structure:

struct frmUpdate {
 UInt16 formID;
 UInt16 updateCode;
} frmUpdate;

formID Developer-defined ID of the form.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 55

Field Descriptions

inetSockReadyEvent
This event is returned only by INetLibGetEvent (not
EvtGetEvent) when the Internet library determines that a socket
has data ready for an INetLibSockRead.

For this event, the data field contains the following structure:

struct {
 MemHandle sockH;
 UInt32 context;
 Boolean inputReady;
 Boolean outputReady;
} inetSockReady;

Field Descriptions

The penDown, tapCount, screenX and screenY fields are not
valid for Internet library events and should be ignored.

Compatibility Implemented only if Wireless Internet Feature Set is present.

formID Developer-defined ID of the form.

updateCode The reason for the update request. FrmEraseForm
sets this code to frmRedrawUpdateCode, which
indicates that the entire form needs to be redrawn.
Application developers can define their own
updateCode. The updateCode is passed as a
parameter to FrmUpdateForm.

sockH Socket handle of the socket that this event refers
to.

context Not used.

inputReady true when the socket has data ready for the
INetLibSockRead call.

outputReady Not used.

Palm OS Events
Event Reference

56 Palm OS Programmer’s API Reference

inetSockStatusChangeEvent
This event is returned only by INetLibGetEvent (not
EvtGetEvent) when the Internet library determines that a socket
has data ready for an INetLibSockRead.

For this event, the data field contains the following structure:

struct {
 MemHandle sockH;
 UInt32 context;
 UInt16 status;
 Err sockErr;
}inetSockStatusChange;

Field Descriptions

The penDown, tapCount, screenX and screenY fields are not
valid for Internet library events and should be ignored.

Compatibility Implemented only if Wireless Internet Feature Set is present.

keyDownEvent
This event is sent by the system when the user enters a Graffiti®
character, presses one of the buttons below the display, or taps one
of the icons in the icon area; for example, the Find icon.

sockH Socket handle of the socket that this event refers
to.

context Not used.

status Current status of the socket. This is one of the
INetStatusEnum constants.

sockErr Reason for failure of the last operation, if any. The
current socket error can be cleared by calling
INetLibSockStatus.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 57

For this event, the data field contains the following structure:

struct _KeyDownEventType {
 WChar chr;
 UInt16 keyCode;
 UInt16 modifiers;
};

Field Descriptions

lstEnterEvent
The list routine LstHandleEvent sends this event when it receives
a penDownEvent within the bounds of a list object.

For this event, the data field contains the following structure:

chr The character code.

keyCode Unused.

modifiers 0, or one or more of the following values:

shiftKeyMask Graffiti is in case-shift mode.

capsLockMask Graffiti is in cap-shift mode.

numLockMask Graffiti is in numeric-shift mode.

commandKeyMask The Graffiti glyph was the menu
command glyph or a virtual key code.

optionKeyMask Not implemented. Reserved.

controlKeyMask Not implemented. Reserved.

autoRepeatKeyMask Event was generated due to auto-repeat.

doubleTapKeyMask Not implemented. Reserved.

poweredOnKeyMask The key press caused the system to be
powered on.

appEvtHookKeyMask System use only.

libEvtHookKeyMask System use only.

Palm OS Events
Event Reference

58 Palm OS Programmer’s API Reference

struct lstEnter {
 UInt16 listID;
 struct ListType *pList;
 Int16 selection;
} lstEnter;

Field Descriptions

lstExitEvent
The list routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

For this event, the data field contains the following structure:

struct lstExit {
 UInt16 listID;
 struct ListType *pList;
} lstExit;

Field Descriptions

lstSelectEvent
The list routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

selection Unused.

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 59

Note that popup lists don’t generate a lstSelectEvent. Instead,
they generate a popSelectEvent.

For this event, the data field contains the following structure:

struct lstSelect {
 UInt16 listID;
 struct ListType *pList;
 Int16 selection;
} lstSelect;

Field Descriptions

menuCloseEvent
This event is not currently used.

menuCmdBarOpenEvent
The menu routine MenuHandleEvent sends this event when the
user enters the menu shortcut keystroke, causing the command
toolbar to be displayed at the bottom of the screen. Applications
might respond to this event by calling MenuCmdBarAddButton to
add custom buttons to the command toolbar. Shared libraries or
other non-application code resources can add buttons to the toolbar
by registering to receive the sysNotifyMenuCmdBarOpenEvent
notification.

For this event, the data field contains the following structure:

struct menuCmdBarOpen {
 Boolean preventFieldButtons;
 UInt8 reserved;
} menuCmdBarOpen;

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

selection Item number (zero-based) of the new selection.

Palm OS Events
Event Reference

60 Palm OS Programmer’s API Reference

Field Descriptions

To prevent the command toolbar from being displayed, respond to
this event and return true. Returning true prevents the form
manager from displaying the toolbar.

Compatibility Implemented only if 3.5 New Feature Set is present.

menuEvent
The menu routine MenuHandleEvent sends this event:

• When the user selects an item from a pull-down menu

• When the user selects a menu command using the Graffiti
command keystroke followed by an available command; for
example, Command-C for copy

• When the user taps one of the buttons on the command
toolbar and the button is set up to generate a menuEvent.

For this event, the data field contains the following structure:

struct menu {
 UInt16 itemID;
} menu;

Field Descriptions

menuOpenEvent
The menu routine MenuHandleEvent sends this event when a new
active menu has been initialized. A menu becomes active the first
time the user taps the Menu silk-screen button or taps the form’s
titlebar, and it might need to be re-initialized and reactivated several
times during the life of an application.

preventFieldButtons If true, the field manager does not add
the standard cut, copy, paste, and undo
buttons when the focus is on a field. If
false, the field adds the buttons.

reserved Unused.

itemID Item ID of the selected menu command.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 61

A menu remains active until one of the following happens:

• A FrmSetMenu call changes the active menu on the form.

• A new form, even a modal form or alert panel, becomes
active.

Suppose a user selects your application’s About item from the
Options menu then clicks the OK button to return to the main form.
When the About dialog is displayed, it becomes the active form,
which causes the main form’s menu state to be erased. This menu
state is not restored when the main form becomes active again. The
next time the user requests the menu, it must be initialized again, so
menuOpenEvent is sent again.

Applications might respond to this event by adding, hiding, or un-
hiding menu items using the functions MenuAddItem,
MenuHideItem, or MenuShowItem.

A menuCloseEvent is defined by the system, but it is not currently
sent. If you need to perform some cleanup (such as closing a
resource) after the menu item you added is no longer needed, do so
in response to frmCloseEvent.

For this event, the data field contains the following structure:

struct menuOpen {
 UInt16 menuRscID;
 Int16 cause;
} menuOpen;

Field Descriptions

Compatibility Implemented only if 3.5 New Feature Set is present.

menuRscID Resource ID of the menu.

cause Reason for opening the menu. If menuButtonCause,
the user tapped the Menu silkscreen button or tapped
the form’s titlebar, and the menu is going to be
displayed. If menuCommandCause, the user entered
the command keystroke, so the menu is becoming
active without being displayed.

Palm OS Events
Event Reference

62 Palm OS Programmer’s API Reference

nilEvent
A nilEvent is useful for animation, polling, and similar situations.

The event manager sends this event when there are no events in the
event queue. This can happen if the routine EvtGetEvent is
passed a time-out value (a value other than evtWaitForever, -1).
If EvtGetEvent is unable to return an event in the specified time, it
returns a nilEvent. Different Palm OS versions and different
devices can send nilEvents under different circumstances, so you
might receive a nilEvent even before the timeout has expired.

penDownEvent
The event manager sends this event when the pen first touches the
digitizer.

The following data is passed with the event:

Field Descriptions

penMoveEvent
The event manager sends this event when the pen is moved on the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penMoveEvent is
generated.

The following data is passed with the event:

Field Descriptions

penDown Always true.

tapCount The number of taps received at this location.

screenX Window-relative position of the pen in pixels (number
of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number
of pixels from the top left of the window).

penDown Always true.

tapCount The number of taps received at this location.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 63

penUpEvent
The event manager sends this event when the pen is lifted from the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penUpEvent is
generated.

For this event, the data field contains the following structure:

struct _PenUpEventType {
 PointType start;
 PointType end;
};

Field Descriptions

In addition, the following data is passed with this event:

popSelectEvent
The form routine FrmHandleEvent sends this event when the user
selects an item in a popup list.

For this event, the data field contains the following structure:

screenX Window-relative position of the pen in pixels (number
of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number
of pixels from the top left of the window).

start Display-relative start point of the stroke.

end Display-relative end point of the stroke.

penDown Always false.

tapCount The number of taps received at this location.

screenX Window-relative position of the pen in pixels
(number of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels
(number of pixels from the top left of the window).

Palm OS Events
Event Reference

64 Palm OS Programmer’s API Reference

struct popSelect {
 UInt16 controlID;
 struct ControlType *controlP;
 UInt16 listID;
 struct ListType *listP;
 Int16 selection;
 Int16 priorSelection;
} popSelect;

Field Descriptions

sclEnterEvent
The routine SclHandleEvent sends this event when it receives a
penDownEvent within the bounds of a scroll bar.

Applications usually don’t have to handle this event.

For this event, the data field contains the following structure:

struct sclEnter {
 UInt16 scrollBarID;
 struct ScrollBarType *pScrollBar;
} sclEnter;

controlID Developer-defined ID of the resource.

controlP Pointer to the control structure
(ControlType) of the popup trigger object.

listID Developer-defined ID of the popup list object.

listP Pointer to the list structure (ListType) of the
popup list object.

selection Item number (zero-based) of the new list
selection.

priorSelection Item number (zero-based) of the prior list
selection.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 65

Field Descriptions

sclExitEvent
The routine SclHandleEvent sends this event when the user lifts
the pen from the scroll bar.

Applications that want to implement non-dynamic scrolling should
wait for this event, then scroll the text using the values provided in
value and newvalue.

Note that this event is sent regardless of previous
sclRepeatEvents. If, however, the application has implemented
dynamic scrolling, it doesn’t have to catch this event.

For this event, the data field contains the following structure:

struct sclExit {
 UInt16 scrollBarID;
 struct ScrollBarType *pScrollBar;
 Int16 value;
 Int16 newValue;
} sclExit;

Field Descriptions

sclRepeatEvent
The routine SclHandleEvent sends this event when the pen is
continually held within the bounds of a scroll bar.

scrollBarID Developer-defined ID of the scroll bar resource.

pScrollBar Pointer to the scroll bar structure.

scrollBarID Developer-defined ID of the scroll bar
resource.

pScrollBar Pointer to the scroll bar structure.

value Initial position of the scroll bar

newvalue New position of the scroll bar. Given value
and newValue, you can actually tell how
much you have scrolled.

Palm OS Events
Event Reference

66 Palm OS Programmer’s API Reference

Applications that implement dynamic scrolling should watch for
this event. In dynamic scrolling, the display is updated as the user
drags the scroll bar (not after the user releases the scroll bar).

For this event, the data field contains the following structure:

struct sclRepeat {
 UInt16 scrollBarID;
 struct ScrollBarType *pScrollBar;
 Int16 value;
 Int16 newValue;
 Int32 time;
} sclRepeat;

Field Descriptions

tblEnterEvent
The table routine TblHandleEvent sends this event when it
receives a penDownEvent within the bounds of an active item in a
table object.

For this event, the data field contains the following structure:

struct tblEnter {
 UInt16 tableID;
 struct TableType *pTable;
 Int16 row;
 Int16 column;
} tblEnter;

scrollBarID Developer-defined ID of the scroll bar
resource.

pScrollBar Pointer to the scroll bar structure.

value Initial position of the scroll bar.

newValue New position of the scroll bar. Given value
and newValue, you can actually tell how
much you have scrolled.

time System-ticks count when the event is added to
the queue to determine when the next event
should occur.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 67

Field Descriptions

tblExitEvent
The table routine TblHandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until it’s lifted from the display. If the pen is lifted within the bounds
of the same item it went down in, a tblSelectEvent is added to
the event queue; if not, a tblExitEvent is added to the event
queue.

For this event, the data field contains the following structure:

struct tblExit {
 UInt16 tableID;
 struct TableType *pTable;
 Int16 row;
 Int16 column;
} tblExit;

Field Descriptions

tblSelectEvent
The table routine TblHandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of the same item it went down in, a tblSelectEvent is

tableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

tableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

Palm OS Events
Event Reference

68 Palm OS Programmer’s API Reference

added to the event queue; if not, a tblExitEvent is added to the
event queue.

For this event, the data field contains the following structure:

struct tblSelect {
 UInt16 tableID;
 struct TableType *pTable;
 Int16 row;
 Int16 column;
} tblSelect;

Field Descriptions

winEnterEvent
The event manager sends this event when a window becomes the
active window. This can happen in two ways: a call to
WinSetActiveWindow is issued (FrmSetActiveForm calls this
routine), or the user taps within the bounds of a window that is
visible but not active. All forms are windows, but not all windows
are forms; for example, the menu bar is a window but not a form.

For this event, the data field contains the following structure:

struct _WinEnterEventType {
 WinHandle enterWindow;
 WinHandle exitWindow;
};

tableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

Palm OS Events
Event Reference

Palm OS Programmer’s API Reference 69

Field Descriptions

winExitEvent
This event is sent by the event manager when a window is
deactivated. A window is deactivated when another window
becomes the active window (see winEnterEvent).

For this event, the data field contains the following structure:

struct _WinExitEventType {
 WinHandle enterWindow;
 WinHandle exitWindow;
};

Field Descriptions

enterWindow Handle to the window we are entering. If the
window is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a
WindowType structure.

exitWindow Handle to the window we are exiting, if there is
currently an active window, or zero if there is no
active window. If the window is a form, then this
is a pointer to a FormType structure; if not, it’s a
pointer to a WindowType structure.

enterWindow Handle to the window we are entering. If the
window is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a
WindowType structure.

exitWindow Handle to the window we are exiting. If the
window is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a
WindowType structure.

Palm OS Events
Event Reference

70 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 71

3
Notifications
This chapter provides detailed information about the notifications
declared in the header file NotifyMgr.h. Notifications are
broadcast to inform applications, shared libraries, system
extensions, or other code resources of certain system-level or
application-level events.

Notifications are similar to application launch codes, but they differ
from launch codes in the following ways:

• The system broadcasts notifications only to interested
parties. To register to receive a notification, use
SysNotifyRegister.

• Notifications can be sent to non-applications.

See the “Notification Manager” chapter in this book and the section
“Notifications” on page 30 of the Palm OS Programmer’s Companion,
vol. I for more information on receiving and handling notifications.

Table 3.1 Notification Constants

Constant Description

cncNotifyProfileEvent The connection profile used by the
Connection Panel has changed.

sysExternalConnectorAttachEvent A device has been attached to an
external connector.

sysExternalConnectorDetachEvent A device has been detached from an
external connector.

sysNotifyAntennaRaisedEvent The antenna has been raised on a Palm
VII™ series device.

sysNotifyAppLaunchingEvent An application is about to be
launched.

sysNotifyAppQuittingEvent An application has just quit.

Notif ications

72 Palm OS Programmer’s API Reference

sysNotifyCardInsertedEvent An expansion card has been inserted
into the expansion slot.

sysNotifyCardRemovedEvent An expansion card has been removed
from the expansion slot.

sysNotifyDBCreatedEvent A database has been created.

sysNotifyDBChangedEvent Database info has been set on a
database, such as with
DmSetDatabaseInfo.

sysNotifyDBDeletedEvent A database has been deleted.

sysNotifyDBDirtyEvent A database has been opened for write
or in some other way has been made
modifiable.

sysNotifyDeleteProtectedEvent The Launcher has attempted to delete
a protected database.

sysNotifyDeviceUnlocked The user has unlocked the device.

sysNotifyDisplayChangeEvent The color table or bit depth has
changed.

sysNotifyEarlyWakeupEvent The system is starting to wake up.

sysNotifyEventDequeuedEvent An event has been removed from the
event queue with EvtGetEvent.

sysNotifyForgotPasswordEvent The user has tapped the Lost
Password button in the Security
application.

sysNotifyGotUsersAttention The Attention Manager has informed
the user of an event.

sysNotifyHelperEvent An application has requested that a
particular service be performed.

sysNotifyIdleTimeEvent The system is idle and is about to doze.

Table 3.1 Notification Constants (continued)

Constant Description

Notif ications

Palm OS Programmer’s API Reference 73

sysNotifyInsPtEnableEvent The insertion point is being enabled or
disabled.

sysNotifyIrDASniffEvent Not used.

sysNotifyKeyboardDialogEvent The keyboard dialog is about to be
displayed.

sysNotifyLateWakeupEvent The system has finished waking up.

sysNotifyLocaleChangedEvent The system locale has changed.

sysNotifyMenuCmdBarOpenEvent The system is about to display the
menu command toolbar.

sysNotifyNetLibIFMediaEvent The system has been connected to or
disconnected from the network.

sysNotifyPhoneEvent Reserved for future use.

sysNotifyPOSEMountEvent System use only.

sysNotifyProcessPenStrokeEvent The user has made a pen stroke on the
silkscreen portion of the digitizer.

sysNotifyResetFinishedEvent The system has finished a reset.

sysNotifyRetryEnqueueKey The Attention Manager has failed to
post a virtual character to the key
queue.

sysNotifySleepNotifyEvent The system is about to go to sleep.

sysNotifySleepRequestEvent The system has decided to go to sleep.

sysNotifySyncFinishEvent A HotSync® operation has just
completed.

sysNotifySyncStartEvent A HotSync operation is about to begin.

sysNotifyTimeChangeEvent The system time has just changed.

sysNotifyVirtualCharHandlingEvent A virtual character is being handled.

Table 3.1 Notification Constants (continued)

Constant Description

Notif ications
Notification Data Structures

74 Palm OS Programmer’s API Reference

Notification Data Structures

SysNotifyParamType
The SysNotifyParamType structure contains all of the data
associated with a notification. This structure is passed as the
parameter block for the sysAppLaunchCmdNotify launch code or
as a parameter to the notification callback function. All notifications
have some common data. Most notifications also have data specific
to that notification. The specific data is pointed to by the
notifyDetailsP field.

The common data for each notification is documented below the
following structure declaration. The Notification Reference section
gives details on the important data associated with each type of
notification.

typedef struct SysNotifyParamType {
 UInt32 notifyType;
 UInt32 broadcaster;
 void * notifyDetailsP;
 void * userDataP;
 Boolean handled;
 UInt8 reserved2;
} SysNotifyParamType;

sysNotifyVolumeMountedEvent A file system has been mounted.

sysNotifyVolumeUnmountedEvent A file system has been unmounted.

Table 3.1 Notification Constants (continued)

Constant Description

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 75

Field Descriptions

Notification Reference

cncNotifyProfileEvent
The cncNotifyProfileEvent is broadcast whenever a
connection profile has been created, modified, or deleted and after a
request has been made to update the connection profile list.

The notifyDetailsP field informs the notification handler of the
type of change that was made. Register for the
cncNotifyProfileEvent if your application maintains its own
list of connection profiles that it should keep current or if it should
help the Connection Panel maintain its list.

cncNotifyProfileEvent Specific Data

notifyDetailsP points to a CncProfileNotifyDetailsType
structure.

notifyType The type of event that occurred. See
Notification Reference.

broadcaster The creator ID of the application that
broadcast the notification, or
sysNotifyBroadcasterCode if the system
broadcast the event.

notifyDetailsP Pointer to data specific to this notification.

userDataP Custom data that your notification handler
requires. You create this data and pass it to
SysNotifyRegister.

handled Set to true if the notification has been
handled; set to false otherwise. In some
cases, handled is treated as a bit field that
notification handlers can use to indicate that
certain conditions are true.

reserved2 Reserved for future use.

Notif ications
Notification Reference

76 Palm OS Programmer’s API Reference

Prototype typedef struct _CncProfileNotifyDetailsTag {
 UInt16 version;
 UInt32 profileID;
 UInt16 deviceKind;
 UInt16 request;
} CncProfileNotifyDetailsType;

Fields version The current version of this structure. Use the
kCncProfileNotifyCurrentVersion
constant to find out what the current version is.

profileID The ID of the modified connection profile.

deviceKind Device kind of the profile. This can be one of
the following constants:

kCncDeviceKindSerial
Serial connection profile.

kCncDeviceKindModem
Modem profile.

kCncDeviceKindPhone
Phone profile.

kCncDeviceKindLocalNetwork
LAN profile.

request The action that was performed. This can be one
of the following constants:

kCncNotifyCreateRequest
The profile has been created.

kCncNotifyDeleteRequest
The profile is about to be deleted.

kCncNotifyModifyRequest
The profile has been modified.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 77

kCncNotifyUpdateListRequest
A HotSync operation or system reset has
just occurred. The notification handler
should update the Connection Panel’s
list.

If a profile has been created or modified, the
request field also contains a flag indicating
how the current profile is to be set:

kCncBecomeCurrentModifier
The new profile should be made the
current profile.

kCncNotifyAlertUserModifier
The user is prompted to set the current
profile.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysExternalConnectorAttachEvent
The sysExternalConnectorAttachEvent is broadcast when a
USB cradle, RS-232 cradle or peripheral, a power cable, or a modem
is attached to the universal connector. This notification is broadcast
only on devices that have the universal connector.

sysExternalConnectorAttachEvent Specific Data

The notifyDetailsP field points to a UInt16 that identifies
which type of device was attached.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysExternalConnectorDetachEvent
The sysExternalConnectorDetachEvent is broadcast when a
USB cradle, a RS-232 cradle or peripheral, a power cable, or a
modem is detached from the universal connector. This notification
is only broadcast on devices that have the universal connector.

Notif ications
Notification Reference

78 Palm OS Programmer’s API Reference

sysExternalConnectorDetachEvent Specific Data

The notifyDetailsP field points to a UInt16 that identifies
which type of device was detached.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysNotifyAntennaRaisedEvent
The sysNotifyAntennaRaisedEvent is broadcast by
SysHandleEvent when the antenna is raised on a Palm VII series
device.

Register for this notification if you want to handle the antenna key
down event. To ensure that no other code handles the antenna key
down event after yours, set the handled parameter of the
SysNotifyParamType structure to true.

sysNotifyAntennaRaisedEvent Specific Data

None.

Compatibility Implemented only if Notification Feature Set is present.

sysNotifyAppLaunchingEvent
The sysNotifyAppLaunchingEvent is broadcast before an
application is launched with sysAppLaunchCmdNormalLaunch.

sysNotifyAppLaunchingEvent Specific Data

notifyDetailsP points to a
SysNotifyAppLaunchOrQuitType structure.

Prototype typedef struct SysNotifyAppLaunchOrQuitTag {
 UInt32 version;
 UInt32 dbID;
 UInt16 cardNo;
} SysNotifyAppLaunchOrQuitType;

Fields version The current version of this structure. The
current version is 0.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 79

dbID The local ID of the application.

cardNo The number of the card on which the
application resides.

Compatibility This notification is declared in the Palm OS 4.0 SDK Update 1.
Versions 4.1 and earlier of Palm OS don’t broadcast this notification.
Palm OS 5 does broadcast it. Later versions may or may not
broadcast this notification.

sysNotifyAppQuittingEvent
The sysNotifyAppQuittingEvent is broadcast right after an
application that was launched with
sysAppLaunchCmdNormalLaunch quits.

sysNotifyAppLaunchingEvent Specific Data

notifyDetailsP points to a
SysNotifyAppLaunchOrQuitType structure. See the description
of sysNotifyAppLaunchingEvent for a description of this
structure.

Compatibility This notification is declared in the Palm OS 4.0 SDK Update 1.
Versions 4.1 and earlier of Palm OS don’t broadcast this notification.
Palm OS 5 does broadcast it. Later versionsPalm OS 5 does
broadcast it. Later versions may or may not broadcast this
notification.

sysNotifyCardInsertedEvent
The sysNotifyCardInsertedEvent is broadcast when an
Expansion Manager card is inserted into a slot. When a new card is
inserted, the Expansion Manager attempts to mount the volume on
that card and plays a sound (indicating success or failure) once the
attempt is complete.

Most applications will want to register for
sysNotifyVolumeMountedEvent instead of this notification.
Register for sysNotifyCardInsertedEvent if you need to know
when a card is inserted or if you want to prevent the Expansion
Manager from performing its default handling of the notification.

Notif ications
Notification Reference

80 Palm OS Programmer’s API Reference

To prevent the Expansion Manager from mounting the volume, set
the expHandledVolume bit in the handled field. To prevent the
Expansion Manager from playing the sound, set the
expHandledSound bit in the handled field. For example:

cmdPBP->handled |= expHandledSound;

sysNotifyCardInsertedEvent Specific Data

notifyDetailsP points to a UInt16 containing the slot reference
number.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysNotifyCardRemovedEvent
The sysNotifyCardRemovedEvent is broadcast when an
Expansion Manager card is removed from a slot. When a card is
removed, the Expansion Manager responds to this notification by
playing a goodbye sound and then attempting to unmount the
volume.

Most applications will want to register for
sysNotifyVolumeUnmountedEvent instead of this notification.
Register for sysNotifyCardRemovedEvent if you need to know
when a card is removed or if you want to prevent the Expansion
Manager from performing its default handling of the notification.

To prevent the Expansion Manager from unmounting the volume,
set the expHandledVolume bit in the handled field. To prevent
the Expansion Manager from playing the sound, set the
expHandledSound bit in the handled field. For example:

cmdPBP->handled |= expHandledSound;

sysNotifyCardRemovedEvent Specific Data

notifyDetailsP points to a UInt16 containing the slot reference
number.

Compatibility Implemented only if 4.0 New Feature Set is present.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 81

New sysNotifyDBCreatedEvent
The sysNotifyDBCreatedEvent is broadcast sometime after a
database is created with DmCreateDatabase.

Register for this notification if you keep an internal list of databases
that needs to be updated when a new database is created.

IMPORTANT: The sysNotifyDBxxxEvent notifications are
deferred notifications. So, for instance, if your application creates
a database, opens it for write, and then renames it, all before
EvtGetEvent is called, the three corresponding notifications will
all go out together. A sysNotifyDBDirtyEvent handler would
fail if it tried to open the database, since the database will already
have been renamed. You must be aware of the ramifications of a
deferred notification when writing your notification handler.

sysNotifyDBCreatedEvent Specific Data

notifyDetailsP points to a SysNotifyDBCreatedType
structure.

Prototype typedef struct SysNotifyDBCreatedTag {
 Char dbName[dmDBNameLength];
 UInt32 creator;
 UInt32 type;
 LocalID newDBID;
 UInt16 cardNo;
 Boolean resDB;
 UInt8 padding;
} SysNotifyDBCreatedType;

Fields dbName Database name.

creator Database creator ID.

type Database type.

newDBID Local ID of the newly-created database.

Notif ications
Notification Reference

82 Palm OS Programmer’s API Reference

cardno Card number upon which the database resides.

resDB true if the database is a resource database,
false otherwise.

padding Structure padding byte.

Compatibility Implemented only if 5.0 New Feature Set is present.

New sysNotifyDBChangedEvent
The sysNotifyDBChangedEvent is broadcast sometime after
database info is set with DmSetDatabaseInfo.

Register for this notification if you keep an internal list of databases
that needs to be updated when database info changes.

IMPORTANT: The sysNotifyDBxxxEvent notifications are
deferred notifications. So, for instance, if your application creates
a database, opens it for write, and then renames it, all before
EvtGetEvent is called, the three corresponding notifications will
all go out together. A sysNotifyDBDirtyEvent handler would
fail if it tried to open the database, since the database will already
have been renamed. You must be aware of the ramifications of a
deferred notification when writing your notification handler.

sysNotifyDBChangeEvent Specific Data

notifyDetailsP points to a SysNotifyDBChangedType
structure. The contents of fields in this structure indicates what
about the database changed, and thus which of the other structure
fields contain valid data.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 83

Prototype typedef struct SysNotifyDBChangedTag {
 Char dbName[dmDBNameLength];
 LocalID dbID;
 UInt32 creator;
 UInt32 type;
 UInt32 crDate;
 UInt32 modDate;
 UInt32 bckUpDate;
 UInt32 modNum;
 LocalID appInfoID;
 LocalID sortInfoID;
 UInt16 attributes;
 UInt16 cardNo;
 UInt16 version;
 UInt16 fields;
 Char oldName[dmDBNameLength];
 UInt32 oldCreator;
 UInt32 oldType;
 UInt16 oldAttributes;
 UInt16 padding;
} SysNotifyDBChangedType;

Fields dbName New name of database.

dbID Database ID.

creator New database creator ID.

type New database type.

crDate New database creation date.

modDate New database modification date.

bckUpDate New database backup date.

modNum New database modification number.

appInfoID New database application info block.

sortInfoID New database sort info block.

attributes New database attributes.

cardNo Card number upon which the dabatase resides.

Notif ications
Notification Reference

84 Palm OS Programmer’s API Reference

version New database version.

fields Flags that indicate what about the database
changed, and thus which of the above fields are
set. The constants that define the fields bits
are:

oldName Name of database prior to the call to
DmSetDatabaseInfo.

oldCreator Database creator ID prior to the call to
DmSetDatabaseInfo.

oldType Database type prior to the call to
DmSetDatabaseInfo.

oldAttributes Database attributes prior to the call to
DmSetDatabaseInfo.

padding Structure padding bytes.

Compatibility Implemented only if 5.0 New Feature Set is present.

Flag Value

DBChangedFieldSetName 0x1

DBChangedFieldSetCreator 0x2

DBChangedFieldSetType 0x4

DBChangedFieldSetCrDate 0x8

DBChangedFieldSetModDate 0x10

DBChangedFieldSetBckUpDate 0x20

DBChangedFieldSetModNum 0x40

DBChangedFieldSetAppInfo 0x80

DBChangedFieldSetSortInfo 0x100

DBChangedFieldSetAttributes 0x200

DBChangedFieldSetVersion 0x400

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 85

sysNotifyDBDeletedEvent
The sysNotifyDBDeletedEvent is broadcast sometime after a
database is removed from the device.

Register for this notification if you keep an internal list of databases
that needs to be updated upon removal of a database. For example,
the Attention Manager and Connection Manager register for this
notification to maintain their internal lists of databases.

IMPORTANT: The sysNotifyDBxxxEvent notifications are
deferred notifications. So, for instance, if your application creates
a database, opens it for write, and then renames it, all before
EvtGetEvent is called, the three corresponding notifications will
all go out together. A sysNotifyDBDirtyEvent handler would
fail if it tried to open the database, since the database will already
have been renamed. You must be aware of the ramifications of a
deferred notification when writing your notification handler.

sysNotifyDBDeletedEvent Specific Data

notifyDetailsP points to a SysNotifyDBDeletedType
structure.

Prototype typedef struct SysNotifyDBDeletedTag {
 LocalID oldDBID;
 UInt16 cardNo;
 UInt16 attributes;
 Char dbName[dmDBNameLength];
 UInt32 creator;
 UInt32 type;
} SysNotifyDBDeletedType;

Fields oldDBID The local ID of the deleted database. This ID is
no longer valid.

WARNING! The ID in oldDBID is invalid by the time the
notification is broadcast. If you try to pass it to a Data Manager
function, the system will crash.

Notif ications
Notification Reference

86 Palm OS Programmer’s API Reference

cardNo The number of the card on which the database
resided.

attributes The deleted database’s attributes.

dbName The name of the deleted database.

creator The creator ID of the deleted database.

type The type of the deleted database.

Compatibility Implemented only if 4.0 New Feature Set is present.

New sysNotifyDBDirtyEvent
The sysNotifyDBDirtyEvent is broadcast sometime after a
database is opened for write or in some other way has been made
modifiable. Note that the database may not have actually been
modified yet.

Register for this notification if you keep an internal list of databases
that needs to be updated when a database becomes “dirty.” For
instance, upon reset the Launcher normally checks over such
databases and updates its internal list.

IMPORTANT: The sysNotifyDBxxxEvent notifications are
deferred notifications. So, for instance, if your application creates
a database, opens it for write, and then renames it, all before
EvtGetEvent is called, the three corresponding notifications will
all go out together. A sysNotifyDBDirtyEvent handler would
fail if it tried to open the database, since the database will already
have been renamed. You must be aware of the ramifications of a
deferred notification when writing your notification handler.

sysNotifyDBDirtyEvent Specific Data

notifyDetailsP points to a SysNotifyDBDirtyType structure.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 87

Prototype typedef struct SysNotifyDBDirtyTag {
 Char dbName[dmDBNameLength];
 UInt32 creator;
 UInt32 type;
} SysNotifyDBDirtyType;

Fields dbName Database name.

creator Database creator ID.

type Database type.

Compatibility Implemented only if 5.0 New Feature Set is present.

sysNotifyDeleteProtectedEvent
The sysNotifyDeleteProtectedEvent is broadcast when the
Launcher attempts to delete a database that has the protected flag
set. The Launcher broadcasts the notification and then attempts to
delete the database again. Any third party application that deletes
databases should broadcast this notification as well.

Register for this notification if you have a protected database but
you still want to allow users to delete your application or other code
resource if they choose. A notification handler should check the
information in the notifyDetailsP struct to see if its database is
the one being deleted. If so, it should respond to this notification to
perform any necessary cleanup and to clear the protected flag. In
this way, when the Launcher attempts to delete the database again,
it will succeed. Note that if an application has multiple protected
databases, this notification may be sent out more than once.

sysNotifyDeleteProtectedEvent Specific Data

notifyDetailsP points to a SysNotifyDBInfoType structure.

Prototype typedef struct SysNotifyDBInfoTag {
 LocalID dbID;
 UInt16 cardNo;
 UInt16 attributes;
 Char dbName[dmDBNameLength];
 UInt32 creator;

Notif ications
Notification Reference

88 Palm OS Programmer’s API Reference

 UInt32 type;
} SysNotifyDBInfoType;

Fields dbID The local ID of the database to be deleted.

cardNo The number of the card on which the database
resides.

attributes The database’s attributes.

dbName The name of the database to be deleted.

creator The creator ID of the database to be deleted.

type The type of the database to be deleted.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysNotifyDeviceUnlocked
The sysNotifyDeviceUnlocked notification is broadcast by the
Security application when the user unlocks the device. The
notification is broadcast immediately after the device has finished
unlocking.

If you display UI in response to the
sysNotifyLateWakeupEvent notification, you should also
register to receive the sysNotifyDeviceUnlocked notification.
When a locked device receives the sysNotifyLateWakeupEvent,
your UI should not be displayed if the device is waiting for the user
to enter the password. The sysNotifyDeviceUnlocked
notification is broadcast after the password is entered, which
indicates that the user interface is ready.

sysNotifyDeviceUnlocked Specific Data

None.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysNotifyDisplayChangeEvent
The sysNotifyDisplayChangeEvent is broadcast whenever the
display mode changes. That is, either the color table has been set to

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 89

use a specific palette using the WinPalette function or the bit
depth has changed using the WinScreenMode function.

The notifyDetailsP field indicates how the bit depth changed. If
the two values in the struct are equal, it means that the color palette
has changed instead of the bit depth.

sysNotifyDisplayChangeEvent Specific Data

notifyDetailsP points to a
SysNotifyDisplayChangeDetailsType structure.

Prototype typedef struct {
 UInt32 oldDepth;
 UInt32 newDepth;
} SysNotifyDisplayChangeDetailsType;

Fields oldDepth The old bit depth.

newDepth The new bit depth.

Compatibility Implemented only if Notification Feature Set is present.

sysNotifyEarlyWakeupEvent
The sysNotifyEarlyWakeupEvent is broadcast during
SysHandleEvent immediately after the system has finished
sleeping. The screen may still be turned off, and the system may not
fully wake up. It may simply handle an alarm or a battery charger
event and go back to sleep. Most applications that need notification
of a wakeup event will probably want to register for
sysNotifyLateWakeupEvent instead.

IMPORTANT: This notification is not guaranteed to be
broadcast. Thus, it is not suitable for applications where external
hardware must be turned on when the system is powered on.

sysNotifyEarlyWakeupEvent Specific Data

None.

Notif ications
Notification Reference

90 Palm OS Programmer’s API Reference

Compatibility Implemented only if Notification Feature Set is present.

sysNotifyEventDequeuedEvent
The sysNotifyEventDequeuedEvent is broadcast for each event
removed from the event queue with EvtGetEvent.

WARNING! Be very careful about registering for this notification;
it can result in significantly degraded system performance.

sysNotifyEventDequeuedEvent Specific Data

notifyDetailsP points to the dequeued event’s EventType
structure.

IMPORTANT: For speed, the event structure that
notifyDetailsP points to uses system-native endianness. This
means that you might need to byte-swap the structure’s contents,
depending on the endianness of the underlying operating system.

Compatibility This notification is declared in the Palm OS 4.0 SDK Update 1.
Versions 4.1 and earlier of Palm OS don’t broadcast this notification.
Palm OS 5 does broadcast it. Later versions may or may not
broadcast this notification.

sysNotifyForgotPasswordEvent
The sysNotifyForgotPasswordEvent is broadcast after the
user taps the Lost Password button in the Security application. The
notification is sent after the user has confirmed that all private
records should be deleted but before the deletion actually occurs.

sysNotifyForgotPasswordEvent Specific Data

None.

Compatibility Implemented only if Notification Feature Set is present.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 91

sysNotifyGotUsersAttention
The sysNotifyGotUsersAttention notification is broadcast
when the Attention Manager has finished displaying or sounding
its attention indicators (blinking, playing sounds, vibrating, and so
on).

System extensions or shared libraries should register for this
notification if they want to perform some extra effect or if they
simply want to be informed of when the user’s attention was
received.

sysNotifyGotUsersAttention Specific Data

notifyDetailsP points to an AttnNotifyDetailsType
structure.

Prototype typedef struct {
 AttnFlagsType flags;
} AttnNotifyDetailsType;

Fields flags The attention indicators that were used to get
the user’s attention. See AttnFlagsType.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysNotifyHelperEvent
The sysNotifyHelperEvent is broadcast by applications to
request a service from another application. For example, the
Address Book application broadcasts this notification to request that
the Dial application dial a phone number. For the
sysNotifyHelperEvent, the notification client (that is, the
application or shared library that registers for the notification) is
called a helper.

The application that broadcasts this notification specifies one of the
action codes listed in Table 35.1 in Chapter 35, “Helper API.” These
action codes request all helper applications to enumerate (list the
services they perform), validate (ensure that the service will
succeed), and execute (perform the action). The helper responds to
the notification by returning the required data in the appropriate

Notif ications
Notification Reference

92 Palm OS Programmer’s API Reference

portion of the notifyDetailsP structure and by setting the
handled field to true or false to indicate the success or failure of
the action.

For more information on this notification, see the section “Helper
Notifications” on page 38 in the Palm OS Programmer’s Companion,
vol. I.

sysNotifyHelperEvent Specific Data

notifyDetailsP points to a HelperNotifyEventType
structure.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysNotifyIdleTimeEvent
The sysNotifyIdleTimeEvent is broadcast when the system is
idle and is about to doze.

Compatibility This notification is declared in the Palm OS 4.0 SDK Update 1.
Versions 4.1 and earlier of Palm OS don’t broadcast this notification.
Palm OS 5 does broadcast it. Later versions may or may not
broadcast this notification.

sysNotifyInsPtEnableEvent
The sysNotifyInsPtEnableEvent is broadcast at the start of
InsPtEnable.

sysNotifyInsPtEnableEvent Specific Data

notifyDetailsP points to a Boolean: the enableIt parameter
passed to InsPtEnable.

Compatibility This notification is declared in the Palm OS 4.0 SDK Update 1.
Versions 4.1 and earlier of Palm OS don’t broadcast this notification.
Palm OS 5 does broadcast it. Later versions may or may not
broadcast this notification.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 93

sysNotifyKeyboardDialogEvent
The sysNotifyKeyboardDialogEvent is broadcast whenever
the system keyboard is displayed. It is intended to enable the
replacement of SysKeyboardDialog function’s user interface.

sysNotifyKeyboardDialogEvent Specific Data

notifyDetailsP points to the KeyboardType enum that
indicates the mode in which the keyboard should be opened:
alphabetic, numeric, or international.

Compatibility This notification is declared in the Palm OS 4.0 SDK Update 1.
Versions 4.1 and earlier of Palm OS don’t broadcast this notification.
Palm OS 5 does broadcast it. Later versions may or may not
broadcast this notification.

sysNotifyLateWakeupEvent
The sysNotifyLateWakeupEvent is broadcast during
SysHandleEvent immediately after the device has finished
waking up. This notification is sent at the late stage of wakeup, after
the screen has been turned on. When this notification is broadcast,
the system is guaranteed to fully wake up. Register for this
notification if you need to perform startup tasks each time the
system wakes up.

IMPORTANT: This notification is not guaranteed to be
broadcast. Thus, it is unsuitable for applications where external
hardware must be powered on when the device wakes up.

When the device receives this notification, it may be locked and
waiting for the user to enter the password. If this is the case, you
must wait for the user to unlock the device before you display a user
interface. Therefore, if you intend to display a user interface when
the device wakes up, you should make sure the device is not locked.
If the device is locked, you should register for
sysNotifyDeviceUnlocked notification and display your user
interface when it is received. For example:

Notif ications
Notification Reference

94 Palm OS Programmer’s API Reference

case sysNotifyLateWakeupEvent:
 if ((Boolean)
 PrefGetPreference(prefDeviceLocked)) {
 SysNotifyRegister(myCardNo, myDbID,
 sysNotifyDeviceUnlocked, NULL,
 sysNotifyNormalPriority, NULL);
 } else {
 HandleDeviceWakeup();
 }
case sysNotifyDeviceUnlocked:
 HandleDeviceWakeup();

Note that the sysNotifyDeviceUnlocked notification is only
broadcast on Palm OS 4.0 and higher.

sysNotifyLateWakeupEvent Specific Data

None.

Compatibility Implemented only if Notification Feature Set is present.

sysNotifyLocaleChangedEvent
The sysNotifyLocaleChangedEvent is broadcast immediately
after the system locale has changed. Currently, the user has the
opportunity to change the locale only when the device first starts up
and after a hard reset.

RAM-based applications and other code resources should obtain
locale information by passing the prefLocale constant to
PrefGetPreference. They should not register for this
notification. This notification is used by the built-in applications,
which respond to it by rebuilding their default databases to use the
newly selected language and character set.

sysNotifyLocaleChangedEvent Specific Data

notifyDetailsP points to a SysNotifyLocaleChangedType
structure.

Prototype typedef struct SysNotifyLocaleChangedTag {
 LmLocaleType oldLocale;
 LmLocaleType newLocale;

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 95

} SysNotifyLocaleChangedType;

Fields oldLocale The old locale. See LmLocaleType.

newLocale The new locale.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysNotifyMenuCmdBarOpenEvent
The sysNotifyMenuCmdBarOpenEvent is broadcast during
MenuHandleEvent when it is about to display the menu shortcut
command bar.

Register for this notification if you are writing a system extension
(such as a “hack” installed with the HackMaster program) that
needs to add a button to the menu command bar or to suppress the
menu command bar. To add a button, call
MenuCmdBarAddButton. To suppress the command toolbar, set
the handled field to true.

Applications that need to add their own buttons to the menu
command bar should do so in response to a
menuCmdBarOpenEvent. They should not register for this
notification because an application should only add buttons if it is
already the active application. The notification is sent after the event
has been received, immediately before the command toolbar is
displayed.

sysNotifyMenuCmdBarOpenEvent

None.

Compatibility Implemented only if Notification Feature Set is present.

sysNotifyNetLibIFMediaEvent
The sysNotifyNetLibIFMediaEvent is broadcast at the top of
the event loop whenever the network interface makes the network
connection active or inactive. The Network Panel uses this
notification to decide whether the Connect button should be active.

Notif ications
Notification Reference

96 Palm OS Programmer’s API Reference

Register for this notification if you need to know when the network
connection is currently active.

sysNotifyNetLibIFMediaEvent Specific Data

notifyDetailsP contains a SysNotifyNetLibIFMediaType
structure.

Prototype typedef struct SysNotifyNetLibIFMediaTag {
 NetLibIFMediaEventNotificationTypeEnum eType;
 UInt32 ifCreator;
 UInt16 ifInstance;
} SysNotifyNetLibIFMediaType;

Fields eType One of the following values:

netIFMediaUp
The network connection is active. This is
usually sent after the network interface
has displayed UI indicating that a
connection attempt is in progress.

netIFMediaDown
The network connection is inactive. This
is usually sent after the network interface
has brought the connection down
because an inactivity timeout value was
reached.

ifCreator Creator ID of the network interface

ifInstance Instance number of the network interface.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysNotifyProcessPenStrokeEvent
The sysNotifyProcessPenStrokeEvent is broadcast to enable
custom recognition of strokes made on the silkscreen portion of the
digitizer.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 97

sysNotifyProcessPenStrokeEvent Specific Data

notifyDetailsP points to a SysNotifyPenStrokeType
structure.

Prototype typedef struct SysNotifyPenStrokeTag {
 UInt32 version;
 PointType startPt;
 PointType endPt;
} SysNotifyPenStrokeType;

Fields version The current version of this structure. The
current version is 0.

startPt Start point of stroke.

endPt End point of stroke.

Compatibility This notification is declared in the Palm OS 4.0 SDK Update 1.
Versions 4.1 and earlier of Palm OS don’t broadcast this notification.
Palm OS 5 does broadcast it. Later versions may or may not
broadcast this notification.

sysNotifyResetFinishedEvent
The sysNotifyResetFinishedEvent is broadcast immediately
after the system has finished a reset.

Because the notification registry is cleared upon a reset, only
internal system components use this notification. Applications that
need to be informed of a system reset can respond to the
sysAppLaunchCmdSystemReset launch code.

sysNotifyResetFinishedEvent Specific Data

None.

Compatibility Implemented only if Notification Feature Set is present.

sysNotifyRetryEnqueueKey
The sysNotifyRetryEnqueueKey notification is broadcast at the
top of the event loop if the Attention Manager has attempted to post

Notif ications
Notification Reference

98 Palm OS Programmer’s API Reference

a virtual character to the key queue and failed because the queue is
full. The notification signals that the Attention Manager is going to
retry enqueuing the virtual character until it is successful.

Most applications do not need to register for this notification. It is
used only by the Attention Manager to schedule retries of
enqueuing the virtual character. When enqueueing a virtual
character fails, the Attention Manager retries at the top of the event
loop. It uses this notification to schedule retries so that they occur
even if the user switches applications.

sysNotifyRetryEnqueueKey Specific Data

notifyDetailsP points to a WChar containing the virtual
character to be enqueued.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysNotifySleepNotifyEvent
The sysNotifySleepNotifyEvent is broadcast during
SysHandleEvent immediately before the system is put to sleep.
After the broadcast is complete, the system is put to sleep.

Register for this notification if you have a small amount of cleanup
that needs to be performed before the system goes to sleep. It is
recommended that you not perform any sort of prolonged activity,
such as displaying an alert panel that requests confirmation, in
response to a sleep notification. If you do, the alert might be
displayed long enough to trigger another auto-off event, which
could be detrimental to other handlers of this notification.

If your code is in the middle of a lengthy computation and needs to
defer sleep, it should register for the
sysNotifySleepRequestEvent instead.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 99

IMPORTANT: This notification is not guaranteed to be
broadcast. For example, if the system goes to sleep because the
user removes the batteries, sleep notifications are not sent. Thus,
these notifications are unsuitable for applications where external
hardware must be shut off to conserve power before the system
goes to sleep.

sysNotifySleepNotifyEvent Specific Data

None.

Compatibility Implemented only if Notification Feature Set is present.

sysNotifySleepRequestEvent
The sysNotifySleepRequestEvent is broadcast during
SysHandleEvent processing when the system has decided to go to
sleep.

Register for this notification if you need to delay the system from
going to sleep while your code performs a lengthy operation, such
as disconnecting from the network. The system checks the
deferSleep value when each notification handler returns. If it is
nonzero, it cancels the sleep event.

After you defer sleep, your code is free to finish what it was doing.
When it is finished, you must allow the system to continue with the
sleep event. To do so, create a keyDownEvent with the
resumeSleepChr and the command key bit set (to signal that the
character is virtual) and add it to the event queue. When the system
receives this event, it will again broadcast the
sysNotifySleepRequestEvent to all clients. If deferSleep is
0 after all clients return, then the system knows it is safe to go to
sleep, and it broadcasts the sysNotifySleepNotifyEvent to all
of its clients.

Note that you may receive this notification several times before the
system goes to sleep because notification handlers can delay the
system sleep and resume it later.

Notif ications
Notification Reference

100 Palm OS Programmer’s API Reference

IMPORTANT: This notification is not guaranteed to be
broadcast. For example, if the system goes to sleep because the
user removes the batteries, sleep notifications are not sent. Thus,
these notifications are unsuitable for applications where external
hardware must be shut off to conserve power before the system
goes to sleep.

sysNotifySleepRequestEvent Specific Data

notifyDetailsP points to a SleepEventParamType structure.

Prototype typedef struct {
 UInt16 reason;
 UInt16 deferSleep;
} SleepEventParamType;

Fields reason The reason the system is going to sleep. The
possible values are:

sysSleepAutoOff
The idle time limit has been reached.

sysSleepPowerButton
The user pressed the power off button.

sysSleepResumed
The sleep event was deferred by one of
the notification handlers but has been
resumed through the use of the
resumeSleepChr.

sysSleepUnknown
Unknown reason.

deferSleep Initially set to 0. If a notification handler wants
to defer sleep, then it should increment this
value. When deferSleep is greater than 0, the
system waits before going to sleep.

Compatibility Implemented only if Notification Feature Set is present.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 101

sysNotifySyncFinishEvent
The sysNotifySyncFinishEvent is broadcast immediately after
a HotSync operation has completed. Register for this notification if
you need to perform post-processing after HotSync operations.

sysNotifySyncFinishEvent Specific Data

None.

Compatibility Implemented only if Notification Feature Set is present.

sysNotifySyncStartEvent
The sysNotifySyncStartEvent is broadcast immediately before
a HotSync operation is begun. Register for this notification if you
need to perform preprocessing before a HotSync operation.

sysNotifySyncStartEvent Specific Data

None.

Compatibility Implemented only if Notification Feature Set is present.

sysNotifyTimeChangeEvent
The sysNotifyTimeChangeEvent notification is broadcast just
after the system time has been changed using TimSetSeconds.
Register for this notification if you need to know when the time has
changed.

sysNotifyTimeChangeEvent Specific Data

None.

Compatibility Implemented only if Notification Feature Set is present.

sysNotifyVirtualCharHandlingEvent
The sysNotifyVirtualCharHandlingEvent is broadcast to
enable custom handling of virtual characters.

Notif ications
Notification Reference

102 Palm OS Programmer’s API Reference

sysNotifyVirtualCharHandlingEvent Specific Data

notifyDetailsP points to a
SysNotifyVirtualCharHandlingType structure.

Prototype typedef struct SysNotifyVirtualCharHandlingTag{
 UInt32 version;
 struct _KeyDownEventType keyDown;
} SysNotifyVirtualCharHandlingType;

Fields version The current version of this structure. The
current version is 0.

keyDown The virtual character. See the description of the
keyDownEvent in the Event Reference section
of the Palm OS Programmer’s API Reference for a
complete description of this structure and its
contents.

Compatibility This notification is declared in the Palm OS 4.0 SDK Update 1.
Versions 4.1 and earlier of Palm OS don’t broadcast this notification.
Palm OS 5 does broadcast it. Later versions may or may not
broadcast this notification.

sysNotifyVolumeMountedEvent
The sysNotifyVolumeMountedEvent is broadcast when a
Virtual File System Manager volume is mounted. When a volume is
mounted, the VFS Manager activates the start.prc application on
the newly mounted volume and switches applications to the
Launcher or to the start.prc application on that volume if it has a
user interface.

Register for this notification if you need to know when a volume is
mounted or if you want to prevent the default behavior of the VFS
Manager.

To prevent the VFS Manager from activating the start.prc
application, set the vfsHandledStartPrc bit in the handled
field. To prevent the VFS Manager from switching applications, set
the vfsHandledUIAppSwitch bit.

Notif ications
Notification Reference

Palm OS Programmer’s API Reference 103

sysNotifyVolumeMountedEvent Specific Data

notifyDetailsP points to a VFSSlotMountParamType or
VFSPOSEMountParamType structure.

Compatibility Implemented only if 4.0 New Feature Set is present.

sysNotifyVolumeUnmountedEvent
The sysNotifyVolumeUnmountedEvent is broadcast when a
Virtual File System Manager volume is unmounted. Register for this
notification if you need to know when a volume is unmounted.

sysNotifyVolumeUnmountedEvent Specific Data

notifyDetailsP points to a UInt16 containing the volume
reference number.

Compatibility Implemented only if 4.0 New Feature Set is present.

Notif ications
Notification Reference

104 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 105

4
Attention Manager
This chapter provides reference material for the Attention Manager,
and is divided into the following sections:

• Attention Manager Data Structures

• Attention Manager Constants

• Attention Manager Functions

• Application-Defined Functions

The Attention Manager API is declared in the header file
AttentionMgr.h.

For more information about the attention manager, see the section
“Getting the User’s Attention” in the Palm OS Programmer’s
Companion, vol. I.

IMPORTANT: The Attention Manager was introduced in Palm
OS® 4.0 and is not available in earlier versions of the operating
system.

Attention Manager Data Structures

AttnCommandType
The AttnCommandType typedef specifies the set of possible
commands that can be sent to the application requesting the user’s
attention, either as a parameter to the AttnCallbackProc callback
function or as one of the arguments that accompanies a
sysAppLaunchCmdAttention launch code.

typedef UInt16 AttnCommandType;

The following table lists the values that AttnCommandType can
assume.

Attention Manager
Attention Manager Data Structures

106 Palm OS Programmer’s API Reference

Constant Description

kAttnCommandDrawDetail Indicates that the application needs to draw the
detailed contents of the attention dialog. The
command arguments parameter points to a
structure of type drawDetail.

kAttnCommandDrawList Indicates that the application needs to draw the
appropriate list item in the attention dialog. The
command arguments parameter points to a
structure of type drawList.

kAttnCommandPlaySound Indicates that the application needs to play a
sound. The command arguments parameter is
NULL.

kAttnCommandCustomEffect Indicates that the application needs to perform any
application-specific special effects. This command
is only sent for attention items that set the
kAttnFlagsCustomEffectBit when they call
AttnGetAttention, which most applications
won’t do.

kAttnCommandGoThere Tells the application to navigate to the item. The
command arguments parameter is NULL. An
application commonly calls SysAppLaunch upon
receipt of this command to have itself launched.

kAttnCommandGotIt Tells the application that the user is dismissing the
item. The command arguments parameter points
to a structure of type gotIt. The application may
choose to clean up memory at this point.

Attention Manager
Attention Manager Data Structures

Palm OS Programmer’s API Reference 107

AttnCommandArgsType
The AttnCommandArgsType structure is a union of C structures.
How you interpret the union’s contents depends on which
command it accompanies. Not all commands are accompanied by
an AttnCommandArgsType structure, as listed in the following
table:

kAttnCommandSnooze Indicates to the application that the user is
snoozing. The command arguments parameter is
NULL. Most applications do nothing upon receipt
of this command. This command is passed to the
appropriate application for each and every item
currently pending, insistent or subtle. Applications
with more than one attention item pending are
called more than once.

kAttnCommandIterate This command is passed to the application during
the enumeration of attention items. It is
particularly useful after HotSync® operations, as it
allows the application to examine each item,
updating or removing those that are stale or
invalid. The command arguments parameter
points to a structure of type iterate.

Constant Description

AttnCommandType Accompanied By

kAttnCommandDrawDetail drawDetail

kAttnCommandDrawList drawList

kAttnCommandPlaySound None

kAttnCommandCustomEffect None

kAttnCommandGoThere None

kAttnCommandGotIt gotIt

kAttnCommandSnooze None

kAttnCommandIterate iterate

Attention Manager
Attention Manager Data Structures

108 Palm OS Programmer’s API Reference

The structures that make up the AttnCommandArgsType union are
described in the following sections.

drawDetail

When kAttnCommandDrawDetail is passed to the application,
either via the callback function or as a parameter accompanying the
sysAppLaunchCmdAttention launch code, the application needs
to draw the detailed contents of the attention dialog. The
drawDetail structure accompanies the
kAttnCommandDrawDetail command, and provides the
information needed to draw the contents of that dialog.

struct AttnCommandArgsDrawDetailTag {
 RectangleType bounds;
 Boolean firstTime;
 AttnFlagsType flags;
} drawDetail;

Attention Manager
Attention Manager Data Structures

Palm OS Programmer’s API Reference 109

Field Descriptions

drawList

When kAttnCommandDrawList is passed to the application, either
via the callback function or as a parameter accompanying the
sysAppLaunchCmdAttention launch code, the application needs
to draw the appropriate list item in the attention dialog. The
drawList structure accompanies the kAttnCommandDrawList
command, and provides the information needed to draw the
contents of that dialog.

struct AttnCommandArgsDrawListTag {
 RectangleType bounds;
 Boolean firstTime;
 AttnFlagsType flags;

bounds Contains the window-relative bounding box for
the area to draw. The clipping region is also set
to the dimensions of this box to prevent
accidental drawing outside.

firstTime Set to true if the user has not yet seen this
item. The value of this field could be used to
display attentions that the user hasn’t seen
before in some special way. firstTime also
indicates to your application whether or not the
area in which your application is to draw has
been erased. If firstTime is false, the area is
not guaranteed to be blank; your application
will need to erase it.

flags The global user preferences for this attention
attempt combined with the custom flags passed
in by the developer. Only the lower 16 bits of
this field have meaning; use
kAttnFlagsSoundBit,
kAttnFlagsLEDBit,
kCustomFlagsVibrateBit, and
kAttnFlagsCustomEffectBit (described
under “AttnFlagsType” on page 111) to
interpret the contents of this field.

Attention Manager
Attention Manager Data Structures

110 Palm OS Programmer’s API Reference

 Boolean selected;
} drawList;

Field Descriptions

gotIt

When kAttnCommandGotIt is passed to the application, either via
the callback function or as a parameter accompanying the
sysAppLaunchCmdAttention launch code, it is accompanied by
an gotIt structure. This structure indicates whether the
kAttnCommandGotIt command was generated because the user
dismissed the attention, or whether the system is simply informing
your application that AttnForgetIt was called. Your application
normally ignores the latter case if your application made the call to
AttnForgetIt.

bounds Contains the window-relative bounding box for the
area to draw. The clipping region is also set to the
dimensions of this box to prevent accidental
drawing outside.

firstTime Set to true if the user has not yet seen this item.
The value of this field could be used, for example, to
trigger a custom sound the first time this attention
item is presented to the user.

flags The global user preferences for this attention
attempt combined with the custom flags passed in
by the developer. Only the lower 16 bits of this field
have meaning; use kAttnFlagsSoundBit,
kAttnFlagsLEDBit,
kCustomFlagsVibrateBit, and
kAttnFlagsCustomEffectBit (described
under “AttnFlagsType” on page 111) to interpret
the contents of this field.

selected Set to true if the item has been selected. It is up to
your code to draw the item appropriately (typically
by changing the UI colors) based upon the value of
this flag.

Attention Manager
Attention Manager Data Structures

Palm OS Programmer’s API Reference 111

struct AttnCommandArgsGotItTag {
 Boolean dismissedByUser;
} gotIt;

Field Descriptions

iterate

When kAttnCommandIterate is passed to the application, either
via the callback function or as a parameter accompanying the
sysAppLaunchCmdAttention launch code, it is accompanied by
an iterate structure. This structure contains any necessary data
that the application may need in order to process the callback or
launch code.

struct AttnCommandArgsIterateTag {
 UInt32 iterationData;
} iterate;

Field Descriptions

AttnFlagsType
Pass a value of this type to AttnGetAttention and AttnUpdate
to specify what means the device should or should not use to get the
user’s attention. A value of this type is also passed back to your
code either as a parameter to the callback function or, if no callback
was specified, as part of the structure passed with the
sysAppLaunchCmdAttention launch code.

dismissedByUser true indicates that the user dismissed the
attention. false indicates that the
kAttnCommandGotIt command was
generated by a call to AttnForgetIt.

iterationData Any necessary data that the application
may need in order to process the callback
or launch code. The value of this field is
that which was originally passed to
AttnIterate.

Attention Manager
Attention Manager Data Structures

112 Palm OS Programmer’s API Reference

typedef UInt32 AttnFlagsType;

Note that more bits may be defined if necessary to accommodate
additional hardware.

The following constant values can be used to override the user’s
settings and force or prevent specific behaviors:

Constant Value Description

kAttnFlagsSoundBit 0x0001 Plays a sound.

kAttnFlagsLEDBit 0x0002 Blinks an LED, if the device is so
equipped.

kAttnFlagsVibrateBit 0x0004 Triggers vibration, if the device is so
equipped.

kAttnFlagsCustomEffectBit 0x0008 Triggers an application-specific
custom effect.

kAttnFlagsAllBits 0xFFFF Uses all available means to get the
user’s attention.

kAttnFlagsUseUserSettings 0x0000 System-wide preferences determine
what means are used to get the user’s
attention.

Constant Value Description

kAttnFlagsAlwaysSoun
d

kAttnFlagsSoundBit Play a sound, regardless
of the user’s settings.

kAttnFlagsAlwaysLED kAttnFlagsLEDBit Blink an LED, if the device
is so equipped, regardless
of the user’s settings.

kAttnFlagsAlwaysVibr
ate

kAttnFlagsVibrateBit Vibrate, if the device is so
equipped, regardless of
the user’s settings.

kAttnFlagsAlwaysCust
omEffect

kAttnFlagsCustomEffe
ctBit

Trigger an application-
specific custom effect.

Attention Manager
Attention Manager Data Structures

Palm OS Programmer’s API Reference 113

These constants can be used in combination. For example, to disable
both sound and the LED, use
kAttnFlagsNoSound | kAttnFlagsNoLED.

If neither kAttnFlagsAlwaysSound nor kAttnFlagsNoSound is
set for a given attention item, a sound plays if and only if the user’s
preference is to play a sound and the user’s preference for alarm
volume is non-zero.

AttnLaunchCodeArgsType
If a callback function is not specified in a call to
AttnGetAttention and the Attention Manager needs your code
to draw the details of your attention in the attention dialog or
perform another attention-specific function, it sends a

kAttnFlagsEverything kAttnFlagsAllBits Use every available means
to get the user’s attention,
regardless of the user’s
settings.

kAttnFlagsNoSound kAttnFlagsSoundBit
<< 16

Prevent a sound from
being played, regardless
of the user’s settings.

kAttnFlagsNoLED kAttnFlagsLEDBit
<< 16

Prevent the LED from
flashing, regardless of the
user’s settings.

kAttnFlagsNoVibrate kAttnFlagsVibrateBit
<< 16

Prevent vibration,
regardless of the user’s
settings.

kAttnFlagsNoCustomEf
fect

kAttnFlagsCustomEffe
ctBit << 16

Prevent triggering of the
application-specific
custom effect.

kAttnFlagsNothing kAttnFlagsAllBits
<< 16

Disable all attention-
getting mechanisms,
regardless of the user’s
settings.

Constant Value Description

Attention Manager
Attention Manager Data Structures

114 Palm OS Programmer’s API Reference

sysAppLaunchCmdAttention launch code to your application.
Along with the launch code, it passes a pointer to the following
structure, which indicates both what your code is expected to do
and identifies the attention that triggered the launch code:

typedef struct {
 AttnCommandType command;
 UInt32 userData;
 AttnCommandArgsType *commandArgsP;
} AttnLaunchCodeArgsType;

Field Descriptions

When processing the launch code be aware that your application
doesn’t have application globals available to it; it is important that
anything necessary to draw or otherwise display be available
through commandArgsP.

AttnLevelType
Attention attempts can either be insistent or subtle. Insistent
attention attempts make a serious effort to get the user’s attention,
by both displaying a dialog and possibly by triggering one or more
special effects, such as blinking a light, vibrating, or playing a
sound. Other alerts are of a less serious nature and shouldn’t
disrupt the user. Consequently, subtle attention attempts typically
make the attention indicator blink and may trigger one or more
special effects, but don’t display the Attention Manager dialog. The
user can then work until a suitable time, at which point they can tap

command Indicates what your code is being requested to
do. The complete list of possible commands are
described in the definition of
AttnCommandType.

userData Identifier that distinguishes the particular
attention item from others made by this
application. This identifier was specified when
the attention item was created.

commandArgsP Pointer to command-specific arguments. See
the description of each command for a
discussion of that command’s arguments.

Attention Manager
Attention Manager Constants

Palm OS Programmer’s API Reference 115

on the indicator to see what needs their attention. Subtle attention
attempts might be used for telling the user that they have new e-
mail, or perhaps that a holiday or birthday is coming up.

typedef UInt16 AttnLevelType;

The following table lists the two defined values for
AttnLevelType:

Note that user preferences for the various special effects can’t be set
separately for subtle and insistent attention attempts. If your
application needs to vary the effects based upon the
AttnLevelType, pass a suitable value for the flags parameter in
your AttnGetAttention call.

Attention Manager Constants
In addition to the constant values defined specifically for use with
AttnCommandType, AttnFlagsType, and AttnLevelType, the
Attention Manager defines the following constant types:

• Error Code Constants

• Attention Manager Drawing Constants

• Attention Manager Feature Constants

Error Code Constants
The Attention Manager returns the following error code under the
circumstances described below.

Constant Description

kAttnLevelInsistent An insistent attention attempt. Make a serious effort to
get the user’s attention by displaying a dialog and
optionally triggering one or more special effects.

kAttnLevelSubtle A subtle attention attempt. Notify the user using special
effects, but don’t disrupt the user with the dialog if the
device is in use.

Attention Manager
Attention Manager Constants

116 Palm OS Programmer’s API Reference

Attention Manager Drawing Constants
The following four constants define the on-screen boundaries of the
attention indicator:

The following two constants are used when drawing the list view.
Applications should use these constants to format the display of
information in the Attention Manager’s list view. Draw the
application’s small icon centered within the first
kAttnListMaxIconWidth pixels of the drawing bounds. Then
draw two lines of text describing the attention, left-justified, starting
at kAttnListTextOffset from the left edge of the drawing
bounds.

Constant Description

attnErrMemory Returned by AttnGetAttention
when there is insufficient memory
to perform the requested operation.

Constant Value Description

kAttnIndicatorLeft 0 The left-hand edge of the attention indicator.

kAttnIndicatorTop 0 The top-most edge of the attention indicator.

kAttnIndicatorWidth 16 The width of the attention indicator.

kAttnIndicatorHeight 16 The height of the attention indicator.

Constant Value Description

kAttnListMaxIconWidth 15 Maximum width of the application’s icon. If
the icon is narrower than this, it should be
drawn centered within this width.

kAttnListTextOffset 17 Offset, from the left-hand edge of the drawing
bounds, of the textual description of the
attention.

Attention Manager
Attention Manager Constants

Palm OS Programmer’s API Reference 117

Attention Manager Feature Constants
The Attention Manager defines a read-only feature ('attn', 0)
that indicates the current user settings and capabilities of the
hardware. The upper 16 bits of the feature indicate whether or not
the hardware has the capability to perform that sort of alert. The
lower 16 bits indicate whether the user has currently enabled that
sort of alert.

When working with the value obtained with FtrGet, use the
following two constants to separate those bits that contain the user
settings from those bits that identify the device’s capabilities:

These constants can be used to interpret the device capabilities
(kAttnFlagsHas...) and the user settings
(kAttnFlagsUserWants...):

Constant Value Description

kAttnFtrCreator 'attn' Attention Manager feature
creator.

kAttnFtrCapabilities 0 Attention Manager feature
number.

Constant Value Description

kAttnFlagsUserSettin
gsMask

kAttnFlagsAllBits Mask to isolate those bits
that contain the user
settings.

kAttnFlagsCapabiliti
esMask

kAttnFlagsAllBits
<< 16

Mask to isolate those bits
that contain the device
capabilities.

Attention Manager
Attention Manager Constants

118 Palm OS Programmer’s API Reference

Constant Value Description

kAttnFlagsHasLED kAttnFlagsLEDBit
<< 16

The device has an LED
that can be illuminated
to indicate an alert.

kAttnFlagsHasSound kAttnFlagsSoundBit
<< 16

The device is capable of
playing a sound to
indicate an alert.

kAttnFlagsHasVibrate kAttnFlagsVibrateBit
<< 16

The device is capable of
vibrating to indicate an
alert.

kAttnFlagsHasCustomE
ffect

kAttnFlagsCustomEffe
ctBit << 16

Not used.

kAttnFlagsUserWantsL
ED

kAttnFlagsLEDBit The user wants the LED
illuminated to signal an
alert.

kAttnFlagsUserWantsS
ound

kAttnFlagsSoundBit The user wants a sound
played to signal an alert.

kAttnFlagsUserWantsV
ibrate

kAttnFlagsVibrateBit The user wants the
device to vibrate to
signal an alert.

kAttnFlagsUserWantsC
ustomEffect

kAttnFlagsCustomEffe
ctBit

Not used.

Attention Manager
Attention Manager Functions

Palm OS Programmer’s API Reference 119

Attention Manager Functions

AttnDoSpecialEffects

Purpose Triggers an Attention Manager special effect set.

Declared In AttentionMgr.h

Prototype Err AttnDoSpecialEffects (AttnFlagsType flags)

Parameters -> flags Specifies the behavior to be exhibited by this
special effects request. See AttnFlagsType
for the various bits that make up this flag. Note
that the behavior is undefined if you set
incompatible flags. Supply
kAttnFlagsUseUserSettings to have this
attention request follow the user’s pre-set
preferences.

Result Returns errNone if no problems were encountered. Returns
attnErrMemory if there wasn’t enough memory to accommodate
the attention request.

Comments This routine is provided as a convenience for applications that need
to trigger special effects. It does the equivalent of one “nag” of an
Attention Manager special effect set.

Compatibility Implemented only if 4.0 New Feature Set is present.

Attention Manager
Attention Manager Functions

120 Palm OS Programmer’s API Reference

AttnForgetIt

Purpose Provides a way for applications to tell the Attention Manager to
forget about an attention item.

Declared In AttentionMgr.h

Prototype Boolean AttnForgetIt (UInt16 cardNo,
LocalID dbID, UInt32 userData)

Parameters -> cardNo Card number on which the application making
the request resides.

-> dbID Database ID of the application making the
request.

-> userData Identifier that distinguishes the attention
attempt from others made by the same
application. This identifier can be an integer, a
pointer, or any other 32-bit value.

Result Returns true if the item was removed, false if a matching item
was not found.

Comments You typically call this function after your application has handled a
“Go There” event and the user has read about the item. For
example, if there is a subtle attention pending that says “you have
three e-mail messages waiting” and you go to the e-mail application
on your own and read your e-mail, the subtle notification must
disappear. AttnForgetIt allows the application to do this.

Note that this call can be made when the Attention Manager dialog
is on-screen (though presumably that is rare, since the application is
probably not doing much at this point). If this call removes a list
item, then the Attention Manager may call back into other items to
redraw the list.

If this call removes the last item when any indicator is present, the
indicator disappears. If this call removes the last unread item, but
read items remain, the indicator switches from blinking to steady
state.

Attention Manager
Attention Manager Functions

Palm OS Programmer’s API Reference 121

Compatibility Implemented only if 4.0 New Feature Set is present.

AttnGetAttention

Purpose Requests the user’s attention.

Declared In AttentionMgr.h

Prototype Err AttnGetAttention (UInt16 cardNo,
LocalID dbID, UInt32 userData,
AttnCallbackProc *callbackFnP,
AttnLevelType level, AttnFlagsType flags,
UInt16 nagRateInSeconds, UInt16 nagRepeatLimit)

Parameters -> cardNo Card number on which the application making
the request resides.

-> dbID Database ID of the application making the
request.

-> userData Application-specific data that is later passed
back to your code through the callback
function. If no callback function is specified in
the callbackFnP parameter, this data is
included in what is passed along with a
sysAppLaunchCmdAttention launch code.
userData can be an integer, a pointer, or any
other 32-bit value as needed by your
application. Most applications pass the unique
ID or other key for the record which caused the
attention request. userData is also used to
distinguish a given attention attempt from
others made by the same application.

Attention Manager
Attention Manager Functions

122 Palm OS Programmer’s API Reference

-> callbackFnP
Pointer to the function registered by the
application to be called by the Attention
Manager when the attention is displayed or
removed. See AttnCallbackProc, below, for
the callback function’s parameters. Supply
NULL to instead have a
sysAppLaunchCmdAttention launch code
sent to the application that made the attention
request whenever the attention is displayed or
removed.

-> level Indicates the annoyance level. Pass one of the
values defined for AttnLevelType.

-> flags Behavior override, if necessary, for this
attention request. This override allows, for
instance, silent alarms or noisy alarms. See
AttnFlagsType for the various bits that make
up this flag. Note that the behavior is
undefined if you set incompatible flags. Supply
kAttnFlagsUseUserSettings to have this
attention request follow the user’s pre-set
preferences.

-> nagRateInSeconds
How long to wait before nagging.

-> nagRepeatLimit
How many times to nag, excluding the first
attempt.

Result Returns errNone if no problems were encountered. Returns
attnErrMemory if there wasn’t enough memory to accommodate
the attention request.

Comments The combination of cardNo, dbID and userData uniquely
identify an attention-getting attempt. If another call is made to
AttnGetAttention with identical values for these arguments, an
error is reported. To update or delete an existing attention item, pass
these same values to AttnUpdate or AttnForgetIt, respectively.

Attention Manager
Attention Manager Functions

Palm OS Programmer’s API Reference 123

In response to AttnGetAttention, the behavior of the operating
system or application depends on whether there already are other
demands and on the annoyance level passed in the
AttnGetAttention call.

• No other demands, insistent attention request:

The Attention Manager puts up a dialog that details the current
attempt to get the user's attention.

• Other demands exist, insistent attention request:

The Attention Manager adds a summary of the current attempt
to get the user’s attention to a list of things that need attention. If
the dialog is currently in detail form—which is the case if just
one other demand exists—the view is refreshed, changing from
detail to list form. In this case, the pen and key event queues are
also flushed so that any user events that are happening while the
display is changing are explicitly ignored. Two exceptions to this
behavior exist: if all existing attentions are subtle, or if all
existing insistent attentions were snoozed, the new insistent
attention brings up the dialog in detail mode, rather than list
mode.

• Subtle attention request:

The Attention Manager starts the attention indicator blinking,
and adds the item to its list for later display, unless the dialog is
currently being displayed in list mode. In this event, the new
subtle attention item simply appears in the list; the indicator
does not blink to announce it.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also AttnUpdate

Attention Manager
Attention Manager Functions

124 Palm OS Programmer’s API Reference

AttnGetCounts

Purpose Returns the number of attention items that are currently pending.

Declared In AttentionMgr.h

Prototype UInt16 AttnGetCounts (UInt16 cardNo,
LocalID dbID, UInt16 *insistentCountP, UInt16
*subtleCountP)

Parameters -> cardNo If this value is zero, counts pending attention
items from applications on all cards. Otherwise,
counts only pending attention items from
applications on the specified card.

-> dbID If this value is zero, counts pending attention
items from all applications. Otherwise, counts
only pending attention items from applications
with the specified database ID.

<- insistentCountP
Pointer to a 16-bit unsigned value that is filled
in with the number of insistent items pending.
Pass NULL for this parameter if you don’t need
to know the number of insistent items that are
pending.

<- subtleCountP Pointer to a 16-bit unsigned value that is filled
in with the number of subtle items pending.
Pass NULL for this parameter if you don’t need
to know the number of subtle items that are
pending.

Result Returns the total number of items, both insistent and subtle, that are
currently pending.

Comments Call this function if you need to exhibit different behavior if
attention items are already pending.

Compatibility Implemented only if 4.0 New Feature Set is present.

Attention Manager
Attention Manager Functions

Palm OS Programmer’s API Reference 125

AttnIndicatorEnable

Purpose Enables and disables the on-screen attention indicator.

Declared In AttentionMgr.h

Prototype void AttnIndicatorEnable (Boolean enableIt)

Parameters -> enableIt true to enable the attention indicator, false
to disable it.

Result Returns nothing.

Comments This function is used by applications to enable or disable the on-
screen attention indicator. The indicator only blinks when all of the
following are true:

• The indicator is enabled.

• The indicator is being asked to blink by the attention
manager.

• The operating system isn’t using the display in such a way as
to prevent the attention indicator from showing, such as
when the menu bar is being displayed or when a modal
dialog is on top of the form.

The attention indicator is enabled by default. If your application
controls the upper portion of the screen and needs to prevent the
attention indicator from being displayed, call
AttnIndicatorEnable and pass it a value of false.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also AttnIndicatorEnabled

Attention Manager
Attention Manager Functions

126 Palm OS Programmer’s API Reference

AttnIndicatorEnabled

Purpose Returns whether the on-screen attention indicator is currently
enabled.

Declared In AttentionMgr.h

Prototype Boolean AttnIndicatorEnabled (void)

Parameters None.

Result Returns true if the on-screen attention indicator is currently
enabled, false otherwise.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also AttnIndicatorEnable

AttnIterate

Purpose Instructs the Attention Manager to check each attention item
currently pending and, for those that match the specified card
number and database ID, invoke the item’s callback routine. If a
callback routine was not specified in the request, the
sysAppLaunchCmdAttention launch code is sent to the
application that made the attention request.

Declared In AttentionMgr.h

Prototype void AttnIterate (UInt16 cardNo, LocalID dbID,
UInt32 iterationData)

Parameters -> cardNo Card number on which the application that
made the request resides.

-> dbID Database ID of the application that made the
request.

Attention Manager
Attention Manager Functions

Palm OS Programmer’s API Reference 127

-> iterationData
Any necessary data that the application may
need in order to process the callback or launch
code. See the description of the
AttnCallbackProc function for more
information on this parameter.

Result Returns nothing.

Comments This function iterates through all of the attention requests made by
this application and uses the callback or launch code for each to
inform the application about the attention request. When an
application receives a sysAppLaunchCmdSyncNotify launch
code, signifying that a HotSync occurred that affected that
application’s databases, the application typically calls
AttnIterate so it can remove attention requests for records that
may have been removed during the HotSync. Applications can also
call AttnGetAttention after a HotSync, if necessary.

Note that you can call AttnForgetIt inside the iteration since it
only marks the record for deletion and thus doesn’t confuse the
iteration.

Compatibility Implemented only if 4.0 New Feature Set is present.

AttnListOpen

Purpose Displays the attention dialog in list mode and, after the user has
dismissed it, acts accordingly based on how it was dismissed.

Declared In AttentionMgr.h

Prototype void AttnListOpen (void)

Parameters None.

Result Returns nothing.

Attention Manager
Attention Manager Functions

128 Palm OS Programmer’s API Reference

Comments This function allows applications that do not provide the blinking
attention indicator to open the list, if necessary.

Compatibility Implemented only if 4.0 New Feature Set is present.

AttnUpdate

Purpose Updates one or more aspects of a specified attention item.

Declared In AttentionMgr.h

Prototype Boolean AttnUpdate (UInt16 cardNo, LocalID dbID,
UInt32 userData, AttnCallbackProc *callbackFnP,
AttnFlagsType *flagsP, UInt16 *nagRateInSecondsP,
UInt16 *nagRepeatLimitP)

Parameters -> cardNo Card number on which the application that
made the request resides.

-> dbID Database ID of the application that made the
request.

-> userData Application-specific data that is passed back to
your code through the callback function. If no
callback function is specified in the
callbackFnP parameter, this data is included
in what is passed along with a
sysAppLaunchCmdAttention launch code.
userData can be an integer, a pointer, or any
other 32-bit value. Most applications pass the
unique ID or other key for the record which
caused the attention request. The value of the
userData parameter is also used to
distinguish a given attention attempt from
others made by the same application.

Attention Manager
Attention Manager Functions

Palm OS Programmer’s API Reference 129

-> callbackFnP
Registers a new function to be called by the
Attention Manager when the attention is
displayed or removed. The function to which
this parameter points should conform to
AttnCallbackProc. Supply NULL to instead
have a sysAppLaunchCmdAttention launch
code sent to the application that made the
attention request whenever the attention is
displayed or removed.

IMPORTANT: Because NULL indicates that a launch code
should be sent whenever the callback would otherwise be
invoked, it isn’t used in this instance to leave the original setting
for the callbackFnP parameter intact. The value supplied for
this parameter always overwrites the value supplied in the original
attention request.

-> flagsP Pointer to a set of flags that can be used to
override user-specified attention behavior; for
instance, to force silent or noisy alarms. See
AttnFlagsType for the various bits that make
up this flag, and note that the behavior is
undefined if you set incompatible flags. Pass
NULL to leave the current flag settings
unchanged.

-> nagRateInSecondsP
Pointer to the length of time to wait before
nagging. Pass NULL to leave the “nag rate”
unchanged.

-> nagRepeatLimitP
Pointer to the maximum number of times the
user should be nagged. Pass NULL to leave the
nag repeat limit unchanged.

Result Returns true if the update was successful, false if no matching
attention item was found.

Attention Manager
Application-Defined Functions

130 Palm OS Programmer’s API Reference

Comments This call may result in the callback function being called to re-
display the item. If no callback function is specified, the
sysAppLaunchCmdAttention launch code is instead sent to your
application. It may also result in callbacks to other pending
attention requests.

You call AttnUpdate to tell the Attention Manager to update,
forcing it to call into all of its clients to redraw. This provides a way
for an application to update the text of an attention item without
tearing down and re-opening the Attention Manager dialog. For
example, AttnUpdate could be used to update an existing email
notification to say “You have three new email messages” when
additional messages are received.

Although AttnUpdate may cause a given attention item to redraw,
it does not rerun the special effects (if any) that occurred when that
attention item was added. If you want to trigger Attention Manager
effects for a particular item, call AttnForgetIt followed by
AttnGetAttention.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also AttnGetAttention

Application-Defined Functions

AttnCallbackProc

Purpose Provides a function prototype to be used by callback functions
supplied to AttnGetAttention and AttnUpdate. The supplied

Attention Manager
Application-Defined Functions

Palm OS Programmer’s API Reference 131

function is invoked by the Attention Manager whenever the
attention is displayed or removed.

Declared In AttentionMgr.h

Prototype typedef Err AttnCallbackProc
(AttnCommandType command, UInt32 userData,
AttnCommandArgsType *commandArgsP)

Parameters -> command Indicates what the callback function is being
requested to do. The complete list of possible
commands are described in the definition of
AttnCommandType.

-> userData Identifier that distinguishes the particular
attention item from others made by this
application. This identifier was specified when
the attention item was created.

-> commandArgsP
Pointer to command-specific arguments. See
the description of each command for a
discussion of that command’s arguments.

Result The callback function should return errNone if it correctly handled
the command, or an appropriate error code otherwise. If the
callback function returns an error code other than errNone, the
attention is removed from the list of active attention items.

Comments For a given attention item, the Attention Manager calls back to the
code resource that created that item whenever the Attention
Manager needs the resource to draw the attention dialog contents or
whenever it needs to inform the code resource of activity relating to
the attention item. The Attention Manager calls back using one of
two mechanisms:

• If a callback routine has been specified for a given attention
item, the Attention Manager invokes the specified routine.
This callback routine doesn’t have application globals
available to it, so it is important that anything necessary to
draw or otherwise display be available through

Attention Manager
Application-Defined Functions

132 Palm OS Programmer’s API Reference

commandArgsP. A callback routine is typically used by
libraries and system extensions.

• If a callback routine has not been specified for a given
attention item, the Attention Manager instead sends a
sysAppLaunchCmdAttention launch code to the
application that registered the attention item. Accompanying
that launch code is an AttnLaunchCodeArgsType
structure containing the three parameters documented
above. Applications typically use the launch-code
mechanism due to the restrictions that are placed on callback
routines.

IMPORTANT: It is your responsibility to ensure that the callback
procedure is still in the same place when it gets called, dealing
with the possibility that the code resource might be unlocked and
moved in memory, and with the possibility that the database
containing the code resource might be deleted. For the most part,
these problems don’t exist when using launch codes.

Compatibility Invoked only if 4.0 New Feature Set is present.

Palm OS Programmer’s API Reference 133

5
Categories
This chapter describes the category API as declared in the header
file Category.h. It discusses the following topics:

• Category Data Structures

• Category Constants

• Category Functions

For more information on categories, see the section “Categories” on
page 116 in the Palm OS Programmer’s Companion, vol. I.

Category Data Structures

AppInfoPtr
The AppInfoPtr defines a pointer to an AppInfoType structure.

typedef AppInfoType *AppInfoPtr;

AppInfoType
The AppInfoType structure shown below maps category names to
category indexes and unique IDs. To use the category API described
in this chapter, a database’s application info block must either be an
AppInfoType structure, or it must have an AppInfoType
structure as its first field.

typedef struct {
 UInt16 renamedCategories;
 Char categoryLabels [dmRecNumCategories]
 [dmCategoryLength];
 UInt8 categoryUniqIDs[dmRecNumCategories];
 UInt8 lastUniqID;
 UInt8 padding;
} AppInfoType;

Categories
Category Constants

134 Palm OS Programmer’s API Reference

Allocate the application info block in the storage heap and use the
DmSetDatabaseInfo function to set the database’s application
info ID to the local ID of this structure. Then, use the
CategoryInitialize function to initialize it with a localized list
of strings containing the category names.

Field Descriptions

Category Constants
The following category constants are defined:

renamedCategories Used by CategorySetName as a bit
field indicating which categories
have been renamed. Usually cleared
by a conduit.

categoryLabels An array of strings containing the
category names. The maximum size
of the array is
dmRecNumCategories, and the
maximum length of each string in the
array is dmCategoryLength. Both
of these constants are defined in
DataMgr.h.

categoryUniqIDs Category IDs used for
synchronization with the desktop
database. Unique IDs generated by
the device are between 0 and 127.
Unique IDs generated by the desktop
computer are between 128 and 255.

lastUniqID Used for sorting and assigning
unique IDs.

Categories
Category Constants

Palm OS Programmer’s API Reference 135

NOTE: These constants look like system resource IDs, but they
are not. To use a non-default string for the “Edit Categories” item
you pass a resource ID of a string containing your title. If you want
to use the default or hide the item, you pass one of these
constants. They are within the system resource ID range (that is,
they are greater than 10000) so that they don’t conflict with any
other possible value for that parameter.

Compatibility Both categoryHideEditCategory and
categoryDefaultEditCategoryString are defined only if the
3.5 New Feature Set is present.

Constant Value Description

categoryHideEditCategory 10000 Used to suppress the “Edit
Categories” item.

categoryDefaultEditCategoryString 10001 Used to show the default
“Edit Categories” item.

Categories
Category Functions

136 Palm OS Programmer’s API Reference

Category Functions

CategoryCreateList

Purpose Populate a popup list with a database’s categories.

Declared In Category.h

Prototype void CategoryCreateList (DmOpenRef db,
ListType *listP, UInt16 currentCategory,
Boolean showAll, Boolean showUneditables,
UInt8 numUneditableCategories,
UInt32 editingStrID, Boolean resizeList)

Parameters -> db Open database containing the category
information you want to read.

<- listP Pointer to the ListType structure that should
display the categories.

-> currentCategory
Index of the category to select. The index is the
index into the categoryLabels array. The
default is to have the “Unfiled” category
selected.

-> showAll true to include an “All” list item.

-> showUneditables
true to show uneditable categories.

-> numUneditableCategories
The number of categories that the user cannot
edit. You should store uneditable categories at
the beginning of the categoryLabels array.
For example, it’s common to have an “Unfiled”
category at position zero that is not editable.
This function displays the uneditable categories
at the end of the popup list.

Categories
Category Functions

Palm OS Programmer’s API Reference 137

-> editingStrID The resource ID of a tSTR resource to use as the
Edit Categories list item. To use the default
string (“Edit Categories”) pass the constant
categoryDefaultEditCategoryString.

If you don’t want users to edit categories, pass
the categoryHideEditCategory constant.

-> resizeList true to resize the list to the number of
categories. Set to true for popups, false
otherwise.

Result Returns nothing.

Comments The “All” item is first in the list (if the showAll parameter is true),
followed by the editable categories in the database and then the
categories that cannot be edited. The option to edit categories is last
in the list and can be suppressed if desired.

You rarely call this function directly. Instead, most applications use
CategorySelect, which calls this function and fully manages the
user’s selection of a category in the popup list. Use
CategoryCreateList only if you want more control over the
category popup list.

This function obtains the db parameter’s appInfoID, reads the
AppInfoType structure at that location, and uses the information
in it to initialize the listP’s items array with the names of the
database’s categories. You must have already allocated the structure
pointed to by listP. CategoryCreateList does not display the
list; use LstPopupList or LstDrawList to do so.

You must balance a call to CategoryCreateList with a call to
CategoryFreeList. The CategoryCreateList function locks
the resources for the category names. It also allocates the listP
items array. CategoryFreeList unlocks all resources locked by
CategoryCreateList and frees all memory allocated by
CategoryCreateList.

Compatibility Implemented only if 2.0 New Feature Set is present.

The constants categoryDefaultEditCategoryString and
categoryHideEditCategory are defined only if 3.5 New

Categories
Category Functions

138 Palm OS Programmer’s API Reference

Feature Set is present. In earlier versions, you can suppress the Edit
Categories string by passing 0 for the editingStrID parameter, or
include the item by passing categoryEditStrID.

See Also CategoryCreateListV10

CategoryCreateListV10

Purpose Read a database’s categories and set the category list.

Declared In Category.h

Prototype void CategoryCreateListV10 (DmOpenRef db,
ListType *lst, UInt16 currentCategory,
Boolean showAll)

Parameters -> db Open database containing the category
information you want to read.

<- lst Pointer to the ListType that should display
the categories.

-> currentCategory
Index of the category to select. The index is the
index into the categoryLabels array. The
default is to have the “Unfiled” category
selected.

-> showAll true to include an “All” list item.

Result Returns nothing.

Compatibility This function corresponds to the Palm OS® 1.0 version of
CategoryCreateList. It is obsolete.

Categories
Category Functions

Palm OS Programmer’s API Reference 139

CategoryEdit

Purpose Event handler for the Edit Categories dialog.

Declared In Category.h

Prototype Boolean CategoryEdit (DmOpenRef db,
UInt16 *category, UInt32 titleStrID,
UInt8 numUneditableCategories)

Parameters -> db Open database containing the categories to be
edited.

<- category Upon return, the index of the last category
selected before the dialog was closed.

-> titleStrID The resource ID of a tSTR resource to use as the
dialog’s title. To use the default string (“Edit
Categories”), pass the constant
categoryDefaultEditCategoryString.

-> numUneditableCategories
The number of categories that the user cannot
edit. You should store uneditable categories at
the beginning of the categoryLabels array.
For example, it’s common to have an “Unfiled”
category at position zero that is not editable.

Result Returns true if any of the following conditions are true:

• The current category is renamed.

• The current category is deleted.

• The current category is merged with another category.

Comments You rarely call this function directly. The CategorySelect
function calls it when the user chooses the Edit Category list item.

This function both displays the Edit Categories dialog and handles
the result of the user actions. It updates the AppInfoType
structure’s list of categories and reassigns database records to new
categories as needed. If a user deletes a category, CategoryEdit

Categories
Category Functions

140 Palm OS Programmer’s API Reference

moves all of the records belonging to that category to the Unfiled
category. If a category is renamed to be the same as an existing
category, this function moves all of the old category’s records to the
new category.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also CategoryEditV20, CategoryEditV10, DmMoveCategory

CategoryEditV20

Purpose Event handler for the Edit Categories dialog.

Declared In Category.h

Prototype Boolean CategoryEditV20 (DmOpenRef db,
UInt16 *category, UInt32 titleStrID)

Parameters -> db Database containing the categories to be edited.

<- category Upon return, the last category selected before
the dialog was closed.

-> titleStrID The resource ID of a tSTR resource to use as the
dialog’s title.

Result Returns true if any of the following conditions are true:

• The current category is renamed.

• The current category is deleted.

• The current category is merged with another category.

Compatibility This function corresponds to the Palm OS 2.0 version of
CategoryEdit. Implemented only if 2.0 New Feature Set is
present. This function is obsolete.

See Also CategoryEdit, CategoryEditV10

Categories
Category Functions

Palm OS Programmer’s API Reference 141

CategoryEditV10

Purpose Event handler for the Edit Categories dialog.

Declared In Category.h

Prototype Boolean CategoryEditV10 (DmOpenRef db,
UInt16 *category)

Parameters -> db Open database containing the categories to be
edited.

<- category Upon return, the last category selected before
the dialog was closed.

Result Returns true if any of the following conditions are true:

• The current category is renamed.

• The current category is deleted.

• The current category is merged with another category.

Compatibility This function corresponds to the Palm OS 1.0 version of
CategoryEdit. It is obsolete.

See Also CategoryEdit, CategoryEditV20

CategoryFind

Purpose Return the index of a category given its name.

Declared In Category.h

Prototype UInt16 CategoryFind (DmOpenRef db,
const Char *name)

Parameters -> db Open database to search.

Categories
Category Functions

142 Palm OS Programmer’s API Reference

-> name Category name. Pass the empty string to find
the first unused category.

Result Returns the index of the category’s entry in the categoryLabels
array (see AppInfoType). Returns dmAllCategories if the
category does not exist.

CategoryFreeList

Purpose Unlock or free memory locked or allocated by
CategoryCreateList.

Declared In Category.h

Prototype void CategoryFreeList (DmOpenRef db,
ListType *listP, Boolean showAll,
UInt32 editingStrID)

Parameters -> db Open database containing the categories.

-> listP Pointer to the category list. (See ListType.)

-> showAll true if the list was created with an “All”
category.

-> editingStrID The resource ID that you passed as the
editingStrID parameter to
CategoryCreateList. This function unlocks
the resource.

Result Returns nothing.

Comments You only need to call this function if you explicitly call
CategoryCreateList. Typical applications call
CategorySelect, which handles both the creation and deletion of
the list.

This function frees the items in the popup list listP’s items array
and it unlocks other resources that CategoryCreateList may
have locked.

Categories
Category Functions

Palm OS Programmer’s API Reference 143

This function does not remove the categories from the passed
database, and it does not free the ListType structure pointed to by
listP. (Typically, a list is freed when its form is freed.)

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also CategoryFreeListV10

CategoryFreeListV10

Purpose Unlock or free memory locked or allocated by
CategoryCreateListV10.

Declared In Category.h

Prototype void CategoryFreeListV10 (DmOpenRef db,
ListType *lst)

Parameters -> db Open database containing the categories.

-> listP Pointer to the category list. (See ListType.)

Result Returns nothing.

Compatibility This function corresponds to the Palm OS 1.0 version of
CategoryFreeList. It is obsolete.

See Also CategoryFreeList

Categories
Category Functions

144 Palm OS Programmer’s API Reference

CategoryGetName

Purpose Return the name of the specified category.

Declared In Category.h

Prototype void CategoryGetName (DmOpenRef db, UInt16 index,
Char *name)

Parameters -> db Database that contains the categories.

-> index Category index. This is the index into the
categoryLabels array in the AppInfoType
structure. You can retrieve this index from a
database record’s attribute word.

<- name Buffer to hold category name. Buffer should be
dmCategoryLength in size.

Result Stores the category name in the name buffer passed.

May display a fatal error message if the index is out of range.

Comments You can use this function to find out the name of a given database
record’s category. Use the DmRecordInfo call to obtain the
category index from the given record. For example:

DmOpenRef myDB;
UInt16 record, attr, category;
Char *name;

DmRecordInfo(myDB, record, &attr, NULL, NULL);
category = attr & dmRecAttrCategoryMask;
CategoryGetName(myDB, category, name);

The category’s name is copied into the variable you pass for the
name parameter.

See Also CategorySetName

Categories
Category Functions

Palm OS Programmer’s API Reference 145

CategoryGetNext

Purpose Return the index of the next category after a given category.

Declared In Category.h

Prototype UInt16 CategoryGetNext (DmOpenRef db,
UInt16 index)

Parameters -> db Open database containing the categories.

-> index Category index.

Result Category index of next category.

Comments The intended use of this function is to allow your users to cycle
through categories. For example, the built-in applications cycle
through categories when the user presses the corresponding hard-
key button. (See the ListViewNextCategory function in the
Address Book sample application for an example.) Note that
categories are not displayed in the same order as they are stored.

Do not use this function for searching for a particular category or
iterating through a category list.

Compatibility In Palm OS 1.0, the system chose Unfiled as one category.

In Palm OS 2.0 and later, the system skips both Unfiled and
categories with empty records.

Categories
Category Functions

146 Palm OS Programmer’s API Reference

CategoryInitialize

Purpose Initialize the category names, IDs, and flags.

Declared In Category.h

Prototype void CategoryInitialize (AppInfoPtr appInfoP,
UInt16 localizedAppInfoStrID)

Parameters ->appInfoP Pointer to the locked application info block. See
AppInfoType.

->localizedAppInfoStrID
Resource ID of the localized category names.
This must be a resource of the type
appInfoStringsRsc ('tAIS').

Result Returns nothing.

Comments Call this function at database creation time to initialize the
database’s categories from a list of localized strings.

CategoryInitialize initializes the AppInfoType structure that
is associated with your database. It does not create the structure. To
create the structure, you must allocate it in the storage heap (using
DmNewHandle) and associate it with your database using
DmSetDatabaseInfo.

Compatibility Implemented only if 2.0 New Feature Set is present.

Categories
Category Functions

Palm OS Programmer’s API Reference 147

CategorySelect

Purpose Process the selection and editing of categories.

Declared In Category.h

Prototype Boolean CategorySelect (DmOpenRef db,
const FormType *frm, UInt16 ctlID, UInt16 lstID,
Boolean title, UInt16 *categoryP,
Char *categoryName, UInt8 numUneditableCategories,
UInt32 editingStrID)

Parameters -> db Open database containing the categories.

-> frm Form that contains the category popup list.

-> ctlID ID of the popup trigger.

-> lstID ID of the popup list.

-> title true to have an “All” list item. (In general, if
the trigger is in the form’s title bar, it should
have an “All” item. If the trigger is elsewhere in
the form, it should not.)

<-> categoryP Index of the selected category. The index is the
index into the categoryLabels array.

<-> categoryName
Name of the selected category.

-> numUneditableCategories
The number of categories that the user cannot
edit. You should store uneditable categories at
the beginning of the categoryLabels array.
For example, it’s common to have an “Unfiled”
category at position zero that is not editable.
This function displays the uneditable categories
at the end of the popup list.

-> editingStrID The resource ID of a tSTR resource to use as the
Edit Categories list item. To use the default
string (“Edit Categories”), pass the constant
categoryDefaultEditCategoryString.

Categories
Category Functions

148 Palm OS Programmer’s API Reference

If you don’t want users to edit categories, pass
the categoryHideEditCategory constant.

Result Returns true if any of the following conditions are true:

• The current category is renamed.

• The current category is deleted.

• The current category is merged with another category.

Comments Call this function when the user taps the category popup trigger.
This function handles all aspects of displaying the popup list and
managing the user selection—It creates the popup list using
CategoryCreateList, displays the popup list, calls
CategoryEdit if the user selects the Edit Categories item, uses
CategorySetTriggerLabel to set the trigger label to the item
the user selected, and then calls CategoryFreeList to free the list
items array. Your application is responsible for checking the value of
categoryP upon return and updating the display or changing the
record’s category to the new selection.

Compatibility Implemented only if 2.0 New Feature Set is present.

The constants categoryDefaultEditCategoryString and
categoryHideEditCategory are defined only if 3.5 New
Feature Set is present. In earlier versions, you can suppress the Edit
Categories string by passing 0 for the editingStrID parameter, or
include the item by passing categoryEditStrID.

See Also CategorySelectV10

Categories
Category Functions

Palm OS Programmer’s API Reference 149

CategorySelectV10

Purpose Process the selection and editing of categories.

Declared In Category.h

Prototype Boolean CategorySelectV10 (DmOpenRef db,
const FormType *frm, UInt16 ctlID, UInt16 lstID,
Boolean title, UInt16 *categoryP,
Char *categoryName)

Parameters -> db Open database containing the categories.

-> frm Form that contains the category popup list.

-> ctlID ID of the popup trigger.

-> lstID ID of the popup list.

-> title true to have an “All” list item. (In general, if
the trigger is in the form’s title bar, it should
have an “All” item. If the trigger is elsewhere in
the form, it should not.)

Categories
Category Functions

150 Palm OS Programmer’s API Reference

<-> categoryP Index of the selected category. The index is the
index into the categoryLabels array.

<-> categoryName
Name of the selected category.

Result Returns true if any of the following conditions are true:

• The current category is renamed.

• The current category is deleted.

• The current category is merged with another category.

Compatibility This function corresponds to the Palm OS 1.0 version of
CategorySelect. It is obsolete.

CategorySetName

Purpose Change the category name in the AppInfoType structure, or delete
a category.

Declared In Category.h

Prototype void CategorySetName (DmOpenRef db, UInt16 index,
const Char *nameP)

Parameters -> db Open database containing the category to
change.

-> index Index of category to rename.

-> nameP The new category name (null-terminated), or
NULL to delete the category.

Result Returns nothing.

Comments The CategoryEdit function calls this function when a user creates
a new category or renames an existing category in the Edit
Categories dialog. Your application does not have to call it directly.

Compatibility Implemented only if 2.0 New Feature Set is present.

Categories
Category Functions

Palm OS Programmer’s API Reference 151

CategorySetTriggerLabel

Purpose Set the label displayed by the category popup trigger.

Declared In Category.h

Prototype void CategorySetTriggerLabel (ControlType *ctl,
Char *name)

Parameters <-> ctl Pointer to control object (popup trigger) to
relabel.

<-> name Pointer to the name of the new category.

Result Returns nothing.

Comments The CategorySetTriggerLabel function calls the
CategoryTruncateName function to truncate the category name
to the maximum length. The maximum length varies, depending
upon which ROM is installed in the device.

NOTE: This function passes the name parameter to the
CategoryTruncateName function, which means that the name
value must be modifiable. CategorySetTriggerLabel does
not make a copy of the string passed, so you must ensure that the
string remains valid until the form is closed.

See Also CtlSetLabel

Categories
Category Functions

152 Palm OS Programmer’s API Reference

CategoryTruncateName

Purpose Truncate a category name so that it’s short enough to display. The
category name is truncated if it’s longer than maxWidth.

Declared In Category.h

Prototype void CategoryTruncateName (Char *name,
UInt16 maxWidth)

Parameters <-> name Category name to truncate. Upon return,
contains the truncated name.

-> maxWidth Maximum size, in pixels, of truncated category
(including ellipsis).

Result Returns nothing.

Palm OS Programmer’s API Reference 153

6
Clipboard
This chapter provides reference material for the clipboard API
defined in Clipboard.h. It covers:

• Clipboard Data Structures

• Clipboard Functions

Clipboard Data Structures

ClipboardFormatType
The ClipboardFormatType enum specifies the type of data to
add to the clipboard or retrieve from the clipboard.

enum clipboardFormats {
 clipboardText,
 clipboardInk,
 clipboardBitmap };
typedef enum clipboardFormats
 ClipboardFormatType;

Value Descriptions

Clipboards for each type of data are separately maintained. That is,
if you add a string of text to the clipboard, then add a bitmap, then
ask to retrieve a clipboardText item from the clipboard, you will
receive the string you added before the bitmap; the bitmap does not
overwrite textual data and vice versa.

clipboardText Textual data. This is the most commonly
used clipboard.

clipboardInk Reserved.

clipboardBitmap Bitmap data.

Clipboard
Clipboard Functions

154 Palm OS Programmer’s API Reference

Clipboard Functions

ClipboardAddItem

Purpose Add the item passed to the specified clipboard. Replaces the current
item (if any) of that type.

Declared In Clipboard.h

Prototype void ClipboardAddItem
(const ClipboardFormatType format,
const void *ptr, UInt16 length)

Parameters -> format Text, ink, bitmap, etc. See
ClipboardFormatType.

-> ptr Pointer to the item to place on the clipboard.

-> length Size in bytes of the item to place on the
clipboard.

Result Returns nothing.

Comments The clipboard makes a copy of the data that you pass to this
function. Thus, you may free any data that you’ve passed to the
clipboard without destroying the contents of the clipboard. You may
also add constant data or stack-based data to the clipboard.

WARNING! You can’t add null-terminated strings to the
clipboard.

See Also FldCut, FldCopy

Clipboard
Clipboard Functions

Palm OS Programmer’s API Reference 155

ClipboardAppendItem

Purpose Append data to the item on the clipboard.

Declared In Clipboard.h

Prototype Err ClipboardAppendItem
(const ClipboardFormatType format,
const void *ptr, UInt16 length)

Parameters -> format Text, ink, bitmap, etc. See
ClipboardFormatType. This function is
intended to be used only for the
clipboardText format.

-> ptr Pointer to the data to append to the item on the
clipboard.

-> length Size in bytes of the data to append to the
clipboard.

Result 0 upon success or memErrNotEnoughSpace if there is not enough
space to append the data to the clipboard.

Comments This function differs from ClipboardAddItem in that it does not
overwrite data already on the clipboard. It allows you to create a
large text item on the clipboard from several small disjointed pieces.
When other applications retrieve the text from the clipboard, it’s
retrieved as a single unit.

This function simply appends the specified item to the item already
on the clipboard without attempting to parse the format. It’s
assumed that you’ll call it several times over a relatively short
interval and that no other application will attempt to retrieve text
from the clipboard before your application is finished appending.

Compatibility Implemented only if 3.2 New Feature Set is present.

Clipboard
Clipboard Functions

156 Palm OS Programmer’s API Reference

ClipboardGetItem

Purpose Return the handle of the contents of the clipboard of a specified type
and the length of a clipboard item.

Declared In Clipboard.h

Prototype MemHandle ClipboardGetItem
(const ClipboardFormatType format, UInt16 *length)

Parameters -> format Text, ink, bitmap, etc. See
ClipboardFormatType.

<- length The length in bytes of the clipboard item is
returned here.

Result Handle of the clipboard item.

Comments The handle returned is a handle to the actual clipboard chunk. It is
not suitable for passing to any API that modifies memory (such as
FldSetTextHandle). Consider this to be read-only access to the
chunk. Copy the contents of the clipboard to your application’s own
storage as soon as possible and use that reference instead of the
handle returned by this function.

Don’t free the handle returned by this function; it is freed when a
new item is added to the clipboard.

Text retrieved from the clipboard does not have a null terminator.
You must use the length parameter to determine the length in
bytes of the string you’ve retrieved.

Palm OS Programmer’s API Reference 157

7
Controls
This chapter describes the control object API as declared in the
header file Control.h. It discusses the following topics:

• Control Data Structures

• Control Resources

• Control Functions

For more information on controls, see the section “Offscreen
Windows” in the Palm OS Programmer’s Companion, vol. I.

Control Data Structures

ButtonFrameType
The ButtonFrameType enum specifies the border style for the
button. It defines values for the frame field of ControlAttrType.

enum buttonFrames {noButtonFrame,
 standardButtonFrame, boldButtonFrame,
 rectangleButtonFrame};
typedef enum buttonFrames ButtonFrameType;

Value Descriptions

noButtonFrame The button has no border.

standardButtonFrame Standard button rectangular border
with rounded corners.

boldButtonFrame Bolded rectangular border with
rounded corners.

rectangleButtonFrame Rectangular border with square
corners.

Controls
Control Data Structures

158 Palm OS Programmer’s API Reference

ControlAttrType
The ControlAttrType bit field specifies the control’s visible
characteristics. It is defined as follows:

typedef struct {
 UInt8 usable :1;
 UInt8 enabled :1;
 UInt8 visible :1;
 UInt8 on :1;
 UInt8 leftAnchor :1;
 UInt8 frame :3;
 UInt8 drawnAsSelected : 1;
 UInt8 graphical :1;
 UInt8 vertical :1;
} ControlAttrType;

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the ControlAttrType structure.
Never access its structure members directly, or your code may
break in future versions. Use the information below for debugging
purposes only.

Your code should treat the ControlAttrType structure as opaque.
Use the functions specified in the descriptions below to retrieve and
set each value. Do not attempt to change structure member values
directly.

Field Descriptions

usable If 0, the control is not considered to be part of
the interface of the current application, and it
doesn’t appear on screen. You can use
CtlSetUsable, CtlShowControl, or
CtlHideControl to set or clear this value.

enabled If 0, the control is visible but doesn’t respond
to the pen. This value is set by
CtlSetEnabled and returned by
CtlEnabled.

Controls
Control Data Structures

Palm OS Programmer’s API Reference 159

Compatibility The drawnAsSelected, graphical, and vertical attributes are
only present if 3.5 New Feature Set is present.

ControlPtr
The ControlPtr is a pointer to a ControlType structure.

visible Set and cleared internally when the control is
drawn (CtlDrawControl) and erased
(CtlEraseControl).

on If set, the control has the value “on.” For
example, a check box that has the on value
has a check mark displayed in it. Use
CtlGetValue and CtlSetValue to
retrieve and set this value.

leftAnchor Used by controls that expand and shrink
their width when the label is changed. If this
attribute is set, the left bound of the control is
fixed.

frame The type of frame drawn around the button
controls. See ButtonFrameType for
possible values. Only button controls use this
attribute; for all other controls, the
ControlStyleType determines the frame.

drawnAsSelected Used on Palm OS® release 3.5 for button
controls that contain no text (indicating that
the button is displayed on top of a bitmap). If
set, the button is drawn as inverted. If clear,
the button is drawn normally.

graphical If set, the control is a graphical control,
slider, or feedback slider.

vertical Not currently used.

Controls
Control Data Structures

160 Palm OS Programmer’s API Reference

typedef ControlType* ControlPtr;

ControlStyleType
The ControlStyleType enum specifies values for the
ControlType style field, which specifies the type of the control
(button, push button, and so on).

enum controlStyles {buttonCtl, pushButtonCtl,
 checkboxCtl, popupTriggerCtl,
 selectorTriggerCtl, repeatingButtonCtl,
 sliderCtl, feedbackSliderCtl};
typedef enum controlStyles ControlStyleType;

Value Descriptions

buttonCtl Button. Buttons display a text label in a
box. The ButtonFrameType specifies
the type of box.

pushButtonCtl Push button. Selecting a push button
inverts its display so that it appears
highlighted.

checkboxCtl Check box. Check boxes display a
setting of either on (checked) or off
(unchecked)

popupTriggerCtl Popup trigger. Popup triggers display a
graphic element followed by a text label.
They are used to display popup lists.

selectorTriggerCtl Selector trigger. Selector triggers display
a text label surrounded by a gray
rectangular frame. The control expands
or contracts to the width of the new
label.

repeatingButtonCtl Repeating button. Repeating buttons
look like buttons; however, a repeating
button is repeatedly selected if the user
holds the pen on it.

Controls
Control Data Structures

Palm OS Programmer’s API Reference 161

Compatibility The sliderCtl and feedbackSliderCtl values are only
defined if 3.5 New Feature Set is present.

ControlType
The ControlType structure defines the type and characteristics of
a control. It is defined as follows:

typedef struct {
 UInt16 id;
 RectangleType bounds;
 Char * text;
 ControlAttrType attr;
 ControlStyleType style;
 FontID font;
 UInt8 group;
 UInt8 reserved;
} ControlType;

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the ControlType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

sliderCtl Slider. Sliders display two bitmaps: one
representing the current value (the
thumb), and another representing the
scale of available values. The user can
slide the thumb to the left or the right to
change the value.

feedbackSliderCtl Feedback slider. A feedback slider looks
like a slider; however, a feedback slider
sends events each time the thumb moves
while the pen is still down. A regular
slider sends an event only when the user
releases the pen.

Controls
Control Data Structures

162 Palm OS Programmer’s API Reference

Your code should treat the ControlType structure as opaque. The
fields in the struct are set by values you specify when you create the
control resource, and they typically do not change. Use the
functions specified in the descriptions below to retrieve and set the
values. Do not attempt to change structure member values directly.

Field Descriptions

GraphicControlType
The GraphicControlType struct defines a graphical control. A
graphical control is like any other control except that it displays a
bitmap in place of the text label.

id ID value you specified when you created the control
resource.

bounds Bounds of the control, in window-relative coordinates.
The control’s text label is clipped to the control’s
bounds. The control’s frame is drawn around (outside)
the bounds of the control. FrmGetObjectBounds and
FrmSetObjectBounds retrieve and set this value.

text Pointer to the control’s label. If text is NULL, the control
has no label. Use CtlGetLabel and CtlSetLabel to
retrieve and set this value.

attr Control attributes. See ControlAttrType.

style Style of the control. See ControlStyleType.

font Font to use to draw the control’s label.

group Group ID of a push button or a check box that is part of
an exclusive group. The control routines don’t
automatically turn one control off when another is
selected. It’s up to the application or a higher-level
object, like a dialog box, to manage this.

reserved Reserved for future use.

Controls
Control Data Structures

Palm OS Programmer’s API Reference 163

typedef struct GraphicControlType {
 UInt16 id;
 RectangleType bounds;
 DmResID bitmapID;
 DmResID selectedBitmapID;
 ControlAttrType attr;
 ControlStyleType style;
 FontID unused;
 UInt8 group;
 UInt8 reserved;
} GraphicControlType;

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the GraphicControlType structure.
Never access its structure members directly, or your code may
break in future versions. Use the information below for debugging
purposes only.

Your code should treat the GraphicControlType structure as
opaque. The fields in the struct are set by values you specify when
you create the control resource, and they typically do not change.
Use the functions specified in the descriptions below to retrieve and
set the values. Do not attempt to change structure member values
directly.

Field Descriptions

id ID value you specified when you created
the control resource.

bounds Bounds of the control, in window-relative
coordinates. The control’s frame is drawn
around (outside) the bounds of the control.
FrmGetObjectBounds and
FrmSetObjectBounds retrieve and set
this value.

bitmapID Resource ID of the bitmap to display in the
button. You can use CtlSetGraphics to
change this value.

Controls
Control Data Structures

164 Palm OS Programmer’s API Reference

Compatibility This struct is defined only if 3.5 New Feature Set is present.

SliderControlType
The SliderControlType struct defines a slider control or a
feedback slider control.

selectedBitmapID If the button should show a different
bitmap when selected, this field contains
the resource ID of that bitmap. You
typically use this field for push buttons or
repeating buttons. CtlSetGraphics can
change this value.

attr Control attributes. See ControlAttrType.
For a graphical control, the graphical
attribute must be set. The APIs described in
the ControlAttrType section can be used
to access the bitfields here. Because the
ControlAttrType APIs take a
ControlType* as an argument, the
GraphicControlType* should be cast to
a ControlType* when making the API
calls.

style Style of the control. See
ControlStyleType. A graphical control
can be any type of control other than
checkboxCtl.

unused Unused.

group Group ID of a push button that is part of an
exclusive group. The control routines don’t
automatically turn one control off when
another is selected. It’s up to the application
or a higher-level object, like a dialog box, to
manage this.

reserved Reserved for future use.

Controls
Control Data Structures

Palm OS Programmer’s API Reference 165

typedef struct SliderControlType {
 UInt16 id;
 RectangleType bounds;
 DmResID thumbID;
 DmResID backgroundID;
 ControlAttrType attr;
 ControlStyleType style;
 UInt8 reserved;
 Int16 minValue;
 Int16 maxValue;
 Int16 pageSize;
 Int16 value;
 MemPtr activeSliderP;
} SliderControlType;

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the SliderControlType structure.
Never access its structure members directly, or your code may
break in future versions. Use the information below for debugging
purposes only.

Your code should treat the SliderControlType structure as
opaque. The fields in the struct are set by values you specify when
you create the control resource, and they typically do not change.
You can use CtlSetSliderValues to set new minimum,
maximum, page size, and current values, and
CtlGetSliderValues to retrieve these values. Do not attempt to
change structure member values directly.

Field Descriptions

id ID value you specified when you created the
control resource.

bounds Bounds of the control, in window-relative
coordinates. FrmGetObjectBounds and
FrmSetObjectBounds retrieve and set this
value.

Controls
Control Data Structures

166 Palm OS Programmer’s API Reference

Compatibility This struct is defined only if 3.5 New Feature Set is present.

thumbID Resource ID of the bitmap to use for the slider
knob (called the “thumb”). If NULL, the default
bitmap is used.

backgroundID Resource ID of the bitmap to use for the slider
background. If NULL, the default bitmap is used.

attr Control attributes. See ControlAttrType. For
a slider, the graphical attribute is set. The
APIs described in the ControlAttrType
section can be used to access the bitfields here.
Because the ControlAttrType APIs take a
ControlType* as an argument, the
SliderControlType* should be cast to a
ControlType* when making the API calls.

style Style of the control. See ControlStyleType.
Must be sliderCtl or feedbackSliderCtl.

reserved Reserved for future use.

minValue Value of the slider when the thumb is all the
way to the left.

maxValue Value of the slider when the thumb is all the
way to the right.

pageSize Amount by which to increase or decrease the
slider value when the user taps to the right or
left of the thumb.

value Current value represented by the slider. Use
CtlGetValue and CtlSetValue to retrieve
and set this value.

activeSliderP Pointer to a memory location used when the
slider is active. A slider is active if it is currently
being drawn or if it is tracking the pen. If the
slider is inactive, this pointer is NULL.

Controls
Control Resources

Palm OS Programmer’s API Reference 167

Control Resources
Different resources are associated with different controls, as follows:

• Button—Button Resource (tBTN)

• Popup trigger— Popup Trigger Resource (tPUT)

• Selector trigger—Selector Trigger Resource (tSLT)

• Repeat control—Repeating Button Resource (tREP)

• Push button—Push Button Resource (tPBN)

• Check box—Check Box Resource (tCBX)

• Slider— Slider Resource (tsld)

• Feedback slider— Feedback Slider Resource (tslf)

Control Functions

CtlDrawControl

Purpose Draw a control object (and the text or graphic in it) on screen.

Declared In Control.h

Prototype void CtlDrawControl (ControlType *controlP)

Parameters -> controlP Pointer to the control object to draw. (See
ControlType.)

Result Returns nothing.

Comments The control is drawn only if its usable attribute is true. This
function sets the visible attribute to true.

Compatibility In releases prior to Palm OS® 3.5, it is common to create graphical
buttons by drawing a button with no text label on top of a bitmap. If
3.5 New Feature Set is present, you should use graphical controls
instead. (See GraphicControlType.) CtlDrawControl attempts

Controls
Control Functions

168 Palm OS Programmer’s API Reference

to provide backward compatibility for the old-style graphical
buttons.

See Also CtlSetUsable, CtlShowControl

CtlEnabled

Purpose Return true if the control responds to the pen.

Declared In Control.h

Prototype Boolean CtlEnabled (const ControlType *controlP)

Parameters -> controlP Pointer to control object. (See ControlType.)

Result Returns true if the controls object responds to the pen; false if
not.

Comments This function provides no indication of whether the control is
visible on the screen. A control that doesn’t respond to the pen may
be visible, and if so, its appearance is no different from controls that
do respond to the pen. You might use such a control to display some
state of your application that cannot be modified.

See Also CtlSetEnabled

CtlEraseControl

Purpose Erase a usable and visible control object and its frame from the
screen.

Declared In Control.h

Prototype void CtlEraseControl (ControlType *controlP)

Parameters -> controlP Pointer to control object to erase. (See
ControlType.)

Controls
Control Functions

Palm OS Programmer’s API Reference 169

Comments This function sets the visible attribute to false. If 3.5 New
Feature Set is present, it also sets the drawnAsSelected attribute
to false.

Don’t call this function directly; instead, use FrmHideObject,
which calls this function.

CtlGetLabel

Purpose Return a character pointer to a control’s text label.

Declared In Control.h

Prototype const Char *CtlGetLabel
(const ControlType *controlP)

Parameters -> controlP Pointer to control object. (See ControlType.)

Result Returns a pointer to a null-terminated string.

Comments Make sure that controlP is not a graphical control or a slider
control. The graphical control and slider control structures do not
contain a text label field.

See Also CtlSetLabel

CtlGetSliderValues

Purpose Return current values used by a slider control.

Declared In Control.h

Prototype void CtlGetSliderValues (const ControlType *ctlP,
UInt16 *minValueP, UInt16 *maxValueP,
UInt16 *pageSizeP, UInt16 *valueP)

Parameters -> ctlP Pointer to a control object. (See ControlType.)

Controls
Control Functions

170 Palm OS Programmer’s API Reference

<- minValueP The slider’s minimum value. Pass NULL if you
don’t want to retrieve this value.

<- maxValueP The slider’s maximum value. Pass NULL if you
don’t want to retrieve this value.

<- pageSizeP The slider’s page size value. Pass NULL if you
don’t want to retrieve this value.

<- valueP The slider’s current value. Pass NULL if you
don’t want to retrieve this value.

Result Returns nothing. The slider’s values are returned in the parameters
to this function.

Comments If ctlP is not a slider or a feedback slider, this function immediately
returns.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also CtlSetSliderValues, SliderControlType

CtlGetValue

Purpose Return the current value of the specified control.

Declared In Control.h

Prototype Int16 CtlGetValue (const ControlType *controlP)

Parameters -> controlP Pointer to a control object. (See ControlType.)

Result Returns the current value of the control. For most controls the return
value is either 0 (off) or 1 (on). For sliders, this function returns the
value of the value field.

See Also CtlSetValue, FrmGetControlGroupSelection,
FrmSetControlGroupSelection, FrmGetControlValue,
FrmSetControlValue

Controls
Control Functions

Palm OS Programmer’s API Reference 171

CtlHandleEvent

Purpose Handle event in the specified control object.

Declared In Control.h

Prototype Boolean CtlHandleEvent (ControlType *controlP,
EventType *pEvent)

Parameters -> controlP Pointer to control object. (See ControlType.)

-> pEvent Pointer to an EventType structure.

Result Returns true if an event is handled by this function. Events that are
handled are:

• penDownEvent — If the pen is within the bounds of the
control

• ctlEnterEvent, ctlRepeatEvent, and
ctlExitEvent— If the control ID in the event data matches
the control’s ID.

Comments The control object must be usable, visible, and respond to the pen
for this function to handle the event.

When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the control object. If it is, a
ctlEnterEvent is added to the event queue and the routine exits.

When this routine receives a ctlEnterEvent, the control object is
redrawn as necessary as either selected or deselected, depending on
its previous state.

When this routine receives a ctlEnterEvent or
ctlRepeatEvent, it checks that the control ID in the passed event
record matches the ID of the specified control. If they match, this
routine tracks the pen until it comes up or until it leaves the object’s
bounds. When that happens, ctlSelectEvent is sent to the event
queue if the pen came up in the bounds of the control. If the pen
exits the bounds, a ctlExitEvent is sent to the event queue.

Controls
Control Functions

172 Palm OS Programmer’s API Reference

CtlHideControl

Purpose Set a control’s usable attribute to false and erase the control from
the screen.

Declared In Control.h

Prototype void CtlHideControl (ControlType *controlP)

Parameters -> controlP Pointer to the control object to hide. (See
ControlType.)

Result Returns nothing.

Comments A control that is not usable doesn’t draw and doesn’t respond to the
pen.

This function is the same as CtlEraseControl except that it also
sets usable to false (in addition to setting visible to false).

Don’t call this function directly; instead, use FrmHideObject,
which performs the same function and works for all user interface
objects.

See Also CtlShowControl

CtlHitControl

Purpose Simulate tapping a control. This function adds a ctlSelectEvent
to the event queue.

Declared In Control.h

Prototype void CtlHitControl (const ControlType *controlP)

Parameters -> controlP Pointer to a control object. (See ControlType.)

Result Returns nothing.

Controls
Control Functions

Palm OS Programmer’s API Reference 173

Comments Useful for testing.

CtlNewControl

Purpose Create a new control object dynamically and install it in the
specified form.

Declared In Control.h

Prototype ControlType *CtlNewControl (void **formPP,
UInt16 ID, ControlStyleType style,
const Char *textP, Coord x, Coord y, Coord width,
Coord height, FontID font, UInt8 group,
Boolean leftAnchor)

Parameters <-> formPP Pointer to the pointer to the form in which the
new control is installed. This value is not a
handle; that is, the formPP value may change if
the object moves in memory. In subsequent
calls, always use the new formPP value
returned by this function.

-> ID Symbolic ID of the control.

-> style A ControlStyleType value specifying the
kind of control to create: button, push button,
repeating button, check box, popup trigger, or
popup selector. To create a graphical control or
slider control dynamically, use
CtlNewGraphicControl or
CtlNewSliderControl, respectively.

Controls
Control Functions

174 Palm OS Programmer’s API Reference

-> textP Pointer to the control’s label text. If textP is
NULL, the control has no label. Only buttons,
push buttons, and text boxes have text labels.
Because the contents of this pointer are copied
into their own buffer, you can free the textP
pointer any time after the CtlNewControl
function returns. The buffer into which this
string is copied is freed automatically when
you remove the control from the form or delete
the form.

-> x Horizontal coordinate of the upper-left corner
of the control’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the control’s boundaries, relative to the
window in which it appears.

-> width Width of the control, expressed in pixels. Valid
values are 1–160. If the value of either of the
width or height parameters is 0, the control
is sized automatically as necessary to display
the text passed as the value of the text
parameter.

-> height Height of the control, expressed in pixels. Valid
values are 1–160. If the value of either of the
width or height parameters is 0, the control
is sized automatically as necessary to display
the text passed as the value of the text
parameter.

-> font Font used to draw the control’s label.

-> group Group ID of a push button or a check box that
is part of an exclusive group. The control
routines don’t turn one control off
automatically when another is selected. It’s up
to the application or a higher-level object, such
as a dialog box, to manage this.

Controls
Control Functions

Palm OS Programmer’s API Reference 175

-> leftAnchor true specifies that the left bound of this
control is fixed. This attribute is used by
controls that resize dynamically in response to
label text changes.

Result Returns a pointer to the new control.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also CtlValidatePointer, FrmRemoveObject

CtlNewGraphicControl

Purpose Create a new graphical control dynamically and install it in the
specified form.

Declared In Control.h

Prototype GraphicControlType *CtlNewGraphicControl
(void **formPP, UInt16 ID,
ControlStyleType style, DmResID bitmapID,
DmResID selectedBitmapID, Coord x, Coord y,
Coord width, Coord height, UInt8 group,
Boolean leftAnchor)

Parameters <-> formPP Pointer to the pointer to the form in which the
new control is installed. This value is not a
handle; that is, the formPP value may change if
the object moves in memory. In subsequent
calls, always use the new formPP value
returned by this function.

-> ID Symbolic ID of the control.

-> style A ControlStyleType value specifying the
kind of control to create: button, push button,
popup trigger, repeating button, or popup
selector. Graphic controls cannot be check
boxes.

Controls
Control Functions

176 Palm OS Programmer’s API Reference

-> bitmapID Resource ID of the bitmap to display on the
control.

-> selectedBitmapID
Resource ID of the bitmap to display when the
control is selected, if different from bitmapID.

-> x Horizontal coordinate of the upper-left corner
of the control’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the control’s boundaries, relative to the
window in which it appears.

-> width Width of the control, expressed in pixels. Valid
values are 1–160.

-> height Height of the control, expressed in pixels. Valid
values are 1–160.

-> group Group ID of a push button that is part of an
exclusive group. The control routines don’t
turn one control off automatically when
another is selected. It’s up to the application or
a higher-level object, such as a dialog box, to
manage this.

-> leftAnchor true specifies that the left bound of this
control is fixed.

Result Returns a pointer to the new graphical control. See
GraphicControlType.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also CtlNewSliderControl, CtlNewControl,
CtlValidatePointer, FrmRemoveObject

Controls
Control Functions

Palm OS Programmer’s API Reference 177

CtlNewSliderControl

Purpose Create a new slider or feedback slider dynamically and install it in
the specified form.

Declared In Control.h

Prototype SliderControlType *CtlNewSliderControl
(void **formPP, UInt16 ID,
ControlStyleType style, DmResID thumbID,
DmResID backgroundID, Coord x, Coord y,
Coord width, Coord height, UInt16 minValue,
UInt16 maxValue, UInt16 pageSize, UInt16 value)

Parameters <-> formPP Pointer to the pointer to the form in which the
new control is installed. This value is not a
handle; that is, the formPP value may change if
the object moves in memory. In subsequent
calls, always use the new formPP value
returned by this function.

-> ID Symbolic ID of the slider.

-> style Either sliderCtl or feedbackSliderCtl.
See ControlStyleType.

-> thumbID Resource ID of the bitmap to display as the
slider thumb. The slider thumb is the knob that
the user can drag to change the slider’s value.
To use the default thumb bitmap, pass NULL for
this parameter.

-> backgroundID
Resource ID of the bitmap to display as the
slider background. To use the default
background bitmap, pass NULL for this
parameter.

-> x Horizontal coordinate of the upper-left corner
of the slider’s boundaries, relative to the
window in which it appears.

Controls
Control Functions

178 Palm OS Programmer’s API Reference

-> y Vertical coordinate of the upper-left corner of
the slider’s boundaries, relative to the window
in which it appears.

-> width Width of the slider, expressed in pixels. Valid
values are 1–160.

-> height Height of the slider, expressed in pixels. Valid
values are 1–160.

-> minValue Value of the slider when its thumb is all the
way to the left.

-> maxValue Value of the slider when its thumb is all the
way to the right.

-> pageSize Amount by which to increase or decrease the
slider’s value when the user clicks to the right
or left of the thumb.

-> value The initial value to display in the slider.

Result Returns a pointer to the new slider control. See
SliderControlType.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also CtlNewGraphicControl, CtlNewControl,
CtlValidatePointer, FrmRemoveObject

CtlSetEnabled

Purpose Set a control as enabled or disabled. Disabled controls do not
respond to the pen.

Declared In Control.h

Prototype void CtlSetEnabled (ControlType *controlP,
Boolean usable)

Parameters -> controlP Pointer to a control object. (See ControlType.)

Controls
Control Functions

Palm OS Programmer’s API Reference 179

-> usable true to enable the control; false to disable
the control.

Result Returns nothing.

Comments If you disable a visible control, the control is still displayed, and its
appearance is no different from controls that do respond to the pen.
You might use such a control to inform your users of some state of
your application that cannot be modified.

See Also CtlEnabled

CtlSetGraphics

Purpose Set the bitmaps for a graphical control and redraw the control if it is
visible.

Declared In Control.h

Prototype void CtlSetGraphics (ControlType *ctlP,
DmResID newBitmapID, DmResID newSelectedBitmapID)

Parameters -> ctlP Pointer to a graphical control object. (See
GraphicControlType.)

-> newBitmapID Resource ID of a new bitmap to display on the
control, or NULL to use the current bitmap.

-> newSelectedBitmapID
Resource ID of a new bitmap to display when
the control is selected, or NULL to use the
current selected bitmap.

Result Returns nothing.

Comments If ctlP is not a graphical control, this function immediately returns.

Controls
Control Functions

180 Palm OS Programmer’s API Reference

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also GraphicControlType

CtlSetLabel

Purpose Set the current label for the specified control object and redraw the
control if it is visible.

Declared In Control.h

Prototype void CtlSetLabel (ControlType *controlP,
const Char *newLabel)

Parameters -> controlP Pointer to a control object. (See ControlType.)

-> newLabel Pointer to the new text label. Must be a null-
terminated string.

Result Returns nothing.

Comments This function resizes the width of the control to the size of the new
label.

This function stores the newLabel pointer in the control’s data
structure. It doesn’t make a copy of the string that is passed in.
Therefore, if you use CtlSetLabel, you must manage the string
yourself. You must ensure that it persists for as long as it is being
displayed (that is, for as long as the control is displayed or until you
call CtlSetLabel with a new string), and you must free the string
after it is no longer in use (typically after the form containing the
control is freed).

If you never use CtlSetLabel, you do not need to worry about
freeing a control’s label.

Make sure that controlP is not a graphical control or a slider
control. The graphical controls and slider control structures do not

Controls
Control Functions

Palm OS Programmer’s API Reference 181

contain a text label field, so attempting to set one will crash your
application.

See Also CtlGetLabel

CtlSetSliderValues

Purpose Change a slider control’s values and redraw the slider if it is visible.

Declared In Control.h

Prototype void CtlSetSliderValues (ControlType *ctlP,
const UInt16 *minValueP, const UInt16 *maxValueP,
const UInt16 *pageSizeP, const UInt16 *valueP)

Parameters -> ctlP Pointer to an inactive slider or feedback slider
control. (See SliderControlType.)

-> minValueP Pointer to a new value to use for the slider’s
minimum or NULL if you don’t want to change
this value.

-> maxValueP Pointer to a new value to use for the slider’s
maximum, or NULL if you don’t want to change
this value.

-> pageSizeP Pointer to a new value to use for the slider’s
page size, or NULL if you don’t want to change
this value.

-> valueP Pointer to a new value to use for the current
value, or NULL if you don’t want to change this
value.

Result Returns nothing.

Comments The control’s style must be sliderCtl or feedbackSliderCtl,
and it not be currently tracking the pen. If the slider is currently
tracking the pen, use CtlSetValue to set the value field.

Controls
Control Functions

182 Palm OS Programmer’s API Reference

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also CtlGetSliderValues, SliderControlType

CtlSetUsable

Purpose Set a control to usable or not usable.

Declared In Control.h

Prototype void CtlSetUsable (ControlType *controlP,
Boolean usable)

Parameters -> controlP Pointer to a control object. (See ControlType.)

-> usable true to have the control be usable; false to
have the control be not usable.

Result Returns nothing.

Comments A control that is not usable doesn’t draw and doesn’t respond to the
pen.

This function doesn’t usually update the control.

See Also CtlEraseControl, CtlHideControl, CtlShowControl

CtlSetValue

Purpose Set the current value of the specified control. If the control is visible,
it’s redrawn.

Declared In Control.h

Prototype void CtlSetValue (ControlType *controlP,
Int16 newValue)

Parameters -> controlP Pointer to a control object. (See ControlType.)

Controls
Control Functions

Palm OS Programmer’s API Reference 183

-> newValue New value to set for the control. For sliders,
specify a value between the slider’s minimum
and maximum. For graphical controls, push
buttons, or check boxes, specify 0 for off,
nonzero for on.

Result Returns nothing.

Comments This function works only with graphical controls, sliders, push
buttons, and check boxes. If you set the value of any other type of
control, the behavior is undefined.

Compatibility Sliders and graphical controls are only supported if 3.5 New Feature
Set is present.

See Also CtlGetValue, FrmGetControlGroupSelection,
FrmSetControlGroupSelection, FrmGetControlValue,
FrmSetControlValue

CtlShowControl

Purpose Set a control’s usable attribute to true and draw the control on
the screen. This function calls CtlDrawControl.

Declared In Control.h

Prototype void CtlShowControl (ControlType *controlP)

Parameters -> controlP Pointer to a control object. (See ControlType.)

Result Returns nothing.

Comments If the control is already usable, this function is the functional
equivalent of CtlDrawControl.

Sets the visible and the usable attributes to true. (See
ControlAttrType.)

Controls
Control Functions

184 Palm OS Programmer’s API Reference

Don’t use this function directly; instead use FrmShowObject,
which does the same thing.

See Also CtlHideControl

CtlValidatePointer

Purpose Returns true if the specified pointer references a valid control
object.

Declared In Control.h

Prototype Boolean CtlValidatePointer
(const ControlType *controlP)

Parameters -> controlP Pointer to a control. (See ControlType.)

Result Returns true when passed a valid pointer to a control; otherwise,
returns false.

Comments For debugging purposes; do not include this function in commercial
products. In debug builds, this function displays a dialog and waits
for the debugger when an error occurs.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmValidatePtr, WinValidateHandle

Palm OS Programmer’s API Reference 185

8
Date and Time
Selector
The Palm OS® UI provides two system resources for accepting date
and time input values. These resources are dialog boxes that contain
UI gadgetry for entering dates and times. The Palm OS UI also
provides routines to manage the interaction with these resources.
This chapter describes those functions.

The API described in this chapter is declared in the header files
Day.h, SelDay.h, SelTime.h, and SelTimeZone.h.

Date and Time Selections Data Structures

SelectDayType

typedef enum {
 selectDayByDay, // return d/m/y
 selectDayByWeek, // return d/m/y with d as
 // same day of the week
 selectDayByMonth // return d/m/y with d as
 // same day of the month
} SelectDayType;

DaySelectorType

typedef struct DaySelectorType {
 RectangleType bounds;
 Boolean visible;
 UInt8 reserved1;
 Int16 visibleMonth; // month actually
 // displayed

Date and Time Selector
Date and Time Selection Functions

186 Palm OS Programmer’s API Reference

 Int16 visibleYear; // year actually
 // displayed
 DateTimeType selected;
 SelectDayType selectDayBy;
 UInt8 reserved2;
} DaySelectorType;

HMSTime
typedef struct {
 UInt8 hours;
 UInt8 minutes;
 UInt8 seconds;
 UInt8 reserved;
} HMSTime;

Date and Time Selection Functions

DayDrawDays

Purpose Draw only the days-of-the-month portion of a day selector control
object.

Declared In Day.h

Prototype void DayDrawDays
(const DaySelectorType *selectorP)

Parameters -> selectorP Pointer to the control object to draw.

Result Nothing.

Comments This function is used when the year or month changes. Only
drawing the portion of the control that presents the days of the
month avoids the flicker that would occur if the week titles were
redrawn.

Date and Time Selector
Date and Time Selection Functions

Palm OS Programmer’s API Reference 187

Compatibility If 5.0 New Feature Set is present this function is unimplemented.

See Also DayDrawDaySelector

DayDrawDaySelector

Purpose Draw a day selector control object on screen.

Declared In Day.h

Prototype void DayDrawDaySelector
(const DaySelectorType *selectorP)

Parameters -> selectorP Pointer to the control object to draw.

Result Nothing.

Comments The control is drawn only if it is usable.

Compatibility If 5.0 New Feature Set is present this function is unimplemented.

See Also DayDrawDays

DayHandleEvent

Purpose Handle event in the specified control. This routine handles two
types of events, penDownEvent and ctlEnterEvent.

Declared In Day.h

Prototype Boolean DayHandleEvent
(DaySelectorType *selectorP,
const EventType *pEvent)

Parameters -> selectorP Pointer to control object.

Date and Time Selector
Date and Time Selection Functions

188 Palm OS Programmer’s API Reference

-> pEvent Pointer to an EventType structure.

Result true if the event was handled or false if it was not.

Posts a daySelectEvent with information on whether to use the
date.

Comments A date is used if the user selects a day in the visible month.

When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the control object. If it is, a
dayEnterEvent is added to the event queue and the routine exits.

When this routine receives a dayEnterEvent, it checks that the
control id in the event record matches the id of the control specified.
If they match, this routine will track the pen until it comes up in the
bounds in which case daySelectEvent is sent.

If the pen exits the bounds a dayExitEvent is sent.

SelectDay

Purpose Display a form showing a date; allow user to select a different date.

Declared In SelDay.h

Prototype Boolean SelectDay
(const SelectDayType selectDayBy, Int16 *month,
Int16 *day, Int16 *year, const Char *title)

Parameters selectDayBy The method by which the user should choose
the day. Possible values are selectDayByDay,
selectDayByWeek, and
selectDayByMonth. See SelectDayType

<-> month, day, year
Month, day, and year selected.

-> title String title for the dialog.

Result true if the OK button was pressed. If true, month, day, and year
contain the new date.

Date and Time Selector
Date and Time Selection Functions

Palm OS Programmer’s API Reference 189

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also SelectDayV10

SelectDayV10

Purpose Display a form showing a date, allow user to select a different date.

Declared In SelDay.h

Prototype Boolean SelectDayV10 (Int16 *month, Int16 *day,
Int16 *year, const Char *title)

Parameters <-> month, day, year
Month, day, and year selected. The initial
values passed in these parameters must be
valid.

-> title String title for the dialog.

Result Returns true if the OK button was pressed. In that case, the
parameters passed are changed.

Compatibility This function corresponds to the 1.0 version of SelectDay.

See Also SelectDay

SelectOneTime

Purpose Display a form showing the time and allow the user to select a
different time.

Declared In SelTime.h

Prototype Boolean SelectOneTime (Int16 *hour,
Int16 *minute, const Char *titleP)

Parameters <-> hour The hour selected in the form.

Date and Time Selector
Date and Time Selection Functions

190 Palm OS Programmer’s API Reference

<-> minute The minute selected in the form.

-> titleP A pointer to a string to display as the title.
Doesn’t change as the function executes.

Result Returns true if the user selects OK and false otherwise. If true is
returned, the values in hour and minute have probably been
changed.

Comments Use this function instead of SelectTime if you want to display a
dialog that specifies a single point in time, not a range of time from
start to end.

Compatibility Implemented only if 3.1 New Feature Set is present.

See Also SelectTimeV33

SelectTime

Purpose Display a form showing a start and end time. Allow the user to
select a different time.

Declared In SelTime.h

Prototype Boolean SelectTime (TimeType *startTimeP,
TimeType * EndTimeP, Boolean untimed, const Char
*titleP, Int16 startOfDay, Int16 endOfDay,
Int16 startOfDisplay)

Parameters <-> startTimeP, EndTimeP
Pointers to values of type TimeType. Pass
values to display in these two parameters. If the
user makes a selection and taps the OK button,
the selected values are returned here.

-> untimed Pass in true to indicate that no time is selected.
If the user sets the time to no time then
startTimeP and EndTimeP are both set to the
constant noTime (-1).

Date and Time Selector
Date and Time Selection Functions

Palm OS Programmer’s API Reference 191

-> titleP A pointer to a string to display as the title.
Doesn’t change as the function executes.

-> startOfDay The hour that the hour list displays at its top. To
see earlier hours, the user can scroll the list up.
The value must be between 0 to 12, inclusive.

-> endOfDay The hour used when the “All Day” button is
selected.

-> startOfDisplay
First hour initially visible.

Result Returns true if the user selects OK and false otherwise. If true is
returned, the values in hour and minute have probably been
changed.

Comments This version of SelectTime adds the endOfDay and
startOfDisplay functionality.

Compatibility Implemented if 3.5 New Feature Set is present.

See Also SelectDay, SelectOneTime

SelectTimeV33

Purpose Display a form showing the time and allow the user to select a
different time.

This function is obsolete and should not be used.

Date and Time Selector
Date and Time Selection Functions

192 Palm OS Programmer’s API Reference

Declared In SelTime.h

Prototype Boolean SelectTimeV33 (TimeType *startTimeP,
TimeType *EndTimeP, Boolean untimed,
const Char *titleP, Int16 startOfDay)

Parameters <-> startTimeP, EndTimeP
Pointers to values of type TimeType. Pass
values to display in these two parameters. If the
user makes a selection and taps the OK button,
the selected values are returned here.

-> untimed Pass in true to indicate that no time is selected.
If the user sets the time to no time then
startTimeP and EndTimeP are both set to the
constant noTime (-1).

-> titleP A pointer to a string to display as the title.
Doesn’t change as the function executes.

-> startOfDay The hour that the hour list displays at its top. To
see earlier hours, the user can scroll the list up.
The value must be between 0 to 12, inclusive.

Result Returns true if the user selects OK and false otherwise. If true is
returned, the values in hour and minute have probably been
changed.

Comments NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

See Also SelectDay, SelectOneTime

Date and Time Selector
Date and Time Selection Functions

Palm OS Programmer’s API Reference 193

SelectTimeZone

Purpose Display a form that allows the user to select a different time zone.

Declared In SelTimeZone.h

Prototype Boolean SelectTimeZone (Int16 *ioTimeZoneP,
LmLocaleType *ioLocaleInTimeZoneP,
const Char *titleP, Boolean showTimes,
Boolean anyLocale)

Parameters <-> ioTimeZoneP
A pointer to the time zone, given as minutes
east of Greenwich Mean Time (GMT). The
initial value is used as the initial selection in the
form. Upon return, this parameter contains a
pointer to the new time zone that the user
selected.

<-> ioLocaleInTimeZoneP
A pointer to a locale (see LmLocaleType) that
identifies the time zone country. This parameter
is used for countries that share a time zone,
such as Canada and Chile.

If the time zone specified by ioTimeZoneP is
specific to a particular country, you do not have
to initialize this parameter. Instead, set the
anyLocale parameter to true to have this
parameter ignored upon entry.

-> titleP A string to use as the title for the dialog. Pass
NULL to use the default title, which is “Set Time
Zone”.

-> showTimes If true, the dialog shows the correct times in
both the current and newly selected time zones.
If false, the dialog doesn’t show the current
time. Using false provides a larger area for
the list of time zones.

Date and Time Selector
Date and Time Selection Functions

194 Palm OS Programmer’s API Reference

-> anyLocale If true, ignore ioLocaleInTimeZoneP upon
entry.

Result Returns true if the user clicked the OK button in the dialog to
change the time zone, or false if the user clicked the Cancel
button.

Comments The time zones displayed in the form are listed by country. For this
reason, if the time zone specified by ioTimeZoneP is shared by
several countries, you need to supply a value for
ioLocaleTimeZoneP to identify which country should be selected
when the list is first displayed. You can use the constant
lmAnyLanguage as the value for the language field of the structure
pointed to by this parameter.

If you don’t care which value is initially selected, pass true for the
anyLocale parameter. In this case, the first country that matches
the GMT offset given in ioTimeZoneP is selected.

You might want to use the current time zone stored in the system
preferences as the initial value for the ioTimeZoneP parameter. To
obtain this time zone, do the following:

Int16 timeZone =
 (Int16)PrefGetPreference(prefTimeZone);
CountryType timeZoneCountry = (CountryType)
 PrefGetPreference(prefTimeZoneCountry);
LmLocaleType timeZoneLocale;
Boolean change;

timeZoneLocale.country = timeZoneCountry;
timeZoneLocale.language = lmAnyLanguage;
change = SelectTimeZone(&timeZone,
 &timeZoneLocale, NULL, true, false);

Compatibility Implemented if 4.0 New Feature Set is present.

Palm OS Programmer’s API Reference 195

9
Fields
This chapter provides the following information about field objects:

• Field Data Structures

• Field Resources

• Field Functions

The header file Field.h declares the API that this chapter
describes. For more information on fields, see the section “Fields” in
the Palm OS Programmer’s Companion, vol. I.

Field Data Structures

FieldAttrType
The FieldAttrType bit field defines the visible characteristics of
the field. The functions FldGetAttributes and
FldSetAttributes return and set these values. There are other
functions that retrieve or set individual attributes defined here.
Those functions are noted below.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FieldAttrType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 usable :1;
 UInt16 visible :1;
 UInt16 editable :1;
 UInt16 singleLine :1;
 UInt16 hasFocus :1;

Fields
Field Data Structures

196 Palm OS Programmer’s API Reference

 UInt16 dynamicSize :1;
 UInt16 insPtVisible :1;
 UInt16 dirty :1;
 UInt16 underlined :2;
 UInt16 justification :2;
 UInt16 autoShift :1;
 UInt16 hasScrollBar :1;
 UInt16 numeric :1;
} FieldAttrType;

Field Descriptions

usable If not set, the field object is not considered part
of the current interface of the application, and it
doesn’t appear on screen. The function
FldSetUsable sets this value, but it is better
to use FrmShowObject.

visible Set or cleared internally when the field object is
drawn with FldDrawField or
FrmShowObject, and erased with
FldEraseField or FrmHideObject.

editable If not set, the field object doesn’t accept
Graffiti® input or editing commands and the
insertion point cannot be positioned with the
pen. The text can still be selected and copied.

singleLine If set, the field is a single line of text high and
the text does not wrap when it exceeds the
width of the field. If not set, the text wraps to
fill multiple lines.

hasFocus Set internally when the field has the current
focus. The blinking insertion point appears in
the field that has the current focus. Use the
function FrmSetFocus and
FldReleaseFocus to set this value.

Fields
Field Data Structures

Palm OS Programmer’s API Reference 197

dynamicSize If set, a fldHeightChangedEvent is
generated whenever the number of lines needs
to increase or decrease. Your application needs
to respond to this event by adjusting the size of
the field’s bounding box. If not set, the text
wraps to fill more (or less) lines as required, but
the event is not generated. Note that this bit does
not cause the field to change size automatically;
your application must respond to the
fldHeightChangedEvent and resize the
field itself.

Set this attribute to false if the Single Line
attribute is set.

insPtVisible If set, the insertion point is scrolled into view.
This attribute is set and cleared internally.

dirty If set, the user has modified the field. The
functions FldDirty and FldSetDirty
retrieve this field’s value.

underlined If set each line of the field, including blank
lines, is underlined. Possible values are defined
by the UnderlineModeType defined in
Window.h:

noUnderline
grayUnderline
solidUnderline
colorUnderline

Editable text fields generally use
grayUnderline as the value.

The solidUnderline value is only valid for
Palm OS 3.1 and higher.

The colorUnderline value is only valid for
Palm OS 3.5 and higher.

Fields
Field Data Structures

198 Palm OS Programmer’s API Reference

FieldPtr
The FieldPtr type defines a pointer to a FieldType structure.

typedef FieldType *FieldPtr;

You pass the FieldPtr as an argument to all field functions. You
can obtain the FieldPtr using the function FrmGetObjectPtr in
this way:

fldPtr = FrmGetObjectPtr(frm,
 FrmGetObjectIndex(frm, fldID));

where fldID is the resource ID assigned when you created the
field.

FieldType
The FieldType structure represents a field.

justification Specifies the text alignment. Possible values are
leftAlign and rightAlign. (left or right
justification only; centerAlign justification is
not supported).

autoShift If set, Graffiti auto-shift rules are applied.

hasScrollBar If set, the field has a scrollbar. The system
sends more frequent fldChangedEvents so
the application can adjust the height
appropriately.

numeric If set, only the characters 0 through 9 and
associated separators are allowed to be entered
in the field. The associated separators are the
thousands separator and the decimal character.
The values of these two characters depend on
the settings in the Formats prefs panel.

Fields
Field Data Structures

Palm OS Programmer’s API Reference 199

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FieldType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 id;
 RectangleType rect;
 FieldAttrType attr;
 Char *text;
 MemHandle textHandle;
 LineInfoPtr lines;
 UInt16 textLen;
 UInt16 textBlockSize;
 UInt16 maxChars;
 UInt16 selFirstPos;
 UInt16 selLastPos;
 UInt16 insPtXPos;
 UInt16 insPtYPos;
 FontID fontID;
 UInt8 reserved;
} FieldType;

Your code should treat the FieldType structure as opaque. Use the
functions specified in the descriptions below to retrieve and set each
value. Do not attempt to change structure member values directly.

Field Descriptions

id ID value you specified when you created the
field resource. This ID value is included as part
of the event data of fldEnterEvent.

rect Position and size of the field object. The
functions FldGetBounds,
FrmGetObjectBounds, FldSetBounds, and
FrmSetObjectBounds retrieve and set this
value.

Fields
Field Data Structures

200 Palm OS Programmer’s API Reference

attr Field object attributes. (See FieldAttrType.)

text Pointer to the null-terminated string that is
displayed by the field object. The functions
FldGetTextPtr and FldSetTextPtr retrieve
and set this value (see below).

Never set the contents of this string directly; for
example, do not pass this pointer as the
destination value to a function such as StrCopy.

textHandle Handle to the stored text or to a database record
containing the stored text. The functions
FldGetTextHandle and FldSetTextHandle
retrieve and set this value.

If textHandle is defined, the field calculates
the text pointer when it locks the handle. In
general, you should only use FldGetTextPtr
and FldSetTextPtr on text fields that aren’t
editable. On editable text fields, use
FldGetTextHandle and FldSetTextHandle.

Also note that editable text fields allocate the text
handle as necessary. If a user starts typing in a
field that doesn’t have a text handle allocated,
the field will allocate one. The field also resizes
the text’s memory block as necessary when the
user adds more text.

lines Pointer to an array of LineInfoType structures.
There is one entry in this array for each visible
line of the text. (See LineInfoType.) The field
code maintains this array internally; you should
never change the lines array yourself.

Note that this value is NULL for single line fields,
and for fields that do not have an allocated text
handle.

Fields
Field Data Structures

Palm OS Programmer’s API Reference 201

textLen Length in bytes of the string currently displayed
by the field object; the null terminator is
excluded. You can retrieve this value with
FldGetTextLength.

textBlockSize Allocated size of the memory block that holds
the field object’s text string. You can retrieve this
value with FldGetTextAllocatedSize.

Fields allocate memory for the field text as
needed, several bytes at a time.

Note that textBlockSize may be different
from the size of the chunk pointed to by
textHandle. The textHandle may point to a
database record that contains, in part, the text
displayed by the field. If you called
MemHandleSize on such a textHandle, the
number returned may be greater than
textBlockSize.

maxChars Maximum number of bytes the field object
accepts. The functions FldGetMaxChars and
FldSetMaxChars retrieve and set this value.

Note the difference between textLen,
textBlockSize, and maxChars. textLen is
the number of bytes of character data that text
actually holds. textBlockSize is the amount
of memory currently allocated for the text (which
must be greater than or equal to textLen), and
maxChars sets the maximum value that
textBlockSize and textLen can expand to.

For example, if you’ve created a text field for
users to enter their first names in, you might
specify that the maximum length of this field is
20 bytes. If a user enters “John” in this field,
textLen is 4, textBlockSize is 16, and
maxChars is 20.

Fields
Field Data Structures

202 Palm OS Programmer’s API Reference

LineInfoPtr
The LineInfoPtr type defines a pointer to the LineInfoType.

selFirstPos Starting character offset in bytes of the current
selection. Use FldGetSelection and
FldSetSelection to retrieve and set this value
and the selLastPos value.

selLastPos Ending character offset in bytes of the current
selection. When selFirstPos equals
selLastPos, there is no selection.

insPtXPos Horizontal location of the insertion point, given
as the offset in bytes into the line indicated by
insPtYPos. The functions
FldGetInsPtPosition and
FldSetInsPtPosition retrieve and set a byte
offset calculated from this value. If the insertion
point isn't visible—if it’s on a line that’s either
above or below the set of visible lines—
insPtXPos is the absolute byte offset of the
insertion point.

insPtYPos Vertical location of the insertion point, given as
the display line where the insertion point is
positioned. The first display line is zero. The first
display line may be different from the first line of
text in the field if the field has been scrolled. The
functions FldGetInsPtPosition and
FldSetInsPtPosition retrieve and set a byte
offset calculated from this value. If the insertion
point isn't visible—if it’s on a line that’s either
above or below the set of visible lines—
insPtYPos is set to 0x8000.

fontID Font ID for the field. See Font.h for more
information. The functions FldGetFont and
FldSetFont retrieve and set this value.

reserved Reserved for future use.

Fields
Field Data Structures

Palm OS Programmer’s API Reference 203

typedef LineInfoType *LineInfoPtr;

LineInfoType
The LineInfoType structure defines an element in the field’s
lines array. The lines array contains the field’s word wrapping
information. There is one element in the array per visible line in the
field, including visible lines that contain no text. The field code
maintains this array internally; you should never change the lines
array yourself.

The functions FldCalcFieldHeight, FldGetVisibleLines,
FldRecalculateField, and FldGetNumberOfBlankLines
retrieve or set information in this structure. The scrolling functions
FldGetScrollPosition, FldGetScrollValues,
FldScrollField, and FldSetScrollPosition also retrieve or
set information in this structure.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the LineInfoType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 start;
 UInt16 length;
} LineInfoType;

Field Descriptions

start The byte offset into the FieldType’s text field of the
first character displayed by this line. If the line is blank,
start is equal to textLen and length is 0.

length The length in bytes of the portion of the string displayed
on this line. If the line is blank, the length is 0.

Fields
Field Resources

204 Palm OS Programmer’s API Reference

Field Resources
The Field Resource (tFLD) represents a field on screen.

Field Functions

FldCalcFieldHeight

Purpose Determine the height of a field for a string.

Declared In Field.h

Prototype UInt16 FldCalcFieldHeight (const Char *chars,
UInt16 maxWidth)

Parameters -> chars Pointer to a null-terminated string.

-> maxWidth Maximum line width in pixels.

Result Returns the total number of lines needed to draw the string passed.

Comments The width of a field is contained in the rect member of the
FieldType structure. You can retrieve this value in the following
way:

FrmGetObjectBounds(frm,
 FrmGetObjectIndex(frm, fldID),
 &myRect);
fieldWidth = myRect.extent.x;
FldCalcFieldHeight(myString, fieldWidth);

See Also FldWordWrap

Fields
Field Functions

Palm OS Programmer’s API Reference 205

FldCompactText

Purpose Compact the memory block that contains the field’s text to release
any unused space.

Declared In Field.h

Prototype void FldCompactText (FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments As characters are added to the field’s text, the block that contains the
text is grown. The block is expanded several bytes at a time so that it
doesn’t have to expand each time a character is added. This
expansion may result in some unused space in the text block.

Applications should call this function on field objects that edit data
records in place before the field is unlocked, or at any other time
when a compact field is desirable; for example, before writing to the
storage heap.

See Also FldGetTextAllocatedSize, FldSetTextAllocatedSize

FldCopy

Purpose Copy the current selection to the text clipboard.

Declared In Field.h

Prototype void FldCopy (const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments This function leaves the current selection highlighted.

Fields
Field Functions

206 Palm OS Programmer’s API Reference

This function replaces anything previously in the text clipboard if
there is text to copy. If no text is selected, the function beeps and the
clipboard remains intact.

See Also FldCut, FldPaste

FldCut

Purpose Copy the current selection to the text clipboard, delete the selection
from the field, and redraw the field.

Declared In Field.h

Prototype void FldCut (FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments If text is selected, the text is removed from the field, the field’s dirty
attribute is set, and anything previously in the text clipboard is
replaced by the selected text.

If there is no selection or if the field is not editable, this function
beeps.

See Also FldCopy, FldPaste, FldUndo

Fields
Field Functions

Palm OS Programmer’s API Reference 207

FldDelete

Purpose Delete the specified range of characters from the field and redraw
the field.

Declared In Field.h

Prototype void FldDelete (FieldType *fldP, UInt16 start,
UInt16 end)

Parameters -> fldP Pointer to the field object (FieldType
structure) to delete from.

-> start The beginning of the range of characters to
delete given as a valid byte offset into the
field’s text string.

-> end The end of the range of characters to delete
given as a valid byte offset into the field’s text
string. On systems that support multi-byte
characters, this position must be an inter-
character boundary. That is, it must not point to
a middle byte of a multi-byte character.

Result Returns nothing.

Comments This function deletes all characters from the starting offset up to the
ending offset and sets the field’s dirty attribute. It does not delete
the character at the ending offset.

If start or end point to an intra-character boundary, FldDelete
attempts to move the offset backward, toward the beginning of the
text, until the offset points to an inter-character boundary (i.e., the
start of a character).

FldDelete posts a fldChangedEvent to the event queue. If you
call this function repeatedly, you may overflow the event queue
with fldChangedEvents. An alternative is to remove the text

Fields
Field Functions

208 Palm OS Programmer’s API Reference

handle from the field, change the text, and then set the field’s handle
again. See FldGetTextHandle for a code example.

See Also FldInsert, FldEraseField, TxtCharBounds

FldDirty

Purpose Return true if the field has been modified since the text value was
set.

Declared In Field.h

Prototype Boolean FldDirty (const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns true if the field has been modified either by the user or
through calls to certain functions such as FldInsert and
FldDelete, false if the field has not been modified.

See Also FldSetDirty, FieldAttrType

FldDrawField

Purpose Draw the text of the field.

Declared In Field.h

Prototype void FldDrawField (FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments The field’s usable attribute must be true or the field won’t be
drawn.

This function doesn’t erase the area behind the field before drawing.

Fields
Field Functions

Palm OS Programmer’s API Reference 209

If the field has the focus, the blinking insertion point is displayed in
the field.

See Also FldEraseField

FldEraseField

Purpose Erase the text of a field and turn off the insertion point if it’s in the
field.

Declared In Field.h

Prototype void FldEraseField (FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments You rarely need to call this function directly. Instead, use
FrmHideObject, which calls FldEraseField for you.

This function visibly erases the field from the display, but it doesn’t
modify the contents of the field or free the memory associated with
it.

If the field has the focus, the blinking insertion point is turned off.

This function sets the visible attribute to false. (See
FieldAttrType.)

See Also FldDrawField

Fields
Field Functions

210 Palm OS Programmer’s API Reference

FldFreeMemory

Purpose Release the handle-based memory allocated to the field’s text and
the associated word-wrapping information.

Declared In Field.h

Prototype void FldFreeMemory (FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing. May raise a fatal error message if the text
associated with the field is actually a record in a database.

Comments This function releases

• The memory allocated to the text of a field—the memory
block that the textHandle member of the FieldType data
structure points to.

If the field’s textHandle is NULL but there is a text string
associated with that field (which is often the case with
noneditable text fields), the text string is not freed.

• The memory allocated to hold the word-wrapping
information—the memory block that the lines member of
the FieldType data structure points to.

This function doesn’t affect the display of the field. Fields allocate
memory for the text string as needed, so it is not an error to call this
function while the field is still displayed. That is, if text is NULL
and the user starts typing in the field, the field simply allocates
memory for text and continues.

Fields
Field Functions

Palm OS Programmer’s API Reference 211

FldGetAttributes

Purpose Return the attributes of a field.

Declared In Field.h

Prototype void FldGetAttributes (const FieldType *fldP,
FieldAttrPtr attrP)

Parameters -> fldP Pointer to a FieldType structure.

<- attrP Pointer to the FieldAttrType structure.

Result Returns the field’s attributes in the attrP parameter.

See Also FldSetAttributes

FldGetBounds

Purpose Return the current bounds of a field.

Declared In Field.h

Prototype void FldGetBounds (const FieldType *fldP,
RectanglePtr rect)

Parameters -> fldP Pointer to a field object (FieldType structure).

<- rect Pointer to a RectangleType structure.

Result Returns nothing. Stores the field’s bounds in the RectangleType
structure reference by rect.

Comments Returns the rect field of the FieldType structure.

See Also FldSetBounds, FrmGetObjectBounds

Fields
Field Functions

212 Palm OS Programmer’s API Reference

FldGetFont

Purpose Return the ID of the font used to draw the text of a field.

Declared In Field.h

Prototype FontID FldGetFont (const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the ID of the font.

See Also FldSetFont

FldGetInsPtPosition

Purpose Return the insertion point position within the string.

Declared In Field.h

Prototype UInt16 FldGetInsPtPosition
(const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the byte offset of the insertion point.

Comments The insertion point is to the left of the byte offset that this function
returns. That is, if this function returns 0, the insertion point is to the
left of the first character in the string. In multiline fields, line feeds
are counted as a single character in the string, and the byte offset
after the line feed character is the beginning of the next line.

See Also FldSetInsPtPosition

Fields
Field Functions

Palm OS Programmer’s API Reference 213

FldGetMaxChars

Purpose Return the maximum number of bytes the field accepts.

Declared In Field.h

Prototype UInt16 FldGetMaxChars (const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the maximum length in bytes of characters the user is
allowed to enter. This is the maxChars field in FieldType.

See Also FldSetMaxChars

FldGetNumberOfBlankLines

Purpose Return the number of blank lines that are displayed at the bottom of
a field.

Declared In Field.h

Prototype UInt16 FldGetNumberOfBlankLines
(const FieldType *fldP)

Parameters -> fldP Pointer to a FieldType structure.

Result Returns the number of blank lines visible.

Comments This routine is useful for updating a scroll bar after characters have
been removed from the text in a field. See the NoteViewScroll
function in the Address sample application for an example.

Compatibility Implemented only if 2.0 New Feature Set is present.

Fields
Field Functions

214 Palm OS Programmer’s API Reference

FldGetScrollPosition

Purpose Return the offset of the first character in the first visible line of a
field.

Declared In Field.h

Prototype UInt16 FldGetScrollPosition
(const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the offset of the first visible character.

See Also FldSetScrollPosition, LineInfoType

FldGetScrollValues

Purpose Return the values necessary to update a scroll bar.

Declared In Field.h

Prototype void FldGetScrollValues (const FieldType *fldP,
UInt16 *scrollPosP, UInt16 *textHeightP,
UInt16 *fieldHeightP)

Parameters -> fldP Pointer to a FieldType structure.

<- scrollPosP The line of text that is the topmost visible line.
Line numbering starts with 0.

<-textHeightP The number of lines needed to display the
field’s text, given the width of the field.

<-fieldHeightP The number of visible lines in the field.

Result Returns nothing. Stores the position, text height, and field height in
the parameters passed in.

Fields
Field Functions

Palm OS Programmer’s API Reference 215

Comments Use the values returned by this function to calculate the values you
send to SclSetScrollBar to update the scroll bar. For example:

FldGetScrollValues (fldP, &scrollPos,
 &textHeight, &fieldHeight);

if (textHeight > fieldHeight)
 maxValue = textHeight - fieldHeight;
else if (scrollPos)
 maxValue = scrollPos;
else
 maxValue = 0;

SclSetScrollBar (bar, scrollPos, 0, maxValue,
 fieldHeight-1);
}

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FldSetScrollPosition

FldGetSelection

Purpose Return the current selection of a field.

Declared In Field.h

Prototype void FldGetSelection (const FieldType *fldP,
UInt16 *startPosition, UInt16 *endPosition)

Parameters -> fldP Pointer to a field object (FieldType structure).

<- startPosition
Pointer to the start of the selected characters
range, given as the byte offset into the field’s
text.

Fields
Field Functions

216 Palm OS Programmer’s API Reference

<- endPosition Pointer to end of the selected characters range
given as the byte offset into the field’s text.

Result Returns the starting and ending byte offsets in startPosition
and endPosition.

Comments The first character in a field is at offset zero.

If the user has selected the first five characters of a field,
startPosition will contain the value 0 and endPosition the
value 5, assuming all characters are a single byte long.

See Also FldSetSelection

FldGetTextAllocatedSize

Purpose Return the number of bytes allocated to hold the field’s text string.
Don’t confuse this number with the actual length of the text string
displayed in the field.

Declared In Field.h

Prototype UInt16 FldGetTextAllocatedSize
(const FieldType *fldP)

Parameters -> fldP Pointer to a field object.

Result Returns the number of bytes allocated for the field’s text. This is the
textBlockSize field in FieldType.

See Also FldSetTextAllocatedSize

Fields
Field Functions

Palm OS Programmer’s API Reference 217

FldGetTextHandle

Purpose Return a handle to the block that contains the text string of a field.

Declared In Field.h

Prototype MemHandle FldGetTextHandle
(const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the handle to the text string of a field or NULL if no handle
has been allocated for the field pointer.

Comments The handle returned by this function is not necessarily the handle to
the start of the string. If you’ve used FldSetText to set the field’s
text to a string that is part of a database record, the text handle
points to the start of that record. You’ll need to compute the offset
from the start of the record to the start of the string. You can either
store the offset that you passed to FldSetText or you can compute
the offset by performing pointer arithmetic on the pointer you get
by locking this handle and the pointer returned by
FldGetTextPtr.

If you are obtaining the text handle so that you can edit the field’s
text, you must remove the handle from the field before you do so. If
you change the text while it is being used by a field, the field’s
internal structures specifying the text length, allocated size, and
word wrapping information can become out of sync. To avoid this
problem, remove the text handle from the field, change the text, and
then set the field’s text handle again. For example:

/* Get the handle for the string and unlock */
/* it by removing it from the field. */
textH = FldGetTextHandle(fldP);
FldSetTextHandle (fldP, NULL);

/* Insert code that modifies the string here.*/
/* The basic steps are: */
/* resize the chunk if necessary,*/

Fields
Field Functions

218 Palm OS Programmer’s API Reference

/* lock the chunk, write to it, and then */
/* unlock the chunk. If the text is in a */
/* database record, use Data Manager calls. */

/* Update the text in the field. */
FldSetTextHandle (fldP, textH);
FldDrawField(fldP);

See Also FldSetTextHandle, FldGetTextPtr

FldGetTextHeight

Purpose Return the height in pixels of the number of visible lines that are not
empty.

Declared In Field.h

Prototype UInt16 FldGetTextHeight (const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the height in pixels of the number of visible lines that are
not empty.

Comments Empty lines are all of the lines in the field following the last byte of
text. Note that lines that contain only a linefeed are not empty. Also
note that only lines that are visible are counted.

See Also FldCalcFieldHeight

Fields
Field Functions

Palm OS Programmer’s API Reference 219

FldGetTextLength

Purpose Return the length in bytes of the field’s text.

Declared In Field.h

Prototype UInt16 FldGetTextLength (const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the length in bytes of a field’s text, not including the
terminating null character. This is the textLen field of FieldType.

FldGetTextPtr

Purpose Return a locked pointer to the field’s text string.

Declared In Field.h

Prototype Char *FldGetTextPtr (const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns a locked pointer to the field’s text string or NULL if the field
is empty.

Comments The pointer returned by this function can become invalid if the user
edits the text after you obtain the pointer.

Do not modify the contents of the pointer yourself. If you change
the text while it is being used by a field, the field’s internal
structures specifying the text length, allocated size, and word
wrapping information can become out of sync. To avoid this
problem, follow the instructions given under FldGetTextHandle.

Fields
Field Functions

220 Palm OS Programmer’s API Reference

WARNING! The pointer returned by this function is “owned” by
the field until you specify a different pointer for the field. You
should not store this pointer for future use, since the field can
modify the size of the string, which can cause the pointer to
become invalid.

See Also FldSetTextPtr, FldGetTextHandle

FldGetVisibleLines

Purpose Return the number of lines that can be displayed within the visible
bounds of the field, regardless of what text is stored in the field.

Declared In Field.h

Prototype UInt16 FldGetVisibleLines (const FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the number of lines the field displays. (This is the size of the
lines array in the FieldType structure.)

See Also FldGetNumberOfBlankLines, FldCalcFieldHeight

FldGrabFocus

Purpose Turn the insertion point on (if the specified field is visible) and
position the blinking insertion point in the field.

Declared In Field.h

Prototype void FldGrabFocus (FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Fields
Field Functions

Palm OS Programmer’s API Reference 221

Comments You rarely need to call this function directly. Instead, use
FrmSetFocus, which calls FldGrabFocus for you.

One instance where you need to call FldGrabFocus directly is to
programmatically set the focus in a field that is contained in a table
cell.

This function sets the field attribute hasFocus to true. (See
FieldAttrType.)

See Also FrmSetFocus, FldReleaseFocus

FldHandleEvent

Purpose Handles events that affect the field, including the following:
keyDownEvent, penDownEvent, and fldEnterEvent.

Declared In Field.h

Prototype Boolean FldHandleEvent (FieldType *fldP,
EventType *eventP)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> eventP Pointer to an event (EventType data
structure).

Result Returns true if the event was handled.

Comments When a keyDownEvent occurs in an editable text field, the
keystroke appears in the field if it’s a printable character or
manipulates the insertion point if it’s a “movement” character. The
field is automatically updated.

When a penDownEvent occurs, the field sends a fldEnterEvent
to the event queue.

When a fldEnterEvent occurs, the field grabs the focus. If the
user has tapped twice in the current location, the word at that
location is selected. If the user has tapped three times, the entire line
is selected. Otherwise, the insertion point is placed in the specified
position.

Fields
Field Functions

222 Palm OS Programmer’s API Reference

When a menuCmdBarOpenEvent occurs, the field adds paste, copy,
cut, and undo buttons to the command toolbar. These buttons are
only added if they make sense in the current context. That is, the cut
button is only added if the field is editable, the paste button is only
added if there is text on the clipboard and the field is editable, and
the undo button is only added if there is an action to undo.

If the event alters the contents of the field, this function visually
updates the field.

This function doesn’t handle any events if the field is not editable or
usable.

Compatibility Double-tapping to select a word and triple-tapping to select a line
are only supported if 3.5 New Feature Set is present.

FldHandleEvent only handles the menuCmdBarOpenEvent if 3.5
New Feature Set is present.

FldInsert

Purpose Replace the current selection if any with the specified string and
redraw the field.

Declared In Field.h

Prototype Boolean FldInsert (FieldType *fldP,
const Char *insertChars, UInt16 insertLen)

Parameters -> fldP Pointer to the field object (FieldType
structure) to insert to.

-> insertChars Text string to be inserted.

-> insertLen Length in bytes of the text string to be inserted,
not counting the trailing null character.

Result Returns true if string was successfully inserted. Returns false if:

• The insertLen parameter is 0.

• The field is not editable.

Fields
Field Functions

Palm OS Programmer’s API Reference 223

• Adding the text would exceed the field’s size limit (the
maxChars value).

• More memory must be allocated for the field, and the
allocation fails.

Comments If there is no current selection, the string passed is inserted at the
position of the insertion point.

This function sets the field’s dirty attribute and posts a
fldChangedEvent to the event queue. If you call this function
repeatedly, you may overflow the event queue with
fldChangedEvents. An alternative is to remove the text handle
from the field, change the text, and then set the field’s handle again.
See FldGetTextHandle for a code example.

See Also FldPaste, FldDelete, FldCut, FldCopy

FldMakeFullyVisible

Purpose Generates an event to cause a dynamically resizable field to expand
its height to make its text fully visible.

Declared In Field.h

Prototype Boolean FldMakeFullyVisible (FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns true if the field is dynamically resizable and was not fully
visible; false otherwise.

Comments Use this function on a field whose dynamicSize attribute is true
(see FieldAttrType).

This function does not actually resize the field. Instead, it computes
how big the field should be to be fully visible and then posts this
information to the event queue in a fldHeightChangedEvent.

Fields
Field Functions

224 Palm OS Programmer’s API Reference

NOTE: The event does not get generated if the number of lines
in the field is equal to or greater than the value of the maximum
lines attribute for the field.

If the field is contained in a table, the table’s code handles the
fldHeightChangedEvent. If the field is directly on a form, your
application code should handle the fldHeightChangedEvent
itself. The form code does not handle the event for you. Note that
the constant maxFieldLines defines the maximum number of
lines a field can expand to if the field is using the standard font.

See Also TblHandleEvent

FldNewField

Purpose Create a new field object dynamically and install it in the specified
form.

Declared In Field.h

Prototype FieldType *FldNewField (void **formPP, UInt16 id,
Coord x, Coord y, Coord width, Coord height,
FontID font, UInt32 maxChars, Boolean editable,
Boolean underlined, Boolean singleLine,
Boolean dynamicSize,
JustificationType justification,
Boolean autoShift, Boolean hasScrollBar,
Boolean numeric)

Parameters <-> formPP Pointer to the pointer to the form in which the
new field is installed. This value is not a handle;
that is, the old form pointer value is not
necessarily valid after this function returns. In
subsequent calls, always use the new form
pointer value returned by this function.

Fields
Field Functions

Palm OS Programmer’s API Reference 225

-> id Symbolic ID of the field, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

-> x Horizontal coordinate of the upper-left corner
of the field’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the field’s boundaries, relative to the window
in which it appears.

-> width Width of the field, expressed in pixels.

-> height Height of the field, expressed in pixels.

-> font Font to use to draw the field’s text.

-> maxChars Maximum number of bytes held by the field
this function creates.

-> editable Pass true to create a field in which the user can
edit text. Pass false to create a field that
cannot be edited.

-> underlined Pass noUnderline for no underline, or
grayUnderline to have the field underline
the text it displays. On Palm OS® version 3.1
and higher, pass solidUnderline to use a
solid underline instead of a dotted underline.

-> singleLine Pass true to create a field that can display only
a single line of text.

-> dynamicSize Pass true to create a field that resizes
dynamically according to the amount of text it
displays.

-> justification
Pass either of the values leftAlign or
rightAlign to specify left justification or
right justification, respectively. The
centerAlign value is not supported.

-> autoShift Pass true to specify the use of Palm OS 2.0
(and later) auto-shift rules.

Fields
Field Functions

226 Palm OS Programmer’s API Reference

-> hasScrollBar Pass true to attach a scroll bar control to the
field this function creates.

-> numeric Pass true to specify that only characters in the
range of 0 through 9 are allowed in the field.

Result Returns a pointer to the new field object or NULL if there wasn’t
enough memory to create the field. Out of memory situations could
be caused by memory fragmentation.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmValidatePtr, WinValidateHandle,
CtlValidatePointer, FrmRemoveObject

FldPaste

Purpose Replace the current selection in the field, if any, with the contents of
the text clipboard.

Declared In Field.h

Prototype void FldPaste (FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing

Comments The function performs these actions:

• Scrolls the field, if necessary, so the insertion point is visible.

• Inserts the clipboard text at the position of the insertion point
if there is no current selection.

• Positions the insertion point after the last character inserted.

• Doesn’t delete the current selection if there is no text in the
clipboard.

See Also FldInsert, FldDelete, FldCut, FldCopy FldUndo

Fields
Field Functions

Palm OS Programmer’s API Reference 227

FldRecalculateField

Purpose Update the structure that contains the word-wrapping information
for each visible line.

Declared In Field.h

Prototype void FldRecalculateField (FieldType *fldP,
Boolean redraw)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> redraw If true, redraws the field.

Result Returns nothing.

Comments This function will allocate the memory block that contains the
displayed lines information if, and only if, the block does not yet
exist.

You should call this function when you change the field width or
text length of the field. Do not call this function after changing the
font or field height.

Note that many of the field functions, including
FldSetTextHandle, FldInsert, and FldDelete, recalculate
the word-wrapping information for you.

Compatibility In releases prior to Palm OS 4.0, the word-wrapping information is
only updated if the redraw parameter is set to true. As of Palm OS
4.0 it is updated whenever FldRecalculateField is called,
regardless of the value of the redraw parameter.

Fields
Field Functions

228 Palm OS Programmer’s API Reference

FldReleaseFocus

Purpose Turn the blinking insertion point off if the field is visible and has the
current focus, reset the Graffiti state, and reset the undo state.

Declared In Field.h

Prototype void FldReleaseFocus (FieldType *fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments This function sets the field attribute hasFocus to false. (See
FieldAttrType.)

Usually, you don’t need to call this function. If the field is in a form
or in a table that doesn’t use custom drawing functions, the field
code releases the focus for you when the focus changes to some
other control. If your field is in any other type of object, such as a
table that uses custom drawing functions or a gadget, you must call
FldReleaseFocus when the focus moves away from the field.

See Also FldGrabFocus

FldScrollable

Purpose Return true if the field is scrollable in the specified direction.

Declared In Field.h

Prototype Boolean FldScrollable (const FieldType *fldP,
WinDirectionType direction)

Parameters -> fldP Pointer to a field object (FieldType structure).

Fields
Field Functions

Palm OS Programmer’s API Reference 229

-> direction The direction to test. DirectionType is
defined in Window.h. It is an enum defining
the constants up and down.

Result Returns true if the field is scrollable in the specified direction;
false otherwise.

See Also FldScrollField

FldScrollField

Purpose Scroll a field up or down by the number of lines specified.

Declared In Field.h

Prototype void FldScrollField (FieldType *fldP,
UInt16 linesToScroll, WinDirectionType direction)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> linesToScroll
Number of lines to scroll.

-> direction The direction to scroll. DirectionType is
defined in Window.h. It is an enum defining,
among others, the constants winUp and
winDown.

Result Returns nothing.

Comments This function can’t scroll horizontally, that is, right or left.

The field object is redrawn if it’s scrolled; however, the scrollbar is
not updated. Use SclSetScrollBar to update the scrollbar. For
example:

FldScrollField (fldP, linesToScroll,
direction);

// Update the scroll bar.
SclGetScrollBar (bar, &value, &min, &max,

Fields
Field Functions

230 Palm OS Programmer’s API Reference

 &pageSize);

if (direction == winUp)
 value -= linesToScroll;
else
 value += linesToScroll;

SclSetScrollBar (bar, value, min, max,
 pageSize);

If the field is not scrollable in the direction indicated, this function
returns without performing any work. You can use
FldScrollable before calling this function to see if the field can
be scrolled.

See Also FldScrollable, FldSetScrollPosition

FldSendChangeNotification

Purpose Send a fldChangedEvent to the event queue.

Declared In Field.h

Prototype void FldSendChangeNotification
(const FieldType *fldP)

Parameters -> fldP Pointer to a field object.

Result Returns nothing.

Comments This function is used internally by the field code. You normally
never call it in application code.

Fields
Field Functions

Palm OS Programmer’s API Reference 231

FldSendHeightChangeNotification

Purpose Send a fldHeightChangedEvent to the event queue.

Declared In Field.h

Prototype void FldSendHeightChangeNotification
(const FieldType *fldP, UInt16 pos,
Int16 numLines)

Parameters -> fldP Pointer to a field object.

-> pos Character position of the insertion point.

-> numLines New number of lines in the field.

Result Returns nothing.

Comments This function is used internally by the field code. You normally
never call it in application code.

FldSetAttributes

Purpose Set the attributes of a field.

Declared In Field.h

Prototype void FldSetAttributes (FieldType *fldP,
const FieldAttrType *attrP)

Parameters -> fldP Pointer to a FieldType structure.

-> attrP Pointer to the attributes.

Result Returns nothing.

Comments This function does not do anything to make the new attribute values
take effect. For example, if you use this function to change the value
of the underline attribute, you won’t see its effect until you call
FldDrawField.

Fields
Field Functions

232 Palm OS Programmer’s API Reference

You usually do not have to modify field attributes at runtime, so
you rarely need to call this function.

WARNING! You must not call this function to change any
attributes that are noted as “for internal use only.”

The proper way to use FldSetAttributes is to:

1. Call FldGetAttributes to retrieve the attributes.
2. Set the specific flags that you want to modify.
3. Call FldSetAttributes to make the modifications.

WARNING! You must not call any field routines between calling
FldGetAttributes and FldSetAttributes; this can cause
the attributes to be out of sync, with unpredictable results.

See Also FldGetAttributes, FieldAttrType

FldSetBounds

Purpose Change the position or size of a field.

Declared In Field.h

Prototype void FldSetBounds (FieldType *fldP,
const RectangleType *rP)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> rP Pointer to a RectangleType structure that
contains the new bounds of the display.

Result Returns nothing. May raise a fatal error message if the memory
block that contains the word-wrapping information needs to be
resized and there is not enough space to do so.

Comments If the field is visible, the field is redrawn within its new bounds.

Fields
Field Functions

Palm OS Programmer’s API Reference 233

NOTE: You can change the height or location of the field while
it’s visible, but do not change the width.

Fields
Field Functions

234 Palm OS Programmer’s API Reference

The memory block that contains the word-wrapping information
(see LineInfoType) will be resized if the number of visible lines is
changed. The insertion point is assumed to be off when this routine
is called.

Make sure that rect is at least as tall as a single line in the current
font. (You can determine this value by calling FntLineHeight.) If
it’s not, results are unpredictable.

See Also FldGetBounds, FrmSetObjectBounds

FldSetDirty

Purpose Set whether the field has been modified.

Declared In Field.h

Prototype void FldSetDirty (FieldType *fldP, Boolean dirty)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> dirty true if the text is modified.

Result Returns nothing.

Comments You typically call this function when you want to clear the dirty
attribute. The dirty attribute is set when the user enters or deletes
text in the field. It is also set by certain field functions, such as
FldInsert and FldDelete.

See Also FldDirty

Fields
Field Functions

Palm OS Programmer’s API Reference 235

FldSetFont

Purpose Set the font used by the field, update the word-wrapping
information, and draw the field if the field is visible.

Declared In Field.h

Prototype void FldSetFont (FieldType *fldP, FontID fontID)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> fontID ID of new font.

Result Returns nothing.

See Also FldGetFont, FieldAttrType

FldSetInsertionPoint

Purpose Set the location of the insertion point based on a specified string
position.

Declared In Field.h

Prototype void FldSetInsertionPoint (FieldType *fldP,
UInt16 pos)

Parameters -> fldP Pointer to a FieldType structure.

-> pos New location of the insertion point, given as a
valid offset in bytes into the field’s text. On
systems that support multi-byte characters, you
must make sure that this specifies an inter-
character boundary (does not specify the
middle or end bytes of a multi-byte character).

Result Nothing.

Fields
Field Functions

236 Palm OS Programmer’s API Reference

Comments This routine differs from FldSetInsPtPosition in that it doesn’t
make the character position visible. FldSetInsertionPoint also
doesn’t make the field the current focus of input if it was not
already.

If pos indicates a position beyond the end of the text in the field, the
insertion point is set to the end of the field’s text.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also TxtCharBounds

FldSetInsPtPosition

Purpose Set the location of the insertion point for a given string position.

Declared In Field.h

Prototype void FldSetInsPtPosition (FieldType *fldP,
UInt16 pos)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> pos New location of the insertion point, given as a
valid offset in bytes into the field’s text. On
systems that support multi-byte characters, you
must make sure that this specifies an inter-
character boundary (does not specify the
middle or end bytes of a multi-byte character).

Result Returns nothing.

Comments If the position is beyond the visible text, the field is scrolled until the
position is visible.

See Also FldGetInsPtPosition, TxtCharBounds

Fields
Field Functions

Palm OS Programmer’s API Reference 237

FldSetMaxChars

Purpose Set the maximum number of bytes the field accepts (the maxChars
value).

Declared In Field.h

Prototype void FldSetMaxChars (FieldType *fldP,
UInt16 maxChars)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> maxChars Maximum size in bytes of the characters the
user may enter. You may specify any value up
to maxFieldTextLen.

Result Returns nothing.

Comments Line feed characters are counted when the length of characters is
determined.

See Also FldGetMaxChars

FldSetMaxVisibleLines

Purpose Allows the creation of tables and fields smaller than 121 pixels tall
that still drag-select when there are more lines of text than will fit in
the space provided.

Declared In Field.h

Prototype void FldSetMaxVisibleLines (FieldType *fldP,
UInt8 maxLines)

Parameters -> fldP Pointer to a field object (FieldType structure).

Fields
Field Functions

238 Palm OS Programmer’s API Reference

-> maxLines Maximum number of lines to which the field
will visually grow.

Result Returns nothing.

Comments A field can be dynamically expandable. When it is, the field package
needs to know the maximum number of lines that should be visible
so it can prevent the field from being expanded further. Since field
expansion is actually handled by enclosing objects—tables or
forms—this function’s primary purpose is to allow the enclosing
object to tell the field how big it can get.

By default, tables assume that the field can get as big as the table.

If you don’t call this function, fields expect to be at least 121 pixels
tall and try to grow repeatedly until they are.

FldSetScrollPosition

Purpose Scroll the field such that the character at the indicated offset is the
first character on the first visible line. Redraw the field if necessary.

Declared In Field.h

Prototype void FldSetScrollPosition (FieldType *fldP,
UInt16 pos)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> pos Byte offset into the field’s text string of first
character to be made visible. On systems that
support multi-byte characters, you must make
sure that this specifies an inter-character
boundary (does not specify the middle or end
bytes of a multi-byte character).

Result Returns nothing.

Comments This function scrolls the field but does not update the field’s
scrollbar. You should update the scrollbar after calling this function.

Fields
Field Functions

Palm OS Programmer’s API Reference 239

To do so, first call FldGetScrollValues to determine the values
to use, and then call SclSetScrollBar.

See Also FldGetScrollPosition, FldScrollField, TxtCharBounds

FldSetSelection

Purpose Set the current selection in a field and highlight the selection if the
field is visible.

Declared In Field.h

Prototype void FldSetSelection (FieldType *fldP,
UInt16 startPosition, UInt16 endPosition)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> startPosition
Starting offset of the character range to
highlight, given as a byte offset into the field’s
text.

-> endPosition Ending offset of the character range to
highlight. The ending offset should be greater
than or equal to the starting offset. On systems
that support multi-byte characters, this position
must be an inter-character boundary. That is, it
must not point to a middle byte of a multi-byte
character.

Result Returns nothing.

Comments To cancel a selection, set both startPosition and endPosition
to the same value. If startPosition equals endPosition, then
the current selection is unhighlighted.

If either startPosition or endPosition point to an intra-
character boundary, FldSetSelection attempts to move that

Fields
Field Functions

240 Palm OS Programmer’s API Reference

offset backward, toward the beginning of the string, until the offset
points to an inter-character boundary (i.e., the start of a character).

See Also TxtCharBounds

FldSetText

Purpose Set the text value of the field without updating the display.

Declared In Field.h

Prototype void FldSetText (FieldType *fldP,
MemHandle textHandle, UInt16 offset, UInt16 size)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> textHandle Unlocked handle of a block containing a null-
terminated text string. Pass NULL for this
parameter to remove the association between
the field and the string it is currently displaying
so that the string is not freed with the field
when the form is deleted.

-> offset Offset from start of block to start of the text
string.

-> size The allocated size of the text string. This is not
the string length, and should not be set to 0,
unless you are setting the text to the empty
string.

Result Returns nothing.

Comments This function allows applications to perform editing in place in
memory. You can use it to point the field to a string in a database
record so that you can edit that string directly using field routines.

As characters are added to the field's text, the block that contains the
text is grown. So that the block doesn't have to be expanded for each
character, it is expanded several bytes at a time; this expansion may
result in some unused space in the text block. As characters are

Fields
Field Functions

Palm OS Programmer’s API Reference 241

removed from the field’s text, the space is not automatically
reclaimed. Because adding or removing characters when editing a
data record in place may result in unused space at the end of the
field’s text block, applications should call FldCompactText on
before the field is unlocked to release any unused space.

The handle that you pass to this function is assumed to contain a
null-terminated string starting at offset bytes in the memory
chunk. The string should be between 0 and size - 1 bytes in length.
The field does not make a copy of the memory chunk or the string
data; instead, it stores the handle to the record in its structure.

WARNING! You cannot use this function to set two fields on a
form so that they share a single string value. Thus, for instance, if
you have a single string containing a person’s name you cannot
call FldSetText twice with the same string (but a different
offset) to set up a first name field and a last name field.

FldSetText updates the word-wrapping information and places
the insertion point after the last visible character, but it does not
update the display. You must call FldDrawField after calling this
function to update the display.

FldSetText increments the lock count for textHandle and
decrements the lock count of its previous text handle (if any).

Because FldSetText (and FldSetTextHandle) may be used to
edit database records, they do not free the memory associated with
the previous text handle. If the previous text handle points to a
string on the dynamic heap and you want to free it, use
FldGetTextHandle to obtain the handle before using
FldSetText and then free that handle after using FldSetText.
(See FldSetTextHandle for a code example.)

If the field points to a database record, you want the memory
associated with the text handle to persist; however, this memory
and all other memory associated with the field is freed when the
field itself is freed, which happens when the form is closed. If you
don’t want the memory associated with the text handle freed when
the field is freed, use FldSetText and pass NULL for the text
handle immediately before the form is closed. Passing NULL

Fields
Field Functions

242 Palm OS Programmer’s API Reference

removes the association between the field and the text handle that
you want retained. That text handle is unlocked as a result of the
FldSetText call, and when the field is freed, there is no text
handle to free with it.

See Also FldSetTextPtr, FldSetTextHandle

FldSetTextAllocatedSize

Purpose Set the number of bytes allocated to hold the field’s text string.
Don’t confuse this with the actual length of the text string displayed
in the field.

Declared In Field.h

Prototype void FldSetTextAllocatedSize (FieldType *fldP,
UInt16 allocatedSize)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> allocatedSize
Number of bytes to allocate for the text.

Result Returns nothing.

Comments This function generally is not used. It does not resize the field’s
allocated memory for the text string; it merely sets the
textBlockSize field of the FieldType structure. The value of
this field is computed and maintained internally by the field, so you
should not have to call FldSetTextAllocatedSize directly.

See Also FldGetTextAllocatedSize, FldCompactText

Fields
Field Functions

Palm OS Programmer’s API Reference 243

FldSetTextHandle

Purpose Set the text value of a field to the string associated with the specified
handle. Does not update the display.

Declared In Field.h

Prototype void FldSetTextHandle (FieldType *fldP,
MemHandle textHandle)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> textHandle Unlocked handle of a field’s text string. Pass
NULL for this parameter to remove the
association between the field and the string it is
currently displaying so that the string is not
freed with the field when the form is deleted.

Result Returns nothing.

Comments This function differs from FldSetText in that it uses the entire
memory chunk pointed to by textHandle for the string. In fact,
this function simply calls FldSetText with an offset of 0 and a size
equal to the entire length of the memory chunk. Use it to have the
field edit a string in a database record if the entire record consists of
that string, or use it to have the field edit a string in the dynamic
heap.

As characters are added to the field's text, the block that contains the
text is grown. So that the block doesn't have to be expanded for each
character, it is expanded several bytes at a time; this expansion may
result in some unused space in the text block. As characters are
removed from the field’s text, the space is not automatically
reclaimed. Because adding or removing characters when editing a
data record in place may result in unused space at the end of the
field’s text block, applications should call FldCompactText on
before the field is unlocked to release any unused space.

FldSetTextHandle updates the word-wrapping information and
places the insertion point after the last visible character, but it does

Fields
Field Functions

244 Palm OS Programmer’s API Reference

not update the display. You must call FldDrawField after calling
this function to update the display.

FldSetTextHandle increments the lock count for textHandle
and decrements the lock count of its previous text handle (if any).

Because FldSetTextHandle (and FldSetText) may be used to
edit database records, they do not free the memory associated with
the previous text handle. If the previous text handle points to a
string on the dynamic heap and you want to free it, use
FldGetTextHandle to obtain the handle before using
FldSetText and then free that handle after using FldSetText.
For example:

/* get the old text handle */
oldTxtH = FldGetTextHandle(fldP);

/* change the text and update the display */
FldSetTextHandle(fldP, txtH);
FldDrawField(fldP);

/* free the old text handle */
if (oldTxtH != NULL)
 MemHandleFree(oldTxtH);

If the field points to a database record, you want the memory
associated with the text handle to persist; however, this memory
and all other memory associated with the field is freed when the
field itself is freed, which happens when the form is closed. If you
don’t want the memory associated with the text handle freed when
the field is freed, use FldSetTextHandle and pass NULL for the
text handle immediately before the form is closed. Passing NULL
removes the association between the field and the text handle that
you want retained. That text handle is unlocked as a result of the
FldSetTextHandle call, and when the field is freed, there is no
text handle to free with it.

See Also FldSetTextPtr, FldSetText

Fields
Field Functions

Palm OS Programmer’s API Reference 245

FldSetTextPtr

Purpose Set a noneditable field’s text to point to the specified text string.

Declared In Field.h

Prototype void FldSetTextPtr (FieldType *fldP, Char *textP)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> textP Pointer to a null-terminated string.

Result Returns nothing. May display an error message if passed an
editable text field.

Comments Do not call FldSetTextPtr with an editable text field. Instead, call
FldSetTextHandle for editable text fields. FldSetTextPtr is
intended for displaying noneditable text in the user interface.

If the field has more than one line, use FldRecalculateField to
recalculate the word wrapping.

This function does not visually update the field. Use
FldDrawField to do so.

The field never frees the string that you pass to this function, even
when the field itself is freed. You must free the string yourself.
Before you free the string, make sure the field is not still displaying
it. Set the field’s string pointer to some other string or call
FldSetTextPtr(fldP, NULL) before freeing a string you have
passed using this function.

See Also FldSetTextHandle, FldGetTextPtr

Fields
Field Functions

246 Palm OS Programmer’s API Reference

FldSetUsable

Purpose Set a field to usable or nonusable.

Declared In Field.h

Prototype void FldSetUsable (FieldType *fldP,
Boolean usable)

Parameters fldP Pointer to a FieldType structure.

usable true to set usable; false to set nonusable.

Result Returns nothing.

Comments A nonusable field doesn’t display or accept input.

Use FrmHideObject and FrmShowObject instead of using this
function.

See Also FldEraseField, FldDrawField, FieldAttrType

FldUndo

Purpose Undo the last change made to the field object, if any. Changes
include typing, backspaces, delete, paste, and cut.

Declared In Field.h

Prototype void FldUndo (FieldType *fldP)

Parameters fldP Pointer to the field (FieldType structure) that
has the focus.

Result Returns nothing.

See Also FldPaste, FldCut, FldDelete, FldInsert

Fields
Field Functions

Palm OS Programmer’s API Reference 247

FldWordWrap

Purpose Given a string and a width, return the number of bytes of characters
that can be displayed using the current font.

Declared In Field.h

Prototype UInt16 FldWordWrap (const Char *chars,
Int16 maxWidth)

Parameters -> chars Pointer to a null-terminated string.

-> maxWidth Maximum line width in pixels.

Result Returns the length in bytes of the characters that can be displayed.

See Also FntWordWrap

Fields
Field Functions

248 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 249

10
Find
This chapter describes the global find facility API declared in the
header file Find.h.

Find Functions

FindDrawHeader

Purpose Draw the header line that separates, by application, the list of found
items.

Declared In Find.h

Prototype Boolean FindDrawHeader (FindParamsPtr findParams,
Char const* title)

Parameters -> findParams Pointer to the sysAppLaunchCmdFind launch
code’s parameter block.

-> title String to display as the title for the current
application.

Result Returns true if Find screen is filled up. Applications should exit
from the search if this occurs.

Comments Call this function once at the beginning of your application’s
response to the sysAppLaunchCmdFind launch code. This
function draws a header for your application’s Find results. The
header separates the search results from your application with the
search results from another application.

If your application searches multiple databases, you may also use
FindDrawHeader as a separator between databases.

Find
Find Functions

250 Palm OS Programmer’s API Reference

FindGetLineBounds

Purpose Returns the bounds of the next available line for displaying a match
in the Find results dialog.

Declared In Find.h

Prototype void FindGetLineBounds
(const FindParamsType *findParams, RectanglePtr r)

Parameters -> findParams Pointer to the sysAppLaunchCmdFind launch
code’s parameter block.

<- r The bounds of the area that should contain the
next line of results.

Result Returns nothing.

FindSaveMatch

Purpose Saves the record and position within the record of a text search
match. This information is saved so that it’s possible to later
navigate to the match.

Declared In Find.h

Prototype Boolean FindSaveMatch (FindParamsPtr findParams,
UInt16 recordNum, UInt16 pos, UInt16 fieldNum,
UInt32 appCustom, UInt16 cardNo, LocalID dbID)

Parameters -> findParams Pointer to the sysAppLaunchCmdFind launch
code’s parameter block.

-> recordNum Record index. This parameter sets the
recordNum field in the
sysAppLaunchCmdGoto’s parameter block.

-> pos Offset of the match string from start of record.
This parameter sets the matchPos field in the
sysAppLaunchCmdGoto’s parameter block.

Find
Find Functions

Palm OS Programmer’s API Reference 251

-> fieldNum Field number that the string was found in. This
parameter sets the matchFieldNum field in
the sysAppLaunchCmdGoto’s parameter
block.

-> appCustom Extra data the application can save with a
match. This parameter sets the matchCustom
field in the sysAppLaunchCmdGoto’s
parameter block.

-> cardNo Card number of the database that contains the
match. This parameter sets the dbCardNo field
in the sysAppLaunchCmdGoto’s parameter
block.

-> dbID Local ID of the database that contains the
match. This parameter sets the dbID field in the
sysAppLaunchCmdGoto’s parameter block.

Result Returns true if Find screen is filled up. Applications should exit
from the search if this occurs.

Comments Call this function when your application finds a record with a
matching string (FindStrInStr or TxtFindString returns
true). This function saves the information you pass. If the user
clicks this selection in the Find results dialog, the information is
retrieved and used to set up the sysAppLaunchCmdGoto launch
code’s parameter block.

You can use the appCustom field for any application-specific data
that might be needed to navigate to the record if the user selects it.
It’s common for localizable applications to set appCustom to the
length of the matching string because the global find facility cannot
correctly determine the length of the matching string on systems
with multi-byte character sets. In some character encodings, one
character may be accurately represented as either a single-byte
character or a multi-byte character. The TxtFindString function
accurately matches single-byte characters against their multi-byte
equivalents and returns the length of the matching string. If you
pass TxtFindString’s return value as the appCustom parameter
to FindSaveMatch, the matchCustom field of the

Find
Find Functions

252 Palm OS Programmer’s API Reference

sysAppLaunchCmdGoTo parameter block contains the length of
the matching string.

If your application requires more custom information, you can store
the information in a feature and store the feature number in the
appCustom field. See the “Feature Manager” chapter for more
information.

FindStrInStr

Purpose Perform a case-blind prefix search for a string in another string. This
function assumes that the string to find has already been
normalized for searching.

Declared In Find.h

Prototype Boolean FindStrInStr (Char const *strToSearch,
Char const *strToFind, UInt16 *posP)

Parameters -> strToSearch String to search.

-> strToFind Normalized version of the text string to be
found.

<- posP If a match is found, contains the offset of the
match within strToSearch.

Result Returns true if the string was found. FindStrInStr matches the
beginnings of words only; that is, strToFind must be a prefix of
one of the words in strToSearch for FindStrInStr to return
true.

Comment Don’t use this function on systems that support the text manager.
Instead, use TxtFindString, which performs searches on strings
that contain multi-byte characters and returns the length of the
matching text.

For backward compatibility with systems that don’t support the text
manager, use TxtGlueFindString, found in the PalmOSGlue
library. TxtGlueFindString calls TxtFindString if the text

Find
Find Functions

Palm OS Programmer’s API Reference 253

manager is present, or FindStrInStr if it is not present. For more
information, see Chapter 75, “PalmOSGlue Library.”

The method by which a search string is normalized varies
depending on the version of Palm OS® and the character encoding
supported by the device. The string passed to your application in
the strToFind field of the sysAppLaunchCmdFind launch code
parameter block has already been normalized. It can be passed
directly to FindStrInStr, TxtFindString, or
TxtGlueFindString. If you need to create your own normalized
search string, use TxtGluePrepFindString, also in the
PalmOSGlue library.

Find
Find Functions

254 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 255

11
Forms
This chapter provides the following information about form objects:

• Form Data Structures

• Form Constants

• Form Resources

• Form Functions

• Application-Defined Functions

The header file Form.h declares the API that this chapter describes.
For more information on forms, see the section “Text” in the Palm
OS Programmer’s Companion, vol. I.

Form Data Structures

FormAttrType
The FormAttrType bit field defines the visible characteristics of
the form.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FormAttrType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 usable :1;
 UInt16 enabled :1;
 UInt16 visible :1;
 UInt16 dirty :1;
 UInt16 saveBehind :1;
 UInt16 graffitiShift :1;

Forms
Form Data Structures

256 Palm OS Programmer’s API Reference

 UInt16 globalsAvailable : 1;
 UInt16 doingDialog : 1;
 UInt16 exitDialog : 1;
 UInt16 reserved :7;
 UInt16 reserved2;
} FormAttrType;

Your code should treat the FormAttrType bit field as opaque. Do
not attempt to change bit field member values directly.

Field Descriptions

Compatibility The globalsAvailable, doingDialog, and exitDialog flags
are present only if 3.5 New Feature Set is present.

usable Not set if the form is not considered part
of the current interface of the application,
and it doesn’t appear on screen.

enabled Not used.

visible Set or cleared internally when the field
object is drawn or erased.

dirty Not used.

saveBehind Set if the bits behind the form are saved
when the form is drawn.

graffitiShift Set if the graffiti shift indicator is
supported.

globalsAvailable System use only.

doingDialog System use only.

exitDialog System use only.

reserved Reserved for system use.

reserved2 Reserved for system use.

Forms
Form Data Structures

Palm OS Programmer’s API Reference 257

FormBitmapType
The FormBitmapType structure defines the visible characteristics
of a bitmap on a form.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FormBitmapType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 FormObjAttrType attr;
 PointType pos;
 UInt16 rscID;
} FormBitmapType;

Field Descriptions

FormFrameType
The FormFrameType structure defines a frame that appears on the
form.

typedef struct {
 UInt16 id;
 FormObjAttrType attr;
 RectangleType rect;
 UInt16 frameType;
} FormFrameType;

attr See FormObjAttrType.

pos Location of the bitmap.

rscID Resource ID of the bitmap. If you use
DmGetResource with this value as the resource ID,
it returns a pointer to a BitmapType structure.

Forms
Form Data Structures

258 Palm OS Programmer’s API Reference

Field Descriptions

FormGadgetAttrType
The FormGadgetAttrType bit field defines a gadget’s attributes.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FormGadgetAttrType structure.
Never access its structure members directly, or your code may
break in future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 usable : 1;
 UInt16 extended : 1;
 UInt16 visible : 1;
 UInt16 reserved : 13;
} FormGadgetAttrType;

Your code should treat the FormGadgetAttrType structure as
opaque. Use the functions specified in the descriptions below to
retrieve and set each value. Do not attempt to change structure
member values directly.

id ID of the frame.

attr See FormObjAttrType.

rect Location and size of the frame.

frameType The type of frame.

Forms
Form Data Structures

Palm OS Programmer’s API Reference 259

Field Descriptions

Many form functions (FrmGetObjectType, FrmHideObject, and
FrmGetObjectBounds, for example) take an object index as one of
their arguments. The most common way to get an object's index is to
call FrmGetObjectIndex. FrmGetObjectIndex takes a form ID
and returns the form object’s index. This is the routine one should
use in most cases, because the application usually knows the object
ID. However, gadgets and specifically extended gadgets, have APIs
with callbacks that pass back the gadget pointer and not the ID. In
those cases, the only way to get the object index (so one can use the
FrmGetObject* APIs) is to use the function
FrmGetObjectIndexFromPtr.

If you need the same functionality on pre-Palm OS 4.0 systems then
you can accomplish the same thing with the following code snippet.

UInt16 index;
UInt16 objIndex = frmInvalidObjectId;
UInt16 numObjects = FrmGetNumberOfObjects(frmP)
for (index = 0; index < numObjects; index++) {
 if (FrmGetObjectPtr(index) == myObjPtr) {
 // Found it
 objIndex = index;
 break;

usable Not set if the gadget is not considered part of the current
interface of the application, and it doesn’t appear on
screen. This is set by FrmShowObject and cleared by
FrmHideObject.

extended If set, the gadget is an extended gadget. Extended
gadgets are supported if 3.5 New Feature Set is present.
An extended gadget has the handler field defined in its
FormGadgetType. If not set, the gadgets is a standard
gadget compatible with all releases of Palm OS®.

visible Set or cleared when the gadget is drawn or erased.
FrmHideObject clears this value. You should set it
explicitly in the gadget’s callback function (if it has one)
in response to a draw request.

reserved Reserved for future use.

Forms
Form Data Structures

260 Palm OS Programmer’s API Reference

 }
}

Compatibility This type is defined only if 3.5 New Feature Set is present.

Forms
Form Data Structures

Palm OS Programmer’s API Reference 261

FormGadgetType
The FormGadgetType structure defines a gadget object that
appears on a form.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FormGadgetType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 id;
 FormGadgetAttrType attr;
 RectangleType rect;
 const void *data;
 FormGadgetHandlerType *handler;
} FormGadgetType;

Your code should treat the FormGadgetType structure as opaque.
Use the functions specified in the descriptions below to retrieve and
set each value. Do not attempt to change structure member values
directly.

Field Descriptions

Many form functions (FrmGetObjectType, FrmHideObject, and
FrmGetObjectBounds, for example) take an object index as one of
their arguments. The most common way to get an object's index is to

id ID of the gadget resource.

attr See FormGadgetAttrType.

rect Location and size of the object.

data Pointer to any specific data that needs to be stored.
You can set and retrieve the value of this field with
FrmGetGadgetData and FrmSetGadgetData.

handler Pointer to a callback function that controls the
gadget’s behavior and responds to events. You can
set this field with FrmSetGadgetHandler.

Forms
Form Data Structures

262 Palm OS Programmer’s API Reference

call FrmGetObjectIndex. FrmGetObjectIndex takes a form ID
and returns the form object’s index. This is the routine one should
use in most cases, because the application usually knows the object
ID. However, gadgets have APIs with callbacks that pass back the
gadget pointer and not the ID. In those cases, the only way to get the
object index (so one can use the FrmGetObject* APIs) is to use the
function FrmGetObjectIndexFromPtr.

If you need the same functionality on pre-Palm OS 4.0 systems then
you can accomplish the same thing with the following code snippet.

UInt16 index;
UInt16 objIndex = frmInvalidObjectId;
UInt16 numObjects = FrmGetNumberOfObjects(frmP)
for (index = 0; index < numObjects; index++) {
 if (FrmGetObjectPtr(index) == myObjPtr) {
 // Found it
 objIndex = index;
 break;
 }
}

Compatibility In Palm OS® releases prior to 3.5, the attr field was of type
FormObjAttrType and the handler field did not exist.

FormGadgetTypeInCallback
The FormGadgetTypeInCallback structure is passed to your
extended gadget handler and is identical to FormGadgetType
except that its contents are not hidden when
DO_NOT_ALLOW_ACCESS_TO_INTERNALS_OF_STRUCTS is
defined. This allows you to freely access the contents of an extended
gadget structure from within your extended gadget callback
functions.

typedef struct {
 UInt16 id;
 FormGadgetAttrType attr;
 RectangleType rect;
 const void *data;
 FormGadgetHandlerType *handler;
} FormGadgetTypeInCallback;

Forms
Form Data Structures

Palm OS Programmer’s API Reference 263

Field Descriptions

Many form functions (FrmGetObjectType, FrmHideObject, and
FrmGetObjectBounds, for example) take an object index as one of
their arguments. The most common way to get an object's index is to
call FrmGetObjectIndex. FrmGetObjectIndex takes a form ID
and returns the form object’s index. This is the routine one should
use in most cases, because the application usually knows the object
ID. However, extended gadgets have APIs with callbacks that pass
back the gadget pointer and not the ID. In those cases, the only way
to get the object index (so one can use the FrmGetObject* APIs) is
to use the function FrmGetObjectIndexFromPtr.

If you need the same functionality on pre-Palm OS 4.0 systems then
you can accomplish the same thing with the following code snippet.

UInt16 index;
UInt16 objIndex = frmInvalidObjectId;
UInt16 numObjects = FrmGetNumberOfObjects(frmP)
for (index = 0; index < numObjects; index++) {
 if (FrmGetObjectPtr(index) == myObjPtr) {
 // Found it
 objIndex = index;
 break;
 }
}

Compatibility Introduced in the Palm OS 4.0 SDK Update 1.

FormLabelType
The FormLabelType structure defines a label that appears on a
form.

id ID of the gadget resource.

attr See FormGadgetAttrType.

rect Location and size of the object.

data Pointer to any specific data that needs to be stored.

handler Pointer to a callback function that controls the
gadget’s behavior and responds to events.

Forms
Form Data Structures

264 Palm OS Programmer’s API Reference

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FormLabelType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 id;
 PointType pos;
 FormObjAttrType attr;
 FontID fontID;
 UInt8 reserved;
 Char *text;
} FormLabelType;

Your code should treat the FormLabelType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

FormLineType
The FormLineType structure defines a line appearing on a form.

typedef struct {
 FormObjAttrType attr;
 PointType point1;
 PointType point2;
} FormLineType;

id Resource ID of the label.

pos Location of the label.

attr See FormObjAttrType.

fontID Font ID of the font used for the label.

reserved Reserved for future use.

text Text of the label.

Forms
Form Data Structures

Palm OS Programmer’s API Reference 265

Your code should treat the FormLineType structure as opaque. Do
not attempt to change structure member values directly.

Field Descriptions

FormObjAttrType
The FormObjAttrType bit field defines a form object’s attributes.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FormObjAttrType structure.
Never access its structure members directly, or your code may
break in future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 usable : 1;
 UInt16 reserved : 15;
} FormObjAttrType;

Your code should treat the FormObjAttrType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

FormObjectKind
The FormObjectKind enum specifies values for the objectType
field of the FormObjListType. It specifies how to interpret the
object field.

attr See FormObjAttrType.

point1 Starting point of the line.

point2 Ending point of the line.

usable Not set if the object is not considered part of the
current interface of the application, and it doesn’t
appear on screen.

reserved Reserved for future use.

Forms
Form Data Structures

266 Palm OS Programmer’s API Reference

enum formObjects {
 frmFieldObj,
 frmControlObj,
 frmListObj,
 frmTableObj,
 frmBitmapObj,
 frmLineObj,
 frmFrameObj,
 frmRectangleObj,
 frmLabelObj,
 frmTitleObj,
 frmPopupObj,
 frmGraffitiStateObj,
 frmGadgetObj,
 frmScrollbarObj,
};
typedef enum formObjects FormObjectKind;

Value Descriptions

frmFieldObj Text field

frmControlObj Control

frmListObj List

frmTableObj Table

frmBitmapObj Form bitmap

frmLineObj Line

frmFrameObj Frame

frmRectangleObj Rectangle

frmLabelObj Label

frmTitleObj Form title

frmPopupObj Popup list

frmGraffitiStateObj Graffiti® state indicator

Forms
Form Data Structures

Palm OS Programmer’s API Reference 267

FormObjectType
The FormObjectType union points to the C structure for a user
interface object that appears on the form.

typedef union {
 void *ptr;
 FieldType *field;
 ControlType *control;
 GraphicControlType *graphicControl;
 SliderControlType *sliderControl;
 ListType *list;
 TableType *table;
 FormBitmapType *bitmap;
 FormLabelType *label;
 FormTitleType *title;
 FormPopupType *popup;
 FormGraffitiStateType *grfState;
 FormGadgetType *gadget;
 ScrollBarType *scrollBar;
} FormObjectType;

Your code should treat the FormObjectType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

frmGadgetObj Gadget (custom object)

frmScrollbarObj Scrollbar

ptr Used when the object’s type is not one of those
specified below.

field Text field’s structure. See FieldType.

control Control’s structure. See ControlType.

graphicControl Graphic button structure. See
GraphicControlType.

sliderControl Slider control structure. See
SliderControlType.

Forms
Form Data Structures

268 Palm OS Programmer’s API Reference

Compatibility The graphicControl and sliderControl fields are only
defined if 3.5 New Feature Set is present.

FormObjListType
The FormObjectListType structure specifies a user interface
object that appears on the form.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FormObjListType structure.
Never access its structure members directly, or your code may
break in future versions. Use the information below for debugging
purposes only.

typedef struct {
 FormObjectKind objectType;
 UInt8 reserved;
 FormObjectType object;
} FormObjListType;

Your code should treat the FormObjListType structure as opaque.
Do not attempt to change structure member values directly.

list List object’s structure. See ListType.

table Table structure. See TableType.

bitmap Form bitmap’s structure. See
FormBitmapType.

label Label’s structure. See FormLabelType.

title Form title’s structure. See FormTitleType.

popup Popup list’s structure. See FormPopupType.

grfState Graffiti shift indicator’s structure. See
FrmGraffitiStateType.

gadget Gadget (custom UI resource) structure. See
FormGadgetType.

scrollbar Scroll bar’s structure. See ScrollBarType.

Forms
Form Data Structures

Palm OS Programmer’s API Reference 269

Field Descriptions

FormPopupType
The FormPopupType structure defines a popup list that appears on
a form.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FormPopupType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

objectType Specifies the type of the object (control, field, etc.).
See FormObjectKind.

reserved Reserved for future use.

object The C data structure that defines the object. See
FormObjectType.

Forms
Form Data Structures

270 Palm OS Programmer’s API Reference

typedef struct {
 UInt16 controlID;
 UInt16 listID;
} FormPopupType;

Your code should treat the FormPopupType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

FormPtr
The FormPtr type defines a pointer to a FormType structure.

typedef FormType *FormPtr;

FormRectangleType
The FormRectangleType structure defines a rectangle that
appears on the form.

typedef struct {
 FormObjAttrType attr;
 RectangleType rect;
} FormRectangleType;

Your code should treat the FormRectangleType structure as
opaque. Do not attempt to change structure member values directly.

Field Descriptions

controlID Resource ID of the popup trigger control that
triggers the list’s display.

listID Resource ID of the list object that defines the popup
list.

attr See FormObjAttrType.

rect Location and size of the rectangle.

Forms
Form Data Structures

Palm OS Programmer’s API Reference 271

FormTitleType
The FormTitleType structure defines the title of the form.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FormTitleType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 RectangleType rect;
 char *text;
} FormTitleType;

Your code should treat the FormTitleType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

FormType
The FormType structure and supporting structures are defined
below.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FormType structure. Never access
its structure members directly, or your code may break in future
versions. Use the information below for debugging purposes only.

typedef struct {
 WindowType window;
 UInt16 formId;
 FormAttrType attr;
 WinHandle bitsBehindForm;
 FormEventHandlerType *handler;

rect The location and size of the title area.

text Text of the title.

Forms
Form Data Structures

272 Palm OS Programmer’s API Reference

 UInt16 focus;
 UInt16 defaultButton;
 UInt16 helpRscId;
 UInt16 menuRscId;
 UInt16 numObjects;
 FormObjListType *objects;
} FormType;

Your code should treat the FormType structure as opaque. Do not
attempt to change structure member values directly.

Field Descriptions

window Structure of the window object that
corresponds to the form. See WindowType.
Access this field with
FrmGetWindowHandle.

formId ID number of the form, specified by the
application developer. This ID value is part of
the event data of frmOpenEvent. The ID
should match the form’s resource ID. Access
this field with FrmGetFormId.

attr Form object attributes. See FormAttrType.

bitsBehindForm Used to save all the bits behind the form so
the screen can be properly refreshed when the
form is closed. This field is for internal use
only by modal forms.

handler Routine called when the form needs to handle
an event. You typically set this in your
application’s event handling function by
calling FrmSetEventHandler.

focus Index of a field or table object within the form
that contains the focus. Any keyDownEvent
is passed to the object that has the focus. Set to
noFocus if no object has the focus. Set this
field with FrmSetFocus.

Forms
Form Data Structures

Palm OS Programmer’s API Reference 273

FrmGraffitiStateType
The FrmGraffitiStateType structure defines the graffiti shift
indicator.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FrmGraffitiStateType
structure. Never access its structure members directly, or your
code may break in future versions. Use the information below for
debugging purposes only.

typedef struct{
 PointerType pos;
}FrmGraffitiStateType;

Your code should treat the FrmGraffitiStateType structure as
opaque. Do not attempt to change structure member values directly.

Field Descriptions

defaultButton Resource ID of the object defined as the
default button. This value is used by the
routine FrmDoDialog.

helpRscId Resource ID number of the help resource. The
help resource is a String resource (type tSTR).

menuRscId ID number of a menu bar to use if the form
has a menu, or zero if the form doesn’t have a
menu.

numObjects Number of objects contained within the form.
Access this field with
FrmGetNumberOfObjects.

objects Pointer to the array of objects contained
within the form. See FormObjListType.

pos Location of the graffiti shift indicator.

Forms
Form Constants

274 Palm OS Programmer’s API Reference

Form Constants
The following form constants are defined:

Form Resources
The following resources are associated with forms and with the
objects on a form whose data structures are defined above:

• Form—Form Resource (tFRM)

• Alert dialog— Alert Resource (Talt)

• Bitmap—Form Bitmap Resource (tFBM)

• Button—Button Resource (tBTN)

• Check box—Check Box Resource (tCBX)

• Field—Field Resource (tFLD)

• Gadget (custom object)— Gadget Resource (tGDT)

• Graffiti shift indicator —Graffiti Shift Indicator Resource
(tGSI)

• Label—Label Resource (tLBL)

Constant Value Description

noFocus 0xffff No form object has the focus

frmRedrawUpdateCode 0x8000 Indicates that the form should be
redrawn; flag in a frmUpdateEvent.

frmNoSelectedControl 0xff Returned by
FrmGetControlGroupSelection if
no control is selected.

frmResponseCreate 1974 Passed to
FormCheckResponseFuncType to
indicate that the function should perform
initialization.

frmResponseQuit 0xBEEF Passed to
FormCheckResponseFuncType to
indicate that the function should perform
cleanup.

Forms
Form Functions

Palm OS Programmer’s API Reference 275

• List—List Resource (tLST)

• Popup trigger—Popup Trigger Resource (tPUT)

• Push button—Push Button Resource (tPBN)

• Repeating button—Repeating Button Resource (tREP)

• Scrollbar—Scroll Bar Resource (tSCL)

• Selector trigger—Selector Trigger Resource (tSLT)

• Table—Table Resource (tTBL)

Form Functions

FrmAlert

Purpose Create a modal dialog from an alert resource and display it until the
user selects a button in the dialog.

Declared In Form.h

Prototype UInt16 FrmAlert (UInt16 alertId)

Parameters -> alertId ID of the alert resource.

Result Returns the item number of the button the user selected. A button’s
item number is determined by its order in the alert dialog; the first
button has the item number 0 (zero).

NOTE: A default button press is simulated if the user switches
to a different application while a modal dialog is active.

See Also FrmDoDialog, FrmCustomAlert, FrmCustomResponseAlert

Forms
Form Functions

276 Palm OS Programmer’s API Reference

FrmCloseAllForms

Purpose Send a frmCloseEvent to all open forms.

Declared In Form.h

Prototype void FrmCloseAllForms (void)

Parameters None.

Result Returns nothing.

Comments Applications can call this function to ensure that all forms are closed
cleanly before exiting PilotMain; that is, before termination.

See Also FrmSaveAllForms

FrmCopyLabel

Purpose Copy the passed string into the data structure of the specified label
object in the active form.

Declared In Form.h

Prototype void FrmCopyLabel (FormType *formP,
UInt16 labelID, const Char *newLabel)

Parameters -> formP Pointer to the form object (FormType
structure).

-> labelID ID of form label object.

-> newLabel Pointer to a null-terminated string.

Result Returns nothing.

Comments The size of the new label must not exceed the size of the label
defined in the resource. When defining the label in the resource,
specify an initial size at least as big as any of the strings that will be

Forms
Form Functions

Palm OS Programmer’s API Reference 277

assigned dynamically. This function redraws the label if the form’s
usable attribute and the label’s visible attribute are set.

This function redraws the label but does not erase the old one first.
If the new label is shorter than the old one, the end of the old label
will still be visible. To avoid this, you can hide the label using
FrmHideObject, then show it using FrmShowObject, after using
FrmCopyLabel.

Note that FrmCopyLabel copies the passed string into memory
already allocated for the label. Thus, the string doesn’t need to
remain in existence once FrmCopyLabel returns.

See Also FrmGetLabel

FrmCopyTitle

Purpose Copy a new title over the form’s current title. If the form is visible,
the new title is drawn.

Declared In Form.h

Prototype void FrmCopyTitle (FormType *formP,
const Char *newTitle)

Parameters -> formP Pointer to the form object (FormType
structure).

-> newTitle Pointer to the new title string.

Result Returns nothing.

Comments The size of the new title must not exceed the title size defined in the
resource. When defining the title in the resource, specify an initial
size at least as big as any of the strings to be assigned dynamically.

See Also FrmGetTitle, FrmSetTitle

Forms
Form Functions

278 Palm OS Programmer’s API Reference

FrmCustomAlert

Purpose Create a modal dialog from an alert resource and display the dialog
until the user taps a button in the alert dialog.

Declared In Form.h

Prototype UInt16 FrmCustomAlert (UInt16 alertId,
const Char *s1, const Char *s2, const Char *s3)

Parameters -> alertId Resource ID of the alert.

-> s1, s2, s3 Strings to replace ^1, ^2, and ^3 (see
Comments).

Result Returns the number of the button the user tapped (the first button is
zero).

Comments A button’s item number is determined by its order in the alert
template; the first button has the item number zero.

Up to three strings can be passed to this routine. They are used to
replace the variables ̂ 1, ̂ 2 and ̂ 3 that are contained in the message
string of the alert resource.

If the variables ^1, ^2, and ^3 occur in the message string, do not
pass NULL for the arguments s1, s2, and s3. If you want an
argument to be ignored, pass the empty string (““). In Palm OS 2.0
or below, pass a string containing a space (“ “) instead of the empty
string.

NOTE: A default button press is simulated if the user switches
to a different application while a modal dialog is active.

See Also FrmAlert, FrmDoDialog, FrmCustomResponseAlert

Forms
Form Functions

Palm OS Programmer’s API Reference 279

FrmCustomResponseAlert

Purpose Create a modal dialog with a text field from an alert resource and
display it until the user taps a button in the alert dialog.

Declared In Form.h

Prototype UInt16 FrmCustomResponseAlert (UInt16 alertId,
const Char *s1, const Char *s2, const Char *s3,
Char *entryStringBuf, Int16 entryStringBufLength,
FormCheckResponseFuncPtr callback)

Parameters -> alertId Resource ID of the alert.

-> s1, s2, s3 Strings to replace ^1, ^2, and ^3. See the
Comments in FrmCustomAlert for more
information.

<- entryStringBuf
The string the user entered in the text field.

-> entryStringBufLength
The maximum length for the string in
entryStringBuf.

-> callback A callback function that processes the string.
See FormCheckResponseFuncType. Pass
NULL if there is no callback.

Result Returns the number of the button the user tapped (the first button is
zero).

Comments This function differs from FrmCustomAlert in these ways:

• The dialog it displays contains a text field for user entry. The
text that the user enters is returned in the entryStringBuf
parameter.

• When the user taps a button, the callback function is called
and is passed the button number and entryStringBuf.
The dialog is only dismissed if the callback returns true.
This behavior allows you to perform error checking on the

Forms
Form Functions

280 Palm OS Programmer’s API Reference

string that the user entered and give the user a chance to re-
enter the string.

The callback function is also called with special constants
when the alert dialog is being initialized and when it is being
deallocated. This allows the callback to perform any
necessary initialization and cleanup.

NOTE: A default button press is simulated if the user switches
to a different application while a modal dialog is active.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also FrmAlert, FrmDoDialog

FrmDeleteForm

Purpose Release the memory occupied by a form. Any memory allocated to
objects in the form is also released.

Declared In Form.h

Prototype void FrmDeleteForm (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns nothing.

Comments This function doesn’t modify the display.

Compatibility If 3.5 New Feature Set is present and the form contains an extended
gadget, this function calls the gadget’s callback with
formGadgetDeleteCmd. See FormGadgetHandlerType.

See Also FrmInitForm, FrmReturnToForm

Forms
Form Functions

Palm OS Programmer’s API Reference 281

FrmDispatchEvent

Purpose Dispatch an event to the application’s handler for the form.

Declared In Form.h

Prototype Boolean FrmDispatchEvent (EventType *eventP)

Parameters -> eventP Pointer to an event.

Result Returns the Boolean value returned by the form’s event handler or
FrmHandleEvent. (If the form’s event handler returns false, the
event is passed to FrmHandleEvent.) This function also returns
false if the form specified in the event is invalid.

Comments The event is dispatched to the current form’s handler unless the
form ID is specified in the event data, as, for example, with
frmOpenEvent or frmGotoEvent. A form’s event handler
(FormEventHandlerType) is registered by
FrmSetEventHandler.

Note that if the form does not have a registered event handler, this
function causes a fatal error.

FrmDoDialog

Purpose Display a modal dialog until the user taps a button in the dialog.

Declared In Form.h

Prototype UInt16 FrmDoDialog (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns the resource ID of the button the user tapped.

Forms
Form Functions

282 Palm OS Programmer’s API Reference

NOTE: A default button press is simulated if the user switches
to a different application while a modal dialog is active.

Comments Before calling FrmDoDialog you must have called FrmInitForm to
load and initialize the dialog and you must have then set the event
handler, if one is needed. After the call, read any values needed
from the dialog’s objects and then call FrmDeleteForm to release
the memory occupied by the dialog.

See Also FrmInitForm, FrmCustomAlert, FrmCustomResponseAlert

FrmDrawForm

Purpose Draw all objects in a form and the frame around the form.

Declared In Form.h

Prototype void FrmDrawForm (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns nothing.

Comments If the saveBehind form attribute is set and the form is visible, this
function saves the bits behind the form using the bitsBehindForm
field in the FormType structure.

You should call this function in response to a frmOpenEvent.

If you do any custom drawing, you should do so after you call this
function not before. If you do custom drawing, respond to
frmUpdateEvent as well as frmOpenEvent, and be sure to return
true to specify that the frmUpdateEvent was handled. The default
event handler for frmUpdateEvent calls FrmDrawForm, so if you
allow the event to fall through by returning false, your custom
drawing is erased.

Forms
Form Functions

Palm OS Programmer’s API Reference 283

Compatibility If 3.5 New Feature Set is present, FrmDrawForm erases the form’s
window before performing any drawing. Thus, it is especially
important to do any custom drawing after this function call on Palm
OS 3.5 and higher.

If 3.5 New Feature Set is present and the form contains an extended
gadget, this function calls the gadget’s callback with
formGadgetDrawCmd. See FormGadgetHandlerType.

See Also FrmEraseForm, FrmInitForm

FrmEraseForm

Purpose Erase a form from the display.

Declared In Form.h

Prototype void FrmEraseForm (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns nothing.

Comments If the region obscured by the form was saved by FrmDrawForm, this
function restores that region.

Forms
Form Functions

284 Palm OS Programmer’s API Reference

FrmGetActiveField

Purpose Return the active field for a specified form.

Declared In Form.h

Prototype FieldType *FrmGetActiveField
(const FormType *formP)

Parameters -> formP Pointer to the form for which the active field
should be returned, or NULL if the active field
on the active form is desired.

Result Returns a pointer to the field object of the active field, or NULL if the
form doesn’t have an active field or if there is no active form.

Comments This function will most often be called with a NULL parameter to
obtain the active field on the active form.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also FrmGetActiveForm

FrmGetActiveForm

Purpose Return the currently active form.

Declared In Form.h

Prototype FormType *FrmGetActiveForm (void)

Parameters None.

Result Returns a pointer to the form object of the active form.

Comments You should not call the FrmGetActiveForm function when a
popup window is open. There is no active form while a popup is

Forms
Form Functions

Palm OS Programmer’s API Reference 285

displayed, and the value returned from FrmGetActiveForm in
this situation has no meaning.

See Also FrmGetActiveField, FrmGetActiveFormID,
FrmSetActiveForm

FrmGetActiveFormID

Purpose Return the ID of the currently active form.

Declared In Form.h

Prototype UInt16 FrmGetActiveFormID (void)

Parameters None.

Result Returns the active form’s ID number.

See Also FrmGetActiveForm

FrmGetControlGroupSelection

Purpose Return the item number of the control selected in a group of
controls.

Declared In Form.h

Prototype UInt16 FrmGetControlGroupSelection
(const FormType *formP, UInt8 groupNum)

Parameters -> formP Pointer to the form object (FormType
structure).

-> groupNum Control group number.

Result Returns the item number of the selected control; returns
frmNoSelectedControl if no item is selected.

Forms
Form Functions

286 Palm OS Programmer’s API Reference

Comments The item number is the index into the form object’s data structure.

NOTE: FrmSetControlGroupSelection sets the selection
in a control group based on an object ID, not its index, which
FrmGetControlGroupSelection returns.

Compatibility On versions prior to 3.5, this function returned a Byte instead of
UInt16.

See Also FrmGetObjectId, FrmGetObjectPtr,
FrmSetControlGroupSelection

FrmGetControlValue

Purpose Return the current value of a control.

Declared In Form.h

Prototype Int16 FrmGetControlValue (const FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of the control object in the form object’s
data structure. You can obtain this by using
FrmGetObjectIndex.

Result Returns the current value of the control. For most controls the return
value is either 0 (off) or 1 (on). For sliders, this function returns the
value of the value field.

Comments The caller must specify a valid index. This function is valid only for
push button and check box control objects.

See Also FrmSetControlValue

Forms
Form Functions

Palm OS Programmer’s API Reference 287

FrmGetFirstForm

Purpose Return the first form in the window list.

Declared In Form.h

Prototype FormType *FrmGetFirstForm (void)

Parameters None.

Result Returns a pointer to a form object, or NULL if there are no forms.

Comments The window list is a LIFO stack. The last window created is the first
window in the window list.

FrmGetFocus

Purpose Return the item (index) number of the object that has the focus.

Declared In Form.h

Prototype UInt16 FrmGetFocus (const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns the index of the object (UI element) that has the focus, or
returns noFocus if none does. To convert the object index to an ID,
use FrmGetObjectId.

See Also FrmGetObjectPtr, FrmSetFocus

Forms
Form Functions

288 Palm OS Programmer’s API Reference

FrmGetFormBounds

Purpose Return the visual bounds of the form; the region returned includes
the form’s frame.

Declared In Form.h

Prototype void FrmGetFormBounds (const FormType *formP,
RectangleType *rP)

Parameters -> formP Pointer to the form object (FormType
structure).

<- rP Pointer to a RectangleType structure where
the bounds is returned.

Result Returns nothing. The bounds of the form are returned in r.

FrmGetFormId

Purpose Return the resource ID of a form.

Declared In Form.h

Prototype UInt16 FrmGetFormId (const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns form resource ID.

See Also FrmGetFormPtr

Forms
Form Functions

Palm OS Programmer’s API Reference 289

FrmGetFormPtr

Purpose Return a pointer to the form that has the specified ID.

Declared In Form.h

Prototype FormType *FrmGetFormPtr (UInt16 formId)

Parameters -> formId Form ID number.

Result Returns a pointer to the form object, or NULL if the form is not in
memory.

See Also FrmGetFormId

FrmGetGadgetData

Purpose Return the value stored in the data field of the gadget object.

Declared In Form.h

Prototype void *FrmGetGadgetData (const FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of the gadget object in the form object’s
data structure. You can obtain this by using
FrmGetObjectIndex.

Result Returns a pointer to the custom gadget’s data.

Comments Gadget objects provide a way for an application to attach custom
gadgetry to a form. In general, the data field of a gadget object
contains a pointer to the custom object’s data structure.

See Also FrmSetGadgetData, FrmSetGadgetHandler

Forms
Form Functions

290 Palm OS Programmer’s API Reference

FrmGetLabel

Purpose Return pointer to the text of the specified label object in the specified
form.

Declared In Form.h

Prototype const Char *FrmGetLabel (const FormType *formP,
UInt16 labelID)

Parameters -> formP Pointer to the form object (FormType
structure).

-> labelID ID of the label object.

Result Returns a pointer to the label string.

Comments Does not make a copy of the string; returns a pointer to the string.
The object must be a label.

See Also FrmCopyLabel

FrmGetNumberOfObjects

Purpose Return the number of objects in a form.

Declared In Form.h

Prototype UInt16 FrmGetNumberOfObjects
(const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns the number of objects in the specified form.

See Also FrmGetObjectPtr, FrmGetObjectId

Forms
Form Functions

Palm OS Programmer’s API Reference 291

FrmGetObjectBounds

Purpose Retrieve the bounds of an object given its form and index.

Declared In Form.h

Prototype void FrmGetObjectBounds (const FormType *formP,
UInt16 objIndex, RectangleType *rP)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

<- rP Pointer to a RectangleType structure where
the object bounds are returned. The bounds are
in window-relative coordinates.

Result Returns nothing. The object’s bounds are returned in r.

See Also FrmGetObjectPosition, FrmSetObjectPosition

FrmGetObjectId

Purpose Return the ID of the specified object.

Declared In Form.h

Prototype UInt16 FrmGetObjectId (const FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

Forms
Form Functions

292 Palm OS Programmer’s API Reference

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

Result Returns the ID number of an object or frmInvalidObjectId if
the objIndex parameter is invalid.

See Also FrmGetObjectPtr

FrmGetObjectIndex

Purpose Return the index of an object in the form’s objects list.

Declared In Form.h

Prototype UInt16 FrmGetObjectIndex (const FormType *formP,
UInt16 objID)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objID ID of an object in the form.

Result Returns the index of the specified object (the index of the first object
is 0), or frmInvalidObjectId if the supplied object ID is invalid.

Comments Bitmaps use a different mechanism for IDs than the rest of the form
objects. When finding a bitmap with FrmGetObjectIndex, you
need to pass the bitmap's resource ID, not the ID of the form bitmap
object. (Passing the ID of the form bitmap object may or may not
give you the right object back, depending on how you created the
objects.)

This means that if you've got the same bitmap in two different form
bitmap objects on the same form, you won't be able to use
FrmGetObjectIndex to get at the second one; it'll always return
the first.

See Also FrmGetObjectPtr, FrmGetObjectId

Forms
Form Functions

Palm OS Programmer’s API Reference 293

FrmGetObjectIndexFromPtr

Purpose Return an object’s index.

Declared In Form.h

Prototype UInt16 FrmGetObjectIndexFromPtr
(const FormType *formP, void *objP)

Parameters -> formP Pointer to a FormType.

-> objP Pointer to an object.

Result Returns the object's index. frmInvalidObjectId is returned if
objP is not associated with the form.

Comments Many form functions (FrmGetObjectType, FrmHideObject, and
FrmGetObjectBounds, for example) take an object index as one of
their arguments. The most common way to get an object's index is to
call FrmGetObjectIndex. FrmGetObjectIndex takes a form ID
and returns the form object’s index. This is the routine one should
use in most cases, because the application usually knows the object
ID. However, gadgets and specifically extended gadgets, have APIs
with callbacks that pass back the gadget pointer and not the ID. In
those cases, the only way to get the object index (so one can use the
FrmGetObject* APIs) is to use FrmGetObjectIndexFromPtr.

If you need the same functionality on pre-Palm OS 4.0 systems then
you can accomplish the same thing with the following code snippet.

UInt16 index;
UInt16 objIndex = frmInvalidObjectId;
UInt16 numObjects = FrmGetNumberOfObjects(frmP)
for (index = 0; index < numObjects; index++) {
 if (FrmGetObjectPtr(index) == myObjPtr) {
 // Found it
 objIndex = index;
 break;
 }
}

Forms
Form Functions

294 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

FrmGetObjectPosition

Purpose Return the coordinates of the specified object relative to the form.

Declared In Form.h

Prototype void FrmGetObjectPosition (const FormType *formP,
UInt16 objIndex, Coord *x, Coord *y)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

<- x, y Pointers where the window-relative x and y
positions of the object are returned. These
locate the top-left corner of the object.

Result Returns nothing.

See Also FrmGetObjectBounds, FrmSetObjectPosition

FrmGetObjectPtr

Purpose Return a pointer to the data structure of an object in a form.

Declared In Form.h

Prototype void *FrmGetObjectPtr (const FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

Forms
Form Functions

Palm OS Programmer’s API Reference 295

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

Result Returns a pointer to an object in the form.

See Also FrmGetObjectId

FrmGetObjectType

Purpose Return the type of an object.

Declared In Form.h

Prototype FormObjectKind FrmGetObjectType
(const FormType *formP, UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

Result Returns FormObjectKind of the item specified. See
FormObjectKind.

FrmGetTitle

Purpose Return a pointer to the title string of a form.

Declared In Form.h

Prototype const Char *FrmGetTitle (const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns a pointer to title string, or NULL if there is no title string or
there is an error finding it.

Forms
Form Functions

296 Palm OS Programmer’s API Reference

Comments This is a pointer to the internal structure itself, not to a copy.

See Also FrmCopyTitle, FrmSetTitle

FrmGetWindowHandle

Purpose Return the window handle of a form.

Declared In Form.h

Prototype WinHandle FrmGetWindowHandle
(const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns the handle of the memory block that contains the form data
structure. Since the form structure begins with the WindowType,
this is also a WinHandle.

FrmGotoForm

Purpose Send a frmCloseEvent to the current form; send a
frmLoadEvent and a frmOpenEvent to the specified form.

Declared In Form.h

Prototype void FrmGotoForm (UInt16 formId)

Parameters -> formId ID of the form to display.

Result Returns nothing.

Comments The default form event handler (FrmHandleEvent) erases and
disposes of a form when it receives a frmCloseEvent.

See Also FrmPopupForm

Forms
Form Functions

Palm OS Programmer’s API Reference 297

FrmHandleEvent

Purpose Handle the event that has occurred in the form.

Declared In Form.h

Prototype Boolean FrmHandleEvent (FormType *formP,
EventType *eventP)

Parameters -> formP Pointer to the form object (FormType
structure).

-> eventP Pointer to the event data structure
(EventType).

Result Returns true if the event was handled.

Comments Never call this function directly. Call FrmDispatchEvent instead.
FrmDispatchEvent passes events to a form’s custom event
handler and then, if the event was not handled, to this function.

WARNING! You should never call this function directly. You
should call the FrmDispatchEvent function instead.

Table 11.1 provides an overview of how FrmHandleEvent handles
different events.

Forms
Form Functions

298 Palm OS Programmer’s API Reference

Table 11.1 FrmHandleEvent Actions

When FrmHandleEvent
receives...

FrmHandleEvent performs these actions...

ctlEnterEvent Passes the event and a pointer to the object the event
occurred in to CtlHandleEvent. The object pointer
is obtained from the event data. If the control is part of
an exclusive control group, it deselects the currently
selected control of the group first.

ctlRepeatEvent Passes the event and a pointer to the object the event
occurred in to CtlHandleEvent. The object pointer
is obtained from the event data.

ctlSelectEvent Checks if the control is a Popup Trigger Control. If it
is, the list associated with the popup trigger is
displayed until the user makes a selection or touches
the pen outside the bounds of the list. If a selection is
made, a popSelectEvent is added to the event
queue.

fldEnterEvent or
fldHeightChangedEvent

Checks if a field object or a table object has the focus
and passes the event to the appropriate handler
(FldHandleEvent or TblHandleEvent). The table
object is also a container object, which may contain a
field object. If TblHandleEvent receives a field
event, it passes the event to the field object contained
within it.

frmCloseEvent Erases the form and releases any memory allocated for
it.

frmGadgetEnterEvent Passes the event to the gadget’s callback function if the
gadget has one. See FormGadgetHandlerType.

frmGadgetMiscEvent Passes the event to the gadget’s callback function if the
gadget has one. See FormGadgetHandlerType.

frmTitleEnterEvent Tracks the pen until it is lifted. If it is lifted within the
bounds of the form title, adds a
frmTitleSelectEvent event to the event queue.

Forms
Form Functions

Palm OS Programmer’s API Reference 299

frmTitleSelectEvent Adds a keyDownEvent with the vchrMenu character
to the event queue.

frmUpdateEvent Calls FrmDrawForm to redraw the form.

keyDownEvent Passes the event to the handler for the object that has
the focus. If no object has the focus, the event is
ignored.

lstEnterEvent Passes the event and a pointer to the object the event
occurred in to LstHandleEvent. The object pointer
is obtained from the event data.

menuCmdBarOpenEvent Checks if a field object or a table object has the focus
and passes the event to the appropriate handler
(FldHandleEvent or TblHandleEvent),
broadcasts the notification
sysNotifyMenuCmdBarOpenEvent, and then
displays the command toolbar.

menuEvent Checks if the menu command is one of the system edit
menu commands. The system provides a standard
edit menu that contains the commands Undo, Cut,
Copy, Paste, Select All, and Keyboard.
FrmHandleEvent responds to these commands.

penDownEvent; pen
position in the bounds of the
form object

Checks the list of objects contained by the form to
determine if the pen is within the bounds of one. If it
is, the appropriate handler is called to handle the
event, for example, if the pen is in a control,
CtlHandleEvent is called. If the pen isn’t within the
bounds of an object, the event is ignored by the form.
If the pen is within the bounds of the help icon, it is
tracked until it is lifted, and if it’s still within the help
icon bounds, the help dialog is displayed.

popSelectEvent Sets the label of the popup trigger to the current
selection of the popup list.

Table 11.1 FrmHandleEvent Actions (continued)

When FrmHandleEvent
receives...

FrmHandleEvent performs these actions...

Forms
Form Functions

300 Palm OS Programmer’s API Reference

Compatibility FrmHandleEvent only handles frmTitleSelectEvent,
menuCmdBarOpenEvent, frmGadgetEnterEvent, and
frmGadgetMiscEvent if 3.5 New Feature Set is present. If 5.0
New Feature Set is present, this function should be considered
“System Use Only”; applications should do what they can to avoid
using it.

See Also FrmDispatchEvent

FrmHelp

Purpose Display the specified help message until the user taps the Done
button in the help dialog.

Declared In Form.h

Prototype void FrmHelp (UInt16 helpMsgId)

Parameters -> helpMsgId Resource ID of help message string.

Result Returns nothing.

Comments The help message is displayed in a modal dialog that supports
scrolling the text if necessary.

sclEnterEvent or
sclRepeatEvent

Passes the event and a pointer to the object the event
occurred in to SclHandleEvent.

tblEnterEvent Passes the event and a pointer to the object the event
occurred in to TblHandleEvent. The object pointer
is obtained from the event data.

Table 11.1 FrmHandleEvent Actions (continued)

When FrmHandleEvent
receives...

FrmHandleEvent performs these actions...

Forms
Form Functions

Palm OS Programmer’s API Reference 301

FrmHideObject

Purpose Erase the specified object and set its attribute data (usable bit) so
that it does not redraw or respond to the pen.

Declared In Form.h

Prototype void FrmHideObject (FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

Result Returns nothing.

Compatibility Prior to OS version 3.2, this function did not set the usable bit of
the object attribute data to false. On an OS version prior to 3.2 you
can work around this bug by directly setting this bit to false
yourself.

On versions of Palm OS prior to 3.5 this function doesn’t affect lists
or tables. On Palm OS 3.5 it operates correctly on lists but doesn’t
have any effect on tables. On Palm OS 4.0 it operates correctly on
both lists and tables.

If 3.5 New Feature Set is present and the object is an extended
gadget, this function calls the gadget’s callback with
formGadgetEraseCmd. See FormGadgetHandlerType.

See Also FrmShowObject

Forms
Form Functions

302 Palm OS Programmer’s API Reference

FrmInitForm

Purpose Load and initialize a form resource.

Declared In Form.h

Prototype FormType *FrmInitForm (UInt16 rscID)

Parameters -> rscID Resource ID of the form.

Result Returns a pointer to the form data structure.

When using debug ROMs, FrmInitForm displays an error
message if the form has already been initialized.

Comments This function does not affect the display (use FrmDrawForm to
draw the form) nor make the form active (use FrmSetActiveForm
to make it active).

For each initialized form, you must call FrmDeleteForm to release
the form memory when you are done with the form. Alternatively,
you can free the active form by calling FrmReturnToForm.

See Also FrmDoDialog, FrmDeleteForm, FrmReturnToForm

Forms
Form Functions

Palm OS Programmer’s API Reference 303

FrmNewBitmap

Purpose Create a new form bitmap dynamically.

Declared In Form.h

Prototype FormBitmapType *FrmNewBitmap (FormType **formPP,
UInt16 ID, UInt16 rscID, Coord x, Coord y)

Parameters <-> formPP Pointer to a pointer to the form in which the
new bitmap is installed. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns
because the form may be moved in memory. In
subsequent calls, always use the new formPP
value returned by this function.

-> ID Symbolic ID of the bitmap, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

-> rscID Numeric value identifying the resource that
provides the bitmap. This value must be unique
within the application scope.

-> x Horizontal coordinate of the upper-left corner
of the bitmap’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the bitmap’s boundaries, relative to the
window in which it appears.

Result Returns a pointer to the new bitmap, or 0 if the call did not succeed.
The most common cause of failure is lack of memory.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmRemoveObject

Forms
Form Functions

304 Palm OS Programmer’s API Reference

FrmNewForm

Purpose Create a new form object dynamically.

Declared In Form.h

Prototype FormType *FrmNewForm (UInt16 formID,
const Char *titleStrP, Coord x, Coord y,
Coord width, Coord height, Boolean modal,
UInt16 defaultButton, UInt16 helpRscID,
UInt16 menuRscID)

Parameters -> formID Symbolic ID of the form, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

-> titleStrP Pointer to a string that is the title of the form.

-> x Horizontal coordinate of the upper-left corner
of the form’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the form’s boundaries, relative to the window
in which it appears.

-> width Width of the form, expressed in pixels. Valid
values are 1 -160.

-> height Height of the form, expressed in pixels.Valid
values are 1 -160.

-> modal true specifies that the form ignores pen events
outside its boundaries.

-> defaultButton
Symbolic ID of the button that provides the
form’s default action, specified by the
developer.

-> helpRscID Symbolic ID of the resource that provides the
form’s online help, specified by the developer.
Only modal dialogs can have help resources.

Forms
Form Functions

Palm OS Programmer’s API Reference 305

-> menuRscID Symbolic ID of the resource that provides the
form’s menus, specified by the developer.

Result Returns a pointer to the new form object, or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmValidatePtr, WinValidateHandle, FrmRemoveObject

FrmNewGadget

Purpose Create a new gadget dynamically and install it in the specified form.

Declared In Form.h

Prototype FormGadgetType *FrmNewGadget (FormType **formPP,
UInt16 id, Coord x, Coord y, Coord width,
Coord height)

Parameters <-> formPP Pointer to a pointer to the form in which the
new gadget is installed. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns
because the form may be moved in memory. In
subsequent calls, always use the new formPP
value returned by this function.

-> id Symbolic ID of the gadget, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

-> x Horizontal coordinate of the upper-left corner
of the gadget’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the gadget’s boundaries, relative to the window
in which it appears.

Forms
Form Functions

306 Palm OS Programmer’s API Reference

-> width Width of the gadget, expressed in pixels. Valid
values are 1 - 160.

-> height Height of the gadget, expressed in pixels.Valid
values are 1 - 160.

Result Returns a pointer to the new gadget object or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Comments A gadget is a custom user interface object. For more information, see
“Gadget Resource” on page 50.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmRemoveObject

FrmNewGsi

Purpose Create a new Graffiti shift indicator dynamically and install it in the
specified form.

Declared In Form.h

Prototype FrmGraffitiStateType *FrmNewGsi
(FormType **formPP, Coord x, Coord y)

Parameters <-> formPP Pointer to a pointer to the form in which the
new Graffiti shift indicator is installed. This
value is not a handle; that is, the old formPP
value is not necessarily valid after this function
returns because the form may be moved in
memory. In subsequent calls, always use the
new formPP value returned by this function.

-> x Horizontal coordinate of the upper-left corner
of the Graffiti shift indicator’s boundaries,
relative to the window in which it appears.

Forms
Form Functions

Palm OS Programmer’s API Reference 307

-> y Vertical coordinate of the upper-left corner of
the Graffiti shift indicator’s boundaries, relative
to the window in which it appears.

Result Returns a pointer to the new gadget object or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Comments In normal operation, the Graffiti shift indicator is drawn in the
lower-right portion of the screen when the user enters the shift
keystroke. You use this function if the Graffiti shift indicator needs
to be drawn in a nonstandard location. For example, the form
manager uses it to draw the shift indicator in a custom alert dialog
that contains a text field (FrmCustomResponseAlert).

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also FrmRemoveObject

FrmNewLabel

Purpose Create a new label object dynamically and install it in the specified
form.

Declared In Form.h

Prototype FormLabelType *FrmNewLabel (FormType **formPP,
UInt16 ID, const Char *textP, Coord x, Coord y,
FontID font)

Parameters <-> formPP Pointer to a pointer to the form in which the
new label is installed. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns
because the form may be moved in memory. In
subsequent calls, always use the new formPP
value returned by this function.

Forms
Form Functions

308 Palm OS Programmer’s API Reference

-> ID Symbolic ID of the label, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

-> textP Pointer to a string that provides the label text.
This string is copied into the label structure.

-> x Horizontal coordinate of the upper-left corner
of the label’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the label’s boundaries, relative to the window
in which it appears.

-> font Font with which to draw the label text.

Result Returns a pointer to the new label object or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also CtlValidatePointer, FrmRemoveObject

FrmPointInTitle

Purpose Check if a coordinate is within the bounds of the form’s title.

Declared In Form.h

Prototype Boolean FrmPointInTitle (const FormType *formP,
Coord x, Coord y)

Parameters -> formP Pointer to the form object (FormType
structure).

-> x, y Window-relative x and y coordinates.

Result Returns true if the specified coordinate is in the form’s title.

Compatibility Implemented only if 2.0 New Feature Set is present.

Forms
Form Functions

Palm OS Programmer’s API Reference 309

FrmPopupForm

Purpose Queues a frmLoadEvent and a frmOpenEvent for the specified
form.

Declared In Form.h

Prototype void FrmPopupForm (UInt16 formId)

Parameters -> formID Resource ID of form to open.

Result Returns nothing.

Comments This routine differs from FrmGotoForm in that the current form is
not closed. You can call FrmReturnToForm to close a form opened
by FrmPopupForm.

FrmRemoveObject

Purpose Remove the specified object from the specified form.

Declared In Form.h

Prototype Err FrmRemoveObject (FormType **formPP,
UInt16 objIndex)

Parameters <-> formPP Pointer to a pointer to the form from which this
function removes an object. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns. In
subsequent calls, always use the new formPP
value returned by this function.

-> objIndex The object to remove, specified as an index into
the list of objects installed in the form. You can
use the FrmGetObjectIndex function to
discover this value.

Result Returns 0 if no error.

Forms
Form Functions

310 Palm OS Programmer’s API Reference

Comments You can use this function to remove any form object (a bitmap,
control, list, and so on) and free the memory allocated to it within
the form data structure. The data structures for most form objects
are embedded within the form data structure memory chunk. This
function frees that memory and moves the other objects, if
necessary, to close up the memory “hole” and decrease the size of
the form chunk.

Note that this function does not free memory outside the form data
structure that may be allocated to an object, such as the memory
allocated to the string in an editable field object.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmNewBitmap, FrmNewForm, FrmNewGadget, FrmNewLabel,
CtlNewControl, FldNewField, LstNewList

FrmRestoreActiveState

Purpose Macro that restores the active window and form state.

Declared In Form.h

Prototype FrmRestoreActiveState (stateP)

Parameters -> stateP A pointer to the FormActiveStateType
structure that you passed to
FrmSaveActiveState when you saved the
state.

Result Returns zero on success.

Comments Use this function to restore the state of displayed forms to the state
that existed before you dynamically showed a new modal form. You
must have previously called FrmSaveActiveState to save the
state.

Compatibility Implemented only if 3.0 New Feature Set is present.

Forms
Form Functions

Palm OS Programmer’s API Reference 311

FrmReturnToForm

Purpose Erase and delete the currently active form and make the specified
form the active form.

Declared In Form.h

Prototype void FrmReturnToForm (UInt16 formId)

Parameters -> formID Resource ID of the form to return to.

Result Returns nothing.

Comments It is assumed that the form being returned to is already loaded into
memory and initialized. Passing a form ID of 0 returns to the first
form in the window list, which is the last form to be loaded.

FrmReturnToForm does not generate a frmCloseEvent when
called from a modal form’s event handler. It assumes that you have
already handled cleaning up your form’s variables since you are
explicitly calling FrmReturnToForm.

See Also FrmGotoForm, FrmPopupForm

Forms
Form Functions

312 Palm OS Programmer’s API Reference

FrmSaveActiveState

Purpose Macro that saves the active window and form state.

Declared In Form.h

Prototype FrmSaveActiveState (stateP)

Parameters <-> stateP A pointer to a FormActiveStateType
structure that is used to save the state. Pass the
same pointer to FrmRestoreActiveState to
restore the state. Treat the structure like a black
box; that is, don’t attempt to read it or write to
it.

Result Returns zero on success.

Comments Use this function to save the state of displayed forms before
dynamically showing a new modal form. Call
FrmRestoreActiveState to restore the state after you remove
the modal form.

Compatibility Implemented only if 3.0 New Feature Set is present.

FrmSaveAllForms

Purpose Send a frmSaveEvent to all open forms.

Declared In Form.h

Prototype void FrmSaveAllForms (void)

Parameters None.

Result Returns nothing.

See Also FrmCloseAllForms

Forms
Form Functions

Palm OS Programmer’s API Reference 313

FrmSetActiveForm

Purpose Set the active form. All input (key and pen) is directed to the active
form and all drawing occurs there.

Declared In Form.h

Prototype void FrmSetActiveForm (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns nothing.

Comments A penDownEvent outside the form but within the display area is
ignored.

Compatibility In Palm OS releases earlier than 3.5, this function generated a
winEnterEvent for the new form immediately following the
winExitEvent for the old form. Starting in Palm OS 3.5,
FrmSetActiveForm does not generate the winEnterEvent. The
winEnterEvent does not occur until the newly active form is
drawn.

See Also FrmGetActiveForm

FrmSetCategoryLabel

Purpose Set the category label displayed on the title line of a form. If the
form’s visible attribute is set, redraw the label.

Declared In Form.h

Prototype void FrmSetCategoryLabel (const FormType *formP,
UInt16 objIndex, Char *newLabel)

Parameters -> formP Pointer to the form object (FormType
structure).

Forms
Form Functions

314 Palm OS Programmer’s API Reference

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

-> newLabel Pointer to the name of the new category.

Result Returns nothing.

Comments The pointer to the new label (newLabel) is saved in the object.

FrmSetControlGroupSelection

Purpose Set the selected control in a group of controls.

Declared In Form.h

Prototype void FrmSetControlGroupSelection
(const FormType *formP, UInt8 groupNum,
UInt16 controlID)

Parameters -> formP Pointer to the form object (FormType
structure).

-> groupNum Control group number.

-> controlID ID of control to set.

Result Returns nothing.

Comments This function unsets all the other controls in the group. The display
is updated.

NOTE: FrmGetControlGroupSelection returns the
selection in a control group as an object index, not as an object
ID, which FrmSetControlGroupSelection uses to set the
selection.

See Also FrmGetControlGroupSelection

Forms
Form Functions

Palm OS Programmer’s API Reference 315

FrmSetControlValue

Purpose Set the current value of a control. If the control is visible, it’s
redrawn.

Declared In Form.h

Prototype void FrmSetControlValue (const FormType *formP,
UInt16 objIndex, Int16 newValue)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of the control in the form. You can obtain
this by using FrmGetObjectIndex.

-> newValue New value to set for the control. For sliders,
specify a value between the slider’s minimum
and maximum. For graphical controls, push
buttons, or check boxes, specify 0 for off,
nonzero for on.

Result Returns nothing.

Comments This function works only with graphical controls, sliders, push
buttons, and check boxes. If you set the value of any other type of
control, the behavior is undefined.

See Also FrmGetControlValue

Forms
Form Functions

316 Palm OS Programmer’s API Reference

FrmSetEventHandler

Purpose Registers the event handler callback routine for the specified form.

Declared In Form.h

Prototype void FrmSetEventHandler (FormType *formP,
FormEventHandlerType *handler)

Parameters -> formP Pointer to the form object (FormType
structure).

-> handler Address of the form event handler function,
FormEventHandlerType.

Result Returns nothing.

Comments FrmDispatchEvent calls this handler whenever it receives an
event for a specific form.

FrmSetEventHandler must be called right after a form resource is
loaded. The callback routine it registers is the mechanism for
dispatching events to an application. The tutorial explains how to
use callback routines.

FrmSetFocus

Purpose Set the focus of a form to the specified object.

Declared In Form.h

Prototype void FrmSetFocus (FormType *formP,
UInt16 fieldIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

Forms
Form Functions

Palm OS Programmer’s API Reference 317

-> fieldIndex Index of the object to get the focus in the form.
You can obtain this by using
FrmGetObjectIndex. You can pass the
constant noFocus so that no object has the
focus.

Result Returns nothing.

Comments You can set the focus to a field or table object. If the focus is set to a
field object, this function turns on the insertion point in the field by
calling FldGrabFocus internally.

See Also FrmGetFocus

FrmSetGadgetData

Purpose Store a data value in the data field of the gadget object.

Declared In Form.h

Prototype void FrmSetGadgetData (FormType *formP,
UInt16 objIndex, const void *data)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

-> data Application-defined value. This value is stored
into the data field of the gadget data structure
(FormGadgetType).

Result Returns nothing.

Comments Gadget objects provide a way for an application to attach custom
gadgetry to a form. Typically, the data field of a gadget object
contains a pointer to the custom object’s data structure.

See Also FrmGetGadgetData, FrmSetGadgetHandler

Forms
Form Functions

318 Palm OS Programmer’s API Reference

FrmSetGadgetHandler

Purpose Registers the gadget event handler callback routine for the specified
gadget on the specified form.

Declared In Form.h

Prototype void FrmSetGadgetHandler (FormType *formP,
UInt16 objIndex, FormGadgetHandlerType *attrP)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of a gadget object in the form. You can
obtain this by using FrmGetObjectIndex.

-> attrP Address of the callback function. See
FormGadgetHandlerType.

Result Returns nothing.

Comments This function sets the application-defined function that controls the
specified gadget’s behavior. This function is called when the gadget
needs to be drawn, erased, deleted, or needs to handle an event.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also FrmGetGadgetData, FrmSetGadgetData

Forms
Form Functions

Palm OS Programmer’s API Reference 319

FrmSetMenu

Purpose Change a form’s menu bar and make the new menu active.

Declared In Form.h

Prototype void FrmSetMenu (FormType *formP,
UInt16 menuRscID)

Parameters -> formP Pointer to the form object (FormType
structure).

-> menuRscID Resource ID of the menu.

Result Returns nothing.

Compatibility Implemented only if 2.0 New Feature Set is present.

FrmSetObjectBounds

Purpose Set the bounds or position of an object.

Declared In Form.h

Prototype void FrmSetObjectBounds (FormType *formP,
UInt16 objIndex, const RectangleType *bounds)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

-> bounds Window-relative bounds. For the following
objects, this sets only the position of the top-left
corner: label, bitmap, and Graffiti state
indicator.

Result Returns nothing.

Forms
Form Functions

320 Palm OS Programmer’s API Reference

Comments Doesn’t update the display.

Compatibility Implemented only if 2.0 New Feature Set is present.

FrmSetObjectPosition

Purpose Set the position of an object.

Declared In Form.h

Prototype void FrmSetObjectPosition (FormType *formP,
UInt16 objIndex, Coord x, Coord y)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

-> x Window-relative horizontal coordinate.

-> y Window-relative vertical coordinate.

Result Returns nothing.

See Also FrmGetObjectPosition, FrmGetObjectBounds

FrmSetTitle

Purpose Set the title of a form. If the form is visible, draw the new title.

Declared In Form.h

Prototype void FrmSetTitle (FormType *formP,
Char *newTitle)

Parameters -> formP Pointer to the form object (FormType
structure).

Forms
Form Functions

Palm OS Programmer’s API Reference 321

-> newTitle Pointer to the new title string.

Result Returns nothing.

Comments This function draws the title if the form is visible.

This function saves the pointer passed in newTitle; it does not
make a copy. The value of newTitle must not be a pointer to a
stack-based object.

Compatibility Earlier versions of this function redrew the title without first erasing
the old one. This problem was corrected in version 3.0 of Palm OS.

See Also FrmGetTitle, FrmCopyTitle, FrmCopyLabel

FrmShowObject

Purpose Set a form object as usable. If the form is visible, draw the object.

Declared In Form.h

Prototype void FrmShowObject (FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

Result Returns nothing.

Compatibility On versions of Palm OS prior to 3.5 this function doesn’t affect lists
or tables. On Palm OS 3.5 it operates correctly on lists but doesn’t
have any effect on tables. On Palm OS 4.0 it operates correctly on
both lists and tables.

Forms
Form Functions

322 Palm OS Programmer’s API Reference

If 3.5 New Feature Set is present and the object is an extended
gadget, this function calls the gadget’s callback with
formGadgetDrawCmd. See FormGadgetHandlerType.

See Also FrmHideObject

FrmUpdateForm

Purpose Send a frmUpdateEvent to the specified form.

Declared In Form.h

Prototype void FrmUpdateForm (UInt16 formId,
UInt16 updateCode)

Parameters -> formId Resource ID of form to update.

-> updateCode An application-defined code that can be used to
indicate what needs to be updated. Specify the
code frmRedrawUpdateCode to indicate that
the whole form should be redrawn.

Result Returns nothing.

Comments If the frmUpdateEvent posted by this function is handled by the
default form event handler, FrmHandleEvent, the updateCode
parameter is ignored. FrmHandleEvent always redraws the form.

If you handle the frmUpdateEvent in a custom event handler, you
can use the updateCode parameter any way you want. For
example, you might use it to indicate that only a certain part of the
form needs to be redrawn. If you do handle the frmUpdateEvent,
be sure to return true from your event handler so that the default
form handler does not also redraw the whole form.

If you do handle the frmUpdateEvent in a custom event handler,
be sure to handle the case where updateCode is set to
frmRedrawUpdateCode, and redraw the whole form. This event
(and code) is sent by the system when the whole form needs to be
redrawn because the display needs to be refreshed.

Forms
Form Functions

Palm OS Programmer’s API Reference 323

FrmUpdateScrollers

Purpose Visually update (show or hide) the field scroll arrow buttons.

Declared In Form.h

Prototype void FrmUpdateScrollers (FormType *formP,
UInt16 upIndex, UInt16 downIndex,
Boolean scrollableUp, Boolean scrollableDown)

Parameters -> formP Pointer to the form object (FormType
structure).

-> upIndex Index of the up-scroller button. You can obtain
this by using FrmGetObjectIndex.

-> downIndex Index of the down-scroller button. You can
obtain this by using FrmGetObjectIndex.

-> scrollableUp Set to true to make the up scroll arrow active
(shown), or false to hide it.

-> scrollableDown
Set to true to make the down scroll arrow
active (shown), or false to hide it.

Result Returns nothing.

FrmValidatePtr

Purpose Return true if the specified pointer references a valid form.

Declared In Form.h

Prototype Boolean FrmValidatePtr (const FormType *formP)

Parameters -> formP Pointer to be tested.

Result Returns true if the specified pointer is a non-NULL pointer to an
object having a valid form structure.

Forms
Form Functions

324 Palm OS Programmer’s API Reference

Comments This function is intended for debugging purposes only. Do not
include it in released code.

Forms
Application-Defined Functions

Palm OS Programmer’s API Reference 325

To distinguish between a window and a form in released code,
instead of using this function, look at the flag
windowFlags.dialog in the WindowType structure. This flag is
true if the window is a form.

Compatibility Implemented only if 3.0 New Feature Set is present.

FrmVisible

Purpose Return true if the form is visible (is drawn).

Declared In Form.h

Prototype Boolean FrmVisible (const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns true if the form is visible; false if it is not visible.

See Also FrmDrawForm, FrmEraseForm

Application-Defined Functions

FormCheckResponseFuncType

Purpose Callback function for FrmCustomResponseAlert.

Declared In Form.h

Prototype Boolean FormCheckResponseFuncType (Int16 button,
Char *attempt)

Parameters -> button The ID of the button that the user tapped.

Forms
Application-Defined Functions

326 Palm OS Programmer’s API Reference

-> attempt The string that the user entered in the alert
dialog.

Result Return true if the dialog should be dismissed. Return false if the
dialog should not be dismissed.

Comments This function is called at these times during the
FrmCustomResponseAlert routine:

• At the beginning of FrmCustomResponseAlert, this
function is called with a button ID of frmResponseCreate.
This constant indicates that the dialog is about to be
displayed, and your function should perform any necessary
initialization. For example, on a Japanese system, a password
dialog might need to disable the Japanese FEP. So it would
call TsmSetFepMode(NULL, tsmFepModeOff) in this
function.

• When the user has tapped a button on the dialog. The
function should process the attempt string. If the string is
valid input, the function should return true. If not, it should
return false to give the user a chance to re-enter the string.

• At the end of FrmCustomResponseAlert, this function is
called with a button ID of frmResponseQuit. This gives the
callback a change to perform any cleanup, such as re-
enabling the Japanese FEP.

Compatibility Implemented only if 3.5 New Feature Set is present.

Forms
Application-Defined Functions

Palm OS Programmer’s API Reference 327

FormEventHandlerType

Purpose The event handler callback routine for a form.

Declared In Form.h

Prototype Boolean FormEventHandlerType (EventType *eventP)

Parameters -> eventP Pointer to the form event (FormType
structure).

Result Must return true if this routine handled the event, otherwise
false.

Comments FrmDispatchEvent calls this handler whenever it receives an
event for the form.

This callback routine is the mechanism for dispatching events to
particular forms in an application. The callback is registered by the
routine FrmSetEventHandler.

FormGadgetHandlerType

Purpose The event handler callback for an extended gadget.

Declared In Form.h

Prototype Boolean (FormGadgetHandlerType)
(struct FormGadgetTypeInCallback *gadgetP,
UInt16 cmd, void *paramP)

Parameters -> gadgetP Pointer to the gadget structure. See
FormGadgetType.

-> cmd A constant that specifies what action the
handler should take. This can be one of the
following:

formGadgetDeleteCmd
Sent by FrmDeleteForm to indicate that

Forms
Application-Defined Functions

328 Palm OS Programmer’s API Reference

the gadget is being deleted and must
clean up any memory it has allocated or
perform other cleanup tasks.

formGadgetDrawCmd
Sent by FrmDrawForm and
FrmShowObject to indicate that the
gadget must be drawn or redrawn.

formGadgetEraseCmd
Sent by FrmHideObject to indicate that
the gadget is going to be erased.
FrmHideObject clears the visible
and usable flags for you. If you return
false, it also calls
WinEraseRectangle to erase the
gadget’s bounds.

formGadgetHandleEventCmd
Sent by FrmHandleEvent to indicate
that a gadget event has been received.
The paramP parameter contains the
pointer to the EventType structure.

-> paramP NULL except if cmd is
formGadgetHandleEventCmd. In that case,
this parameter holds the pointer to the
EventType structure containing the event.

Result Return true if the event was handed successfully; false
otherwise.

Comments If this function performs any drawing in response to the
formGadgetDrawCmd, it should set the gadget’s visible
attribute flag. (gadgetP->attr.visible = true). This flag
indicates that the gadget appears on the screen. If you don’t set the
visible flag, the gadget won’t be erased when FrmHideObject
is called. (FrmHideObject immediately returns if the object’s
visible flag is false.)

Note that if the function receives the formGadgetEraseCmd, it
may simply choose to perform any necessary cleanup and return
false. If the function returns false, FrmHideObject erases the

Forms
Application-Defined Functions

Palm OS Programmer’s API Reference 329

gadget’s bounding rectangle. If the function returns true, it must
erase the gadget area itself.

If this function receives a formGadgetHandleEventCmd, paramP
points one of two events: frmGadgetEnterEvent or
frmGadgetMiscEvent. The frmGadgetEnterEvent is passed
when there is a penDownEvent within the gadget’s bounds. This
function should track the pen and perform any necessary
highlighting. The frmGadgetMiscEvent is never sent by the
system. Your application may choose to use it if at any point it needs
to send data to the extended gadget. In this case, the event has one
or both of these fields defined: selector, an unsigned integer, and
dataP, a pointer to data.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also FrmSetGadgetHandler

Forms
Application-Defined Functions

330 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 331

12
Graffiti Shift
This chapter provides reference material for the Graffiti® Shift
facility, declared in the header file GraffitiShift.h.

GraffitiShift Functions

GsiEnable

Purpose Enable or disable the Graffiti-shift state indicator.

Declared In GraffitiShift.h

Prototype void GsiEnable (const Boolean enableIt)

Parameters enableIt true to enable, false to disable.

Result Returns nothing.

Comments Enabling the indicator makes it visible, disabling it makes the
insertion point invisible.

Graffit i Shift
GraffitiShift Functions

332 Palm OS Programmer’s API Reference

GsiEnabled

Purpose Return true if the Graffiti-shift state indicator is enabled, or false
if it’s disabled.

Declared In GraffitiShift.h

Prototype Boolean GsiEnabled (void)

Parameters None.

Result true if enabled, false if not.

GsiInitialize

Purpose Initialize the global variables used to manage the Graffiti-shift state
indicator.

Declared In GraffitiShift.h

Prototype void GsiInitialize (void)

Parameters None.

Result Returns nothing.

GsiSetLocation

Purpose Set the display-relative position of the Graffiti-shift state indicator.

Declared In GraffitiShift.h

Prototype void GsiSetLocation (const Int16 x, const Int16 y)

Parameters x, y Coordinate of left side and top of the indicator.

Result Returns nothing.

Graffit i Shift
GraffitiShift Functions

Palm OS Programmer’s API Reference 333

Comments The indicator is not redrawn by this routine.

GsiSetShiftState

Purpose Set the Graffiti-shift state indicator.

Declared In GraffitiShift.h

Prototype void GsiSetShiftState (const UInt16 lockFlags,
const UInt16 tempShift)

Parameters lockFlags glfCapsLock or glfNumLock.

tempShift The current temporary shift.

Result Returns nothing.

Comments This function affects only the state of the UI element, not the
underlying Graffiti engine.

See Also GrfSetState

Graffit i Shift
GraffitiShift Functions

334 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 335

13
Insertion Point
This chapter provides reference material for the insertion point API,
declared in the header file InsPoint.h.

For more information on the insertion point, see the section
“Insertion Point” in the Palm OS Programmer’s Companion, vol. I.

Insertion Point Functions

InsPtEnable

Purpose Enable or disable the insertion point. When the insertion point is
disabled, it’s invisible; when it’s enabled, it blinks.

Declared In InsPoint.h

Prototype void InsPtEnable (Boolean enableIt)

Parameters enableIt true = enable; false = disable

Result Returns nothing.

Comments This function is called by the Form functions when a text field loses
or gains the focus, and by the Windows function when a region of
the display is copied (WinCopyRectangle).

See Also InsPtEnabled

Insertion Point
Insertion Point Functions

336 Palm OS Programmer’s API Reference

InsPtEnabled

Purpose Return true if the insertion point is enabled or false if the
insertion point is disabled.

Declared In InsPoint.h

Prototype Boolean InsPtEnabled (void)

Parameters None.

Result Returns true if the insertion point is enabled (blinking); returns
false if the insertion point is disabled (invisible).

See Also InsPtEnable

InsPtGetHeight

Purpose Return the height of the insertion point.

Declared In InsPoint.h

Prototype Int16 InsPtGetHeight (void)

Parameters None.

Result Returns the height of the insertion point, in pixels.

Insertion Point
Insertion Point Functions

Palm OS Programmer’s API Reference 337

InsPtGetLocation

Purpose Return the screen-relative position of the insertion point.

Declared In InsPoint.h

Prototype void InsPtGetLocation (Int16 *x, Int16 *y)

Parameters x, y Pointer to top-left position of insertion point’s x
and y coordinate.

Result Returns nothing. Stores the location in x and y.

Comments This function is called by the Field functions. An application would
not normally call this function.

InsPtSetHeight

Purpose Set the height of the insertion point.

Declared In InsPoint.h

Prototype void InsPtSetHeight (const Int16 height)

Parameters height Height of the insertion point in pixels.

Result Returns nothing.

Comments Set the height of the insertion point to match the character height of
the font used in the field that the insertion point is in. When the
current font is changed, the insertion point height should be set to
the line height of the new font.

If the insertion point is visible when its height is changed, it’s erased
and redrawn with its new height.

See Also InsPtGetHeight

Insertion Point
Insertion Point Functions

338 Palm OS Programmer’s API Reference

InsPtSetLocation

Purpose Set the screen-relative position of the insertion point.

Declared In InsPoint.h

Prototype void InsPtSetLocation (const Int16 x,
const Int16 y)

Parameters x, y Number of pixels from the left side (top) of the
display.

Result Returns nothing.

Comments The position passed to this function is the location of the top-left
corner of the insertion point.

This function should be called only by the Field functions.

See Also InsPtGetLocation

Palm OS Programmer’s API Reference 339

14
Lists
This chapter provides information about list objects by discussing
these topics:

• List Data Structures

• List Resources

• List Functions

• Application-Defined Function

The header file List.h declares the API that this chapter describes.
For more information on lists, see the section “Lists” in the Palm OS
Programmer’s Companion, vol. I.

List Data Structures

ListAttrType
The ListAttrType bit field defines the visible characteristics of
the list.

typedef struct {
 UInt16 usable :1;
 UInt16 enabled :1;
 UInt16 visible :1;
 UInt16 poppedUp :1;
 UInt16 hasScrollBar :1.
 UInt16 search :1;
 UInt16 reserved :2;
} ListAttrType;

Lists
List Data Structures

340 Palm OS Programmer’s API Reference

Field Descriptions

ListType
The ListType structure is defined below.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the ListType structure. Never access
its structure members directly, or your code may break in future
versions. Use the information below for debugging purposes only.

usable Set to make the list usable.

If not set, the list is not considered part of the
current interface of the application, and does not
appear on screen.

enabled Not used.

visible Set when the list object is drawn, and cleared
when the list object is erased.

This attribute is set and cleared internally.

poppedUp Set to indicate that the choices are displayed in a
popup window.

This attribute is set and cleared internally.

hasScrollBar Set to indicate that the list has a scroll bar.

search Set to enable incremental search. If incremental
search is enabled, when the list is displayed the
user can navigate the list by entering up to five
characters. The list will scroll to present the first
list item that matches the entered characters.
This feature only works for popup lists, and
only works if the list is sorted and the list items
are available to the List Manager (that is, you
don’t pass NULL to LstSetListChoices).

reserved Reserved for system use.

Lists
List Data Structures

Palm OS Programmer’s API Reference 341

typedef struct {
 UInt16 id;
 RectangleType bounds;
 ListAttrType attr;
 Char **itemsText;
 Int16 numItems;
 Int16 currentItem;
 Int16 topItem;
 FontID font;
 UInt8 reserved;
 WinHandle popupWin;
 ListDrawDataFuncPtr drawItemCallback;
} ListType;

Field Descriptions

id The ID value, specified by the application
developer. This ID value is part of the event
data of lstEnterEvent and
lstSelectEvent.

bounds The bounds of the list, relative to the
window. For example, to access the bounds
of an object in a form whose ID is kObjectID:
{
RectangleType rect;
FormPtr formP =
FrmGetActiveForm();

FrmGetObjectBounds(formP,
FrmGetObjectIndex(formP,
kObjectID),
&rect);
}

attr The list attributes. See ListAttrType.

Lists
List Data Structures

342 Palm OS Programmer’s API Reference

itemsText A pointer to an array of pointers to the text of
the choices. Access with
LstGetSelectionText.
For example, to access the string specified by
itemNum in the list whose ID is
kChoiceList use the following:
{
Char *string;
Int16 itemNum;
...
string =
LstGetSelectionText(GetObjectPtr(
kChoicesList), itemNum);
}

where GetObjectPtr is the following:

static void *GetObjectPtr(UInt16
rsrcID){
FormPtr formP;

formP = FrmGetActiveForm();
return FrmGetObjectPtr(formP,
FrmGetObjectIndex(formP,
rsrcID));
}
If you use a callback routine to draw the list
items, note that the itemsText pointer you
supply to LstSetListChoices is passed to
your callback routine. See the comments
under ListDrawDataFuncType for tips on
using itemsText with a callback routine.

numItems The number of choices in the list. Access with
LstGetNumberOfItems.

currentItem The currently-selected list choice (0 = first
choice). Access with LstGetSelection.

topItem The first choice displayed in the list. Set this
field with LstSetTopItem.

Lists
List Resources

Palm OS Programmer’s API Reference 343

List Resources
The List Resource (tLST), and Popup Trigger Resource (tPUT) are
used together to represent an active list.

List Functions

LstDrawList

Purpose Sets the visible attribute of the list object to true, and draws the list
object if it is usable.

Declared In List.h

Prototype void LstDrawList (ListType *listP)

Parameters -> listP Pointer to a list object (ListType).

Result Returns nothing.

Comments If there are more choices than can be displayed, this function
ensures that the current selection is visible. The current selection is
highlighted. Note that this function does not ensure the current

font The ID of the font used to draw all list text
strings.

reserved Reserved for future use.

popupWin The handle of the window created when a
list is displayed by calling LstPopupList.

drawItemCallback Function used to draw an item in the list. If
NULL, the default drawing routine is used
instead. Set this field with
LstSetDrawFunction. See Application-
Defined Function.

Lists
List Functions

344 Palm OS Programmer’s API Reference

selection is visible; if you need to do this, call the
LstMakeItemVisible function.

If the list is disabled, it’s drawn grayed-out (strongly discouraged).
If it’s empty, nothing is drawn. If it’s not usable, nothing is drawn.

See Also FrmGetObjectPtr, LstPopupList, LstEraseList

LstEraseList

Purpose Erase a list object.

Declared In List.h

Prototype void LstEraseList (ListType *listP)

Parameters -> listP Pointer to a list object (ListType).

Result Returns nothing.

Comments The visible attribute is set to false by this function.

See Also FrmGetObjectPtr, LstDrawList

LstGetNumberOfItems

Purpose Return the number of items in a list.

Declared In List.h

Prototype Int16 LstGetNumberOfItems (const ListType *listP)

Parameters -> listP Pointer to a list object (ListType).

Result Returns the number of items in a list.

See Also FrmGetObjectPtr, LstSetListChoices

Lists
List Functions

Palm OS Programmer’s API Reference 345

LstGetSelection

Purpose Return the currently selected choice in the list.

Declared In List.h

Prototype Int16 LstGetSelection (const ListType *listP)

Parameters -> listP Pointer to a list object.

Result Returns the item number of the current list choice. The list choices
are numbered sequentially, starting with 0; Returns
noListSelection if none of the items are selected.

See Also FrmGetObjectPtr, LstSetListChoices, LstSetSelection,
LstGetSelectionText

LstGetSelectionText

Purpose Return a pointer to the text of the specified item in the list, or NULL
if no such item exists.

Declared In List.h

Prototype Char *LstGetSelectionText (const ListType *listP,
Int16 itemNum)

Parameters -> listP Pointer to a list object.

-> itemNum Item to select (0 = first item in list).

Result Returns a pointer to the text of the current selection, or NULL if out
of bounds.

Comments This is a pointer within ListType, not a copy. This function is only
usable if you supplied an array of strings and a count to

Lists
List Functions

346 Palm OS Programmer’s API Reference

LstSetListChoices; if your application uses a callback function
that dynamically generates the list text, this function returns NULL.

See Also FrmGetObjectPtr

LstGetTopItem

Purpose Returns the topmost visible item.

Declared In List.h

Prototype Int16 LstGetTopItem (const ListType *listP)

Parameters -> listP Pointer to a list object.

Result Returns the item number of the top item visible.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also LstGetSelection, LstSetTopItem

LstGetVisibleItems

Purpose Return the number of visible items.

Declared In List.h

Prototype Int16 LstGetVisibleItems (const ListType *listP)

Parameters -> listP Pointer to a list object.

Result The number of items visible.

Compatibility Implemented only if 2.0 New Feature Set is present.

Lists
List Functions

Palm OS Programmer’s API Reference 347

LstHandleEvent

Purpose Handle event in the specified list; the list object must have its
usable and visible attribute set to true.This routine handles
two type of events, penDownEvent and lstEnterEvent; see
Comments.

Declared In List.h

Prototype Boolean LstHandleEvent (ListType *listP,
const EventType *eventP)

Parameters -> listP Pointer to a list object (ListType).

-> eventP Pointer to an EventType structure.

Result Return true if the event was handled. The following cases will
result in a return value of true:

• A penDownEvent within the bounds of the list

• A lstEnterEvent with a list ID value that matches the list
ID in the list data structure

Comments When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the list object. If it is, this routine
tracks the pen until the pen comes up. If the pen comes up within
the bounds of the list, a lstEnterEvent is added to the event
queue, and the routine is exited.

When this routine receives a lstEnterEvent, it checks that the list
ID in the event record matches the ID of the specified list. If there is
a match, this routine creates and displays a popup window
containing the list’s choices and the routine is exited.

If a penDownEvent is received while the list’s popup window is
displayed and the pen position is outside the bounds of the popup
window, the window is dismissed. If the pen position is within the
bounds of the window, this routine tracks the pen until it comes up.
If the pen comes up outside the list object, a lstEnterEvent is
added to the event queue.

Lists
List Functions

348 Palm OS Programmer’s API Reference

LstMakeItemVisible

Purpose Make an item visible, preferably at the top. If the item is already
visible, make no changes.

Declared In List.h

Prototype void LstMakeItemVisible (ListType *listP,
Int16 itemNum)

Parameters -> listP Pointer to a list object (ListType).

-> itemNum Item to select (0 = first item in list).

Result Returns nothing.

Comments Does not visually update the list. You must call LstDrawList to
update it.

See Also FrmGetObjectPtr, LstSetSelection, LstSetTopItem,
LstDrawList

Lists
List Functions

Palm OS Programmer’s API Reference 349

LstNewList

Purpose Create a new list object dynamically and install it in the specified
form. This function can be used to create a new popup trigger and
its associated list.

Declared In List.h

Prototype Err LstNewList (void **formPP, UInt16 id,
Coord x, Coord y, Coord width, Coord height,
FontID font, Int16 visibleItems, Int16 triggerId)

Parameters <--> formPP Pointer to the pointer to the form in which the
new list is installed. This value is not a handle;
that is, the old formPP value is not necessarily
valid after this function returns. In subsequent
calls, always use the new formPP value
returned by this function.

-> id Symbolic ID of the list, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

-> x Horizontal coordinate of the upper-left corner
of the list’s boundaries, relative to the window
in which it appears.

-> y Vertical coordinate of the upper-left corner of
the list’s boundaries, relative to the window in
which it appears.

-> width Width of the list, expressed in pixels. Valid
values are 1 – 160.

-> height Height of the list, expressed in pixels.Valid
values are 1 – 160.

-> visibleItems
Number of list items that can be viewed
together.

Lists
List Functions

350 Palm OS Programmer’s API Reference

-> triggerId Symbolic ID of the popup trigger associated
with the new list (this ID is specified by the
developer). A nonzero value for triggerID
causes this function to create both the list and
its associated popup trigger. If the list isn’t a
popup list, pass 0 for triggerId.

Result Returns 0 if no error.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also LstDrawList, FrmRemoveObject

LstPopupList

Purpose Display a modal window that contains the items in the list.

Declared In List.h

Prototype Int16 LstPopupList (ListType *listP)

Parameters -> listP Pointer to a list object.

Result Returns the list item selected, or -1 if no item was selected.

Comments Saves the previously active window. Creates and deletes the new
popup window.

See Also FrmGetObjectPtr

Lists
List Functions

Palm OS Programmer’s API Reference 351

LstScrollList

Purpose Scroll the list up or down a number of times.

Declared In List.h

Prototype Boolean LstScrollList (ListType *listP,
WinDirectionType direction, Int16 itemCount)

Parameters -> listP Pointer to a list object.

-> direction Direction to scroll.

-> itemCount Items to scroll in direction.

Result Returns true when the list is actually scrolled, false otherwise.
May return false if a scroll past the end of the list is requested.

Compatibility Implemented only if 2.0 New Feature Set is present.

LstSetDrawFunction

Purpose Set a callback function to draw each item instead of drawing the
item’s text string.

Declared In List.h

Prototype void LstSetDrawFunction (ListType *listP,
ListDrawDataFuncPtr func)

Parameters -> listP Pointer to a list object.

-> func Pointer to a function that draws items.

Result Returns nothing.

Lists
List Functions

352 Palm OS Programmer’s API Reference

Comments This function also adjusts topItem to prevent a shrunken list from
being scrolled down too far. Use this function for custom draw
functionality.

See Also FrmGetObjectPtr, LstSetListChoices,
ListDrawDataFuncType

LstSetHeight

Purpose Set the number of items visible in a list.

Declared In List.h

Prototype void LstSetHeight (ListType *listP,
Int16 visibleItems)

Parameters -> listP Pointer to a list object.

-> visibleItems
Number of choices visible at once.

Result Returns nothing.

Comments This function doesn’t redraw the list if it’s already visible.

See Also FrmGetObjectPtr

LstSetListChoices

Purpose Set the items of a list to the array of text string pointers passed to
this function. This functions erases the old list items.

Declared In List.h

Prototype void LstSetListChoices (ListType *listP,
Char **itemsText, Int16 numItems)

Parameters -> listP Pointer to a list object.

Lists
List Functions

Palm OS Programmer’s API Reference 353

-> itemsText Pointer to an array of text strings. See
SysFormPointerArrayToStrings for one
way to create this array of strings.

-> numItems Number of choices in the list.

Result Returns nothing.

Comments You need to call the LstDrawList function to update the list if it is
displayed when you call this function.

NOTE: This function does not copy the strings in the
itemsText array, which means that you need to ensure that the
array is not moved or deallocated until after you are done with the
list.

If you use a callback routine to draw the items in your list, the
itemsText pointer is simply passed to that callback routine and is
not otherwise used by the List Manager code. See the comments
under ListDrawDataFuncType for tips on using the itemsText
parameter with a callback routine.

See Also FrmGetObjectPtr, LstSetSelection, LstSetTopItem,
LstDrawList, LstSetHeight, LstSetDrawFunction

LstSetPosition

Purpose Set the position of a list.

Declared In List.h

Prototype void LstSetPosition (ListType *listP, Coord x,
Coord y)

Parameters -> listP Pointer to a list object

-> x Left bound.

Lists
List Functions

354 Palm OS Programmer’s API Reference

-> y Top bound.

Result Returns nothing.

Comments The list is not redrawn. Don’t call this function when the list is
visible.

See Also FrmGetObjectPtr

LstSetSelection

Purpose Set the selection for a list.

Declared In List.h

Prototype void LstSetSelection (ListType *listP,
Int16 itemNum)

Parameters -> listP Pointer to a list object.

-> itemNum Item to select (0 = first item in list,
noListSelection = none).

Result Returns nothing.

Comments The old selection, if any, is unselected. If the list is visible, the
selected item is visually updated. The list is scrolled to the selection,
if necessary, as long as the list object is both visible and usable.

See Also FrmGetObjectPtr , LstSetTopItem

Lists
Application-Defined Function

Palm OS Programmer’s API Reference 355

LstSetTopItem

Purpose Set the item visible. The item cannot become the top item if it’s on
the last page.

Declared In List.h

Prototype void LstSetTopItem (ListType *listP,
Int16 itemNum)

Parameters -> listP Pointer to a list object.

-> itemNum Item to select (0 = first item in list). This must be
a valid item number.

Result Returns nothing.

Comments Does not update the display.

NOTE: The value you specify for itemNum must be in the range
0 to max-number-of-items.

See Also FrmGetObjectPtr, LstSetSelection, LstGetTopItem,
LstMakeItemVisible, LstDrawList, LstEraseList

Application-Defined Function
If you need to perform special drawing for items in the list, call
LstSetDrawFunction to set the list drawing callback function.
The ListDrawDataFuncType section documents the prototype
for the callback function you provide for drawing list items.

ListDrawDataFuncType

Purpose Callback function that you provide for drawing items in a list. This
function is called whenever the Palm OS needs to draw an element

Lists
Application-Defined Function

356 Palm OS Programmer’s API Reference

in the list. Your callback function declaration must match the
prototype shown here.

Declared In List.h

Prototype void ListDrawDataFuncType(Int16 itemNum,
RectangleType *bounds, Char **itemsText)

Parameters -> itemNum The number of the item to draw.

-> bounds The bounds of the list, relative to the window.

-> itemsText A pointer to an array of pointers to the text of
the list items. This is the pointer that you
supplied when calling LstSetListChoices.

Result Returns nothing.

Comments You can call LstSetDrawFunction to register your callback
function for the list, which means that your function will be called
to draw the list items, rather than using the built-in draw
functionality, which displays each item’s text string.

Your callback function is called whenever an item in the list needs to
be drawn. When it is called, the value of the itemNum parameter
specifies which item the function is to draw. The itemsText
parameter, which is what was supplied to LstSetListChoices,
doesn’t actually need to point to a list of strings: you can pass NULL,
or you can pass a pointer to anything that will be useful to your
drawing function. Note, however, that if you pass anything other
than a pointer to a list of strings when you call
LstSetListChoices, you must ensure that
LstGetSelectionText is never called since it assumes that this
pointer indicates an array of text items. In particular, if your list is
associated with a pop-up trigger you must handle the
popSelectEvent yourself before FrmHandleEvent gets a chance
at it since FrmHandleEvent calls LstGetSelectionText.

Lists
Application-Defined Function

Palm OS Programmer’s API Reference 357

WARNING! If the list is a popup list, the form that owns the list
is not active while the list is in a window. This means that you
cannot call the FrmGetActiveForm function. Instead, use
itemsText pointer to access any information that you need for
drawing. If you must access the form, use the FrmGetFormPtr
function.

Note that the list object manages which colors are used to draw the
items and how to draw selected versus unselected items. In almost
all circumstances, your drawing function does not have to be
concerned with these details.

However, if you do need to determine if the item is selected, you can
rely on the fact that the system has set the pen color to one of two
colors prior to calling your draw function:

• If the item is selected, the foreground color is
UIObjectSelectedForeground.

• If the item is not selected, the foreground color is
UIObjectForeground.

You can determine the foreground color that is in effect for the list
item by calling the WinSetForeColor function, which returns the
previous value of the foreground color. Remember to call
WinSetForeColor again to reset the foreground color to what it
was. For example:

itemColor = WinSetForeColor(myColor)
WinSetForeColor(itemColor)
selectColor = UiColorGetTableEntryIndex(
 UIObjectSelectedForeground)
if itemColor == selectColor
...

See Also LstSetDrawFunction, UIColorGetTableEntryIndex,
WinSetForeColor

Lists
Application-Defined Function

358 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 359

15
Menus
This chapter describes the menu API as declared in the header file
Menu.h. It discusses the following topics:

• Menu Data Structures

• Menu Constants

• Menu Resources

• Menu Functions

For more information on menus, see the section “Menus” on
page 105 in the Palm OS Programmer’s Companion, vol. I.

Menu Data Structures

MenuBarAttrType
The MenuBarAttrType bit field defines some characteristics of the
menu bar.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the MenuBarAttrType structure.
Never access its structure members directly, or your code may
break in future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 visible : 1;
 UInt16 commandPending : 1;
 UInt16 insPtEnabled : 1;
 UInt16 needsRecalc : 1;
} MenuBarAttrType;

Menus
Menu Data Structures

360 Palm OS Programmer’s API Reference

Your code should treat the MenuBarAttrType structure as opaque.
Use the functions specified in the descriptions below to retrieve and
set each value. Do not attempt to change structure member values
directly.

Field Descriptions

Compatibility The needsRecalc constant is present only if 3.5 New Feature Set is
present.

MenuCmdBarButtonType
The MenuCmdBarButtonType structure defines a button to be
displayed on the command toolbar. The buttonsData field of the
MenuCmdBarType structure contains an array of structures of this
type.

visible If set, the menu bar is drawn and visible on the
screen. This attribute is set as part of
MenuDrawMenu, which is called when the
menu is drawn.

commandPending If set, a menu command shortcut is in
progress. This bit is set during
MenuHandleEvent if the menu shortcut
keystroke is received. If the next key is
received before the timeout value is reached,
the key is examined to see if it is a valid menu
command.

insPtEnabled Stores the state of the insertion point at the
time the menu was drawn so that it can be
restored when the menu is erased.

needsRecalc If set, recalculate menu dimensions.

Menus
Menu Data Structures

Palm OS Programmer’s API Reference 361

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the MenuCmdBarButtonType
structure. Never access its structure members directly, or your
code may break in future versions. Use the information below for
debugging purposes only.

typedef struct {
 UInt16 bitmapId;
 Char name[menuCmdBarMaxTextLength];
 MenuCmdBarResultType resultType;
 UInt8 reserved;
 UInt32 result;
} MenuCmdBarButtonType;

Your code should treat the MenuCmdBarButtonType structure as
opaque. Do not attempt to change structure member values directly.
Instead, use MenuCmdBarAddButton to add a button to the
display. For the most part, the parameters to
MenuCmdBarAddButton are the same as the fields in the
MenuCmdBarButtonType, so there should be no need to alter
these fields directly.

MenuCmdBarGetButtonData can be called to access information
about command bar buttons.

Field Descriptions

bitmapId Resource ID of the bitmap to display on the button.
This bitmap should be 13 pixels high by 16 pixels
wide.

name Text to display in the status message when the
user taps the button.

resultType Specifies what type of data is contained in the
result field. See MenuCmdBarResultType.

Menus
Menu Data Structures

362 Palm OS Programmer’s API Reference

Compatibility This structure is defined only if 3.5 New Feature Set is present.

MenuCmdBarResultType
The MenuCmdBarResultType enum specifies how the result
field in the MenuCmdBarButtonType structure should be
interpreted.

typedef enum {
 menuCmdBarResultNone,
 menuCmdBarResultChar,
 menuCmdBarResultMenuItem,
 menuCmdBarResultNotify
} MenuCmdBarResultType;

Value Descriptions

Compatibility This enum is defined only if 3.5 New Feature Set is present.

reserved Reserved for future use.

result Specifies the data to send when the user clicks the
button. The data is interpreted as specified by the
resultType field. The result can be a shortcut
character to enqueue in a keyDownEvent, a menu
item ID to enqueue in a menuEvent, or a
notification to be broadcast.

menuCmdBarResultNone Send nothing.

menuCmdBarResultChar The result is a character to send in a
keyDownEvent.

menuCmdBarResultMenuItem The result is the ID of the menu
item to send in a menuEvent.

menuCmdBarResultNotify The result is a notification constant
to be broadcast using
SysNotifyBroadcastDeferred

Menus
Menu Data Structures

Palm OS Programmer’s API Reference 363

MenuCmdBarType
The MenuCmdBarType structure defines the command toolbar. This
command toolbar is allocated and displayed when the user draws
the shortcut stroke in the Graffiti® area. It is deallocated when
MenuEraseStatus is called, which occurs most frequently when
the timeout value has elapsed.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the MenuCmdBarType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct MenuCmdBarType {
 WinHandle bitsBehind;
 Int32 timeoutTick;
 Coord top;
 Int16 numButtons;
 Boolean insPtWasEnabled;
 Boolean gsiWasEnabled;
 Boolean feedbackMode;
 MenuCmdBarButtonType *buttonsData;
} MenuCmdBarType;

Your code should treat the MenuCmdBarType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

bitsBehind Handle for the window that contains the
region obscured by the command toolbar.

timeoutTick Timeout value given in system ticks. If the
user hasn’t specified a command after this
many ticks, the command toolbar is erased
from the screen and deallocated from
memory. This value also specifies how long
the status message is displayed after the user
successfully enters a command.

Menus
Menu Data Structures

364 Palm OS Programmer’s API Reference

Compatibility This structure is defined only if 3.5 New Feature Set is present.

MenuBarPtr
The MenuBarPtr type defines a pointer to a MenuBarType.

top The top bound of the command toolbar given
in display-relative coordinates. The
command toolbar is as wide as the screen and
displays at the bottom of the screen.

numButtons Number of buttons displayed on the
command toolbar.

insPtWasEnabled If true, the insertion point was enabled
before the command toolbar was displayed
and should be re-enabled when the command
toolbar is erased. If false, the insertion point
was disabled.

gsiWasEnabled If true, the Graffiti shift indicator was
enabled before the command toolbar was
displayed and should be re-enabled when the
command toolbar is erased. If false, the
Graffiti shift indicator was disabled.

feedbackMode If true, the command toolbar is currently
displaying a status message. The status
message is displayed to tell the user what
command is being performed. If false, the
command toolbar is awaiting input.

buttonsData The list of buttons to display on the command
toolbar. See MenuCmdBarButtonType.
Buttons are stored in this list sequentially
with the rightmost button at index 0. Access
with MenuCmdBarGetButtonData.

Menus
Menu Data Structures

Palm OS Programmer’s API Reference 365

typedef MenuBarType *MenuBarPtr;

MenuBarType
The MenuBarType structure defines the menu bar. There is one
menu bar per form.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the MenuBarType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 WinHandle barWin;
 WinHandle bitsBehind;
 WinHandle savedActiveWin;
 WinHandle bitsBehindStatus;
 MenuBarAttrType attr;
 Int16 curMenu;
 Int16 curItem;
 Int32 commandTick;
 Int16 numMenus;
 MenuPullDownPtr menus;
} MenuBarType;

Your code should treat the MenuBarType structure as opaque. Do
not attempt to change structure member values directly.

Field Descriptions

barWin Handle for the window that contains the
menu bar.

bitsBehind Handle for the window that contains the
region obscured by the menu bar.

savedActiveWin Handle where the currently active
window is saved so that it can be restored
when the menu is erased.

Menus
Menu Data Structures

366 Palm OS Programmer’s API Reference

Compatibility If 3.5 New Feature Set is present, the bitsBehindStatus and
commandTick fields are defined but are not used. Instead, the
bitsBehind and timeoutTick fields in MenuCmdBarType
define the save-behind window and the timeout value for the
command toolbar.

bitsBehindStatus Handle where the bits behind the status
message are saved so that when the
message display terminates, the bits can
be restored.

The status message is displayed when the
user activates the menu through the use
of the command keystroke.

attr Menu bar attributes. See
MenuBarAttrType.

curMenu Menu number for the currently visible
menu. Menus are numbered sequentially
starting with 0. The value is preserved
when the menu bar is dismissed. A value
of noMenuSelection indicates that
there is no current pull-down menu.

curItem Item number of the currently highlighted
menu item. The items in each menu are
numbered sequentially, starting with
zero.

A value of noMenuItemSelection
indicates that there is no current item
selected.

commandTick Tick count at which the status message
should be erased.

numMenus Number of pull-down menus on the
menu bar.

menus Array of MenuPullDownType structures.

Menus
Menu Data Structures

Palm OS Programmer’s API Reference 367

MenuItemType
The MenuItemType structure defines a specific item within a
menu. The items array in the MenuPullDownType structure
contains one MenuItemType structure for each menu item in the
pull-down menu.

If 3.5 New Feature Set is present, you can add a menu item to a pull-
down menu programmatically using MenuAddItem.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the MenuItemType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

Menus
Menu Data Structures

368 Palm OS Programmer’s API Reference

typedef struct {
 UInt16 id;
 Char command;
 UInt8 hidden: 1;
 UInt8 reserved: 7;
 Char *itemStr;
} MenuItemType;

Field Descriptions

Compatibility The hidden and reserved fields are defined only if 3.5 New
Feature Set is present.

id ID value you specified when you created the menu
item. This ID value is included as part of the event data
of a menuEvent.

command Shortcut key. If you provide shortcuts, make sure that
each shortcut is unique among all commands available
at that time.

hidden If true, the menu item is hidden. If false, it is
displayed. You can set and clear this value using
MenuHideItem and MenuShowItem.

reserved Reserved for future use.

itemStr Pointer to the text to display for this menu item,
including the shortcut key. To include a shortcut key,
begin the string with the item’s text, then type a tab
character, and then the item’s shortcut key.

To create a separator bar, create a one-character string
containing the MenuSeparatorChar constant.

Menus
Menu Data Structures

Palm OS Programmer’s API Reference 369

MenuPullDownPtr
The MenuPullDownPtr type defines a pointer to a
MenuPullDownType.

typedef MenuPullDownType *MenuPullDownPtr;

MenuPullDownType
The MenuPullDownType structure defines a specific menu
accessed from the menu bar. The menus array in the MenuBarType
structure contains one MenuPullDownType structure for each pull-
down menu associated with the menu bar.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the MenuPullDownType structure.
Never access its structure members directly, or your code may
break in future versions. Use the information below for debugging
purposes only.

typedef struct {
 WinHandle menuWin;
 RectangleType bounds;
 WinHandle bitsBehind;
 RectangleType titleBounds;
 Char *title;
 UInt16 hidden : 1;
 UInt16 numItems : 15;
 MenuItemType *items;
} MenuPullDownType;

Field Descriptions

menuWin Handle for the window that contains the menu.

bounds Position and size, in pixels, of the pull-down
menu.

bitsBehind Handle of a window that contains the region
obscured by the menu.

Menus
Menu Constants

370 Palm OS Programmer’s API Reference

Compatibility The hidden field is defined only if 3.5 New Feature Set is present.

Menu Constants

title The menu title (null-terminated string) displayed
in the menu bar.

titleBounds Position and size, in pixels, of the title in the menu
bar.

hidden If true, the menu is hidden; if false, it is
displayed. This field is not currently used.

numItems Number of items in the menu. Separators count as
items.

items Array of MenuItemType structures.

Constant Value Description

noMenuSelection -1 The curMenu field of MenuBarType is set to
this when there is no currently selected
menu.

noMenuItemSelection -1 The curItem field of MenuBarType is set to
this when there is no currently selected
menu item.

separatorItemSelection -2 The curItem field of MenuBarType is set to
this when a menu separator item is selected.

MenuSeparatorChar '–' Special character indicating that the menu
item is a bar used to separate groups of
related menu items. The first character of the
itemStr string in MenuItemType is set to
this.

Menus
Menu Resources

Palm OS Programmer’s API Reference 371

Menu Resources
The menu bar (MBAR) and pull-down menu (MENU) resources are
used jointly to represent a menu object on screen. See “Menus and
Menu Bars” in Chapter 2, “Palm OS Resources.”

Menu Functions

MenuAddItem

Purpose Adds an item to the currently active menu.

Declared In Menu.h

Prototype Err MenuAddItem (UInt16 positionId, UInt16 id,
Char cmd, const Char *textP)

Parameters -> positionId ID of an existing menu item. The new menu
item is added after this menu item.

-> id ID value to use for the new menu item.

-> cmd Shortcut key. If you provide shortcuts, make
sure that each shortcut is unique among all
commands available at that time.

-> textP Pointer to the text to display for this menu item,
including the shortcut key. To include a
shortcut key, begin the string with the item’s
text, then type a tab character, and then the
item’s shortcut key.

To create a separator bar, create a one-character
string containing the MenuSeparatorChar
constant.

Result Returns 0 upon success or one of the following if an error occurs:

menuErrNoMenu The textP parameter is NULL.

Menus
Menu Functions

372 Palm OS Programmer’s API Reference

menuErrSameId The menu already contains an item with the ID
id.

menuErrNotFound
The menu doesn’t contain an item with the ID
positionId.

May display a fatal error message if there is no current menu.

Comments This function creates a new MenuItemType structure and adds it to
the MenuBarType’s item list.

You should call this function only in response to a
menuOpenEvent. This event is generated when the menu is first
made active. In general, a form’s menu becomes active the first time
a keyDownEvent with a vchrMenu or vchrCommand is generated,
and it remains active until a new form (including a modal form or
alert panel) is displayed or until FrmSetMenu is called to change
the form’s menu. Palm OS® user interface guidelines discourage
adding or hiding menu items at any time other than when the menu
is first made active.

Compatibility Implemented only if 3.5 New Feature Set is present.

MenuCmdBarAddButton

Purpose Defines a button to be displayed on the command toolbar.

Declared In Menu.h

Prototype Err MenuCmdBarAddButton (UInt8 where,
UInt16 bitmapId, MenuCmdBarResultType resultType,
UInt32 result, Char *nameP)

Parameters -> where Either menuCmdBarOnLeft to add the button
to the left of the other buttons on the command
toolbar, menuCmdBarOnRight to add it to the
right of the other buttons, or a number
indicating the exact position of the button.
Button positions are numbered from right to
left, and the rightmost position is number 1.

Menus
Menu Functions

Palm OS Programmer’s API Reference 373

-> bitmapId Resource ID of the bitmap to display on the
button. The bitmap’s dimensions should be 13
pixels high by 16 pixels wide.

-> resultType The type of data contained in the result
parameter. See MenuCmdBarResultType.

-> result The data to send when the user taps this
button. This can be a character, a menu item ID,
or a notification constant.

-> nameP Pointer to the text to display in the status
message if the user taps the button. If NULL, the
text is taken from the menu item that matches
the ID or shortcut character contained in
result, if a match is found.

If you supply a text buffer for this parameter,
MenuCmdBarAddButton makes a copy of the
buffer.

Result Returns 0 upon success, or one of the following error codes:

menuErrOutOfMemory
There is not enough memory available to
perform the operation.

menuErrTooManyItems
The command toolbar already has the
maximum number of buttons allowed
(currently 8).

Comments Call this function in response to a menuCmdBarOpenEvent or to
the notification sysNotifyMenuCmdBarOpenEvent. Both of these
signal that the user has entered the command keystroke and the
command toolbar is about to open. Your response should be to add
buttons to the toolbar and to return false, indicating that you have
not completely handled the event.

The sysNotifyMenuCmdBarOpenEvent notification is intended
to be used only by shared libraries, system extensions, and other
code resources that do not use an event loop. If you’re writing an
application, always respond to the event instead of the notification;
an application should only add buttons to the toolbar if it is the

Menus
Menu Functions

374 Palm OS Programmer’s API Reference

current application. If you register for the notification, you receive it
each time the command toolbar is displayed, whether your
application is active or not.

Note that the command toolbar is allocated each time it is opened
and is deallocated when it is erased from the screen.

There is a limited amount of space in which to display buttons on
the command toolbar. You should limit the number of buttons to
four or five. The maximum allowed by the system is eight, but you
should leave space for the status message that appears after the user
chooses an action. Buttons should be contextual; for example, the
field code only displays a paste button if there is text on the
clipboard. Bitmaps for the buttons should be 16 X 13 pixels.

If a field has focus when the command toolbar is opened, the field
manager adds buttons for cut, copy, paste, and undo. If your
application does not want this default behavior, set the
preventFieldButtons field in the menuCmdBarOpenEvent
structure to true. (Note that there is no way to prevent the field
buttons from being drawn from within a notification handler.)

The following bitmaps for command toolbar buttons are defined in
UIResources.h. The system and the built-in applications use
these bitmaps to represent the commands listed in the table. Your
application should also use them if it performs the same actions. If
you use any of these buttons, add them in the order shown from
right to left. (For example, BarDeleteBitmap, if used, should
always be the rightmost button.)

Bitmap Command

BarDeleteBitmap Delete record.

BarPasteBitmap Paste clipboard contents at insertion point.

BarCopyBitmap Copy selection.

BarCutBitmap Cut selection.

BarUndoBitmap Undo previous action.

BarSecureBitmap Show Security dialog.

Menus
Menu Functions

Palm OS Programmer’s API Reference 375

It is best to add buttons on the left side. If you add buttons to the
right, this function moves all existing buttons over one position to
the left. You can also specify an exact position for the where
parameter. The positions are numbered from right to left with the
rightmost position being 1. If you specify an exact position, the
function leaves space for the other buttons. For example, if you
specify position 3 and there are no buttons displayed at positions 1
and 2, there will be blank spots to the right of your button.

The result and resultType parameters specify what the result
should be if the user taps the button. result contains the actual
data, and resultType contains a constant that specifies the type of
data in result. Typically, the result is to enqueue a menuEvent. In
this case, resultType is menuCmdBarResultMenuItem and the
result is the ID of the menu item that should included in the
event.

You may also specify the shortcut character instead of the menu ID;
however, doing so is inefficient. When result is a shortcut
character, the MenuHandleEvent function enqueues a
keyDownEvent with the character in result. During the next
cycle of the event loop, MenuHandleEvent enqueues a
menuEvent in response to the keyDownEvent. Thus, it is better to
have your button enqueue the menuEvent directly.

If you call MenuCmdBarAddButton outside of an application, you
might not know of any menu items in the active menu (unless your
code has added one using MenuAddItem). In this case, specify a
notification to be broadcast. The notification is broadcast at the top
of the next event loop, and it must contain no custom data.
(Applications may also use the notification result type.)

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also MenuCmdBarDisplay, MenuCmdBarGetButtonData

BarBeamBitmap Beam current record.

BarInfoBitmap Show Info dialog (Launcher).

Bitmap Command

Menus
Menu Functions

376 Palm OS Programmer’s API Reference

MenuCmdBarDisplay

Purpose Displays the command toolbar.

Declared In Menu.h

Prototype void MenuCmdBarDisplay (void)

Parameters None

Result Returns nothing.

Comments This function displays the command toolbar when the user enters
the command keystroke. You normally do not call this function in
your own code. The form manager calls it at the end of its handling
of menuCmdBarOpenEvent.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also MenuCmdBarAddButton, MenuCmdBarGetButtonData

MenuCmdBarGetButtonData

Purpose Gets the data for a given command button.

Declared In Menu.h

Prototype Boolean MenuCmdBarGetButtonData
(Int16 buttonIndex, UInt16 *bitmapIdP,
MenuCmdBarResultType *resultTypeP,
UInt32 *resultP, Char *nameP)

Parameters -> buttonIndex Index of the button for which you want to
obtain information. Buttons are ordered from
right to left, with the rightmost button at index
0.

Menus
Menu Functions

Palm OS Programmer’s API Reference 377

<- bitmapIdP The resource ID of the bitmap displayed on the
button. Pass NULL if you don’t want to retrieve
this value.

<- resultTypeP The type of action this button takes. Pass NULL
if you don’t want to retrieve this value.

<- resultP The result of tapping the button. Pass NULL if
you don’t want to retrieve this information.

<- nameP The text displayed in the status message when
this button is tapped. Pass NULL if you don’t
want to retrieve this information. If not NULL,
nameP must point to a string of
menuCmdBarMaxTextLength size.

Result Returns true if the information was retrieved successfully, false
if there is no command toolbar or if there is no button at
buttonIndex.

Comments You can use this function to retrieve information about the buttons
that are displayed on the command toolbar. If the command toolbar
has not yet been initialized, this function returns false.

Note that the command toolbar is allocated when the user enters the
command keystroke and deallocated when MenuEraseStatus is
called. Thus, the only logical place to call
MenuCmdBarGetButtonData is in response to a
menuCmdBarOpenEvent or sysNotifyMenuCmdBarOpenEvent
notification.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also MenuCmdBarDisplay, MenuCmdBarAddButton

Menus
Menu Functions

378 Palm OS Programmer’s API Reference

MenuDispose

Purpose Releases any memory allocated to the menu and the command
status and restore any saved bits to the screen.

Declared In Menu.h

Prototype void MenuDispose (MenuBarType *menuP)

Parameters -> menuP Pointer to the menu object to dispose. (See
MenuBarType.) If NULL, this function returns
immediately.

Result Returns nothing.

Comments Most applications do not need to call this function directly.
MenuDispose is called by the system when the form that contains
the menu is no longer the active form, when the form that contains
the menu is freed, and when FrmSetMenu is called to change the
form’s menu bar.

See Also MenuInit, MenuDrawMenu

MenuDrawMenu

Purpose Draws the current menu bar and the last pull-down that was visible.

Declared In Menu.h

Prototype void MenuDrawMenu (MenuBarType *menuP)

Parameters -> menuP Pointer to a MenuBarType. Must not be NULL.

Result Returns nothing.

Comments Most applications do not need to call this function directly.
MenuHandleEvent calls MenuDrawMenu when the user taps the

Menus
Menu Functions

Palm OS Programmer’s API Reference 379

Menu silk-screen button (or taps the form’s title on Palm OS 3.5 and
higher).

The menu bar and the pull-down menu are drawn in front of all the
application windows. The state of the insertion point, the bits that
are obscured by the menu bar and the pull-down menu, and the
currently active window are saved before the menu is drawn. These
are all restored when the menu is erased.

A menu keeps track of the last pull-down menu displayed for as
long as the menu is active. A menu loses its active status under these
conditions:

• When FrmSetMenu is called to change the active menu on
the form.

• When a new form, even a modal form or alert panel, becomes
active.

Suppose a user selects your application’s About item from the
Options menu then clicks the OK button to return to the main form.
When the About dialog is displayed, it becomes the active form,
which causes the main form’s menu state to be erased. This menu
state is not restored when the main form becomes active again. The
next time MenuDrawMenu is called (that is, the next time the user
taps the Menu silk-screen button), the menu bar is displayed as it
was before, and the first pull-down menu listed in the menu bar is
displayed instead of the Options pull-down menu.

See Also MenuInit, MenuDispose

Menus
Menu Functions

380 Palm OS Programmer’s API Reference

MenuEraseStatus

Purpose Erases the menu command status.

Declared In Menu.h

Prototype void MenuEraseStatus (MenuBarType *menuP)

Parameters -> menuP Pointer to a MenuBarType, or NULL for the
current menu.

Result Returns nothing.

Comments When the user selects a menu command using the command
keystroke, the command toolbar or status message is displayed at
the bottom of the screen. MenuEraseStatus erases the toolbar or
status message.

Under most circumstances, you do not need to call this function
explicitly—just let the current menu command status remove itself
automatically. Otherwise, you may cause text to be erased before the
user has a chance to see it.

You need to call MenuEraseStatus explicitly only if the command
toolbar covers something that is going to be changed by the menu
command the user has selected. For example, if the user selects a
command that displays a new form, call MenuEraseStatus before
executing the command. Also, if the command performs some
drawing in the lower portion of the window, call
MenuEraseStatus before performing the drawing function.

Compatibility The exact behavior when a menu shortcut character is entered
depends on which version of the operating system is running. In
versions prior to release 3.5, the system displays the string
“Command:” in the lower-left portion of the screen when the user
enters the Graffiti command keystroke.

In Palm OS 3.5 and higher, entering the Graffiti command keystroke
displays the command toolbar. This toolbar is the entire width of the
screen and it displays buttons that the user can tap instead of
entering another keystroke. If the user taps a button or enters a

Menus
Menu Functions

Palm OS Programmer’s API Reference 381

character that matches a shortcut character for an item on the active
menu, a status message is displayed in the toolbar while the
command is executed. Calling MenuEraseStatus on Palm OS 3.5
and higher deallocates the command toolbar data structure as well
as erasing the command toolbar from the screen.

Because the command toolbar takes up more of the display than the
pre-Palm OS 3.5 status message, you may find you need to call
MenuEraseStatus more frequently in Palm OS 3.5 than in earlier
versions.

See Also MenuInit

MenuGetActiveMenu

Purpose Returns a pointer to the currently active menu.

Declared In Menu.h

Prototype MenuBarType *MenuGetActiveMenu (void)

Parameters None.

Result Returns a pointer to the currently active menu, or NULL if there is
none.

Comments An active menu is not necessarily visible on the screen. A menu
might be active but not visible, for example, if a command shortcut
has been entered. In general, a form’s menu becomes active the first
time a keyDownEvent with a vchrMenu or vchrCommand is
generated, and it remains active until a new form (including a
modal form or alert panel) is displayed or until FrmSetMenu is
called to change the form’s menu.

Applications that perform custom drawing to a window often check
to see if the menu is visible to ensure that they don’t draw on top of
the menu. See “Checking Menu Visibility” on page 107 of the Palm

Menus
Menu Functions

382 Palm OS Programmer’s API Reference

OS Programmer’s Companion, vol. I for instructions on how to verify
a menu’s visibility.

See Also MenuHandleEvent, MenuSetActiveMenu

MenuHandleEvent

Purpose Handles events in the current menu. This routine handles two types
of events, penDownEvent and keyDownEvent.

Declared In Menu.h

Prototype Boolean MenuHandleEvent (MenuBarType *menuP,
EventType *event, UInt16 *error)

Parameters -> menuP Pointer to a MenuBarType data structure.

-> event Pointer to an EventType structure.

-> error Error (or 0 if no error). Currently this function
always sets error to zero.

Result Returns true if the event is handled; that is, if the event is a
penDownEvent within the menu bar or the menu, or the event is a
keyDownEvent that the menu supports. Returns false on any
other event.

Comments When a penDownEvent is received in the menu bar,
MenuHandleEvent tracks the pen until it comes up. If the pen
comes up within the bounds of the menu bar, the selected title is
inverted and the appropriate pull-down menu is drawn. Any
previous pull-down menu is erased. If the pen comes up outside of
the menu bar and pull-down menu, the menu is erased.

When a penDownEvent is received in a pull-down menu,
MenuHandleEvent tracks the pen until it comes up. If the pen
comes up within the bounds of the menu, a menuEvent containing
the resource ID of the selected menu item is added to the event
queue. If the pen comes up outside of the bounds of the menu and
menu bar, the menu is erased.

Menus
Menu Functions

Palm OS Programmer’s API Reference 383

If a keyDownEvent is received with a vchrMenu, the menu is
drawn if it is not visible and erased if it is visible.

If a keyDownEvent is received with a vchrCommand, a command
shortcut is in progress. Command shortcuts are handled differently
depending on which version of Palm OS is running. On versions
earlier than 3.5, the next keyDownEvent is checked to see if it is a
valid menu shortcut. If so, a menuEvent is added to the event
queue.

If a keyDownEvent is received with a vchrCommand on Palm OS
3.5 and higher, MenuHandleEvent enqueues a
menuCmdBarOpenEvent if the command toolbar is not already
open. The menuCmdBarOpenEvent provides a chance for
applications to add their own buttons to the command toolbar. The
next event might be either a keyDownEvent with a character that
completes the shortcut or a penDownEvent on one of the buttons
on the toolbar. The keyDownEvent is processed as with the earlier
releases— if it is a valid menu shortcut, a menuEvent is added to
the event queue. If the next event is a penDownEvent, the pen is
tracked until it comes up. If the pen comes up within the bounds of
a button, the appropriate action is taken. See the description of
MenuCmdBarAddButton for more information.

In Palm OS version 3.5 or higher, if either the vchrMenu or the
vchrCommand event causes a menu to be activated and initialized
for the first time, a menuOpenEvent containing the reason the
menu was initialized (menuButtonCause for a vchrMenu or
menuCommandCause for a vchrCommand) is added to the event
queue, and then the current event is added after it.

Menus
Menu Functions

384 Palm OS Programmer’s API Reference

MenuHideItem

Purpose Makes the specified menu item hidden.

Declared In Menu.h

Prototype Boolean MenuHideItem (UInt16 id)

Parameters -> id ID of the menu item to hide.

Result Returns true if the hidden attribute of the specified item was
successfully enabled, false otherwise.

Comments You should call this function only in response to a
menuOpenEvent. This event is generated when the menu is first
made active. In general, a form’s menu becomes active the first time
a keyDownEvent with a vchrMenu or vchrCommand is generated,
and it remains active until a new form (including a modal form or
alert panel) is displayed or until FrmSetMenu is called to change
the form’s menu. Palm OS user interface guidelines discourage
adding or hiding menu items at any time other than when the menu
is first made active.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also MenuShowItem

Menus
Menu Functions

Palm OS Programmer’s API Reference 385

MenuInit

Purpose Loads a menu resource from a resource file.

Declared In Menu.h

Prototype MenuBarType *MenuInit (UInt16 resourceId)

Parameters -> resourceId ID that identifies the menu resource.

Result Returns the pointer to a memory block allocated to hold the menu
resource (a pointer to a MenuBarType).

Comments The menu is not usable until MenuSetActiveMenu is called.

Typically, you do not need to call this function directly. A form
stores the resource ID of the menu associated with it and initializes
that menu as necessary. If you want to change the form’s menu, call
FrmSetMenu, which handles disposing of the form’s current menu,
associating the new menu with the form, and initializing when
needed.

See Also MenuSetActiveMenu, MenuDispose

MenuSetActiveMenu

Purpose Sets the current menu.

Declared In Menu.h

Prototype MenuBarType *MenuSetActiveMenu
(MenuBarType *menuP)

Parameters -> menuP Pointer to the memory block that contains the
new menu, or NULL for none.

Result Returns a pointer to the menu that was active before the new menu
was set, or NULL if no menu was active.

Menus
Menu Functions

386 Palm OS Programmer’s API Reference

Comments This function sets the active menu but does not associate it with a
form. It’s recommended that you call FrmSetMenu instead of
MenuSetActiveMenu. FrmSetMenu sets the active menu, frees the
old menu, and associates the newly active menu with the form,
which means the menu will be freed when the form is freed.

See Also MenuGetActiveMenu

MenuSetActiveMenuRscID

Purpose Sets the current menu by resource ID.

Declared In Menu.h

Prototype void MenuSetActiveMenuRscID (UInt16 resourceId)

Parameters -> resourceId Resource ID of the menu to be made active.

Result Returns nothing.

Comments This function is similar to MenuSetActiveMenu except that you
pass the menu’s resource ID instead of a pointer to a menu
structure. It is used as an optimization; with MenuSetActiveMenu,
you must initialize the menu before making it active. Potentially, the
application may exit before the menu is needed, making this
memory allocation unnecessary. MenuSetActiveMenuRscID
simply stores the resource ID. The next time a menu is requested,
the menu is initialized from this resource.

It’s recommended that you call FrmSetMenu instead of calling this
function for the reasons given in MenuSetActiveMenu.

Compatibility Implemented only if “2.0 New Feature Set” is present.

Menus
Menu Functions

Palm OS Programmer’s API Reference 387

MenuShowItem

Purpose Makes the specified menu item visible.

Declared In Menu.h

Prototype Boolean MenuShowItem (UInt16 id)

Parameters -> id ID of the menu item to display.

Result Returns true if the hidden attribute of the specified item was
successfully disabled, false otherwise.

Menus
Menu Functions

388 Palm OS Programmer’s API Reference

Comments You should call this function only in response to a
menuOpenEvent. This event is generated when the menu is first
made active. In general, a form’s menu becomes active the first time
a keyDownEvent with a vchrMenu or vchrCommand is generated,
and it remains active until a new form (including a modal form or
alert panel) is displayed or until FrmSetMenu is called to change
the form’s menu. Palm OS user interface guidelines discourage
adding or hiding menu items at any time other than when the menu
is first made active.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also MenuHideItem

Palm OS Programmer’s API Reference 389

16
Private Records
This chapter describes the private records API as declared in
PrivateRecords.h. It discusses the following topics:

• Private Record Data Structures

• Private Record Functions

Private Record Data Structures

privateRecordViewEnum
The privateRecordViewEnum enumerated type provides the
available choices for displaying private records.

typedef enum privateRecordViewEnum {
 showPrivateRecords = 0x00,
 maskPrivateRecords,
 hidePrivateRecords
} privateRecordViewEnum;

Value Descriptions

showPrivateRecords Display private records in the user
interface.

maskPrivateRecords Show a shaded rectangle in place of a
private record.

hidePrivateRecords Hide private records and provide no
indication in the user interface that they
exist.

Private Records
Private Record Functions

390 Palm OS Programmer’s API Reference

Private Record Functions

SecSelectViewStatus

Purpose Display a form that allows the user to select whether to hide, show,
or mask private records.

Declared In PrivateRecords.h

Prototype privateRecordViewEnum SecSelectViewStatus (void)

Parameters None

Result Returns a constant that indicates which option the user selected. See
privateRecordViewEnum.

Comments This function displays a dialog that allows users to change the
preference prefShowPrivateRecords, which controls how
private records are displayed.

When the user taps the OK button in this dialog, SecVerifyPW is
called to see if the user changed the preference setting and, if so, to
prompt the user to enter the appropriate password.

After calling this function, your code should check the return value
or the value of prefShowPrivateRecords and mask, display, or
hide the private records accordingly. See the description of
TblSetRowMasked for a partial example.

Compatibility Implemented only if 3.5 New Feature Set is present.

Private Records
Private Record Functions

Palm OS Programmer’s API Reference 391

SecVerifyPW

Purpose Display a password dialog, verify the password, and change the
private records preference.

Declared In PrivateRecords.h

Prototype Boolean SecVerifyPW
(privateRecordViewEnum newSecLevel)

Parameters -> newSecLevel The security level (display, hide, or mask)
selected on the private records dialog.

Result Returns true if the prefShowPrivateRecords preference was
successfully changed, false if not.

Comments This function checks newSecLevel against the current value for
the preference. If the two values differ and newSecLevel indicates
a decrease in security, a dialog is displayed prompting the user to
enter a password. (Hidden is considered the most secure, followed
by masked. Showing private records is considered the least secure.)
If the password is entered successfully, the preference is changed.

This function also displays an alert message if the security level has
changed to either hidden or masked.

Compatibility Implemented only if 3.5 New Feature Set is present.

Private Records
Private Record Functions

392 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 393

17
Progress Manager
This chapter provides reference material for the Progress Manager.

• Progress Manager Functions

• Application-Defined Functions

The header file Progress.h declares the API that this chapter
describes. For more information on the progress manager, see the
section “Progress Dialogs” in the Palm OS Programmer’s Companion,
vol. I.

Progress Manager Functions

PrgHandleEvent

Purpose Handles events related to the active progress dialog.

Declared In Progress.h

Prototype Boolean PrgHandleEvent (ProgressPtr prgGP,
EventType *eventP)

Parameters -> prgGP Pointer to a progress structure created by
PrgStartDialog.

-> eventP Pointer to an event. You can pass a NULL event
to cause this function to immediately call your
PrgCallbackFunc function and then update
the dialog (for example, after you call
PrgUpdateDialog).

Result Returns true if the system handled the event. If it returns false,
you should check if the user canceled the dialog by calling
PrgUserCancel.

Progress Manager
Progress Manager Functions

394 Palm OS Programmer’s API Reference

Comments Use this function instead of SysHandleEvent when you have a
progress dialog. PrgHandleEvent internally calls
SysHandleEvent as needed.

Note that the auto power-off feature of the system is automatically
disabled when you use this function, unless the dialog is just
displaying an error. This function also prevents appStopEvent
events.

If an update to the dialog is pending (from a call to
PrgUpdateDialog, for example) this function handles that event
and causes the dialog to be updated. As part of this process, the
textCallback function you specified in your call to
PrgStartDialog is called. Your textCallback function should
set the textP buffer in the PrgCallbackData structure with the
new message to be displayed in the progress dialog. Optionally, you
can also set the bitmapId field to include an icon in the update
dialog. For more information about the textCallback function,
see the section “Application-Defined Functions.”

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also PrgStartDialog, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

PrgStartDialog

Purpose Displays a progress dialog that can be updated.

Declared In Progress.h

Prototype ProgressPtr PrgStartDialog (const Char *title,
PrgCallbackFunc textCallback, void *userDataP)

Parameters -> title Pointer to a title for the progress dialog. Must
be a null-terminated string that is no longer
than progressMaxTitle (20).

-> textCallback Pointer to a callback function that supplies the
text and icons for the current progress state. See
PrgCallbackFunc.

Progress Manager
Progress Manager Functions

Palm OS Programmer’s API Reference 395

-> userDataP A pointer to data that you need to access in the
callback function. This address gets passed
directly to your function.

Result A pointer to a progress structure. This pointer must be passed to
other progress manager functions and must be released by calling
PrgStopDialog. NULL is returned if the system is unable to
allocate the progress structure.

Comments The dialog created by this function can be updated by another
process via the PrgUpdateDialog function. The dialog can
contain a Cancel or OK button. The initial dialog defaults to stage 0
and calls the textCallback function to get the initial text and icon
data for the progress dialog.

This function saves the screen bits behind the progress dialog, and
these are restored when you call PrgStopDialog. Because of this,
you should minimize changes to the screen while the progress
dialog is displayed, otherwise, the restored bits may not match with
what is currently being displayed.

Compatibility This version of the function is available only if 3.2 New Feature Set
is present. On earlier systems, PrgStartDialog has the prototype
shown for PrgStartDialogV31.

See Also PrgHandleEvent, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

Progress Manager
Progress Manager Functions

396 Palm OS Programmer’s API Reference

PrgStartDialogV31

Purpose Displays a progress dialog that can be updated.

Declared In Progress.h

Prototype ProgressPtr PrgStartDialogV31 (const Char *title,
PrgCallbackFunc textCallback)

Parameters -> title Pointer to a title for the progress dialog. Must
be a null-terminated string that is no longer
than progressMaxTitle (20).

-> textCallback Pointer to a callback function that supplies the
text and icons for the current progress state. See
PrgCallbackFunc.

Result A pointer to a progress structure. This pointer must be passed to
other progress manager functions and must be released by calling
PrgStopDialog. NULL is returned if the system is unable to
allocate the progress structure.

Compatibility This function corresponds to version of PrgStartDialog
available on Palm OS® 3.0 and Palm OS 3.1.

See Also PrgHandleEvent, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

Progress Manager
Progress Manager Functions

Palm OS Programmer’s API Reference 397

PrgStopDialog

Purpose Releases memory used by the progress dialog and restores the
screen to its initial state.

Declared In Progress.h

Prototype void PrgStopDialog (ProgressPtr prgP,
Boolean force)

Parameters -> prgP Pointer to a progress structure created by
PrgStartDialog.

-> force true removes the progress dialog immediately,
false causes the system to wait until the user
confirms an error, if one is displayed.

Result Returns nothing.

Comments If the progress dialog is in a state where it is displaying an error
message to the user, this function normally waits for the user to
confirm the dialog before it removes the dialog. If you specify true
for the force parameter, this causes the system to remove the
dialog immediately.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also PrgHandleEvent, PrgStartDialog, PrgUpdateDialog,
PrgUserCancel

Progress Manager
Progress Manager Functions

398 Palm OS Programmer’s API Reference

PrgUpdateDialog

Purpose Updates the status of the current progress dialog.

Declared In Progress.h

Prototype void PrgUpdateDialog (ProgressPtr prgGP,
UInt16 err, UInt16 stage, const Char *messageP,
Boolean updateNow)

Parameters -> prgGP Pointer to a progress structure created by
PrgStartDialog.

-> err If non-zero, causes the dialog to go into error
mode, to display an error message with only an
OK button.

-> stage Current stage of progress. The callback function
can use this to determine the correct string to
display in the updated dialog.

-> messageP Extra text that may be useful in displaying the
progress for this stage. Used by the callback
function, which can append it to the base
message that is based on the stage.

-> updateNow If true, the dialog is immediately updated.
Otherwise, the dialog is updated on the next
call to PrgHandleEvent.

Result Returns nothing.

Comments For more information about how the parameters are used and the
callback function, see the section “Application-Defined Functions.”

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also PrgHandleEvent, PrgStartDialog, PrgStopDialog,
PrgUserCancel

Progress Manager
Progress Manager Functions

Palm OS Programmer’s API Reference 399

PrgUserCancel

Purpose Macro that returns true if the user cancelled the process via the
progress dialog.

Declared In Progress.h

Prototype PrgUserCancel (prgP)

Parameters -> prgP Pointer to a progress structure (ProgressPtr)
created by PrgStartDialog.

Result Returns the value of the cancel field in the progress structure (as a
UInt16).

Comments This is a macro you can use to check if the user cancelled the
process. If the user did cancel, you can change the progress dialog
text to something like “Cancelling,” or “Disconnecting,” or
whatever is appropriate for your application. Then you should
cancel the process, end the communication session, or do whatever
processing is necessary.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also PrgHandleEvent, PrgStartDialog, PrgStopDialog,
PrgUpdateDialog

Progress Manager
Application-Defined Functions

400 Palm OS Programmer’s API Reference

Application-Defined Functions

PrgCallbackFunc

Purpose Supplies the text and icons for the current progress state.

Declared In Progress.h

Prototype Boolean (*PrgCallbackFunc)
(PrgCallbackDataPtr cbP)

Parameters <-> cbP A pointer to a PrgCallbackData structure.
See below.

Result Returns true if the progress dialog should be updated using the
values you specified in the PrgCallbackData structure. If you
specify false, the dialog is still updated, but with default status
messages. (Returning false is not recommended.)

Comments This is a callback function that you specify when you call
PrgStartDialog. The callback function is called by
PrgHandleEvent when it needs current progress information to
display in the progress dialog.

The system passes this function one parameter, a pointer to a
PrgCallbackData structure. Here are the important fields in that
data structure (note that -> indicates you set the field in the
textCallback function):

<- UInt16 stage Current stage (passed from
PrgUpdateDialog).

<-> Char *textP Buffer to hold the text to display in the updated
dialog. You might want to look up a message in
a resource file, based on the value in the stage
field. Also, you should append the additional
text in the message field, to form the full string
to display. Be sure to include a null terminator
at the end of the string you return, and don’t
exceed the length in textLen.

Progress Manager
Application-Defined Functions

Palm OS Programmer’s API Reference 401

<- UInt16 textLen
Maximum length of the text buffer textP. Note
that this value is set for you by the caller. Be
careful not to exceed this length in textP.

<- Char *message
Additional text to display in the dialog (from
the messageP parameter to
PrgUpdateDialog). This should be no longer
than progressMaxMessage (128).

<- Err error Current error (passed from the err parameter
to PrgUpdateDialog).

-> UInt16 bitmapId
Resource ID of the bitmap to display in the
progress dialog, if any.

<- UInt16 canceled:1
true if user has pressed the cancel button.

<- UInt16 showDetails:1
true if user pressed the down arrow button on
the Palm™ device for more details. (Because this
is a non-standard user interface technique, you
shouldn’t use this feature to display details that
users need under normal conditions. It’s more
for debugging purposes.)

-> UInt16 textChanged:1
If true, then update text (defaults to true).
You can set this to false to avoid an update to
the text.

<- UInt16 timedOut:1
true if update caused by a timeout.

Progress Manager
Application-Defined Functions

402 Palm OS Programmer’s API Reference

<-> UInt32 timeout
Timeout in ticks to force next update. After this
number of ticks, an update is automatically
triggered (which sets the timedOut flag). You
can use this feature to do a simple animation
effect. Note that you must set the timeout for
EvtGetEvent to a value that is equal to or less
than this value, otherwise you won’t get update
events as frequently as you expect.

-> UInt16 delay:1
If true, delay for one second after updating
the dialog. Use this value when you are
displaying the final progress message so that
users have a chance to see the message before
the dialog closes. This field is available only if
3.2 New Feature Set is present.

<- void *userDataP
A pointer to any application-defined data that
the function needs to access. You specify this
pointer as a parameter to PrgStartDialog if
the callback function needs to access some
application data but does not have access to
application globals. This field is available only
if 3.2 New Feature Set is present.

In this function, you should set the value of the textP buffer to the
string you want to display in the progress dialog when it is updated.
You can use the value in the stage field to look up a message in a
string resource. You also might want to append the text in the
message field to your base string. Typically, the message field
would contain more dynamic information that depends on a user
selection, such as a phone number, device name, or network
identifier, etc.

For example, the PrgUpdateDialog function might have been
called with a stage of 1 and a messageP parameter value of a
phone number string, “555-1212”. Based on the stage, you might
find the string “Dialing” in a string resource, and append the phone
number, to form the final text “Dialing 555-1212” that you place in
the text buffer textP.

Progress Manager
Application-Defined Functions

Palm OS Programmer’s API Reference 403

Keeping the static strings corresponding to various stages in a
resource makes it easier to localize your application. More dynamic
information can be passed in via the messageP parameter to
PrgUpdateDialog.

NOTE: This function is called only if the parameters passed to
PrgUpdateDialog have changed from the last time it was
called. If PrgUpdateDialog is called twice with exactly the
same parameters, the textCallback function is called only
once.

Progress Manager
Application-Defined Functions

404 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 405

18
Scroll Bars
This chapter provides reference material for the scroll bar API.

• Scroll Bar Data Structures

• Scroll Bar Resources

• Scroll Bar Functions

The header file ScrollBar.h declares the API that this chapter
describes. For more information on scroll bars, see the section
“Scroll Bars” on page 137 in the Palm OS Programmer’s Companion,
vol. I.

Scroll Bar Data Structures

ScrollBarAttrType
The ScrollBarAttrType bit field defines a scroll bar’s visible
characteristics.

typedef struct {
 UInt16 usable : 1;
 UInt16 visible : 1;
 UInt16 hilighted : 1;
 UInt16 shown : 1;
 UInt16 activeRegion: 4;
} ScrollBarAttrType;

Scroll Bars
Scroll Bar Data Structures

406 Palm OS Programmer’s API Reference

Field Descriptions

ScrollBarPtr
The ScrollBarPtr type defines a pointer to a ScrollBarType
structure.

typedef ScrollBarType *ScrollBarPtr;

You pass the ScrollBarPtr as an argument to all scroll bar
functions. You can obtain the ScrollBarPtr using the function
FrmGetObjectPtr in this way:

usable If not set, the scroll bar object is not considered
part of the current interface of the application,
and it doesn’t appear on screen.

visible If set, the scroll bar is allowed to be displayed on
the screen. If both visible and shown are
true, then the scroll bar is actually displayed on
the screen.

hilighted true if either the up arrow or the down arrow is
highlighted.

shown Set if the scroll bar is visible and if maxValue >
minValue. (See ScrollBarType.)

activeRegion The region of the scroll bar that is receiving the
pen down events. Possible values are:

sclUpArrow The up arrow.

sclDownArrow The down arrow.

sclUpPage The region between the
scroll car and the up arrow.

sclDownPage The region between the
scroll car and the down
arrow.

sclCar The scroll car.

Scroll Bars
Scroll Bar Data Structures

Palm OS Programmer’s API Reference 407

scrollBarPtr = FrmGetObjectPtr(frm,
 FrmGetObjectIndex(frm, scrollBarID));

where scrollBarID is the resource ID assigned when you created
the scroll bar.

ScrollBarType
The ScrollBarType represents a scroll bar.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the ScrollBarType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 RectangleType bounds;
 UInt16 id;
 ScrollBarAttrType attr;
 Int16 value;
 Int16 minValue;
 Int16 maxValue;
 Int16 pageSize;
 Int16 penPosInCar;
 Int16 savePos;
} ScrollBarType;

Your code should treat the ScrollBarType structure as opaque.
Use the functions described in this chapter to retrieve and set each
value. Do not attempt to change structure member values directly.

Scroll Bars
Scroll Bar Data Structures

408 Palm OS Programmer’s API Reference

Field Descriptions

bounds Position (using absolute coordinates) and size
(in pixels) of the scroll bar on the screen. For
example, to access the bounds of an object in a
form whose ID is kObjectID:
{
RectangleType rect;
FormPtr formP = FrmGetActiveForm();

FrmGetObjectBounds(formP,
FrmGetObjectIndex(formP,
kObjectID), &rect);
}

id ID value you specified when you created the
scroll bar object.

attr Scroll bar’s attributes. See
ScrollBarAttrType.

value Current value of the scroll bar. This value is
used to determine where to position the scroll
car (the dark region in the scroll bar that
indicates the position in the document). Access
with SclGetScrollBar.

The number given is typically a number relative
to minValue and maxValue. These values
have nothing to do with any physical
characteristics of the object that the scroll bar is
attached to, such as the number of lines in the
object.

This value is typically set to 0 initially and then
adjusted programmatically with
SclSetScrollBar.

minValue Minimum value. When value equals
minValue, the scroll car is positioned at the
very top of the scrolling region. This value is
typically 0. Access with SclGetScrollBar.

Scroll Bars
Scroll Bar Data Structures

Palm OS Programmer’s API Reference 409

maxValue Maximum value. When value equals
maxValue, the scroll car is positioned at the
very bottom of the scrolling region. This value is
typically set to 0 initially and then adjusted
programmatically with SclSetScrollBar.
Access with SclGetScrollBar.

pageSize Number of lines to scroll when user scrolls one
page. Access with SclGetScrollBar.

penPosInChar Used internally.

savePos Used internally.

Scroll Bars
Scroll Bar Resources

410 Palm OS Programmer’s API Reference

Scroll Bar Resources
The Scroll Bar Resource (tSCL) represents a scroll bar.

Scroll Bar Functions

SclDrawScrollBar

Purpose Draw a scroll bar.

Declared In ScrollBar.h

Prototype void SclDrawScrollBar (ScrollBarType *bar)

Parameters -> bar Pointer to a scroll bar structure (see
ScrollBarType).

Result Returns nothing.

Comments This function is called internally by SclSetScrollBar and
FrmDrawForm. You rarely need to call it yourself.

Compatibility Implemented only if 2.0 New Feature Set is present.

SclGetScrollBar

Purpose Retrieve a scroll bar’s current position, its range, and the size of a
page.

Declared In ScrollBar.h

Prototype void SclGetScrollBar (const ScrollBarType *bar,
Int16 *valueP, Int16 *minP, Int16 *maxP,
Int16 *pageSizeP)

Parameters -> bar Pointer to a scroll bar structure (see
ScrollBarType).

Scroll Bars
Scroll Bar Functions

Palm OS Programmer’s API Reference 411

<- valueP A value representing the scroll car’s current
position. (The scroll car is the dark region that
indicates the position in the document.)

<-minP A value representing the top of the user
interface object.

<-maxP A value representing the bottom of the user
interface object.

<-pageSizeP Pointer to size of a page (used when page
scrolling).

Result Returns the scroll bar’s current values in valueP, minP, maxP, and
pageSizeP.

Comments You might use this function immediately before calling
SclSetScrollBar to update the scroll bar. SclGetScrollBar
returns the scroll bar’s current values, which you can then adjust as
necessary and pass to SclSetScrollBar.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also SclSetScrollBar

SclHandleEvent

Purpose Handles events that affect a scroll bar.

Declared In ScrollBar.h

Prototype Boolean SclHandleEvent (ScrollBarType *bar,
const EventType *event)

Parameters -> bar Pointer to a scroll bar structure (see
ScrollBarType).

-> event Pointer to an event (EventType).

Result Returns true if the event was handled.

Scroll Bars
Scroll Bar Functions

412 Palm OS Programmer’s API Reference

Comment When a penDownEvent occurs, the scroll bar sends an
sclEnterEvent to the event queue.

When an sclEnterEvent occurs, the scroll bar determines what
its new value should be based on which region of the scroll bar is
receiving the pen down events. It then sends either an
sclRepeatEvent or an sclExitEvent to the event queue.

When the user holds and drags the scroll bar with the pen, the scroll
bar sends a sclRepeatEvent. Applications that implement
dynamic scrolling should catch this event and move the text each
time one arrives.

When the user releases the pen from the scroll bar, the scroll bar
sends a sclExitEvent. Applications that implement non-dynamic
scrolling should catch this event and move the text when
sclExitEvent arrives. Applications that implement dynamic
scrolling can ignore this event.

Compatibility Implemented only if 2.0 New Feature Set is present.

SclSetScrollBar

Purpose Set the scroll bar’s current position, its range, and the size of a page.
If the scroll bar is visible and its minimum and maximum values are
not equal, it’s redrawn.

Declared In ScrollBar.h

Prototype void SclSetScrollBar (ScrollBarType *bar,
Int16 value, Int16 min, Int16 max, Int16 pageSize)

Parameters -> bar Pointer to a scroll bar structure (see
ScrollBarType).

-> value The position the scroll car should move to. (The
scroll car is the dark region that indicates the
position in the document.)

-> min Minimum value.

-> max Maximum value.

Scroll Bars
Scroll Bar Functions

Palm OS Programmer’s API Reference 413

-> pageSize Number of lines of text that can be displayed
on a the screen at one time (used when page
scrolling).

Result Returns nothing. May display a fatal error message if the min
parameter is greater than the max parameter.

Comments Call this function when the user adds or deletes text in a field or
when a table row is added or deleted.

For scrolling fields, your application should catch the
fldChangedEvent and update the scroll bar at that time.

The max parameter is computed as:

number of lines of text – page size + overlap

where number of lines of text is the total number of lines or rows
needed to display the entire object, page size is the number of lines
or rows that can be displayed on the screen at one time, and overlap
is the number of lines or rows from the bottom of one page to be
visible at the top of the next page.

For example, if you have 100 lines of text and 10 lines show on a
page, the max value would be 90 or 91, depending on the overlap.
So if value is greater than or equal to 90 or 91, the scroll car is at the
very bottom of the scrolling region.

You can use the FldGetScrollValues function to compute the
values you pass for value, min, and max. For example:

FldGetScrollValues (fld, &scrollPos,
 &textHeight, &fieldHeight);

if (textHeight > fieldHeight)
 maxValue = textHeight - fieldHeight;
else if (scrollPos)
 maxValue = scrollPos;
else
 maxValue = 0;

SclSetScrollBar (bar, scrollPos, 0, maxValue,
 fieldHeight-1);

Scroll Bars
Scroll Bar Functions

414 Palm OS Programmer’s API Reference

In this case, textHeight is the number of lines of text and
fieldHeight is the page size. No lines overlap when you scroll
one page. Notice that if the page size is greater than the lines of text,
then max equals min, which means that the scroll bar is not
displayed.

Scroll Bars
Scroll Bar Functions

Palm OS Programmer’s API Reference 415

For scrolling tables, there is no equivalent to
FldGetScrollValues. Your application must scroll the table itself
and keep track of the scroll values. See the
ListViewUpdateScrollers function in the Memo example
application (MemoMain.c) for an example of setting scroll bar
values for a table.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also SclGetScrollBar

Scroll Bars
Scroll Bar Functions

416 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 417

19
System Dialogs
This chapter provides reference material for system dialogs declared
in the header files FatalAlert.h, Launcher.h,
GraffitiReference.h, and GraffitiUI.h.

System Dialog Functions

SysAppLauncherDialog

Purpose Display the launcher popup, get a choice, ask the system to launch
the selected application, clean up, and leave. If there are no
applications to launch, nothing happens.

Declared In Launcher.h

Prototype void SysAppLauncherDialog()

Parameters None.

Result The system may be asked to launch an application.

Comments Typically, this routine is called by the system as necessary. Most
applications do not need to call this function themselves.

In Palm OS® version 3.0 and higher the launcher is an application,
rather than a popup. This function remains available for
compatibility purposes only.

See Also SysAppLaunch, the “Application Launcher” section in the Palm OS
Programmer’s Companion, vol. I

System Dialogs
System Dialog Functions

418 Palm OS Programmer’s API Reference

SysFatalAlert

Purpose Display a fatal alert until the user taps a button in the alert.

Declared In FatalAlert.h

Prototype UInt16 SysFatalAlert (const Char *msg)

Parameters msg Message to display in the dialog.

Result The button tapped; first button is zero.

SysGraffitiReferenceDialog

Purpose Pop up the Graffiti® Reference Dialog.

Declared In GraffitiReference.h

Prototype void SysGraffitiReferenceDialog
(ReferenceType referenceType)

Parameters referenceType Which reference to display. See
GraffitiReference.h for more
information.

Result Nothing returned.

Palm OS Programmer’s API Reference 419

20

Tables
This chapter describes the table API as declared in the header file
Table.h. It discusses the following topics:

• Table Data Structures

• Table Constants

• Table Resource

• Table Functions

• Application-Defined Functions

For more information on tables, see the section “Tables” in the Palm
OS Programmer’s Companion, vol. I.

Table Data Structures

TableAttrType
The TableAttrType bit field defines the visible characteristics of
the table.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the TableAttrType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 visible:1;
 UInt16 editable:1;

Tables
Table Data Structures

420 Palm OS Programmer’s API Reference

 UInt16 editing:1;
 UInt16 selected:1;
 UInt16 hasScrollBar:1;
 UInt16 reserved:11;
} TableAttrType;

Your code should treat the TableAttrType bit field as opaque.
Use the functions specified in the descriptions below to retrieve and
set each value. Do not attempt to change member values directly.

Field Descriptions

TableColumnAttrType
The TableColumnAttrType structure defines a column in a table.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the TableColumnAttrType
structure. Never access its structure members directly, or your
code may break in future versions. Use the information below for
debugging purposes only.

visible If set, the table is drawn on the screen. The value
of this field is set by TblDrawTable and cleared
by TblEraseTable.

editable If set, the user can modify the table. You specify
this when you create the table resource.

editing If set, the table is in edit mode. The table is in
edit mode while the user edits a text item. The
value of this field is returned by TblEditing.

selected If set, the current item (as identified by the
TableType fields currentRow and
currentColumn) is selected. Use
TblGetSelection to retrieve this value.

hasScrollBar If set, the table has a scroll bar. Note that this
attribute can only be set programmatically. See
TblHasScrollBar.

Tables
Table Data Structures

Palm OS Programmer’s API Reference 421

typedef struct {
 Coord width;
 UInt16 reserved1 : 5;
 UInt16 masked : 1;
 UInt16 editIndicator : 1;
 UInt16 usable : 1;
 UInt16 reserved2 : 8;
 Coord spacing;
 TableDrawItemFuncPtr drawCallback;
 TableLoadDataFuncPtr loadDataCallback;
 TableSaveDataFuncPtr saveDataCallback;
} TableColumnAttrType;

Your code should treat the TableColumnAttrType structure as
opaque. Use the functions specified in the descriptions below to
retrieve and set each value. Do not attempt to change structure
member values directly.

Field Descriptions

width The column’s width in pixels. See
TblGetColumnWidth and
TblSetColumnWidth.

reserved1 Reserved for future use.

masked If true and the item’s row also has a
masked attribute of true, the table cell is
drawn on the screen but is shaded to
obscure the information that it contains. See
TblSetColumnMasked.

editIndicator If true, items in the column should be
highlighted if selected while in edit mode. If
false, items in the column should not be
highlighted. By default, text field items are
highlighted in edit mode, but all other types
of items are not highlighted. The default can
be overridden with
TblSetColumnEditIndicator.

Tables
Table Data Structures

422 Palm OS Programmer’s API Reference

Compatibility The masked field is defined only if 3.5 New Feature Set is present.

TableItemPtr
A TableItemPtr points to a TableItemType.

typedef TableItemType *TableItemPtr;

TableItemType
The TableItemType structure defines an item, or cell, within the
table.

usable If false, the column is not considered part
of the current interface of the application,
and it doesn’t appear on screen. See
TblSetColumnUsable.

reserved2 Reserved for future use.

spacing The spacing in pixels between this column
and the next column. See
TblGetColumnSpacing and
TblSetColumnSpacing.

drawCallback Pointer to a function that draws custom
items in the column. This function is called
during TblDrawTable and
TblRedrawTable. See
TblSetCustomDrawProcedure.

loadDataCallback Pointer to a function that loads data into the
column. This function is called during
TblDrawTable and TblRedrawTable.
See TblSetLoadDataProcedure.

saveDataCallback Pointer to a function that saves the data in
the column. Called when the focus moves
from one table cell to another and when the
table loses focus entirely. See
TblSetSaveDataProcedure.

Tables
Table Data Structures

Palm OS Programmer’s API Reference 423

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the TableItemType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct {
 TableItemStyleType itemType;
 FontID fontID;
 Int16 intValue;
 Char *ptr;
} TableItemType;

Your code should treat the TableItemType structure as opaque.
Use the functions specified in the descriptions below to retrieve and
set each value. Do not attempt to change structure member values
directly.

NOTE: None of the table items create memory that you need to
free. The table manager handles all of the allocating and
deallocating of memory for table items. The only memory you are
responsible for freeing is the memory handle containing the text
that you want displayed in editable text fields. (See
TableLoadDataFuncType.)

Field Descriptions

itemType The type of the item, such as a control, a text label, and
so on. TblSetItemStyle sets this value. The rest of
the fields in this struct are either used or not used
depending on the itemType. See Table 20.1.

fontID ID of the font used to display the item’s text.
TblGetItemFont and TblSetItemFont retrieve
and set this value.

Tables
Table Data Structures

424 Palm OS Programmer’s API Reference

The following table lists the possible values for the itemType field,
describes how each type is drawn, describes which other fields are
used for each itemType, and provides special instructions for
setting those fields. Note in particular that the fontID field is often
not used. Instead, certain items are displayed in a standard font.
These are noted in the last column of this table.

intValue Integer value of the item. TblGetItemInt and
TblSetItemInt retrieve and set this value.

ptr Pointer to the item’s text. TblGetItemPtr and
TblSetItemPtr retrieve and set this value.
All text items have a maximum of
tableMaxTextItemSize.

Table 20.1 TableItemType fields

ItemType Description TableItemType Fields Used

checkboxTableItem A checkbox control. intValue

customTableItem Application-defined
cell. The height of the
item is fixed at 11
pixels.

None.
Custom items are drawn using
the custom drawing function
that you implement. See
TableDrawItemFuncType. If
you want, you can store data in
the intValue and ptr fields.

dateTableItem Non-editable date in
the form month/day,
or a dash if the date
value is -1. The date
is followed by an
exclamation point if
it has past.

intValue
The intValue field should be
a value that can be cast to
DateType. DateType is
currently defined as a 16-bit
number:
yyyyyyymmmmddddd
The first 7 bits are the year
given as the offset since 1904,
the next 4 bits are the month,
and the next 5 bits are the day.
Dates are always drawn in the
current font.

Tables
Table Data Structures

Palm OS Programmer’s API Reference 425

labelTableItem Non-editable text. ptr
Labels are displayed in the
system’s default font along
with a terminating colon
character (':'). Use a
customTableItem or
tallCustomTableItem if
you don't want a colon.

numericTableItem Non-editable
number.

intValue
Numbers are displayed in the
system’s default bold font.

popupTriggerTableItem A list with a pop-up
trigger.

intValue
ptr
intValue is the index of the
list item that should be
displayed.
ptr is a pointer to the list.
Lists are displayed in the
system’s default font.

tallCustomTableItem Application-defined
cell. The height of the
item is equal to the
height of the row in
which the item is
located. This table
item type was added
in Palm OS 4.0 and is
only supported if 4.0
New Feature Set is
defined.

None.
Custom items are drawn using
the custom drawing function
that you implement. See
TableDrawItemFuncType. If
you want, you can store data in
the intValue and ptr fields.

Table 20.1 TableItemType fields (continued)

ItemType Description TableItemType Fields Used

Tables
Table Data Structures

426 Palm OS Programmer’s API Reference

textTableItem Editable text field. fontID
ptr
For this item type, implement
the callback function
TableLoadDataFuncType to
load text into the table cell and
implement the callback
TableSaveDataFuncType to
save data before the field is
freed.

textWithNoteTableItem Editable text field
and a note icon to the
right of the text.

fontID
ptr
For this item type, implement
the callback function
TableLoadDataFuncType to
load text into the table cell and
implement the callback
TableSaveDataFuncType to
save data before the field is
freed.

Table 20.1 TableItemType fields (continued)

ItemType Description TableItemType Fields Used

Tables
Table Data Structures

Palm OS Programmer’s API Reference 427

TablePtr
The TablePtr type defines a pointer to a TableType.

typedef TableType *TablePtr;

You pass the table’s pointer as an argument to all table functions.
You can obtain the table’s pointer using the function
FrmGetObjectPtr in this way:

tblPtr = FrmGetObjectPtr(frm,
 FrmGetObjectIndex(frm, tblID));

where tblID is the resource ID assigned when you created the
table.

timeTableItem Not implemented.

narrowTextTableItem Editable text with
space reserved on the
right side of the cell.

fontID
ptr
intValue
intValue is the number of
pixels to reserve on the right
side of the cell.
For this item type, implement
the callback function
TableDrawItemFuncType to
draw in the space reserved on
the right side of the cell, the
TableLoadDataFuncType
callback function to load text
into the table cell, and the
callback function
TableSaveDataFuncType to
save data before the field is
freed.

Table 20.1 TableItemType fields (continued)

ItemType Description TableItemType Fields Used

Tables
Table Data Structures

428 Palm OS Programmer’s API Reference

TableRowAttrType
The TableRowAttrType structure defines a row in a table.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the TableRowAttrType structure.
Never access its structure members directly, or your code may
break in future versions. Use the information below for debugging
purposes only.

typedef struct {
 UInt16 id;
 Coord height;
 UInt32 data;
 UInt16 reserved1 : 7;
 UInt16 usable : 1;
 UInt16 reserved2 : 4;
 UInt16 masked : 1;
 UInt16 invalid : 1;
 UInt16 staticHeight : 1;
 UInt16 selectable : 1;
 UInt16 reserved3;
} TableRowAttrType;

Your code should treat the TableRowAttrType structure as
opaque. Use the functions specified in the descriptions below to
retrieve and set each value. Do not attempt to change structure
member values directly.

Field Descriptions

id The ID of this row. See TblFindRowID,
TblGetRowID, and TblSetRowID.

height Height of the row in pixels. The functions
TblSetRowHeight and TblGetRowHeight
set and retrieve this value.

Tables
Table Data Structures

Palm OS Programmer’s API Reference 429

Compatibility The masked field is defined only if 3.5 New Feature Set is present.

data Any application-specific value you want to store
in this row. For example, the Datebook and ToDo
applications use this field to store the unique ID
of the database record that is displayed in this
table row. See TblFindRowData,
TblGetRowData, and TblSetRowData.

reserved1 Reserved for future use.

usable If false, the row is not considered part of the
current interface of the application, and it
doesn’t appear on screen. Table rows have
usable set to false when they are scrolled off
the screen. See TblRowUsable and
TblSetRowUsable. The function
TblGetLastUsableRow returns the row that
appears at the bottom of the screen.

masked If true and the item’s column also has a masked
attribute of true, the table cell is drawn on the
screen but is shaded to obscure the information
that it contains. See TblSetRowMasked and
TblRowMasked.

reserved2 Reserved for future use.

invalid If true, the row needs to be redrawn. See
TblRowInvalid, TblMarkRowInvalid, and
TblMarkTableInvalid.

staticHeight true if the row height cannot be changed,
false otherwise. If false, text fields in this
table row will dynamically resize to multiple
lines as necessary. See
TblSetRowStaticHeight.

selectable If true, the user can select individual cells in
this row. See TblSetRowSelectable and
TblRowSelectable.

reserved3 Reserved for future use.

Tables
Table Data Structures

430 Palm OS Programmer’s API Reference

TableType
The TableType structure represents a table.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the TableType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct TableType {
 UInt16 id;
 RectangleType bounds;
 TableAttrType attr;
 Int16 numColumns;
 Int16 numRows;
 Int16 currentRow;
 Int16 currentColumn;
 Int16 topRow;
 TableColumnAttrType *columnAttrs;
 TableRowAttrType *rowAttrs;
 TableItemPtr items;
 FieldType currentField;
} TableType;

Your code should treat the TableType structure as opaque. Use the
functions specified in the descriptions below to retrieve and set each
value. Do not attempt to change structure member values directly.

Field Descriptions

id ID value you specified when you created the
table resource. This ID is included as part of the
event data of tblEnterEvent.

bounds Position and size of the table object. The
functions TblGetBounds,
FrmGetObjectBounds, TblSetBounds, and
FrmSetObjectBounds retrieve and set this
value.

Tables
Table Data Structures

Palm OS Programmer’s API Reference 431

attr The table’s attributes. See TableAttrType.

numColumns Number of columns displayed by the table
object. You specify the number of columns
when you create the table resource, and this
value cannot be changed. Access with
TblGetNumberOfColumns.

numRows Maximum number of visible rows in the table
object.
You specify this value when you create the
table resource, and it does not change;
however, the total number of rows in a table
can change if you insert new rows in a table,
and even the number of currently visible rows
can change if a text field within a table cell is
dynamically resized.
The function TblGetNumberOfRows returns
the value of this field.

currentRow Row index of the currently selected table cell.
Rows are numbered from top to bottom
starting with 0. TblGetSelection and
TblSetSelection retrieve and set the values
of currentRow.

currentColumn Column index of the currently selected table
cell. Columns are numbered from left to right
starting with 0. If the TableAttrType
selected is true, then this table cell is
highlighted. If selected is false, the table
still considers this the “current” item, but it is
not highlighted. TblGetSelection and
TblSetSelection retrieve and set the values
of currentColumn.

topRow First visible row of the table object. Access with
TblGetTopRow.

columnAttrs An array of each table column’s attributes. See
TableColumnAttrType.

Tables
Table Constants

432 Palm OS Programmer’s API Reference

Table Constants

Table Resource
The Table Resource (tTBL) represents a table on screen.

rowAttrs An array of each row’s attributes, such as its ID,
height, and whether or not it is usable,
selectable, or invalid. See
TableRowAttrType.

items An array of each item’s (table cell’s) attributes,
such as the item type, font ID, an integer value,
and a character pointer. See TableItemType.

currentField Field object the user is currently editing. The
function TblGetCurrentField retrieves the
value of this item.

Constant Value Description

tableDefaultColumnSpacing 1 Never used.

tableNoteIndicatorHeight 11 The height in pixels of the note indicator
for tables items of type
textWithNoteTableItem.

tableNoteIndicatorWidth 7 The width in pixels of the note indicator
for tables items of type
textWithNoteTableItem.

tableMaxTextItemSize 255 The maximum length of an editable text
field within a table cell.

tblUnusableRow 0xffff Value returned by
TblGetLastUsableRow if none of the
table’s rows are usable. This value is
only available in version 3.5 and higher.

Tables
Table Functions

Palm OS Programmer’s API Reference 433

Table Functions

TblDrawTable

Purpose Draw a table.

Declared In Table.h

Prototype void TblDrawTable (TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns nothing.

Comments This function is called as part of FrmDrawForm when the form
contains a table object.

This function draws the entire table, marking all rows valid before
drawing. See the TableItemType struct description for more
information about how each type of table cell is drawn.

When drawing cells with editable text fields (textTableItem,
textWithNoteTableItem, or narrowTextTableItem), this
function uses the TableLoadDataFuncType callback function to
load the text into the table cells. The text field does not retain the
text handle that your TableLoadDataFunc returns, meaning that
you are responsible for freeing the memory that you load into the
table.

When drawing narrowTextTableItem cells, customTableItem
cells or tallCustomTableItem cells, this function uses the
TableDrawItemFuncType callback function to draw the extra
pixels after the text or to draw the entire cell.

On color systems, tables are always drawn using the same color as
is used for the field background color.

When the user has set the security setting to mask private records,
table cells that contain private database records are drawn as
shaded cells to obscure the information they contain. You must
explicitly tell the table which cells are masked by making the

Tables
Table Functions

434 Palm OS Programmer’s API Reference

appropriate calls to TblSetRowMasked and
TblSetColumnMasked.

Compatibility Color support and masked private records are only supported in
Palm OS® version 3.5 and higher.

In versions earlier than 3.5, this function did not erase table cells
before it drew them. In earlier releases, consider calling
TblEraseTable before calling this function, particularly if the
entire table has changed, as the visual effect of drawing over a white
background may be more pleasing.

See Also TblEraseTable, TblRedrawTable,
TblSetCustomDrawProcedure

TblEditing

Purpose Check whether a table is in edit mode.

Declared In Table.h

Prototype Boolean TblEditing (const TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns true if the table is in edit mode, false otherwise.

Comments The table is in edit mode while the user edits a text item. More
specifically, the table is in edit mode when a tblEnterEvent is
received on an editable table cell (textTableItem,
textWithNoteTableItem, or narrowTextTableItem), or
when TblGrabFocus is called.

The table is taken out of edit mode when a the user places the pen
on a note in a textWithNoteTableItem or when the table
releases the focus (TblReleaseFocus).

Tables
Table Functions

Palm OS Programmer’s API Reference 435

TblEraseTable

Purpose Erase a table object.

Declared In Table.h

Prototype void TblEraseTable (TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns nothing.

Comments This function sets the table’s visible and selected attributes to
false. It does not invalidate table rows.

See Also TblDrawTable, TblSetCustomDrawProcedure,
TblRedrawTable

TblFindRowData

Purpose Return the number of the row that contains the specified data value.

Declared In Table.h

Prototype Boolean TblFindRowData (const TableType *tableP,
UInt32 data, Int16 *rowP)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> data Row data to find.

<- rowP Pointer to the row number (return value).

Result Returns true if a match was found, false otherwise.

Tables
Table Functions

436 Palm OS Programmer’s API Reference

Comments This function searches for a row whose attributes contain the
specified data. The data is any application-specific data that you
have set with TblSetRowData.

See Also TblGetRowData, TblFindRowID, TableRowAttrType

TblFindRowID

Purpose Return the number of the row with the specified ID.

Declared In Table.h

Prototype Boolean TblFindRowID (const TableType *tableP,
UInt16 id, Int16 *rowP)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> id Row ID to find.

<- rowP Pointer to the row number (return value).

Result Returns true if a match was found, false otherwise.

See Also TblSetRowID, TblFindRowData, TableRowAttrType

TblGetBounds

Purpose Return the bounds of a table.

Declared In Table.h

Prototype void TblGetBounds (const TableType *tableP,
RectangleType *rP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Tables
Table Functions

Palm OS Programmer’s API Reference 437

<- rP A RectangleType structure in which the
bounds are returned.

Result Returns nothing. The rP parameter contains the bounds.

See Also TblGetItemBounds

TblGetColumnSpacing

Purpose Return the spacing after the specified column.

Declared In Table.h

Prototype Coord TblGetColumnSpacing
(const TableType *tableP, Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

Result Returns the spacing after column (in pixels).

This function may display a fatal error message if the column
parameter is invalid.

See Also TblGetColumnWidth, TblSetColumnSpacing,
TblSetColumnUsable

TblGetColumnWidth

Purpose Return the width of the specified column.

Declared In Table.h

Prototype Coord TblGetColumnWidth (const TableType *tableP,
Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

Tables
Table Functions

438 Palm OS Programmer’s API Reference

-> column Column number (zero-based).

Result Returns the width of a column (in pixels). This function may display
a fatal error message if the column parameter is invalid.

See Also TblGetColumnSpacing, TblSetColumnWidth,
TblSetColumnUsable

TblGetCurrentField

Purpose Return a pointer to the FieldType in which the user is currently
editing a text item.

Declared In Table.h

Prototype FieldPtr TblGetCurrentField
(const TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns a pointer to the currently selected field, or NULL if the table
is not in edit mode.

See Also TblGetSelection

TblGetItemBounds

Purpose Return the bounds of an item in a table.

Declared In Table.h

Prototype void TblGetItemBounds (const TableType *tableP,
Int16 row, Int16 column, RectangleType *rP)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

Tables
Table Functions

Palm OS Programmer’s API Reference 439

<- rP Pointer to a structure that holds the bounds of
the item.

Result Returns nothing. Stores the bounds in rP. This function may raise a
fatal exception if the row or column parameter specifies a row or
column that does not appear on screen.

TblGetItemFont

Purpose Return the font used to display a table item.

Declared In Table.h

Prototype FontID TblGetItemFont (const TableType *tableP,
Int16 row, Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

Result Returns the ID of the font used for the table item at the row and
column indicated. This function may display a fatal error message if
the row or column parameter specifies a row or column that is not
on the screen.

Comments This function returns the value stored in the fontID field for this
table item. Only certain types of table items use the font specified by
the fontID field when they are displayed. The TableItemType
description specifies what font is used to display each type of table
item.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also TblSetItemFont

Tables
Table Functions

440 Palm OS Programmer’s API Reference

TblGetItemInt

Purpose Return the integer value stored in a table item.

Declared In Table.h

Prototype Int16 TblGetItemInt (const TableType *tableP,
Int16 row, Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

Result Returns the integer value. This function may display a fatal message
if the row or column does not appear on the screen.

Comments This function returns the value stored in the intValue field for this
table item. Certain types of table items display the value stored in
intValue, and other types display the value pointed to by the ptr
field. See the TableItemType description for details. If the
intValue was never set for this table item, this function returns 0.

See Also TblSetItemInt, TblGetItemPtr

TblGetItemPtr

Purpose Return the pointer value stored in a table item

Declared In Table.h

Prototype void *TblGetItemPtr (const TableType *tableP,
Int16 row, Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

Tables
Table Functions

Palm OS Programmer’s API Reference 441

-> column Column number of the item (zero-based).

Result Returns the item’s pointer value or NULL if the item does not have a
pointer value. This function may display a fatal message if the row
or column parameter is invalid.

Comments This function returns the value stored in the ptr field for this table
item. Certain types of table items display the value pointed to by the
ptr, and other types display the value stored in the intValue
field. See the TableItemType description for details. An
application may have set the value of the ptr field anyway, even for
items that use the intValue. This function always returns that
value.

Compatibility Implemented only if 3.5 New Feature Set is present. In earlier
versions, you can implement this function using the following code:

return tableP->items[row * tableP->numColumns +
 column].ptr;

See Also TblSetItemPtr

TblGetLastUsableRow

Purpose Return the last row in a table that is usable (visible).

Declared In Table.h

Prototype Int16 TblGetLastUsableRow
(const TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns the row index (zero-based) or tblUnusableRow if there
are no usable rows.

See Also TblGetRowData, TblGetRowID

Tables
Table Functions

442 Palm OS Programmer’s API Reference

TblGetNumberOfColumns

Purpose Return the number of columns in a table.

Declared In Table.h

Prototype Int16 TblGetNumberOfColumns
(const TableType *tableP)

Parameters -> tableP Pointer to a TableType.

Result This function returns the number of columns in a table.

Compatibility Implemented only if 4.0 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
TblGlueGetNumberOfColumns. For more information, see
Chapter 75, “PalmOSGlue Library.”

See Also TblGetTopRow, TblSetSelection

TblGetNumberOfRows

Purpose Return the number of rows in a table.

Declared In Table.h

Prototype Int16 TblGetNumberOfRows
(const TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns the maximum number of visible rows in the specified table.

Comments Note that even though you can add and remove rows to and from a
table, the value returned by this function does not change. The
value returned by this function indicates the maximum number of

Tables
Table Functions

Palm OS Programmer’s API Reference 443

rows that can be displayed on the screen at one time. It is set when
you create the table resource.

TblGetRowData

Purpose Return the data value of the specified row.

Declared In Table.h

Prototype UInt32 TblGetRowData (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Number of the row (zero-based).

Result Returns the application-specific data stored for this row, if any.
Returns 0 if there is no application-specific data value.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblFindRowData, TblSetRowData, TableRowAttrType

TblGetRowHeight

Purpose Return the height of the specified row.

Declared In Table.h

Prototype Coord TblGetRowHeight (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

Tables
Table Functions

444 Palm OS Programmer’s API Reference

-> row Number of the row (zero-based).

Result Returns the height in pixels. This function may display a fatal error
message if the row parameter is invalid.

See Also TblGetItemBounds, TblSetRowHeight

TblGetRowID

Purpose Return the ID value of the specified row.

Declared In Table.h

Prototype UInt16 TblGetRowID (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Number of the row (zero-based).

Result Returns the ID value of the row in the table.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblGetRowData, TblSetRowID, TblFindRowID,
TableRowAttrType

TblGetSelection

Purpose Return the row and column of the currently selected table item.

Declared In Table.h

Prototype Boolean TblGetSelection (const TableType *tableP,
Int16 *rowP, Int16 *columnP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Tables
Table Functions

Palm OS Programmer’s API Reference 445

<- rowP, columnP
The row and column indexes (zero-based) of
the currently selected item.

Result Returns true if the item is highlighted, false if not.

See Also TblSetRowSelectable

TblGetTopRow

Purpose Return the top row visible row of a table.

Declared In Table.h

Prototype Int16 TblGetTopRow(const TableType *tableP)

Parameters -> tableP Pointer to a TableType.

Result This function returns the top visible row in a table.

Compatibility Implemented only if 4.0 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TblGlueGetToRow. For
more information, see Chapter 75, “PalmOSGlue Library.”

See Also TblGetNumberOfColumns, TblSetSelection

TblGrabFocus

Purpose Put a table into edit mode.

Declared In Table.h

Prototype void TblGrabFocus (TableType *tableP, Int16 row,
Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

Tables
Table Functions

446 Palm OS Programmer’s API Reference

-> row Current row to be edited (zero-based).

-> column Current column to be edited (zero-based).

Result Returns nothing. This function may display a fatal error message if
the table already has the focus or if the row or column parameter is
invalid.

Comments This function puts the table into edit mode and sets the current item
to the one at the row and column passed in. An editable field must
exist in the coordinates passed to this function.

You must call FrmSetFocus before calling this function.
FrmSetFocus releases the focus from the object that previously
had it and sets the form’s internal structures. After calling this
function, you must call FldGrabFocus to display the insertion
point in the field. (You can use TblGetCurrentField to obtain a
pointer to the field.)

For example, the following function from the Address Book
application sets the focus in an editable field within a table:

static void EditViewRestoreEditState () {
 Int16 row;
 FormPtr frm;
 TablePtr table;
 FieldPtr fld;

 if (CurrentFieldIndex == noFieldIndex)
 return;

 // Find the row that the current field is in.
 table = GetObjectPtr (EditTable);
 if (! TblFindRowID (table,
 CurrentFieldIndex, &row))
 return;

 frm = FrmGetActiveForm ();
 FrmSetFocus (frm, FrmGetObjectIndex (frm,
 EditTable));
 TblGrabFocus (table, row, editDataColumn);

Tables
Table Functions

Palm OS Programmer’s API Reference 447

 // Restore the insertion point position.
 fld = TblGetCurrentField (table);
 FldSetInsPtPosition (fld, EditFieldPosition);
 FldGrabFocus (fld);
}

See Also TblReleaseFocus

TblHandleEvent

Purpose Handle an event for the table.

Declared In Table.h

Prototype Boolean TblHandleEvent (TableType *tableP,
EventType *event)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> event The event to be handled.

Result Returns true if the event was handled, false if it was not.

Comments Returns false if the table is not an editable table.

If the table is editable, this function passes along any
keyDownEvent, fldEnterEvent, or menuCmdBarOpenEvent to
the currently selected field.

When a fldHeightChangedEvent occurs, this function changes
the height of the specified field as indicated by the event. If the field
being resized is going to scroll off the bottom of the screen, then
instead the table scrolls the rows above it up off the top. Otherwise,
the table is scrolled downward and rows below the current row are
scrolled off the bottom as necessary.

Note that the fldHeightChangedEvent is only handled for
dynamically sized fields. See the descriptions of FieldAttrType
and FldMakeFullyVisible for more information.

When a penDownEvent occurs, the table checks to see if the focus is
being changed. If it is and the user was previously editing a text

Tables
Table Functions

448 Palm OS Programmer’s API Reference

field within the table, it saves the data in the table cell using the
TableSaveDataFuncType callback function, then it enqueues a
tblEnterEvent with the new row and column that are selected.

When a tblEnterEvent occurs, this function tracks the pen until
it is lifted. If the pen is lifted within the bounds of the same item it
went down in, a tblSelectEvent is added to the event queue; if
not, a tblExitEvent is added to the event queue.

TblHasScrollBar

Purpose Set the hasScrollBar attribute in the table. (See
TableAttrType.)

Declared In Table.h

Prototype void TblHasScrollBar (TableType *tableP,
Boolean hasScrollBar)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> hasScrollBar true to set the attribute, false to unset it.

Result Returns nothing.

Comments Your application must scroll the table itself and keep track of the
scroll values. See the ListViewUpdateScrollers function in the
Memo example application (MemoMain.c) for an example of
setting scroll bar values for a table.

Compatibility Implemented only if 2.0 New Feature Set is present.

Tables
Table Functions

Palm OS Programmer’s API Reference 449

TblInsertRow

Purpose Insert a row into the table before the specified row.

Declared In Table.h

Prototype void TblInsertRow (TableType *tableP, Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row to insert (zero-based).

Result Returns nothing.

Comments The number of rows in a table is the maximum number of rows
displayed on the screen. Unlike a multi-line text field, there is no
notion of a table that is bigger than the available screen. For this
reason, this function does not increase the number of table rows.

Instead of keeping track of a total number of rows in the table and a
number of rows displayed on the screen, tables mark any row that
isn’t currently displayed with a usable value of false. (See
TableRowAttrType.)

The newly inserted row is marked as invalid, unusable, and not
masked. If you want to display the newly inserted row, call
TblSetRowUsable after making sure that the row displays a value
and then call TblRedrawTable when you are ready to draw the
table.

See Also TblRemoveRow, TblSetRowUsable, TblSetRowSelectable

Tables
Table Functions

450 Palm OS Programmer’s API Reference

TblMarkRowInvalid

Purpose Mark the row invalid.

Declared In Table.h

Prototype void TblMarkRowInvalid (TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Result Returns nothing.

Comments After calling this function, call TblRedrawTable to redraw all
rows marked invalid.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblRemoveRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkTableInvalid, TblRowInvalid, TableRowAttrType

TblMarkTableInvalid

Purpose Mark all the rows in a table invalid.

Declared In Table.h

Prototype void TblMarkTableInvalid (TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns nothing.

Tables
Table Functions

Palm OS Programmer’s API Reference 451

Comments After calling this function, you must call TblRedrawTable to
redraw all rows.

See Also TblEraseTable, TblRedrawTable, TableRowAttrType

TblRedrawTable

Purpose Redraw the rows of the table that are marked invalid.

Declared In Table.h

Prototype void TblRedrawTable (TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns nothing.

Comments This function draws the invalid rows in the table. See the
TableItemType struct description for more information about
how each type of table cell is drawn.

When drawing cells with editable text fields (textTableItem,
textWithNoteTableItem, or narrowTextTableItem), this
function uses the TableLoadDataFuncType callback function to
load the text into the table cells. The text field does not retain the
text handle that your TableLoadDataFunc returns, meaning that
you are responsible for freeing the memory that you load into the
table.

When drawing narrowTextTableItem cells, customTableItem
cells, or tallCustomTableItem cells, this function uses the
TableDrawItemFuncType callback function to draw the extra
pixels after the text or to draw the entire cell.

On color systems, tables are always drawn using the same color as
is used for the field background color.

When the user has set the security setting to mask private records,
table cells that contain private database records are drawn as
shaded cells to obscure the information they contain. You must
explicitly tell the table which cells are masked by making the

Tables
Table Functions

452 Palm OS Programmer’s API Reference

appropriate calls to TblSetRowMasked and
TblSetColumnMasked.

Compatibility Color support and masked private records are only supported in
Palm OS version 3.5 and higher.

See Also TblMarkTableInvalid, TblMarkRowInvalid, TblDrawTable

TblReleaseFocus

Purpose Release the focus.

Declared In Table.h

Prototype void TblReleaseFocus (TableType *tableP)

Parameters -> tableP Pointer to a table object.

Result Returns nothing.

Comments You typically do not call this function yourself. Instead, call
FrmSetFocus with an object index of noFocus to notify the form
that the table has lost focus. The form code calls
TblReleaseFocus for you.

If the current item is a text item, the TableSaveDataFuncType
callback function is called to save the text in the currently selected
field, the memory allocated for editing is released, and the insertion
point is turned off.

Also note that you might have to call FldReleaseFocus if the
focus is in an editable text field and that field uses a custom drawing
function (TableDrawItemFuncType).

See Also TblGrabFocus

Tables
Table Functions

Palm OS Programmer’s API Reference 453

TblRemoveRow

Purpose Remove the specified row from the table.

Declared In Table.h

Prototype void TblRemoveRow (TableType *tableP, Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row to remove (zero-based).

Result Returns nothing. This function may raise a fatal error message if an
invalid row is specified.

Comments The number of rows in the table is not decreased; instead, this row is
moved from its current spot to the end of the table and is marked
unusable so that it won’t be displayed when the table is redrawn.

This function does not visually update the display. To update the
display, call TblRedrawTable.

See Also TblInsertRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkRowInvalid

TblRowInvalid

Purpose Return whether a row is invalid.

Declared In Table.h

Prototype Boolean TblRowInvalid (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Result Returns true if the row is invalid, false if it’s valid. This function
may raise a fatal error message if the row parameter is invalid.

Tables
Table Functions

454 Palm OS Programmer’s API Reference

Comments Invalid rows need to be redrawn. Use TblRedrawTable to do so.

See Also TblMarkRowInvalid, TblMarkTableInvalid

TblRowMasked

Purpose Return whether a row is masked.

Declared In Table.h

Prototype Boolean TblRowMasked (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Result Returns true if the row is masked, false otherwise.

Comments Your code should set a row to masked if it contains a private
database record and the user has set the display preference for
private records to masked. Masked cells are displayed as shaded.

Note that a table cell is not masked unless both its row and column
are masked. This allows non-private information in the row item to
remain visible. For example, the Datebook application shows the
time for a private appointment, but it does not show the description.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also TblSetRowMasked, TblSetColumnMasked,
TableRowAttrType, SecSelectViewStatus

Tables
Table Functions

Palm OS Programmer’s API Reference 455

TblRowSelectable

Purpose Return whether the specified row is selectable.

Declared In Table.h

Prototype Boolean TblRowSelectable
(const TableType *tableP, Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Result Returns true if the row is selectable, false if it’s not.

Comments Rows that are not selectable don’t highlight when touched.

See Also TableRowAttrType

TblRowUsable

Purpose Determine whether the specified row is usable.

Declared In Table.h

Prototype Boolean TblRowUsable (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Result Returns true if the row is usable, false if it’s not.

This function may display a fatal error message if the row
parameter is invalid.

Tables
Table Functions

456 Palm OS Programmer’s API Reference

Comments Rows that are not usable do not display.

See Also TblRowSelectable, TblGetLastUsableRow,
TblSetRowUsable

TblSelectItem

Purpose Select (highlight) the specified item. If there is already a selected
item, it is unhighlighted.

Declared In Table.h

Prototype void TblSelectItem (TableType *tableP, Int16 row,
Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row of the item to select (zero-based).

-> column Column of the item to select (zero-based).

Result Returns nothing.

This function may display a fatal error message if the column or
row parameter point to an item that is not on the screen.

Comments If row contains a masked private database record, then the item
remains unselected.

This function cannot highlight an entire row; it can only highlight
one cell in a row, and it always unhighlights the previously selected
table cell. If you want to select an entire row, either create a table
that has a single column, or write your own selection code.

If the selected item is a multi-line text field or a text field with a
nonstandard height, this function only highlights the top eleven
pixels. If you want a larger area highlighted, you must write your
own selection code.

See Also TblRowSelectable, TblGetItemBounds, TblGetItemInt

Tables
Table Functions

Palm OS Programmer’s API Reference 457

TblSetBounds

Purpose Sets the bounds of a table.

Declared In Table.h

Prototype void TblSetBounds (TableType *tableP,
const RectangleType *rP)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> rP Pointer to a RectangleType structure that
specifies the bounds for the table.

Result Returns nothing.

Compatibility Implemented only if 2.0 New Feature Set is present.

TblSetColumnEditIndicator

Purpose Set the column attribute that controls whether a column highlights
when the table is in edit mode.

Declared In Table.h

Prototype void TblSetColumnEditIndicator
(TableType *tableP, Int16 column,
Boolean editIndicator)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero based).

-> editIndicator
true to highlight, false to turn off highlight.

Result Returns nothing.

Comments The edit indicator controls whether the item in the column is
highlighted when it is selected. By default, text field items have the

Tables
Table Functions

458 Palm OS Programmer’s API Reference

editIndicator value of false, while all other table item types
have an edit indicator of true.

When the table is drawn, only the leftmost contiguous set of items
with the edit indicator set are drawn as highlighted. That is, if
columns 1, 2, and 4 have an edit indicator of true and column 3 has
an edit indicator of false, only the items in column 1 and 2 are
drawn as highlighted when selected. Column 4 items are not drawn
as highlighted.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also TableColumnAttrType

TblSetColumnMasked

Purpose Set whether the column is masked.

Declared In Table.h

Prototype void TblSetColumnMasked (TableType *tableP,
Int16 column, Boolean masked)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> masked true to have the column be masked, false
otherwise.

Result Returns nothing.

Comments Masked cells are displayed as shaded. You should set a column to
masked if its contents should be hidden when it contains
information from a private database record and the user has set the
display preference for private records to masked.

A table cell is not masked unless both its row and column are
masked. This allows non-private information in the row item to
remain visible. For example, the Datebook application shows the
time for a private appointment, but it does not show the description.

Tables
Table Functions

Palm OS Programmer’s API Reference 459

Because the number of columns is static, you only need to call this
function once per column when you first set up the table. The
masked attribute on the row will determine if the contents of the
table cell are actually displayed as shaded.

Compatibility Implemented only if 3.5 New Feature Set if present.

See Also TblRowMasked, TblSetRowMasked, TableColumnAttrType,
SecSelectViewStatus

TblSetColumnSpacing

Purpose Set the spacing after the specified column.

Declared In Table.h

Prototype void TblSetColumnSpacing (TableType *tableP,
Int16 column, Coord spacing)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> spacing Spacing after the column in pixels.

Result Returns nothing.

This function may display a fatal error message if the column
parameter is invalid.

See Also TblSetColumnUsable, TableColumnAttrType

Tables
Table Functions

460 Palm OS Programmer’s API Reference

TblSetColumnUsable

Purpose Set a column in a table to usable or unusable.

Declared In Table.h

Prototype void TblSetColumnUsable (TableType *tableP,
Int16 column, Boolean usable)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> usable true for usable or false for not usable.

Result Returns nothing.

This function may display a fatal error message if the column
parameter is invalid.

Comments Columns that are not usable do not display.

See Also TblMarkRowInvalid, TableColumnAttrType

TblSetColumnWidth

Purpose Set the width of the specified column.

Declared In Table.h

Prototype void TblSetColumnWidth (TableType *tableP,
Int16 column, Coord width)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> width Width of the column (in pixels).

Result Returns nothing.

Tables
Table Functions

Palm OS Programmer’s API Reference 461

This function may display a fatal error message if the column
parameter is invalid.

See Also TblGetColumnWidth, TableColumnAttrType

TblSetCustomDrawProcedure

Purpose Set the custom draw callback procedure for the specified column.

Declared In Table.h

Prototype void TblSetCustomDrawProcedure
(TableType *tableP, Int16 column,
TableDrawItemFuncPtr drawCallback)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number.

-> drawCallback Callback function.

Result Returns nothing.

Comments The custom draw callback function is used to draw table items with
a TableItemStyleType of customTableItem or
tallCustomTableItem. See the TableItemType description for
more information.

This function may display a fatal error message if the column
parameter is invalid.

See Also TableDrawItemFuncType, TblDrawTable,
TableColumnAttrType

Tables
Table Functions

462 Palm OS Programmer’s API Reference

TblSetItemFont

Purpose Set the font used to display a table item.

Declared In Table.h

Prototype void TblSetItemFont (TableType *tableP,
Int16 row, Int16 column, FontID fontID)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

-> fontID ID of the font to be used.

Result Returns nothing.

Comments This function sets the value stored in the fontID field for this table
item. Only certain types of table items use the font specified by the
fontID field when they are displayed. The TableItemType
description specifies what font is used to display each type of table
item. It is not an error to set the fontID for a table item that does
not use it.

This function may display a fatal error message if the row or
column parameter specifies a row or column that is not on the
screen.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also TblGetItemFont

Tables
Table Functions

Palm OS Programmer’s API Reference 463

TblSetItemInt

Purpose Set the integer value of the specified item.

Declared In Table.h

Prototype void TblSetItemInt (TableType *tableP, Int16 row,
Int16 column, Int16 value)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

-> value Any byte value (an integer).

Result Returns nothing.

This function may display a fatal error message if the row or
column parameter is invalid.

Comments You typically use this function when setting up and initializing a
table for the first time to set the value of each table cell.

This function sets the value stored in the intValue field for this
table item. Certain types of table items display the value stored in
intValue, and other types display the value pointed to by the ptr
field. See the TableItemType description for details. If you set the
intValue of an item that displays its ptr value, it is not an error.
An application can store whatever value it wants in the intValue
field; however, be aware that this has nothing to do with the value
displayed by such a table cell.

See Also TblGetItemInt, TblSetItemPtr

Tables
Table Functions

464 Palm OS Programmer’s API Reference

TblSetItemPtr

Purpose Set the item to the specified pointer value.

Declared In Table.h

Prototype void TblSetItemPtr (TableType *tableP, Int16 row,
Int16 column, void *value)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

-> value Pointer to data to display in the table item.

Result Returns nothing.

This function may display a fatal error message if the row or
column parameter is invalid.

Comments This function sets the value stored in the ptr field for this table
item. Certain types of table items display the value pointed to by
ptr, and other types display the value stored in the intValue
field. See the TableItemType description for details. If you set the
ptr of an item that displays its intValue, it is not an error. An
application can store whatever value it wants in the ptr field;
however, be aware that this has nothing to do with the value
displayed by such a table cell.

See Also TblGetItemPtr, TblSetItemInt

Tables
Table Functions

Palm OS Programmer’s API Reference 465

TblSetItemStyle

Purpose Set the type of item to display; for example, text, numbers, dates,
and so on.

Declared In Table.h

Prototype void TblSetItemStyle (TableType *tableP,
Int16 row, Int16 column, TableItemStyleType type)

Tables
Table Functions

466 Palm OS Programmer’s API Reference

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

-> type The type of item, such as an editable text field
or a check box. See TableItemType for a list
of possible values.

Result Returns nothing.

This function may display a fatal error message if the row or
column parameter is invalid.

Comments You typically use this function when first setting up and initializing
a table; you do not dynamically change item styles.

Follow this function with a call to either TblSetItemInt or
TblSetItemPtr to set the value displayed by the table item. You
should call one or the other of these functions depending on the
type of table item you specified. See the table in the
TableItemType description for details.

Note also that a table column always contains items of the same
type. For example, you might initialize a table using this code:

for (row = 0; row < rowsInTable; row++) {
 TblSetItemStyle (table, row, completedColumn,
 checkboxTableItem);
 TblSetItemStyle (table, row, priorityColumn,
 numericTableItem);
 TblSetItemStyle (table, row, descColumn,
 textTableItem);
 TblSetItemStyle (table, row, dueDateColumn,
 customTableItem);
 TblSetItemStyle (table, row, categoryColumn,
 customTableItem);
}

See Also TblSetCustomDrawProcedure

Tables
Table Functions

Palm OS Programmer’s API Reference 467

TblSetLoadDataProcedure

Purpose Set the load-data callback procedure for the specified column.

Declared In Table.h

Prototype void TblSetLoadDataProcedure (TableType *tableP,
Int16 column,
TableLoadDataFuncPtr loadDataCallback)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> loadDataCallback
Callback procedure. See
TableLoadDataFuncType.

Result Returns nothing.

Comments The callback procedure is used to load the data values of a table
item. See the TableLoadDataFuncType for more information on
writing the callback function.

You typically use this function when first setting up and initializing
a table.

See Also TblSetCustomDrawProcedure

TblSetRowData

Purpose Set the data value of the specified row. The data value is a
placeholder for application-specific values.

Declared In Table.h

Prototype void TblSetRowData (TableType *tableP, Int16 row,
UInt32 data)

Parameters -> tableP Pointer to a table object. (See TableType.)

Tables
Table Functions

468 Palm OS Programmer’s API Reference

-> row Row number (zero-based).

-> data Application-specific data value to store for this
row. For example, the Datebook and ToDo
applications use this field to store the unique ID
of the database record displayed by this row.

Result Returns nothing.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblGetRowData, TblFindRowData

TblSetRowHeight

Purpose Set the height of the specified row.

Declared In Table.h

Prototype void TblSetRowHeight (TableType *tableP,
Int16 row, Coord height)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

-> height New height in pixels.

Result Returns nothing.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblGetRowHeight, TblSetRowStaticHeight

Tables
Table Functions

Palm OS Programmer’s API Reference 469

TblSetRowID

Purpose Set the ID value of the specified row.

Declared In Table.h

Prototype void TblSetRowID (TableType *tableP, Int16 row,
UInt16 id)

Tables
Table Functions

470 Palm OS Programmer’s API Reference

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

-> id ID to identify a row.

Result Returns nothing.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblGetRowID, TblFindRowID, TableRowAttrType

TblSetRowMasked

Purpose Set a row in a table to masked or unmasked.

Declared In Table.h

Prototype void TblSetRowMasked (TableType *tableP,
Int16 row, Boolean masked)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

-> masked true to have the row be masked, false
otherwise.

Result Returns nothing.

Comments Masked cells are displayed as shaded. You should call this function
before drawing or redrawing the table. If a table row contains a
private database record and the user has set the display preference
for private records to masked, you must call this function on that
row. For example:

UInt16 attr;
privateRecordViewEnum privateRecordStatus;
Boolean masked;

privateRecordStatus = (privateRecordViewEnum)

Tables
Table Functions

Palm OS Programmer’s API Reference 471

 PrefGetPreference(prefShowPrivateRecords);
....
DmRecordInfo (ToDoDB, recordNum, &attr, NULL,
 NULL);
masked = ((attr & dmRecAttrSecret) &&
 (privateRecordStatus == maskPrivateRecords));
TblSetRowMasked(tableP, row, masked);

Note that a table cell is not masked unless both its row and column
are masked. This allows non-private information in the row item to
remain visible. For example, the Datebook application shows the
time for a private appointment, but it does not show the description.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also TblRowMasked, TblSetColumnMasked, TableRowAttrType,
SecSelectViewStatus

TblSetRowSelectable

Purpose Set a row in a table to selectable or nonselectable.

Declared In Table.h

Prototype void TblSetRowSelectable (TableType *tableP,
Int16 row, Boolean selectable)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

-> selectable true or false.

Result Returns nothing.

This function may display a fatal error message if the row
parameter is invalid.

Comments Rows that are not selectable don’t highlight when touched.

See Also TblRowSelectable, TblSetRowUsable, TableRowAttrType

Tables
Table Functions

472 Palm OS Programmer’s API Reference

TblSetRowStaticHeight

Purpose Set the static height attribute of a row.

Declared In Table.h

Prototype void TblSetRowStaticHeight (TableType *tableP,
Int16 row, Boolean staticHeight)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

-> staticHeight true to set the static height, false to unset it.

Result Nothing.

This function may display a fatal error message if the row
parameter is invalid.

Comments A row that has its static height attribute set will not expand or
contract the height of the row as text is added or removed from a
text item.

Compatibility Implemented only if 2.0 New Feature Set is present.

TblSetRowUsable

Purpose Set a row in a table to usable or unusable. Rows that are not usable
do not display.

Declared In Table.h

Prototype void TblSetRowUsable (TableType *tableP,
Int16 row, Boolean usable)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Tables
Table Functions

Palm OS Programmer’s API Reference 473

-> usable true or false.

Result Returns nothing.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblRowUsable, TblSetRowSelectable

TblSetSaveDataProcedure

Purpose Set the save-data callback procedure for the specified column.

Declared In Table.h

Prototype void TblSetSaveDataProcedure (TableType *tableP,
Int16 column,
TableSaveDataFuncPtr saveDataCallback)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> saveDataCallback
Callback function. See
TableSaveDataFuncType.

Result Returns nothing.

This function may display a fatal error message if the column
parameter is invalid.

Comments The callback procedure is called when the table object determines
the data of a text object needs to be saved.

See Also TblSetCustomDrawProcedure

Tables
Table Functions

474 Palm OS Programmer’s API Reference

TblSetSelection

Purpose Set a table item.

Declared In Table.h

Prototype void TblSetSelection (TableType *tableP,
Int16 row, Int16 column)

Parameters -> tableP Pointer to a TableType.

-> row Table row.

-> column Table column.

Result Returns nothing.

Comments This function sets a table item, determined by the row and column
arguments, as the current selection. TblDrawTable must be called
afterwards to update the UI.

Compatibility Implemented only if 4.0 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
TblGlueSetSelection. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also TblGetNumberOfColumns, TblGetTopRow

Tables
Application-Defined Functions

Palm OS Programmer’s API Reference 475

TblUnhighlightSelection

Purpose Unhighlight the currently selected item in a table.

Declared In Table.h

Prototype void TblUnhighlightSelection (TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns nothing.

Application-Defined Functions

TableDrawItemFuncType

Purpose Draw a custom table item.

Declared In Table.h

Prototype void TableDrawItemFuncType (void *tableP,
Int16 row, Int16 column, RectangleType *bounds)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item to be drawn (zero-
based).

-> column Column number of the item to be drawn (zero-
based).

-> bounds The area of the screen in which the item is to be
drawn.

Result Returns nothing.

Comments This function is called during TblDrawTable and
TblRedrawTable.

Tables
Application-Defined Functions

476 Palm OS Programmer’s API Reference

You implement a custom drawing function when your table
contains items of type customTableItem or
tallCustomTableItem (to draw the entire item) or
narrowTextTableItem (to draw whatever is required in the
space between the text and the right edge of the table cell).

You may implement a custom drawing function to include any style
of information in the table. If you don’t like the way a predefined
item is drawn, you may prefer to use a customTableItem or
tallCustomTableItem instead. For example, if you want to
include a date in your table but you want it to show the year as well
as the month and day, you should implement a custom drawing
function.

See Also TblSetCustomDrawProcedure, TableItemType

TableLoadDataFuncType

Purpose Load data into a column.

Declared In Table.h

Prototype Err TableLoadDataFuncType (void *tableP,
Int16 row, Int16 column, Boolean editable,
MemHandle *dataH, Int16 *dataOffset,
Int16 *dataSize, FieldPtr fld)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the table item to load.

-> column Column number of the table item to load.

-> editable If true, the table is currently being edited. If
false, the table is being drawn but not
necessarily being edited.

<- dataH Unlocked handle of a block containing a null-
terminated text string.

<- dataOffset Offset from start of block to start of the text
string.

Tables
Application-Defined Functions

Palm OS Programmer’s API Reference 477

<- dataSize Allocated size of text string, not the string
length.

-> fld Pointer to the text field in this table cell.

Result Returns 0 upon success or an error if unsuccessful.

Comments This function is called in two cases: when a text field item is being
drawn (TblDrawTable or TblRedrawTable) and when a text
field item is being selected (part of TblHandleEvent’s handling of
tblEnterEvent). If this function returns an error (any nonzero
value) and the item is being selected, then the item is not selected
and the table’s editing attribute is set to false.

You return the same values for dataH, dataOffset, and
dataSize that you would pass to FldSetText. That is, you can
use this function to point the table cell’s text field to a string in a
database record so that you can edit that string directly using text
field routines. To do so, return the handle to a database record in
dataH, the offset from the start of the record to the start of the string
in dataOffset, and the allocated size of the string in dataSize.

The handle that you return from this function is assumed to contain
a null-terminated string starting at dataOffset bytes in the
memory chunk. The string should be between 0 and dataSize - 1
bytes in length.

As with FldSetText, you are responsible for freeing the memory
associated with the dataH parameter. You can do so in the
TableSaveDataFuncType function, but it is only called for a cell
that has been edited. For non-editable text cells or text cells that are
editable but were never selected, free the memory when you close
the form.

The fld pointer passed to your function has already been
initialized with default values by the table code. If you want to
override a field’s attributes (for example, if you want to change the
underline mode) you can do so in this function.

See Also TblDrawTable, TblHandleEvent, TableLoadDataFuncType

Tables
Application-Defined Functions

478 Palm OS Programmer’s API Reference

TableSaveDataFuncType

Purpose Save the data associated with a text field.

Declared In Table.h

Prototype Boolean TableSaveDataFuncType (void *tableP,
Int16 row, Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the table item to load.

-> column Column number of the table item to load.

Result Return true if the table should be redrawn, or false if the table
does not need to be redrawn.

Comments This is called before the memory associated with the currently
selected text field in a table cell is freed. Implement this function if
you need to do any special cleanup before this memory is freed.

This function is called only when the currently selected editable text
field is releasing the focus. You can use TblGetCurrentField to
retrieve a pointer to this field. It is called only on the currently
selected field, not on any other fields in the table.

Note that the table manager already disassociates the memory
handle from the text field for you so that the memory associated
with your data is not freed when the field is freed. The table
manager also calls FldCompactText for you.

If the text handle you returned in your TableLoadDataFuncType
callback points to a string on the dynamic heap, you should
implement this callback function to store or free the handle. You can
use FldGetTextHandle to obtain the handle.

If you return true from this function, TblRedrawTable is called.
You should mark invalid any table rows that you want redrawn
before returning.

See Also TblSetSaveDataProcedure

Palm OS Programmer’s API Reference 479

21
UI Color List
This chapter provides information about the UI color list by
discussing the following topics:

• UI Color Data Types

• UI Color Functions

The header file UIColor.h declares the API that this chapter
describes. For more information on the color list, see “Color and
Grayscale Support” on page 144 in the Palm OS Programmer’s
Companion, vol. I.

UI Color Data Types

UIColorTableEntries
The UIColorTableEntries enum declares symbolic color
constants for the various UI elements.

Do not confuse the UI color list with the system color table. The
system color table (or system palette) defines all available colors
for the display or draw window, whether they are in use or not. The
UI color list defines the colors used to draw the interface objects.

typedef enum UIColorTableEntries {
 UIObjectFrame = 0,
 UIObjectFill,
 UIObjectForeground,
 UIObjectSelectedFill,
 UIObjectSelectedForeground,

 UIMenuFrame,
 UIMenuFill,
 UIMenuForeground,
 UIMenuSelectedFill,
 UIMenuSelectedForeground,

UI Color List
UI Color Data Types

480 Palm OS Programmer’s API Reference

 UIFieldBackground,
 UIFieldText,
 UIFieldTextLines,
 UIFieldCaret,
 UIFieldTextHighlightBackground,
 UIFieldTextHighlightForeground,
 UIFieldFepRawText,
 UIFieldFepRawBackground,
 UIFieldFepConvertedText,
 UIFieldFepConvertedBackground,
 UIFieldFepUnderline,

 UIFormFrame,
 UIFormFill,

 UIDialogFrame,
 UIDialogFill,

 UIAlertFrame,
 UIAlertFill,

 UIOK,
 UICaution,
 UIWarning,

 UILastColorTableEntry
} UIColorTableEntries;

UI Color List
UI Color Data Types

Palm OS Programmer’s API Reference 481

Field Descriptions

UIObjectFrame Color for the border of user interface objects
(such as command buttons, push buttons,
selector triggers, menus, arrows checkboxes,
and other controls).

UIObjectFill The background color for a solid or “filled”
user interface object.

Note that UI objects in tables use the
UIField... colors instead of the UIObject...
colors.

UIObjectForeground The color for foreground items (such as labels
or graphics) in a user interface object.

UIObjectSelectedFill The background color of the currently
selected user interface object, whether that
object is solid or not.

UIObjectSelectedForeground The color of foreground items in a selected
user interface object.

UIMenuFrame The color of the border around the menu.

UIMenuFill The background color of a menu item.

UIMenuForeground The color of the menu’s text.

UIMenuSelectedFill The background color of a selected menu
item.

UIMenuSelectedForeground The color of the text of a selected menu item.

UIFieldBackground The background color of an editable text field.

UIFieldText The color of the text in the editable field.

UIFieldTextLines The color of underlines in an editable field.

UIFieldCaret The color of the cursor in an editable text
field.

UIFieldTextHighlightBackground The background color for selected text in an
editable text field.

UI Color List
UI Color Data Types

482 Palm OS Programmer’s API Reference

UIFieldTextHighlightForeground The color of the selected text in an editable
text field.

UIFieldFepRawText Color used for unconverted text in the inline
conversion area when a FEP is used as a text
input method (for example, on Japanese
devices).

If the FEP colors are identical to field colors,
unconverted text has a solid underline.

UIFieldFepRawBackground The background color for unconverted text in
the inline conversion area when a FEP is used
as a text input method.

If the FEP colors are identical to field colors,
unconverted text has a solid underline.

UIFieldFepConvertedText Color used for converted text in the inline
conversion area when a FEP is used as a text
input method (for example, on Japanese
devices).

If the FEP colors are identical to field colors,
converted text has a double-thick underline.

UIFieldFepConvertedBackground The background color used for converted text
in the inline conversion area.

If the FEP colors are identical to field colors,
converted text has a double-thick underline.

UIFieldFepUnderline The color used for underlines in the inline
conversion area.

UIFormFrame The color of the border and titlebar on a form.

UIFormFill The background color of a form. White is
recommended for this value.

UIDialogFrame The color of a border and titlebar on a modal
form.

UI Color List
UI Color Functions

Palm OS Programmer’s API Reference 483

Compatibility Implemented only if 3.5 New Feature Set is present.

UI Color Functions

UIColorGetTableEntryIndex

Purpose Return the index value for a UI color for the current system palette.

Declared In UIColor.h

Prototype IndexedColorType UIColorGetTableEntryIndex
(UIColorTableEntries which)

Parameters -> which One of the symbolic color constants. See
UIColorTableEntries.

Result Returns the system color table index of the color used for the
specified symbolic color.

Comments One way to find out the indexes of all the colors that the OS is using
is to loop through the UI color list, calling

UIDialogFill The background color of a modal form.

UIAlertFrame The color of the border and titlebar on an alert
panel.

UIAlertFill The background color of an alert panel.

UIOK The color for an informational icon.

UICaution The color for a caution icon.

UIWarning The color for a warning icon.

Palm OS® does not currently use the UIOK,
UICaution, and UIWarning constants.

UILastColorTableEntry Placeholder to indicate end of enum.

UI Color List
UI Color Functions

484 Palm OS Programmer’s API Reference

UIColorGetTableEntryIndex for each slot, and keep a list
(excluding duplicates).

UI Color List
UI Color Functions

Palm OS Programmer’s API Reference 485

IndexedColorType
 colorsUsed[UILastColorTableEntry];
UInt16 numColors = 0;
...
for (i = 0; i < UILastColorTableEntry; i++) {
 IndexedColorType currentColor;
 Boolean isNew = true;

 currentColor = UIColorGetTableEntryIndex(i);

 for (j = 0; ((j < numColors) && isNew); j++)
 if (colorsUsed[j] == currentColor)
 isNew = false; /* exit loop */
 if (isNew) {
 numColors++;
 colorsUsed[j] = currentColor;
 }

To get the RGB values of the colors, do the same thing but call
UIColorGetTableEntryRGB.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also IndexedColorType, WinIndexToRGB

UIColorGetTableEntryRGB

Purpose Return the RGB value for the UI color.

Declared In UIColor.h

Prototype void UIColorGetTableEntryRGB
(UIColorTableEntries which, RGBColorType *rgbP)

Parameters -> which One of the symbolic color constants. See
UIColorTableEntries.

<- rgbP Pointer to an RGB color value corresponding to
the current color used for the symbolic color.
(See RGBColorType.)

UI Color List
UI Color Functions

486 Palm OS Programmer’s API Reference

UI Color List
UI Color Functions

Palm OS Programmer’s API Reference 487

Result Returns nothing.

Comments In general, it is more efficient to work with indexed color entries
instead of RGB color entries.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also UIColorGetTableEntryIndex, WinRGBToIndex

UIColorSetTableEntry

Purpose Change a value in the UI color list.

Declared In UIColor.h

Prototype Err UIColorSetTableEntry
(UIColorTableEntries which,
const RGBColorType *rgbP)

Parameters -> which One of the symbolic color constants. See
UIColorTableEntries.

-> rgbP The RGB value of the color that should be used
for the specified UI object. (See
RGBColorType.)

Result Returns 0 upon success.

Comments Sets the value of a UI color entry to the passed RGB value. Updates
the index for that UI color entry to the current best fit for that RGB
value according to the palette used by the current draw window.

It is best to use this function only if the draw window is currently
onscreen. Otherwise, the best-fit algorithm may choose a color that
is not available on the current screen.

See Also WinIndexToRGB, UIColorGetTableEntryIndex,
UIColorGetTableEntryRGB

UI Color List
UI Color Functions

488 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 489

22
UI Controls
This chapter describes the UI controls API as declared in
UIControls.h.

UI Control Functions

UIBrightnessAdjust

Purpose Displays the brightness adjust dialog.

Declared In UIControls.h

Prototype void UIBrightnessAdjust()

Parameters None

Result Returns nothing.

Comments On hardware that supports a brightness setting, this function
displays a dialog that allows the user to change the brightness level.
On hardware that has a backlight, this function toggles the
backlight.

Compatibility Implemented only if 3.5 New Feature Set is present.

UI Controls
UI Control Functions

490 Palm OS Programmer’s API Reference

UIContrastAdjust

Purpose Displays the contrast adjust dialog (currently only available on the
Palm V™ Connected Organizer).

Declared In UIControls.h

Prototype void UIContrastAdjust()

Parameters None.

Result Returns nothing.

Compatibility This function was renamed from ContrastAdjust to
UIContrastAdjust in Palm OS® release 3.5. The
ContrastAdjust function is available if 3.1 New Feature Set is
present.

UIPickColor

Purpose Displays a dialog that allows the user to choose a color.

Declared In UIControls.h

Prototype Boolean UIPickColor (IndexedColorType *indexP,
RGBColorType *rgbP, UIPickColorStartType start,
const Char *titleP, const Char *tipP)

Parameters <-> indexP Index value of the selected color. (See
IndexedColorType.) Upon entry, this points
to the index value of the color initially selected.
Upon return, this points to the index value of
the color the user selected. Pass NULL to not set
or return this value.

UI Controls
UI Control Functions

Palm OS Programmer’s API Reference 491

<-> rgbP RGB value of the selected color. (See
RGBColorType.) Upon entry, this points to the
RGB value of the color initially selected when
the dialog is displayed. Upon return, this points
to the RGB value that the user selected. Pass
NULL to not set or return this value.

-> start Either UIPickColorStartPalette to
display the system palette as a series of color
squares or UIPickColorStartRGB to display
individual sliders for the red, green, and blue
values. This parameter is only used if both
indexP and rgbP are not NULL.

-> titleP String to display as the title of the dialog.
Specify NULL to use the default title, which is
“Pick Color.”

-> tipP Not used.

Result Returns true if a new color was selected, false otherwise.

Comments Use this function to allow users to choose a color used in your user
interface. (The system never calls UIPickColor.)

This function can display two versions of the dialog: palette or RGB.
The palette version of the dialog displays a series of squares, each
containing a different color defined on the system palette. The
indexP value contains the index of the square that is initially
selected.

The RGB version of the dialog displays three sliders that allow the
user to select the level of red, green, and blue in the color. The rgbP
parameter contains the red, green, and blue values initially shown
in the dialog. The sliders only allow values that are defined in the
current system color table.

If indexP is initially NULL, only the RGB dialog is displayed.
Similarly, if rgbP is NULL, only the palette version is displayed. If
both parameters are non-NULL, the system adds a pull-down list
that allows the user to switch between the palette dialog and the
RGB dialog, and the start parameter controls which version of the

UI Controls
UI Control Functions

492 Palm OS Programmer’s API Reference

dialog is initially shown. In this case, both indexP and rgbP
contain the value of the user-selected color upon return.

Palm OS 3.5 supports a maximum of 256 colors. The number of
possible RGB colors greatly exceeds this amount. For this reason,
the chosen RGB may not have an exact match. If this is the case, the
indexP parameter (if not NULL) contains the closest match using a
luminance best-fit if the color lookup table is entirely grayscale (red,
green, and blue values for each entry are identical), or a shortest-
distance fit in the RGB space is used if the palette contains colors.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinSetBackColor, WinSetForeColor, WinSetTextColor,
UIColorSetTableEntry

Palm OS Programmer’s API Reference 493

23
Miscellaneous User
Interface Functions
This chapter provides descriptions of miscellaneous user interface
functions. It covers the following topics:

• Miscellaneous User Interface Data Structures

• Miscellaneous User Interface Functions

You can find declarations for the functions described in this chapter
in the header files AppLaunchCmd.h,PhoneLookup.h, and
UIResources.h.

Miscellaneous User Interface Data Structures
The PhoneNumberLookupCustom function uses these data
structures to look up contact information based upon the current
cursor position.

AddressLookupFields
The AddressLookupFields enum specifies the fields you can
search by and the corresponding fields to return using the field1
and field2 elements of the AddrLookupParamsType structure.
For both field1 and field2 pass one of the values up to, but not
including, addrLookupFieldCount.

typedef enum {
 addrLookupName,
 addrLookupFirstName,
 addrLookupCompany,
 addrLookupAddress,
 addrLookupCity,
 addrLookupState,
 addrLookupZipCode,

Miscellaneous User Interface Functions
Miscellaneous User Interface Data Structures

494 Palm OS Programmer’s API Reference

 addrLookupCountry,
 addrLookupTitle,
 addrLookupCustom1,
 addrLookupCustom2,
 addrLookupCustom3,
 addrLookupCustom4,
 addrLookupNote,
 addrLookupWork,
 addrLookupHome,
 addrLookupFax,
 addrLookupOther,
 addrLookupEmail,
 addrLookupMain,
 addrLookupPager,
 addrLookupMobile,
 addrLookupSortField,
 addrLookupListPhone,
 addrLookupFieldCount,

 addrLookupNoField = 0xff
} AddressLookupFields;

AddrLookupParamsType
Pass this structure to PhoneNumberLookupCustom to precisely
control the phone number lookup dialog and paste process.

typedef struct {
 Char *title;
 Char *pasteButtonText;
 Char lookupString[addrLookupStringLength];
 AddressLookupFields field1;
 AddressLookupFields field2;
 Boolean field2Optional;
 Boolean userShouldInteract;
 Char *formatStringP;
 MemHandle resultStringH;
 UInt32 uniqueID;
} AddrLookupParamsType;

Miscellaneous User Interface Functions
Miscellaneous User Interface Data Structures

Palm OS Programmer’s API Reference 495

typedef AddrLookupParamsType
*AddrLookupParamsPtr;

Value Descriptions

title Title to appear in the title bar. Supply
NULL to use the default title.

pasteButtonText Text to appear in paste button. Supply
NULL to use the default, “paste”.

lookupString Buffer containing the string to look up. If
the string matches only one record, that
record is used without presenting the
lookup dialog to the user.
PhoneNumberLookup and
PhoneNumberLookupCustom both set
this field based upon the current selection
or cursor position.

field1 Field to search by. This field appears on
the left side of the lookup dialog. If the
field is the sort field, the search is
performed using a binary search. If the
field isn’t the sort field, searching is
performed by a linear search, which can be
slow. Supply one of the values in the
AddressLookupFields enum to specify
the field to search by.

field2 Field to display on the right. Often
displays some information about the
person. If it is a phone field and a record
has multiple instances of the phone type
then the person appears once per instance
of the phone type. Either field1 or
field2 may be a phone field, but not
both. Supply one of the values in the
AddressLookupFields enum to specify
the field to display.

Miscellaneous User Interface Functions
Miscellaneous User Interface Data Structures

496 Palm OS Programmer’s API Reference

field2Optional A value of true means that the record
need not have field2 in order to be
listed. A value of false indicates that
field2 is required in order for the record
to be listed.

userShouldInteract A value of true forces the user to resolve
non-unique lookups. A false value
means a non-unique and complete lookup
causes resultStringH to be set to NULL
and uniqueID to be set to 0.

Miscellaneous User Interface Functions
Miscellaneous User Interface Data Structures

Palm OS Programmer’s API Reference 497

formatStringP Controls the format of the paste string. All
characters in the format string are literal
unless they identify a field (signified by a
caret (^) followed by the field name). For
example, the format string “^first -
^home” might result in “Roger - 123-
4567”. Allowable field names are:

• name

• first

• company

• address

• city

• state

• zipcode

• country

• title

• custom1

• custom2

• custom3

• custom4

• work

• home

• fax

• other

• email

• main

• pager

• mobile

• listname

Miscellaneous User Interface Functions
Miscellaneous User Interface Functions

498 Palm OS Programmer’s API Reference

Miscellaneous User Interface Functions

PhoneNumberLookup

Purpose Calls the Address Book application to look up a phone number.

Declared In PhoneLookup.h

Prototype void PhoneNumberLookup (FieldType *fldP)

Parameters -> fldP Field object in which the text to match is found.

Result Nothing returned; it’s locked.

Comments This function displays the user’s phone list and inserts the chosen
name and number (or company name, name, and number, if that’s
how the user’s Address Book preferences indicate that the phone
list should be sorted) into the specified field. When displaying the
phone list, PhoneNumberLookup scrolls the list to that entry that
best matches the supplied field. The match compares the field
contents against the name or company name (depending on the
user’s preferences) as follows:

• If the field contains selected text, PhoneNumberLookup tries
to match against the selected text. The selected text is then
replaced with the text of the chosen address list entry.

• If there is no selected text in the field, PhoneNumberLookup
matches against the word in which the cursor lies (the match
will take place if the cursor is at the beginning, the end, or
within a word). The matched word is replaced with the text
of the chosen address list entry.

resultStringH If there is a format string, a result string is
allocated on the dynamic heap and its
handle is returned here.

uniqueID The unique ID of the found record, or 0 if
none was found, is returned here.

Miscellaneous User Interface Functions
Miscellaneous User Interface Functions

Palm OS Programmer’s API Reference 499

• If the cursor does not lie within or adjoin a word,
PhoneNumberLookup displays the address list starting at
the first entry, and the text of the chosen entry is inserted at
the current position within the text field.

If the user chooses Cancel when the address list is displayed, the
field contents are left unaltered. The paste operation takes place
through the clipboard so that Undo can be used to restore the field
to its previous state.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also PhoneNumberLookupCustom

PhoneNumberLookupCustom

Purpose Calls the Address Book application to look up a phone number.

Declared In PhoneLookup.h

Prototype void PhoneNumberLookupCustom (FieldType *fldP,
AddrLookupParamsType *params,
Boolean useClipboard)

Parameters -> fldP Field object in which the text to match is found.

<-> params A structure that allows full control over the find
dialog and the format of the resulting paste
string. See AddrLookupParamsType for a
description of the fields in this structure.

-> useClipboard
If true, PhoneNumberLookupCustom pastes
the result into the field through the clipboard,
thereby enabling undo.

Result Nothing returned; it’s locked.

Miscellaneous User Interface Functions
Miscellaneous User Interface Functions

500 Palm OS Programmer’s API Reference

Comments This function displays two fields from each record in the user’s
address list and inserts a formatted string based upon fields in the
chosen record into the specified field. When displaying the address
list, PhoneNumberLookupCustom scrolls the list to that entry that
best matches the supplied field. The match compares the field
contents against the field specified in the params structure’s
field1 element as follows:

• If the field contains selected text, PhoneNumberLookup tries
to match against the selected text. The selected text is then
replaced with the text of the chosen address list entry.

• If there is no selected text in the field, PhoneNumberLookup
matches against the word in which the cursor lies (the match
will take place if the cursor is at the beginning, the end, or
within a word). The matched word is replaced with the text
of the chosen address list entry.

• If the cursor does not lie within or adjoin a word,
PhoneNumberLookup displays the address list starting at
the first entry, and the text of the chosen entry is inserted at
the current position within the text field.

PhoneNumberLookupCustom copies the portion of the field used
for the search—the selected text or the word in which the cursor
lies—into the lookupString field in the params structure prior to
replacing that part of the field with the user-selected entry.

If the user chooses Cancel when the address list is displayed, the
field contents are left unaltered. Depending on the value of the
useClipboard parameter, the paste operation can take place
through the clipboard so that Undo can be used to restore the field
to its previous state.

Compatibility Implemented only if 4.0 New Feature Set is present.

Miscellaneous User Interface Functions
Miscellaneous User Interface Functions

Palm OS Programmer’s API Reference 501

ResLoadConstant

Purpose Load a constant from a 'tint' resource and return its value.

Declared In UIResources.h

Prototype UInt32 ResLoadConstant (UInt16 rscID)

Parameters -> rscID The ID of the 'tint' resource (symbolically
named constantRscType) to load.

Result The four-byte value of the constant in the resource, or 0 if the
resource could not be found. The return value may be cast as
necessary.

Comments Use this function to load constant values that are stored as 'tint'
resources. (All open resource databases are searched for the
resource ID you specify.) You should store a constant value as a
resource when its value changes depending on the locale.

As an example, consider the maximum length of the Alarm Sound
trigger label in the Datebook application’s preferences panel. The
list displayed by this trigger uses the localized name for each sound
stored in the system. Because localized names are used, the
maximum length that the Datebook application allows for the label
differs depending on the current locale. The maximum length is
stored as a resource constant so that each overlay database can
specify a different value for the constant.

Compatibility Implemented only if 3.5 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS®,
link with the PalmOSGlue library and call
ResGlueLoadConstant. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also DmGetResource, DmGet1Resource

Miscellaneous User Interface Functions
Miscellaneous User Interface Functions

502 Palm OS Programmer’s API Reference

ResLoadForm

Purpose Copy and initialize a form resource. The structures are complete
except pointers updating. Pointers are stored as offsets from the
beginning of the form.

Declared In UIResources.h

Prototype void* ResLoadForm (UInt16 rscID)

Parameters -> rscID The resource ID of the form.

Result The handle of the memory block that the form is in, since the form
structure begins with the WindowType, this is also a WinHandle.

Compatibility If 5.0 New Feature Set is present this function is unimplemented.

ResLoadMenu

Purpose Copy and initialize a menu resource. The structures are complete
except pointers updating. Pointers are stored as offsets from the
beginning of the menu.

Declared In UIResources.h

Prototype void* ResLoadMenu (UInt16 rscID)

Parameters -> rscID The resource ID of the menu.

Result The handle of the memory block that the form is in, since the form
structure begins with the WindowType this is also a WinHandle.

Part II: System
Management

Palm OS Programmer’s API Reference 505

24
Alarm Manager
This chapter provides reference material for the alarm manager:

• Alarm Manager Functions

• Application-Defined Functions

The alarm manager API is declared in the header file AlarmMgr.h.

For more information on the Alarm Manager, see the section
“Alarms” in the Palm OS Programmer’s Companion, vol. I.

Alarm Manager Functions

AlmGetAlarm

Purpose Return the date and time for the application’s alarm, if one is set.

Declared In AlarmMgr.h

Prototype UInt32 AlmGetAlarm (UInt16 cardNo, LocalID dbID,
UInt32* refP)

Parameters -> cardNo Number of the storage card on which the
application resides.

-> dbID Local ID of the application.

Alarm Manager
Alarm Manager Functions

506 Palm OS Programmer’s API Reference

<- refP The alarm’s reference value is returned here.
This value is passed to the application when the
alarm is triggered.

Result The date and time the alarm will trigger, given in seconds since 1/
1/1904; if no alarm is active for the application, 0 is returned for the
alarm seconds and the reference value is undefined.

See Also AlmSetAlarm

AlmGetProcAlarm

Purpose Macro that returns the date and time that a procedure alarm will
trigger. Also returns the caller-defined alarm reference value.

Declared In AlarmMgr.h

Prototype AlmGetProcAlarm (procP, refP)

Parameters -> procP Pointer to a function that will be called when
alarm is triggered. See AlmAlarmProcPtr.

<- refP A UInt32 pointer to a location where the
alarm’s reference value is returned. This value
is passed to the procedure when the alarm is
triggered.

Result The date and time the alarm will trigger, given in seconds since 1/
1/1904; if no alarm is active for the procedure, 0 is returned for the
alarm seconds and the reference value is undefined.

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also AlmSetProcAlarm

Alarm Manager
Alarm Manager Functions

Palm OS Programmer’s API Reference 507

AlmSetAlarm

Purpose Set or cancel an alarm for the given application.

Declared In AlarmMgr.h

Prototype Err AlmSetAlarm (UInt16 cardNo, LocalID dbID,
UInt32 ref, UInt32 alarmSeconds, Boolean quiet)

Parameters -> cardNo Number of the storage card on which the
application resides.

-> dbID Local ID of the application.

-> ref Caller-defined value. This value is passed with
the launch code that notifies the application
that the alarm has been triggered.

-> alarmSeconds Alarm date/time in seconds since 1/1/1904, or
0 to cancel the current alarm (if any).

-> quiet Reserved for future upgrade. This value is not
currently used.

Result 0 No error.

almErrMemory Insufficient memory.

almErrFull Alarm table is full.

Comments This function sets an alarm for the specified application. An
application can have only one alarm set at a time. If an alarm for this
application has already been set, it is replaced with the new alarm.

The alarmSeconds parameter specifies the time at which the
alarm will be triggered. As soon as possible after this time, the alarm
manager sends the sysAppLaunchCmdAlarmTriggered launch
code to the specified application. If there is another alarm that
should be set for this application, you can set it in response to this
launch code. Following the sysAppLaunchCmdAlarmTriggered
launch code, the alarm manager sends a
sysAppLaunchCmdDisplayAlarm launch code. This is where
your application should do things such as display a modal dialog

Alarm Manager
Alarm Manager Functions

508 Palm OS Programmer’s API Reference

indicating that the event has occurred. Read more about these
launch codes in Chapter 1, “Application Launch Codes.”

If your application needs access to any particular value to respond
to the alarm, pass a pointer to that value in the ref parameter. The
system will pass this pointer back to the application in the launch
codes’ parameter blocks.

See Also AlmGetAlarm

AlmSetProcAlarm

Purpose Macro that sets or cancels a procedure alarm.

Declared In AlarmMgr.h

Prototype AlmSetProcAlarm (procP, ref, alarmSeconds)

Parameters -> procP Pointer to a function that should be called
when alarm is triggered. See
AlmAlarmProcPtr.

-> ref A caller-defined UInt32 value. This value is
passed with the launch code that notifies the
application that the alarm has been triggered.

-> alarmSeconds A UInt32 indicating the alarm date/time in
seconds since 1/1/1904, or 0 to cancel the
current alarm (if any).

Result Returns one of the following error codes:

0 No error.

almErrMemory Insufficient memory.

almErrFull Alarm table is full.

Comments This macro is similar to the AlmSetAlarm function, but it specifies
a procedure to be called at the specified date and time rather than an
application to be launched. With this macro, you can set alarms that
are independent of any application. For example, a shared library

Alarm Manager
Application-Defined Functions

Palm OS Programmer’s API Reference 509

can set procedure alarms that call a procedure implemented in the
library.

Procedure alarms also differ from regular system alarms in that if
they trigger when the device is in sleep mode, the LCD does not
light up. Thus, you can use procedure alarms to perform a
scheduled task in a manner that is entirely hidden from the user.

IMPORTANT: Because the procP pointer is used to directly call
the procedure, the pointer must remain valid from the time
AlmSetProcAlarm is called to the time the alarm is triggered. If
the procedure is in a shared library, you must keep the library
open. If the procedure is in a separately loaded code resource,
the resource must remain locked until the alarm is triggered.
When you close a library or unlock a resource, you must remove
any pending alarms. If you don’t, the system will crash when the
alarm is triggered.

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also AlmGetProcAlarm

Application-Defined Functions

AlmAlarmProcPtr

Purpose A procedure to be executed when an alarm is triggered.

Declared In AlarmMgr.h

Prototype void (*AlmAlarmProcPtr) (UInt16 almProcCmd,
SysAlarmTriggeredParamType *paramP)

Parameters -> almProcCmd One of the AlmProcCmdEnum constants. These
are commands that your function must handle.
Possible values are:

Alarm Manager
Application-Defined Functions

510 Palm OS Programmer’s API Reference

almProcCmdTriggered
The alarm’s date and time has passed
and the alarm has been triggered. The
function should perform its main task in
response to this command.

almProcCmdReschedule
A system time change occurred, so the
function must reschedule the alarm.

-> paramP Pointer to a SysAlarmTriggeredParamType
structure. See below.

Result Returns nothing.

Comments AlmAlarmProcPtr procedures are called when an alarm set by
AlmSetProcAlarm is triggered. Your implementation should
check the value of almProcCmd and respond accordingly.

The paramP parameter is a pointer to a
SysAlarmTriggeredParamType structure. This structure is
defined as:

typedef struct SysAlarmTriggeredParamType {
 UInt32 ref;
 UInt32 alarmSeconds;
 Boolean purgeAlarm;
} SysAlarmTriggeredParamType;

ref and alarmSeconds are both values specified in
AlmSetProcAlarm when the alarm is set. The purgeAlarm field
specifies if the alarm will be removed from the alarm table when the
function returns so that the sysAppLaunchCmdDisplayAlarm
launch code is not triggered. This should be true for all procedure
alarms; the alarm manager set it to true for you after your function
returns.

If necessary, you can define new values for the almProcCmd
parameter to call the procedure for something other than a triggered
alarm or a system time change. The value you use must be greater
than the constant almProcCmdCustom as defined in AlarmMgr.h.

Alarm Manager
Application-Defined Functions

Palm OS Programmer’s API Reference 511

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also AlmGetProcAlarm

Alarm Manager
Application-Defined Functions

512 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 513

25
Bitmaps
This chapter provides information about bitmaps by discussing
these topics:

• Bitmap Data Structures

• Bitmap Constants

• Bitmap Resources

• Bitmap Functions

The header file Bitmap.h declares the API that this chapter
describes. For more information on bitmaps, see the section
“Bitmaps” on page 123 in the Palm OS Programmer’s Companion, vol.
I.

Bitmap Data Structures

BitmapCompressionType
The BitmapCompressionType enum specifies possible bitmap
compression types. These are the possible values for the
compressionType field of BitmapType. You can compress or
uncompress a bitmap using a call to BmpCompress.

typedef enum {
 BitmapCompressionTypeScanLine = 0,
 BitmapCompressionTypeRLE,
 BitmapCompressionTypePackBits,
 BitmapCompressionTypeEnd,
 BitmapCompressionTypeBest = 0x64,
 BitmapCompressionTypeNone = 0xFF
} BitmapCompressionType;

Bitmaps
Bitmap Data Structures

514 Palm OS Programmer’s API Reference

Value Descriptions

Compatibility BitmapCompressionType is only defined if 3.5 New Feature Set
is present. Earlier releases do support compressed bitmaps, but in
scan line format only.

BitmapDirectInfoType
For direct color bitmaps—each pixel is represented by an RGB
triplet rather than a palette index—the BitmapDirectInfoType
structure follows the color table if one is present, or immediately
follows the BitmapType if a color table is not present. For direct
color bitmaps, only 16 bits per pixel is supported, 5 bits for red, 6
bits for green, and 5 bits for blue.

BitmapCompressionTypeScanLine Use scan line compression.
Scan line compression is
compatible with Palm OS®
2.0 and higher.

BitmapCompressionTypeRLE Use RLE compression. RLE
compression is supported
in Palm OS 3.5 and higher.

BitmapCompressionTypePackBits Use PackBits compression.
PackBits compression is
supported in Palm OS 4.0
only.

BitmapCompressionTypeEnd For internal use only.

BitmapCompressionTypeBest For internal use only.

BitmapCompressionTypeNone No compression is used.

This value should only be
used as an argument to
BmpCompress.

Bitmaps
Bitmap Data Structures

Palm OS Programmer’s API Reference 515

WARNING! This structure is documented so that you can
directly access the internals of your own bitmap resources.
Bitmaps created by Palm OS are not guaranteed to adhere to this
structure; you cannot cast a direct color bitmap data pointer from
a bitmap created by the Palm OS to this structure and expect to
be able to correctly access the structure’s fields. Always use
accessor functions to access the contents of user interface
structures created by Palm OS.

typedef struct BitmapDirectInfoType {
 UInt8 redBits;
 UInt8 greenBits;
 UInt8 blueBits;
 UInt8 reserved;
 RGBColorType transparentColor;
} BitmapDirectInfoType;

Field Descriptions

Compatibility BitmapDirectInfoType is only defined if 4.0 New Feature Set is
present.

BitmapFlagsType
The BitmapFlagsType bit field defines the flags field of
BitmapType. It specifies the bitmap’s attributes.

redBits Number of bits used by the red component
in each pixel.

greenBits Number of bits used by the green
component in each pixel.

blueBits Number of bits used by the blue component
in each pixel.

reserved Must be zero. Reserved for future use.

transparentcolor Contains the red, green, and blue
components of the transparent color.

Bitmaps
Bitmap Data Structures

516 Palm OS Programmer’s API Reference

WARNING! This structure is documented so that you can
directly access the internals of your own bitmap resources.
Bitmaps created by Palm OS are not guaranteed to adhere to this
structure; you cannot cast the flags field of a bitmap created by
the Palm OS to this structure and expect to be able to correctly
access the structure’s fields. Always use accessor functions to
access the contents of user interface structures created by Palm
OS.

typedef struct BitmapFlagsType {
UInt16 compressed:1;
UInt16 hasColorTable:1;
UInt16 hasTransparency:1;
UInt16 indirect:1;
UInt16 forScreen:1;
UInt16 directColor:1;
UInt16 indirectColorTable:1;
UInt16 noDither:1;
UInt16 reserved:8;

} BitmapFlagsType;

Field Descriptions

compressed If true, the bitmap is compressed and the
compressionType field specifies the
compression used. If false, the bitmap is
uncompressed. The BmpCompress function
sets this field.

hasColorTable If true, the bitmap has its own color table. If
false, the bitmap uses the system color
table. You specify whether the bitmap has its
own color table when you create the bitmap.

Bitmaps
Bitmap Data Structures

Palm OS Programmer’s API Reference 517

hasTransparency If true, the OS will not draw pixels that have
a value equal to the transparentIndex. If
false, the bitmap has no transparency value.
You specify the transparent color when you
create the bitmap using Constructor, or you
can specify it programmatically with
BmpSetTransparentValue. To obtain the
value of this field, call
BmpGetTransparentValue.

indirect If true, the address to the bitmap’s data is
stored where the bitmap itself would
normally be stored. The actual bitmap data is
stored elsewhere. If false, the bitmap data is
stored directly following the bitmap header
or directly following the bitmap’s color table
if it has one. Never set this flag.

Note that this flag is supported for bitmaps
created by Palm OS only; this flag is not used
in user-created bitmap resources.

forScreen If true, bitmap intended for the display
(screen) window. Never set this flag.

Note that this flag is supported for bitmaps
created by Palm OS only; this flag is not used
in user-created bitmap resources.

directColor If true, bitmap is a direct color (RGB)
bitmap.

Bitmaps
Bitmap Data Structures

518 Palm OS Programmer’s API Reference

Compatibility The hasTransparency, indirect, and forScreen flags are only
defined if 3.5 New Feature Set is present. The directColor flag is
only defined if 4.0 New Feature Set is present. The
indirectColorTable and noDither flags are only defined if the
High-Density Display Feature Set is present.

BitmapPtr
The BitmapPtr type defines a pointer to a BitmapType structure.

typedef BitmapType *BitmapPtr;

BitmapType
The BitmapType structure represents that which is common to all
BitmapTypeVx structures (BitmapTypeV0, BitmapTypeV1,
BitmapTypeV2, and BitmapTypeV3). The BitmapType structures
define both the bitmaps representing the window display and

indirectColorTab
le

If true, and if hasColorTable is true, a
pointer to the bitmap’s color table
immediately follows the BitmapType
structure. If false, and hasColorTable is
true, the color table immediately follows the
BitmapType structure. If hasColorTable
is false, indirectColorTable is ignored.
The indirect bit uses similar logic: if both
the color table and the bitmap data are
indirect, the color table pointer precedes the
bitmap data pointer.

Note that this flag is supported for bitmaps
created by Palm OS only; this flag is not used
in user-created bitmap resources.

noDither If true, the blitter does not dither the bitmap.
If false, the source bitmap is dithered if it
has a bit depth greater than the destination
bitmap.

reserved Reserved for future use.

Bitmaps
Bitmap Data Structures

Palm OS Programmer’s API Reference 519

bitmap resources ('Tbmp' and 'tAIB') that you create using
Constructor or some other application and load into your program.

Because BitmapType is merely a portion of the BitmapTypeVx
structures, you should never do sizeof(BitmapType).

WARNING! This structure is documented so that you can
directly access the internals of your own bitmap resources.
Bitmaps created by Palm OS are not guaranteed to adhere to this
structure; you cannot cast a bitmap created by the Palm OS to
this structure and expect to be able to correctly access the
structure’s fields. Always use accessor functions to access the
contents of user interface structures created by Palm OS.

typedef struct BitmapType {
Int16 width;
Int16 height;
UInt16 rowBytes;
BitmapFlagsType flags;
UInt8 pixelSize;
UInt8 version;

} BitmapType;

typedef BitmapType* BitmapPtr;

Field Descriptions

width The width of the bitmap in pixels. You specify
this value when you create the bitmap. Use
BmpGetDimensions to access this field.

height The height of the bitmap in pixels. You
specify this value when you create the
bitmap. Use BmpGetDimensions to access
this field.

rowBytes The number of bytes stored for each row of
the bitmap where height is the number of
rows. Use BmpGetDimensions to obtain the
contents of this field.

Bitmaps
Bitmap Data Structures

520 Palm OS Programmer’s API Reference

Comments Note the following about the BitmapType structures:

• None of these fields contains the actual bitmap data. Instead,
the bitmap data is stored immediately following the
BitmapTypeVx (which one depends on the value of the
version field) header structure. If the bitmap has its own
color table, the color table is stored in between the header
and the data. If the bitmap has a pixel size of 16, and the
bitmap is BitmapTypeV2, the BitmapDirectInfoType
structure is stored between the header and the data. You can
retrieve a bitmap’s data by passing its BitmapType
structure to BmpGetBits, and you can retrieve its color table
with BmpGetColortable.

• Unlike most other user interface structures, the BitmapType
does not store the bitmap’s location on the screen. The
WindowType or the FormBitmapType with which this
bitmap is associated contains that information.

• A bitmap may be part of a bitmap family. A bitmap family is
a group of bitmaps, each containing the same drawing but at

flags The bitmap’s attributes. See
BitmapFlagsType.

pixelSize The pixel depth. Currently supported pixel
depths are 1, 2, 4, and 8-bit. You specify this
value when you create the bitmap. Use
BmpGetBitDepth to access the contents of
this field.

version The version of bitmap encoding used. See
“Bitmap Constants” on page 535. The value in
this field determines the data structure to use
when interpreting the fields following
version: a value of BitmapVersionZero
(0) corresponds to BitmapTypeV0,
BitmapVersionOne (1) corresponds to
BitmapTypeV1, BitmapVersionTwo (2)
corresponds to BitmapTypeV2, and
BitmapVersionThree (3) corresponds to
BitmapTypeV3. Use BmpGetVersion to
obtain the contents of this field.

Bitmaps
Bitmap Data Structures

Palm OS Programmer’s API Reference 521

a different pixel depth (see “Bitmaps” on page 123 of the
Palm OS Programmer’s Companion, vol. I). When requested to
draw a bitmap family, the operating system chooses a
member of the bitmap family based upon the bitmap density
and pixel depth; see “Bitmap Families” on page 18 for the
algorithm that the High-Density Display Feature Set uses to
determine which one to choose.

New BitmapTypeV0
Structure corresponding to the version 0 encoding of a bitmap.
Version 0 encoding is supported in Palm OS 1.0 and later.

Generally you work with pointers to BitmapType structures; if the
structure’s version is BitmapVersionZero, the structure is of type
BitmapTypeV0.

WARNING! This structure is documented so that you can
directly access the internals of your own bitmap resources.
Bitmaps created by Palm OS are not guaranteed to adhere to this
structure; you cannot cast a bitmap created by the Palm OS to
this structure and expect to be able to directly access the
structure’s fields. Always use accessor functions to access the
contents of user interface structures created by Palm OS.

typedef struct BitmapTypeV0 {
Int16 width;
Int16 height;
UInt16 rowBytes;
BitmapFlagsType flags;
UInt16 reserved[4];

} BitmapTypeV0;

typedef BitmapTypeV0 *BitmapPtrV0;

Bitmaps
Bitmap Data Structures

522 Palm OS Programmer’s API Reference

Field Descriptions

Compatibility BitmapTypeV0 is defined only if High-Density Display Feature Set
is present.

New BitmapTypeV1
Structure corresponding to the version 1 encoding of a bitmap.
Version 1 encoding is supported in Palm OS 3.0 and later.

Generally you work with pointers to BitmapType structures; if the
structure’s version is BitmapVersionOne, the structure is of type
BitmapTypeV1.

width The width of the bitmap in pixels. You specify
this value when you create the bitmap. Use
BmpGetDimensions to access this field.

height The height of the bitmap in pixels. You
specify this value when you create the
bitmap. Use BmpGetDimensions to access
this field.

rowBytes The number of bytes stored for each row of
the bitmap where height is the number of
rows. Use BmpGetDimensions to access this
field.

flags The bitmap’s attributes. See
BitmapFlagsType. Only the compressed
flag is defined for BitmapTypeV0 structures.

reserved Reserved. These values are set to zero. Note
that in the BitmapTypeV0 structure, the
pixelSize and version fields, defined in
BitmapType, do not exist. They coincide
with the reserved array, however, and this
array was initialized to zero when the bitmap
was created. The operating system recognizes
that a pixelSize of zero means that the
bitmap’s depth is 1.

Bitmaps
Bitmap Data Structures

Palm OS Programmer’s API Reference 523

WARNING! This structure is documented so that you can
directly access the internals of your own bitmap resources.
Bitmaps created by Palm OS are not guaranteed to adhere to this
structure; you cannot cast a bitmap created by the Palm OS to
this structure and expect to be able to directly access the
structure’s fields. Always use accessor functions to access the
contents of user interface structures created by Palm OS.

typedef struct BitmapTypeV1 {
Int16 width;
Int16 height;
UInt16 rowBytes;
BitmapFlagsType flags;
UInt8 pixelSize;
UInt8 version;
UInt16 nextDepthOffset;
UInt16 reserved[2];

} BitmapTypeV1;

typedef BitmapTypeV1* BitmapPtrV1;

Field Descriptions

width The width of the bitmap in pixels. You specify
this value when you create the bitmap. Use
BmpGetDimensions to access this field.

height The height of the bitmap in pixels. You
specify this value when you create the
bitmap. Use BmpGetDimensions to access
this field.

rowBytes The number of bytes stored for each row of
the bitmap where height is the number of
rows. Use BmpGetDimensions to access this
field.

Bitmaps
Bitmap Data Structures

524 Palm OS Programmer’s API Reference

Compatibility BitmapTypeV1 is defined only if High-Density Display Feature Set
is present.

New BitmapTypeV2
Structure corresponding to the version 2 encoding of a bitmap.
Version 2 encoding is supported in Palm OS 3.5 and later.

Generally you work with pointers to BitmapType structures; if the
structure’s version is BitmapVersionTwo (2), the structure is of
type BitmapTypeV2.

flags The bitmap’s attributes. See
BitmapFlagsType. Only the compressed
and hasColorTable flags are defined for
BitmapTypeV1 structures.

pixelSize The pixel depth. Currently supported pixel
depths are 1, 2, and 4-bit. You specify this
value when you create the bitmap. Use
BmpGetBitDepth to obtain the contents of
this field.

version The version of bitmap encoding used. This
field has a value of BitmapVersionOne (1)
for BitmapTypeV1 structures. Use
BmpGetVersion to obtain the contents of
this field.

nextDepthOffset For bitmap families, this field specifies the
start of the next bitmap in the family. The
value it contains is the number of 4-byte
words to the next BitmapType from the
beginning of this one. If the bitmap is not part
of a bitmap family or it is the last bitmap in
the family, the nextDepthOffset is 0.

reserved Reserved.

Bitmaps
Bitmap Data Structures

Palm OS Programmer’s API Reference 525

WARNING! This structure is documented so that you can
directly access the internals of bitmaps that you create. Bitmaps
created by Palm OS are not guaranteed to adhere to this
structure; you cannot cast a bitmap created by the Palm OS to
this structure and expect to be able to directly access the
structure’s fields. Always use accessor functions to access the
contents of user interface structures created by Palm OS.

typedef struct BitmapTypeV2 {
Int16 width;
Int16 height;
UInt16 rowBytes;
BitmapFlagsType flags;
UInt8 pixelSize;
UInt8 version;
UInt16 nextDepthOffset;
UInt8 transparentIndex;
UInt8 compressionType;
UInt16 reserved;

} BitmapTypeV2;

typedef BitmapTypeV2* BitmapPtrV2;

Field Descriptions

width The width of the bitmap in pixels. You specify
this value when you create the bitmap. Use
BmpGetDimensions to access this field.

height The height of the bitmap in pixels. You
specify this value when you create the
bitmap. Use BmpGetDimensions to access
this field.

rowBytes The number of bytes stored for each row of
the bitmap where height is the number of
rows. Use BmpGetDimensions to access this
field.

Bitmaps
Bitmap Data Structures

526 Palm OS Programmer’s API Reference

flags The bitmap’s attributes. See
BitmapFlagsType. Only the compressed,
hasColorTable, hasTransparency,
indirect, forScreen, and directColor
flags are defined for BitmapTypeV2
structures. Note that the indirect and
forScreen flags are system-only flags that
are not used in user-created bitmap resources.

pixelSize The pixel depth. Currently supported pixel
depths are 1, 2, 4, 8, and 16-bit. You specify
this value when you create the bitmap. Use
BmpGetBitDepth to obtain the contents of
this field.

version The version of bitmap encoding used. This
field has a value of BitmapVersionTwo (2)
for BitmapTypeV2 structures. Use
BmpGetVersion to obtain the contents of
this field.

nextDepthOffset For bitmap families, this field specifies the
start of the next bitmap in the family. The
value it contains is the number of 4-byte
words to the next BitmapType from the
beginning of this one. If the bitmap is not part
of a bitmap family or it is the last bitmap in
the family, the nextDepthOffset is 0.

transparentIndexThe color index for the transparent color.
Only used for version 2 bitmaps and only
when the hasTransparency flag is set (see
BitmapFlagsType). You specify this value
when you create the bitmap using
Constructor, or programmatically with
BmpSetTransparentValue. To obtain the
value of this field, call
BmpGetTransparentValue.

Bitmaps
Bitmap Data Structures

Palm OS Programmer’s API Reference 527

Compatibility BitmapTypeV2 is defined only if High-Density Display Feature Set
is present.

New BitmapTypeV3
Structure corresponding to the version 3 encoding of a bitmap.
Version 3 encoding is supported if the High-Density Display
Feature Set is present.

Generally you work with pointers to BitmapType structures; if the
structure’s version is BitmapVersionThree (3), the structure is of
type BitmapTypeV3.

BmpCreate allocates and initializes a BitmapTypeV2 structure. To
create a BitmapTypeV3 structure, use BmpCreateBitmapV3 and
supply the data pointer and optional color table pointer.

In earlier versions of the BitmapTypeVx structure, the size of
compressed bitmap data is stored in a 16-bit field preceding the
bitmap data. With the version 3 structure, the size is stored in a 32-
bit field.

The BitmapTypeV3 structure has fields that identify how each
pixel is stored (pixelFormat) and which color, if any, is
“transparent” (transparentValue). Because of this, you don’t
use a BitmapDirectInfoType structure in conjunction with a
BitmapTypeV3 structure.

compressionType The compression type used. Only used for
version 2 bitmaps and only when the
compressed flag is set (see
BitmapFlagsType). See
BitmapCompressionType for possible
values. The BmpCompress function sets this
field, and the BmpGetCompressionType
function obtains its value.

reserved Reserved.

Bitmaps
Bitmap Data Structures

528 Palm OS Programmer’s API Reference

WARNING! This structure is documented so that you can
directly access the internals of bitmaps that you create. Bitmaps
created by Palm OS are not guaranteed to adhere to this
structure; you cannot cast a bitmap created by the Palm OS to
this structure and expect to be able to directly access the
structure’s fields. Always use accessor functions to access the
contents of user interface structures created by Palm OS.

typedef struct BitmapTypeV3 {
Int16 width;
Int16 height;
UInt16 rowBytes;
BitmapFlagsType flags;
UInt8 pixelSize;
UInt8 version;
UInt8 size;
UInt8 pixelFormat;
UInt8 unused;
UInt8 compressionType;
UInt16 density;
UInt32 transparentValue;
UInt32 nextBitmapOffset;

} BitmapTypeV3;

typedef BitmapTypeV3* BitmapPtrV3;

Field Descriptions

width The width of the bitmap in pixels. You specify
this value when you create the bitmap. Use
BmpGetDimensions to access this field.

height The height of the bitmap in pixels. You
specify this value when you create the
bitmap. Use BmpGetDimensions to access
this field.

Bitmaps
Bitmap Data Structures

Palm OS Programmer’s API Reference 529

rowBytes The number of bytes stored for each row of
the bitmap where height is the number of
rows. Use BmpGetDimensions to access this
field.

flags The bitmap’s attributes. See
BitmapFlagsType. Note that the
indirect, forScreen, and
indirectColorTable flags are system-
only fields that are not used in user-created
bitmap resources.

pixelSize The pixel depth. Currently supported pixel
depths are 1, 2, 4, and 8-bit. You specify this
value when you create the bitmap. Use
BmpGetBitDepth to obtain the value of this
field.

version The version of bitmap encoding used. This
field has a value of BitmapVersionThree
(3) for BitmapTypeV3 structures. The high
bit of the version field is set if the bitmap data
structure uses the native ARM format, with
little-endian fields. Bitmap.h contains a bit
mask, BitmapVersionMaskLE, that can be
used to detect this. Use BmpGetVersion to
obtain the value of this field.

size The size of this structure, in bytes. This field
does not include the size of the color table or
the size of the bitmap data. Use
BmpGetSizes to obtain the value of this
field.

pixelFormat An enumerated constant representing the
format of the pixel data. See
PixelFormatType for the supported values.

unused Not used.

Bitmaps
Bitmap Data Structures

530 Palm OS Programmer’s API Reference

Compatibility BitmapTypeV3 is defined only if High-Density Display Feature Set
is present.

compressionType The compression type used; 0 if the bitmap is
not compressed. Only used when the
compressed flag is set (see
BitmapFlagsType). See
BitmapCompressionType for possible
values. The BmpCompress function sets this
field, and the BmpGetCompressionType
function obtains its value.

density Value used by the blitter to determine how to
stretch or shrink the bitmap data. For the
screen bitmap, this field represents the screen
density. For handhelds with low-density
displays, this field is initialized to
kDensityLow. For handhelds with double-
density displays, this field is initialized to
kDensityDouble. See DensityType for the
full set of values that this field can assume. Set
this field with BmpSetDensity, and obtain
its value with BmpGetDensity.

transparentValueIf this structure represents a bitmap with a bit
depth of 8 or less, this field contains the
bitmap’s transparent index. If the bitmap has
a bit depth of 16, the 16-bit transparent RGB
color is stored in this field. You specify this
value when you create the bitmap using
Constructor, or programmatically with
BmpSetTransparentValue To obtain the
value of this field, call
BmpGetTransparentValue.

nextBitmapOffsetA 32-bit value that indicates the number of
bytes to the next bitmap in the family. If the
bitmap is not part of a bitmap family or it is
the last bitmap in the family, the
nextBitmapOffset is 0.

Bitmaps
Bitmap Data Structures

Palm OS Programmer’s API Reference 531

ColorTableType
The ColorTableType structure defines a color table. Bitmaps can
have color tables attached to them; however, doing so is not
recommended for performance reasons.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the ColorTableType structure. Never
access its structure members directly, or your code may break in
future versions. Use BmpGetColortable to access this
structure. Use the information below for debugging purposes only.

typedef struct ColorTableType {
 UInt16 numEntries;
 // RGBColorType entry[];
} ColorTableType;

Field Descriptions

The color table entries themselves are of type RGBColorType, and
there is one per numEntries. Use the macro
ColorTableEntries to retrieve these entries.

Care should be taken not to confuse a full color table (which
includes the count) with an array of RGB color values. Some
routines operate on entire color tables; others operate on lists of
color entries.

Compatibility ColorTableType is defined only if 3.5 New Feature Set is present.

New DensityType
The density of the bitmap (see “Display Density” on page 75 of the
Palm OS Programmer’s Companion, vol. I for a definition of display
density). Density is only supported in BitmapType structures with

numEntries The number of entries in table. High bits
(numEntries > 256) reserved.

Bitmaps
Bitmap Data Structures

532 Palm OS Programmer’s API Reference

a version greater than 2; if a given BitmapType structure is version
2 or lower, it is assumed to contain low-density data.

The blitter uses the density field in the source and destination
bitmaps to determine an appropriate scaling factor. When scaling
down from a density of kDensityDouble to kDensityLow, the
blitter must shrink the bitmap data. This will almost always result in
a poorer-quality image when compared with a bitmap that was
created with a density of kDensityLow.

The various DensityType values should not be interpreted as
representing pixels per inch.

typedef enum {
kDensityLow = 72,
kDensityOneAndAHalf = 108,
kDensityDouble = 144,
kDensityTriple = 216,
kDensityQuadruple = 288

} DensityType

Value Descriptions

kDensityLow Low (single) density. A low-density
screen is 160x160 pixels.

kDensityOneAndAHalf“One and a half” density. A one-and-a-
half-density display is 240x240 pixels; this
would most likely be used on a handheld
with a 240x320 screen where the bottom
portion is used as a “soft Graffiti” area.

kDensityDouble Double density when compared with
kDensityLow. A double-density screen
is 320x320 pixels.

kDensityTriple Triple density when compared with
kDensityLow. A triple-density screen is
480x480 pixels.

kDensityQuadruple Quadruple density when compared with
kDensityLow. A quadruple-density
screen is 640x640 pixels.

Bitmaps
Bitmap Data Structures

Palm OS Programmer’s API Reference 533

IMPORTANT: Not all densities listed in the DensityType
enum are supported by a given version of the High-Density
Display feature set. For Palm OS 5, only kDensityLow and
kDensityDouble are supported.

Compatibility DensityType is defined only if High-Density Display Feature Set
is present.

New PixelFormatType
Pixel formats defined for use with BitmapTypeV3 structures.

typedef enum {
pixelFormatIndexed,
pixelFormat565
pixelFormat565LE,
pixelFormatIndexedLE

} PixelFormatType;

Field Descriptions

pixelFormatIndexed Each pixel is represented by a palette
index.

pixelFormat565 Each pixel is represented by an RGB
triplet stored in 16-bits: 5 red bits, 6
green bits, and 5 blue bits.

pixelFormat565LE Similar to pixelFormat565, except
that the 16 bits of the RGB triplet are
stored as little-endian. This pixel format
is not supported in user-created
bitmaps.

pixelFormatIndexedLESimilar to pixelFormatIndexed,
except that the pixels within a byte are
stored as little-endian. This pixel format
is not supported in user-created
bitmaps.

Bitmaps
Bitmap Data Structures

534 Palm OS Programmer’s API Reference

Compatibility PixelFormatType is defined only if High-Density Display
Feature Set is present.

RGBColorType
The RGBColorType structure defines a color. It is used as an entry
in the color table. RGBColorTypes can also be created manually
and passed to several user interface functions.

typedef struct RGBColorType {
 UInt8 index;
 UInt8 r;
 UInt8 g;
 UInt8 b;
} RGBColorType;

Field Descriptions

Compatibility RGBColorType is defined only if 3.5 New Feature Set is present.

index The index of this color in the color table. Not all
functions that use RGBColorType use the index field.

Direct bitmaps support no more than 256 colors. The
number of possible RGB colors greatly exceeds this
amount. For this reason, some drawing functions use a
color look up table (CLUT). If the CLUT is used, the
index field contains the index of an available color that
is the closest match to the color specified by the r, g, and
b fields.

r Amount of red (0 to 255).

g Amount of green (0 to 255).

b Amount of blue (0 to 255).

Bitmaps
Bitmap Constants

Palm OS Programmer’s API Reference 535

Bitmap Constants

Bitmap Resources
You can create a bitmap resource and include it as part of your
application’s PRC file. Use the resource type 'Tbmp' for most
images and the resource type 'tAIB' for application icons.
Symbolically, these two resource types are bitmapRsc and
iconType, respectively.

Note that if you are creating a bitmap or a bitmap family in
Constructor, you create a 'tbmf' resource (or 'taif' resource for
icons) and one or more 'PICT' images. The PalmRez post linker
converts them into a single 'Tbmp' or 'tAIB' resource. Note that

Constant Value Description

BitmapVersionZero 0 Uses the version 0 encoding of a bitmap.
Version 0 encoding is supported in Palm OS
1.0 and later.

BitmapVersionOne 1 Uses the version 1 encoding of a bitmap.
Version 1 encoding is supported in Palm OS
3.0 and later.

PalmRez automatically creates version 1
bitmaps unless you have specified a
transparency index or a compressed type
when creating the bitmap in Constructor.

BitmapVersionTwo 2 Uses the version 2 encoding of a bitmap. Palm
OS 3.5 and later supports version 2 bitmaps.
Version 2 bitmaps either use the transparency
index or are compressed. If you
programmatically create a bitmap using
BmpCreate, a version 2 bitmap is created.

BitmapVersionThree 3 Uses the version 3 encoding of a bitmap.
Version 3 bitmaps are supported only if the
High-Density Display Feature Set is present.

Bitmaps
Bitmap Functions

536 Palm OS Programmer’s API Reference

the PalmRez post linker takes PICT images even on the Microsoft
Windows operating system.

Bitmap Functions

BmpBitsSize

Purpose Return the size of the bitmap’s data.

Declared In Bitmap.h

Prototype UInt16 BmpBitsSize (const BitmapType *bitmapP)

Parameters -> bitmapP Pointer to the bitmap. (See BitmapType.)

Result Returns the size in bytes of the bitmap’s data, excluding the header
and the color table.

Comments This function returns the bitmap’s data size even if the bitmap’s
indirect flag is set. (See BitmapFlagsType.)

If the bitmap is compressed, this function returns the compressed
size of the bitmap.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpSize, BmpColortableSize, BmpGetBits

Bitmaps
Bitmap Functions

Palm OS Programmer’s API Reference 537

BmpColortableSize

Purpose Return the size of the bitmap’s color table.

Declared In Bitmap.h

Prototype UInt16 BmpColortableSize
(const BitmapType *bitmapP)

Parameters -> bitmapP Pointer to the bitmap. (See BitmapType.)

Result Returns the size in bytes of the bitmap’s color table or 0 if the
bitmap does not use its own color table.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpBitsSize, BmpSize, BmpGetColortable

BmpCompress

Purpose Compress or uncompress a bitmap.

Declared In Bitmap.h

Prototype Err BmpCompress (BitmapType *bitmapP,
BitmapCompressionType compType)

Parameters -> bitmapP Pointer to the bitmap to compress. (See
BitmapType.)

-> compType The type of compression to use. (See
BitmapCompressionType.) If set to
BitmapCompressionTypeNone and
bitmapP is compressed, this function
uncompresses the bitmap.

Result Returns one of the following values:

errNone Success.

Bitmaps
Bitmap Functions

538 Palm OS Programmer’s API Reference

sysErrParamErr Either the compType parameter does not
specify a compression type or the bitmap is
already compressed, is in the storage heap, or
represents the screen.

sysErrNoFreeResource
There is not enough memory available to
complete the operation.

Comments This function performs the specified compression and resizes the
bitmap’s allocated memory. The bitmap must be in the dynamic
heap.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpGetCompressionType

BmpCreate

Purpose Create a bitmap.

Declared In Bitmap.h

Prototype BitmapType *BmpCreate (Coord width, Coord height,
UInt8 depth, ColorTableType *colortableP,
UInt16 *error)

Parameters -> width The width of the bitmap in pixels. Must not be
0.

-> height The height of the bitmap in pixels. Must not be
0.

-> depth The pixel depth of the bitmap. Must be 1, 2, 4, 8,
or 16. This value is used as the pixelSize
field of BitmapType.

Bitmaps
Bitmap Functions

Palm OS Programmer’s API Reference 539

-> colortableP A pointer to the color table associated with the
bitmap, or NULL if the bitmap should not
include a color table. If specified, the number of
colors in the color table must match the depth
parameter. (2 for 1-bit, 4 for 2-bit, 16 for 4-bit,
and 256 for 8-bit). 16-bit bitmaps do not use a
color table.

<- error Contains the error code if an error occurs.

Result Returns a pointer to the new bitmap structure (see BitmapType) or
NULL if an error occurs. The parameter error contains one of the
following:

errNone Success.

sysErrParamErr The width, height, depth, or colorTableP
parameter is invalid. See the descriptions above
for acceptable values.

sysErrNoFreeResource
There is not enough memory available to
allocate the structure.

Comments This function creates an uncompressed, non-transparent
BitmapVersionTwo bitmap with the width, height, and depth that
you specify. To create aBitmapVersionThree bitmap use
BmpCreate and pass the results to BmpCreateBitmapV3.

If you pass a color table, the bitmap’s hasColorTable flag is set.
For performance reasons, attaching a custom color table to a bitmap
is strongly discouraged. An alternative is to use the WinPalette
command to change the color table as needed, draw the bitmap, and
then undo your changes after you have finished displaying the
bitmap.

BmpCreate allocates sufficient memory on the dynamic heap to
hold the bitmap and initializes all of its pixels to white. To change
the bitmap’s contents, use the window drawing functions. First, you
must use WinCreateBitmapWindow to create an off screen
window wrapper around the bitmap, then draw to that window.
For example:

Bitmaps
Bitmap Functions

540 Palm OS Programmer’s API Reference

BitmapType *bmpP;
WinHandle win;
Err error;
RectangleType onScreenRect;

bmpP = BmpCreate(10, 10, 8, NULL, &error);
if (bmpP) {
 win = WinCreateBitmapWindow(bmpP, &error);
 if (win) {
 WinSetDrawWindow(win);
 WinDrawLines(win, ...);
 /* etc */
 WinSetWindowBounds(win, onScreenRect);
 }
}

You cannot use this function to create a bitmap written directly to a
database; that is, you must create the bitmap on the dynamic heap
first, then write it to the storage heap.

It is not necessary to use BmpCreate to load a bitmap stored in a
resource. Instead, you simply load the resource and lock its handle.
The returned pointer is a pointer to a BitmapType. For example:

MemHandle resH =
 DmGetResource (bitmapRsc, rscID);
BitmapType *bitmap = MemHandleLock (resH);

Bitmaps 64 Kb and greater are now supported with Palm OS 4.0.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpCreateBitmapV3, BmpDelete

Bitmaps
Bitmap Functions

Palm OS Programmer’s API Reference 541

New BmpCreateBitmapV3

Purpose Create a version 3 bitmap from an existing bitmap, an existing set of
data bits, and, optionally, a color table.

Declared In Bitmap.h

Prototype BitmapTypeV3 *BmpCreateBitmapV3
(const BitmapType *bitmapP, UInt16 density,
const void *bitsP,
const ColorTableType *colorTableP)

Parameters -> bitmapP Pointer to a valid bitmap from which the
version 3 bitmap is to be created. See
BitmapType.

-> density Density of the returned bitmap. If 0, the
returned bitmap’s density is set to the default
value of kDensityLow.

-> bitsP Pointer to the bitmap image data. Note that the
bitmap data can be located in the storage heap,
but then the bitmap should be treated as read-
only. You must use DmWrite to write to the
storage heap; blitting to it causes a system error.

-> colorTableP Pointer to a color table, or NULL to use
bitmapP’s color table, if one exists.

Result Returns a version 3 bitmap, or NULL if the bitmap could not be
created from the specified bitmap, bitmap data, and optional color
table.

Comments You can use this function when the bitmap data is stored in the
storage heap as bands of raster data. Rather than allocating several
bitmap structures, one for each band, use this function to allocate a
single bitmap, and have the structure point to each band
successively. This is typically used with high-density bitmaps that
cannot be stored entirely within 64k.

Bitmaps
Bitmap Functions

542 Palm OS Programmer’s API Reference

WARNING! Due to a limitation in the way that this function is
implemented, BitmapCreateBitmapV3 doesn’t work with
compressed bitmaps. Don’t pass bitmaps to this function that
have the compressed flag set.

The returned bitmap structure is allocated from the system heap.
After your application is done with it, dispose of it by calling
BmpDelete.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

See Also BmpCreate

BmpDelete

Purpose Delete a bitmap structure.

Declared In Bitmap.h

Prototype Err BmpDelete (BitmapType *bitmapP)

Parameters -> bitmapP Pointer to the structure of the bitmap to be
deleted. (See BitmapType.)

Result Returns errNone upon success, sysErrParamErr if the bitmap’s
forScreen flag is set or the bitmap resides in the storage heap.
Returns one of the memory errors if the freeing pointer fails.

Comments Only delete bitmaps that have been created using BmpCreate.

You cannot use this function on a bitmap located in a database. To
delete a bitmap from a database, use the standard data manager
calls.

Compatibility Implemented only if 3.5 New Feature Set is present.

Bitmaps
Bitmap Functions

Palm OS Programmer’s API Reference 543

BmpGetBits

Purpose Retrieve the bitmap’s data.

Declared In Bitmap.h

Prototype void *BmpGetBits (BitmapType *bitmapP)

Parameters -> bitmapP Pointer to the bitmap’s structure. (See
BitmapType.)

Result Returns a pointer to the bitmap’s data.

Comments This function returns the bitmap’s data even if the bitmap’s
indirect flag is set. (See BitmapFlagsType.)

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpBitsSize

BmpGetBitDepth

Purpose Retrieve the depth of a bitmap.

Declared In Bitmap.h

Prototype UInt8 BmpGetBitDepth (const BitmapType* bitmapP)

Parameters -> bitmapP Pointer to a bitmap. See BitmapType.

Result This function returns the bit depth of the bitmap, as represented by
the pixelSize field in BitmapType. For debug ROMs, this
function reports an error and returns 0 if bitmapP is NULL.

Compatibility Implemented only if 4.0 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,

Bitmaps
Bitmap Functions

544 Palm OS Programmer’s API Reference

link with the PalmOSGlue library and call BmpGlueGetBitDepth.
For more information, see Chapter 75, “PalmOSGlue Library.”

See Also BmpGetDimensions, BmpGetNextBitmap, BmpGetSizes

BmpGetColortable

Purpose Retrieve the bitmap’s color table.

Declared In Bitmap.h

Prototype ColorTableType *BmpGetColortable
(BitmapType *bitmapP)

Parameters -> bitmapP A pointer to the bitmap. See BitmapType.

Result Returns a pointer to the color table or NULL if the bitmap uses the
system color table.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpColortableSize

New BmpGetCompressionType

Purpose Get the compression type of a bitmap.

Declared In Bitmap.h

Prototype BitmapCompressionType BmpGetCompressionType
(const BitmapType *bitmapP)

Parameters -> bitmapP Pointer to a valid bitmap. See BitmapType.

Result Returns the type of compression used by bitmapP. See
“BitmapCompressionType” on page 513 for the values that can be

Bitmaps
Bitmap Functions

Palm OS Programmer’s API Reference 545

returned from this function. For debug ROMs, this function reports
an error and returns BitmapCompressionTypeNone if bitmapP
is NULL.

Comments If the bitmap is not compressed, this function returns
BitmapCompressionTypeNone. If the bitmap version is 0 or 1
(corresponding to BitmapTypeV0 and BitmapTypeV1,
respectively), it returns BitmapCompressionTypeScanLine.

Compatibility Implemented only if either the if 5.0 New Feature Set or the High-
Density Display Feature Set is present.

See Also BmpCompress

New BmpGetDensity

Purpose Get the density of a bitmap.

Declared In Bitmap.h

Prototype UInt16 BmpGetDensity (const BitmapType *bitmapP)

Parameters -> bitmapP Pointer to a valid bitmap. See BitmapType.

Result Returns the density of bitmapP; see the DensityType enum for
the defined set of density values. For debug ROMs, this function
reports an error and returns 0 if bitmapP is NULL.

Comments Note that bitmaps with a version of 0, 1, or 2 (corresponding to
BitmapTypeV0, BitmapTypeV1, and BitmapTypeV2,
respectively) are assumed to be low density (kDensityLow).

Compatibility Implemented only if the High-Density Display Feature Set is
present.

See Also BmpCreateBitmapV3, BmpSetDensity

Bitmaps
Bitmap Functions

546 Palm OS Programmer’s API Reference

BmpGetDimensions

Purpose Retrieve the width, height and number of data bytes per row of a
bitmap.

Declared In Bitmap.h

Prototype void BmpGetDimensions (const BitmapType *bitmapP,
Coord *widthP, Coord *heightP, UInt16 *rowBytesP)

Parameters -> bitmapP Pointer to the bitmap. See BitmapType.

<- widthP Pointer to bitmap’s width in pixels. Use NULL if
this information is not wanted.

<- heightP Pointer to bitmap’s height in pixels. Use NULL if
this information is not wanted. Use NULL if this
information is not wanted.

<- rowBytesP Pointer to number of bytes per row of bitmap.
Use NULL if this information is not wanted.

Result This function returns the width in pixels of the bitmap in widthP,
the height in pixels of the bitmap in heightP, and the number of
bytes of data per row of the bitmap in rowBytesP. This function
reports an error on debug ROMs if bitmapP is NULL.

Compatibility Implemented only if 4.0 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
BmpGlueGetDimensions. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also BmpGetBitDepth, BmpGetNextBitmap, BmpGetSizes

Bitmaps
Bitmap Functions

Palm OS Programmer’s API Reference 547

BmpGetNextBitmap

Purpose Retrieve the next low-density bitmap in a bitmap family.

Declared In Bitmap.h

Prototype BitmapType *BmpGetNextBitmap(BitmapType *bitmapP)

Parameters -> bitmapP Pointer to a bitmap. See BitmapType.

Result This function returns a pointer to the next low-density BitmapType
in a bitmap family. It returns NULL if bitmapP is the last bitmap.
For debug ROMs, this function reports an error and returns 0 if
bitmapP is NULL.

Compatibility Implemented only if 4.0 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
BmpGlueGetNextBitmap. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also BmpGetBitDepth, BmpGetDimensions,
BmpGetNextBitmapAnyDensity, BmpGetSizes

Bitmaps
Bitmap Functions

548 Palm OS Programmer’s API Reference

New BmpGetNextBitmapAnyDensity

Purpose Get the next bitmap in the bitmap family, irrespective of density.

Declared In Bitmap.h

Prototype BitmapType *BmpGetNextBitmapAnyDensity
(BitmapType *bitmapP)

Parameters -> bitmapP Pointer to a valid bitmap. See BitmapType.

Result Returns the next bitmap in a bitmap family, or NULL if bitmapP is
the last bitmap. For debug ROMs, this function reports an error and
returns 0 if bitmapP is NULL.

Comments This function is an extended version of BmpGetNextBitmap. For
backward compatibility, BmpGetNextBitmap only returns low-
density bitmaps. If the bitmap family contains high-density
bitmaps, however, BitmapGetNextBitmapAnyDensity skips
over the dummy bitmap that separates the low and high-density
bitmaps in the linked list and returns a high-density bitmap.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

See Also BmpGetDensity, BmpGetNextBitmap

Bitmaps
Bitmap Functions

Palm OS Programmer’s API Reference 549

BmpGetSizes

Purpose Retrieve the size of a bitmap and its header structure.

Declared In Bitmap.h

Prototype void BmpGetSizes (const BitmapType *bitmapP,
UInt32 *dataSizeP, UInt32 *headerSizeP)

Parameters ->bitmapP Pointer to the bitmap. See BitmapType.

<-dataSizeP Pointer to size of bitmap data, not including
structures. Use NULL if this information is not
wanted.

<-headerSizeP Pointer to size of bitmap’s structures, not
including data. Use NULL if this information is
not wanted.

Result Returns the size of the bitmap and the size of the bitmap’s
structures. This function will report an error on debug ROMs if
bitmapP is NULL.

Comments This function returns the size in bytes of the bitmap data in
dataSizeP. The size does not include the data structures
(BitmapType, BitmapDirectInfoType, or color table) that are
associated with a bitmap. The size of the structures (in bytes) are
returned in headerSizeP, which includes the size of the
BitmapType, BitmapDirectInfoType (if any), the color table (if
any), and the size of the pointer for indirect bitmaps (described in
BitmapFlagsType).

This function should be used when working with bitmaps that may
be 64 Kb or greater. Do not use BmpSize or BmpBitsSize when
working with bitmaps that may be greater than or equal to 64Kb.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also BmpGetBitDepth, BmpGetDimensions, BmpGetNextBitmap

Bitmaps
Bitmap Functions

550 Palm OS Programmer’s API Reference

New BmpGetTransparentValue

Purpose Get a bitmap’s transparent color.

Declared In Bitmap.h

Prototype Boolean BmpGetTransparentValue
(const BitmapType *bitmapP,
UInt32 *transparentValueP)

Parameters -> bitmapP Pointer to a valid bitmap. See BitmapType.

<- transparentValueP
Pointer to a variable that receives the
transparent color, either as a palette index or as
a direct color value (an RGBColorType),
depending on the bitmap’s depth.

Result Returns true if bitmapP has a transparent color defined, false
otherwise.

Compatibility Implemented only if either the if 5.0 New Feature Set or the High-
Density Display Feature Set is present.

See Also BmpSetTransparentValue

Bitmaps
Bitmap Functions

Palm OS Programmer’s API Reference 551

New BmpGetVersion

Purpose Get the version of a bitmap.

Declared In Bitmap.h

Prototype UInt8 BmpGetVersion (const BitmapType *bitmapP)

Parameters -> bitmapP Pointer to a valid bitmap. See BitmapType.

Result Returns the version of bitmapP. See“Bitmap Constants” on
page 535 for the defined bitmap version numbers. For debug ROMs,
this function reports an error and returns 0 if bitmapP is NULL.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

New BmpSetDensity

Purpose Set the density of a version 3 bitmap.

Declared In Bitmap.h

Prototype Err BmpSetDensity (BitmapType *bitmapP,
UInt16 density)

Parameters -> bitmapP Pointer to a valid version 3 bitmap. See
BitmapTypeV3.

Bitmaps
Bitmap Functions

552 Palm OS Programmer’s API Reference

-> density The bitmap’s density. This value should be one
of the values defined by the DensityType
enum.

Result Returns errNone if the operation completed successfully, or
SysErrParamErr either if bitmapP is NULL, if density is not
supported by the blitter, or if *bitmapP is not a version 3 bitmap.

Comments To allocate a high-density bitmap, first call BmpCreateBitmapV3.
Then call BmpSetDensity to specify the bitmap’s density.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

See Also BmpGetDensity

New BmpSetTransparentValue

Purpose Set a bitmap’s transparent color.

Declared In Bitmap.h

Prototype void BmpSetTransparentValue (BitmapType *bitmapP,
UInt32 transparentValue)

Parameters -> bitmapP Pointer to a valid bitmap. See BitmapType.

-> transparentValue
Transparent color. This should either be a
palette index or a direct color value (an
RGBColorType), depending on the bitmap’s
depth.

Result Returns nothing.

Comments If bitmapP points to a version 2 bitmap,
BmpSetTransparentValue sets the BitmapTypeV2 structure’s

Bitmaps
Bitmap Functions

Palm OS Programmer’s API Reference 553

hasTransparency flag to true and initializes the structure’s
transparentIndex field according to transparentValue. For
16-bit bitmaps, this function sets the transparentColor field in
the BitmapDirectInfoType auxiliary structure and sets the
transparentIndex field to 0.

If bitmapP points to a version 3 bitmap,
BmpSetTransparentValue sets the BitmapTypeV3 structure’s
hasTransparency flag to true and sets the transparentValue
field to the transparent color.

Regardless of the bitmap version, if this function is passed a
transparentValue set to kTransparencyNone, this function
sets the bitmap structure’s hasTransparency flag to false and
sets the transparent color field(s) to 0.

This function does nothing if transparentValue contains a value
that is not valid for the depth of bitmapP.

Compatibility Implemented only if either the if 5.0 New Feature Set or the High-
Density Display Feature Set is present.

See Also BmpGetTransparentValue

BmpSize

Purpose Return the size of the bitmap.

Declared In Bitmap.h

Prototype UInt16 BmpSize (const BitmapType *bitmapP)

Parameters -> bitmapP A pointer to the bitmap. See BitmapType.

Result Returns the size in bytes of the bitmap, including its header, color
table (if any), and sizeof(BitmapDirectInfoType) if one
exists.

Comments If the bitmap has its indirect flag set (see BitmapFlagsType),
the bitmap data is not included in the size returned by this function.

Bitmaps
Bitmap Functions

554 Palm OS Programmer’s API Reference

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpBitsSize, BmpColortableSize

ColorTableEntries

Purpose Macro that returns the color table.

Declared In Bitmap.h

Prototype ColorTableEntries (ctP)

Parameters -> ctP A pointer to a ColorTableType structure.

Result Returns an array of RGBColorType structures, one for each entry in
the color table.

Comments You can use this macro to retrieve the RGB values in use by a
bitmap. For example:

BitmapType *bmpP;
RGBColorType *tableP =
 ColorTableEntries(BmpGetColorTable(bmpP));

If you want to retrieve the RGB values in use by the system color
table, you can simply use the WinPalette function instead of this
macro:

RGBColorType table[256];
Err e;

/* allocate space for table */
e = WinPalette(winPaletteGet, 0, 256, tableP);

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpGetColortable

Palm OS Programmer’s API Reference 555

26
Character Attributes
This chapter provides reference material for character attributes
functions defined in CharAttr.h.

Character Attribute Functions

ChrHorizEllipsis

Purpose Macro that returns the appropriate character code for the horizontal
ellipsis.

Declared In Chars.h

Prototype ChrHorizEllipsis (chP)

Parameters <- chP Pointer to a variable in which to return the
horizontal ellipsis character code.

Result Returns nothing. Upon return, the variable pointed to by chP
contains the horizontal ellipsis character.

Comments Version 3.1 of the Palm OS® uses different character codes for the
horizontal ellipsis character and the numeric space character than
earlier versions did. Use this macro to return the appropriate code
for horizontal ellipsis regardless of which version of Palm OS your
application is run on.

Character Attr ibutes
Character Attribute Functions

556 Palm OS Programmer’s API Reference

ChrIsHardKey

Purpose Macro that returns true if the character is one of the hard keys on the
device.

Declared In Chars.h

Prototype ChrIsHardKey (ch)

Parameters -> ch The character from the keyDownEvent.

Result true if the character is one of the four built-in hard keys on the
device, false otherwise.

Compatibility This macro is obsolete and replaced by TxtCharIsHardKey if the
International Feature Set is present.

ChrNumericSpace

Purpose Macro that returns the appropriate character code for the numeric
space.

Declared In Chars.h

Prototype ChrNumericSpace (chP)

Parameters <- chP Pointer to a variable in which to return the
numeric space character code.

Result Returns nothing. Upon return, the variable pointed to by chP
contains the numeric space character.

Comments Version 3.1 of the Palm OS uses different character codes for the
horizontal ellipsis character and the numeric space character than
earlier versions did. Use this macro to return the appropriate code
for numeric space regardless of which version of Palm OS your
application is run on.

Character Attr ibutes
Character Attribute Functions

Palm OS Programmer’s API Reference 557

GetCharAttr

Purpose Return a pointer to the character attribute array. This array is used
by the character classification and character conversion macros
(such as isalpha).

Declared In CharAttr.h

Prototype UInt16* GetCharAttr (void)

Parameters None

Result A pointer to the attributes array. This is an array of 256 UInt16
values, one for each possible character code. See CharAttr.h for
an explanation of the attributes.

Compatibility This function is not implemented if International Feature Set is
present.

NOTE: This function is provided for backwards compatibility
only. Use Text Manager functions instead on systems that
support the text manager.

If 5.0 New Feature Set is present, this function is implemented in
PACE. However, it only supports the Latin table, regardless of the
localization.

See Also TxtCharAttr, TxtCharXAttr

Character Attr ibutes
Character Attribute Functions

558 Palm OS Programmer’s API Reference

GetCharCaselessValue

Purpose Return a pointer to an array that maps all characters to an assigned
caseless and accentless value. Use this function for finding text.

Declared In CharAttr.h

Prototype UInt8* GetCharCaselessValue (void)

Parameters None.

Result Returns a pointer to the sort array, which is an array of 256 bytes.

Comment The GetCharCaselessValue conversion table converts each
character into a numeric value that is caseless and sorted according
to Microsoft Windows sorting rules:

• Punctuation characters have the lowest values,

• followed by numbers,

• followed by alpha characters.

All forms of each alpha character have equivalent values, so
that e = E = e-grave = e-circumflex, etc.

This conversion table is used by all the Palm OS sorting and
comparison routines to yield caseless searches and caseless sorts in
the almost same order as Windows-based programs, except that
Palm OS routines produce the same sorting for all locales.

Compatibility This function is not implemented if International Feature Set is
present.

NOTE: This function is provided for backwards compatibility
only. Use Text Manager functions instead on systems that
support the text manager.

If 5.0 New Feature Set is present, this function is implemented in
PACE. However, it only supports the Latin table, regardless of the
localization.

Character Attr ibutes
Character Attribute Functions

Palm OS Programmer’s API Reference 559

GetCharSortValue

Purpose Return a pointer to an array that maps all characters to an assigned
sorting value. Use this function for ordering (sorting) text.

Declared In CharAttr.h

Prototype UInt8* GetCharSortValue (void)

Parameters None.

Result Returns a pointer to the attributes array. This is an array of 256
UInt8 values, one for each possible character code.

Compatibility This function is not implemented if International Feature Set is
present.

NOTE: This function is provided for backwards compatibility
only. Use Text Manager functions instead on systems that
support the text manager.

If 5.0 New Feature Set is present, this function is implemented in
PACE. However, it only supports the Latin table, regardless of the
localization.

Character Attr ibutes
Character Attribute Functions

560 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 561

27
Data and Resource
Manager
This chapter describes the data manager and the resource manager
API declared in the header file DataMgr.h. It discusses the
following topics:

• Data Manager Data Structures

• Data Manager Constants

• Data Manager Functions

• Application-Defined Functions

For more information on the data and resource managers, see the
chapter “Files and Databases” in the Palm OS Programmer’s
Companion, vol. I.

Data Manager Data Structures

DmOpenRef
The DmOpenRef type defines a pointer to an open database. The
database pointer is created and returned by DmOpenDatabase. It is
used in any function that requires access to an open database.

typedef void *DmOpenRef

DmResID
The DmResID type defines a resource identifier. You assign each
resource an ID at creation time. Note that resource IDs greater than
or equal to 10000 are reserved for system use.

Data and Resource Manager
Data Manager Constants

562 Palm OS Programmer’s API Reference

typedef UInt16 DmResID;

DmResType
The DmResType type defines the type of a resource. The resource
type is a four-character code such as 'Tbmp' for bitmap resources.

typedef UInt32 DmResType;

SortRecordInfoType
The SortRecordInfoType structure specifies information that
can be used to sort a record. The database sorting functions
(DmInsertionSort and DmQuickSort) pass this structure to
your comparison callback function (of type DmComparF), where
you can use the information therein to help when comparing two
records. To create this structure, you can call DmRecordInfo, which
returns these values for a given record.

typedef struct {
 UInt8 attributes;
 UInt8 uniqueID[3];
} SortRecordInfoType;

typedef SortRecordInfoType *SortRecordInfoPtr;

Field Descriptions

Data Manager Constants

Category Constants
The following constants are used to specify information about
categories:

attributes The record’s attributes. See “Record Attribute
Constants.”

uniqueID The unique identifier for the record.

Data and Resource Manager
Data Manager Constants

Palm OS Programmer’s API Reference 563

Record Attribute Constants
The following constants specify a database record’s attributes.

Constant Value Description

dmAllCategories 0xFF A mask used to represent all categories.

dmCategoryLength 16 The length of a category name. Currently, this
is 16 bytes, which includes the null
terminator.

dmRecAttrCategoryMask 0x0F A mask used to retrieve the category
information from the record’s attributes field.

dmRecNumCategories 16 The number of categories allowed. Currently,
this is 16, which includes the “Unfiled”
category.

dmUnfiledCategory 0 A mask used to indicate the Unfiled category.

Constant Value Description

dmMaxRecordIndex 0xFFFF Indicates the highest record index allowed.

dmAllRecAttrs 0xF0 A mask used to specify all record attributes.

dmRecAttrBusy 0x20 Busy (the application has locked access to this
record). A call to DmGetRecord fails on a record
that has this bit set, otherwise it sets this bit. Call
DmReleaseRecord to release the record and
clear this bit. The DmSetRecordInfo function
cannot be used to alter the state of
dmRecAttrBusy.

dmRecAttrDelete 0x80 Deleted

dmRecAttrDirty 0x40 Dirty (has been modified since last sync)

dmRecAttrSecret 0x10 Private

dmSysOnlyRecAttrs 0x20 A mask used to specify record attributes that only
the system can change. (In other words, the busy
attribute.)

Data and Resource Manager
Data Manager Constants

564 Palm OS Programmer’s API Reference

Data and Resource Manager
Data Manager Constants

Palm OS Programmer’s API Reference 565

Database Attribute Constants
The following constants define a database’s attributes:

Constant Description

dmAllHdrAttrs A mask used to specify all header attributes.

dmHdrAttrAppInfoDirty The application info block is dirty (has been
modified since the last sync).

dmHdrAttrBackup The database should be backed up to the
desktop computer if no application-specific
conduit is available.

dmHdrAttrBundle The database is bundled with its application
during a beam. That is, if the user chooses to
beam the application from the Launcher, the
Launcher beams this database along with the
application’s resource database and overlay
database.

This attribute applies to Palm OS® 4.0 and
higher. Note that overlay databases are
automatically beamed with the application
database on Palm OS 4.0 and higher. You do not
need to set this bit in overlay databases.

dmHdrAttrCopyPrevention Prevents the database from being copied by
methods such as IR beaming.

dmHdrAttrHidden This database should be hidden from view. For
example, this attribute is set to hide some
applications in the launcher’s main view. You
can set it on record databases to have the
launcher disregard the database’s records when
showing a count of records.

This attribute applies to Palm OS version 3.2
and higher.

Data and Resource Manager
Data Manager Constants

566 Palm OS Programmer’s API Reference

Error Codes
The following constants define error codes that are returned by the
data manager and resource manager functions. Several functions
return a failure value such as NULL or 0 instead of an error code. In
many cases, you can call DmGetLastErr upon receiving this value
and receive a more descriptive error code.

dmHdrAttrLaunchableData This database is a data database but it can be
“launched” from the launcher. For example,
this attribute is set in Palm Query Applications
(PQAs) launched by the Web Clipping
Application Viewer application.

dmHdrAttrOpen The database is open.

dmHdrAttrOKToInstallNewer The backup conduit can install a newer version
of this database with a different name if the
current database is open. This mechanism is
used to update the Graffiti® Shortcuts database,
for example.

dmHdrAttrReadOnly The database is a read-only database.

dmHdrAttrRecyclable The database is recyclable. Recyclable databases
are deleted when they are closed or upon a
system reset.

This attribute applies to Palm OS 4.0 and
higher.

dmHdrAttrResDB The database is a resource database.

dmHdrAttrResetAfterInstall The device must be reset after this database is
installed. That is, the HotSync® application
forces a reset after installing this database.

dmHdrAttrStream The database is a file stream.

dmSysOnlyHdrAttrs A mask specifying the attributes that only the
system can change (open and resource
database).

Constant Description

Data and Resource Manager
Data Manager Constants

Palm OS Programmer’s API Reference 567

Also, note that on releases prior to Palm OS release 3.5, many data
manager functions display a fatal error message using the
ErrFatalDisplayIf macro if certain error conditions are true.
Because the Palm OS ROMs are usually shipped with error checking
set to partial, you receive the fatal error message. If a ROM is built
with error checking set to none, the function returns one of the error
codes listed here. (Note that Palm™ has never released a ROM with
error checking set to none and has no plans to do so.)

Constant Description

dmErrAlreadyExists Another database with the
same name already exists
in RAM store.

dmErrAlreadyOpenForWrites The database is already
open with write access.

dmErrCantFind The specified resource
can’t be found.

dmErrCantOpen The database cannot be
opened.

dmErrCorruptDatabase The database is corrupted.

dmErrDatabaseOpen The function cannot be
performed on an open
database, and the database
is open.

dmErrDatabaseNotProtected DmDatabaseProtect
failed to protect the
specified database.

dmErrIndexOutOfRange The specified index is out
of range.

dmErrInvalidDatabaseName The name you’ve specified
for the database is invalid.

dmErrInvalidParam The function received an
invalid parameter.

dmErrMemError A memory error occurred.

Data and Resource Manager
Data Manager Constants

568 Palm OS Programmer’s API Reference

dmErrNoOpenDatabase The function is to search all
open databases, but there
are none.

dmErrNotRecordDB You’ve attempted to
perform a record function
on a resource database.

dmErrNotResourceDB You’ve attempted to
perform a resource
manager function on a
record database.

dmErrNotValidRecord The record handle is
invalid.

dmErrOpenedByAnotherTask You’ve attempted to open
a database that another
task already has open.

dmErrReadOnly You’ve attempted to write
to or modify a database
that is in read-only mode.

dmErrRecordArchived The function requires that
the record not be archived,
but it is.

dmErrRecordBusy The function requires that
the record not be busy, but
it is.

dmErrRecordDeleted The record has been
deleted.

dmErrRecordInWrongCard You’ve attempted to attach
a record to a database
when the record and
database reside on
different memory cards.

Constant Description

Data and Resource Manager
Data Manager Constants

Palm OS Programmer’s API Reference 569

dmErrResourceNotFound The resource can’t be
found.

dmErrROMBased You’ve attempted to delete
or modify a ROM-based
database.

dmErrSeekFailed The operation of seeking
the next record in the
category failed.

dmErrUniqueIDNotFound A record with the specified
unique ID can’t be found.

dmErrWriteOutOfBounds A write operation
exceeded the bounds of the
record.

memErrCardNotPresent The specified card can’t be
found.

memErrChunkLocked The associated memory
chunk is locked.

memErrInvalidParam
memErrNotEnoughSpace

A memory error occurred.

memErrInvalidStoreHeader
memErrRAMOnlyCard

The specified card has no
storage RAM.

omErrBaseRequiresOverlay An attempt was made to
open a stripped resource
database, but no associated
overlay could be found.

omErrUnknownLocale An attempt was made to
open a resource database
with overlays using an
unknown locale.

Constant Description

Data and Resource Manager
Data Manager Constants

570 Palm OS Programmer’s API Reference

Open Mode Constants
The following constants define the mode in which a database can be
opened. You pass one or more of these as a parameter to
DmOpenDatabase, DmOpenDatabaseByTypeCreator, or
DmOpenDBNoOverlay:

Miscellaneous Constants
The following additional constants are used in conjunction with the
Data Manager.

Constant Description

dmModeReadWrite Read-write access.

dmModeReadOnly Read-only access.

dmModeWrite Write-only access.

dmModeLeaveOpen Leave database open even after
application quits.

dmModeExclusive Don’t let anyone else open this
database.

dmModeShowSecret Show records marked private.

Constant Value Description

dmDBNameLength 32 Maximum length of a database
name, including the null
terminator. Database names
must use only 7-bit ASCII
characters (0x20 through 0x7E).

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 571

Data Manager Functions

DmArchiveRecord

Purpose Mark a record as archived by leaving the record’s chunk intact and
setting the delete bit for the next sync.

Declared In DataMgr.h

Prototype Err DmArchiveRecord (DmOpenRef dbP, UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Which record to archive.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrRecordArchived

• dmErrRecordDeleted

• memErrInvalidParam

Some releases may display a fatal error message instead of
returning the error code.

Comments When a record is archived, the deleted bit is set but the chunk is not
freed and the local ID is preserved. This way, the next time the user
synchronizes with the desktop system, the desktop can save the
record data on the PC before it permanently removes the record
entry and data from the Palm Powered™ device.

Based on the assumption that a call to DmArchiveRecord indicates
that you are finished with the record and aren’t going to refer to it
again, this function sets the chunk’s lock count to zero.

See Also DmRemoveRecord, DmDetachRecord, DmNewRecord,
DmDeleteRecord

Data and Resource Manager
Data Manager Functions

572 Palm OS Programmer’s API Reference

DmAttachRecord

Purpose Attach an existing chunk ID handle to a database as a record.

Declared In DataMgr.h

Prototype Err DmAttachRecord (DmOpenRef dbP, UInt16 *atP,
MemHandle newH, MemHandle *oldHP)

Parameters -> dbP DmOpenRef to open database.

<-> atP Pointer to the index where the new record
should be placed. Specify the value
dmMaxRecordIndex to add the record to the
end of the database.

-> newH Handle of the new record.

<-> oldHP If non-NULL upon entry, indicates that the
record at *atP should be replaced. Upon
return, contains the handle to the replaced
record.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrMemError

• memErrChunkLocked

• memErrInvalidParam

• memErrNotEnoughSpace

• dmErrReadOnly

• dmErrNotRecordDB

• dmErrRecordInWrongCard

• dmErrIndexOutOfRange

Some releases may display a fatal error message instead of
returning some of these error codes.

Comments Given the handle of an existing chunk, this routine makes that
chunk a new record in a database and sets the dirty bit. The

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 573

parameter atP points to an index variable. If oldHP is NULL, the
new record is inserted at index *atP and all record indices that
follow are shifted down. If *atP is greater than the number of
records currently in the database, the new record is appended to the
end and its index is returned in *atP. If oldHP is not NULL, the new
record replaces an existing record at index *atP and the handle of
the old record is returned in *oldHP so that the application can free
it or attach it to another database.

This function is useful for cutting and pasting between databases.

See Also DmDetachRecord, DmNewRecord, DmNewHandle,
DmFindSortPosition

DmAttachResource

Purpose Attach an existing chunk ID to a resource database as a new
resource.

Declared In DataMgr.h

Prototype Err DmAttachResource (DmOpenRef dbP,
MemHandle newH, DmResType resType, DmResID resID)

Parameters -> dbP DmOpenRef to open database.

-> newH Handle of new resource’s data.

-> resType Type of the new resource.

-> resID ID of the new resource.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrMemError

• memErrChunkLocked

• memErrInvalidParam

• memErrNotEnoughSpace

• dmErrReadOnly

Data and Resource Manager
Data Manager Functions

574 Palm OS Programmer’s API Reference

• dmErrRecordInWrongCard

Some releases may display a fatal error message instead of
returning some of these error codes. All releases may display a fatal
error message if the database is not a resource database.

Comments Given the handle of an existing chunk with resource data in it, this
routine makes that chunk a new resource in a resource database.
The new resource will have the given type and ID.

See Also DmDetachResource, DmRemoveResource, DmNewHandle,
DmNewResource

DmCloseDatabase

Purpose Close a database.

Declared In DataMgr.h

Prototype Err DmCloseDatabase (DmOpenRef dbP)

Parameters -> dbP Database access pointer.

Result Returns errNone if no error, or dmErrInvalidParam if an error
occurs. Some releases may display a fatal error message instead of
returning the error code.

Comments This routine doesn’t unlock any records that were left locked.
Records and resources should not be left locked. If a record/
resource is left locked, you should not use its reference because the
record can disappear during a HotSync operation or if the database
is deleted by the user. To prevent the database from being deleted,
you can use DmDatabaseProtect before closing.

If there is an overlay associated with the database passed in,
DmCloseDatabase closes the overlay as well.

If the database has the recyclable bit set (dmHdrAttrRecyclable),
DmCloseDatabase calls DmDeleteDatabase to delete it.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 575

Compatibility Starting with Palm OS 2.0, DmCloseDatabase updates the
database’s modification date.

• On Palm OS 2.0, the modification date is updated if the
database was opened with write access.

• On Palm OS 3.0 and higher, the modification date is updated
only if a change has been made and the database was opened
with write access. Changes that trigger an update include
adding, deleting, archiving, rearranging, or resizing records,
setting a record’s dirty bit in DmReleaseRecord,
rearranging or deleting categories, or updating the database
header fields using DmSetDatabaseInfo.

Under Palm OS 1.0, the modification date was never updated.

If you need to ensure that the modification date is updated the same
way regardless of the operating system version, use
DmSetDatabaseInfo to set the modification date explicitly.

See Also DmOpenDatabase, DmDeleteDatabase,
DmOpenDatabaseByTypeCreator

DmCreateDatabase

Purpose Create a new database on the specified card with the given name,
creator, and type.

Declared In DataMgr.h

Prototype Err DmCreateDatabase (UInt16 cardNo,
const Char *nameP, UInt32 creator, UInt32 type,
Boolean resDB)

Parameters -> cardNo The card number to create the database on.

-> nameP Name of new database, up to 32 ASCII bytes
long, including the null terminator (as specified
by dmDBNameLength). Database names must
use only 7-bit ASCII characters (0x20 through
0x7E).

-> creator Creator of the database.

Data and Resource Manager
Data Manager Functions

576 Palm OS Programmer’s API Reference

-> type Type of the database.

-> resDB If true, create a resource database.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrInvalidDatabaseName

• dmErrAlreadyExists

• memErrCardNotPresent

• dmErrMemError

• memErrChunkLocked

• memErrInvalidParam

• memErrInvalidStoreHeader

• memErrNotEnoughSpace

• memErrRAMOnlyCard

May display a fatal error message if the master database list cannot
be found.

Comments Call this routine to create a new database on a specific card. If
another database with the same name already exists in RAM store,
this routine returns a dmErrAlreadyExists error code. Once
created, the database ID can be retrieved by calling
DmFindDatabase. The database can be opened using the database
ID. To create a resource database instead of a record-based database,
set the resDB Boolean to true.

After you create a database, it’s recommended that you call
DmSetDatabaseInfo to set the version number. Databases default
to version 0 if the version isn’t explicitly set.

See Also DmCreateDatabaseFromImage, DmOpenDatabase,
DmDeleteDatabase

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 577

DmCreateDatabaseFromImage

Purpose Create an entire database from a single resource that contains an
image of the database.

Declared In DataMgr.h

Prototype Err DmCreateDatabaseFromImage (MemPtr bufferP)

Parameters -> bufferP Pointer to locked resource containing database
image.

Result Returns errNone if no error.

Comments An image is the same as a desktop file representation of a prc or pdb
file.

This function is intended for applications in the ROM to install
default databases after a hard reset. RAM-based applications that
want to install a default database should install a pdb file separately
to save storage heap space.

See Also DmCreateDatabase, DmOpenDatabase

DmDatabaseInfo

Purpose Retrieve information about a database.

Declared In DataMgr.h

Prototype Err DmDatabaseInfo (UInt16 cardNo, LocalID dbID,
Char *nameP, UInt16 *attributesP,
UInt16 *versionP, UInt32 *crDateP,
UInt32 *modDateP, UInt32 *bckUpDateP,
UInt32 *modNumP, LocalID *appInfoIDP,
LocalID *sortInfoIDP, UInt32 *typeP,
UInt32 *creatorP)

Parameters -> cardNo Number of the card the database resides on.

Data and Resource Manager
Data Manager Functions

578 Palm OS Programmer’s API Reference

-> dbID Database ID of the database.

<- nameP The database’s name. Pass a pointer to 32-byte
character array for this parameter, or NULL if
you don’t care about the name.

<- attributesP The database’s attribute flags. The section
“Database Attribute Constants” lists constants
you can use to query the values returned in this
parameter. Pass NULL for this parameter if you
don’t want to retrieve it.

<- versionP The application-specific version number. The
default version number is 0. Pass NULL for this
parameter if you don’t want to retrieve it.

<- crDateP The date the database was created, expressed as
the number of seconds since the first instant of
Jan. 1, 1904. Pass NULL for this parameter if you
don’t want to retrieve it.

<- modDateP The date the database was last modified,
expressed as the number of seconds since the
first instant of Jan. 1, 1904. Pass NULL for this
parameter if you don’t want to retrieve it.

<- bckUpDateP The date the database was backed up,
expressed as the number of seconds since the
first instant of Jan. 1, 1904. Pass NULL for this
parameter if you don’t want to retrieve it.

<- modNumP The modification number, which is
incremented every time a record in the
database is added, modified, or deleted. Pass
NULL for this parameter if you don’t want to
retrieve it.

<- appInfoIDP The local ID of the application info block, or
NULL. The application info block is an optional
field that the database may use to store
application-specific information about the
database. Pass NULL for this parameter if you
don’t want to retrieve it.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 579

<- sortInfoIDP The local ID of the database’s sort table. This is
an optional field in the database header. Pass
NULL for this parameter if you don’t want to
retrieve it.

<- typeP The database’s type, specified when it is
created. Pass NULL for this parameter if you
don’t want to retrieve it.

<- creatorP The database’s creator, specified when it is
created. Pass NULL for this parameter if you
don’t want to retrieve it.

Result Returns errNone if no error, or dmErrInvalidParam if an error
occurs.

Compatibility Updating of the modification date differs based on which version of
the OS your application is running on.

• Under Palm OS 1.0, the modification date is never updated.

• Under Palm OS 2.0, the modification date is updated every
time a database opened with write access is closed.

• Beginning with Palm OS 3.0, the modification date is
updated only if a change has been made to the database
opened with write access. (The update still occurs upon
closing the database.) Changes that trigger an update include
adding, deleting, archiving, rearranging, or resizing records,
setting a record’s dirty bit in DmReleaseRecord,
rearranging or deleting categories, or updating the database
header fields using DmSetDatabaseInfo.

If you need to ensure that the modification date is updated the same
way regardless of the operating system version, use
DmSetDatabaseInfo to set the modification date explicitly.

See Also DmSetDatabaseInfo, DmDatabaseSize,
DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator,
TimSecondsToDateTime

Data and Resource Manager
Data Manager Functions

580 Palm OS Programmer’s API Reference

DmDatabaseProtect

Purpose Increment or decrement the database’s protection count.

Declared In DataMgr.h

Prototype Err DmDatabaseProtect (UInt16 cardNo,
LocalID dbID, Boolean protect)

Parameters -> cardNo Card number of database to protect/unprotect.

-> dbID Local ID of database to protect/unprotect.

-> protect If true, protect count will be incremented. If
false, protect count will be decremented.

Result Returns errNone if no error, or one of the following if an error
occurs:

• memErrCardNotPresent

• dmErrROMBased

• dmErrCantFind

• memErrNotEnoughSpace

• dmErrDatabaseNotProtected

Comments This routine can be used to prevent a database from being deleted
(by passing true for the protect parameter). It increments the
protect count if protect is true and decrements it if protect is
false. All true calls should be balanced by false calls before the
application terminates.

Use this function if you want to keep a particular record or resource
in a database locked down but don’t want to keep the database
open. This information is kept in the dynamic heap, so all databases
are “unprotected” at system reset.

If the database is a resource database that has an overlay associated
with it for the current locale, the overlay is also protected or
unprotected by this call.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 581

Compatibility Implemented only if 2.0 New Feature Set is present. Overlay
support is only available if 3.5 New Feature Set is present.

DmDatabaseSize

Purpose Retrieve size information on a database.

Declared In DataMgr.h

Prototype Err DmDatabaseSize (UInt16 cardNo, LocalID dbID,
UInt32 *numRecordsP, UInt32 *totalBytesP,
UInt32 *dataBytesP)

Parameters -> cardNo Card number the database resides on.

-> dbID Database ID of the database.

<- numRecordsP The total number of records in the database.
Pass NULL for this parameter if you don’t want
to retrieve it.

<- totalBytesP The total number of bytes used by the database
including the overhead. Pass NULL for this
parameter if you don’t want to retrieve it.

<- dataBytesP The total number of bytes used to store just
each record’s data, not including overhead.
Pass NULL for this parameter if you don’t want
to retrieve it.

Result Returns errNone if no error, or dmErrMemError if an error occurs.

See Also DmDatabaseInfo, DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator

Data and Resource Manager
Data Manager Functions

582 Palm OS Programmer’s API Reference

DmDeleteCategory

Purpose Delete all records in a category. The category name is not changed.

Declared In DataMgr.h

Prototype Err DmDeleteCategory (DmOpenRef dbR,
UInt16 categoryNum)

Parameters -> dbR Database access pointer.

-> categoryNum Category of records to delete. Category masks
such as dmAllCategories are invalid.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• memErrInvalidParam

Some releases may display a fatal error message instead of
returning the error code.

Comments This function deletes all records in a category, but does not delete
the category itself (note that it deletes the record data and header
info, and doesn’t just set the deleted bit). For each record in the
category, DmDeleteCategory marks the delete bit in the
database header for the record and disposes of the record’s data
chunk. The record entry in the database header remains, but its
localChunkID is set to NULL.

If the category contains no records, this function does nothing and
returns errNone to indicate success. The categoryNum parameter
is assumed to represent a single category. If you pass a category
mask to specify more than one category, this function interprets that
value as a single category, finds no records to delete in that category,
and returns errNone.

You can use the DmRecordInfo call to obtain a category index from
a given record. For example:

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 583

DmOpenRef myDB;
UInt16 record, attr, category, total;

DmRecordInfo(myDB, record, &attr, NULL, NULL);
category = attr & dmRecAttrCategoryMask;
err = DmDeleteCategory(myDB, category);

Compatibility Implemented only if 2.0 New Feature Set is present.

DmDeleteDatabase

Purpose Delete a database and all its records.

Declared In DataMgr.h

Prototype Err DmDeleteDatabase (UInt16 cardNo, LocalID dbID)

Parameters -> cardNo Card number the database resides on.

-> dbID Database ID.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrCantFind

• dmErrCantOpen

• memErrChunkLocked

• dmErrDatabaseOpen

• dmErrROMBased

• memErrInvalidParam

• memErrNotEnoughSpace

Comments Call this routine to delete a database. This routine deletes the
database, the application info block, the sort info block, and any
other overhead information that is associated with this database.
After deleting the database, this function enqueues a deferred
sysNotifyDBDeletedEvent notification, which will be broadcast
at the top of the event loop.

Data and Resource Manager
Data Manager Functions

584 Palm OS Programmer’s API Reference

If the database has an overlay associated with it, this function does
not delete the overlay. You can delete the overlay with a separate
call to DmDeleteDatabase.

This routine accepts a database ID as a parameter. To determine the
database ID, call either DmFindDatabase or DmGetDatabase
with a database index.

Compatibility The sysNotifyDBDeletedEvent notification is only broadcast if
the 4.0 New Feature Set is present.

See Also DmDeleteRecord, DmRemoveRecord, DmRemoveResource,
DmCreateDatabase, DmGetNextDatabaseByTypeCreator,
DmFindDatabase

DmDeleteRecord

Purpose Delete a record’s chunk from a database but leave the record entry
in the header and set the delete bit for the next sync.

Declared In DataMgr.h

Prototype Err DmDeleteRecord (DmOpenRef dbP, UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Which record to delete.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrRecordArchived

• dmErrRecordDeleted

• memErrInvalidParam

Some releases may display a fatal error message instead of
returning the error code.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 585

Comments Marks the delete bit in the database header for the record and
disposes of the record’s data chunk. Does not remove the record
entry from the database header, but simply sets the localChunkID
of the record entry to NULL.

See Also DmDetachRecord, DmRemoveRecord, DmArchiveRecord,
DmNewRecord

DmDetachRecord

Purpose Detach and orphan a record from a database but don’t delete the
record’s chunk.

Declared In DataMgr.h

Prototype Err DmDetachRecord (DmOpenRef dbP, UInt16 index,
MemHandle *oldHP)

Parameters -> dbP DmOpenRef to open.

-> index Index of the record to detach.

<-> oldHP Pointer to return handle of the detached record.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrNotRecordDB

• memErrChunkLocked

• memErrInvalidParam

Some releases may display a fatal error message instead of
returning the error code.

Comments This routine detaches a record from a database by removing its
entry from the database header and returns the handle of the
record’s data chunk in *oldHP. Unlike DmDeleteRecord, this

Data and Resource Manager
Data Manager Functions

586 Palm OS Programmer’s API Reference

routine removes its entry in the database header but it does not
delete the actual record.

See Also DmAttachRecord, DmRemoveRecord, DmArchiveRecord,
DmDeleteRecord

DmDetachResource

Purpose Detach a resource from a database and return the handle of the
resource’s data.

Declared In DataMgr.h

Prototype Err DmDetachResource (DmOpenRef dbP,
UInt16 index, MemHandle *oldHP)

Parameters -> dbP DmOpenRef to open database.

-> index Index of resource to detach.

<-> oldHP Pointer to return handle of the detached record.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrCorruptDatabase

• memErrChunkLocked

• memErrInvalidParam

Some releases may display a fatal error message instead of
returning the error code. All releases may display a fatal error
message if the database is not a resource database.

Comments This routine detaches a resource from a database by removing its
entry from the database header and returns the handle of the
resource’s data chunk in *oldHP.

See Also DmAttachResource, DmRemoveResource

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 587

DmFindDatabase

Purpose Return the database ID of a database by card number and name.

Declared In DataMgr.h

Prototype LocalID DmFindDatabase (UInt16 cardNo,
const Char *nameP)

Parameters -> cardNo Number of card to search.

-> nameP Name of the database to look for.

Result Returns the database ID. If the database can’t be found, this function
returns 0, and DmGetLastErr returns an error code indicating the
reason for failure.

See Also DmGetNextDatabaseByTypeCreator, DmDatabaseInfo,
DmOpenDatabase

DmFindRecordByID

Purpose Return the index of the record with the given unique ID.

Declared In DataMgr.h

Prototype Err DmFindRecordByID (DmOpenRef dbP,
UInt32 uniqueID, UInt16 *indexP)

Parameters -> dbP Database access pointer.

-> uniqueID Unique ID to search for.

<- indexP Return index.

Result Returns 0 if found, otherwise dmErrUniqueIDNotFound. May
display a fatal error message if the unique ID is invalid.

See Also DmQueryRecord, DmGetRecord, DmRecordInfo

Data and Resource Manager
Data Manager Functions

588 Palm OS Programmer’s API Reference

DmFindResource

Purpose Search the given database for a resource by type and ID, or by
pointer if it is non-NULL.

Declared In DataMgr.h

Prototype UInt16 DmFindResource (DmOpenRef dbP,
DmResType resType, DmResID resID, MemHandle resH)

Parameters -> dbP Open resource database access pointer.

-> resType Type of resource to search for.

-> resID ID of resource to search for.

->resH Pointer to locked resource, or NULL.

Result Returns index of resource in resource database, or 0xFFFF if not
found.

May display a fatal error message if the database is not a resource
database.

Comments Use this routine to find a resource in a particular resource database
by type and ID or by pointer. It is particularly useful when you want
to search only one database for a resource and that database is not
the topmost one.

IMPORTANT: This function searches for the resource only in
the database you specify. If you pass a pointer to a base resource
database, its overlay is not searched. To search both a base
database and its overlay for a localized resource, use
DmGet1Resource instead of this function.

If resH is NULL, the resource is searched for by type and ID.

If resH is not NULL, resType and resID are ignored and the index
of the given locked resource is returned.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 589

Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceIndex.

See Also DmGetResource, DmSearchResource, DmResourceInfo,
DmGetResourceIndex, DmFindResourceType

DmFindResourceType

Purpose Search the given database for a resource by type and type index.

Declared In DataMgr.h

Prototype UInt16 DmFindResourceType (DmOpenRef dbP,
DmResType resType, UInt16 typeIndex)

Parameters -> dbP Open resource database access pointer.

-> resType Type of resource to search for.

-> typeIndex Index of given resource type.

Result Index of resource in resource database, or 0xFFFF if not found.

May display a fatal error message if the database is not a resource
database.

Comments Use this routine to retrieve all the resources of a given type in a
resource database. By starting at typeIndex 0 and incrementing
until an error is returned, the total number of resources of a given
type and the index of each of these resources can be determined.
Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceIndex.

Data and Resource Manager
Data Manager Functions

590 Palm OS Programmer’s API Reference

IMPORTANT: This function searches for resources only in the
database you specify. If you pass a pointer to a base resource
database, its overlay is not searched. To search both a base
database and its overlay for a localized resource, use
DmGet1Resource instead of this function.

See Also DmGetResource, DmSearchResource, DmResourceInfo,
DmGetResourceIndex, DmFindResource

DmFindSortPosition

Purpose Returns where in a sorted list of records a given record would be
located. Useful to find where to insert a record with
DmAttachRecord. Uses a binary search.

Declared In DataMgr.h

Prototype UInt16 DmFindSortPosition (DmOpenRef dbP,
void *newRecord, SortRecordInfoPtr newRecordInfo,
DmComparF *compar, Int16 other)

Parameters -> dbP Database access pointer.

-> newRecord Pointer to the new record.

-> newRecordInfo
Sort information about the new record. See
SortRecordInfoType.

-> compar Pointer to comparison function. See
DmComparF.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 591

-> other Any value the application wants to pass to the
comparison function. This parameter is often
used to indicate a sort direction (ascending or
descending).

Result The position where the record should be inserted.

The position should be viewed as between the record returned and
the record before it. Note that the return value may be one greater
than the number of records.

Comments If newRecord has the same key as another record in the database,
DmFindSortPosition assumes that newRecord should be
inserted after that record. If there are several records with the same
key, newRecord is inserted after all of them. For this reason, if you
use DmFindSortPosition to search for the location of a record
that you know is already in the database, you must subtract 1 from
the result. (Be sure to check that the value is not 0.)

If there are deleted records in the database, DmFindSortPosition
only works if those records are at the end of the database.
DmFindSortPosition always assumes that a deleted record is
greater than or equal to any other record.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also DmFindSortPositionV10

DmFindSortPositionV10

Purpose Return where a record should be. Useful to find where to insert a
record with DmAttachRecord. Uses a binary search.

Declared In DataMgr.h

Prototype UInt16 DmFindSortPositionV10 (DmOpenRef dbP,
void *newRecord, DmComparF *compar, Int16 other)

Parameters -> dbP Database access pointer.

Data and Resource Manager
Data Manager Functions

592 Palm OS Programmer’s API Reference

-> newRecord Pointer to the new record.

-> compar Pointer to comparison function. See
DmComparF.

-> other Any value the application wants to pass to the
comparison function.

Result Returns the position where the record should be inserted. The
position should be viewed as between the record returned and the
record before it. Note that the return value may be one greater than
the number of records.

Comments If there are deleted records in the database,
DmFindSortPositionV10 only works if those records are at the
end of the database. DmFindSortPositionV10 always assumes
that a deleted record is greater than or equal to any other record.

Compatibility This function corresponds to the 1.0 version of
DmFindSortPosition.

See Also DmFindSortPosition, DmQuickSort, DmInsertionSort

DmGetAppInfoID

Purpose Return the local ID of the application info block.

Declared In DataMgr.h

Prototype LocalID DmGetAppInfoID (DmOpenRef dbP).

Parameters -> dbP Database access pointer.

Result Returns local ID of the application info block. The application info
block is an optional field that the database may use to store
application-specific information about the database; if the database
doesn’t have an application info block, DmGetAppInfoID returns
zero.

See Also DmDatabaseInfo, DmOpenDatabase

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 593

DmGetDatabase

Purpose Return the database header ID of a database by index and card
number.

Declared In DataMgr.h

Prototype LocalID DmGetDatabase (UInt16 cardNo,
UInt16 index)

Parameters -> cardNo Card number of database.

-> index Index of database.

Result Returns the database ID, or 0 if an invalid parameter is passed.

Comments Call this routine to retrieve the database ID of a database by index.
The index should range from 0 to DmNumDatabases-1.

This routine is useful for getting a directory of all databases on a
card. The databases returned may reside in either the ROM or the
RAM. The order in which databases are returned is not fixed;
therefore, you should not rely on receiving a list of databases in a
particular order.

See Also DmOpenDatabase, DmNumDatabases, DmDatabaseInfo,
DmDatabaseSize

DmGetDatabaseLockState

Purpose Return information about the number of locked and busy records in
a database.

Declared In DataMgr.h

Prototype void DmGetDatabaseLockState (DmOpenRef dbR,
UInt8 *highest, UInt32 *count, UInt32 *busy)

Parameters -> dbR Database access pointer.

Data and Resource Manager
Data Manager Functions

594 Palm OS Programmer’s API Reference

<- highest The highest lock count found for all of the
records in the database. If a database has two
records, one has a lock count of 2 and one has a
lock count of 1, the highest lock count is 2. Pass
NULL for this parameter if you don’t want to
retrieve it.

<- count The number of records that have the lock count
that is returned in the highest parameter.
Pass NULL for this parameter if you don’t want
to retrieve it.

<- busy The number of records that have the busy bit
set. Pass NULL for this parameter if you don’t
want to retrieve it.

Result No return value. Returns all information in the parameters you
pass.

Comments This function is intended to be used for debugging purposes. You
can use it to obtain information about how many records are busy
and how much locking occurs.

Compatibility Implemented only if 3.2 New Feature Set is present.

DmGetLastErr

Purpose Return error code from last data manager call.

Declared In DataMgr.h

Prototype Err DmGetLastErr (void)

Parameters None.

Result Error code from last unsuccessful data manager call.

Comments Use this routine to determine why a data manager call failed. In
particular, calls like DmGetRecord return 0 if unsuccessful, so

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 595

calling DmGetLastErr is the only way to determine why they
failed.

Note that DmGetLastErr does not always reflect the error status of
the last data manager call. Rather, it reflects the error status of data
manager calls that don’t return an error code. For some of those
calls, the saved error code value is not set to 0 when the call is
successful.

For example, if a call to DmOpenDatabaseByTypeCreator returns
NULL for database reference (that is, it fails), DmGetLastErr
returns something meaningful; otherwise, it returns the error value
of some previous data manager call.

Only the following data manager functions currently affect the
value returned by DmGetLastErr:

DmFindDatabase DmOpenDatabaseByTypeCreator

DmOpenDatabase DmNewRecord

DmQueryRecord DmGetRecord

DmQueryNextInCategory DmPositionInCategory

DmSeekRecordInCategory DmResizeRecord

DmGetResource DmGet1Resource

DmNewResource DmGetResourceIndex

DmNewHandle DmOpenDBNoOverlay

DmResizeResource

Data and Resource Manager
Data Manager Functions

596 Palm OS Programmer’s API Reference

DmGetNextDatabaseByTypeCreator

Purpose Return a database header ID and card number given the type and/
or creator. This routine searches all memory cards for a match.

Declared In DataMgr.h

Prototype Err DmGetNextDatabaseByTypeCreator
(Boolean newSearch, DmSearchStatePtr stateInfoP,
UInt32 type, UInt32 creator,
Boolean onlyLatestVers, UInt16 *cardNoP,
LocalID *dbIDP)

Parameters -> newSearch true if starting a new search.

<-> stateInfoP If newSearch is false, this must point to the
same data used for the previous invocation.

-> type Type of database to search for, pass 0 as a
wildcard.

-> creator Creator of database to search for, pass 0 as a
wildcard.

-> onlyLatestVers
If true, only the latest version of a database
with a given type and creator is returned.

<- cardNoP On exit, the card number of the found database.

<- dbIDP Database local ID of the found database.

Result Returns errNone if no error, or dmErrCantFind if no matches
were found.

Comments You may need to call this function successively to discover all
databases having a specified type/creator pair.

To start the search, pass true for newSearch. Allocate a
DmSearchStateType structure and pass it as the stateInfoP
parameter. DmGetNextDatabaseByTypeCreator stores private
information in stateInfoP and uses it if the search is continued.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 597

To continue a search where the previous one left off, pass false for
newSearch and pass the same stateInfoP that you used during
the previous call to this function.

You can pass NULL as a wildcard operator for the type or creator
parameter to conduct searches of wider scope. If the type
parameter is NULL, this routine can be called successively to return
all databases of the given creator. If the creator parameter is
NULL, this routine can be called successively to return all databases
of the given type. You can also pass NULL as the value for both of
these parameters to return all available databases without regard to
type or creator.

Because databases are scattered freely throughout memory space,
they are not returned in any particular order—any database
matching the specified type/creator criteria can be returned.Thus, if
the value of the onlyLatestVers parameter is false, this
function may return a database which is not the most recent version
matching the specified type/creator pair. To obtain only the latest
version of a database matching the search criteria, set the value of
the onlyLatestVers parameter to true.

When determining which is the latest version of the database, RAM
databases are considered newer than ROM databases that have the
same version number. Because of this, you can replace any ROM-
based application with your own version of it. Also, a RAM
database on card 1 is considered newer than a RAM database on
card 0 if the version numbers are identical.

WARNING! Don’t create or delete a database while using
DmGetNextDatabaseByTypeCreator to iterate through the
existing databases. This could cause databases to be skipped, or
it could result in a given database being returned more than once.

Compatibility In Palm OS version 3.1 and higher, if onlyLatestVers is true,
you only receive one matching database for each type/creator pair.
In version 3.0 and earlier, you could receive multiple matching
databases if onlyLatestVers was true.

Note that the behavior is different only when you have specified a
value for both type and creator and onlyLatestVers is true.

Data and Resource Manager
Data Manager Functions

598 Palm OS Programmer’s API Reference

For example, suppose your application maintains three databases
that all have the same type, creator, and version number and you
write this code to process them in some way:

DmSearchStateType state;
Boolean latestVer;
UInt16 card;
LocalID currentDB = 0;

theErr = DmGetNextDatabaseByTypeCreator(true,
 &state, myType, myCreator, latestVer, &card,
 ¤tDB);
while (!theErr && currentDB) {
 /* do something with currentDB */
 /* now get the next DB */
 theErr = DmGetNextDatabaseByTypeCreator(
 false, &state, myType, myCreator,
 vlatestVer, &card, ¤tDB);
}

If latestVer is false, then your code will work the same on all
versions of Palm OS and will return all three databases whose type
and creator match those specified. If latestVer is true, this code
returns all three databases on Palm OS version 3.0 and earlier, but
only returns one database on version 3.1 and higher. (Exactly which
database it returns is unspecified.)

If you expect multiple databases to match your search criteria, make
sure you call DmGetNextDatabaseByTypeCreator in one of the
following ways to ensure that your code operates the same on all
Palm OS versions:

• Set onlyLatestVers to false if you specify both a type
and creator.

• Specify NULL for either the type or creator parameter (or
both).

See Also DmGetDatabase, DmFindDatabase, DmDatabaseInfo,
DmOpenDatabaseByTypeCreator, DmDatabaseSize

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 599

DmGetRecord

Purpose Return a handle to a record by index and mark the record busy.

Declared In DataMgr.h

Prototype MemHandle DmGetRecord (DmOpenRef dbP,
UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Which record to retrieve.

Result Returns a handle to record data. If another call to DmGetRecord for
the same record is attempted before the record is released, NULL is
returned and DmGetLastErr returns an error code indicating the
reason for failure.

Comments Returns a handle to given record and sets the busy bit for the
record.

If the record is ROM-based (pointer accessed), this routine makes a
fake handle to it and stores this handle in the DmAccessType
structure.

DmReleaseRecord should be called as soon as the caller finishes
viewing or editing the record.

See Also DmSearchRecord, DmFindRecordByID, DmRecordInfo,
DmReleaseRecord, DmQueryRecord

Data and Resource Manager
Data Manager Functions

600 Palm OS Programmer’s API Reference

DmGetResource

Purpose Search all open resource databases and return a handle to a
resource, given the resource type and ID.

Declared In DataMgr.h

Prototype MemHandle DmGetResource (DmResType type,
DmResID resID)

Parameters -> type The resource type.

->resID The resource ID.

Result Handle to resource data. If the specified resource cannot be found,
this function returns NULL and DmGetLastErr returns an error
code indicating the reason for failure.

Comments Searches all open resource databases starting with the most recently
opened one for a resource of the given type and ID. If found, the
resource handle is returned. The application should call
DmReleaseResource as soon as it finishes accessing the resource
data. The resource handle is not locked by this function.

This function always returns the resource located in the overlay if
any open overlay has a resource matching that type and ID. If there
is no overlay version of the resource, this function returns the
resource from the base database.

See Also DmGet1Resource, DmReleaseResource, ResLoadConstant

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 601

DmGetResourceIndex

Purpose Return a handle to a resource by index.

Declared In DataMgr.h

Prototype MemHandle DmGetResourceIndex (DmOpenRef dbP,
UInt16 index)

Parameters -> dbP Access pointer to open database.

-> index Index of the resource whose handle you want.

Result Handle to resource data. If the specified index is out of range, this
function returns NULL and DmGetLastErr returns an error code
indicating the reason for failure.

May display a fatal error message if the database is not a resource
database.

IMPORTANT: This function accesses the resource only in the
database you specify. If you pass a pointer to a base resource
database, its overlay is not accessed. Therefore, you should use
care when using this function to access a potentially localized
resource. You can use DmSearchResource to obtain a pointer
to the overlay database if the resource is localized; however, it’s
more convenient to use DmGetResource or DmGet1Resource.

See Also DmFindResource, DmFindResourceType, DmSearchResource

Data and Resource Manager
Data Manager Functions

602 Palm OS Programmer’s API Reference

DmGet1Resource

Purpose Search the most recently opened resource database and return a
handle to a resource given the resource type and ID.

Declared In DataMgr.h

Prototype MemHandle DmGet1Resource (DmResType type,
DmResID resID)

Parameters -> type The resource type.

-> resID The resource ID.

Result Handle to resource data. If unsuccessful, this function returns NULL
and DmGetLastErr returns an error code indicating the reason for
failure.

Comments Searches the most recently opened resource database for a resource
of the given type and ID. If the database has an overlay associated
with it, the overlay is searched first, and then the base database is
searched if the overlay does not contain the resource. If found, the
resource handle is returned. The application should call
DmReleaseResource as soon as it finishes accessing the resource
data. The resource handle is not locked by this function.

See Also DmGetResource, DmReleaseResource, ResLoadConstant

DmInsertionSort

Purpose Sort records in a database.

Declared In DataMgr.h

Prototype Err DmInsertionSort (DmOpenRef dbR,
DmComparF *compar, Int16 other)

Parameters -> dbR Database access pointer.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 603

-> compar Comparison function. See DmComparF.

-> other Any value the application wants to pass to the
comparison function. This parameter is often
used to indicate a sort direction (ascending or
descending).

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrNotRecordDB

Some releases may display a fatal error message instead of
returning the error code.

Comments Deleted records are placed last in any order. All others are sorted
according to the passed comparison function. Only records which
are out of order move. Moved records are moved to the end of the
range of equal records. If a large number of records are being sorted,
try to use the quick sort.

The following insertion-sort algorithm is used: Starting with the
second record, each record is compared to the preceding record.
Each record not greater than the last is inserted into sorted position
within those already sorted. A binary insertion is performed. A
moved record is inserted after any other equal records.

See Also DmQuickSort

DmMoveCategory

Purpose Move all records in a category to another category.

Declared In DataMgr.h

Prototype Err DmMoveCategory (DmOpenRef dbP,
UInt16 toCategory, UInt16 fromCategory,
Boolean dirty)

Parameters -> dbP DmOpenRef to open database.

Data and Resource Manager
Data Manager Functions

604 Palm OS Programmer’s API Reference

->toCategory Category to which the records should be
added.

-> fromCategory Category from which to remove records.

-> dirty If true, set the dirty bit.

Result Returns 0 if successful, or dmErrReadOnly if the database is in
read-only mode. Some releases may display a fatal error message
instead of returning the error code.

Comments If dirty is true, the moved records are marked as dirty.

The toCategory and fromCategory parameters hold category
index values. You can learn which category a record is in with the
DmRecordInfo call and use that value in this function. For
example, the following code, ensures that the records rec1 and
rec2 are in the same category:

DmOpenRef myDB;
UInt16 rec1, rec2;
UInt16 rec1Attr, rec2Attr;
UInt16 category1, category2;

DmRecordInfo (myDB, rec1, &rec1Attr, NULL,
 NULL);
category1 = rec1Attr & dmRecAttrCategoryMask;
DmRecordInfo(myDB, rec2, &rec2Attr, NULL,
 NULL);
category2 = rec2Attr & dmRecAttrCategoryMask;
if (category1 != category2)
 DmMoveCategory(myDB, category1, category2,
 true);

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 605

DmMoveRecord

Purpose Move a record from one index to another.

Declared In DataMgr.h

Prototype Err DmMoveRecord (DmOpenRef dbP, UInt16 from,
UInt16 to)

Parameters -> dbP DmOpenRef to open database.

-> from Index of record to move.

-> to Where to move the record.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrNotRecordDB

• dmErrMemError

• memErrInvalidParam

• memErrChunkLocked

Some releases may display a fatal error message instead of
returning the error code.

Comments Insert the record at the to index and move other records down. The
to position should be viewed as an insertion position. This value
may be one greater than the index of the last record in the database.
In cases where to is greater than from, the new index of the record
becomes to–1 after the move is complete.

Data and Resource Manager
Data Manager Functions

606 Palm OS Programmer’s API Reference

DmNewHandle

Purpose Attempt to allocate a new chunk in the same data heap or card as
the database header of the passed database access pointer. If there is
not enough space in that data heap, try other heaps.

Declared In DataMgr.h

Prototype MemHandle DmNewHandle (DmOpenRef dbP, UInt32 size)

Parameters -> dbP DmOpenRef to open database.

-> size Size of new handle.

Result Returns the chunkID of new chunk. If an error occurs, returns 0,
and DmGetLastErr returns an error code indicating the reason for
failure.

Comments Allocates a new handle of the given size. Ensures that the new
handle is in the same memory card as the given database. This
guarantees that you can attach the handle to the database as a
record to obtain and save its LocalID in the appInfoID or
sortInfoID fields of the header.

The handle should be attached to a database as soon as possible. If it
is not attached to a database and the application crashes, the
memory used by the new handle is unavailable until the next soft
reset.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 607

DmNewRecord

Purpose Return a handle to a new record in the database and mark the
record busy.

Declared In DataMgr.h

Prototype MemHandle DmNewRecord (DmOpenRef dbP, UInt16 *atP,
UInt32 size)

Parameters -> dbP DmOpenRef to open database.

<-> atP Pointer to index where new record should be
placed. Specify the value dmMaxRecordIndex
to add the record to the end of the database.

-> size Size of new record.

Result Handle to record data. If an error occurs, this function returns 0 and
DmGetLastErr returns an error code indicating the reason for
failure.

Some releases may display a fatal error message if the database is
opened in read-only mode or it is a resource database.

Comments Allocates a new record of the given size, and returns a handle to the
record data. The parameter atP points to an index variable. The
new record is inserted at index *atP and all record indices that
follow are shifted down. If *atP is greater than the number of
records currently in the database, the new record is appended to the
end and its index is returned in *atP.

Both the busy and dirty bits are set for the new record and a
unique ID is automatically created.

DmReleaseRecord should be called as soon as the caller finishes
viewing or editing the record.

See Also DmAttachRecord, DmRemoveRecord, DmDeleteRecord

Data and Resource Manager
Data Manager Functions

608 Palm OS Programmer’s API Reference

DmNewResource

Purpose Allocate and add a new resource to a resource database.

Declared In DataMgr.h

Prototype MemHandle DmNewResource (DmOpenRef dbP,
DmResType resType, DmResID resID, UInt32 size)

Parameters -> dbP DmOpenRef to open database.

-> resType Type of the new resource.

-> resID ID of the new resource.

-> size Desired size of the new resource.

Result Returns a handle to the new resource. If an error occurs, this
function returns NULL and DmGetLastErr returns an error code
indicating the reason for failure.

May display a fatal error message if the database is not a resource
database.

Comments Allocates a memory chunk for a new resource and adds it to the
given resource database. The new resource has the given type and
ID. If successful, the application should call DmReleaseResource
as soon as it finishes initializing the resource.

See Also DmAttachResource, DmRemoveResource

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 609

DmNextOpenDatabase

Purpose Return DmOpenRef to next open database for the current task.

Declared In DataMgr.h

Prototype DmOpenRef DmNextOpenDatabase (DmOpenRef currentP)

Parameters -> currentP Current database access pointer or NULL.

Result DmOpenRef to next open database, or NULL if there are no more.

Comments Call this routine successively to get the DmOpenRefs of all open
databases. Pass NULL for currentP to get the first one.
Applications don’t usually call this function, but is useful for system
information.

See Also DmOpenDatabaseInfo, DmDatabaseInfo

DmNextOpenResDatabase

Purpose Return access pointer to next open resource database in the search
chain.

Declared In DataMgr.h

Prototype DmOpenRef DmNextOpenResDatabase (DmOpenRef dbP)

Parameters -> dbP Database reference, or 0 to start search from the
top.

Result Pointer to next open resource database.

Comments Returns pointer to next open resource database. To get a pointer to
the first one in the search chain, pass NULL for dbP. This is the
database that is searched when DmGet1Resource is called.

Data and Resource Manager
Data Manager Functions

610 Palm OS Programmer’s API Reference

If you use this function to access a resource database that might
have an overlay associated with it, be careful how you use the
result. The DmOpenRef returned by this function is a pointer to the
overlay database, not the base database. If you subsequently pass
this pointer to DmFindResource, you’ll receive a handle to the
overlaid resource. If you’re searching for a resource that is found
only in the base, you won’t find it. Instead, always use
DmGetResource or DmGet1Resource to obtain a resource. Both
of those functions search both the overlay databases and their
associated base databases.

DmNumDatabases

Purpose Determine how many databases reside on a memory card.

Declared In DataMgr.h

Prototype UInt16 DmNumDatabases (UInt16 cardNo)

Parameters -> cardNo Number of the card to check.

Result The number of databases found.

Comments This routine is helpful for getting a directory of all databases on a
card. The routine DmGetDatabase accepts an index from 0 to
DmNumDatabases -1 and returns a database ID by index.

See Also DmGetDatabase

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 611

DmNumRecords

Purpose Return the number of records in a database.

Declared In DataMgr.h

Prototype UInt16 DmNumRecords (DmOpenRef dbP)

Parameters -> dbP DmOpenRef to open database.

Result The number of records in a database.

Comments Records that have that have the deleted bit set (that is, records that
will be deleted during the next synchronization because the user has
marked them deleted) are included in the count. If you want to
exclude these records from your count, use
DmNumRecordsInCategory and pass dmAllCategories as the
category.

See Also DmNumRecordsInCategory, DmRecordInfo,
DmSetRecordInfo

DmNumRecordsInCategory

Purpose Return the number of records of a specified category in a database.

Declared In DataMgr.h

Prototype UInt16 DmNumRecordsInCategory (DmOpenRef dbP,
UInt16 category)

Parameters -> dbP DmOpenRef to open database.

-> category Category index.

Result The number of records in the category.

Data and Resource Manager
Data Manager Functions

612 Palm OS Programmer’s API Reference

Comments Because this function must examine all records in the database, it
can be slow to return, especially when called on a large database.

Records that have the deleted bit set are not counted, and if the
user has specified to hide or mask private records, private records
are not counted either.

You can use the DmRecordInfo call to obtain a category index from
a given record. For example:

DmOpenRef myDB;
UInt16 record, attr, category, total;

DmRecordInfo(myDB, record, &attr, NULL, NULL);
category = attr & dmRecAttrCategoryMask;
total = DmNumRecordsInCategory(myDB, category);

See Also DmNumRecords, DmQueryNextInCategory,
DmPositionInCategory, DmSeekRecordInCategory,
DmMoveCategory

DmNumResources

Purpose Return the total number of resources in a given resource database.

Declared In DataMgr.h

Prototype UInt16 DmNumResources (DmOpenRef dbP)

Parameters -> dbP DmOpenRef to open database.

Result The total number of resources in the given database.

May display a fatal error message if the database is not a resource
database.

Comments DmNumResources only counts the resources in the database
indicated by the DmOpenRef parameter. If the database is a resource
database that has an overlay associated with it, this function only
returns the number of resources in the base database, not in the
overlay.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 613

DmOpenDatabase

Purpose Open a database and return a reference to it. If the database is a
resource database, also open its overlay for the current locale.

Declared In DataMgr.h

Prototype DmOpenRef DmOpenDatabase (UInt16 cardNo,
LocalID dbID, UInt16 mode)

Parameters -> cardNo Card number database resides on.

-> dbID The database ID of the database.

-> mode Which mode to open database in (see “Open
Mode Constants”).

Result Returns DmOpenRef to open database. May display a fatal error
message if the database parameter is NULL. On all other errors, this
function returns 0 and DmGetLastErr returns an error code
indicating the reason for failure.

Comments Call this routine to open a database for reading or writing.

This routine returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling DmGetLastErr.

When you use this routine to open a resource database in read-only
mode, it also opens the overlay associated with this database for the
current locale, if it exists. (The function OmGetCurrentLocale
returns the current locale.) Overlays are resource databases typically
used to localize applications, shared libraries, and panels. They
have the same creator as the base database, a type of 'ovly'
(symbolically named omOverlayDBType), and contain resources
with the same IDs and types as the resources in the base database.
When you request a resource from the database using
DmGetResource or DmGet1Resource, the overlay is searched
first. If the overlay contains a resource for the given ID, it is
returned. If not, the resource from the base database is returned.

Data and Resource Manager
Data Manager Functions

614 Palm OS Programmer’s API Reference

The DmOpenRef returned by this function is the pointer to the base
database, not to the overlay database, so care should be taken when
passing this pointer to functions such as DmFindResource because
this circumvents the overlay.

It’s possible to create a “stripped” base resource database, one that
does not contain any user interface resources. DmOpenDatabase
only opens a stripped database if its corresponding overlay exists. If
the overlay does not exist or if the overlay doesn’t match the
resource database, DmOpenDatabase returns NULL and
DmGetLastErr returns the error code
omErrBaseRequiresOverlay.

If you open a resource database in a writable mode, the associated
overlay is not opened. If you make changes to the resource database,
the overlay database is invalidated if those changes affect any
resources that are also in the overlay. This means that on future
occasions where you open the resource database in read-only mode,
the overlay will not be opened because Palm OS considers it to be
invalid.

TIP: If you want to prevent your resource database from being
overlaid, include an 'xprf' resource (symbolically named
sysResTExtPrefs) in the database with the ID 0
(sysResIDExtPrefs) and set its disableOverlays flag. This
resource is defined in UIResources.r.

Compatibility Overlay support is only available if 3.5 New Feature Set is present.
On earlier releases, this function opens resource databases without
looking for an associated overlay.

If 4.0 New Feature Set is present, when DmOpenDatabase attempts
to open a stripped resource database and cannot find an overlay for
it, it searches for an overlay matching the default locale if the system
locale is different from the default locale.

See Also DmCloseDatabase, DmCreateDatabase, DmFindDatabase,
DmOpenDatabaseByTypeCreator, DmDeleteDatabase,
DmOpenDBNoOverlay

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 615

DmOpenDatabaseByTypeCreator

Purpose Open the most recent revision of a database with the given type and
creator. If the database is a resource database, also open its overlay
for the current locale.

Declared In DataMgr.h

Prototype DmOpenRef DmOpenDatabaseByTypeCreator
(UInt32 type, UInt32 creator, UInt16 mode)

Parameters -> type Type of database.

-> creator Creator of database.

-> mode Which mode to open database in (see “Open
Mode Constants”).

Result DmOpenRef to open database. If the database couldn’t be found,
this function returns 0 and DmGetLastErr returns an error code
indicating the reason for failure.

Comments If you use this routine to open a resource database in read-only
mode, it also opens the overlay associated with this database for the
current locale. See DmOpenDatabase for more information on
overlays and resource databases.

Compatibility Overlay support is only available if 3.5 New Feature Set is present.
On earlier releases, this function opens resource databases without
looking for an associated overlay.

See Also DmCreateDatabase, DmOpenDatabase, DmOpenDatabaseInfo,
DmCloseDatabase, DmOpenDBNoOverlay

Data and Resource Manager
Data Manager Functions

616 Palm OS Programmer’s API Reference

DmOpenDatabaseInfo

Purpose Retrieve information about an open database.

Declared In DataMgr.h

Prototype Err DmOpenDatabaseInfo (DmOpenRef dbP,
LocalID *dbIDP, UInt16 *openCountP, UInt16 *modeP,
UInt16 *cardNoP, Boolean *resDBP)

Parameters -> dbP DmOpenRef to open database.

<- dbIDP The ID of the database. Pass NULL for this
parameter if you don’t want to retrieve this
information.

<- openCountP The number of applications that have this
database open. Pass NULL for this parameter if
you don’t want to retrieve this information.

<- modeP The mode used to open the database (see
“Open Mode Constants”). Pass NULL for this
parameter if you don’t want to retrieve this
information.

<- cardNoP The number of the card on which this database
resides. Pass NULL for this parameter if you
don’t want to retrieve this information.

<- resDBP If true upon return, the database is a resource
database, false otherwise. Pass NULL for this
parameter if you don’t want to retrieve this
information.

Result Returns errNone if no error.

See Also DmDatabaseInfo

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 617

DmOpenDBNoOverlay

Purpose Open a database and return a reference to it.

Declared In DataMgr.h

Prototype DmOpenRef DmOpenDBNoOverlay (UInt16 cardNo,
LocalID dbID, UInt16 mode)

Parameters -> cardNo Card number database resides on.

-> dbID The database ID of the database.

-> mode Which mode to open database in (see “Open
Mode Constants”).

Result DmOpenRef to open database. May display a fatal error message if
the database parameter is NULL. On all other errors, this function
returns 0 and DmGetLastErr returns an error code indicating the
reason for failure.

Comments Call this routine to open a database for reading or writing, while
ignoring any overlay databases that might be associated with it.

This routine returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling DmGetLastErr.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also DmCloseDatabase, DmCreateDatabase, DmFindDatabase,
DmOpenDatabaseByTypeCreator, DmDeleteDatabase,
DmOpenDatabase

Data and Resource Manager
Data Manager Functions

618 Palm OS Programmer’s API Reference

DmPositionInCategory

Purpose Return a position of a record within the specified category.

Declared In DataMgr.h

Prototype UInt16 DmPositionInCategory (DmOpenRef dbP,
UInt16 index, UInt16 category)

Parameters -> dbP DmOpenRef to open database.

-> index Index of the record.

-> category Index of category to search.

Result Returns the position (zero-based). If the specified index is out of
range, this function returns 0 and DmGetLastErr returns an error
code indicating the reason for failure. Note that this means a 0
return value might indicate either success or failure. If this function
returns 0 and DmGetLastErr returns errNone, the return value
indicates that this is the first record in the category.

Comments Because this function must examine all records up to the current
record, it can be slow to return, especially when called on a large
database.

Records that have the deleted bit set are ignored, and if the user
has specified that private records should be hidden or masked,
private records are ignored as well.

If the record is ROM-based (pointer accessed) this routine makes a
fake handle to it and stores this handle in the DmAccessType
structure.

To learn which category a record is in, use DmRecordInfo.

See Also DmQueryNextInCategory, DmSeekRecordInCategory,
DmMoveCategory

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 619

DmQueryNextInCategory

Purpose Return a handle to the next record in the specified category for
reading only (does not set the busy bit).

Declared In DataMgr.h

Prototype MemHandle DmQueryNextInCategory (DmOpenRef dbP,
UInt16 *indexP, UInt16 category)

Parameters -> dbP DmOpenRef to open database.

<-> indexP Index of a known record (often retrieved with
DmPositionInCategory). If a “next” record
is found, this index is updated to indicate that
record.

-> category Index of category to query, or
dmAllCategories to find the next record in
any category.

Result Returns a handle to the record following a known record, along
with the index of that record. If a record couldn’t be found, this
function returns NULL, and DmGetLastErr returns an error code
indicating the reason for failure.

Comments This function begins searching the database from the record at
*indexP for a record that is in the specified category. If the record
at *indexP belongs to that category, then a handle to it is returned.
If not, the function continues searching until it finds a record in the
category.

Records that have the deleted bit set are skipped, and if the user
has specified that private records should be hidden or masked,
private records are skipped as well.

Thus, if you want to find the next record in the category after the
one you have an index for, increment the index value before calling
this function. For example:

DmOpenRef myDB;
UInt16 record, attr, category, pos;

Data and Resource Manager
Data Manager Functions

620 Palm OS Programmer’s API Reference

MemHandle newRecH;

DmRecordInfo(myDB, record, &attr, NULL, NULL);
category = attr & dmRecAttrCategoryMask;
pos = DmPositionInCategory(myDB, record,
 category);
pos++;
newRecH = DmQueryNextInCategory(myDB, &pos,
category);

See Also DmNumRecordsInCategory, DmPositionInCategory,
DmSeekRecordInCategory

DmQueryRecord

Purpose Return a handle to a record for reading only (does not set the busy
bit).

Declared In DataMgr.h

Prototype MemHandle DmQueryRecord (DmOpenRef dbP,
UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Which record to retrieve.

Result Returns a record handle. If an error occurs, this function returns
NULL, and DmGetLastErr returns an error code indicating the
reason for failure.

Some releases may display a fatal error message if the specified
index is out of range.

Comments Returns a handle to the given record. Use this routine only when
viewing the record. This routine successfully returns a handle to the
record even if the record is busy.

If the record is ROM-based (pointer accessed) this routine returns
the fake handle to it.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 621

DmQuickSort

Purpose Sort records in a database.

Declared In DataMgr.h

Prototype Err DmQuickSort (DmOpenRef dbP, DmComparF *compar,
Int16 other)

Parameters -> dbP Database access pointer.

-> compar Comparison function. See DmComparF.

-> other Any value the application wants to pass to the
comparison function. This parameter is often
used to indicate a sort direction (ascending or
descending).

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrNotRecordDB

Some releases may display a fatal error message instead of
returning the error code.

Comments Deleted records are placed last in any order. All others are sorted
according to the passed comparison function.

After DmQuickSort returns, equal database records do not have a
consistent order. That is, if DmQuickSort is passed two equal
records, their resulting order is unpredictable. To prevent records
that contain the same data from being rearranged in an
unpredictable order, pass the record’s unique ID to the comparison
function (using the SortRecordInfoType structure).

DmQuickSort contains its own stack to limit uncontrolled
recursion. When the stack is full DmQuickSort instead performs an
insertion sort. An insertion sort is also performed when the number
of records is low, avoiding the noticeable overhead of a quick sort
with a small number of records. Finally, if the records seem mostly

Data and Resource Manager
Data Manager Functions

622 Palm OS Programmer’s API Reference

sorted an insertion sort is performed to move only those records
that need moving.

See Also DmFindSortPositionV10, DmInsertionSort

DmRecordInfo

Purpose Retrieve the record information as stored in the database header.

Declared In DataMgr.h

Prototype Err DmRecordInfo (DmOpenRef dbP, UInt16 index,
UInt16 *attrP, UInt32 *uniqueIDP,
LocalID *chunkIDP)

Parameters -> dbP DmOpenRef to open database.

-> index Index of the record.

<- attrP The record’s attributes. See “Record Attribute
Constants.” Pass NULL for this parameter if you
don’t want to retrieve this value.

<- uniqueIDP The record’s unique ID. Pass NULL for this
parameter if you don’t want to retrieve this
value.

<- chunkIDP The record’s local ID. Pass NULL for this
parameter if you don’t want to retrieve this
value.

Result Returns errNone if no error or dmErrIndexOutOfRange if the
specified record can’t be found. Some releases may display a fatal
error message instead of returning the error code.

See Also DmNumRecords, DmSetRecordInfo, DmQueryNextInCategory

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 623

DmReleaseRecord

Purpose Clear the busy bit for the given record and set the dirty bit if dirty
is true.

Declared In DataMgr.h

Prototype Err DmReleaseRecord (DmOpenRef dbP, UInt16 index,
Boolean dirty)

Parameters -> dbP DmOpenRef to open database.

-> index The record to unlock.

-> dirty If true, set the dirty bit.

Result Returns errNone if no error, or dmErrIndexOutOfRange if the
specified index is out of range. Some releases may display a fatal
error message instead of returning the error code.

Comments Call this routine when you finish modifying or reading a record that
you’ve called DmGetRecord on or created using DmNewRecord.

See Also DmGetRecord

DmReleaseResource

Purpose Release a resource acquired with DmGetResource.

Declared In DataMgr.h

Prototype Err DmReleaseResource (MemHandle resourceH)

Parameters -> resourceH Handle to resource.

Result Returns errNone if no error.

Data and Resource Manager
Data Manager Functions

624 Palm OS Programmer’s API Reference

Comments Marks a resource as being no longer needed by the application.

See Also DmGet1Resource, DmGetResource

DmRemoveRecord

Purpose Remove a record from a database and dispose of its data chunk.

Declared In DataMgr.h

Prototype Err DmRemoveRecord (DmOpenRef dbP, UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Index of the record to remove.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrNotRecordDB

• memErrChunkLocked

• memErrInvalidParam

Some releases may display a fatal error message instead of
returning the error code.

Comments Disposes of a the record’s data chunk and removes the record’s
entry from the database header. DmRemoveRecord should only be
used for newly-created records that have just been deleted or
records that have never been sync’ed.

See Also DmDetachRecord, DmDeleteRecord, DmArchiveRecord,
DmNewRecord

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 625

DmRemoveResource

Purpose Delete a resource from a resource database.

Declared In DataMgr.h

Prototype Err DmRemoveResource (DmOpenRef dbP, UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Index of resource to delete.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrCorruptDatabase

• dmErrIndexOutOfRange

• dmErrReadOnly

• memErrChunkLocked

• memErrInvalidParam

• memErrNotEnoughSpace

May display a fatal error message if the database is not a resource
database.

Comments This routine disposes of the memory manager chunk that holds the
given resource and removes its entry from the database header.

See Also DmDetachResource, DmRemoveResource, DmAttachResource

Data and Resource Manager
Data Manager Functions

626 Palm OS Programmer’s API Reference

DmRemoveSecretRecords

Purpose Remove all secret records.

Declared In DataMgr.h

Prototype Err DmRemoveSecretRecords (DmOpenRef dbP)

Parameters -> dbP DmOpenRef to open database.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrNotRecordDB

Some releases may display a fatal error message instead of
returning the error code.

See Also DmRemoveRecord, DmRecordInfo, DmSetRecordInfo

DmResizeRecord

Purpose Resize a record by index.

Declared In DataMgr.h

Prototype MemHandle DmResizeRecord (DmOpenRef dbP,
UInt16 index, UInt32 newSize)

Parameters -> dbP DmOpenRef to open database.

-> index Which record to retrieve.

-> newSize New size of record.

Result Handle to resized record. Returns NULL if there is not enough space
to resize the record, and DmGetLastErr returns an error code
indicating the reason for failure. Some releases may display a fatal
error message instead of returning the error code.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 627

Comments This routine reallocates the record in another heap of the same
memory card if the current heap is not big enough. If this happens,
the handle changes, so be sure to use the returned handle to access
the resized record.

DmResizeResource

Purpose Resize a resource and return the new handle.

Declared In DataMgr.h

Prototype MemHandle DmResizeResource (MemHandle resourceH,
UInt32 newSize)

Parameters -> resourceH Handle to resource.

-> newSize Desired new size of resource.

Result Returns a handle to newly sized resource. Returns NULL if there is
not enough space to resize the resource, and DmGetLastErr
returns an error code indicating the reason for failure. Some releases
may display a fatal error message instead of returning the error
code.

Comments Resizes the resource and returns a new handle. If necessary in order
to grow the resource, this routine will reallocate it in another heap
on the same memory card that it is currently in.

The handle may change if the resource had to be reallocated in a
different data heap because there was not enough space in its
present data heap.

Data and Resource Manager
Data Manager Functions

628 Palm OS Programmer’s API Reference

DmResourceInfo

Purpose Retrieve information on a given resource.

Declared In DataMgr.h

Prototype Err DmResourceInfo (DmOpenRef dbP, UInt16 index,
DmResType *resTypeP, DmResID *resIDP,
LocalID *chunkLocalIDP)

Parameters -> dbP DmOpenRef to open database.

-> index Index of resource to get info on.

<- resTypeP The resource type. Pass NULL if you don’t want
to retrieve this information.

<- resIDP The resource ID. Pass NULL if you don’t want to
retrieve this information.

<- chunkLocalIDP
The memory manager local ID of the resource
data. Pass NULL if you don’t want to retrieve
this information.

Result Returns errNone if no error or dmErrIndexOutOfRange if an
error occurred. May display a fatal error message if the database is
not a resource database.

Comments If dbP is a pointer to a base resource database, the information
returned is about the resource from that database alone; this
function ignores any associated overlay.

See Also DmGetResource, DmGet1Resource, DmSetResourceInfo,
DmFindResource, DmFindResourceType

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 629

DmSearchRecord

Purpose Search all open record databases for a record with the handle
passed.

Declared In DataMgr.h

Prototype UInt16 DmSearchRecord (MemHandle recH,
DmOpenRef *dbPP)

Parameters -> recH Record handle.

<- dbPP The database that contains the record recH.

Result Returns the index of the record and database access pointer; if not
found, returns -1 and *dbPP is 0.

See Also DmGetRecord, DmFindRecordByID, DmRecordInfo

DmSearchResource

Purpose Search all open resource databases for a resource by type and ID, or
by pointer if it is non-NULL.

Declared In DataMgr.h

Prototype UInt16 DmSearchResource (DmResType resType,
DmResID resID, MemHandle resH, DmOpenRef *dbPP)

Parameters -> resType Type of resource to search for.

-> resID ID of resource to search for.

-> resH Pointer to locked resource, or NULL.

<- dbPP The resource database that contains the
specified resource.

Result Returns the index of the resource, stores DmOpenRef in dbPP.

Data and Resource Manager
Data Manager Functions

630 Palm OS Programmer’s API Reference

Comments This routine can be used to find a resource in all open resource
databases by type and ID or by pointer. If resH is NULL, the
resource is searched for by type and ID. If resH is not NULL,
resType and resID is ignored and the index of the resource
handle is returned. On return, *dbPP contains the access pointer of
the resource database that the resource was eventually found in.
Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceIndex.

If any of the open databases are overlaid, this function finds and
returns the localized version of the resource when searching by type
and creator. In this case, the dbPP return value is a pointer to the
overlay database, not the base resource database.

See Also DmGetResource, DmFindResourceType, DmResourceInfo,
DmFindResource

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 631

DmSeekRecordInCategory

Purpose Return the index of the record nearest the offset from the passed
record index whose category matches the passed category. (The
offset parameter indicates the number of records to move
forward or backward.)

Declared In DataMgr.h

Prototype Err DmSeekRecordInCategory (DmOpenRef dbP,
UInt16 *indexP, UInt16 offset, Int16 direction,
UInt16 category)

Parameters -> dbP DmOpenRef to open database.

<-> index The index to start the search at. Upon return,
contains the index of the record at offset
from the index that you passed in.

-> offset Offset of the passed record index. This must be
a positive number; use dmSeekBackward for
the direction parameter to search
backwards.

-> direction Must be either dmSeekForward or
dmSeekBackward.

-> category Category index.

Result Returns errNone if no error; returns dmErrIndexOutOfRange or
dmErrSeekFailed if an error occurred.

Comments DmSeekRecordInCategory searches for a record in the specified
category. The search begins with the record at index. When it finds
a record in the specified category, it decrements the offset
parameter and continues searching until a match is found and
offset is 0.

Because of this, if you use DmSeekRecordInCategory to find the
nearest matching record in a particular category, you must pass
different offset parameters if the starting record is in the category
than if it isn’t. If the record at index is in the category, then you

Data and Resource Manager
Data Manager Functions

632 Palm OS Programmer’s API Reference

must pass an offset of 1 to find the next record in the category
because the comparison is performed before the index value
changes. If the record at index isn’t in the category, you must pass
an offset of 0 to find the next record in the category. In this case,
an offset of 1 skips the first matching record.

Records that have the deleted bit set are ignored, and if the user
has specified that private records should be hidden or masked,
private records are ignored as well.

See Also DmNumRecordsInCategory, DmQueryNextInCategory,
DmPositionInCategory, DmMoveCategory

DmSet

Purpose Write a specified value into a section of a record. This function also
checks the validity of the pointer for the record and makes sure the
writing of the record information doesn’t exceed the bounds of the
record.

Declared In DataMgr.h

Prototype Err DmSet (void *recordP, UInt32 offset,
UInt32 bytes, UInt8 value)

Parameters -> recordP Pointer to locked data record (chunk pointer).

-> offset Offset within record to start writing.

-> bytes Number of bytes to write.

-> value Byte value to write.

Result Returns errNone if no error. May display a fatal error message if
the record pointer is invalid or the function overwrites the record.

Comments Must be used to write to data manager records because the data
storage area is write-protected.

See Also DmWrite

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 633

DmSetDatabaseInfo

Purpose Set information about a database.

Declared In DataMgr.h

Prototype Err DmSetDatabaseInfo (UInt16 cardNo,
LocalID dbID, const Char *nameP,
UInt16 *attributesP, UInt16 *versionP,
UInt32 *crDateP, UInt32 *modDateP,
UInt32 *bckUpDateP, UInt32 *modNumP,
LocalID *appInfoIDP, LocalID *sortInfoIDP,
UInt32 *typeP, UInt32 *creatorP)

Parameters -> cardNo Card number the database resides on.

-> dbID Database ID of the database.

-> nameP Pointer to the new name of the database, or
NULL. A database name can be up to 32 ASCII
bytes long, including the null terminator (as
specified by dmDBNameLength). Database
names must use only 7-bit ASCII characters
(0x20 through 0x7E).

-> attributesP Pointer to new attributes variable, or NULL. See
“Database Attribute Constants” for a list of
possible values.

-> versionP Pointer to new version, or NULL.

-> crDateP Pointer to new creation date variable, or NULL.
Specify the value as a number of seconds since
Jan. 1, 1904.

-> modDateP Pointer to new modification date variable, or
NULL. Specify the value as a number of seconds
since Jan. 1, 1904.

-> bckUpDateP Pointer to new backup date variable, or NULL.
Specify the value as a number of seconds since
Jan. 1, 1904.

Data and Resource Manager
Data Manager Functions

634 Palm OS Programmer’s API Reference

-> modNumP Pointer to new modification number variable,
or NULL.

-> appInfoIDP Pointer to new appInfoID variable, or NULL.

-> sortInfoIDP Pointer to new sortInfoID variable, or NULL.

-> typeP Pointer to new type variable, or NULL.

-> creatorP Pointer to new creator variable, or NULL.

Result Returns errNone if no error or one of the following if an error
occurred:

• dmErrInvalidDatabaseName

• dmErrAlreadyExists

• dmErrInvalidParam

Comments When this call changes appInfoID or sortInfoID, the old chunk
ID (if any) is marked as an orphaned chunk1 and the new chunk ID
is unorphaned. Consequently, you shouldn’t replace an existing
appInfoID or sortInfoID if that chunk has already been
attached to another database.

Call this routine to set any or all information about a database
except for the card number and database ID. This routine sets the
new value for any non-NULL parameter.

See Also DmDatabaseInfo, DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator,
TimDateTimeToSeconds

1. An “orphaned chunk” is one that is allocated in the storage heap, but to which
nothing refers. If the orphaned chunk is not put into a database as a record, an
appInfo block, or the like, and if the application doesn’t keep track of it—in a glo-
bal variable, perhaps—it could get lost. If the application doesn’t get around to
freeing the chunk before it quits or crashes, or before the device is reset, that stor-
age will be forever unusable: the user can’t delete it since the user only deletes
databases.

During a soft reset, the OS walks through the storage heap and frees any or-
phaned chunks that it finds. Since most users reset only rarely, however, you
shouldn’t rely on this happening.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 635

DmSetRecordInfo

Purpose Set record information stored in the database header.

Declared In DataMgr.h

Prototype Err DmSetRecordInfo (DmOpenRef dbP, UInt16 index,
UInt16 *attrP, UInt32 *uniqueIDP)

Parameters -> dbP DmOpenRef to open database.

-> index Index of record.

-> attrP Pointer to new attribute variable, or NULL. See
“Record Attribute Constants” for a list of
possible values.

-> uniqueIDP Pointer to new unique ID variable, or NULL.

Result Returns errNone if no error, or one of the following if an error
occurred:

• dmErrReadOnly

• dmErrNotRecordDB

• dmErrIndexOutOfRange

Some releases may display a fatal error message instead of
returning the error code.

Comments Sets information about a record. This routine cannot be used to set
the dmRecAttrBusy bit; instead, use DmGetRecord to set the bit
and DmReleaseRecord to clear it.

Normally, the unique ID for a record is automatically created by the
data manager when a record is created using DmNewRecord, so an
application would not typically change the unique ID.

See Also DmNumRecords, DmRecordInfo

Data and Resource Manager
Data Manager Functions

636 Palm OS Programmer’s API Reference

DmSetResourceInfo

Purpose Set information on a given resource.

Declared In DataMgr.h

Prototype Err DmSetResourceInfo (DmOpenRef dbP,
UInt16 index, DmResType *resTypeP,
DmResID *resIDP)

Parameters -> dbP DmOpenRef to open database.

-> index Index of resource to set info for.

-> resTypeP Pointer to new resType (resource type), or
NULL.

-> resIDP Pointer to new resource ID, or NULL.

Result Returns errNone if no error, or one of the following if an error
occurred:

• dmErrIndexOutOfRange

• dmErrReadOnly

May display a fatal error message if the database is not a resource
database.

Comments Use this routine to set all or a portion of the information on a
particular resource. Any or all of the new info pointers can be NULL.
If not NULL, the type and ID of the resource are changed to
*resTypeP and *resIDP.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 637

DmStrCopy

Purpose Copies a string to a record within a database that is open for
writing.

Declared In DataMgr.h

Prototype Err DmStrCopy (void *recordP, UInt32 offset,
const Char *srcP)
l

Data and Resource Manager
Data Manager Functions

638 Palm OS Programmer’s API Reference

Parameters <-> recordP Pointer to data record (chunk pointer).

-> offset Offset within record to start writing.

-> srcP Pointer to null-terminated string.

Result Returns errNone if no error. May display a fatal error message if
the record pointer is invalid or the function overwrites the record.

Comments This is one of the routines that must be used to write to Data
Manager records; because the data storage area is write-protected,
you cannot write to it directly. This routine checks the validity of the
chunk pointer for the record to insure that writing the record will
not exceed the chunk bounds. DmStrCopy is a convenience method
that determines the size of the supplied string and then simply calls
DmWrite.

See Also DmSet

DmWrite

Purpose Copies a specified number of bytes to a record within a database
that is open for writing.

Declared In DataMgr.h

Prototype Err DmWrite (void *recordP, UInt32 offset,
const void *srcP, UInt32 bytes)

Parameters <-> recordP Pointer to locked data record (chunk pointer).

-> offset Offset within record to start writing.

-> srcP Pointer to data to copy into record.

-> bytes Number of bytes to write.

Result Returns errNone if no error. May display a fatal error message if
the record pointer is invalid or the function overwrites the record.

Data and Resource Manager
Data Manager Functions

Palm OS Programmer’s API Reference 639

Comments This is one of the routines that must be used to write to Data
Manager records; because the data storage area is write-protected,
you cannot write to it directly. This routine checks the validity of the
chunk pointer for the record to insure that writing the record will
not exceed the chunk bounds.

See Also DmStrCopy, DmSet

DmWriteCheck

Purpose Check the parameters of a write operation to a data storage chunk
before actually performing the write.

Declared In DataMgr.h

Prototype Err DmWriteCheck (void *recordP, UInt32 offset,
UInt32 bytes)

Parameters -> recordP Locked pointer to recordH.

-> offset Offset into record to start writing.

-> bytes Number of bytes to write.

Result Returns errNone if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

Data and Resource Manager
Application-Defined Functions

640 Palm OS Programmer’s API Reference

Application-Defined Functions

DmComparF

Purpose Compares two records in a database.

Declared In DataMgr.h

Prototype typedef Int16 DmComparF (void *rec1, void *rec2,
Int16 other, SortRecordInfoPtr rec1SortInfo,
SortRecordInfoPtr rec2SortInfo,
MemHandle appInfoH)

Parameters -> rec1, rec2 Pointers to the two records to compare.

-> other Any other custom information you want
passed to the comparison function. This
parameter is often used to indicate a sort
direction (ascending or descending).

-> rec1SortInfo, rec2SortInfo
Pointers to SortRecordInfoType structures
that specify unique sorting information for the
two records.

-> appInfoH A handle to the database’s application info
block.

Result Returns:

• 0 if rec1 = rec2.

• < 0 if rec1 < rec2.

• > 0 if rec1 > rec2.

Comments This function is used to sort the records in a database. It is
specifically called by DmFindSortPosition, DmInsertionSort,
and DmQuickSort.

Compatibility The DmComparF prototype changed in Palm OS version 2.0.
Previously, the prototype only defined the first three parameters.

Data and Resource Manager
Application-Defined Functions

Palm OS Programmer’s API Reference 641

As a rule, the change in the number of arguments from three to six
doesn’t cause problems when a 1.0 application is run on a 2.0 device
because the system only pulls the arguments from the stack that are
there.

Keep in mind, however, that some optimized applications built with
tools other than Metrowerks CodeWarrior for Palm OS may have
problems as a result of the change in arguments when running on a
2.0 or later device.

Data and Resource Manager
Application-Defined Functions

642 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 643

28
Error Manager
This chapter provides reference material for the error manager. The
error manager API is declared in the header files ErrorMgr.h and
ErrorBase.h. This chapter covers:

• ERROR_CHECK_LEVEL Define

• Error Manager Data Structures

• Error Manager Functions

For more information on the error manager, see the chapter
“Debugging Strategies” in the Palm OS Programmer’s Companion,
vol. I.

ERROR_CHECK_LEVEL Define
The error manager uses the compiler define ERROR_CHECK_LEVEL
to control the level of error messages displayed. You can set the
value of the compiler define to control which level of error checking
and display is compiled into the application. Three levels of error
checking are supported: none, partial, and full.

If you set ERR_CHECK_LEVEL to... The compiler...

ERROR_CHECK_NONE (0) Doesn’t compile in any error calls.

ERROR_CHECK_PARTIAL (1) Compiles in only ErrDisplay and
ErrFatalDisplayIf calls.

ERROR_CHECK_FULL (2) Compiles in all three calls.

Error Manager
Error Manager Data Structures

644 Palm OS Programmer’s API Reference

Error Manager Data Structures

ErrExceptionType
An ErrExceptionType structure is created for each ErrTry and
ErrCatch block. At any point in the program, there is a linked list
of these structures. An ErrExceptionType structure stores
information about the state of the machine (register values) at the
start of the ErrTry block.

typedef struct ErrExceptionType {
 struct ErrExceptionType *nextP;
 ErrJumpBuf state;
 Int32 err;
} ErrExceptionType;
typedef ErrExceptionType *ErrExceptionPtr;

Field Descriptions

Error Manager Functions

ErrAlert

Purpose Macro that displays an alert dialog for runtime errors.

Declared In ErrorBase.h

Prototype ErrAlert (err)

Parameters -> err An error code (as type Err).

Result Returns 0, which indicates that the OK button has been clicked to
dismiss the dialog.

nextP Next ErrExceptionType structure in the linked list.

state Storage for setjmp/longjmp.

err Error code.

Error Manager
Error Manager Functions

Palm OS Programmer’s API Reference 645

Comments This macro is intended for use by applications that are likely to
receive runtime errors when the application itself is not at fault. For
example, a networking application might use it to display an alert if
the remote server cannot be found.

The error message displayed on the dialog is stored in a 'tSTL'
resource. A 'tSTL' resource contains a list of strings that can be
looked up by index. The err parameter is used as the index into
this list.

To use application-defined error codes in ErrAlert, make sure that
all of your error codes are greater than or equal to appErrorClass.
This way, the error manager looks up the code in the application’s
'tSTL' resource number 0. All other error codes are taken from 'tSTL'
resource stored in the system.

Compatibility Implemented only if 3.2 New Feature Set is present.

ErrCatch

Purpose Macro that marks the end of an ErrTry block and the beginning of
an ErrCatch block.

Declared In ErrorBase.h

Prototype ErrCatch (theErr)

Parameters -> theErr An exception code identifying the reason for
the failure. This is the value supplied to the
ErrThrow call that caused the jump to this
ErrCatch block.

Result Returns nothing.

Comments ErrCatch can only be used in conjunction with ErrTry and
ErrEndCatch. See the comments under ErrTry for usage
instructions.

ErrTry, ErrCatch and ErrThrow are based on setjmp and
longjmp. At the beginning of an ErrTry block, setjmp saves the

Error Manager
Error Manager Functions

646 Palm OS Programmer’s API Reference

machine registers. ErrThrow calls longjmp, which restores the
registers and jumps to the beginning of the ErrCatch block.
Therefore, any changes in the ErrTry block to variables stored in
registers aren’t retained when entering the ErrCatch block.

The solution is to declare variables that you want to use in both the
ErrTry and ErrCatch blocks as “volatile”. For example:

volatile long x = 1; // Declare volatile local variable
ErrTry {
 x = 100; // Set local variable in Try
 ErrThrow(-1);
}
ErrCatch(inErr) {
 if (x > 1) { // Use local variable in Catch
 SysBeep(1);
 }
} ErrEndCatch

If you have many local variables after the ErrCatch you may want
to put the ErrTry and ErrCatch in a separate enclosing function.

ErrDisplay

Purpose Macro that displays an error alert if error checking is set to partial or
full.

Declared In ErrorMgr.h

Prototype ErrDisplay (msg)

Parameters -> msg Error message text as a string.

Result No return value.

Comments Call this macro to display an error message, source code filename,
and line number. This macro is compiled into the code only if the
compiler define ERROR_CHECK_LEVEL is set to 1 or 2
(ERROR_CHECK_PARTIAL or ERROR_CHECK_FULL).

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf

Error Manager
Error Manager Functions

Palm OS Programmer’s API Reference 647

ErrDisplayFileLineMsg

Purpose Display a dialog with an error message. Do not allow the user to exit
the dialog or continue.

Declared In ErrorBase.h

Prototype void ErrDisplayFileLineMsg
(const Char *const filename, UInt16 lineNo,
const Char *const msg)

Parameters -> filename Source code filename.

-> lineno Line number in the source code file.

-> msg Message to display.

Result Never returns.

Comment Called by ErrFatalDisplayIf and ErrNonFatalDisplayIf.
This function is useful when the application is already on the device
and being tested by users.

On Japanese systems, the system displays a generic message
indicating that an error has occurred instead of displaying the
English message.

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ErrDisplay

ErrEndCatch

Purpose Macro that marks the end of an ErrCatch block.

Declared In ErrorBase.h

Prototype ErrEndCatch

Parameters None.

Result Returns nothing.

Error Manager
Error Manager Functions

648 Palm OS Programmer’s API Reference

Comments ErrEndCatch can only be used in conjunction with ErrTry and
ErrCatch. See the comments under ErrTry for usage instructions.

ErrExceptionList

Purpose Return the address of the pointer to the first ErrExceptionType
structure in the linked list of exception structures.

Declared In ErrorBase.h

Prototype MemPtr *ErrExceptionList (void)

Parameters None.

Result Returns the address of the pointer to the first ErrExceptionType
structure linked into the exception list.

Comments This function is used by the ErrTry and ErrCatch macros as well as
the ErrThrow function in order to find the exception list.

When called from an application, this routine returns the
application’s exception list.

ErrFatalDisplayIf

Purpose Macro that displays an error alert dialog if condition is true and
error checking is set to partial or full.

Declared In ErrorMgr.h

Prototype ErrFatalDisplayIf (condition, msg)

Parameters -> condition A boolean value. If true, display the error.

-> msg Error message text as a string.

Result No return value.

Error Manager
Error Manager Functions

Palm OS Programmer’s API Reference 649

Comments Call this macro to display a fatal error message, source code
filename, and line number. The alert is displayed only if
condition is true. The dialog is cleared only when the user resets
the system by responding to the dialog.

This macro is compiled into the code if the compiler define
ERROR_CHECK_LEVEL is set to 1 or 2 (ERROR_CHECK_PARTIAL or
ERROR_CHECK_FULL).

See Also ErrNonFatalDisplayIf, ErrDisplay,

ErrNonFatalDisplayIf

Purpose Macro that displays an error alert dialog if condition is true and
error checking is set to full.

Declared In ErrorMgr.h

Prototype ErrNonFatalDisplayIf (condition, msg)

Parameters -> condition A boolean value. If true, display the error.

-> msg Error message text as a string.

Result No return value.

Comments Call this macro to display a nonfatal error message, source code
filename, and line number. The alert is displayed only if
condition is true. The alert dialog is cleared when the user
selects to continue (or resets the system).

This macro is compiled into the code only if the compiler define
ERROR_CHECK_LEVEL is set to 2 (ERROR_CHECK_FULL).

See Also ErrFatalDisplayIf, ErrDisplay

Error Manager
Error Manager Functions

650 Palm OS Programmer’s API Reference

ErrThrow

Purpose Cause a jump to the nearest Catch block.

Declared In ErrorBase.h

Prototype void ErrThrow (Int32 err)

Parameters -> err Error code.

Result Never returns.

Comments Use the macros ErrTry, ErrCatch, and ErrEndCatch in conjunction
with this function.

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ErrDisplay

ErrTry

Purpose Macro that marks the beginning of a try/catch block.

Declared In ErrorBase.h

Prototype ErrTry

Parameters None.

Result Returns nothing.

Comments An exception raised by a call to ErrThrow—even from within a
nested subroutine—causes program execution to switch to the
beginning of the ErrCatch block. If the end of the block enclosed
by ErrTry is encountered without a call to ErrThrow, execution
jumps to the line of code following the ErrEndCatch macro. See
“The Try-and-Catch Mechanism” on page 377 of the Palm OS
Programmer’s Companion, vol. I for a more thorough description of
how this mechanism works.

Error Manager
Error Manager Functions

Palm OS Programmer’s API Reference 651

Example You must structure your code exactly as shown here. You can’t use
ErrTry without ErrCatch and ErrEndCatch, or vice versa.

ErrTry {
 // Do something which may fail. Call ErrThrow to signal
 // failure and force a jump to the following ErrCatch
 // block.
}
ErrCatch(inErr) {
 // Recover or cleanup after a failure in the above ErrTry
 // block. "inErr" is an exception code identifying the
 // reason for the failure.

 // Call ErrThrow if you want to jump out to the next
 // ErrCatch block.

 // The code in this block doen’t execute if the above
 // ErrTry block completes without a call to ErrThrow.
} ErrEndCatch

Error Manager
Error Manager Functions

652 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 653

29
Expansion Manager
This chapter provides the following information about the
Expansion Manager:

• Expansion Manager Data Structures

• Expansion Manager Constants

• Expansion Manager Functions

The header file ExpansionMgr.h declares the Expansion Manager
API. For more information on the Expansion Manager, see Chapter
7, “Expansion,” in Palm OS Programmer’s Companion, vol. I.

Note that the Expansion Manager is an optional system extension;
the functions described in this chapter are implemented only if the
Expansion Manager Feature Set is present.

Expansion Manager Data Structures

ExpCardInfoType
The ExpCardInfoType declaration defines a structure that is
passed to ExpCardInfo. This structure is used to determine the
characteristics of the card loaded in the slot. It is initialized by the
underlying slot driver with the following information.

typedef struct ExpCardInfoTag {
 UInt32 capabilityFlags;
 Char
 manufacturerStr[expCardInfoStringMaxLen+1];
 Char productStr[expCardInfoStringMaxLen+1];
 Char
 deviceClassStr[expCardInfoStringMaxLen+1];
 Char
 deviceUniqueIDStr[expCardInfoStringMaxLen+1];
} ExpCardInfoType, *ExpCardInfoPtr;

Expansion Manager
Expansion Manager Constants

654 Palm OS Programmer’s API Reference

Field Descriptions

Expansion Manager Constants

Error Codes
The Expansion Manager defines the following error codes:

capabilityFlags Describes the capabilities of the card.
The following flags are currently
supported:

• expCapabilityHasStorage
indicates that the card supports
reading and (possibly) writing.

• expCapabilityReadOnly
indicates that the card is read
only.

• expCapabilitySerial
indicates that the card supports a
simple serial interface.

manufacturerStr Names the manufacturer of the card. For
example “Palm” or “Motorola”.

productStr Name of the product. For example
“SafeBackup 32MB”.

deviceClassStr Describes the type of card, for example,
“Backup” or “Ethernet”.

deviceUniqueIDStr Unique identifier for the product. A
serial number for example. This value is
set to the empty string if no identifier
exists.

Constant Description

expErrUnsupportedOperation The operation is unsupported or undefined.

expErrNotEnoughPower The required power is not available.

expErrCardNotPresent There is no card present in the given slot.

Expansion Manager
Expansion Manager Constants

Palm OS Programmer’s API Reference 655

Defined Media Types
The following media types are defined by the Expansion Manager.
These media types are used with the function VFSVolumeInfo in
the VolumeInfoType.mediaType field. The media type is also
passed as a parameter to the VFSRegisterDefaultDirectory
and VFSUnregisterDefaultDirectory functions.

expErrInvalidSlotRefNum The slot reference number is not valid.

expErrSlotDeallocated The slot reference number is within the valid
range, but the slot has been deallocated.

expErrCardNoSectorReadWrite The card does not support the slot driver block
read/write API.

expErrCardReadOnly The card supports the slot driver block read/
write API but the card is read only.

expErrCardBadSector The card supports the slot driver block read/
write API but the sector is bad.

expErrCardProtectedSector The card supports the slot driver block read/
write API but the sector is protected.

expErrNotOpen The slot driver library has not been opened.

expErrStillOpen The slot driver library is still open; it may have
been opened more than once.

expErrUnimplemented The call is unimplemented.

expErrEnumerationEmpty There are no values remaining to enumerate.

expErrIncompatibleAPIVer The API version of the underlying slot driver is
not supported by this version of Expansion
Manager.

Constant Description

Expansion Manager
Expansion Manager Functions

656 Palm OS Programmer’s API Reference

Expansion Manager Functions

ExpCardGetSerialPort

Purpose Get a card’s serial port creator ID for use in serial access.

Declared In ExpansionMgr.h

Prototype Err ExpCardGetSerialPort(UInt16 slotRefNum,
UInt32 *portP)

Parameters -> slotRefNum Slot number of slot to check.

Constant Value Description

expMediaType_Any 'wild' Matches all media
types when
looking up a
default directory

expMediaType_MemoryStick 'mstk' Memory stick

expMediaType_CompactFlash 'cfsh' Compact Flash

expMediaType_SecureDigital 'sdig' Secure Digital

expMediaType_MultiMediaCard 'mmcd' MultiMedia Card

expMediaType_SmartMedia 'smed' SmartMedia

expMediaType_RAMDisk 'ramd' A RAM disk
based media

expMediaType_PoserHost 'pose' Host file system
emulated by the
Palm OS®
Emulator

expMediaType_MacSim 'PSim' Host file system
emulated by the
Mac Simulator

Expansion Manager
Expansion Manager Functions

Palm OS Programmer’s API Reference 657

<- portP Pointer to UInt32 into which the serial port
creator ID is stored.

Result Returns the following result codes:

errNone No error

expErrInvalidSlotRefNum
The specified slot number is invalid.

expErrSlotDeallocated
The specified slot number is within the valid
range but has been deallocated.

Compatibility Implemented only if the Expansion Manager Feature Set is present.

See Also ExpCardInfo

ExpCardInfo

Purpose Obtains information about a card in a given slot.

Declared In ExpansionMgr.h

Prototype Err ExpCardInfo(UInt16 slotRefNum,
ExpCardInfoType *infoP)

Parameters -> slotRefNum Slot number.

<- infoP Pointer to ExpCardInfoType structure.

Result Returns one of the following result codes:

errNone No error

expErrCardNotPresent
There is no card present in the specified slot.

expErrInvalidSlotRefNum
The slot number is invalid.

Expansion Manager
Expansion Manager Functions

658 Palm OS Programmer’s API Reference

expErrSlotDeallocated
The slot number is within the valid range but
has been deallocated.

Comments This function returns information about a card, including whether
the card supports secondary storage or is strictly read-only, by
filling in the ExpCardInfoType structure’s fields.

Compatibility Implemented only if the Expansion Manager Feature Set is present.

See Also ExpCardGetSerialPort, ExpCardPresent,
ExpSlotEnumerate

ExpCardPresent

Purpose Determines if a card is present in the given slot.

Declared In ExpansionMgr.h

Prototype Err ExpCardPresent(UInt16 slotRefNum)

Parameters -> slotRefNum Slot number.

Result Returns the following result codes:

errNone A card is present in the specified slot.

expErrCardNotPresent
There is no card present in the specified slot.

expErrInvalidSlotRefNum
The specified slot number is not valid.

expErrSlotDeallocated
The specified slot number is within the valid
range but has been deallocated.

Expansion Manager
Expansion Manager Functions

Palm OS Programmer’s API Reference 659

Comments The Expansion Manager passes the call through to the appropriate
slot driver.

Compatibility Implemented only if the Expansion Manager Feature Set is present.

See Also ExpCardInfo, ExpSlotEnumerate

ExpSlotDriverInstall

Purpose Installs and initializes a slot driver shared library into the system
table.

Declared In ExpansionMgr.h

Prototype Err ExpSlotDriverInstall (UInt32 dbCreator,
UInt16 *slotLibRefNumP)

Parameters -> dbCreator Database creator code of the slot driver library
to be installed.

-> slotLibRefNumP
Pointer to variable for returning the library
reference number (on failure,
sysInvalidRefNum is returned in this
variable).

Result Returns errNone if the slot driver is installed correctly. Because this
function uses SysLibInstall to install the slot driver shared
library, ExpSlotDriverInstall may return any of the error
codes that SysLibInstall returns, including
sysErrLibNotFound, sysErrNoFreeRAM, and
sysErrNoFreeLibSlots. It may also return any error code
returned by SlotOpen, the implementation of which is specific to a
given device manufacturer.

Comments This function is not typically called by applications but can be used
to load additional slot drivers after the device has booted. It is called
internally by the Expansion Manager to install a slot driver shared
library into the library table and initialize it for use. Once installed,

Expansion Manager
Expansion Manager Functions

660 Palm OS Programmer’s API Reference

the slotLibRefNum can be used by other functions to refer to the
library.

Compatibility Implemented only if the Expansion Manager Feature Set is present.

See Also ExpSlotDriverRemove, ExpSlotLibFind

ExpSlotDriverRemove

Purpose Closes and remove a slot driver shared library from the system
table.

Declared In ExpansionMgr.h

Prototype Err ExpSlotDriverRemove (UInt16 slotLibRefNum)

Parameters -> slotLibRefNum
Slot driver shared library reference number.

Result Returns errNone.

Comments This function is not typically called by applications but can be used
to unload slot drivers associated with external slots. It is called
internally by the Expansion Manager to remove the shared library
from the system table, and, if appropriate, release the slot allocated
to the given slotLibRefNum. Prior to removing the slot driver, it
unmounts any volumes associated with the slot.

Compatibility Implemented only if the Expansion Manager Feature Set is present.

See Also ExpSlotDriverInstall, ExpSlotLibFind, SysLibRemove

Expansion Manager
Expansion Manager Functions

Palm OS Programmer’s API Reference 661

ExpSlotEnumerate

Purpose Iterates through valid slot numbers.

Declared In ExpansionMgr.h

Prototype Err ExpSlotEnumerate(UInt16 *slotRefNumP,
UInt32 *slotIteratorP)

Parameters <- slotRefNumP Reference number of the currently-enumerated
slot.

-> slotIteratorP
Pointer to the index of the last entry
enumerated. For the first iteration, initialize
this parameter to the constant
expIteratorStart. Upon return this
references the next entry in the directory. If this
is the last entry, this parameter is set to
expIteratorStop.

Result Returns one of the following result codes:

errNone The slot reference number indicated by
slotRefNumP is valid.

expErrEnumerationEmpty
There are no slots left to enumerate.
slotRefNumP is set to the slot number of the
currently enumerated slot or
invalidSlotRefNum if there are no slots.

Comments This function iterates through the device’s slots. The first time this
function is called, set *slotIteratorP to expIteratorStart to
find the initial slot. Once set this value is changed with each
subsequent call to this function until it reaches the maximum
number of slots, at which point ExpSlotEnumerate sets
*slotIteratorP to expIteratorStop.

Example The following is an example of how ExpSlotEnumerate should
be used:

Expansion Manager
Expansion Manager Functions

662 Palm OS Programmer’s API Reference

UInt16 slotRefNum;
UInt32 slotIterator = expIteratorStart;
while (slotIterator != expIteratorStop) {
 if ((err = ExpSlotEnumerate(&slotRefNum,
 &slotIterator)) == errNone) {
 // do something with the slotRefNum
 else {
 // handle error (by breaking out of the
 // loop, most likely
 }
}

Compatibility Implemented only if the Expansion Manager Feature Set is present.

See Also ExpCardInfo, ExpCardPresent, ExpSlotDriverRemove

ExpSlotLibFind

Purpose Retrieves the slot driver library reference number for the driver that
controls the specified slot.

Declared In ExpansionMgr.h

Prototype Err ExpSlotLibFind(UInt16 slotRefNum,
UInt16 *slotLibRefNum)

Parameters -> slotRefNum Slot number.

<- slotLibRefNum
Pointer to the reference number for the slot
driver library allocated to the given slot.

Result Returns the following result codes:

errNone No error.

expErrInvalidSlotRefNum
The slot number is invalid.

Expansion Manager
Expansion Manager Functions

Palm OS Programmer’s API Reference 663

expErrSlotDeallocated
The slot number is within the valid range but
has been deallocated.

Comments This function returns the reference number to the slot driver library
loaded for the given slotRefNum. This function is used when
making calls directly to the slot driver library.

Compatibility Implemented only if the Expansion Manager Feature Set is present.

See Also ExpSlotDriverInstall, ExpSlotDriverRemove

Expansion Manager
Expansion Manager Functions

664 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 665

30
Feature Manager
This chapter provides reference material for the feature manager.
The feature manager API is declared in the header file
FeatureMgr.h.

For more information on the feature manager, see the section
“Features” in the Palm OS Programmer’s Companion, vol. I.

To learn how to use the predefined Palm OS® features to test for the
existence of certain OS features, see the “Compatibility Guide”
appendix.

Feature Manager Functions

FtrGet

Purpose Get a feature.

Declared In FeatureMgr.h

Prototype Err FtrGet (UInt32 creator, UInt16 featureNum,
UInt32 *valueP)

Parameters -> creator Creator ID, which must be registered with
PalmSource, Inc. This is usually the same as the
creator ID for the application that owns this
feature.

-> featureNum Feature number of the feature.

<- valueP Value of the feature is returned here.

Result Returns 0 if no error, or ftrErrNoSuchFeature if the specified
feature number doesn’t exist for the specified creator.

Feature Manager
Feature Manager Functions

666 Palm OS Programmer’s API Reference

Comments The value of the feature is application-dependent.

See Also FtrSet

FtrGetByIndex

Purpose Get a feature by index.

Declared In FeatureMgr.h

Prototype Err FtrGetByIndex (UInt16 index, Boolean romTable,
UInt32 *creatorP, UInt16 *numP, UInt32 *valueP)

Parameters -> index Index of feature.

-> romTable If true, index into ROM table; otherwise, index
into RAM table.

<- creatorP Feature creator is returned here.

<- numP Feature number is returned here.

<- valueP Feature value is returned here.

Result Returns 0 if no error, or ftrErrNoSuchFeature if the index is out
of range.

Comments This function is intended for system use only. It is used by shell
commands. Most applications don’t need it.

Until the caller gets back ftrErrNoSuchFeature, it should pass
indices for each table (ROM, RAM) starting at 0 and incrementing.
Note that in Palm OS 3.1 and higher, the RAM feature table serves
the entire system. At system startup, the values in the ROM feature
table are copied into the RAM feature table.

Feature Manager
Feature Manager Functions

Palm OS Programmer’s API Reference 667

FtrPtrFree

Purpose Release memory previous allocated with FtrPtrNew.

Declared In FeatureMgr.h

Prototype Err FtrPtrFree (UInt32 creator, UInt16 featureNum)

Parameters -> creator The creator ID for the feature.

-> featureNum Feature number of the feature.

Result Returns 0 if no error, or ftrErrNoSuchFeature if an error occurs.

Comments This function unregisters the feature before freeing the memory
associated with it.

Compatibility Implemented only if 3.1 New Feature Set is present.

FtrPtrNew

Purpose Allocate feature memory.

Declared In FeatureMgr.h

Prototype Err FtrPtrNew (UInt32 creator, UInt16 featureNum,
UInt32 size, void **newPtrP)

Parameters -> creator Creator ID, which must be registered with
PalmSource, Inc. This is usually the same as the
creator ID for the application that owns this
feature.

-> featureNum Feature number of the feature.

-> size Size in bytes of the temporary memory to
allocate. The maximum chunk size is 64K.

Feature Manager
Feature Manager Functions

668 Palm OS Programmer’s API Reference

<- newPtrP Pointer to the memory chunk is returned here.

Result Returns 0 if no error, memErrInvalidParam if the value of size
is 0, or memErrNotEnoughSpace if there is not enough space to
allocate a chunk of the specified size.

Comments This function allocates a chunk of memory and stores a pointer to
that chunk in the feature table. The same pointer is returned in
newPtrP. The memory chunk remains allocated and locked until
the next system reset or until you free the chunk with FtrPtrFree.

FtrPtrNew is useful if you want quick, efficient access to data that
persists from one invocation of the application to the next.
FtrPtrNew stores values on the storage heap rather than the
dynamic heap, where free space is often extremely limited. The
disadvantage to using feature memory is that writing to storage
memory is slower than writing to dynamic memory.

NOTE: Starting with Palm OS 3.5 FtrPtrNew allows
allocating chunks larger than 64k. Do keep in mind standard
issues with allocating large chunks of memory: there might not be
enough contiguous space, and it can impact system performance.

You can obtain the pointer to the chunk using FtrGet. To write to
the chunk, you must use DmWrite because the chunk is in the
storage heap, not the dynamic heap.

For example, if you allocate a memory chunk in this way:

FtrPtrNew(appCreator,
 myFtrMemFtr, 32, &ftrMem);

You can later access that memory and write to it using the following:

void* data;
if (!FtrGet(appCreator,
 myFtrMemFtr, (UInt32*)&data))
 DmWrite(data, 0, &someVal, sizeof(someVal));

Compatibility Implemented only if 3.1 New Feature Set is present.

See Also FtrPtrResize

Feature Manager
Feature Manager Functions

Palm OS Programmer’s API Reference 669

FtrPtrResize

Purpose Resize feature memory.

Declared In FeatureMgr.h

Prototype Err FtrPtrResize (UInt32 creator,
UInt16 featureNum, UInt32 newSize,
void **newPtrP)

Parameters -> creator The creator ID for the feature.

-> featureNum Feature number of the feature.

-> newSize New size in bytes for the chunk.

<- newPtrP Pointer to the memory chunk is returned here.

Result Returns 0 if no error, or ftrErrNoSuchFeature if the specified
feature number doesn’t exist for the specified creator,
memErrInvalidParam if newSize is 0, or
memErrNotEnoughSpace if there’s not enough free space
available to allocate a chunk of that size.

Comments Use this function to resize a chunk of memory previously allocated
by FtrPtrNew.

This function may move the chunk to a new location in order to
resize it, so it is important to use the pointer returned by this
function when accessing the memory chunk. The pointer in the
feature table is automatically updated to be the same as the pointer
returned by this function.

If this function fails, the old memory pointer still exists and its data
is unchanged.

Compatibility Implemented only if 3.1 New Feature Set is present.

See Also MemHandleResize

Feature Manager
Feature Manager Functions

670 Palm OS Programmer’s API Reference

FtrSet

Purpose Set a feature.

Declared In FeatureMgr.h

Prototype Err FtrSet (UInt32 creator, UInt16 featureNum,
UInt32 newValue)

Parameters -> creator Creator ID, which must be registered with
PalmSource, Inc. This is usually the same as the
creator ID for the application that owns this
feature.

-> featureNum Feature number for this feature.

-> newValue New value.

Result Returns 0 if no error, or memErrNotEnoughSpace if the feature
table must be resized to add a new feature and no space is available.

Comments The value of the feature is application-dependent.

A feature that you define in this manner remains defined until the
next system reset or until you explicitly undefine the feature with
FtrUnregister.

See Also FtrGet, FtrPtrNew

FtrUnregister

Purpose Unregister a feature.

Declared In FeatureMgr.h

Prototype Err FtrUnregister (UInt32 creator,
UInt16 featureNum)

Parameters -> creator Creator ID for the feature.

Feature Manager
Feature Manager Functions

Palm OS Programmer’s API Reference 671

-> featureNum Feature number of the feature.

Result Returns 0 if no error, or ftrErrNoSuchFeature if the specified
feature number doesn’t exist for the specified creator.

Feature Manager
Feature Manager Functions

672 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 673

31
File Streaming
This chapter provides reference material for the file streaming API.

• File Streaming Constants

• File Streaming Functions

• File Streaming Error Codes

The header file FileStream.h declares the API that this chapter
describes. For more information on file streaming, see the chapter
“Files and Databases” in the Palm OS Programmer’s Companion, vol.
I.

File Streaming Constants

Primary Open Mode Constants
This section lists constants passed in the openMode parameter to
the FileOpen function. These constants specify the mode in which
a file stream is opened.

For each file stream, you must pass to the FileOpen function only
one of the primary mode selectors listed.

Constant Values

fileModeReadOnly Open for read-only access

fileModeReadWrite Open/create for read/write access,
discarding any previous version of stream

fileModeUpdate Open/create for read/write, preserving
previous version of stream if it exists

fileModeAppend Open/create for read/write, always
writing to the end of the stream

File Streaming
File Streaming Constants

674 Palm OS Programmer’s API Reference

Secondary Open Mode Constants
You can use the | operator (bitwise inclusive OR) to append to a
primary mode selector one or more of the secondary mode selectors
listed below.

fileModeDontOverwrite Prevents fileModeReadWrite
from discarding an existing
stream having the same name;
may only be specified together
with fileModeReadWrite

fileModeLeaveOpen Leave stream open when
application quits. Most
applications should not use this
option.

fileModeExclusive No other application can open the
stream until the application that
opened it in this mode closes it.

fileModeAnyTypeCreator Accept any type/creator when
opening or replacing an existing
stream. Normally, the FileOpen
function opens only streams
having the specified creator and
type. Setting this option enables
the FileOpen function to open
streams having a type or creator
other than those specified.

fileModeTemporary Delete the stream automatically
when it is closed. For more
information, see Comment section
of FileOpen function
description.

File Streaming
File Streaming Functions

Palm OS Programmer’s API Reference 675

File Streaming Functions

FileClearerr

Purpose Clear I/O error status, end of file error status, and last error.

Declared In FileStream.h

Prototype Err FileClearerr (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileGetLastError, FileRewind

FileClose

Purpose Close the file stream and destroy its handle. If the stream was
opened with fileModeTemporary, it is deleted upon closing.

Declared In FileStream.h

Prototype Err FileClose (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

File Streaming
File Streaming Functions

676 Palm OS Programmer’s API Reference

FileControl

Purpose Perform the operation specified by the op parameter on the stream
file stream.

Declared In FileStream.h

Prototype Err FileControl (FileOpEnum op, FileHand stream,
void *valueP, Int32 *valueLenP)

Parameters op The operation to perform, and its associated
formal parameters. See the Comments section
for a list of possible values.

--> stream Open stream handle if required for file stream
operation.

<--> valueP Pointer to value or buffer, as required. This
parameter is defined by the selector passed as
the value of the op parameter. For details, see
the Comments section.

<--> valueLenP Pointer to value or buffer, as required. This
parameter is defined by the selector passed as
the value of the op parameter. For details, see
the Comments section.

Result Returns either a value defined by the selector passed as the
argument to the op parameter, or an error code resulting from the
requested operation. For details, see the Comments section.

Comments Normally, you do not call the FileControl function yourself; it is
called for you by most of the other file streaming functions and
macros to perform common file streaming operations. You can call
FileControl yourself to enable specialized read modes.

File Streaming
File Streaming Functions

Palm OS Programmer’s API Reference 677

fileOpNone No-op.

fileOpDestructiveReadMode Enter destructive read mode, and rewind stream to
its beginning. Once in this mode, there is no
turning back: stream's contents after closing (or
crash) are undefined.

Destructive read mode deletes blocks as data are
read, thus freeing storage automatically. Once in
destructive read mode, you cannot re-use the file
stream—the contents of the stream are undefined
after it is closed or after a crash.

Writing to files opened without write access or
those that are in destructive read state is not
allowed; thus, you cannot call the FileWrite,
FileSeek, or FileTruncate functions on a
stream that is in destructive read mode. One
exception to this rule applies to streams that were
opened in “write + append” mode and then
switched into destructive read state. In this case,
the FileWrite function can append data to the
stream, but it also preserves the current stream
position so that subsequent reads pick up where
they left off (you can think of this as a pseudo-
pipe).

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
zero on success;
fileErr... on error

fileOpGetEOFStatus Get end-of-file status (like C runtime’s feof) (err =
fileErrEOF). Indicates end of file condition. Use
FileClearerr to clear this error status.

File Streaming
File Streaming Functions

678 Palm OS Programmer’s API Reference

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
zero if not end of file;
non-zero if end of file

fileOpGetLastError Get error code from last operation on stream, and
clear the last error code value. Doesn’t change
status of EOF or I/O errors —use FileClearerr
to reset all error codes.

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
Error code from last file stream operation

fileOpClearError Clear I/O and EOF error status and last error.

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
zero on success; fileErr... on error

fileOpGetIOErrorStatus Get I/O error status (like C runtime's ferror). Use
FileClearerr to clear this error status.

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
zero if not I/O error;
non-zero if I/O error is pending.

File Streaming
File Streaming Functions

Palm OS Programmer’s API Reference 679

fileOpGetCreatedStatus Find out whether file was created by FileOpen
function

ARGUMENTS:
stream = open stream handle
valueP = Pointer to Boolean
valueLenP = Pointer to Int32 variable set to
sizeof(Boolean)

RETURNS:
zero on success; fileErr... on error. The Boolean
variable will be set to non-zero if the file was
created.

fileOpGetOpenDbRef Get the open database reference (handle) of the
underlying database that implements the stream
(NULL if none); this is needed for performing Palm
OS-specific operations on the underlying database,
such as changing or getting creator and type,
version, backup/reset bits, and so on.

ARGUMENTS:
stream = open stream handle
valueP = Pointer to DmOpenRef variable
valueLenP = Pointer to Int32 variable set to
sizeof(DmOpenRef)

RETURNS:
zero on success; fileErr... on error. The
DmOpenRef variable will be set to the file's open db
reference that may be passed to Data Manager calls;

WARNING: Do not make any changes to the data
of the underlying database -- doing so will corrupt
the file stream.

fileOpFlush Flush any cached data to storage.

File Streaming
File Streaming Functions

680 Palm OS Programmer’s API Reference

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileClearerr, FileEOF, FileError, FileFlush,
FileGetLastError, FileRewind

FileDelete

Purpose Deletes the specified file stream from the specified card. Only a
closed stream may be passed to this function.

Declared In FileStream.h

Prototype Err FileDelete (UInt16 cardNo, const Char *nameP)

Parameters cardNo Card on which the file stream to delete resides.
Currently, no Palm OS® devices support
multiple cards, so this value must be 0.

nameP String that is the name of the stream to delete.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileOpen

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
zero on success; fileErr... on error;

File Streaming
File Streaming Functions

Palm OS Programmer’s API Reference 681

FileDmRead

Purpose A macro that reads data from a file stream into a chunk, record, or
resource residing in a database.

Declared In FileStream.h

Prototype Int32 FileDmRead (FileHand stream,
void *startOfDmChunkP, Int32 destOffset,
Int32 objSize, Int32 numObj, Err *errP)

Parameters --> stream Handle to open stream.

--> startOfDmChunkP
Pointer to beginning of chunk, record or
resource residing in a database.

destOffset Offset from startOfDmChunkP (base pointer)
to the destination area (must be >= 0).

objSize Size of each stream object to read.

numObj Number of stream objects to read.

<--> errP Pointer to variable that is to hold the error code
returned by this function. Pass NULL to ignore.
See the section “File Streaming Error Codes”
for more information.

Result The number of whole objects that were read—note that the number
of objects actually read may be less than the number requested.

Comments When the number of objects actually read is less than the number
requested, you may be able to determine the cause of this result by
examining the return value of the errP parameter or by calling the
FileGetLastError function. If the cause is insufficient data in the
stream to satisfy the full request, the current stream position is at
end-of-file and the “end of file” indicator is set. If a non-NULL
pointer was passed as the value of the errP parameter when the
FileDmRead function was called and an error was encountered,
*errP holds a non-zero error code when the function returns. In

File Streaming
File Streaming Functions

682 Palm OS Programmer’s API Reference

addition, the FileError and FileEOF functions may be used to
check for I/O errors.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileRead, FileError, FileEOF

FileEOF

Purpose Get end-of-file status (err = fileErrEOF indicates end of file
condition).

Declared In FileStream.h

Prototype Err FileEOF (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if not end of file; non-zero if end of file. See the section “File
Streaming Error Codes” for more information.

Comments This function’s behavior is similar to that of the feof function
provided by the C programming language runtime library.

Use FileClearerr to clear the I/O error status.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileClearerr, FileGetLastError, FileRewind

File Streaming
File Streaming Functions

Palm OS Programmer’s API Reference 683

FileError

Purpose Get I/O error status.

Declared In FileStream.h

Prototype Err FileError (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if no error, and non-zero if an I/O error indicator has been set for
this stream. See the section “File Streaming Error Codes” for more
information.

Comments This function’s behavior is similar to that of the C programming
language’s ferror runtime function.

Use FileClearerr to clear the I/O error status.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileClearerr, FileGetLastError, FileRewind

FileFlush

Purpose Flush cached data to storage.

Declared In FileStream.h

Prototype Err FileFlush (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Comments It is not always necessary to call this function explicitly—certain
operations flush the contents of a stream automatically; for example,

File Streaming
File Streaming Functions

684 Palm OS Programmer’s API Reference

streams are flushed when they are closed. Because this function’s
behavior is similar to that of the fflush function provided by the C
programming language runtime library, you only need to call it
explicitly under circumstances similar to those in which you would
call fflush explicitly.

Compatibility Implemented only if 3.0 New Feature Set is present.

FileGetLastError

Purpose Get error code from last operation on file stream, and clear the last
error code value (will not change end of file or I/O error status --
use FileClearerr to reset all error codes)

Declared In FileStream.h

Prototype Err FileGetLastError (FileHand stream)

Parameters --> stream Handle to open stream.

Result Error code returned by the last file stream operation. See the section
“File Streaming Error Codes” for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileClearerr, FileEOF, FileError

File Streaming
File Streaming Functions

Palm OS Programmer’s API Reference 685

FileOpen

Purpose Open existing file stream or create an open file stream for I/O in the
mode specified by the openMode parameter.

Declared In FileStream.h

Prototype FileHand FileOpen (UInt16 cardNo,
const Char *nameP, UInt32 type, UInt32 creator,
UInt32 openMode, Err *errP)

Parameters cardNo Card on which the file stream to open resides.
Currently, no Palm Powered™ devices support
multiple cards, so this value must be 0.

--> nameP Pointer to text string that is the name of the file
stream to open or create. This value must be a
valid name—no wildcards allowed, must not
be NULL.

type File type of stream to open or create. Pass 0 for
wildcard, in which case
sysFileTFileStream is used if the stream
needs to be created and fileModeTemporary
is not specified. If type is 0 and
fileModeTemporary is specified, then
sysFileTTemp is used for the file type of the
stream this function creates.

creator Creator of stream to open or create. Pass 0 for
wildcard, in which case the current
application's creator ID is used for the creator
of the stream this function creates.

openMode Mode in which to open the file stream. You
must specify only one primary mode selector.
Additionally, you can use the | operator
(bitwise inclusive OR) to append one or more
secondary mode selectors to the primary mode
selector. See “Primary Open Mode Constants”
and “Secondary Open Mode Constants” for the
list of possible values.

File Streaming
File Streaming Functions

686 Palm OS Programmer’s API Reference

<--> errP Pointer to variable that is to hold the error code
returned by this function. Pass NULL to ignore.
See the section “File Streaming Error Codes”
for a list of error codes.

Result If successful, returns a handle to an open file stream; otherwise,
returns 0.

In some cases, on some platforms, FileOpen returns a non-zero
value when it has failed to open a file; thus, it is always a good idea
to check the errP parameter value to determine if an error has
occurred.

Comments The fileModeReadOnly, fileModeReadWrite,
fileModeUpdate, and fileModeAppend modes are mutually
exclusive—pass only one of them to the FileOpen function!

When the fileModeTemporary open mode is used and the file
type passed to FileOpen is 0, the FileOpen function uses
sysFileTTemp (defined in SystemMgr.rh) for the file type, as
recommended. In future versions of Palm OS, this configuration
will enable the automatic cleanup of undeleted temporary files after
a system crash. Automatic post-crash cleanup is not implemented in
current versions of Palm OS.

To open a file stream even if it has a different type and creator than
specified, pass the fileModeAnyTypeCreator selector as a flag in
the openMode parameter to the FileOpen function.

The fileModeLeaveOpen mode is an esoteric option that most
applications should not use. It may be useful for a library that needs
to open a stream from the current application’s context and keep it
open even after the current application quits. By default, Palm OS
automatically closes all databases that were opened in a particular
application’s context when that application quits. The
fileModeLeaveOpen option overrides this default behavior.

Compatibility Implemented only if 3.0 New Feature Set is present.

File Streaming
File Streaming Functions

Palm OS Programmer’s API Reference 687

FileRead

Purpose A macro that reads data from a stream into a buffer. Do not use this
macro to read data into a chunk, record or resource residing in a
database—you must use the FileDmRead macro for such
operations.

Declared In FileStream.h

Prototype Int32 FileRead (FileHand stream, void *bufP,
Int32 objSize, Int32 numObj, Err *errP)

Parameters --> stream Handle to open stream.

--> bufP Pointer to beginning of buffer into which data
is read

objSize Size of each stream object to read.

numObj Number of stream objects to read.

<--> errP Pointer to variable that is to hold the error code
returned by this function. Pass NULL to ignore.
See the section “File Streaming Error Codes”
for a list of error codes.

Result The number of whole objects that were read—note that the number
of objects actually read may be less than the number requested.

Comments Do not use this macro to read data into a chunk, record or resource
residing in a database—you must use the FileDmRead macro for
such operations.

When the number of objects actually read is fewer than the number
requested, you may be able to determine the cause of this result by
examining the return value of the errP parameter or by calling the
FileGetLastError function. If the cause is insufficient data in the
stream to satisfy the full request, the current stream position is at
end-of-file and the “end of file” indicator is set. If a non-NULL
pointer was passed as the value of the errP parameter when the
FileRead function was called and an error was encountered,
*errP holds a non-zero error code when the function returns. In

File Streaming
File Streaming Functions

688 Palm OS Programmer’s API Reference

addition, the FileError and FileEOF functions may be used to
check for I/O errors.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileDmRead

FileRewind

Purpose Reset position marker to beginning of stream and clear all error
codes.

Declared In FileStream.h

Prototype Err FileRewind (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileSeek, FileTell, FileClearerr, FileEOF, FileError,
FileGetLastError

FileSeek

Purpose Set current position within a file stream, extending the stream as
necessary if it was opened with write access.

Declared In FileStream.h

Prototype Err FileSeek (FileHand stream, Int32 offset,
FileOriginEnum origin)

Parameters --> stream Handle to open stream.

File Streaming
File Streaming Functions

Palm OS Programmer’s API Reference 689

offset Position to set, expressed as the number of
bytes from origin. This value may be positive,
negative, or 0.

origin Describes the origin of the position change.
Possible values are:

fileOriginBeginning
From the beginning (first data byte of
file).

fileOriginCurrent
From the current position.

fileOriginEnd
From the end of file (one position beyond
last data byte).

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Comments Attempting to seek beyond end-of-file in a read-only stream results
in an I/O error.

This function’s behavior is similar to that of the fseek function
provided by the C programming language runtime library.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileRewind, FileTell

FileTell

Purpose Retrieves the current position and, optionally, file size, of a stream.

Declared In FileStream.h

Prototype Int32 FileTell (FileHand stream, Int32 *fileSizeP,
Err *errP)

Parameters --> stream Handle to open stream.

File Streaming
File Streaming Functions

690 Palm OS Programmer’s API Reference

<-> fileSizeP Pointer to variable that holds value describing
size of stream in bytes when this function
returns. Pass NULL to ignore.

<--> errP Pointer to variable that is to hold the error code
returned by this function. Pass NULL to ignore.
See the section “File Streaming Error Codes”
for a list of possible error codes.

Result If successful, returns current position, expressed as an offset in bytes
from the beginning of the stream. If an error was encountered,
returns -1 as a signed long integer.

Comments The FileTell function can return the size of the input stream; as
such, it provides some of the functionality of the standard C library
stat function. Note, however, that unlike the stat function,
FileTell requires that the file be open.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileRewind, FileSeek

FileTruncate

Purpose Truncate the file stream to a specified size; not allowed on streams
open in destructive read mode or read-only mode.

Declared In FileStream.h

Prototype Err FileTruncate (FileHand stream, Int32 newSize)

Parameters --> stream Handle of open stream.

newSize New size; must not exceed current stream size.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for a list of possible error codes.

File Streaming
File Streaming Functions

Palm OS Programmer’s API Reference 691

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileTell

FileWrite

Purpose Write data to a stream.

Declared In FileStream.h

Prototype Int32 FileWrite (FileHand stream,
const void *dataP, Int32 objSize, Int32 numObj,
Err *errP)

Parameters --> stream Handle to open stream.

--> dataP Pointer to buffer holding data to write.

objSize Size of each stream object to write; must be ≥ 0.

numObj Number of stream objects to write.

<--> errP Optional pointer to variable that holds the error
code returned by this function. Pass NULL to
ignore. See the section “File Streaming Error
Codes” for a list of possible error codes.

Result The number of whole objects that were written—note that the
number of objects actually written may be less than the number
requested. Should available storage be insufficient to satisfy the
entire request, as much of the requested data as possible is written
to the stream, which may result in the last object in the stream being
incomplete.

Comments Writing to files opened without write access or those that are in
destructive read state is not allowed; thus, you cannot call the
FileWrite, FileSeek, or FileTruncate functions on a stream
that is in destructive read mode. One exception to this rule applies
to streams that were opened in “write + append” mode and then
switched into destructive read state. In this case, the FileWrite
function can append data to the stream, but it also preserves the

File Streaming
File Streaming Functions

692 Palm OS Programmer’s API Reference

current stream position so that subsequent reads pick up where they
left off (you can think of this as a pseudo-pipe).

Compatibility Implemented only if 3.0 New Feature Set is present.

File Streaming
File Streaming Error Codes

Palm OS Programmer’s API Reference 693

File Streaming Error Codes
This section lists all error codes returned by the file streaming
functions.

Error Code Value Meaning

fileErrMemErr (fileErrorClass|1) Out of memory error

fileErrInvalidParam (fileErrorClass|2) Invalid parameter
value passed

fileErrCorruptFile (fileErrorClass|3) Alleged stream is
corrupted, invalid,
or not a stream

fileErrNotFound (fileErrorClass|4) Couldn't find the
stream

fileErrTypeCreatorMismatch (fileErrorClass|5) Type and/or creator
not what was
specified

fileErrReplaceError (fileErrorClass|6) Couldn't replace
existing stream

fileErrCreateError (fileErrorClass|7) Couldn't create new
stream

fileErrOpenError (fileErrorClass|8) Generic open error

fileErrInUse (fileErrorClass|9) Stream couldn't be
opened or deleted
because it is in use

fileErrReadOnly (fileErrorClass|10) Couldn't open in
write mode because
existing stream is
read-only

fileErrInvalidDescriptor (fileErrorClass|11) Invalid file
descriptor
(FileHandle)

File Streaming
File Streaming Error Codes

694 Palm OS Programmer’s API Reference

fileErrCloseError (fileErrorClass|12) Error closing the
stream

fileErrOutOfBounds (fileErrorClass|13) Attempted operation
went out of bounds
of the stream

fileErrPermissionDenied (fileErrorClass|14) Couldn't write to a
stream open for
read-only access

fileErrIOError (fileErrorClass|15) Generic I/O error

fileErrEOF (fileErrorClass|16) End-of-File error

fileErrNotStream (fileErrorClass|17) Attempted to open
an entity that is not a
stream

Error Code Value Meaning

Palm OS Programmer’s API Reference 695

32
Float Manager
This chapter provides reference material for the Float Manager API
as follows:

• Float Manager Data Structures

• Float Manager Functions

The Float Manager API is declared in the header file FloatMgr.h.
For more information on the Float Manager, see the section
“Floating-Point” in the Palm OS Programmer’s Companion, vol. I.

Float Manager Data Structures

FlpCompDouble
Float Manager functions accept and require values of type
FlpDouble. The FlpCompDouble union allows you to declare
values that can be interpreted either as a double or as an
FlpDouble. As well, this union contains fields that provide easy
access to the component parts of the double-precision floating-point
number.

typedef union {
 double d;
 FlpDouble fd;
 UInt32 ul[2];
 FlpDoubleBits fdb;
} FlpCompDouble

Float Manager
Float Manager Data Structures

696 Palm OS Programmer’s API Reference

Field Descriptions

FlpDoubleBits
This structure provides direct access to the component parts of an
IEEE-754 double-precision floating-point number. Use the
FlpCompDouble union to convert numbers of type double to and
from FlpDoubleBits.

typedef struct {
 UInt32 sign : 1;
 Int32 exp : 11;
 UInt32 manH : 20;
 UInt32 manL;
} FlpDoubleBits

Field Descriptions

d Provides access to the value as a double.

fd Provides access to the value as a FlpDouble,
which can be passed to or received from many
Float Manager functions.

ul Provides access to the value as two long integers.

fdb Provides access to specific fields.

sign The sign bit. You can also use the FlpGetSign
macro to obtain the sign bit, and the FlpNegate,
FlpSetNegative, and FlpSetPositive
macros to set the sign bit.

exp The bits that make up the exponent. You can also
use the FlpGetExponent macro to obtain the
exponent value.

manH The most-significant 20 bits of the mantissa.

manL The least-significant 32 bits of the mantissa.

Float Manager
Float Manager Functions

Palm OS Programmer’s API Reference 697

Float Manager Functions

FlpAToF

Purpose Convert a null-terminated ASCII string to a 64-bit floating-point
number. The string must have the format:

[+|-][digits][.][digits][e|E[+|-][digits]]

Declared In FloatMgr.h

Prototype FlpDouble FlpAToF (const Char *s)

Parameters -> s Pointer to the string to be converted.

Result Returns the value of the string as a floating-point number.

Comment The mantissa of the number is limited to 32 bits.

This function is close to being compatible with the ISO C library
function atof. atof requires the form:

[+|-]digits[.][digits][(e|E)[+|-]digits]

In order to maintain backward compatibility with the Float
Manager in Palm OS 1.0 (which could be used up to, but not
including, Palm OS 4.0), this function considers all of the “digits”
sections to be optional. Here’s a table showing the ISO and Palm OS
behavior with some sample strings:

String ISO >= Palm
OS 4.0

< Palm
OS 4.01

Notes

“+” +0 +0 +0

“.3” 0.3 0.3 0.3

“0.3e123” 0.3e123 0.3e123 0.3e12 The old Float Manager only
allowed a 1 or 2 digit
exponent.

Float Manager
Float Manager Functions

698 Palm OS Programmer’s API Reference

Unlike atof, FlpAToF doesn’t accept leading white-space
characters and it doesn’t accept decimal point characters other than
‘.’.

Compatibility Implemented only if 2.0 New Feature Set is present. GCC users
must use FlpBufferAToF instead of this function.

See Also FlpFToA

FlpBase10Info

Purpose Extract detailed information on the base 10 form of a floating-point
number: the base 10 mantissa, exponent, and sign.

Declared In FloatMgr.h

Prototype Err FlpBase10Info (FlpDouble a, UInt32 *mantissaP,
Int16 *exponentP, Int16 *signP)

Parameters -> a The floating-point number.

“+1” 1 1 +0 The old Float Manager doesn’t
allow a leading '+' sign.

“1e+2” 1e2 1e2 1 The old Float Manager doesn’t
allow a '+' sign in the
exponent.

“0.3E3” 0.3e3 0.3e3 0.3 The old Float Manager doesn’t
allow a capital 'E' to mark the
exponent.

“4294967297” 4294967297 4294967297 1 The old Float Manager uses an
unsigned long and wraps
around.

1. Using the old Float Manager documented in Appendix C, “1.0 Float Manager.” on page 2355.

String ISO >= Palm
OS 4.0

< Palm
OS 4.01

Notes

Float Manager
Float Manager Functions

Palm OS Programmer’s API Reference 699

<- mantissaP The base 10 mantissa.

<- exponentP The base 10 exponent.

<- signP The sign: 1 if the number is negative, 0
otherwise.

Result Returns 0 if no error, or flpErrOutOfRange if the supplied
floating-point number is either not a number (NaN) or is infinite.

Comments The mantissa is normalized so it contains at least 8 significant digits
when printed as an integer value.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FlpGetExponent, FlpGetSign

FlpBufferAToF

Purpose Convert a null-terminated ASCII string to a floating-point number.
The string must be in the format: [-]x[.]yyyyyyyy[e[-]zz]

Declared In FloatMgr.h

Prototype void FlpBufferAToF (FlpDouble *result,
const Char *s)

Parameters <- result Pointer to the structure into which the return
value is placed.

-> s Pointer to the null-terminated ASCII string to
be converted.

Result Returns the value of the string as a floating-point number.

Comments See FlpAToF for a complete description of this function.

Compatibility Implemented only if 2.0 New Feature Set is present. Because the
Palm OS ABI was not well-specified in this area, GCC by default
implemented structure return differently from the compiler used to

Float Manager
Float Manager Functions

700 Palm OS Programmer’s API Reference

build the ROM. As a result, GCC users must use this function
instead of FlpAToF. CodeWarrior users can use either function;
they are binary compatible.

FlpBufferCorrectedAdd

Purpose Adds two floating-point numbers and corrects for least-significant-
bit errors when the result should be zero but is instead very close to
zero.

Declared In FloatMgr.h

Prototype void FlpBufferCorrectedAdd (FlpDouble *result,
FlpDouble firstOperand, FlpDouble secondOperand,
Int16 howAccurate)

Parameters <- result Pointer to the structure into which the return
value is placed.

-> firstOperand
The first of the two numbers to be added.

-> secondOperand
The second of the two numbers to be added.

-> howAccurate The smallest difference in exponents that won’t
force the result to zero. The value returned from
this function is forced to zero if the difference
between exponents in the smaller of the two
operands and the result exceeds this value.
Supply a value of zero for this parameter to
obtain the default level of accuracy (which is
equivalent to a howAccurate value of 48).

Result Returns the calculated result.

Comments See FlpCorrectedAdd for a complete description of this function.

Compatibility Implemented only if 2.0 New Feature Set is present. Because the
Palm OS ABI was not well-specified in this area, GCC by default

Float Manager
Float Manager Functions

Palm OS Programmer’s API Reference 701

implemented structure return differently from the compiler used to
build the ROM. As a result, GCC users must use this function
instead of FlpCorrectedAdd. CodeWarrior users can use either
function; they are binary compatible.

FlpBufferCorrectedSub

Purpose Subtracts two floating-point numbers and corrects for least-
significant-bit errors when the result should be zero but is instead
very close to zero.

Declared In FloatMgr.h

Prototype void FlpBufferCorrectedSub (FlpDouble *result,
FlpDouble firstOperand, FlpDouble secondOperand,
Int16 howAccurate)

Parameters <- result Pointer to the structure into which the return
value is placed.

-> firstOperand
The value from which secondOperand is to be
subtracted.

-> secondOperand
The value to subtract from firstOperand.

-> howAccurate The smallest difference in exponents that won’t
force the result to zero. The value returned from
this function is forced to zero if the difference
between exponents in the smaller of the two
operands and the result exceeds this value.
Supply a value of zero for this parameter to
obtain the default level of accuracy (which is
equivalent to a howAccurate value of 48).

Result Returns the calculated result.

Comments See FlpCorrectedSub for a complete description of this function.

Float Manager
Float Manager Functions

702 Palm OS Programmer’s API Reference

Compatibility Implemented only if 2.0 New Feature Set is present. Because the
Palm OS ABI was not well-specified in this area, GCC by default
implemented structure return differently from the compiler used to
build the ROM. As a result, GCC users must use this function
instead of FlpCorrectedSub. CodeWarrior users can use either
function; they are binary compatible.

FlpCorrectedAdd

Purpose Adds two floating-point numbers and corrects for least-significant-
bit errors when the result should be zero but is instead very close to
zero.

Declared In FloatMgr.h

Prototype FlpDouble FlpCorrectedAdd
(FlpDouble firstOperand, FlpDouble secondOperand,
Int16 howAccurate)

Parameters -> firstOperand
The first of the two numbers to be added.

-> secondOperand
The second of the two numbers to be added.

-> howAccurate The smallest difference in exponents that won’t
force the result to zero. The value returned from
FlpCorrectedAdd is forced to zero if, when
the exponent of the result of the addition is
subtracted from the exponent of the smaller of
the two operands, the difference exceeds the
value specified for howAccurate. Supply a
value of zero for this parameter to obtain the
default level of accuracy (which is equivalent to
a howAccurate value of 48).

Result Returns the calculated result.

Comments Adding or subtracting a large number and a small number produces
a result similar in magnitude to the larger number. Adding or

Float Manager
Float Manager Functions

Palm OS Programmer’s API Reference 703

subtracting two numbers that are similar in magnitude can,
depending on their signs, produce a result with a very small
exponent (that is, a negative exponent that is large in magnitude). If
the difference between the result’s exponent and that of the
operands is close to the number of significant bits expressible by the
mantissa, it is quite possible that the result should in fact be zero.

There also exist cases where it may be useful to retain accuracy in
the low-order bits of the mantissa. For instance: 99999999 +
0.00000001 - 99999999. However, unless the fractional part is an
exact (negative) power of two, it is doubtful that what few bits of
mantissa that are available will be enough to properly represent the
fractional value. In this example, the 99999999 requires 26 bits,
leaving 26 bits for the .00000001; this guarantees inaccuracy after the
subtraction.

The problem arises from the difficulty in representing decimal
fractions such as 0.1 in binary. After about three successive
additions or subtractions, errors begin to appear in the least
significant bits of the mantissa. If the value represented by the most
significant bits of the mantissa is then subtracted away, the least
significant bit error is normalized and becomes the actual result—
when in fact the result should be zero.

This problem is only an issue for addition and subtraction.

Compatibility Implemented only if 2.0 New Feature Set is present. GCC users
must use FlpBufferCorrectedAdd instead of this function.

See Also FlpCorrectedSub

Float Manager
Float Manager Functions

704 Palm OS Programmer’s API Reference

FlpCorrectedSub

Purpose Subtracts two floating-point numbers and corrects for least-
significant-bit errors when the result should be zero but is instead
very close to zero.

Declared In FloatMgr.h

Prototype FlpDouble FlpCorrectedSub
(FlpDouble firstOperand, FlpDouble secondOperand,
Int16 howAccurate)

Parameters -> firstOperand
The value from which secondOperand is to be
subtracted.

-> secondOperand
The value to subtract from firstOperand.

-> howAccurate The smallest difference in exponents that won’t
force the result to zero.The value returned from
FlpCorrectedSub is forced to zero if, when
the exponent of the result of the subtraction is
subtracted from the exponent of the smaller of
the two operands, the difference exceeds the
value specified for howAccurate. Supply a
value of zero for this parameter to obtain the
default level of accuracy (which is equivalent to
a howAccurate value of 48).

Result Returns the calculated result.

Comments See the comments for FlpCorrectedAdd.

Compatibility Implemented only if 2.0 New Feature Set is present. GCC users
must use FlpBufferCorrectedSub instead of this function.

Float Manager
Float Manager Functions

Palm OS Programmer’s API Reference 705

FlpFToA

Purpose Convert a floating-point number to a null-terminated ASCII string
in exponential format: [-]x.yyyyyyye[-]zz

Declared In FloatMgr.h

Prototype Err FlpFToA (FlpDouble a, Char *s)

Parameters -> a Floating-point number.

<-s Pointer to buffer to contain the ASCII string.

Result Returns 0 if no error, or flpErrOutOfRange if the supplied value
is infinite or is not a number. In this case, the buffer is set to the
string “INF”, “-INF”, or “NaN” as appropriate.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FlpAToF

FlpGetExponent

Purpose Macro that returns the exponent of a 64-bit floating-point value. The
returned value has the bias applied, so it ranges from -1023 to +1024.

Declared In FloatMgr.h

Prototype FlpGetExponent (x)

Parameters -> x The value from which the exponent is to be
extracted.

Result Returns a UInt32 containing the exponent of the specified value.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FlpBase10Info, FlpGetSign

Float Manager
Float Manager Functions

706 Palm OS Programmer’s API Reference

FlpGetSign

Purpose Macro that returns the sign of a 64-bit floating-point value.

Declared In FloatMgr.h

Prototype FlpGetSign (x)

Parameters -> x The value from which the sign bit is to be
extracted.

Result Returns a UInt32 with a nonzero value if the specified value is
negative, and with a zero value if it is positive.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FlpBase10Info, FlpGetExponent, FlpNegate,
FlpSetNegative, FlpSetPositive

FlpIsZero

Purpose Macro that returns whether the specified 64-bit floating-point value
is zero.

Declared In FloatMgr.h

Prototype FlpIsZero (x)

Parameters -> x The value for which the sign bit is desired.

Result Returns a UInt32 with a nonzero value if the specified value is
zero, and with a zero value if the specified value is other than zero.

Compatibility Implemented only if 2.0 New Feature Set is present.

Float Manager
Float Manager Functions

Palm OS Programmer’s API Reference 707

FlpNegate

Purpose Macro that changes the sign bit of a 64-bit floating-point number.

Declared In FloatMgr.h

Prototype FlpNegate (x)

Parameters -> x The value in which the sign bit is to be
changed.

Result Returns a 64-bit floating-point value which is the negative of the
value specified by x.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FlpGetSign, FlpSetNegative, FlpSetPositive

FlpSetNegative

Purpose Macro that ensures that a 64-bit floating-point number is negative.

Declared In FloatMgr.h

Prototype FlpSetNegative (x)

Parameters -> x The value that is to be forced negative.

Result If the supplied 64-bit floating-point value is negative, that value is
returned unchanged. If the supplied value is positive, the negative
of that value is returned.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FlpGetSign, FlpNegate, FlpSetPositive

Float Manager
Float Manager Functions

708 Palm OS Programmer’s API Reference

FlpSetPositive

Purpose Macro that ensures that a 64-bit floating-point number is positive.

Declared In FloatMgr.h

Prototype FlpSetPositive (x)

Parameters -> x The value that is to be forced positive.

Result If the supplied 64-bit floating-point value is positive, that value is
returned unchanged. If the supplied value is negative, its absolute
value is returned.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FlpGetSign, FlpNegate, FlpSetNegative

FlpVersion

Purpose Returns the version number of the Float Manager.

Declared In FloatMgr.h

Prototype UInt32 FlpVersion (void)

Parameters None.

Result Returns the version number of the Float Manager. The current
version is represented by the constant flpVersion, which is
defined in FloatMgr.h.

Compatibility Implemented only if 2.0 New Feature Set is present.

Palm OS Programmer’s API Reference 709

33
Fonts
This chapter provides the following information regarding font
support:

• Font Data Structures

• Font Constants

• Font Resources

• Font Functions

The header files Font.h and FontSelect.h declare the API that
this chapter describes. For more information on fonts, see Chapter 8,
“Text,” on page 251 of the Palm OS Programmer’s Companion, vol. I.

Font Data Structures

FontCharInfoPtr
The FontCharInfoPtr type points to a FontCharInfoType
structure.

typedef FontCharInfoType *FontCharInfoPtr;

FontCharInfoType
The FontCharInfoType structure defines an entry in the offset/
width table for a font.

WARNING! Palm, Inc. does not support or provide backward
compatibility for the FontCharInfoType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

Fonts
Font Data Structures

710 Palm OS Programmer’s API Reference

typedef struct FontCharInfoTag {
Int8 offset;
Int8 width;

} FontCharInfoType;

Field Descriptions

New FontDensityType
The FontDensityType structure defines an entry in the
densities array in the FontTypeV2 structure. The densities
array specifies the location of each set of glyphs within an extended
font resource.

WARNING! Palm, Inc. does not support or provide backward
compatibility for the FontDensityType structure. Never access
its structure members directly, or your code may break in future
versions. Use the information below for debugging purposes only.

typedef struct FontDensityTag {
Int16 density;
UInt32 glyphBitsOffset;

} FontDensityType;

Field Description

offset This value is not currently used and must be set to 0.

width The exact width in pixels of the glyph. You can retrieve this
information using the function FntWCharWidth or
FntCharWidth.

density Either kDensityLow or
kDensityDouble.

glyphBitsOffset Offset in bytes from the
beginning of the font data to the
start of the font image for this
density.

Fonts
Font Data Structures

Palm OS Programmer’s API Reference 711

Compatibility

This structure is only defined if the High-Density Display Feature
Set is present.

FontID
The FontID enum specifies the IDs of available fonts. A font can
either be a system-defined font or an application-defined font. You
can obtain the ID of the current font using FntGetFont and change
the font using FntSetFont.

enum fontID {
stdFont = 0x00,
boldFont,
largeFont,
symbolFont,
symbol11Font,
symbol7Font,
ledFont,
largeBoldFont,
fntAppCustomBase = 0x80

};
typdef enum fontID FontID;

Value Descriptions

stdFont A small standard font used to display user
input. This font is small to display as
much text as possible.

boldFont Same size as stdFont but bold for easier
reading. Used for text labels in the user
interface.

largeFont A larger font provided as an alternative
for users who find the standard font too
small to read.

symbolFont Contains many special characters such as
arrows, Graffiti® Shift Indicators, and so
on.

Fonts
Font Data Structures

712 Palm OS Programmer’s API Reference

FontPtr
The FontPtr type defines a pointer to a FontType structure.

typedef FontType *FontPtr;

FontType
The FontType structure defines a font resource’s header. The fields
in this structure give general information about the font. Following
the structure are several tables that Palm OS uses to draw the font
on the screen. See “Font Resource” on page 718 for more
information about the font resource.

WARNING! Palm, Inc. does not support or provide backward
compatibility for the FontType structure. Never access its
structure members directly, or your code may break in future
versions. Use the information below for debugging purposes only.

typedef struct FontTag {
Int16 fontType;
Int16 firstChar;
Int16 lastChar;
Int16 maxWidth;

symbol11Font Contains the check boxes, the large left
arrow, and the large right arrow.

symbol7Font Contains the up and down arrows used
for the repeating button scroll arrows and
the dimmed version of the same arrows.

ledFont Contains the numbers 0 through 9, –, .,
and the comma (,). Used by the Calculator
application for its numeric display.

largeBoldFont In Palm OS® 3.0 and later only. Same size
as largeFont but bold.

fntAppCustomBase The first available ID for application-
defined fonts.

Fonts
Font Data Structures

Palm OS Programmer’s API Reference 713

Int16 kernMax;
Int16 nDescent;
Int16 fRectWidth;
Int16 fRectHeight;
Int16 owTLoc;
Int16 ascent;
Int16 descent;
Int16 leading;
Int16 rowWords;

} FontType;

Field Descriptions

fontType A mask providing the general characteristics of the
font. When creating an application-defined font
resource, use 0x9000.

firstChar Character code of first glyph in the font.

lastChar Character code of last glyph in the font.

maxWidth The maximum width in pixels of any glyph. In
Palm OS, there is currently no difference between
this field and fRectWidth.

kernMax This value is not currently used and must be set to
0.

nDescent This value is not currently used and must be set to
0.

fRectWidth A metric of the font image. In Palm OS, this metric
is equivalent to the maximum width in pixels of
any glyph in the font. Use
FntAverageCharWidth to obtain this value.

fRectHeight The height, including ascenders and descenders, of
the glyphs in this font. Use FntCharHeight to
obtain this value.

Fonts
Font Data Structures

714 Palm OS Programmer’s API Reference

New FontTypeV2
The FontTypeV2 structure defines the header for an extended font
resource, which contains a separate set of glyphs for each screen
density. Currently the only supported densities are kDensityLow
and kDensityDouble. See “Extended Font Resource” on page 721
for more information.

owTLoc The offset in 16-bit words from this field to the first
byte of the offset/width table. The offset/width
table is a table of FontCharInfoType structures
giving the width of each character in the font. Do
not access the offset/width table directly. Use
FntWCharWidth or FntCharWidth instead.

ascent The distance in pixels from the top of the font
rectangle to its baseline. Use FntBaseLine to
obtain this value.

descent The distance in pixels from the baseline to the
bottom of the font rectangle. Use
FntDescenderHeight to obtain this value.

leading The font’s leading, which is the vertical space
between lines of text, in pixels. This field is unused
in Palm OS and must be set to 0. If your font
requires a leading value, add blank space to the
bottom of each of your glyphs. The
FntLineHeight function returns the size of the
font’s character cell plus the leading.

rowWords The number of 16-bit words stored for each row of
a glyph’s bitmap where fRectHeight is the
number of rows.

Fonts
Font Data Structures

Palm OS Programmer’s API Reference 715

WARNING! Palm, Inc. does not support or provide backward
compatibility for the FontCharTypeV2 structure. Never access
its structure members directly, or your code may break in future
versions. Use the information below for debugging purposes only.

typedef struct FontTagV2 {
Int16 fontType;
Int16 firstChar;
Int16 lastChar;
Int16 maxWidth;
Int16 kernMax;
Int16 nDescent;
Int16 fRectWidth;
Int16 fRectHeight;
Int16 owTLoc;
Int16 ascent;
Int16 descent;
Int16 leading;
Int16 rowWords;
Int16 version;
Int16 densityCount;
FontDensityType densities[0];

} FontTypeV2;

NOTE: All pixel values given in the fields below are in terms of
the single-density font data.

Field Descriptions

fontType A mask providing the general characteristics of the
font. When creating an application-defined
extended font resource, use the value
fntExtendedFormatMask | 0x9000.

firstChar Character code of first glyph in the font.

lastChar Character code of last glyph in the font.

Fonts
Font Data Structures

716 Palm OS Programmer’s API Reference

maxWidth The maximum width in pixels of any glyph. In
Palm OS, there is currently no difference between
this field and fRectWidth.

kernMax This value is not currently used and must be set to
0.

nDescent This value is not currently used and must be set to
0.

fRectWidth A metric of the font image. In Palm OS, this metric
is equivalent to the maximum width in pixels of
any glyph in the font. Use
FntAverageCharWidth to obtain this value.

fRectHeight The height, including ascenders and descenders, of
the glyphs in this font. Use FntCharHeight to
obtain this value.

owTLoc The offset in 16-bit words from this field to the first
byte of the offset/width table. The offset/width
table is a table of FontCharInfoType structures
giving the width of each character in the font. Do
not access the offset/width table directly. Use
FntWCharWidth or FntCharWidth instead.

ascent The distance in pixels from the top of the font
rectangle to its baseline. Use FntBaseLine to
obtain this value.

descent The distance in pixels from the baseline to the
bottom of the font rectangle. Use
FntDescenderHeight to obtain this value.

leading The font’s leading, which is the vertical space
between lines of text, in pixels. This field is unused
in Palm OS and must be set to 0. If your font
requires a leading value, add blank space to the
bottom of each of your glyphs. The
FntLineHeight function returns the size of the
font’s character cell plus the leading.

Fonts
Font Constants

Palm OS Programmer’s API Reference 717

Compatibility

This structure is only defined if the High-Density Display Feature
Set is present.

Font Constants

rowWords The number of 16-bit words stored for each row of
a glyph’s bitmap where fRectHeight is the
number of rows.

version The version of the extended font resource. This
value should be set to 1.

densityCount The number of entries in the densities array.

densities An array of one or more FontDensityType
structures identifying the glyphs for each
supported density.

Constant Value Description

checkboxFont symbol11Font A convenience constant that points
to the font containing the checkbox
bitmap.

fntMissingChar –1 The value used for a character that
does not have a definition in the
current font. The missing character
symbol is usually an open
rectangle.

fntExtendedFormatMask 0x0200 A constant used for the fontType
field of a font to indicate that it is
an extended font resource.

fntTabChrWidth 20 The width of the tab character in
pixels.

Fonts
Font Resources

718 Palm OS Programmer’s API Reference

Font Resources

Font Resource
The font resource ('NFNT') represents a version 1 single-density
font. This resource is the same as the Macintosh 'NFNT' resource
with some restrictions. It contains a header followed by several
tables that provide information about each glyph in the font.

Figure 33.1 shows how the font resource is laid out in memory. Table
33.1 describes each table within the font resource.

Figure 33.1 Font resource ('NFNT')

Fonts
Font Resources

Palm OS Programmer’s API Reference 719

Table 33.1 Font resource description

Field Description

FontType
header

Contains general information about the glyphs
in the font. See FontType.

Font image A raw bitmap image containing the packed
character glyphs from left to right (see Figure
33.2 on page 720). This part of the resource tells
Palm OS how to draw each character in the
font. The height of the image is fRectHeight
and the size is rowWords * 2 *
fRectHeight.

Place glyphs sequentially in order of
increasing character code. Leave at least a one-
pixel wide vertical column of space to the right
of each image so that there is space between
characters when Palm OS draws text on the
screen. If your font requires leading, leave
horizontal space at the bottom of the characters
as well. The font image must end with the
glyph for the missing character symbol.

Bitmap location
table

A table of 16-bit words that specify the location
of each glyph’s entry in the font image. The
location is specified as the bit offset from the
start of the image to the glyph in the first row
of the font image. The last entry in the table
contains the offset of the column after the last
bitmap. (See Figure 33.2 on page 720.)

If you have skipped characters within an
encoding, for each glyph that is missing,
specify the same value for its location as the
entry for the next glyph in the table.

Fonts
Font Resources

720 Palm OS Programmer’s API Reference

Figure 33.2 shows an example of the font image for a font that
defines glyphs for four characters (A, B, C, and the missing
character symbol) and the portion of the bitmap location table that
provides the offsets for these characters. The last entry in the bitmap
location table is the offset to the column after the last bitmap, or
0x0014.

Figure 33.2 Font image and bitmap location table

Offset/width
table

A table that specifies how wide each glyph in
the font is. On Macintosh systems, this table
also specifies how each glyph kerns. Palm OS
does not support kerning, as the offset value is
ignored.

Each entry in the offset/width table is two
bytes long. The first byte should be 0, and the
second byte should contain the glyph width,
which must be greater than or equal to 0. If the
glyph at this index does not have a bitmap in
the font image, the values should be –1 and –1.

Table 33.1 Font resource description (continued)

Field Description

Fonts
Font Resources

Palm OS Programmer’s API Reference 721

New Extended Font Resource
The extended font resource ('nfnt') defines a font that supports
multiple screen densities. Currently, only two screen densities are
supported: the standard density of 80 dpi, as occurs on most devices
that use a 160 X 160 pixel display, and double density of 160 dpi, as
occurs on most devices that use a 320 X 320 pixel display. As shown
in Figure 33.3, the extended font resource is essentially:

• A FontTypeV2 header giving all general information about
the glyphs in the font. All metrics are in terms of the low-
density version of the font.

• Tables for the low-density font. See “Font Resource” on
page 718 for a description of these tables.

• The font image (set of glyphs) for each density specified by
the font.

Compatibility

This resource is only defined if the High-Density Display Feature
Set is present.

Fonts
Font Resources

722 Palm OS Programmer’s API Reference

Figure 33.3 Extended font resource

Fonts
Font Functions

Palm OS Programmer’s API Reference 723

Font Functions

FntAverageCharWidth

Purpose Gets the maximum character width in pixels of the current font.

Declared In Font.h

Prototype Int16 FntAverageCharWidth (void)

Parameters None.

Result Returns the maximum character width (in pixels).

Comments This function returns the value of the fRectHeight field in the
FontType structure for the current font. Because Palm OS does not
support kerning, this value is the maximum width in pixels rather
than the average width.

FntBaseLine

Purpose Gets the distance from the top of the character cell to the baseline for
the current font.

Declared In Font.h

Prototype Int16 FntBaseLine (void)

Parameters None.

Result Returns the ascent of the font (in pixels).

Fonts
Font Functions

724 Palm OS Programmer’s API Reference

FntCharHeight

Purpose Gets the character height of the current font including accents and
descenders.

Declared In Font.h

Prototype Int16 FntCharHeight (void)

Parameters None.

Result Returns the height of the characters in the current font, expressed in
pixels.

FntCharsInWidth

Purpose Finds the length in bytes of the characters from a specified string
that fit within a passed width.

Declared In Font.h

Prototype void FntCharsInWidth (Char const *string,
Int16 *stringWidthP, Int16 *stringLengthP,
Boolean *fitWithinWidth)

Parameters -> string A pointer to the character string.

<-> stringWidthP
The maximum width to allow (in pixels). Upon
return, contains the actual width allowed. Note
that this value does not include any trailing
spaces or tabs, which are stripped by this
function.

Fonts
Font Functions

Palm OS Programmer’s API Reference 725

<-> stringLengthP
The maximum length of text to allow, in bytes
(assumes current font). Upon return, contains
the number of bytes of text that can appear
within the width. Note that this value does not
include any trailing space or tabs, which are
stripped by this function.

<- fitWithinWidth
Upon return, false if the string is considered
truncated, true if it isn’t.

Result Returns nothing.

Comments Spaces and tabs at the end of a string are ignored and removed. If
the string fits within the specified width after spaces and tabs are
removed, the fitWithinWidth value contains true. Characters
after a carriage return are ignored, and the string is considered
truncated.

This function is specifically designed for the code used to draw text
fields. Consider using FntWidthToOffset in your application
code instead, particularly if you do not want the special processing
of trailing spaces, tabs, and carriage returns.

FntCharsWidth

Purpose Gets the width of the specified character string. The missing
character symbol (an open rectangle) is substituted for any
character that does not exist in the current font.

Declared In Font.h

Prototype Int16 FntCharsWidth (Char const *chars,
Int16 len)

Parameters -> chars Pointer to a string of characters.

Fonts
Font Functions

726 Palm OS Programmer’s API Reference

-> len Length in bytes of the string.

Result Returns the width of the string, in pixels.

Comments Like all functions that work with strings, this function returns
correct results for strings with multi-byte characters as well as
strings with only single-byte characters.

See Also FntCharWidth

FntCharWidth

Purpose Gets the width of the specified character. If the specified character
does not exist within the current font, the missing character symbol
is substituted.

Declared In Font.h

Prototype Int16 FntCharWidth (Char ch)

Parameters -> ch Character whose width is needed.

Result Returns the width of the specified character (in pixels).

Comments FntCharWidth works with single-byte characters only. To
determine the pixel width of a single-byte character or a multi-byte
character, use FntWCharWidth instead of this function in Palm OS
4.0 and higher. Alternatively, for compatibility with earlier versions
of Palm OS, link with the PalmOSGlue library and call
FntGlueWCharWidth. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also FntCharsWidth

Fonts
Font Functions

Palm OS Programmer’s API Reference 727

FntDefineFont

Purpose Makes a custom font available to your application.

Declared In Font.h

Prototype Err FntDefineFont (FontID font, FontPtr fontP)

Parameters -> font A value greater than or equal to
fntAppFontCustomBase that identifies the
custom font to the system. Values less than that
are reserved for system use. Note that font IDs
are 8-bit unsigned values and so must be less
than 256. See FontID.

-> fontP Pointer to the custom font resource to be used
by this function. This resource must remain
locked until the calling application undefines
the custom font or quits.

Result errNone No error

memErrNotEnoughSpace
Insufficient dynamic heap space

Comments The custom font is available only when the application that called
this function is running; when the application quits, the custom font
is uninstalled automatically.

The font this function specifies is not available at build time; as a
result, some UI elements—labels, for example—cannot determine
their bounds automatically as they do when using the built-in fonts.

Before you use this function, you must load the font resource from
the database and obtain a pointer to it. See “Creating Custom Fonts”
on page 275 of the Palm OS Programmer’s Companion, vol. I for more
information.

Compatibility Implemented only if 3.0 New Feature Set is present.

Palm OS 4.0 and later do not allow a NULL value for the fontP
parameter; therefore, you cannot undefine a font using

Fonts
Font Functions

728 Palm OS Programmer’s API Reference

FntDefineFont(myFontID, NULL). Earlier versions of Palm OS
allowed the NULL value. Note that there is usually no need to
undefine a font.

Palm OS 3.0 and 3.1 have problems with font ID values greater than
131. These problems are fixed in later releases of Palm OS.

See Also FontSelect, FntSetFont

FntDescenderHeight

Purpose Gets the height of a character’s descender in the current font. The
height of a descender is the distance between the baseline and the
bottom of the character cell.

Declared In Font.h

Prototype Int16 FntDescenderHeight (void)

Parameters None.

Result Returns the height of a descender, expressed in pixels.

FntGetFont

Purpose Gets the font ID of the current font.

Declared In Font.h

Prototype FontID FntGetFont (void)

Parameters None.

Result Returns the ID of the current font.

Comments The current font is the font stored in the draw state. It is used when
drawing characters directly onto the screen. Most user interface

Fonts
Font Functions

Palm OS Programmer’s API Reference 729

elements, such as fields, tables, labels, and buttons, do not use the
current font.

See Also FntSetFont, FntGetFontPtr, FontID

FntGetFontPtr

Purpose Gets a pointer to the current font.

Declared In Font.h

Prototype FontPtr FntGetFontPtr (void)

Parameters None.

Result Returns a pointer to the current font.

Comments The current font is the font stored in the draw state. It is used when
drawing characters directly onto the screen. Most user interface
elements, such as fields, tables, labels, and buttons, do not use the
current font.

See Also FntGetFont

FntGetScrollValues

Purpose Gets the values needed to update a scroll bar based on a specified
string and the position within the string.

Declared In Font.h

Prototype void FntGetScrollValues (Char const *chars,
UInt16 width, UInt16 scrollPos, UInt16 *linesP,
UInt16 *topLine)

Parameters -> chars A null-terminated string.

Fonts
Font Functions

730 Palm OS Programmer’s API Reference

-> width The width of a line of text in the display, given
in pixels.

-> scrollPos The byte offset of the first character displayed
on the topmost line.

<- linesP Number of lines required to display the string.

<- topLine The line of text that is the topmost visible line.
Line numbering starts with 0.

Result Returns nothing. Stores the number of lines of text in linesP and
the top visible line in topLine.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FldGetScrollValues

FntIsAppDefined

Purpose Macro that returns true if the font is defined by the application or
false if it is defined by the system.

Declared In Font.h

Prototype FntIsAppDefined (fnt)

Parameters -> fnt The FontID of a font.

Result Boolean that indicates if the font is an application-defined font.
Returns true if application-defined, false if system-defined.

Fonts
Font Functions

Palm OS Programmer’s API Reference 731

FntLineHeight

Purpose Gets the height of a line in the current font. The height of a line is the
height of the character cell plus the space between lines (the external
leading).

Declared In Font.h

Prototype Int16 FntLineHeight (void)

Parameters None.

Result Returns the height in pixels of a line in the current font.

FntLineWidth

Purpose Gets the width of the specified line of text, taking tab characters into
account. The function assumes that the characters passed are left-
aligned and that the first character in the string is the first character
drawn on a line. In other words, this routine doesn’t work for
characters that don’t start at the beginning of a line.

Declared In Font.h

Prototype Int16 FntLineWidth (Char const *pChars,
UInt16 length)

Parameters -> pChars Pointer to a string of characters.

-> length Length in bytes of the string.

Result Returns the line width (in pixels).

Fonts
Font Functions

732 Palm OS Programmer’s API Reference

FntSetFont

Purpose Sets the current font.

Declared In Font.h

Prototype FontID FntSetFont (FontID font)

Parameters -> font ID of the font to make the current font.

Result Returns the ID of the previous font.

Comments If the specified font ID is invalid, this function sets the current font
to stdFont.

The current font is the font stored in the draw state. It is used when
drawing characters directly onto the screen. Most user interface
elements, such as fields, tables, labels, and buttons, do not use the
current font. To set the font for one of these elements, check the API
for that element. If the element’s API doesn’t have a function to set
the font programmatically, check the PalmOSGlue library.

See Also FntGetFont

FntWCharWidth

Purpose Gets the width of the specified character. If the specified character
does not exist within the current font, the missing character symbol
is substituted.

Declared In Font.h

Prototype Int16 FntWCharWidth (WChar iChar)

Parameters -> iChar Character whose width is needed.

Result Returns the width of the specified character (in pixels).

Fonts
Font Functions

Palm OS Programmer’s API Reference 733

Comments FntWCharWidth works with both single-byte characters and multi-
byte characters. However, you should always pass a WChar variable
to this function rather than a Char to avoid sign extension problems
on values 0x80 and higher.

Compatibility Implemented only if 4.0 New Feature Set is present. If you want to
use this function in code intended to be run on earlier versions of
Palm OS, link with the PalmOSGlue library and call
FntGlueWCharWidth. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also FntCharWidth

FntWidthToOffset

Purpose Given a pixel position, gets the offset of the character displayed at
that location.

Declared In Font.h

Prototype Int16 FntWidthToOffset (Char const *pChars,
UInt16 length, Int16 pixelWidth,
Boolean *leadingEdge, Int16 *truncWidth)

Parameters -> pChars Pointer to the character string.

-> length The length in bytes of pChars.

-> pixelWidth A horizontal pixel offset from the beginning of
the string.

<- leadingEdge Set to true if the pixel position pixelWidth
falls on the left side of the character. Pass NULL
for this parameter if you don’t need this
information.

Fonts
Font Functions

734 Palm OS Programmer’s API Reference

<- truncWidth The width of the text (in pixels) up to but not
including the returned offset. Pass NULL for this
parameter if you don’t need this information.

Result Returns the byte offset into pChars of the character that contains
the pixel offset pixelWidth. If pixelWidth is past the right edge
of the string, the function returns the byte offset past the last
character in pChars, and truncWidth contains the width required
to display the entire string.

Compatibility Implemented only if 3.1 New Feature Set is present. If you want to
use this function in code intended to be run on earlier versions of
Palm OS, link with the PalmOSGlue library and call
FntGlueWidthToOffset. For more information, see Chapter 75,
“PalmOSGlue Library.”

FntWordWrap

Purpose Given a string, determines how many bytes of text can be displayed
within the specified width with a line break at a tab or space
character.

Declared In Font.h

Prototype UInt16 FntWordWrap (Char const *chars,
UInt16 maxWidth)

Parameters -> chars A pointer to a null-terminated string.

-> maxWidth The maximum line width in pixels.

Result Returns the length of the line, in bytes. If the entire string cannot be
displayed within maxWidth, the value that this function returns
specifies the offset where the line should be broken, which is
typically following a space, tab, or line-feed character.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FldWordWrap

Fonts
Font Functions

Palm OS Programmer’s API Reference 735

FntWordWrapReverseNLines

Purpose Word wraps a text string backwards by the number of lines
specified. The character position of the start of the first line and the
number of lines that are actually word wrapped are returned.

Declared In Font.h

Prototype void FntWordWrapReverseNLines
(Char const *const chars, UInt16 maxWidth,
UInt16 *linesToScrollP, UInt16 *scrollPosP)

Parameters -> chars A pointer to a null-terminated string.

-> maxWidth The maximum line width in pixels.

<-> linesToScrollP
The number of lines to scroll. Upon return,
contains the number of lines that were scrolled.

<-> scrollPosP The byte offset of the first character displayed
on the topmost line. Upon return, contains the
first character after wrapping.

Result Returns nothing. Stores the first character after wrapping and the
number of lines scrolled in scrollPosP and linesToScrollP.

Compatibility Implemented only if 2.0 New Feature Set is present.

Fonts
Font Functions

736 Palm OS Programmer’s API Reference

FontSelect

Purpose Displays a dialog from which the user can choose one of the system-
supplied fonts, and returns a FontID value representing the user’s
choice.

Declared In FontSelect.h

Prototype FontID FontSelect (FontID fontID)

Parameters -> fontID A FontID value specifying the font to be
highlighted as the default choice in the dialog
box that this function displays. This value must
be one of the following system-supplied
constants:

stdFont
Standard plain text font.

boldFont
Bold version of stdFont.

largeFont
A large plain text font (Japanese devices
only).

largeBoldFont
Larger version of boldFont.

Result Returns a FontID value representing the font that the user chose.

Comments When your application launches for the first time, it should
determine the system’s default font. The default font varies based
on locale. You can use FntGlueGetDefaultFontID from the
PalmOSGlue library to determine the default font as follows:

fntID =
FntGlueGetDefaultFontID(defaultSystemFont);

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FntGetFont, FntSetFont

Palm OS Programmer’s API Reference 737

34
Graffiti Manager
This chapter provides reference material for the Graffiti® manager.
The Graffiti manager API is declared in the header file
Graffiti.h.

For more information on the Graffiti manager, see “The Graffiti
Manager” on page 60 of the Palm OS Programmer’s Companion, vol. I.

Graffiti Manager Functions

GrfAddMacro

Purpose Add a macro to the macro list.

Declared In Graffiti.h

Prototype Err GrfAddMacro (const Char *nameP,
UInt8 *macroDataP, UInt16 dataLen)

Parameters nameP Name of macro.

macroDataP Data of macro.

dataLen Size of macro data in bytes.

Result Returns 0 if no error; returns grfErrNoMacros,
grfErrMacroPtrTooSmall, dmErrNotValidRecord,
dmErrWriteOutOfBounds if an error occurs.

See Also GrfGetMacro, GrfGetMacroName, GrfDeleteMacro

Graffit i Manager
Graffiti Manager Functions

738 Palm OS Programmer’s API Reference

GrfAddPoint

Purpose Add a point to the Graffiti point buffer.

Declared In Graffiti.h

Prototype Err GrfAddPoint (PointType *pt)

Parameters pt Pointer to point buffer.

Result Returns 0 if no error; returns grfErrPointBufferFull if an error
occurs.

See Also GrfFlushPoints

GrfCleanState

Purpose Remove any temporary shifts from the dictionary state.

Declared In Graffiti.h

Prototype Err GrfCleanState (void)

Parameters None

Result Returns 0 if no error, or grfErrNoDictionary if an error occurs.

See Also GrfInitState

Graffit i Manager
Graffiti Manager Functions

Palm OS Programmer’s API Reference 739

GrfDeleteMacro

Purpose Delete a macro from the macro list.

Declared In Graffiti.h

Prototype Err GrfDeleteMacro (UInt16 index)

Parameters index Index of the macro to delete.

Result Returns 0 if no error, or grfErrNoMacros,
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro

GrfFilterPoints

Purpose Filter the points in the Graffiti point buffer.

Declared In Graffiti.h

Prototype Err GrfFilterPoints (void)

Parameters None.

Result Always returns 0.

See Also GrfMatch

Graffit i Manager
Graffiti Manager Functions

740 Palm OS Programmer’s API Reference

GrfFindBranch

Purpose Locate a branch in the Graffiti dictionary by flags.

Declared In Graffiti.h

Prototype Err GrfFindBranch (UInt16 flags)

Parameters flags Flags of the branch you’re searching for.

Result Returns 0 if no error, or grfErrNoDictionary or
grfErrBranchNotFound if an error occurs.

See Also GrfCleanState, GrfInitState

GrfFlushPoints

Purpose Dispose of all points in the Graffiti point buffer.

Declared In Graffiti.h

Prototype Err GrfFlushPoints (void)

Parameters None.

Result Always returns 0.

See Also GrfAddPoint

Graffit i Manager
Graffiti Manager Functions

Palm OS Programmer’s API Reference 741

GrfGetAndExpandMacro

Purpose Look up and expand a macro in the current macros.

Declared In Graffiti.h

Prototype Err GrfGetAndExpandMacro (Char *nameP,
UInt8 *macroDataP, UInt16 *dataLenP)

Parameters nameP Name of macro to look up.

macroDataP Macro contents returned here.

dataLenP On entry, size of macroDataP buffer; on exit,
number of bytes in macro data.

Result Returns 0 if no error, or grfErrNoMacros or
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro, GrfGetMacro

GrfGetGlyphMapping

Purpose Look up a glyph in the dictionary and return the text.

Declared In Graffiti.h

Prototype Err GrfGetGlyphMapping (UInt16 glyphID,
UInt16 *flagsP, void *dataPtrP, UInt16 *dataLenP,
UInt16 *uncertainLenP)

Parameters glyphID Glyph ID to look up.

flagsP Returned dictionary flags.

dataPtrP Where returned text goes.

dataLenP On entry, size of dataPtrP; on exit, number of
bytes returned.

Graffit i Manager
Graffiti Manager Functions

742 Palm OS Programmer’s API Reference

uncertainLenP Return number of uncertain characters in text.

Result Returns 0 if no error, or grfErrNoDictionary or
grfErrNoMapping if an error occurs.

See Also GrfMatch

GrfGetMacro

Purpose Look up a macro in the current macros.

Declared In Graffiti.h

Prototype Err GrfGetMacro (Char *nameP, UInt8 *macroDataP,
UInt16 *dataLenP)

Parameters nameP Name of macro to lookup.

macroDataP Macro contents returned here.

dataLenP On entry: size of macroDataP buffer. On exit:
number of bytes in macro data.

Result Returns 0 if no error or grfErrNoMacros,
grfErrMacroNotFound.

See Also GrfAddMacro

GrfGetMacroName

Purpose Look up a macro name by index.

Declared In Graffiti.h

Prototype Err GrfGetMacroName (UInt16 index, Char *nameP)

Parameters index Index of macro.

Graffit i Manager
Graffiti Manager Functions

Palm OS Programmer’s API Reference 743

nameP Name returned here.

Result Returns 0 if no error, or grfErrNoMacros or
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro, GrfGetMacro

GrfGetNumPoints

Purpose Return the number of points in the point buffer.

Declared In Graffiti.h

Prototype Err GrfGetNumPoints (UInt16 *numPtsP)

Parameters numPtsP Returned number of points.

Result Always returns 0.

See Also GrfAddPoint

GrfGetPoint

Purpose Return a point out of the Graffiti point buffer.

Declared In Graffiti.h

Prototype Err GrfGetPoint (UInt16 index, PointType *pointP)

Parameters index Index of the point to get.

pointP Returned point.

Result Returns 0 if no error, or grfErrBadParam if an error occurs.

See Also GrfAddPoint, GrfGetNumPoints

Graffit i Manager
Graffiti Manager Functions

744 Palm OS Programmer’s API Reference

GrfGetState

Purpose Return the current Graffiti shift state.

Declared In Graffiti.h

Prototype Err GrfGetState (Boolean *capsLockP,
Boolean *numLockP, UInt16 *tempShiftP,
Boolean *autoShiftedP)

Parameters capsLockP Returns true if caps lock on.

numLockP Returns true if num lock on.

tempShiftP Current temporary shift.

autoShiftedP Returns TRUE if shift not set by the user but by
the system, for example, at the beginning of a
line.

Result Always returns 0.

Compatibility Palm OS® 2.0 and later has more user-friendly auto shifting. It uses
an upper case letter under these conditions:

• after an empty field

• after a period or other sentence terminator (such as ? or !).

• after two spaces

See Also GrfSetState

Graffit i Manager
Graffiti Manager Functions

Palm OS Programmer’s API Reference 745

GrfInitState

Purpose Reinitialize the Graffiti dictionary state.

Declared In Graffiti.h

Prototype Err GrfInitState (void)

Parameters None.

Result Always returns 0.

See Also GrfGetState, GrfSetState

GrfMatch

Purpose Recognize the current stroke in the Graffiti point buffer and return
with the recognized text.

Declared In Graffiti.h

Prototype Err GrfMatch (UInt16 *flagsP, void *dataPtrP,
UInt16 *dataLenP, UInt16 *uncertainLenP,
GrfMatchInfoPtr matchInfoP)

Parameters flagsP Glyph flags are returned here.

dataPtrP Return text is placed here.

dataLenP Size of dataPtrP on exit; number of characters
returned on exit.

uncertainLenP Return number of uncertain characters.

matchInfoP Array of grfMaxMatches, or NULL.

Result Returns 0 if no error, or grfErrNoGlyphTable,
grfErrNoDictionary, or grfErrNoMapping if an error occurs.

See Also GrfAddPoint, GrfFlushPoints

Graffit i Manager
Graffiti Manager Functions

746 Palm OS Programmer’s API Reference

GrfMatchGlyph

Purpose Recognize the current stroke as a glyph.

Declared In Graffiti.h

Prototype Err GrfMatchGlyph (GrfMatchInfoPtr matchInfoP,
Int16 maxUnCertainty, UInt16 maxMatches)

Parameters matchInfoP Pointer to array of matches to fill in.

maxUnCertainty Maximum number of errors to tolerate.

maxMatches Size of matchInfoP array.

Result Returns 0 if no error, or grfErrNoGlyphTable if an error occurs.

See Also GrfMatch

GrfProcessStroke

Purpose Translate a stroke to keyboard events using Graffiti.

Declared In Graffiti.h

Prototype Err GrfProcessStroke (PointType *startPtP,
PointType *endPtP, Boolean upShift)

Graffit i Manager
Graffiti Manager Functions

Palm OS Programmer’s API Reference 747

Parameters startPtP Start point of stroke.

endPtP End point of stroke.

upShift Set to true to feed an artificial upshift into the
engine.

Result Returns 0 if recognized.

Comments Called by SysHandleEvent when a penUpEvent is detected in
the writing area. This routine recognizes the stroke and sends the
recognized characters into the key queue. It also flushes the stroke
out of the pen queue after recognition.

See Also SysHandleEvent

GrfSetState

Purpose Set the current shift state of Graffiti.

Declared In Graffiti.h

Prototype Err GrfSetState (Boolean capsLock,
Boolean numLock, Boolean upperShift)

Parameters capsLock Set to true to turn on caps lock.

numLock Set to true to turn on num lock.

upperShift Set to true to put into upper shift.

Result Always returns 0.

See Also GrfGetState

Graffit i Manager
Graffiti Manager Functions

748 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 749

35
Helper API
This chapter describes the Helper API declared in the header files
Helper.h and HelperServiceClass.h. The Helper API is used
when an application broadcasts a sysNotifyHelperEvent to all
interested parties. The broadcaster of the notification and the
notification clients (called helpers) use the Helper APIs to
communicate with each other. The chapter discusses the following
topics:

• Helper Data Structures

• Helper Constants

For more information on using the Helper API, see the section
“Helper Notifications” on page 38 of the Palm OS Programmer’s
Companion, vol. I.

Helper Data Structures

HelperNotifyEnumerateListType
The HelperNotifyEnumerateListType provides the
broadcaster of the helper notification with information about the
services that the helper can provide. This structure is used as the
data field of the HelperNotifyEventType structure when the
action code is kHelperNotifyActionCodeEnumerate.

typedef struct HelperNotifyEnumerateListTypeTag
{
 struct HelperNotifyEnumerateListTypeTag
 *nextP;
 Char helperAppName[kHelperAppMaxNameSize];
 Char actionName[kHelperAppMaxActionNameSize];
 UInt32 helperAppID;
 UInt32 serviceClassID;
} HelperNotifyEnumerateListType;

Helper API
Helper Data Structures

750 Palm OS Programmer’s API Reference

Note that the helper allocates this structure and then adds it to the
linked list of structures pointed to by
notifyDetailsP->data.enumerateP in the
SysNotifyParamType that is sent to the helper. The helper should
allocate one structure per supported service.

Even though the helper allocates this structure, the helper is not
responsible for freeing the structure. Instead, the application that
broadcast the notification must free the structure.

Field Descriptions

Compatibility Implemented only if 4.0 New Feature Set is present.

nextP A pointer to the next element in the list or NULL
to signal the end of the list.

helperAppName A null-terminated string containing the name
of the helper application, suitable for display in
the user interface. If more than one application
can perform the same service, this name is
displayed as one of the choices in a pop-up list.

actionName A null-terminated string containing the name
of the service that can be performed, suitable
for display in the user interface. The action
name should be short enough to display on a
button.

helperAppID The helper’s creator ID or any other ID that
uniquely identifies the helper.

serviceClassID The ID of the service that the helper performs.
See Helper Service Class IDs.

Helper API
Helper Data Structures

Palm OS Programmer’s API Reference 751

HelperNotifyEventType
The HelperNotifyEventType structure contains all data
associated with a helper notification (sysNotifyHelperEvent). A
pointer to this structure is passed as the notifyDetailsP field in
the SysNotifyParamType for that notification.

typedef struct HelperNotifyEventTypeTag {
 UInt16 version;
 HelperNotifyActionCodeType actionCode;
 union {
 struct HelperNotifyEnumerateListTypeTag
 *enumerateP;
 struct HelperNotifyValidateTypeTag
 *validateP;
 struct HelperNotifyExecuteTypeTag
 *executeP;
 } data;
} HelperNotifyEventType;

Field Descriptions

The HelperNotifyEventType structure specifies which action is
to be performed and contains data necessary for that action. All
actions have some common data. Actions also have data specific to
that action. The specific data uses a union that is part of the
HelperNotifyEventType structure.

version The version number for this structure. The current
version is 1.

actionCode The action that the helper application should
perform. See Table 35.1.

data Data specific to the action code. See Table 35.1.

Helper API
Helper Data Structures

752 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

HelperNotifyExecuteType
The HelperNotifyExecuteType structure identifies the service
to perform and contains the data necessary to perform that service.
This structure is used as the data field of the
HelperNotifyEventType structure when the action code is
kHelperNotifyActionCodeExecute.

typedef struct HelperNotifyExecuteTypeTag {
 UInt32 serviceClassID;
 UInt32 helperAppID;
 Char *dataP;
 Char *displayedName;
 void *detailsP;
 Err err;
} HelperNotifyExecuteType;

Table 35.1 Helper action codes

Action Code data Type Description

kHelperNotify
ActionCode
Enumerate

HelperNotifyEnumerateListType Send a list of available
services.

kHelperNotify
ActionCode
Validate

HelperNotifyValidateType Validate the input data
for the specified
service.

kHelperNotify
ActionCode
Execute

HelperNotifyExecuteType Perform the specified
service.

Helper API
Helper Data Structures

Palm OS Programmer’s API Reference 753

Field Descriptions

The following table lists the Palm OS-defined values for the service
class ID and for each service, shows what value dataP contains and
what type of structure detailsP points to.

serviceClassID The ID of the service to be performed. See
Helper Service Class IDs.

helperAppID The unique ID of the helper; a value of 0
indicates that any available helper for the
specified service class should perform the
service.

dataP A null-terminated string specific to this
service, such as a phone number for the dial
service or an email address for the email
service. See Table 35.2. Multiple fields must
be separated by semicolons (;).

displayedName A null-terminated string containing an
optional, human-readable description of the
string in dataP. For example, if dataP
contains a phone number, this field might
contain the name of the person at that
number.

detailsP A pointer to a data structure containing
extra information that this service requires.
See Table 35.2. If the service does not
require extra information, this field is NULL.

err An error code that indicates if the service
was performed successfully or not. If the
service was successful, this field contains
errNone, and the handled field in the
notification data structure should be set to
true.

Helper API
Helper Data Structures

754 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

HelperNotifyValidateType
The HelperNotifyValidateType structure identifies a service
that should be validated and the helper that should validate it. This
structure is used as the data field of the
HelperNotifyEventType structure when the action code is
kHelperNotifyActionCodeValidate.

typedef struct HelperNotifyValidateTypeTag {
 UInt32 serviceClassID;
 UInt32 helperAppID;
} HelperNotifyValidateType;

Table 35.2 HelperNotifyExecuteType values

Service Class ID dataP Value detailsP Value

kHelper
ServiceClassID
VoiceDial

The telephone
number to dial

NULL

kHelper
ServiceClassID
EMail

The email address
to which the
message is to be
sent

HelperServiceEMailDetailsType

kHelper
ServiceClassID
SMS

The SMS mailbox
number to which
the message is to be
sent

HelperServiceSMSDetailsType

kHelper
ServiceClassID
Fax

The fax number to
which the fax is to
be sent

NULL

Helper API
Helper Data Structures

Palm OS Programmer’s API Reference 755

Field Descriptions

The helper returns true in the handled field of the
SysNotifyParamType structure to indicate that the service can be
performed or false to indicate that the service cannot be
performed.

Compatibility Implemented only if 4.0 New Feature Set is present.

HelperServiceEMailDetailsType
The HelperServiceEMailDetailsType structure provides
additional data for the email service. It is used as the detailsP
field in the HelperNotifyExecuteType when the service class ID
is kHelperServiceClassIDEMail.

typedef struct _HelperServiceEMailDetailsType
{
 UInt16 version;
 Char *cc;
 Char *subject;
 Char *message;
} HelperServiceEMailDetailsType;

Field Descriptions

serviceClassID The ID of the service to be validated. See
Helper Service Class IDs.

helperAppID The creator ID of the helper application. 0
indicates that any available helper for the
specified service should respond. If nonzero,
only the helper with the matching creator ID
should respond.

version The version number for this structure. The current
version is 1.

cc A null-terminated string containing an email address
that should be sent a carbon copy of the message.
Multiple addresses are separated by a semi-colon (;).
May be NULL if there are no email addresses to carbon
copy.

Helper API
Helper Constants

756 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

HelperServiceSMSDetailsType
The HelperServiceSMSDetailsType structure provides the
SMS message to be sent. It is used as the detailsP field in the
HelperNotifyExecuteType when the service class ID is
kHelperServiceClassIDSMS.

typedef struct _HelperServiceSMSDetailsType {
 UInt16 version;
 Char *message;
} HelperServiceSMSDetailsType;

Field Descriptions

Compatibility Implemented only if 4.0 New Feature Set is present.

Helper Constants

Helper Service Class IDs
The header file HelperServiceClass.h defines the constants
listed in Table 35.3 as service class IDs. Third party developers may
define their own service classes. To do so, you must register a 32-bit
identifier with PalmSource, Inc. on this web site:

http://www.palmos.com/dev/creatorid/

Alternatively, you can use a creator ID that you already own.

subject A null-terminated string containing the subject line.
May be NULL.

message Initial message body string or NULL.

version The version number for this structure. The current
version is 1.

message A null-terminated string containing the body of the
message to be sent, or NULL.

http://www.palmos.com/dev/creatorid/

Helper API
Helper Constants

Palm OS Programmer’s API Reference 757

Compatibility Implemented only if 4.0 New Feature Set is present.

Table 35.3 Service class ID constants

Constant Value Description

kHelperServiceClassIDVoiceDial 'voic' Dial a phone number for a voice
telephone call.

kHelperServiceClassIDEMail 'mail' Send an email message.

kHelperServiceClassIDSMS 'sms_' Send an SMS message.

kHelperServiceClassIDFax 'fax_' Send a fax.

Helper API
Helper Constants

758 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 759

36
Key Manager
This chapter provides reference material for the key manager. The
key manager API is declared in the header file KeyMgr.h.

For more information on the key manager, see “The Key Manager”
on page 62 of the Palm OS Programmer’s Companion, vol. I.

Key Manager Functions

KeyCurrentState

Purpose Return bit field with bits set for each key that is currently depressed.

Declared In KeyMgr.h

Prototype UInt32 KeyCurrentState (void)

Parameters None.

Result Returns a UInt32 with bits set for keys that are depressed. See
keyBitPower, keyBitPageUp, keyBitPageDown, etc., in
KeyMgr.h.

Comments Called by applications that need to poll the keys.

See Also KeyRates

Key Manager
Key Manager Functions

760 Palm OS Programmer’s API Reference

KeyRates

Purpose Get or set the key repeat rates.

Declared In KeyMgr.h

Prototype Err KeyRates (Boolean set, UInt16* initDelayP,
UInt16* periodP, UInt16* doubleTapDelayP,
Boolean* queueAheadP)

Parameters set If true, settings are changed; if false, current
settings are returned.

initDelayP Initial delay in ticks for a auto-repeat event.

periodP Auto-repeat rate specified as period in ticks.

doubleTapDelayPMaximum double-tap delay, in ticks.

queueAheadP If true, auto-repeating keeps queueing up key
events if the queue has keys in it. If false,
auto-repeat doesn’t enqueue keys unless the
queue is already empty.

Result Returns 0 if no error.

See Also KeyCurrentState

Key Manager
Key Manager Functions

Palm OS Programmer’s API Reference 761

KeySetMask

Purpose Specify which keys generate keyDownEvents.

You can specify this either by using this function or by using the
poweredOnKeyMask modifier.

Declared In KeyMgr.h

Prototype UInt32 KeySetMask (UInt32 keyMask)

Parameters keyMask Mask with bits set for those keys to generate
keyDownEvents for.

Result Returns the old key Mask.

Compatibility Implemented only if 2.0 New Feature Set is present.

Key Manager
Key Manager Functions

762 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 763

37
Locale Manager
This chapter describes the Locale Manager API as described in the
header files LocaleMgr.h, Localize.h, and PalmLocale.h. It
discusses the following topics:

• Locale Manager Data Types

• Locale Manager Constants

• Locale Manager Functions

For more information on the Locale Manager, see the chapter
“Localized Applications” on page 363 of the Palm OS Programmer’s
Companion, vol. I.

Locale Manager Data Types

CountryType
The CountryType defines a country code. The Country Constants
in PalmLocale.h define the possible values for CountryType
variables.

typedef UInt8 CountryType;

Compatibility Prior to version 4.0, CountryType was an enum in
Preferences.h that defined only 33 country codes. The Palm OS®
4.0 definition of CountryType is compatible with the previous
definition.

LanguageType
The LanguageType defines a language code. The Language
Constants in PalmLocale.h define the possible values for
LanguageType variables.

Locale Manager
Locale Manager Data Types

764 Palm OS Programmer’s API Reference

typedef UInt8 LanguageType;

Compatibility The LanguageType definition was added in Palm OS 3.5. Prior to
version 4.0, LanguageType was an enum in Preferences.h that
defined only eight language codes. The Palm OS 4.0 definition of
LanguageType is compatible with the previous definition.

LmLocaleType
The LmLocaleType struct defines the country and language used
in a locale.

struct _LmLocaleType {
 UInt16 language;
 UInt16 country;
};
typedef struct _LmLocaleType LmLocaleType;

Field Descriptions

Note that the language and country fields are type UInt16
instead of LanguageType and CountryType.

Compatibility The LmLocaleType is defined only if 4.0 New Feature Set is
present. It supersedes the OmLocaleType that was introduced with
Palm OS 3.5. LmLocaleType is bit-compatible with
OmLocaleType.

NumberFormatType
The NumberFormatType enum specifies how numbers are
formatted. You can pass a NumberFormatType value to

language One of the Language Constants. This value identifies
the language spoken in the current locale.

country One of the Country Constants. This value identifies
the locale’s country, which helps to identify the
language dialect. For example, a language of
lEnglish specifies a different dialect if the country is
cUnitedKingdom than if it is cUnitedStates.

Locale Manager
Locale Manager Constants

Palm OS Programmer’s API Reference 765

LocGetNumberSeparators and receive the appropriate separator
characters for thousands and decimals.

typedef enum {
 nfCommaPeriod,
 nfPeriodComma,
 nfSpaceComma,
 nfApostrophePeriod,
 nfApostropheComma
} NumberFormatType;

Value Descriptions

Locale Manager Constants

Character Encoding Constants
The PalmLocale.h file defines several character encoding
constants that are used as values of CharEncodingType variables.
The character encoding constants generally follow the format:

charEncodingName

where Name is the name of the character encoding.

nfCommaPeriod Uses a comma (,) as the thousands
separator and a period (.) as the decimal
separator.

nfPeriodComma Uses a period as the thousands separator
and a comma as the decimal separator.

nfSpaceComma Uses a space () as the thousands separator
and a comma as the decimal separator.

nfApostrophePeriod Uses an apostrophe (‘) as the thousands
separator and a period as the decimal
separator.

nfApostropheComma Uses an apostrophe as the thousands
separator and a comma as the decimal
separator.

Locale Manager
Locale Manager Constants

766 Palm OS Programmer’s API Reference

The following table shows examples of the character encoding
constants. For a complete list, see the PalmLocale.h file.

Constant Description

charEncodingUnknown Unknown to this version of
Palm OS®

charEncodingAscii ISO 646-1991

charEncodingISO8859_1 ISO 8859 Part 1 (also known as
ISO Latin 1). This encoding is
commonly used for the Roman
alphabet

charEncodingPalmLatin Palm OS version of Microsoft
Windows code page 1252. This
encoding is identical to code page
1252 with Palm-specific
characters added in the control
range.

charEncodingShiftJIS Encoding for 0208-1990 with
single-byte Japanese Katakana.
This encoding is commonly used
for Japanese alphabets.

charEncodingPalmSJIS Palm OS version of Microsoft
Windows code page 932. This
encoding is identical to code page
932, with Palm-specific characters
added in the control range and
with a Yen symbol instead of the
Reverse Solidus at location
0x5c.

charEncodingCP1252 Microsoft Windows extensions to
ISO 8859 Part 1

charEncodingCP932 Microsoft Windows extensions to
Shift JIS

charEncodingUTF8 Eight-bit safe encoding for
Unicode

Locale Manager
Locale Manager Constants

Palm OS Programmer’s API Reference 767

Country Constants
The PalmLocale.h file defines several country constants that are
used as values of CountryType variables. The country type
constants have the following format:

cCountryName

where CountryName is the name of the country. There is one
constant for each country identified in the ISO 3166 standard, which
currently defines 239 countries.

The following table shows examples of the country type constants.
For a complete list, see the PalmLocale.h file.

Language Constants
The PalmLocale.h file defines several language constants that are
used as values of LanguageType variables. The language type
constants have the following format:

lLanguageName

where LanguageName is the name of the language. There is one
constant for each language specified in the ISO 639 standard, which
currently defines 137 languages.

The following table shows examples of the language type constants.
For a complete list, see the PalmLocale.h file.

Constant Description

cAustralia Australia

cAustria Austria

cBelgium Belgium

Constant Description

lEnglish English

lFrench French

lGerman German

Locale Manager
Locale Manager Functions

768 Palm OS Programmer’s API Reference

Locale Manager Size Constants
You can use the Locale Manager size constants to determine the size
of strings to allocate for some of the locale settings.

NOTE: The variables in the table below do not count the
terminating null character. Therefore, you need to allocate a string
of size kMaxCountryNameLen+1 to hold a country name, for
example.

Locale Manager Functions

LmGetLocaleSetting

Purpose Return the requested setting for a given locale.

Declared In LocaleMgr.h

Prototype Err LmGetLocaleSetting (UInt16 iLocaleIndex,
LmLocaleSettingChoice iChoice, void *oValue,
UInt16 iValueSize)

Parameters -> iLocaleIndex Index of the locale whose settings you want to
retrieve.

-> iChoice The setting you want to retrieve. This is a
constant in the form lmChoiceSettingName.
See Table 37.1 for a list of possible values.

Constant Value Description

kMaxCountryNameLen 19 The maximum length of a country
name string.

kMaxCurrencyNameLen 19 The maximum length of a currency
name string.

kMaxCurrencySymbolLen 5 The maximum length of a currency
symbol string.

Locale Manager
Locale Manager Functions

Palm OS Programmer’s API Reference 769

<- oValue The value of the iChoice setting. The size of
this buffer depends on the value of iChoice,
as shown in Table 37.1.

-> iValueSize The size of the oValue buffer.

Result Returns one of the following values:

errNone Success.

lmErrBadLocaleIndex
iLocaleIndex is out of range.

lmErrSettingDataOverflow
The oValue buffer is too small to hold the
setting’s value.

lmErrBadLocaleSettingChoice
The iChoice parameter contains an unknown
or unsupported value.

Comments This function accesses the private locale system resource and
returns the requested information in the oValue parameter. The
size and type of the oValue parameter depend on which setting
you want to retrieve. Table 37.1 lists and describes the possible
settings and the type of data returned in oValue for each setting.
For fixed-size values, make sure that oValue is no larger than the
returned value.

This function returns the default settings for the locale. Users can
override many of the locale settings using the Preferences
application. Applications should always honor the user’s
preferences rather than the locale defaults. For this reason, it’s
recommended that if a corresponding system preference is
available, you should check it instead (using
PrefGetPreference). Use LmGetLocaleSetting only if you
want to retrieve values that the user cannot override (such as the
country name or currency symbol) or if you want to retrieve
information about a locale other than the current locale.

Locale Manager
Locale Manager Functions

770 Palm OS Programmer’s API Reference

Table 37.1 LmGetLocaleSetting choices and sizes

lmChoice... oValue Data Type Description

CountryName String buffer of size
kMaxCountryNameLen+1
bytes

The name of the locale’s
country.

CurrencyName String buffer of size
kMaxCurrencyNameLen+1
bytes

The name of the currency
used in this locale.

CurrencySymbol String buffer of size
kMaxCurrencySymbolLen+1
bytes

The symbol used to denote
monetary values in this
locale.

CurrencyDecimal
Places

UInt16 The number of decimal
places that monetary
values are typically given.

DateFormat DateFormatType The short date format used
in this locale. For example:

95/12/31

Locale LmLocaleType A structure containing the
locale’s language and
country codes.

LongDateFormat DateFormatType The long date format used
in this locale. For example:

31 Dec 1995

MeasurementSystem MeasurementSystemType The measurement system
(metric system or English
system) used in this locale.

NumberFormat NumberFormatType The format used for
numbers, with regards to
the thousands separator
and the decimal point, in
this locale.

Locale Manager
Locale Manager Functions

Palm OS Programmer’s API Reference 771

Compatibility Implemented only if 4.0 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
LmGlueGetLocaleSetting. For more information, see Chapter
75, “PalmOSGlue Library.”

See Also LmGetNumLocales, LmLocaleToIndex

TimeFormat TimeFormatType The format used for time
values in this locale.

TimeZone Int16 The locale’s default time
zone given as the number
of minutes east of
Greenwich Mean Time
(GMT).

UniqueCurrency
Symbol

String buffer of size
kMaxCurrencySymbolLen+1
bytes

A unique symbol for
monetary values.

For example, the symbol $
is used both for US dollars
and Portuguese escudos.
The unique currency
symbol for US dollars is
US$.

WeekStartDay UInt16 The first day of the week
(Sunday or Monday) in
this locale. Days of the
week are numbered from 0
to 6 starting with Sunday =
0.

Table 37.1 LmGetLocaleSetting choices and sizes (continued)

lmChoice... oValue Data Type Description

Locale Manager
Locale Manager Functions

772 Palm OS Programmer’s API Reference

LmGetNumLocales

Purpose Return the number of known locales.

Declared In LocaleMgr.h

Prototype UInt16 LmGetNumLocales (void)

Parameters None.

Result Returns the number of locales that the locale system resource
defines.

Comments Use this function to obtain the range of possible values that you can
pass as an index to LmGetLocaleSetting. If LmGetNumLocales
returns 3, then LmGetLocaleSetting accepts indexes in the range
of 0 to 2.

This function returns only the number of locales for which the ROM
has locale information. It does not return the number of locales that
could possibly be defined. For example, the system resource
currently contains no locale whose language is lHebrew and
country is cIsrael, even though that is a valid locale.

Compatibility Implemented only if 4.0 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
LmGlueGetNumLocales. For more information, see Chapter 75,
“PalmOSGlue Library.”

Locale Manager
Locale Manager Functions

Palm OS Programmer’s API Reference 773

LmLocaleToIndex

Purpose Convert an LmLocaleType to an index.

Declared In LocaleMgr.h

Prototype Err LmLocaleToIndex (const LmLocaleType *iLocale,
UInt16 *oLocaleIndex)

Parameters -> iLocale The locale to convert.

<- oLocaleIndex The index of iLocale upon return.

Result Returns errNone upon success or lmErrUnknownLocale if the
locale could not be found.

Comments You can use this function to obtain a valid index to pass to
LmGetLocaleSetting. For example, you might use the Overlay
Manager routine OmGetSystemLocale to return the locale used on
the current system and then pass that locale to this function to
obtain its index.

LmLocaleType locale;
Char oValue[kMaxCurrencySymbolLen+1];
UInt16 index;

OmGetSystemLocale(&locale);
LmLocaleToIndex(&locale, &index);
LmGetLocaleSetting(index,
 lmChoiceCurrencySymbol, oValue,
 sizeof(oValue));

The LmLocaleType that is passed in iLocale can use the
constants lmAnyCountry or lmAnyLanguage as wildcards. For
example, if the country is lmAnyCountry, LmLocaleToIndex
returns the index of the first locale that matches the language.

Compatibility Implemented only if 4.0 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call

Locale Manager
Locale Manager Functions

774 Palm OS Programmer’s API Reference

LmGlueLocaleToIndex. For more information, see Chapter 75,
“PalmOSGlue Library.”

Palm OS Programmer’s API Reference 775

38
Memory Manager
This chapter provides reference information for the memory
manager. The memory manager API is declared in the header file
MemoryMgr.h.

For more information on the memory manager, see the chapter
“Memory” in the Palm OS Programmer’s Companion, vol. I.

Memory Manager Functions

MemCardInfo

Purpose Return information about a memory card.

Declared In MemoryMgr.h

Prototype Err MemCardInfo (UInt16 cardNo, Char* cardNameP,
Char* manufNameP, UInt16* versionP,
UInt32* crDateP, UInt32* romSizeP,
UInt32* ramSizeP, UInt32* freeBytesP)

Parameters cardNo Card number.

cardNameP Pointer to character array (32 bytes), or 0.

manufNameP Pointer to character array (32 bytes), or 0.

versionP Pointer to version variable, or 0.

crDateP Pointer to creation date variable, or 0.

romSizeP Pointer to ROM size variable, or 0.

ramSizeP Pointer to RAM size variable, or 0.

Memory Manager
Memory Manager Functions

776 Palm OS Programmer’s API Reference

freeBytesP Pointer to free byte-count variable, or 0.

Result Returns 0 if no error.

Comments Pass 0 for those variables that you don’t want returned.

MemCmp

Purpose Compare two blocks of memory.

NOTE: Blocks are compared as unsigned bytes.

Declared In MemoryMgr.h

Prototype Int16 MemCmp (const void* s1, const void* s2,
Int32 numBytes)

Parameters s1, s2 Pointers to block of memory.

numBytes Number of bytes to compare.

Result Zero if they match, non-zero if not:

+ if s1 > s2

- if s1 < s2

Compatibility Implemented only if 2.0 New Feature Set is present.

MemCmp can be used to test the equality of blocks in memory on all
versions that support MemCmp; however, testing the sort ordering of
blocks in memory works reliably only on Palm OS® versions 3.5 and
higher. On versions earlier than 3.2, MemCmp always returns a
positive value if the blocks are unequal. On versions 3.2 and 3.3,
MemCmp reliably returns positive to indicate s1 > s2 and negative to
indicate s1 < s2 only if the characters that differ are less than 128
apart. If the difference is greater than that, MemCmp may return
positive when it should return negative and vice versa.

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 777

MemDebugMode

Purpose Return the current debugging mode of the memory manager.

Declared In MemoryMgr.h

Prototype UInt16 MemDebugMode (void)

Parameters No parameters.

Result Returns debug flags as described for MemSetDebugMode.

MemHandleCardNo

Purpose Return the card number a chunk resides in.

Declared In MemoryMgr.h

Prototype UInt16 MemHandleCardNo (MemHandle h)

Parameters -> h Chunk handle.

Result Returns the card number.

Comments Call this routine to retrieve the card number (0 or 1) a movable
chunk resides on.

See Also MemPtrCardNo

Memory Manager
Memory Manager Functions

778 Palm OS Programmer’s API Reference

MemHandleDataStorage

Purpose Return true if the given handle is part of a data storage heap. If not,
it’s a handle in the dynamic heap.

Declared In MemoryMgr.h

Prototype Boolean MemHandleDataStorage (MemHandle h)

Parameters -> h Chunk handle.

Result Returns true if the handle is part of a data storage heap.

Comments Called by Fields package routines to determine if they need to
worry about data storage write-protection when editing a text field.

See Also MemPtrDataStorage

MemHandleFree

Purpose Dispose of a movable chunk.

Declared In MemoryMgr.h

Prototype Err MemHandleFree (MemHandle h)

Parameters -> h Chunk handle.

Result Returns 0 if no error, or memErrInvalidParam if an error occurs.

Comments Call this routine to dispose of a movable chunk.

See Also MemHandleNew

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 779

MemHandleHeapID

Purpose Return the heap ID of a chunk.

Declared In MemoryMgr.h

Prototype UInt16 MemHandleHeapID (MemHandle h)

Parameters -> h Chunk handle.

Result Returns the heap ID of a chunk.

Comments Call this routine to get the heap ID of the heap a chunk resides in.

See Also MemPtrHeapID

MemHandleLock

Purpose Lock a chunk and obtain a pointer to the chunk’s data.

Declared In MemoryMgr.h

Prototype MemPtr MemHandleLock (MemHandle h)

Parameters -> h Chunk handle.

Result Returns a pointer to the chunk.

Comments Call this routine to lock a chunk and obtain a pointer to the chunk.

MemHandleLock and MemHandleUnlock should be used in pairs.

See Also MemHandleNew, MemHandleUnlock

Memory Manager
Memory Manager Functions

780 Palm OS Programmer’s API Reference

MemHandleNew

Purpose Allocate a new movable chunk in the dynamic heap and returns a
handle to it.

Declared In MemoryMgr.h

Prototype MemHandle MemHandleNew (UInt32 size)

Parameters -> size The desired size of the chunk.

Result Returns a handle to the new chunk, or 0 if unsuccessful.

Comments Use this call to allocate dynamic memory. Before you can write data
to the memory chunk that MemHandleNew allocates, you must call
MemHandleLock to lock the chunk and get a pointer to it.

See Also MemPtrFree, MemPtrNew, MemHandleFree, MemHandleLock

MemHandleResize

Purpose Resize a chunk.

Declared In MemoryMgr.h

Prototype Err MemHandleResize (MemHandle h, UInt32 newSize)

Parameters -> h Chunk handle.

-> newSize The new desired size.

Result 0 No error.

memErrInvalidParam
Invalid parameter passed.

memErrNotEnoughSpace
Not enough free space in heap to grow chunk.

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 781

memErrChunkLocked
Can’t grow chunk because it’s locked.

Comments Call this routine to resize a chunk. This routine is always successful
when shrinking the size of a chunk, even if the chunk is locked.
When growing a chunk, it first attempts to grab free space
immediately following the chunk so that the chunk does not have to
move. If the chunk has to move to another free area of the heap to
grow, it must be movable and have a lock count of 0.

On devices running version 2.0 or earlier of Palm OS, the
MemHandleResize function tries to resize the chunk only within
the same heap, whereas DmResizeRecord will look for space in
other data heaps if it can’t find enough space in the original heap.

See Also MemHandleNew, MemHandleSize

MemHandleSetOwner

Purpose Set the owner ID of a chunk.

Declared In MemoryMgr.h

Prototype Err MemHandleSetOwner (MemHandle h, UInt16 owner)

Parameters -> h Chunk handle.

-> owner New owner ID of the chunk. Specify 0 to set the
owner to the operating system.

Result Returns 0 if no error, or memErrInvalidParam if an error occurs.

Comments When you allocate a parameter block to pass to SysUIAppSwitch
or SysAppLaunch, you must call MemPtrSetOwner to grant
ownership of the parameter block chunk to the OS (your application
is originally set as the owner). If the parameter block structure
references any chunks by handle, you also must call
MemHandleSetOwner to grant ownership of those blocks to the
OS. If you don’t change the ownership of these chunks, they will get

Memory Manager
Memory Manager Functions

782 Palm OS Programmer’s API Reference

freed before the application you’re launching has a chance to use
them.

MemHandleSize

Purpose Return the requested size of a chunk.

Declared In MemoryMgr.h

Prototype UInt32 MemHandleSize (MemHandle h)

Parameters -> h Chunk handle.

Result Returns the requested size of the chunk.

Comments Call this routine to get the size originally requested for a chunk.

See Also MemHandleResize

MemHandleToLocalID

Purpose Convert a handle into a local chunk ID which is card relative.

Declared In MemoryMgr.h

Prototype LocalID MemHandleToLocalID (MemHandle h)

Parameters -> h Chunk handle.

Result Returns local ID, or NULL (0) if unsuccessful.

Comments Call this routine to convert a chunk handle to a local ID.

See Also MemLocalIDToGlobal, MemLocalIDToLockedPtr

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 783

MemHandleUnlock

Purpose Unlock a chunk given a chunk handle.

Declared In MemoryMgr.h

Prototype Err MemHandleUnlock (MemHandle h)

Parameters -> h The chunk handle.

Result 0 No error.

memErrInvalidParam
Invalid parameter passed.

Comments Call this routine to decrement the lock count for a chunk.

MemHandleLock and MemHandleUnlock should be used in pairs.

See Also MemHandleLock

MemHeapCheck

Purpose Check validity of a given heap.

Declared In MemoryMgr.h

Prototype Err MemHeapCheck (UInt16 heapID)

Parameters heapID ID of heap to check.

Result Returns 0 if no error.

See Also MemDebugMode, MemSetDebugMode

Memory Manager
Memory Manager Functions

784 Palm OS Programmer’s API Reference

MemHeapCompact

Purpose Compact a heap.

Declared In MemoryMgr.h

Prototype Err MemHeapCompact (UInt16 heapID)

Parameters -> heapID ID of the heap to compact.

Result Always returns 0.

Comments Most applications never need to call this function explicitly. The
system software calls this function at various times; for example,
during memory allocation (if sufficient free space is not available)
and during system reboot.

Call this routine to compact a heap and merge all free space. This
routine attempts to move all movable chunks to the start of the heap
and merge all free space in the center of the heap.

MemHeapDynamic

Purpose Return true if the given heap is a dynamic heap.

Declared In MemoryMgr.h

Prototype Boolean MemHeapDynamic (UInt16 heapID)

Parameters heapID ID of the heap to be tested.

Result Returns true if dynamic, false if not.

Comments Dynamic heaps are used for volatile storage, application stacks,
globals, and dynamically allocated memory.

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 785

NOTE: In Palm OS 3.5, the dynamic heap is sized based on the
amount of memory available, and is generally larger than before.

See Also MemNumHeaps, MemHeapID

MemHeapFlags

Purpose Return the heap flags for a heap.

Declared In MemoryMgr.h

Prototype UInt16 MemHeapFlags (UInt16 heapID)

Parameters -> heapID ID of heap.

Result Returns the heap flags.

Comments Call this routine to retrieve the heap flags for a heap. The flags can
be examined to determine if the heap is ROM based or not. ROM-
based heaps have the memHeapFlagReadOnly bit set (the
memHeapFlagReadOnly mask has a value of 0x0001).

See Also MemNumHeaps, MemHeapID

MemHeapFreeBytes

Purpose Return the total number of free bytes in a heap and the size of the
largest free chunk in the heap.

Declared In MemoryMgr.h

Prototype Err MemHeapFreeBytes (UInt16 heapID,
UInt32* freeP, UInt32* maxP)

Parameters -> heapID ID of heap.

Memory Manager
Memory Manager Functions

786 Palm OS Programmer’s API Reference

<-> freeP Pointer to a variable of type UInt32 for free
bytes.

<-> maxP Pointer to a variable of type UInt32 for max
free chunk size. Do not pass NULL for this
argument.

Result Always returns 0.

Comments This routine doesn’t compact the heap but may be used to
determine in advance whether an allocation request will succeed.
Before allocating memory, call this function and test the value
returned in maxP to determine whether enough free space to fulfill
your allocation request exists. If not, you may make more space
available by calling the MemHeapCompact function. Note that both
MemPtrNew and MemHandleNew automatically compact the heap if
necessary.

See Also MemHeapSize, MemHeapID, MemHeapCompact

MemHeapID

Purpose Return the heap ID for a heap, given its index and the card number.

Declared In MemoryMgr.h

Prototype UInt16 MemHeapID (UInt16 cardNo, UInt16 heapIndex)

Parameters -> cardNo The card number, either 0 or 1.

-> heapIndex The heap index, anywhere from 0 to
MemNumHeaps - 1.

Result Returns the heap ID.

Comments Call this routine to retrieve the heap ID of a heap, given the heap
index and the card number. A heap ID must be used to obtain

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 787

information on a heap such as its size, free bytes, etc., and is also
passed to any routines which manipulate heaps.

See Also MemNumHeaps

MemHeapScramble

Purpose Scramble the specified heap.

Declared In MemoryMgr.h

Prototype Err MemHeapScramble (UInt16 heapID)

Parameters heapID ID of heap to scramble.

Comments The system attempts to move each movable chunk.

Useful for debugging.

Result Always returns 0.

See Also MemDebugMode, MemSetDebugMode

MemHeapSize

Purpose Return the total size of a heap including the heap header.

Declared In MemoryMgr.h

Prototype UInt32 MemHeapSize (UInt16 heapID)

Parameters -> heapID ID of heap.

Result Returns the total size of the heap.

See Also MemHeapFreeBytes, MemHeapID

Memory Manager
Memory Manager Functions

788 Palm OS Programmer’s API Reference

MemLocalIDKind

Purpose Return whether or not a local ID references a handle or a pointer.

Declared In MemoryMgr.h

Prototype LocalIDKind MemLocalIDKind (LocalID local)

Parameters -> local Local ID to query

Result Returns LocalIDKind, or a memIDHandle or memIDPtr (see
MemoryMgr.h).

Comments This routine determines if the given local ID is to a nonmovable
(memIDPtr) or movable (memIDHandle) chunk.

MemLocalIDToGlobal

Purpose Convert a local ID, which is card relative, into a global pointer in the
designated card.

Declared In MemoryMgr.h

Prototype MemPtr MemLocalIDToGlobal (LocalID local,
UInt16 cardNo)

Parameters -> local The local ID to convert.

-> cardNo Memory card the chunk resides in.

Result Returns pointer or handle to chunk.

See Also MemLocalIDKind, MemLocalIDToLockedPtr

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 789

MemLocalIDToLockedPtr

Purpose Return a pointer to a chunk given its local ID and card number.

If the local ID references a movable chunk handle, this routine
automatically locks the chunk before returning.

Declared In MemoryMgr.h

Prototype MemPtr MemLocalIDToLockedPtr (LocalID local,
UInt16 cardNo)

Parameters local Local chunk ID.

cardNo Card number.

Result Returns pointer to chunk, or 0 if an error occurs.

See Also MemLocalIDToGlobal, MemLocalIDToPtr, MemLocalIDKind,
MemPtrToLocalID, MemHandleToLocalID

MemLocalIDToPtr

Purpose Return pointer to chunk, given the local ID and card number.

Declared In MemoryMgr.h

Prototype MemPtr MemLocalIDToPtr (LocalID local,
UInt16 cardNo)

Parameters -> local Local ID to query.

-> cardNo Card number the chunk resides in.

Result Returns a pointer to the chunk, or 0 if error.

Comments If the local ID references a movable chunk and that chunk is not
locked, this function returns 0 to indicate an error.

See Also MemLocalIDToGlobal, MemLocalIDToLockedPtr

Memory Manager
Memory Manager Functions

790 Palm OS Programmer’s API Reference

MemMove

Purpose Move a range of memory to another range in the dynamic heap.

Declared In MemoryMgr.h

Prototype Err MemMove (void* dstP, const void* sP,
Int32 numBytes)

Parameters dstP Pointer to destination.

sP Pointer to source.

numBytes Number of bytes to move.

Result Always returns 0.

Comments Handles overlapping ranges.

For operations where the destination is in a data heap, see DmSet,
DmWrite, and related functions.

MemNumCards

Purpose Return the number of memory card slots in the system. Not all slots
need to be populated.

Declared In MemoryMgr.h

Prototype UInt16 MemNumCards (void)

Parameters None.

Result Returns number of slots in the system.

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 791

MemNumHeaps

Purpose Return the number of heaps available on a particular card.

Declared In MemoryMgr.h

Prototype UInt16 MemNumHeaps (UInt16 cardNo)

Parameters -> cardNo The card number; either 0 or 1.

Result Number of heaps available, including ROM- and RAM-based
heaps.

Comments Call this routine to retrieve the total number of heaps on a memory
card. The information can be obtained by calling MemHeapSize,
MemHeapFreeBytes, and MemHeapFlags on each heap using its
heap ID. The heap ID is obtained by calling MemHeapID with the
card number and the heap index, which can be any value from 0 to
MemNumHeaps.

MemNumRAMHeaps

Purpose Return the number of RAM heaps in the given card.

Declared In MemoryMgr.h

Prototype UInt16 MemNumRAMHeaps (UInt16 cardNo)

Parameters cardNo The card number.

Result Returns the number of RAM heaps.

See Also MemNumCards

Memory Manager
Memory Manager Functions

792 Palm OS Programmer’s API Reference

MemPtrCardNo

Purpose Return the card number (0 or 1) a nonmovable chunk resides on.

Declared In MemoryMgr.h

Prototype UInt16 MemPtrCardNo (MemPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the card number.

See Also MemHandleCardNo

MemPtrDataStorage

Purpose Return true if the given pointer is part of a data storage heap; if
not, it is a pointer in the dynamic heap.

Declared In MemoryMgr.h

Prototype Boolean MemPtrDataStorage (MemPtr p)

Parameters p Pointer to a chunk.

Result Returns true if the chunk is part of a data storage heap.

Comments Called by Fields package to determine if it needs to worry about
data storage write-protection when editing a text field.

See Also MemHeapDynamic

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 793

MemPtrFree

Purpose Macro to dispose of a chunk.

Declared In MemoryMgr.h

Prototype Err MemPtrFree (MemPtr p)

Parameters -> p Pointer to a chunk.

Result 0 If no error or memErrInvalidParam (invalid
parameter).

Comments Call this routine to dispose of a nonmovable chunk.

MemPtrHeapID

Purpose Return the heap ID of a chunk.

Declared In MemoryMgr.h

Prototype UInt16 MemPtrHeapID (MemPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the heap ID of a chunk.

Comments Call this routine to get the heap ID of the heap a chunk resides in.

Memory Manager
Memory Manager Functions

794 Palm OS Programmer’s API Reference

MemPtrNew

Purpose Allocate a new nonmovable chunk in the dynamic heap.

Declared In MemoryMgr.h

Prototype MemPtr MemPtrNew (UInt32 size)

Parameters -> size The desired size of the chunk.

Result Returns pointer to the new chunk, or 0 if unsuccessful.

Comments This routine allocates a nonmovable chunk in the dynamic heap and
returns a pointer to the chunk. Applications can use it when
allocating dynamic memory. Note that chunks range in size from 1
byte to slightly less than 64KB; you cannot allocate a single chunk
larger than this.

In Palm OS 3.5, the dynamic heap is sized based on the amount of
memory available, and is generally larger than before.

NOTE: You cannot allocate a zero-size reference block.

MemPtrRecoverHandle

Purpose Recover the handle of a movable chunk, given a pointer to its data.

Declared In MemoryMgr.h

Prototype MemHandle MemPtrRecoverHandle (MemPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the handle of the chunk, or 0 if unsuccessful.

Comments Don’t call this function for pointers in ROM or nonmovable data
chunks.

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 795

MemPtrResize

Purpose Resize a chunk.

Declared In MemoryMgr.h

Prototype Err MemPtrResize (MemPtr p, UInt32 newSize)

Parameters -> p Pointer to the chunk.

-> newSize The new desired size.

Result Returns 0 if no error, or memErrNotEnoughSpace
memErrInvalidParam, or memErrChunkLocked if an error
occurs.

Comments Call this routine to resize a locked chunk. This routine is always
successful when shrinking the size of a chunk. When growing a
chunk, it attempts to use free space immediately following the
chunk.

See Also MemPtrSize, MemHandleResize

MemPtrSetOwner

Purpose Set the owner ID of a chunk.

Declared In MemoryMgr.h

Prototype Err MemPtrSetOwner (MemPtr p, UInt16 owner)

Parameters -> p Pointer to the chunk.

-> owner New owner ID of the chunk. Specify 0 to set the
owner to the operating system.

Result Returns 0 if no error, or memErrInvalidParam if an error occurs.

Memory Manager
Memory Manager Functions

796 Palm OS Programmer’s API Reference

Comments When you allocate a parameter block to pass to SysUIAppSwitch
or SysAppLaunch, you must call MemPtrSetOwner or
MemHandleSetOwner to grant ownership of the parameter block
chunk, and any other chunks referenced in it, to the OS (your
application is originally set as the owner). If you don’t change the
ownership of the parameter block, it will get freed before the
application you’re launching has a chance to use it.

MemPtrSize

Purpose Return the size of a chunk.

Declared In MemoryMgr.h

Prototype UInt32 MemPtrSize (MemPtr p)

Parameters -> p Pointer to the chunk.

Result The requested size of the chunk.

Comments Call this routine to get the original requested size of a chunk.

MemPtrToLocalID

Purpose Convert a pointer into a card-relative local chunk ID.

Declared In MemoryMgr.h

Prototype LocalID MemPtrToLocalID (MemPtr p)

Parameters -> p Pointer to a chunk.

Result Returns the local ID of the chunk.

Comments Call this routine to convert a chunk pointer to a local ID.

See Also MemLocalIDToPtr

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 797

MemPtrUnlock

Purpose Unlock a chunk, given a pointer to the chunk.

Declared In MemoryMgr.h

Prototype Err MemPtrUnlock (MemPtr p)

Parameters p Pointer to a chunk.

Result 0 if no error, or memErrInvalidParam if an error occurs.

Comments A chunk must not be unlocked more times than it was locked.

See Also MemHandleLock

MemSet

Purpose Set a memory range in a dynamic heap to a specific value.

Declared In MemoryMgr.h

Prototype Err MemSet (void* dstP, Int32 numBytes,
UInt8 value)

Memory Manager
Memory Manager Functions

798 Palm OS Programmer’s API Reference

Parameters dstP Pointer to the destination.

numBytes Number of bytes to set.

value Value to set.

Result Always returns 0.

Comments For operations where the destination is in a data heap, see DmSet,
DmWrite, and related functions.

MemSetDebugMode

Purpose Set the debugging mode of the memory manager.

Declared In MemoryMgr.h

Prototype Err MemSetDebugMode (UInt16 flags)

Parameters flags Debug flags.

Comments Use the logical OR operator (|) to provide any combination of one,
more, or none of the following flags:

memDebugModeCheckOnChange
memDebugModeCheckOnAll
memDebugModeScrambleOnChange
memDebugModeScrambleOnAll
memDebugModeFillFree
memDebugModeAllHeaps
memDebugModeRecordMinDynHeapFree

Result Returns 0 if no error, or -1 if an error occurs.

Memory Manager
Memory Manager Functions

Palm OS Programmer’s API Reference 799

MemStoreInfo

Purpose Return information on either the RAM store or the ROM store for a
memory card.

Declared In MemoryMgr.h

Prototype Err MemStoreInfo (UInt16 cardNo,
UInt16 storeNumber, UInt16* versionP,
UInt16* flagsP, Char* nameP, UInt32* crDateP,
UInt32* bckUpDateP, UInt32* heapListOffsetP,
UInt32* initCodeOffset1P,
UInt32* initCodeOffset2P, LocalID* databaseDirIDP)

Parameters -> cardNo Card number, either 0 or 1.

-> storeNumber Store number; 0 for ROM, 1 for RAM.

<-> versionP Pointer to version variable, or 0.

<-> flagsP Pointer to flags variable, or 0.

<-> nameP Pointer to character array (32 bytes), or 0.

<-> crDateP Pointer to creation date variable, or 0.

<-> bckUpDateP Pointer to backup date variable, or 0.

<-> heapListOffsetP
Pointer to heapListOffset variable, or 0.

<-> initCodeOffset1P
Pointer to initCodeOffset1 variable, or 0.

<-> initCodeOffset2P
Pointer to initCodeOffset2 variable, or 0.

<-> databaseDirIDP
Pointer to database directory chunk ID
variable, or 0.

Result Returns 0 if no error, or memErrCardNotPresent,
memErrRAMOnlyCard, or memErrInvalidStoreHeader if an
error occurs.

Memory Manager
Memory Manager Functions

800 Palm OS Programmer’s API Reference

Comments Call this routine to retrieve any or all information on either the RAM
store or the ROM store for a card. Pass 0 for variables that you don’t
wish returned.

Palm OS Programmer’s API Reference 801

39
Notification Manager
This chapter describes the Notification Manager API as declared in
the header file NotifyMgr.h. It discusses the following topics:

• Notification Constants

• Notification Functions

• Application-Defined Functions

The chapter “Notifications” in this book lists the possible
notifications and describes the data sent with each. Also see the
section “Notifications” on page 30 in the “Application Startup and
Stop” chapter of the Palm OS Programmer’s Companion, vol. I for a
description of how to use notifications.

Notification Constants

Miscellaneous Constants
This following miscellaneous constants are used in the Notification
Manager. For other notification constants, see the “Notifications”
chapter in this book.

Constant Value Description

sysNotifyBroadcasterCode 'psys' The value passed as the creator ID
of the broadcaster for notifications
broadcast by the system.

sysNotifyDefaultQueueSize 30 The maximum number of nested
broadcasts allowed.

sysNotifyNoDatabaseID 0xFFFFFFFF The database local ID used by the
system when it registers for
notifications.

Notif ication Manager
Notification Functions

802 Palm OS Programmer’s API Reference

Notification Functions

SysNotifyBroadcast

Purpose Synchronously send a notification to all applications registered for
it.

Declared In NotifyMgr.h

Prototype Err SysNotifyBroadcast
(SysNotifyParamType *notify)

Parameters <-> notify Identifies the notification to be broadcast. See
SysNotifyParamType.

Result Returns one of the following error codes:

errNone No error.

sysNotifyErrBroadcastBusy
The broadcast stack limit has already been
reached.

sysErrParamErr
The background thread is broadcasting the
notification and the notify parameter is NULL.

sysNotifyErrNoStackSpace
There is not enough space on the stack for the
notification.

sysNotifyNormalPriority 0 Typical priority value used when
registering for notifications.

sysNotifyVersionNum 1 Current Notification Manager
version. This number is stored in
the system feature
sysFtrNumNotifyMgrVersion.

Constant Value Description

Notif ication Manager
Notification Functions

Palm OS Programmer’s API Reference 803

Comments When you call this function, the notification you specify is broadcast
to all applications, shared libraries, and other code resources that
have registered to receive that notification. The broadcast is
performed synchronously, meaning that the system broadcasts the
notification immediately and waits for each notification client to
perform its notification handler and return before the
SysNotifyBroadcast call returns. This notification occurs in
priority order.

The system allows nested notifications; that is, the recipient of a
notification might broadcast a new notification, whose recipient
might broadcast another new notification and so on. The constant
sysNotifyDefaultQueueSize specifies how many levels of
nested notification are allowed. If you reach this limit, the error
sysNotifyErrBroadcastBusy is returned and your notification
is not broadcast. To avoid reaching the limit, use
SysNotifyBroadcastDeferred instead of
SysNotifyBroadcast in your notification handlers. This ensures
that the notification will not be broadcast until the top of the event
loop.

WARNING! Do not call SysNotifyBroadcast from code that
might be called from a background task (such as a trap patch)
with the memory semaphore reserved. Use
SysNotifyBroadcastDeferred instead.

Compatibility Implemented only if Notification Feature Set is present.

Notif ication Manager
Notification Functions

804 Palm OS Programmer’s API Reference

SysNotifyBroadcastDeferred

Purpose Enqueue a notification for later broadcast.

Declared In NotifyMgr.h

Prototype Err SysNotifyBroadcastDeferred
(SysNotifyParamType *notify, Int16 paramSize)

Parameters <-> notify The notification to enqueue. See
SysNotifyParamType.

-> paramSize Size of the data pointed to by the field
notify->notifyDetailsP.

Result Returns one of the following error codes:

errNone No error.

memErrNotEnoughSpace
There is not enough memory to allocate a new
notification entry in the queue.

sysErrParamErr
paramSize is a negative number.

sysNotifyErrQueueFull
The queue has reached its maximum number of
entries.

Comments This function is similar to SysNotifyBroadcast except that the
broadcast does not take place until the top of the event loop
(specifically, the next time EvtGetEvent is called). The system
copies the notify structure to a new memory chunk, which is
disposed of upon completion of the broadcast. (The paramSize
value is used when copying the notifyDetailsP portion of the
notify structure.)

Compatibility Implemented only if Notification Feature Set is present.

Notif ication Manager
Notification Functions

Palm OS Programmer’s API Reference 805

SysNotifyBroadcastFromInterrupt

Purpose Allows interrupt handlers to enqueue a notification for later
broadcast.

Declared In NotifyMgr.h

Prototype Err SysNotifyBroadcastFromInterrupt
(UInt32 notifyType, UInt32 broadcaster,
void *notifyDetailsP)

Parameters -> notifyType The type of event that occurred. See the chapter
Notifications for a complete list of the
notifications that Palm OS® broadcasts.

-> broadcaster The creator ID of the device or application that
broadcast the notification.

-> notifyDetailsP
Pointer to data specific to this notification. See
the Notifications chapter for the specific
instances where this parameter is used.

Result Returns one of the following error codes:

errNone No error.

sysNotifyErrQueueFull
The queue has reached its maximum number of
entries.

Comments Like SysNotifyBroadcastDeferred, this function enqueues a
notification to be broadcast at the top of the event loop (specifically,
the next time EvtGetEvent is called). It differs from
SysNotifyBroadcastDeferred in that it is interrupt-safe and
intended to be called from interrupt handlers.

This function is intended to be used by device drivers and other
low-level software to generate a notification about a hardware
change. For example, the Expansion Manager uses
SysNotifyBroadcastFromInterrupt to broadcast
sysNotifyCardInsertedEvent and

Notif ication Manager
Notification Functions

806 Palm OS Programmer’s API Reference

sysNotifyCardRemovedEvent when a card is inserted into or
removed from the expansion slot.
SysNotifyBroadcastFromInterrupt is not intended to be
used by general third party applications. Patching
SysNotifyBroadcastFromInterrupt will cause the system to
hang.

Compatibility Implemented only if 4.0 New Feature Set is present.

SysNotifyRegister

Purpose Register to receive a notification.

Declared In NotifyMgr.h

Prototype Err SysNotifyRegister (UInt16 cardNo,
LocalID dbID, UInt32 notifyType,
SysNotifyProcPtr callbackP, Int8 priority,
void *userDataP)

Parameters -> cardNo Number of the storage card on which the
application or code resource resides.

-> dbID Local ID of the application or code resource.

-> notifyType The notification that the application wants to
receive. See the chapter Notifications.

-> callbackP Set to NULL to receive the notification as an
application launch code. If your code does not
have a PilotMain function (for example, if it
is a shared library), pass a pointer to a function
that should be called when the notification is
broadcast. See SysNotifyProcPtr.

Notif ication Manager
Notification Functions

Palm OS Programmer’s API Reference 807

-> priority The priority with which the application should
receive the event. Most applications and other
code resources should always use
sysNotifyNormalPriority. In rare
circumstances, you may need to ensure that
your code is notified toward the beginning or
toward the end of the notification sequence. If
so, be sure to leave some space so that your
code won’t collide with the system’s handling
of notifications or with another application’s
handling of notifications. In general, Palm™
recommends using a value whose least
significant bits are 0 (such as 32, 64, 96, and so
on). The smaller the priority, the earlier your
code is notified.

-> userDataP Caller-defined data to pass to the notification
handler.

Result Returns one of the following error codes:

errNone No error.

sysErrParamErr The database ID is NULL.

sysNotifyErrDuplicateEntry
This application is already registered to receive
this notification.

Comments Call this function when your code should receive a notification that
a specific event has occurred or is about to occur. See the
Notifications chapter for a list of the possible notifications. Once you
register for a notification, you remain registered to receive it until a
system reset occurs or until you explicitly unregister using
SysNotifyUnregister.

If you’re writing an application, you should pass NULL as the
callbackP parameter. In this case, the system notifies your
application by sending it the sysAppLaunchCmdNotify launch
code. This launch code’s parameter block points to a
SysNotifyParamType structure containing details about the
notification.

Notif ication Manager
Notification Functions

808 Palm OS Programmer’s API Reference

If your code is not in an application, for example, it is a shared
library or a separately loaded code resource, then receiving a launch
code is not possible. In this case, pass a pointer to a callback function
in callbackP. This callback should follow the prototype shown in
SysNotifyProcPtr. Note that you should always supply a card
number and database ID to SysNotifyRegister, even if you
specify a callback function.

IMPORTANT: Because the callbackP pointer is used to
directly call the function, the pointer must remain valid from the
time SysNotifyRegister is called to the time the notification is
broadcast. If the function is in a shared library, you must keep the
library open. If the function is in a separately loaded code
resource, the resource must remain locked while registered for
the notification. When you close a library or unlock a resource,
you must first unregister for any notifications. If you don’t, the
system will crash when the notification is broadcast.

Whether the notification handler is responding to
sysAppLaunchCmdNotify or uses the callback function, the
notification handler may perform any processing necessary. As with
most launch codes, it’s not possible to access global variables. If the
handler needs access to any particular value to respond to the
notification, pass a pointer to that value in the userDataP
parameter. The system passes this pointer back to your application
or callback function in the launch code’s parameter block.

The notification handler may unregister for this notification or
register for other notifications. It may also broadcast another
notifications; however, it’s recommended that you use
SysNotifyBroadcastDeferred to do this so as not to overflow
the broadcast stack.

You may display a user interface in your notification handler;
however, you should be careful when you do so. Many of the
notifications are broadcast during SysHandleEvent, which means
your application event loop might not have progressed to the point
where it is possible for you to display a user interface, or you might
overflow the stack by displaying a user interface at this stage. See

Notif ication Manager
Notification Functions

Palm OS Programmer’s API Reference 809

the “Notifications” chapter to learn which notifications are
broadcast during SysHandleEvent.

Compatibility Implemented only if Notification Feature Set is present.

SysNotifyUnregister

Purpose Cancel notification of the given event.

Declared In NotifyMgr.h

Prototype Err SysNotifyUnregister(UInt16 cardNo,
LocalID dbID, UInt32 notifyType, Int8 priority)

Parameters -> cardNo Number of the storage card on which the
application or code resource resides.

-> dbID Local ID of the application or code resource.

-> notifyType The notification for which to unregister. See
Notifications.

-> priority The priority value you passed as part of
SysNotifyRegister.

Result Returns one of the following error codes:

errNone No error.

sysNotifyErrEntryNotFound
The application wasn’t registered to receive this
notification.

Comments Use this function to remove your code from the list of those that
receive notifications about a particular event. This function is
particularly necessary if you are writing a shared library or a
separately loaded code resource that receives notifications. When
the resource is unloaded, it must unregister for all of its
notifications, or the system will crash when the notification is
broadcast.

Notif ication Manager
Application-Defined Functions

810 Palm OS Programmer’s API Reference

Compatibility Implemented only if Notification Feature Set is present.

Application-Defined Functions

SysNotifyProcPtr

Purpose Handle a notification.

Declared In NotifyMgr.h

Prototype Err (*SysNotifyProcPtr)
(SysNotifyParamType *notifyParamsP)

Parameters -> notifyParamsP
Pointer to a structure that contains the
notification event that occurred and any other
information about it. See
SysNotifyParamType.

Result Always return 0.

Comments You pass this function as a parameter to SysNotifyRegister
when registering code that does not have a PilotMain for a
notification. See the description of SysNotifyRegister for advice
on writing a notification handler.

IMPORTANT: Because the callbackP pointer is used to
directly call the function, the pointer must remain valid from the
time SysNotifyRegister is called to the time the notification is
broadcast. If the function is in a shared library, you must keep the
library open. If the function is in a separately loaded code
resource, the resource must remain locked while registered for
the notification. When you close a library or unlock a resource,
you must first unregister for any notifications. If you don’t, the
system will crash when the notification is broadcast.

Palm OS Programmer’s API Reference 811

40
Overlay Manager
This chapter describes the overlay manager API as declared in the
header file OverlayMgr.h. It discusses the following topics:

• Overlay Manager Data Structures

• Overlay Manager Constants

• Overlay Manager Functions

For more information on the overlay manager, see “Using Overlays
to Localize Resources” on page 365 of the Palm OS Programmer’s
Companion, vol. I.

Overlay Manager Data Structures

OmLocaleType
The OmLocaleType struct specifies a locale.

typedef struct {
 UInt16 language;
 UInt16 country;
} OmLocaleType;

Field Descriptions

Compatibility If Palm OS® 4.0 New Feature Set is present, the LmLocaleType
replaces OmLocaleType. For backward compatibility,
OmLocaleType is mapped to LmLocaleType.

language The language spoken in the locale. This value is one of
the LanguageType constants.

country The country or region where the language is spoken.
This value is one of the CountryType constants.

Overlay Manager
Overlay Manager Constants

812 Palm OS Programmer’s API Reference

Overlay Manager Constants
Constant Value Description

omOverlayRscType 'ovly' Symbolic name of an overlay resource that is
contained in both the base database and the
overlay database.

omOverlayRscID 1000 Resource ID of the overlay resource in both the
base database and the overlay database.

omFtrCreator 'ovly' Creator value used for the
omFtrShowErrorsFlag feature.

omFtrDefaultLocale 1 Feature that specifies the default locale stored
in the ROM. The default locale is used in cases
where the system is attempting to open a
“stripped” database (one that requires an
overlay) and an overlay matching the current
locale cannot be found. In this case, the system
then looks for an overlay matching the default
locale. Use FtrGet and FtrSet to retrieve
and set this value.

omFtrShowErrorsFlag 0 Feature that controls the number of error
messages displayed by the overlay manager. If
this feature is set to true, the overlay manager
may display several more error messages
when validating an overlay against its base
database. This feature only takes effect when
the error checking level is set to full (common
on debug ROMs, not on release ROMs). Use
FtrGet and FtrSet to retrieve and set this
value.

Overlay Manager
Overlay Manager Functions

Palm OS Programmer’s API Reference 813

Overlay Manager Functions

OmGetCurrentLocale

Purpose Return the current locale.

Declared In OverlayMgr.h

Prototype void OmGetCurrentLocale
(LmLocaleType *currentLocale)

Parameters <- currentLocale
Points to an LmLocaleType struct that
identifies the current locale.

Result Returns nothing.

Comments This function returns the current locale. The current locale controls
which overlays are used for resource databases. For example,
suppose you have one application and two associated overlays
installed, one for US English and one for British English. In this case,
if the country specified in the locale returned by this function is
cUnitedKingdom, the British English overlay is used for the
application. If the country returned is cUnitedStates, the US
English overlay is used.

Compatibility Implemented only if 3.5 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
OmGlueGetCurrentLocale. For more information, see Chapter
75, “PalmOSGlue Library.”

See Also OmGetSystemLocale

Overlay Manager
Overlay Manager Functions

814 Palm OS Programmer’s API Reference

OmGetIndexedLocale

Purpose Return a system locale by index.

Declared In OverlayMgr.h

Prototype Err OmGetIndexedLocale (UInt16 localeIndex,
LmLocaleType *theLocale)

Parameters -> localeIndex Zero-based index of the locale to return.

<- theLocale Points to an LmLocaleType struct that
identifies the locale at that index.

Result Returns errNone upon success, or omErrInvalidLocaleIndex
if the index is out of bounds.

Comments OmGetIndexedLocale is used in a loop to discover how many
system overlays are installed for system resources.

If the 4.0 New Feature Set is present, use
OmGetNextSystemLocale instead of this function.
OmGetIndexedLocale can be slow on ROMs that contain many
valid system locales.

Compatibility Implemented only if 3.5 New Feature Set is present.

In Palm OS 3.5, this function would not return a system overlay that
was located in RAM. The Palm OS 4.0 version of this function does
return system overlays located in RAM.

See Also OmGetSystemLocale, OmGetNextSystemLocale

Overlay Manager
Overlay Manager Functions

Palm OS Programmer’s API Reference 815

OmGetNextSystemLocale

Purpose Return a system locale.

Declared In OverlayMgr.h

Prototype Err OmGetNextSystemLocale (Boolean iNewSearch,
OmSearchStateType *ioStateInfoP,
LmLocaleType *oLocaleP)

Parameters -> iNewSearch true if this function call is starting a new
search, or false if this function call is a
continuation of a search.

<-> ioStateInfoP
If iNewSearch is false, this must point to the
same data used for the previous invocation.

<- oLocaleP The found locale.

Result Returns errNone if no error or omErrNoNextSystemLocale if no
matches were found.

Comments You can call this function successively to discover how many system
overlays are installed for system resources. Each system overlay
found determines a separate valid system locale. Any locale
returned by this function can be sent to OmSetSystemLocale to
change the system locale.

To start the search, pass true for iNewSearch. Allocate an
OmSearchStateType structure and pass its address as
ioStateInfoP. OmGetNextSystemLocale stores private
information in ioStateInfoP and uses it if the search is
continued.

To continue a search where the previous one left off, pass false for
iNewSearch and pass the same ioStateInfoP that you used
during the previous call to this function.

When called successively, this function eventually returns all system
overlays that are in ROM or RAM.

Overlay Manager
Overlay Manager Functions

816 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

OmGetRoutineAddress

Purpose Return the address of an overlay manager function.

Declared In OverlayMgr.h

Prototype void *OmGetRoutineAddress (OmSelector inSelector)

Parameters -> inSelector One of the routine selectors defined in
OverlayMgr.h.

Result Returns the address of the corresponding function. Returns NULL if
an invalid routine selector is passed.

Comments You typically use this function to determine whether an overlay
manager function exists on the device. As future releases of Palm OS
add new functions, older devices with earlier versions of the
overlay manager will not implement these newer functions. If
OmGetRoutineAddress returns NULL, the function is unavailable.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also IntlGetRoutineAddress, SysGetTrapAddress

Overlay Manager
Overlay Manager Functions

Palm OS Programmer’s API Reference 817

OmGetSystemLocale

Purpose Return the system locale.

Declared In OverlayMgr.h

Prototype void OmGetSystemLocale
(LmLocaleType *systemLocale)

Parameters <- systemLocale Points to an LmLocaleType struct that
identifies the system locale.

Result Returns nothing.

Comments You typically don’t use this function. Instead, use
OmGetCurrentLocale, which returns the locale that determines
which overlays are used.

The system locale is saved in the storage heap header and persists
across soft resets. When the device is reset, the system locale is used
to set the current locale.

Compatibility Implemented only if 3.5 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
OmGlueGetSystemLocale. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also OmGetCurrentLocale

Overlay Manager
Overlay Manager Functions

818 Palm OS Programmer’s API Reference

OmLocaleToOverlayDBName

Purpose Return the overlay database’s name given the base database name
and the locale.

Declared In OverlayMgr.h

Prototype Err OmLocaleToOverlayDBName
(const Char *baseDBName,
const LmLocaleType *targetLocale,
Char *overlayDBName)

Parameters -> baseDBName The name of the base resource database
associated with the overlay.

-> targetLocale The locale to which this overlay applies. See
LmLocaleType. Pass NULL to use the current
locale.

<- overlayDBName
The overlay database name given the base
database name and the target locale. This buffer
must be at least dmDBNameLength bytes.

Result Returns errNone upon success, or omErrUnknownLocale if the
targetLocale parameter is invalid.

Comments The appropriate overlay database name is currently:

baseDBName_llCC

where:

baseDBName The name of the base database as you passed it
in.

ll A two-character code identifying the language.

CC A two-character code identifying the country.

The base database name is truncated if necessary to allow for this
suffix.

Overlay Manager
Overlay Manager Functions

Palm OS Programmer’s API Reference 819

For example, the base database “MemoPad” might have an overlay
for US English named “MemoPad_enUS”.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also OmOverlayDBNameToLocale

OmOverlayDBNameToLocale

Purpose Return an overlay database’s locale given its name.

Declared In OverlayMgr.h

Prototype Err OmOverlayDBNameToLocale
(const Char *overlayDBName,
LmLocaleType *overlayLocale)

Parameters -> overlayDBName
The name of the overlay database.

<- overlayLocale
Points to an LmLocaleType structure
identifying the overlay’s locale.

Result Returns errNone upon success, omErrBadOverlayDBName if the
string overlayDBName is not long enough to have a locale suffix,
or omErrUnknownLocale if the locale cannot be determined.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also OmLocaleToOverlayDBName

Overlay Manager
Overlay Manager Functions

820 Palm OS Programmer’s API Reference

OmSetSystemLocale

Purpose Set the system locale and reset the device.

Declared In OverlayMgr.h

Prototype Err OmSetSystemLocale
(const LmLocaleType *systemLocale)

Parameters -> systemLocale An LmLocaleType structure specifying the
locale to switch the system to.

Result Returns errNone upon success, or one of the following if an error
occurs:

omErrUnknownLocale
There is no system overlay for systemLocale.

omErrInvalidLocale
The system overlay for systemLocale has
been found but is invalid.

dmErrInvalidParam
An error occurred while opening the overlay.

dmErrMemError A memory error occurred while opening the
overlay.

dmErrDatabaseOpen
The system overlay was already open.

Comments This function changes the system locale to the specified locale if it
exists. It first determines that the system overlay exists for the
requested locale and that it matches the base system database. If so,
it updates the system locale information saved in the storage heap
header and resets the device. After the device is reset, the current
locale is set to the system locale.

A Palm Powered™ device has a default locale hard-coded into the
ROM. This locale is used to set the system locale after a hard reset or
any time that the storage heap header is invalid. The storage heap
header is typically only invalid when the device is turned on for the
first time.

Overlay Manager
Overlay Manager Functions

Palm OS Programmer’s API Reference 821

Compatibility Implemented only if 3.5 New Feature Set is present.

In Palm OS 3.5, this function would not switch to a system overlay
that was located in the RAM. The Palm OS 4.0 version of this
function does return system overlays located in the RAM.

See Also OmGetSystemLocale

Overlay Manager
Overlay Manager Functions

822 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 823

41
Password
This chapter provides reference material for the password API. The
password API is declared in the header file Password.h.

Password Functions

PwdExists

Purpose Return true if the system password is set.

Declared In Password.h

Prototype Boolean PwdExists()

Parameters None

Result Returns true if the system password is set.

PwdRemove

Purpose Remove the encrypted password string and recover data hidden in
databases.

Declared In Password.h

Prototype void PwdRemove (void)

Parameters None

Result Returns nothing.

Password
Password Functions

824 Palm OS Programmer’s API Reference

PwdSet

Purpose Use a passed string as the new password. The password is stored in
an encrypted form.

Declared In Password.h

Prototype void PwdSet (Char* oldPassword, Char* newPassword)

Parameters oldPassword The old password must be successfully verified
or the new password isn’t accepted

newPassword Char* to a string to use as the password. NULL
means no password.

Result Returns nothing.

PwdVerify

Purpose Verify that the string passed matches the system password.

Declared In Password.h

Prototype Boolean PwdVerify (Char* string)

Parameters string String to compare to the system password.
NULL means no current password.

The allocated length of string must be at least
pwdLength characters long.

Result Returns true if the string matches the system password.

Palm OS Programmer’s API Reference 825

42
Pen Manager
This chapter provides reference material for the pen manager. The
pen manager API is declared in the header file PenMgr.h.

For more information on the pen manager, see “The Pen Manager”
on page 62 of the Palm OS Programmer’s Companion, vol. I.

Pen Manager Functions

PenCalibrate

Purpose Set the calibration of the pen.

Declared In PenMgr.h

Prototype Err PenCalibrate (PointType* digTopLeftP,
PointType* digBotRightP, PointType* scrTopLeftP,
PointType* scrBotRightP)

Parameters digTopLeftP Digitizer output from top-left coordinate.

digBotRightP Digitizer output from bottom-right coordinate.

scrTopLeftP Screen coordinate near top-left corner.

scrBotRightP Screen coordinate near bottom-right corner.

Result Returns 0 if no error.

Comments Called by Preferences application when calibrating pen.

See Also PenResetCalibration

Pen Manager
Pen Manager Functions

826 Palm OS Programmer’s API Reference

PenResetCalibration

Purpose Reset the calibration in preparation for calibrating the pen again.

Declared In PenMgr.h

Prototype Err PenResetCalibration (void)

Parameters None.

Result Always returns 0.

Comments Called by Preferences application before capturing points when
calibrating the pen.

See Also PenCalibrate

WARNING! The digitizer is off after calling this routine and must
be calibrated again!

Palm OS Programmer’s API Reference 827

43
Preferences
This chapter describes the preferences API as declared in the header
file Preferences.h. It discusses the following topics:

• Preferences Data Types

• Preferences Constants

• Preferences Functions

For more information on preferences, see the section “Preferences”
on page 320 of the Palm OS Programmer’s Companion, vol. I.

Preferences Data Types

MeasurementSystemType
The MeasurementSystemType enum specifies the preference for
units of measure.

typedef enum {
 unitsEnglish = 0,
 unitsMetric
} MeasurementSystemType;

Value Descriptions

SecurityAutoLockType
The SecurityAutoLockType enum specifies the values for the
auto-locking preference. The auto-locking preference specifies when
the device will shut down and lock itself.

unitsEnglish The English measurement system
(feet, inches, and so on).

unitsMetric The Metric system (meters,
centimeters, and so on).

Preferences
Preferences Data Types

828 Palm OS Programmer’s API Reference

typedef enum {
 never = 0,
 uponPowerOff,
 atPresetTime,
 afterPresetDelay
} SecurityAutoLockType;

Value Descriptions

SoundLevelTypeV20
The SoundLevelTypeV20 enum specifies whether certain sounds
are enabled or disabled. This enum is used as the values for several
of the system sound preferences.

typedef enum {
 slOn = 0,
 slOff = 1
} SoundLevelTypeV20;

Value Descriptions

Compatibility This enumerated type is obsolete in Palm OS® versions 3.0 and
higher. The preferences that use this enum are replaced by
preferences that indicate sound volume as well as whether the
sound is on or off.

never The auto-lock feature is disabled.

uponPowerOff The device locks itself each time it is
powered off.

atPresetTime The device locks itself at a certain time
every day.

afterPresetDelay The device locks itself after a certain
amount of idle time.

slOn Enabled

slOff Disabled

Preferences
Preferences Data Types

Palm OS Programmer’s API Reference 829

SystemPreferencesChoice
The SystemPreferencesChoice enum defines values that you
can pass to PrefGetPreference and PrefSetPreference to
retrieve or set a system preference value.
SystemPreferencesChoice defines one constant for each field
in the SystemPreferencesType structure, which should be
considered a private structure.

Table 43.1 lists and describes the SystemPreferencesChoice
constants. For each constant, it shows what type of data is returned
by PrefGetPreference for that constant and which version of
the system preferences structure contains this preference.

The system preferences structure keeps track of its own version
information because it has been updated several times. Each Palm
OS release that updates the system preferences structure increments
the structure’s version number. Table 43.1 on page 830 specifies
which version of the system preferences structure introduced that
preference. For each preferences version, there is a constant
representing that version. See the section “Preferences Constants”
on page 839 for information on which preferences version
corresponds with which Palm OS release. You should check the
preference’s version number before attempting to obtain the value
of any preference introduced after version 2. For example:

LmLocaleType currentLocale;
if (PrefGetPreference(prefVersion) >=
 preferenceDataVer9) {
 currentLocale = (LmLocaleType)
 PrefGetPreference(prefLocale);
}

Most of the system preferences can be set in the Preferences and
Security applications. Table 43.2 on page 838 specifies which system
preference is set by each user interface field in these two
applications.

Preferences
Preferences Data Types

830 Palm OS Programmer’s API Reference

Table 43.1 SystemPreferencesChoice Constants

Constant Type Vers
ion

Description

prefVersion UInt16 2 The preferences version
number.

prefCountry CountryType 2 The country for which the
device was built.

prefDateFormat DateFormatType 2 The short format used to
display dates. For example:

95/12/31

prefLongDate
Format

DateFormatType 2 The long format used to
display dates. For example:

31 Dec 1995

prefWeek
StartDay

Int8 2 The first day of the week
(Sunday or Monday). Days of
the week are numbered from 0
to 6 starting with Sunday = 0.

prefTimeFormat TimeFormatType 2 The format used to display
time values.

prefNumber
Format

NumberFormatTy
pe

2 The format used for numbers,
with regards to the thousands
separator and the decimal
point.

prefAutoOff
Duration

UInt8 2 Minutes of user idle time before
the device powers off. The
default value for this
preference is specified by the
defaultAutoOffDuration
constant.

Preferences
Preferences Data Types

Palm OS Programmer’s API Reference 831

prefAutoOffDuration is
replaced by
prefAutoOffDurationSecs
in version 8 of the preferences
structure.

prefSysSound
LevelV20

SoundLevelType
V20

2 Specifies whether system
sounds are enabled or disabled.

prefGameSound
LevelV20

SoundLevelType
V20

2 Specifies whether game sound
effects are on or off.

prefAlarmSound
LevelV20

SoundLevelType
V20

2 Specifies whether sound alarms
are on or off.

prefHidePrivate
RecordsV33

Boolean 2 If true, applications should
not display database records
that have the secret attribute bit
set.

prefDeviceLocked Boolean 2 If true, the device is locked.
When the device is locked, it
remains so until the user enters
the password.

prefLocal
SyncRequires
Password

Boolean 2 If true, the user must enter a
password before a HotSync®
operation can be performed.

prefRemote
SyncRequires
Password

Boolean 2 If true, the user must enter a
password on the desktop
computer before a HotSync
operation can be performed.

prefSysBattery
Kind

Sys
Battery
Kind

2 The type of batteries installed.
Use SysBatteryInfo to
retrieve the battery type instead
of this preference.

Table 43.1 SystemPreferencesChoice Constants (continued)

Constant Type Vers
ion

Description

Preferences
Preferences Data Types

832 Palm OS Programmer’s API Reference

prefMinutes
WestOfGMT

UInt32 2 The time zone given as minutes
east of Greenwich Mean Time
(GMT). For preferences version
9 and higher, use
prefTimeZone instead.

prefDaylight
Savings

DaylightSaving
sTypes

2 The type of daylight savings
correction. For preferences
version 9 and higher, use
prefDaylightSavingAdjus
tment instead.

prefRonamatic
Char

UInt16 2 The virtual character generated
when the user enters the
ronamatic stroke. The
ronamatic stroke is dragging
the pen from the Graffiti® area
to the top of the screen.

prefHard1Char
AppCreator

UInt32 2 The creator ID of the
application to be launched by
the left-most hard key (the Date
Book button by default).

prefHard2Char
AppCreator

UInt32 2 The creator ID of the
application to be launched by
the second hard key from the
left (the Address button by
default).

prefHard3Char
AppCreator

UInt32 2 The creator ID of the
application to be launched by
the second hard key from the
right (the To Do List button by
default).

Table 43.1 SystemPreferencesChoice Constants (continued)

Constant Type Vers
ion

Description

Preferences
Preferences Data Types

Palm OS Programmer’s API Reference 833

prefHard4Char
AppCreator

UInt32 2 The creator ID of the
application to be launched by
the right-most hard key (the
Memo Pad button by default).

prefCalcChar
AppCreator

UInt32 2 The creator ID of the
application to be launched by
the Calculator silkscreen
button.

prefHardCradle
CharAppCreator

UInt32 2 The creator ID of the
application to be launched by
the hard key on the HotSync
cradle.

prefLauncher
AppCreator

UInt32 2 The creator ID of the
application to be launched by
the Applications silkscreen
button.

prefHardCradle2
CharAppCreator

UInt32 2 The creator ID of the
application to be launched by
the HotSync button on the
modem.

prefAnimation
Level

AnimationLevel
Type

2 Reserved for future use.

prefSys
SoundVolume

UInt16 3 The sound level for system
sounds, such as taps and beeps.
This is a value from 0 to
sndMaxAmp.

prefGame
SoundVolume

UInt16 3 The sound level for game
sounds. This is a value from 0
to sndMaxAmp.

Table 43.1 SystemPreferencesChoice Constants (continued)

Constant Type Vers
ion

Description

Preferences
Preferences Data Types

834 Palm OS Programmer’s API Reference

prefAlarm
SoundVolume

UInt16 3 The sound level for alarms.
This is a value from 0 to
sndMaxAmp.

prefBeamReceive Boolean 3 If true, the device can receive
beams from other devices. If
false, the device cannot
receive beams but can still send
them.

This preference is not currently
used. Instead, use the
ExgControl function with
one of the constants described
in “IR Control Constants.”

prefCalibrate
DigitizerAtReset

Boolean 3 If true, the user must
recalibrate the digitizer after a
soft reset. The default is false.

prefSystem
KeyboardID

UInt16 4 The resource ID of the
keyboard panel.

prefDefSerial
PlugIn

UInt32 4 The creator ID of the default
serial plug-in database.

prefStayOn
WhenPluggedIn

Boolean 5 If true, the device stays
powered on when it is in the
cradle.

prefStayLit
WhenPluggedIn

Boolean 5 If true and
prefStayOnWhenPluggedIn
is true, the device stays lit
when it is in its cradle.

prefAntenna
CharAppCreator

UInt32 6 The creator ID of the
application to launch when the
antenna is raised (used only for
devices with built-in antennas).

Table 43.1 SystemPreferencesChoice Constants (continued)

Constant Type Vers
ion

Description

Preferences
Preferences Data Types

Palm OS Programmer’s API Reference 835

prefMeasurement
System

MeasurementSys
temType

7 The system of measurement to
use.

prefShow
Private
Records

privateRecordV
iewEnum

8 Specifies whether the private
records should be displayed,
masked, or completely hidden.

prefAutoOff
DurationSecs

UInt16 8 Seconds of user idle time before
the device powers off. The
default value for this
preference is specified by the
defaultAutoOffDurationS
ecs constant.

prefTimeZone Int16 9 The time zone given as minutes
east of Greenwich Mean Time
(GMT).

IMPORTANT: Changing the
value of this preference does
not update the current time.

prefDaylight
Saving
Adjustment

Int16 9 The number of minutes to add
to the current time for daylight
savings time.

IMPORTANT: Changing the
value of this preference does
not update the current time.

prefTimeZone
Country

CountryType 9 The country selected to specify
what the time zone is.

Table 43.1 SystemPreferencesChoice Constants (continued)

Constant Type Vers
ion

Description

Preferences
Preferences Data Types

836 Palm OS Programmer’s API Reference

prefAutoLockType SecurityAutoLo
ckType

9 Specifies when the auto-locking
feature should take effect.
Possibilities are upon power
off, at a preset time, or after a
certain number of seconds.

prefAutoLockTime UInt32 9 The time value for the auto-
locking feature if the system
should lock itself after a delay
or at a preset time. Depending
on the value of
prefAutoLockType, this
value is either an absolute date
and time given as the number
of seconds since January 1, 1904
or a timeout value given as a
number of seconds from the
current time.

prefAutoLock
TimeFlag

Boolean 9 If true, prefAutoLockTime
is given in minutes. If false,
the time is given in hours.

prefLanguage LanguageType 9 The language that the device
should use.

prefAttention
Flags

AttnFlagsType 9 The user’s preferences for
receiving attention signals. The
returned value is a bit mask
that should be tested (using the
& operator) with one of the
following values:

Table 43.1 SystemPreferencesChoice Constants (continued)

Constant Type Vers
ion

Description

Preferences
Preferences Data Types

Palm OS Programmer’s API Reference 837

Preferences in the User Interface

Table 43.2 shows the SystemPreferencesChoice constants and
how they correspond to the values that users can set in the
Preferences and Security applications. For further information
about each preference, see Table 43.1.

kAttnFlagsUserWantsLED
kAttnFlagsUserWants
Sound
kAttnFlagsUserWants
Vibrate
kAttnFlagsUserWants
CustomEffect

Note that you can override the
values in
prefAttentionFlags when
you make Attention Manager
function calls. See the section
“Getting the User’s Attention”
on page 283 of the Palm OS
Programmer’s Companion, vol. I
for more information.

prefDefault
AppCreator

UInt32 9 Creator ID of the application
that is launched after a reset. If
0, the system default
application is launched.

prefLocale LmLocaleType 9 The device’s current locale,
which specifies the country and
language.

prefDefFepPlugIn
Creator

UInt32 10 Creator ID of the default FEP
plug-in.

prefColorThemeID DmResID 10 Resource ID of the color theme.

Table 43.1 SystemPreferencesChoice Constants (continued)

Constant Type Vers
ion

Description

Preferences
Preferences Data Types

838 Palm OS Programmer’s API Reference

Table 43.2 Preferences set in standard apps

Application/Panel Field SystemPreferencesChoice
Constant

Preferences
application
General panel

Auto-off After prefAutoOffDuration,
prefAutoOffDurationSecs
(Palm OS 3.5 and higher)

Stay on in Cradle prefStayOnWhenPluggedIn

System Sound prefSysSoundLevelV20,
prefSysSoundVolume

Alarm Sound prefAlarmSoundLevelV20,
prefAlarmSoundVolume

Alarm Vibrate1 prefAttentionFlags

Alarm LEDa prefAttentionFlags

Game Sound prefGameSoundLevelV20,
prefGameSoundVolume

Beam Receive field prefBeamReceive

Preferences
application Date &
Time panel

Set Time Zone field prefTimeZone

Daylight Saving prefDaylightSaving
Adjustment

Preferences
application
Formats panel

Preset to prefCountry

Time prefTimeFormat

Date prefDateFormat,
prefLongDateFormat

Week starts prefWeekStartDay

Numbers prefNumberFormat

Preferences
Preferences Constants

Palm OS Programmer’s API Reference 839

Preferences Constants
The following table describes the constants defined in the
Preferences.h header file.

Preferences
application Buttons
panel

Buttons on main
panel

prefHard1CharAppCreator,
prefHard2CharAppCreator,
prefHard3CharAppCreator,
prefHard4CharAppCreator,
prefCalcCharAppCreator,
prefLauncherAppCreator

Pen button prefRonamaticChar

HotSync button prefHardCradleCharApp
Creator
prefHardCradle2CharApp
Creator

Security application Current Privacy prefHidePrivateRecordsV33,
prefShowPrivateRecords

Security application Lock & Turn Off
button

prefDeviceLocked,
prefAutoLockType,
prefAutoLockTime,
prefAutoLockTimeFlag

1. The Alarm Vibrate and Alarm LED preferences only appear on handhelds running Palm OS 4.0 and
later that have the appropriate hardware capabilities. If you install Palm OS 4.0 on an older device,
these preferences do not display.

Table 43.2 Preferences set in standard apps (continued)

Application/Panel Field SystemPreferencesChoice
Constant

Preferences
Preferences Constants

840 Palm OS Programmer’s API Reference

Constant Value Description

defaultAutoLockTime 0 Initial setting for the
prefAutoLockTime preference.

defaultAutoLockTimeFlag 0 Initial setting for the
prefAutoLockTimeFlag
preference.

defaultAutoLockType never Initial setting for the
prefAutoLockType preference.

defaultAutoOffDuration 2 Initial setting for the
prefAutoOffDuration
preference, given in minutes.

defaultAutoOffDuration
Secs

120 Initial setting for the
prefAutoOffDurationSecs
preference, given in seconds. The
value is 2 times the number of
seconds in a minute, or 120 seconds.

defaultAlarmSoundLevel slOn Initial setting for the
prefAlarmSoundLevelV20
preference.

defaultAlarmSoundVolume sndMaxAmp Initial setting for the
prefAlarmSoundVolume
preference.

defaultGameSoundLevel slOn Initial setting for the
prefGameSoundLevelV20
preference.

defaultGameSoundVolume sndMaxAmp Initial setting for the
prefGameSoundVolume
preference.

defaultSysSoundLevel slOn Initial setting for the
prefSysSoundLevelV20
preference.

defaultSysSoundVolume sndMaxAmp Initial setting for the
prefSysSoundVolume preference.

Preferences
Preferences Constants

Palm OS Programmer’s API Reference 841

noPreferenceFound -1 The value that
PrefGetAppPreferences
returns to indicate that preferences
couldn’t be found.

preferenceDataVer2 2 Version 2 of the system preferences
structure, used for Palm OS 2.0.

preferenceDataVer3 3 Version 3 of the system preferences
structure, used for Palm OS 3.0.

preferenceDataVer4 4 Version 4 of the system preferences
structure, used for Palm OS 3.1.

preferenceDataVer5 5 Version 5 of the system preferences
structure, used for Palm OS 3.2.

preferenceDataVer6 6 Version 6 of the system preferences
structure, used for Palm OS 3.3.

preferenceDataVer8 8 Version 8 of the system preferences
structure, used for Palm OS 3.5.

preferenceDataVer9 9 Version 9 of the system preferences
structure, used for Palm OS 4.0.

preferenceDataVer10 10 Version 10 of the system
preferences structure, used for Palm
OS 5.0.

preferenceDataVer11 11 Version 11 of the system
preferences structure, used for Palm
OS 5.1.

preferenceDataVerLatest preference
DataVer11

The latest version of the system
preferences structure.

Constant Value Description

Preferences
Preferences Functions

842 Palm OS Programmer’s API Reference

Preferences Functions

PrefGetAppPreferences

Purpose Return a copy of an application’s preferences resource.

Declared In Preferences.h

Prototype Int16 PrefGetAppPreferences (UInt32 creator,
UInt16 id, void *prefs, UInt16 *prefsSize,
Boolean saved)

Parameters -> creator Creator ID of the application that owns the
preferences.

-> id ID number of the preferences resource to
retrieve. The IDs 0x8000 through 0xFFFF are
reserved for system use.

<- prefs Pointer to a buffer to hold the preferences.

<-> prefsSize Pointer to the size of the prefs buffer passed
in. Upon return, contains the number of bytes
actually written or the number of bytes needed
for the prefs structure.

To determine the required size for the prefs
structure, set prefsSize to 0 and pass NULL
for prefs. Upon return, the prefsSize
parameter contains the required size. Never set
prefs to NULL without also setting
prefsSize to 0.

Always compare the value returned in this
parameter with the value you passed in. If the
two values differ, you need to resize the prefs
structure and call this function again.

Preferences
Preferences Functions

Palm OS Programmer’s API Reference 843

-> saved If true, retrieve the preferences from the
“saved” preferences database, which is backed
up during a HotSync operation. If false,
retrieve the preferences from the “unsaved”
preferences database, which is usually not
backed up during a HotSync operation.

Result Returns the version number of the retrieved preferences resource, or
returns the constant noPreferenceFound if the preferences
resource wasn’t found. The returned version number is the same
version number that was passed to the PrefSetAppPreferences
function.

Comments Use this function to retrieve the preferences that you previously set
with the PrefSetAppPreferences function. You typically call
this function in your StartApplication function upon a normal
launch. The values of the id and saved parameters should be the
same as you specified when calling PrefSetAppPreferences,
and the prefs parameter should be a structure of the same type as
you passed to PrefSetAppPreferences. Most applications store
all preferences in a single preferences resource retrieved by a single
call to PrefGetAppPreferences, but this is not required. You can
use multiple preferences resources if you wish.

Applications typically call PrefGetAppPreferences twice: once
with prefs set to NULL and prefsSize set to 0 to determine how
much memory to allocate for the preferences structure, and a second
time after allocating the required amount of memory to obtain a
copy of the application’s preferences resource.

The version number returned by this function allows you to handle
the case where a new version of the application is being run for the
first time. You can compare the value returned by this function with
the current version number to determine if you need to set default
values for any preferences created by the current release. For more
information, see the section “Updating Preferences Upon a New
Release” on page 329 of the Palm OS Programmer’s Companion, vol. I.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also PrefSetPreferences, PrefGetAppPreferencesV10

Preferences
Preferences Functions

844 Palm OS Programmer’s API Reference

PrefGetAppPreferencesV10

Purpose Return a copy of an application’s preferences.

Declared In Preferences.h

Prototype Boolean PrefGetAppPreferencesV10 (UInt32 type,
Int16 version, void *prefs, UInt16 prefsSize)

Parameters -> type Creator ID of the application that owns the
preferences.

-> version Version number of the application’s
preferences.

<- prefs Pointer to a buffer to hold preferences.

-> prefsSize Size of the buffer passed.

Result Returns false if the preference resource was not found or the
preference resource contains the wrong version number.

Comments The content and format of an application preference is application-
dependent.

Compatibility This function corresponds to the 1.0 version of
PrefGetAppPreferences.

See Also PrefSetPreferences, PrefGetAppPreferences

Preferences
Preferences Functions

Palm OS Programmer’s API Reference 845

PrefGetPreference

Purpose Return a system preference. Use this function instead of
PrefGetPreferences.

Declared In Preferences.h

Prototype UInt32 PrefGetPreference
(SystemPreferencesChoice choice)

Parameters -> choice A constant that specifies what preference to
retrieve. See SystemPreferencesChoice.

Result Returns the system preference or 0 if the preference could not be
found. On debug ROMs, a non-fatal error message is also displayed
if the specified preference cannot be found.

Comments This function replaces the 1.0 function PrefGetPreferences.
While PrefGetPreferences only lets you retrieve the whole
system preferences structure, this function lets you specify which
preference to retrieve.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also PrefSetPreference, PrefGetAppPreferences,
PrefGetAppPreferencesV10

PrefGetPreferences

Purpose Return a copy of the system preferences.

Declared In Preferences.h

Prototype void PrefGetPreferences (SystemPreferencesPtr p)

Parameters <- p Pointer to system preferences.

Result Returns nothing. Stores the system preferences in p.

Preferences
Preferences Functions

846 Palm OS Programmer’s API Reference

Comments The p parameter points to a memory block allocated by the caller
that is filled in by this function.

This function is often called in StartApplication to get localized
settings.

NOTE: This function can only be used to retrieve preferences
that were in the 1.0 version of the preferences structure.

See Also PrefSetPreferences

PrefOpenPreferenceDB

Purpose Return a handle to either the saved or unsaved preference database.

Declared In Preferences.h

Prototype DmOpenRef PrefOpenPreferenceDB (Boolean saved)

Parameters -> saved If true, open the “saved” preferences
database, which is backed up during a HotSync
operation. If false, open the “unsaved”
preferences database, which usually is not
backed up during a HotSync operation.

Result Returns the handle, or 0 if an error results.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also PrefGetPreference, PrefSetPreference,
PrefOpenPreferenceDBV10

Preferences
Preferences Functions

Palm OS Programmer’s API Reference 847

PrefOpenPreferenceDBV10

Purpose Return a handle to the system preference database.

Declared In Preferences.h

Prototype DmOpenRef PrefOpenPreferenceDBV10 (void)

Parameters None.

Result Returns the handle, or 0 if an error results.

Compatibility This function corresponds to the 1.0 version of
PrefOpenPreferenceDB.

See Also PrefGetPreferences, PrefSetPreferences

PrefSetAppPreferences

Purpose Set an application’s preferences in the specified preferences
database.

Declared In Preferences.h

Prototype void PrefSetAppPreferences (UInt32 creator,
UInt16 id, Int16 version, const void *prefs,
UInt16 prefsSize, Boolean saved)

Parameters -> creator Creator ID of the application that owns this
preference.

-> id ID number of the preference to set. An
application can have multiple preferences. The
IDs 0x8000 through 0xFFFF are reserved for
system use.

-> version Version number of the application’s
preferences.

Preferences
Preferences Functions

848 Palm OS Programmer’s API Reference

-> prefs Pointer to a buffer that holds the current value
of the preferences structure. Pass NULL if you
want to delete the preferences.

-> prefsSize Size of the buffer passed. Pass 0 if you want to
delete the preferences structure.

-> saved If true, saves the preferences in the “saved”
preferences database. If not, saves the
preferences in the “unsaved” preferences
database.

Result Returns nothing.

Comments You typically call this function in your StopApplication function
to save the current state of the application or if the user has changed
an application preference during the current session.

The “saved” preferences database is backed up when a user
performs the HotSync operation. The “unsaved” preferences
database is not backed up by default. (The user can use a third-party
tool to set the backup bit in the “unsaved” preferences database,
which would cause it to be backed up.) Both the “saved” and the
“unsaved” preferences reside in the storage heap and thus persist
across soft resets. The only way that preferences are lost is if a hard
reset is performed. “Which Preferences Database to Use” on
page 327 of the Palm OS Programmer’s Companion, vol. I describes
how to choose between the “saved” and “unsaved” preferences
databases.

The version number that you pass as the version parameter is
returned when the preferences are retrieved by
PrefGetAppPreferences. You can use this version number to
determine if a new release of the application is being run for the first
time. For more information, see the section “Updating Preferences
Upon a New Release” on page 329 of the Palm OS Programmer’s
Companion, vol. I.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also PrefSetAppPreferencesV10

Preferences
Preferences Functions

Palm OS Programmer’s API Reference 849

PrefSetAppPreferencesV10

Purpose Save an application’s preferences in the preferences database.

Declared In Preferences.h

Prototype void PrefSetAppPreferencesV10 (UInt32 creator,
Int16 version, void *prefs, UInt16 prefsSize)

Parameters -> creator Creator ID of the application that owns this
preference.

-> version Version number of the application.

-> prefs Pointer to a buffer holding preferences.

-> prefsSize Size of the buffer passed.

Result Returns nothing.

Comments The content and format of an application preference is application-
dependent.

Compatibility This function corresponds to the 1.0 version of
PrefSetAppPreferences.

See Also PrefSetAppPreferences, PrefGetPreferences

Preferences
Preferences Functions

850 Palm OS Programmer’s API Reference

PrefSetPreference

Purpose Set a system preference. Using this function instead of
PrefSetPreferences allows you to set selected preferences
without having to access the whole structure.

Declared In Preferences.h

Prototype void PrefSetPreference
(SystemPreferencesChoice choice, UInt32 value)

Parameters -> choice A SystemPreferencesChoice constant
specifying the preference to be set.

-> value Value to assign to the preference.

Result Returns nothing. If the specified preference cannot be found,
displays a non-fatal error message on debug ROMs. On release
ROMs, this function fails silently.

Compatibility Implemented only if 2.0 New Feature Set is present.

PrefSetPreferences

Purpose Set the system preferences.

Declared In Preferences.h

Prototype void PrefSetPreferences (SystemPreferencesPtr p)

Parameters -> p Pointer to system preferences.

Result Returns nothing.

Comments Unless there’s a reason for you to access the whole preferences
structure, call PrefSetPreference instead.

Preferences
Preferences Functions

Palm OS Programmer’s API Reference 851

NOTE: This function can only be used to set preferences that
were in the 1.0 version of the preferences structure.

See Also PrefGetPreferences

Preferences
Preferences Functions

852 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 853

44
Rectangles
This chapter provides reference material for the rectangles API,
declared in the header file Rect.h. It is divided into the following
sections:

• Rectangle Data Structures

• Rectangle Functions

Rectangle Data Structures

PointType
The PointType structure defines a point within a window or on
the screen.

typedef struct PointType {
 Coord x;
 Coord y;
} PointType;

Field Descriptions

RectangleType
The RectangleType structure defines a rectangular portion of a
window or of the screen.

typedef struct RectangleType {
 PointType topLeft;
 PointType extent;
} RectangleType;
typedef RectangleType *RectanglePtr;

x Horizontal coordinate.

y Vertical coordinate.

Rectangles
Rectangle Functions

854 Palm OS Programmer’s API Reference

Field Descriptions

Rectangle Functions

RctCopyRectangle

Purpose Copy the source rectangle to the destination rectangle.

Declared In Rect.h

Prototype void RctCopyRectangle
(const RectangleType* srcRectP,
RectangleType* dstRectP)

Parameters srcRectP A pointer to the rectangle to be copied.

dstRectP A pointer to the destination rectangle.

See Also RctSetRectangle

RctGetIntersection

Purpose Determine the intersection of two rectangles.

Declared In Rect.h

Prototype void RctGetIntersection
(const RectangleType* r1P,
const RectangleType* r2P, RectangleType* r3P)

Parameters r1P A pointer to a source rectangle.

topLeft Coordinates of the upper-left corner of the
rectangle relative to the window or screen in
which the rectangle resides.

extent Width (extent.x) and height (extent.y) of
the rectangle.

Rectangles
Rectangle Functions

Palm OS Programmer’s API Reference 855

r2P A pointer to the other source rectangle.

r3P Upon return, points to a rectangle representing
the intersection of r1 and r2.

Comments The rectangle type RectangleType, which is pointed to by
RectanglePtr, stores the coordinates for the top-left corner of the
rectangle plus the rectangle’s width and height. This function
returns in the r3 parameter a pointer to the rectangle that represents
the intersection of the first two rectangles.

If the rectangles r1 and r2 do not intersect, r3 contains a rectangle
whose top-left coordinate is the maximum of r1 and r2’s top-left
coordinates and whose extent varies based on the location of the
two rectangles.

Compatibility On releases prior to Palm OS® 3.5, if rectangles r1 and r2 don’t
intersect, r3 contains a rectangle that begins at coordinates (0,0 and
has 0 width and 0 height. On Palm OS 3.5 and later, if the two
rectangles don’t intersect then r3 contains a rectangle in which one
or both of the extent coordinates is zero.

RctInsetRectangle

Purpose Move all of the boundaries of a rectangle by a specified offset.

Declared In Rect.h

Prototype void RctInsetRectangle (RectangleType* rP,
Coord insetAmt)

Parameters rP A pointer to the rectangle.

insetAmt Number of pixels to move the boundaries. This
can be a negative number.

Comments The rectangle type RectangleType, which is pointed to by
RectanglePtr, stores the coordinates for the top-left corner of the
rectangle plus the rectangle’s width and height. This function adds
insetAmt to the x and y values of the top-left coordinate and then

Rectangles
Rectangle Functions

856 Palm OS Programmer’s API Reference

adjusts the width and the height accordingly so that all of the sides
of the rectangle are contracted or expanded by the same amount.

A positive insetAmt creates a smaller rectangle that is contained
inside the old rectangle’s boundaries. A negative insetAmt creates
a larger rectangle that surrounds the old rectangle.

See Also RctOffsetRectangle

RctOffsetRectangle

Purpose Move the top and left boundaries of a rectangle by the specified
values.

Declared In Rect.h

Prototype void RctOffsetRectangle (RectangleType* rP,
Coord deltaX, Coord deltaY)

Parameters rP A pointer to the rectangle.

deltaX Number of pixels to move the left boundary.
This can be a negative number.

deltaY Number of pixels to move the top boundary.
This can be a negative number.

Comments The rectangle type RectangleType, which is pointed to by
RectanglePtr, stores the coordinates for the top-left corner of the
rectangle plus the rectangle’s width and height. This function adds
deltaX to the x value of the top-left coordinate and deltaY to the
y value. The width and height are unchanged. Thus, this function
shifts the position of the rectangle by the deltaX and deltaY
amounts.

See Also RctInsetRectangle

Rectangles
Rectangle Functions

Palm OS Programmer’s API Reference 857

RctPtInRectangle

Purpose Determine if a point lies within a rectangle’s boundaries.

Declared In Rect.h

Prototype Boolean RctPtInRectangle (Coord x, Coord y,
const RectangleType* rP)

Parameters x The x coordinate of the point.

y The y coordinate of the point.

rP The rectangle.

Result Returns true if the point (x, y) lies within the boundaries of
rectangle r, false otherwise.

RctSetRectangle

Purpose Sets a rectangle’s values.

Declared In Rect.h

Prototype void RctSetRectangle (RectangleType* rP,
Coord left, Coord top, Coord width, Coord height)

Parameters rP A pointer to the rectangle to be set.

left The x value for the top-left coordinate of the
rectangle.

top The y value for the top-left coordinate of the
rectangle.

width The rectangle’s width.

height The rectangle’s height.

See Also RctCopyRectangle

Rectangles
Rectangle Functions

858 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 859

45
Sound Manager
This chapter describes the API that’s defined by the Sound Manager.
You use this API to make and record sounds.

The Sound Manager controls two independent sound facilities:

• Single voice, monophonic, square-wave sound synthesis,
useful for system beeps. This is the traditional (pre-OS 5)
PalmSource sound; let’s call it “simple sound.”

• Stereo, multi-format, sampled data recording and playback
(new in Palm OS 5). We’ll call it “sampled sound.”

The API for these two facilities are entirely separate; the simple
sound API is described first...

• Simple Sound Structures and Constants

• Simple Sound Functions

• Simple Sound Application-Defined Functions

...followed by the sampled sound API.

• Sampled Sound Structures, Constants, and Data Types

• Sampled Sound Functions

• Sampled Sound Application-Defined Functions

All elements described here are declared in SoundMgr.h.

Overview
There are three ways to play a simple sound:

• You can play a single tone of a given pitch, amplitude, and
duration by calling SndDoCmd.

• You can play a pre-defined system sound through
SndPlaySystemSound.

• You can play a tune by passing in a Level 0 Standard MIDI
file (SMF) through the SndPlaySmf function.

Sound Manager
Simple Sound Structures and Constants

860 Palm OS Programmer’s API Reference

There are a handful of other simple sound functions, but they
mostly support these three fundamental functions.

Over in the sampled sound facilities, there are two fundamental
functions:

• SndStreamCreate opens a new sampled sound “stream”
from/into which you record/playback buffers of “raw” data.
The trick is that you first have to configure the stream to tell
it how to interpret the data.

• SndPlayResource is used to playback sound data that’s
read from a (formatted) sound file. The function configures
the playback stream for you, based on the format information
in the sound file header. Currently, only uncompressed
WAV and IMA ADPCM WAV formats are recognized (this
also known as DVI ADPCM). Note that SndPlayResource
is only used to play back sound; it can’t be used for recording.

The Sound Manager also provides functions that let you set the
volume and stereo panning for individual recording and playback
streams. See SndStreamSetVolume and SndStreamSetPan.

For more information on the Sound Manager, see the section
“Sound” in the Palm OS Programmer’s Companion, vol. I.

Simple Sound Structures and Constants

SndCallbackInfoType
Structure that encapsulates a callback function and its argument
data. SndCallbackInfoType is used by the
SndSmfCallbacksType structure, which is used to list the
callback functions that are called during SMF playback.

typedef struct SndCallbackInfoType {
 MemPtr funcP;
 UInt32 dwUserData;
} SndCallbackInfoType;

Sound Manager
Simple Sound Structures and Constants

Palm OS Programmer’s API Reference 861

The fields are:

SndCmdIDTag
The SndCmdIDTag enumeration contains constants that represent
specific sound operations used in simple sound playback.

typedef enum SndCmdIDTag {
 sndCmdFreqDurationAmp = 1,
 sndCmdNoteOn,
 sndCmdFrqOn,
 sndCmdQuiet
};

See SndDoCmd for descriptions of the operations that are
represented by these values.

SndCommandType
The SndCommandType structure encapsulates a sound synthesis
operation and its associated parameters. Used by the SndDoCmd
function.

typedef struct SndCommandType {
 SndCmdIDType cmd;
 UInt8 reserved;
 Int32 param1;
 UInt16 param2;
 UInt16 param3;
} SndCommandType;

funcP A pointer to the callback
function.

dwUserData Data that’s passed as an
argument to the function.

Sound Manager
Simple Sound Structures and Constants

862 Palm OS Programmer’s API Reference

The fields are:

sndMaxAmp
Constant that defines the upper limit for simple sound amplitude
values. Use this value with the simple sound API only (such as
SndDoCmd). The sndMaxAmp value is not compatible with the
sampled sound amplitude range.

#define sndMaxAmp 64

SndMidiListItemType
Structure that locates a MIDI file. The structure is used by the
SndCreateMidiList function.

typedef struct SndMidiListItemType{
 Char name[sndMidiNameLength];
 UInt32 uniqueRecID;
 MemHandle dbH;
} SndMidiListItemType;

The fields are:

cmd Constant that represents a
sound operation. The
operations are listed and
described in SndDoCmd.

reserved Don’t touch this one.

param1, param2, param3 Operation-specific parameters.
The parameters’ meanings are
described in SndDoCmd.

name The null-terminated name of
the MIDI file.

uniqueRecID The ID of the record that holds
the MIDI file.

dbH Handle to the database that
holds the record.

Sound Manager
Simple Sound Structures and Constants

Palm OS Programmer’s API Reference 863

sndMidiNameLength
Constant that defines the maximum string length (including the
null terminator) for a MIDI file or MIDI track name.

#define sndMidiNameLength 32

SndMidiRecHdrType
Structure that encapsulates the header of a MIDI record.

typedef struct SndMidiRecHdrType {
 UInt32 signature;
 UInt8 bDataOffset;
 UInt8 reserved;
} SndMidiRecHdrType;

The fields are:

Figure 45.1 depicts a complete Palm OS® MIDI record.

Figure 45.1 Palm OS Midi Record

To get to the track name, you have to bump the structure pointer
yourself. For example:

signature Always set to
sndMidiRecSignature.

bDataOffset Offset, in bytes, from the
beginning of the record to the
first byte of the MIDI data.

reserved Always set to 0.

SndMidiRecHdrType

signature (4 bytes)
bDataOffset (1 byte)
reserved (1 byte)

Track name (1+ bytes)

MIDI data

Sound Manager
Simple Sound Structures and Constants

864 Palm OS Programmer’s API Reference

Char *trackName = (Char *)myMidiRecHdr + sizeof(SndMidiRecHdrType);

The MIDI track name is null-terminated, even if it’s empty. It’s at
least one byte long and at most sndMidiNameLength bytes long.

sndMidiRecSignature
Endian-cognizant constant that’s used to tag a MIDI record. The
constant is used as the value of the signature field of the
SndMidiRecHdrType structure.

#if CPU_ENDIAN == CPU_ENDIAN_BIG
#define sndMidiRecSignature 'PMrc'
#else
#define sndMidiRecSignature 'crMP'

SndSmfCallbacksType
Structure that contains a set of application-defined functions that
are called during MIDI playback. To register your callback
functions, call SndPlaySmf.

typedef struct SndSmfCallbacksType {
 SndCallbackInfoType completion;
 SndCallbackInfoType blocking;
 SndCallbackInfoType reserved;
} SndSmfCallbacksType;

The fields are:

completion Completion function; see
SndComplFuncType.

blocking Blocking function; see
SndBlockingFuncType.

reserved Reserved. Set this field to 0.

Sound Manager
Simple Sound Structures and Constants

Palm OS Programmer’s API Reference 865

SndSmfChanRangeType
Structure that defines the range of enabled MIDI channels. Events
on MIDI channels outside the enabled range are ignored. By default,
no channels are enabled.

typedef struct SndSmfChanRangeType {
 UInt8 bFirstChan;
 UInt8 bLastChan;
} SndSmfChanRangeType;

The fields are:

WARNING! The SndSmfChanRangeType structure expects
MIDI channels to be in the range [0, 15]; real MIDI channel values
are in the range [1, 16]. Thus, PalmSource MIDI channel 0 is real
MIDI channel 1, PalmSource MIDI channel 1 is real MIDI channel
2, and so on.

SndSmfCmdEnum
Constants used to tell SndPlaySmf whether to set or retrieve data.

typedef enum SndSmfCmdEnumTag {
 sndSmfCmdPlay = 1,
 sndSmfCmdDuration,
} SndSmfCmdEnum;

See SndPlaySmf for descriptions of these values.

SndSmfOptionsType
Structure that establishes MIDI performance parameters. This
structure is used in the SndPlaySmf function to establish new
parameter settings or to return the currently set values, depending

bFirstChan The first enabled channel in the
range [0, 15].

bLastChan The last enabled channel in the
range [0, 15].

Sound Manager
Simple Sound Structures and Constants

866 Palm OS Programmer’s API Reference

on how the function is called. In the case where the structure returns
values, only the “performance marker” fields (dwStartMilliSec
and dwEndMilliSec) are valid.

typedef struct SndSmfOptionsType {
 UInt32 dwStartMilliSec;
 UInt32 dwEndMilliSec;
 UInt16 amplitude;
 Boolean interruptible;
 UInt8 reserved1;
 UInt32 reserved;
} SndSmfOptionsType;

The fields are

dwStartMilliSec The “beginning of
performance” marker,
measured in milliseconds from
the beginning of the track. A
value of 0 plays the track from
the beginning. The time
difference between
dwStartMilliSec and the
performance time of the first
subsequent MIDI event is
respected. For example, if
dwStartMilliSec is 2000
and the first (subsequent) note-
on event is at 3000, there will be
a 1000 millisecond “pause”
before the note is played.

dwEndMilliSec The “end of performance”
marker, measured in
milliseconds from the
beginning of the track. To play
to the end of the track, set this
to sndSmfPlayAllMilliSec.

Sound Manager
Simple Sound Structures and Constants

Palm OS Programmer’s API Reference 867

sndSmfPlayAllMilliSec
Represents the (temporal) far end of a MIDI file. You can use this
constant as the value of the dwEndMilliSec field of the
SndSmfOptionsType structure before passing the structure to
SndPlaySmf. This setting tells the function to play the entire file.

#define sndSmfPlayAllMilliSec 0xFFFFFFFFUL

SndSysBeepTag
Constants that represent a set of pre-defined system beeps. See
SndPlaySystemSound for more information on the system beeps
and their intended uses.

typedef enum SndSysBeepTag {
 sndInfo = 1,
 sndWarning,
 sndError,
 sndStartUp,
 sndAlarm,
 sndConfirmation,
 sndClick
} ;

amplitude Specifies the volume of the
track, in the range
[0, sndMaxAmp]. The default is
sndMaxAmp. If set to 0, the
MIDI file isn’t played.

interruptible If true (the default), MIDI
playback is interrupted if the
user interacts with the controls
(digitizer, buttons, etc.), even if
the interaction doesn’t generate
a sound command. If false,
playback is not interrupted.

reserved1 Reserved.

reserved Reserved. Set this field to 0.

Sound Manager
Simple Sound Functions

868 Palm OS Programmer’s API Reference

Simple Sound Functions

SndCreateMidiList

Purpose Generates a list of MIDI records.

Declared In SoundMgr.h

Prototype Boolean SndCreateMidiList (UInt32 creator,
Boolean multipleDBs, UInt16* recordCount,
MemHandle *recordList)

Parameters -> creator Creator ID of the database in which the
function looks for MIDI records. Pass 0 to
search all databases.

-> multipleDBs
Pass true to search multiple databases for
MIDI records. Pass false to search only in the
first database that meets the search criteria.

<- recordCount
Returns the number of MIDI records that were
found.

<- recordList Returns a pointer to an array of
SndMidiListItemType structures, one
structure for each record that was found.

Result Return true if records were found, otherwise returns false.

Compatibility Implemented in Palm OS 3.0 and later.

Sound Manager
Simple Sound Functions

Palm OS Programmer’s API Reference 869

SndDoCmd

Purpose Asks the Sound Manager to perform a simple sound synthesis
operation.

Prototype Err SndDoCmd (void* channel,
SndCommandPtr command, Boolean noWait)

Parameters -> channel A pointer to the sound channel on which you
want to perform the operation. Pass NULL for
the “shared” sound channel.

IMPORTANT: The Sound Manager only supports one channel
of sound synthesis: You must pass NULL as the value of
channel.

-> command Pointer to a SndCommandType that describes
the operation and associated parameters. See
Comments, below, for information on the
sound commands.

-> noWait Sets the function to be asynchronous (true) or
synchronous (false) with respect to the caller.

IMPORTANT: SndDoCmd is always synchronous: The noWait
value is currently ignored.

Result errNone Success.

sndErrBadParam
Invalid parameter.

sndErrBadChannel
Invalid channel pointer.

sndErrQFull The sound queue is full.

Sound Manager
Simple Sound Functions

870 Palm OS Programmer’s API Reference

Comments The sound operations that are performed by SndDoCmd are
encapsulated in the SndCommandType structure:

typedef struct SndCommandType {
 SndCmdIDType cmd;
 UInt8 reserved;
 Int32 param1;
 UInt16 param2;
 UInt16 param3;
} SndCommandType;

The cmd field represents the operation; the paramN fields are data
that’s passed to the operation. The operations and data that
SndDoCmd supports are described below:

cmd Value param Values

sndCmdFreqDurationAmp
plays a tone. The function
blocks until the tone has
finished.

param1 is the tone’s frequency
in Hertz.
param2 is its duration in
milliseconds
param3 is its amplitude in the
range [0, sndMaxAmp]. If the
amplitude is 0, the sound isn’t
played and the function returns
immediately.

sndCmdFrqOn initiates a tone.
The function returns
immediately while the tone
plays in the background.
Subsequent sound playback
requests will interrupt the tone.

Same as the parameters for
sndCmdFreqDurationAmp.

Sound Manager
Simple Sound Functions

Palm OS Programmer’s API Reference 871

Compatibility Commands other than sndCmdFreqDurationAmp are
implemented in Palm OS 3.0 and later. In OS versions earlier than
3.0, SndDoCmd will crash with a fatal error if you pass a command
other than sndCmdFreqDurationAmp.

See Also SndPlaySmf

SndGetDefaultVolume

Purpose Returns volume levels cached by the Sound Manager.

Prototype void SndGetDefaultVolume (UInt16 *alarmAmp,
UInt16 *sysAmp, UInt16 *masterAmp)

Parameters <- alarmAmp Pointer to the alarm amplitude.

<- sysAmp Pointer to the system sound amplitude.

<- masterAmp Pointer to the master amplitude.

Comments Pass NULL for settings that you don’t care about.

Compatibility Never call this function in Palm OS 5. To retrieve default volume
levels, you should ask for the user’s preferences settings.

See Also SndSetDefaultVolume

sndCmdNoteOn initiates a
MIDI-defined tone. The
function returns immediately
while the tone plays in the
background. Subsequent sound
playback requests will
interrupt the tone.

param1 is the tone’s pitch
given as a MIDI key number in
the range [0, 127].
param2 is the tone’s duration
in milliseconds
param3 is its amplitude given
as MIDI velocity [0, 127].

sndCmdQuiet stops the
playback of the currently
generated tone.

Ignored.

cmd Value param Values

Sound Manager
Simple Sound Functions

872 Palm OS Programmer’s API Reference

SndInterruptSmfIrregardless

Purpose Stops the currently playing MIDI file, even if the performance was
declared to be intolerant of interruptions.

Prototype Err SndInterruptSmfIrregardless (void)

Result Always returns errNone (success).

Compatibility Implemented in Palm OS 4.0 and later. The name is incompatible
with the English language.

See Also SndPlaySmf, SndPlaySmfResourceIrregardless

SndPlaySmf

Purpose Performs a Standard MIDI File, or returns the duration of the file.

Prototype Err SndPlaySmf (void *channel,
SndSmfCmdEnum command, UInt8 *midiData,
SndSmfOptionsType *options,
SndSmfChanRangeType *channelRange,
SndSmfCallbacksType *callbacks, Boolean noWait)

Parameters -> channel A pointer to the sound channel on which you
want to perform the MIDI file. Pass NULL for
the “shared” sound channel.

IMPORTANT: The Sound Manager only supports one channel
of sound synthesis: You must pass NULL as the value of
channel.

-> command Either SndSmfCmdPlay (play the file) or
SndSmfCmdDuration (return the duration of
the file in milliseconds).

-> midiData The MIDI data; this can point to an
SndMidiRecHdrType struct, or it can point

Sound Manager
Simple Sound Functions

Palm OS Programmer’s API Reference 873

directly to the actual MIDI data bytes in
memory.

-> options A pointer to a SndSmfOptionsType that
defines performance parameters (volume,
starting offset, interruption tolerance). For
default behavior, pass NULL. For more
information (including default settings), see
SndSmfOptionsType.

-> channelRange A pointer to a SndSmfChanRangeType that
specifies the range of MIDI channels (in the
SMF data) to use during playback. To play all
channels, pass NULL.

-> callbacks A pointer to a SndSmfCallbacksType that
holds your callback functions. Pass NULL if
you don’t want any callbacks.

noWait This value is ignored. This function always
finishes playing the SMF selection before
returning (but see Comments, below).

Result errNone Success.

sndErrBadParam
Invalid value passed to this function.

sndErrBadChannel
Invalid sound channel.

sndErrMemory Insufficient memory.

sndErrOpen Tried to open channel that’s already open.

sndErrQFull Can’t accept more notes.

sndErrFormat Unsupported data format.

sndErrBadStream
Invalid data stream.

sndErrInterrupted
Play was interrupted.

Sound Manager
Simple Sound Functions

874 Palm OS Programmer’s API Reference

Comments Although this call is always synchronous, you can register a
“blocking” function that’s called periodically as the MIDI file is
playing. See SndBlockingFuncType for more information.

Normally, playback is halted by events generated by user
interaction with the screen, digitizer, or hardware-based buttons.
You can override this behavior by setting the interruptible
field of the options argument to false.

This function waits until any currently playing simple sound has
finished before starting playback of the requested MIDI data. A
similar function, SndPlaySmfIrregardless, doesn’t wait: It interrupts
the current performance and immediately begins playback of the
requested data.

Compatibility Implemented in Palm OS 3.0 and later.

SndPlaySmfIrregardless

Purpose Like SndPlaySmf, but interrupts any currently playing simple
sound, regardless of that sound’s declared interruption tolerance.

Prototype Err SndPlaySmfIrregardless (void *channel,
SndSmfCmdEnum command, UInt8 *midiData,
SndSmfOptionsType *options,
SndSmfChanRangeType *channelRange,
SndSmfCallbacksType *callbacks, Boolean noWait)

Comments For further information, see SndPlaySmf.

Compatibility Implemented in Palm OS 4.0 and later.

Sound Manager
Simple Sound Functions

Palm OS Programmer’s API Reference 875

SndPlaySmfResource

Purpose Plays a MIDI track read out of an open resource database.

Prototype Err SndPlaySmfResource (UInt32 resType,
Int16 resID, SystemPreferencesChoice volume)

Parameters -> resType SMF resource type.

-> resID SMF resource ID.

-> volume Volume setting; one of:

prefSysSoundVolume
prefGameSoundVolume
prefAlarmSoundVolume

Result errNone Success.

sndErrBadParam
The volumeSelector parameter has an
invalid value or the SMF resource has invalid
data.

dmErrCantFind The specified resource doesn’t exist.

other values See SndPlaySmf

Comments This function plays the entire MIDI file using all MIDI channels.
Playback is interrupted by a key down or digitizer event. No
callbacks are specified.

This function waits until any currently playing simple sound has
finished before starting playback of the requested MIDI data. A
similar function, SndPlaySmfResourceIrregardless, doesn’t wait: It
interrupts the current performance and immediately begins
playback of the requested data.

Compatibility Implemented in Palm OS 3.2 and later.

Sound Manager
Simple Sound Functions

876 Palm OS Programmer’s API Reference

SndPlaySmfResourceIrregardless

Purpose Like SndPlaySmfResource, but interrupts any currently playing
simple sound, regardless of that sound’s declared tolerance for
interruption.

Prototype Err SndPlaySmfResourceIrregardless
(UInt32 resType, Int16 resID,
SystemPreferencesChoice volumeSelector)

Comments For further information, see SndPlaySmfResource.

Compatibility Implemented only if 4.0 New Feature Set is present.

SndPlaySystemSound

Purpose Plays a pre-defined (simple) system sound.

Prototype void SndPlaySystemSound (SndSysBeepType beepID)

Parameters -> beepID One of the system beep sound constants, listed
below.

Comments The system beep sounds are represented by the SndSysBeepType
constants:

• sndInfo. Heralds non-crucial information.

• sndWarning. Grabs the user’s attention

• sndError. Indicates an illegal operation.

• sndStartUp. Played at device start up time.

• sndAlarm. Generic alarm sound; note that this is not the
Datebook’s alarm sound.

• sndConfirmation. Indicates approval or acceptance.

• sndClick. The button click sound.

If you’re playing an alarm (sndAlarm), the user’s alarm volume
preference setting is used. For all other system sounds, the system
volume preference is used.

Sound Manager
Simple Sound Application-Defined Functions

Palm OS Programmer’s API Reference 877

In addition, sndAlarm sounds are played synchronously (the
function blocks). All other sounds are played asynchronously.

SndSetDefaultVolume

Purpose Sets the default sound volume levels cached by the Sound Manager.

Prototype void SndSetDefaultVolume (UInt16 *alarmAmp,
UInt16 *sysAmp, UInt16 *masterAmp)

Parameters -> alarmAmp Pointer to the alarm amplitude.

-> sysAmp Pointer to the system sound amplitude.

-> masterAmp Pointer to the master amplitude.

Result Returns nothing.

Comments Any of the arguments may be NULL. In that case, the corresponding
setting is not altered.

Compatibility Never call this function in Palm OS 5.

See Also SndGetDefaultVolume

Simple Sound Application-Defined Functions

SndBlockingFuncType

Purpose Invoked periodically during SMF playback.

Prototype Boolean SndBlockingFuncType (void* channel,
UInt32 userData, Int32 time)

Parameters -> channel A pointer to the sound channel on which the
file is being played. Currently always NULL.

-> userData Arbitrary data that’s defined when the callback
function is registered.

Sound Manager
Simple Sound Application-Defined Functions

878 Palm OS Programmer’s API Reference

-> time The amount of time, in milliseconds, available
for completion of this function.

Result If the function returns true, playback continues. If it returns
false, playback is aborted.

Comments Your SndBlockingFuncType function is called whenever the
MIDI parser is “between notes.” You can do whatever you want
during this period, as long as it doesn’t take more than time
milliseconds.

See Also SndComplFuncType for an example of how to register MIDI
callback functions.

SndComplFuncType

Purpose Invoked immediately after a MIDI file (SMF) finishes playing.

Prototype void SndComplFuncType (void* channel,
UInt32 userData)

Parameters -> channel A pointer to the sound channel on which the
file was played; currently always NULL.

-> userData Caller-defined data that’s copied when the
callback is registered.

Comments To register a SndComplFuncType function (and the userData
that’s fed to it), you define a SndCallbackInfoType structure,
load that structure into the completion field of a
SndSmfCallbacksType structure, and then pass that structure to
SndPlaySmf.

The following example shows how to register a completion function
as well as an SMF “blocking” function (SndBlockingFuncType).

/* First, we create and load two SndCallbackInfoType structs. We assume that
MyCompletionFunc is a valid SndComplFuncType implementation, and that
MyBlockingFunc is a valid SndBlockingFuncType.
*/

Sound Manager
Sampled Sound Structures, Constants, and Data Types

Palm OS Programmer’s API Reference 879

SndCallbackInfoType completionFunc, blockingFunc;
completionFunc.funcP = MyCompletionFunc;
completionFunc.dwUserData = 47;
blockingFunc.funcP = MyBlockingFunc;
blockingFunc.dwUserData = (UInt32)&(char *)"we're done";

/* Next, we create an SndSmfCallbacksType struct and load the previous structs
into it.
*/
SndSmfCallbacksType callbacks;
callbacks.completion = completionFunc
callbacks.blocking = blockingFunc;

/* Finally, we pass the callbacks into SndPlaySmf.
*/

SndPlaySmf(NULL, sndSmfCmdPlay, smf, NULL, NULL, callbacks, true);

Sampled Sound Structures, Constants, and Data
Types

New SndPtr
Type used to cast a pointer to the sound data used by
SndPlayResource.

typedef void *SndPtr;

Compatibility Implemented if Sound Stream Feature Set is present.

New SndSampleType
Data type that’s used for SndSampleTypeTag values.

typedef Enum16 SndSampleType;

Compatibility Implemented if Sound Stream Feature Set is present.

Sound Manager
Sampled Sound Structures, Constants, and Data Types

880 Palm OS Programmer’s API Reference

New SndSampleTypeTag
Constants that represent the sample format (size, data type,
endianness) of a sampled sound stream. Used by
SndStreamCreate.

The enumeration is defined as:

typedef enum SndSampleTypeTag {
 sndInt8 = 0x01,
 sndUInt8 = 0x11,
 sndInt16Big = 0x02,
 sndInt16Little = 0x12,
 sndInt32Big = 0x04,
 sndInt32Little = 0x14,
 sndFloatBig = 0x24,
 sndFloatLittle = 0x34,
#if CPU_ENDIAN == CPU_ENDIAN_BIG
 sndInt16 = sndInt16Big,
 sndInt16Opposite = sndInt16Little,
 sndInt32 = sndInt32Big,
 sndInt32Opposite = sndInt32Little,
 sndFloat = sndFloatBig,
 sndFloatOpposite= sndFloatLittle
#else
 sndInt16 = sndInt16Little,
 sndInt16Opposite = sndInt16Big,
 sndInt32 = sndInt32Little,
 sndInt32Opposite= sndInt32Big,
 sndFloat = sndFloatLittle,
 sndFloatOpposite= sndFloatBig
#endif
};

The constants are:

sndInt8, sndUInt8 Signed and unsigned 8-bit data.

sndInt16, sndInt32,
sndFloat

16-bit integer, 32-bit integer,
and floating point data in the
device’s native endianness.

Sound Manager
Sampled Sound Structures, Constants, and Data Types

Palm OS Programmer’s API Reference 881

Note that the lower four bits of these constants gives the size (in
bytes) of a single sample, thus:

UInt8 byteSize = formatConstant & 0x0f

NOTE: In Palm OS 5, the 32-bit and floating point formats aren’t
supported.

Compatibility Implemented if Sound Stream Feature Set is present.

New SndStreamMode
Data type that’s used for SndStreamModeTag values.

typedef Enum8 SndStreamMode;

Compatibility Implemented if Sound Stream Feature Set is present.

New SndStreamModeTag
Constants that represent the “direction” (input or output) of a
sampled sound stream. Used by the SndStreamCreate function.

typedef enum SndStreamModeTag {

sndInt16Opposite,
sndInt32Opposite,
sndFloatOpposite

The same as the above, but
byte-swapped.

sndInt16Big,
sndInt32Big,
sndFloatBig

The same as the above, but big-
endian.

sndInt16Little,
sndInt32Little,
sndFloatLittle

The same as the above, but
little-endian.

Sound Manager
Sampled Sound Structures, Constants, and Data Types

882 Palm OS Programmer’s API Reference

 sndInput,
 sndOutput
};

The constants are:

Compatibility Implemented if Sound Stream Feature Set is present.

New SndStreamRef
Data type that represents a sampled stream. You create an
SndStreamRef through SndStreamCreate.

typedef UInt32 SndStreamRef;

Compatibility Implemented if Sound Stream Feature Set is present.

New SndStreamWidth
Data type that’s used for SndStreamWidthTag values.

typedef Enum8 SndStreamWidth;

Compatibility Implemented if Sound Stream Feature Set is present.

New SndStreamWidthTag
Constants that represent mono and stereo sampled data streams.
Used by the SndStreamCreate function.

sndInput Input stream used for
recording.

sndOutput Output stream used for
playback.

Sound Manager
Sampled Sound Structures, Constants, and Data Types

Palm OS Programmer’s API Reference 883

typedef enum SndStreamWidthTag {
 sndMono,
 sndStereo
};

The constants are:

Compatibility Implemented if Sound Stream Feature Set is present.

New Sound Resource Playback Flags
Flags used by SndPlayResource.

#define sndFlagSync 0x00000000
#define sndFlagAsync 0x00000001
#define sndFlagNormal sndFlagSync

See SndPlayResource for information on these flags.

Compatibility Implemented if Sound Stream Feature Set is present.

New Stereo Pan Constants
The stereo pan settings can be used in SndStreamSetPan.

#define sndPanCenter (0)
#define sndPanFullLeft (-1024)
#define sndPanFullRight (1024)

Compatibility Implemented if Sound Stream Feature Set is present.

sndMono Mono (one channel) stream.

sndStereo Stereo (two channel) stream.

Sound Manager
Sampled Sound Functions

884 Palm OS Programmer’s API Reference

New Volume Constants
The volume constants can be used by SndStreamSetVolume and
SndPlayResource. The constants tell the functions to retrieve the
named sound volume preference (as set by the user) and apply it as
a volume setting.

enum
{
 sndSystemVolume = -1,
 sndGameVolume = -2,
 sndAlarmVolume = -3
};

Compatibility Implemented if Sound Stream Feature Set is present.

Sampled Sound Functions

New SndPlayResource

Purpose Plays formatted sound data read from a resource or file.

Prototype Err SndPlayResource (SndPtr sound,
Int32 ampScale, UInt32 flags)

Parameters -> sound A pointer to the beginning of the formatted
sound (header and all). Currently, only WAVE
data is recognized (see Comments, below); in
this case, sound must point to the “RIFF” ID
(byte 0 in a simple .wav file).

-> ampScale Amplitude scalar, in the range [0, 32k]. See
SndStreamSetVolume for information on
how amplitude scalar values are applied.

-> flags Settings flags. Currently, the only setting is
function synchronization: Choose between

Sound Manager
Sampled Sound Functions

Palm OS Programmer’s API Reference 885

sndFlagSync and sndFlagAsync. The
former tells the function to wait until all sound
data has been fed to the DAC before returning
(i.e. the function will return just a bit before the
sound has finished playing). The
sndFlagAsync flag tells the function to return
immediately while playback continues in a
separate thread.

As a convenience, the sndFlagNormal value
is a shorthand for the set of “normal” flag
settings. Currently, this is set to sndFlagSync.

Result errNone Success.

sndErrBadParam
sound contains no data.

sndErrFormat The data is in an unsupported format.

sndErrMemory The function couldn’t allocate sufficient
memory.

other errors The device couldn’t allocate system resources
for the sound.

Comments Supported WAVE parameters are:

• uncompressed (PCM) or IMA 4-bit adaptive differential
(IMA ADPCM). The ADPCM type is also known as DVI
ADPCM; in a WAVE file, it’s known as format 0x11.

• One or two-channels

• All normal sampling rates (8k, 11k, 22.05k, 44.1k, 48, 96k).

You can’t interrupt or abort a resource playback once it’s been
initiated. The resource always play to the end of the data.

Compatibility Implemented if Sound Stream Feature Set is present.

Sound Manager
Sampled Sound Functions

886 Palm OS Programmer’s API Reference

New SndStreamCreate

Purpose Creates a new audio data stream that can be used to record or
playback uncompressed, sampled audio data.

Prototype Err SndStreamCreate (SndStreamRef *stream,
SndStreamMode mode, UInt32 sampleRate,
SndSampleType type, SndStreamWidth width,
SndStreamBufferCallback callback,
void *callbackArg, UInt32 bufferSize,
Boolean callbackIsARM)

Parameters <- stream Token that represents the newly created stream.

-> mode Constant that represents the “direction” of the
data. Either sndInput (for recording), or
sndOutput (for playback).

-> sampleRate Sampling rate, in frames-per-second. The value
passed here is the native rate of the data, given
as a number (22050, 44100, 48000, etc.). The
maximum rate is 96000.

-> type Sample quantization and endianness (but see
the section on “Data Formats,” below).

-> width A constant that represents the number of
channels of data in the stream; either sndMono
or sndStereo.

-> callback A callback function that gets called when
another buffer of data is needed.

-> callbackArg
Caller-defined data that gets passed to
callback.

-> bufferSize
Preferred size (in frames) for the buffers that
are passed to callback. Note that the actual
size may be different.

Sound Manager
Sampled Sound Functions

Palm OS Programmer’s API Reference 887

-> callbackIsARM
(68k only) Pass true if the callback function is
written in ARM-native code; if it’s 68k, pass
false.

Result errNone Success.

sndErrBadParam
stream is invalid, bufferFunc is NULL, the
sampleRate is too high (greater than 96000),
or the device doesn’t like some other sound
parameter value.

sndErrorMemory
All streams are being used (there is a maximum
of 16), or memory for this stream couldn’t
otherwise be allocated.

other errors The device couldn’t allocate system resources
for the stream.

Comments This function creates a new audio stream into which you can write
(playback) or from which you can read (record) buffers of
uncompressed, sampled audio data. The stream’s “direction”—
whether it will be used for recording or playback—is described by
the mode argument.

You can create one input stream and as many as 15 output streams.
The “active” end of a stream is hardwired to read from or write to
the device’s sound driver. This means you can’t “redirect” an input
stream to read from a file (for example), nor can you connect one
output stream to another output stream in an attempt to create a
filter chain. You can, however, collect data from the input stream,
manipulate it, and then write it to an output stream.

Data Formats

The format of the data that flows through the stream is described by
the sampleRate, type, and width arguments:

• The data format that you specify for an input stream must
match the data that’s produced by the audio hardware.

Sound Manager
Sampled Sound Functions

888 Palm OS Programmer’s API Reference

• For an output stream, you can specify any of the formats that
the Sound Manager supports; the data is automatically
converted to the output hardware’s native audio format.
Whether your stream’s format setting actually affects the
hardware is undefined. For example, if you set an output
stream to use a 48k sampling rate, that doesn’t mean that the
DAC will be set to 48k.

If you look at the SndSampleTypeTag constants, you’ll see three
flavors for each quantization type: There’s a big-endian version, a
little-endian version, and a native-endian version (defined as one of
the other two). In general, you should use the native-endian version
when choosing a value for the type parameter. The one exception
to this (in Palm OS 5) is if your application is written for 68k, but
uses an ARM callback function (i.e callbackIsARM == true).
In this case you should use one of the little-endian formats as the
type value when you create your stream.

Running the Stream

The new stream starts running when you pass the stream token
returned by this function to the SndStreamStart function. This
initiates a series of calls to your callback function, which is where
the action is: Each callback invocation is passed a buffer into
which you write or from which you read a chunk of audio data. The
callback function is also passed the callbackArg that you
supply here. See SndStreamBufferCallback for more
information on the callback function.

Buffering and Latency

Currently, audio streams are double-buffered. With regard to
playback, this means that while one buffer (buffer A) is being
played, your callback function is placing data in the other buffer (B).
When A is “empty,” the Sound Manager seamlessly starts playing
buffer B, and passes buffer A back to your callback; when B is
empty, the Manager start playing A, and passes back B, and so on.
It’s important that your callback function fills the data buffers as
quickly as possible—certainly no longer than it takes to play a
buffer of data. This same double-buffer scheme is also applied to
sound recording although, of course, for recording you’re emptying
each buffer (and doing something with the data) in your callback
function.

Sound Manager
Sampled Sound Functions

Palm OS Programmer’s API Reference 889

Regarding latency, you can use the bufferSize argument to
suggest a buffer size and thereby increase or decrease latency, but
you can’t change the number of buffers. Keep in mind that the
actual buffer size that’s used may not be the same as the size you
suggest; hardware and memory limitations may enforce a
maximum or minimum buffer size. Also keep in mind that the
bufferSize is measures in frames (not bytes).

SndStreamStart, SndStreamDelete,
SndStreamBufferCallback

Compatibility Implemented if Sound Stream Feature Set is present.

New SndStreamDelete

Purpose Stops the stream and destroys it.

Prototype Err SndStreamDelete (SndStreamRef stream)

Parameters -> stream Stream token, as returned through
SndStreamCreate.

Result errNone Success.

sndErrBadParam
stream is invalid.

Comments SndStreamStop is called before the stream is destroyed. You
should never call this function as part of the implementation of a
callback function.

Compatibility Implemented if Sound Stream Feature Set is present.

Sound Manager
Sampled Sound Functions

890 Palm OS Programmer’s API Reference

New SndStreamGetPan

Purpose Retrieves a stream’s stereo balance.

Prototype Err SndStreamGetPan (SndStreamRef stream,
Int32 *pan)

Parameters -> stream Stream token, as returned through
SndCreateRawStream.

<- pan Pan value in the range [-1024 (hard left), 1024
(hard right)]. Center balance is 0.

Result errNone Success.

sndErrBadParam
Invalid stream, or pan is NULL.

Compatibility Implemented if Sound Stream Feature Set is present.

See Also SndStreamSetPan

New SndStreamGetVolume

Purpose Retrieves the amplitude scalar for a sound stream.

Prototype Err SndStreamGetVolume (SndStreamRef stream,
Int32 *ampScale)

Parameters -> stream Stream token, as returned through
SndCreateRawStream.

<- ampScale Amplitude scalar, in the range [0, 32k]. See
SndStreamSetVolume for more information.

Result errNone Success.

Sound Manager
Sampled Sound Functions

Palm OS Programmer’s API Reference 891

sndErrBadParam
Invalid stream, or volume is NULL.

See Also SndStreamSetVolume

Compatibility Implemented if Sound Stream Feature Set is present.

New SndStreamPause

Purpose Pauses and resumes a sample stream.

Prototype Err SndStreamPause (SndStreamRef stream,
Boolean pause)

Parameters -> stream Stream token, as returned by
SndStreamCreate.

-> pause If true, the function pauses the stream; if it’s
false, it resumes the stream

Result errNone Success. Note that errNone is returned even if
the stream is already in the requested state.

sndErrBadParam
Invalid stream.

Comments Currently, SndStreamPause is implemented through calls to
SndStreamStop and SndStreamStop (the former if
pause==true; the latter if pause==false). See those functions
for details about “pausing” and “resuming” a sound stream.

You can’t nest pauses; a single resume request is effective,
regardless of the number of times the stream has been told to pause.

Compatibility Implemented if Sound Stream Feature Set is present.

Sound Manager
Sampled Sound Functions

892 Palm OS Programmer’s API Reference

New SndStreamSetPan

Purpose Sets a stream’s stereo balance.

Prototype Err SndStreamSetPan (SndStreamRef stream,
Int32 pan);

Parameters -> stream Stream token, as returned through
SndCreateRawStream.

-> pan Pan value in the range [-1024 (full left), 1024
(full right)]. Center balance is 0. As a
convenience, you can use the values described
in “Stereo Pan Constants.” Note that values
outside of the valid range may yield
unexpected results (but don’t generate an
error).

Result errNone Success.

sndErrBadParam
Invalid stream.

Comments The pan value is used as a scalar on a channel s volume such that a channel

increases from 0 (inaudible) to full volume as the pan value moves from an

extreme to 0. Graphically, it looks like this:

Sound Manager
Sampled Sound Functions

Palm OS Programmer’s API Reference 893

Compatibility Implemented if Sound Stream Feature Set is present.

See Also SndStreamGetPan

New SndStreamSetVolume

Purpose Sets the amplitude scalar for a sound stream.

Prototype Err SndStreamSetVolume (SndStreamRef stream,
Int32 ampScale);

Parameters -> stream Stream token, as returned through
SndCreateRawStream.

-> ampScale Amplitude scalar in the range [0, 32k]. Values
less than 0 are converted to 1024 (unity gain).

Result errNone Success.

sndErrBadParam
Invalid stream.

Comments The ampScale value is applied as an amplitude scalar on the
samples that this stream’s callback function produces. The scalar is

a
m

p
li

tu
d
e
 s

c
a
la

r 1.0

0.0

-1024

pan value

10240

left right

Sound Manager
Sampled Sound Functions

894 Palm OS Programmer’s API Reference

in the range [0, 32k], where 1024 is unity gain (i.e. the samples are
multiplied by 1.0). The mapping of ampScale to scalar is linear;
thus a volume of 512 scales the samples by ~.5, 2048 scales by ~2.0,
and so on.

To specify a user preference volume setting, use one of
sndSystemVolume, sndGameVolume, or sndAlarmVolume.
These values are guaranteed to be less than unity gain.

If the stream is stereo, both channels are scaled by the same
amplitude scalar. To adjust the balance between the channels, use
SndStreamSetPan.

Compatibility Implemented if Sound Stream Feature Set is present.

New SndStreamStart

Purpose Starts a sample stream running.

Prototype Err SndStreamStart (SndStreamRef stream);

Parameters -> stream Stream token, as returned by
SndStreamCreate.

Result errNone Success. Note that errNone is returned even if
the stream is already running.

sndErrBadParam
stream is invalid.

Comments If the stream is already running, the function returns immediately
(with errNone). If it isn’t running, the function starts the stream by
initiating invocations of its callback function. If it’s paused (through
SndStreamPause), the stream is resumed.

You can call this function from some other stream’s callback
function. In other words, a stream can tell another stream to start
playing.

Sound Manager
Sampled Sound Functions

Palm OS Programmer’s API Reference 895

Compatibility Implemented if Sound Stream Feature Set is present.

New SndStreamStop

Purpose Stops a sample stream running.

Prototype Err SndStreamStop (SndStreamRef stream);

Parameters -> stream Stream token, as returned by
SndStreamCreate.

Result errNone Success. Note that errNone is returned even if
the stream has already been stopped.

sndErrBadParam
stream is invalid.

Comments Stops a running sound stream by neglecting to call its callback
function. The stream remains in this suspended state until you call
SndStreamStart.

You can call this function from the stream’s own callback function.
In other words, a stream can stop itself.

Compatibility Implemented if Sound Stream Feature Set is present.

Sound Manager
Sampled Sound Application-Defined Functions

896 Palm OS Programmer’s API Reference

Sampled Sound Application-Defined Functions

New SndStreamBufferCallback

Purpose Used to deliver a data buffer from/into which you read/write
sound data.

Prototype Err SndStreamBufferCallback (void *userData,
SndStreamRef stream, void *buffer,
UInt32 frameCount);

Parameters -> userData Caller-defined data, as provided by the
callbackArg parameter to
SndStreamCreate.

-> stream Token that represents the stream that this buffer
belongs to.

-> buffer The data buffer.

-> frameCount Number of sample frames the buffer contains.

Result Currently, the return value is ignored.

Comments If this is an input (recording) stream, you read the data in buffer. If
this is an output (playback) stream, you write data into buffer. In
either case, you want to do this as quickly as possible to avoid data
underflow.

Note that the function doesn’t tell you anything about the format of
the data. You can use the userData argument to pass this
information into the function.

The callback function is executed in a task that’s created and
managed by the Sound Manager. Because of this, the function
doesn’t have access to the symbols that you create in your
application. Again, use the userData argument if you need to pass
pointers to your symbols.

Sound Manager
Sampled Sound Application-Defined Functions

Palm OS Programmer’s API Reference 897

Compatibility Implemented if Sound Stream Feature Set is present.

See Also SndStreamCreate

Sound Manager
Sampled Sound Application-Defined Functions

898 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 899

46
Standard IO
This chapter provides reference material for the standard IO API:

• Standard IO Functions

• Standard IO Provider Functions

• Application-Defined Function

The header files StdIOPalm.h and StdIOProvider.h declare the
standard IO API. For more information on using the standard IO
API, see the chapter “Standard IO Applications”in the Palm OS
Programmer’s Companion, vol. I.

Standard IO Functions
The macros and functions in this section enable standard IO.

fgetc

Purpose Macro that calls Siofgetc to return the next character from the
input stream.

Declared In StdIOPalm.h

Prototype fgetc (fs)

Parameters -> fs An input stream from which to read the next
character. You can specify only the value stdin
for this parameter; alternate streams are not
currently implemented.

Result The next character from the input stream. The return value EOF
indicates an error occurred.

Standard IO
Standard IO Functions

900 Palm OS Programmer’s API Reference

fgets

Purpose Macro that calls Siofgets to return a string from the input stream.

Declared In StdIOPalm.h

Prototype fgets (strP, maxChars, fs)

Parameters <- strP A pointer to the returned string.

-> maxChars The number of characters to read from the
input stream, plus one for the null terminator.

-> fs An input stream from which to read the next
character. You can specify only the value stdin
for this parameter; alternate streams are not
currently implemented.

Result A pointer to the string read from the input stream. If an error or EOF
occurs before any characters are read, returns NULL.

Comments The returned string is always terminated by a null character.

fprintf

Purpose Macro that calls Siofprintf to write formatted output to an
output stream.

Declared In StdIOPalm.h

Prototype fprintf (fs, formatP, ...)

Parameters -> fs An output stream to which to write the
formatted output. You can specify only the
value stdout for this parameter; alternate
streams are not currently implemented.

-> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

Standard IO
Standard IO Functions

Palm OS Programmer’s API Reference 901

-> ... Zero or more parameters to be formatted as
specified by the formatP string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings). Returns a negative number
if there is an error.

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported.

fputc

Purpose Macro that calls Siofputc to write a character to the output
stream.

Declared In StdIOPalm.h

Prototype fputc (c, fs)

Parameters -> c A character to write to the output stream.

-> fs An output stream to which to write the
character. You can specify only the value
stdout for this parameter; alternate streams
are not currently implemented.

Result The character that was written. If an error occurs, the value EOF is
returned.

Standard IO
Standard IO Functions

902 Palm OS Programmer’s API Reference

fputs

Purpose Macro that calls Siofputs to write a string to the output stream.

Declared In StdIOPalm.h

Prototype fputs (strP, fs)

Parameters -> strP A pointer to the string to write.

-> fs An output stream to which to write the string.
You can specify only the value stdout for this
parameter; alternate streams are not currently
implemented.

Result Returns 0 on success and the value EOF on error.

getchar

Purpose Macro that calls Siofgetc to read the next character from the
stdin input stream.

Declared In StdIOPalm.h

Prototype getchar ()

Result The next character from the input stream. The return value EOF
indicates an error occurred.

Standard IO
Standard IO Functions

Palm OS Programmer’s API Reference 903

gets

Purpose Macro that calls Siogets to read a string from the stdin input
stream.

Declared In StdIOPalm.h

Prototype gets (strP)

Parameters <- strP A pointer to the returned string.

Result A pointer to the string read from the input stream. If an error or EOF
occurs before any characters are read, returns NULL.

Comments The returned string does not include a null terminator. You must
ensure that the input line, if any, is sufficiently short to fit in the
string.

printf

Purpose Macro that calls Sioprintf to write formatted output to the stdout
output stream.

Declared In StdIOPalm.h

Prototype printf (formatP, ...)

Parameters -> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> ... Zero or more parameters to be formatted as
specified by the formatP string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings).

Standard IO
Standard IO Functions

904 Palm OS Programmer’s API Reference

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported. Returns a negative number if there is an error.

putc

Purpose Macro that calls Siofputc to write a character to the output
stream.

Declared In StdIOPalm.h

Prototype putc (c, fs)

Parameters -> c A character to write to the output stream.

-> fs An output stream to which to write the
character. You can specify only the value
stdout for this parameter; alternate streams
are not currently implemented.

Result The character that was written. If an error occurs, the value EOF is
returned.

putchar

Purpose Macro that calls Siofputc to write a character to the stdout
output stream.

Declared In StdIOPalm.h

Prototype putchar (c)

Parameters -> c A character to write to the stdout output
stream.

Result The character that was written. If an error occurs, the value EOF is
returned.

Standard IO
Standard IO Functions

Palm OS Programmer’s API Reference 905

puts

Purpose Macro that calls Sioputs to write a string to the output stream
stdout.

Declared In StdIOPalm.h

Prototype puts (strP)

Parameters -> strP A pointer to the string to write to stdout.

Result Returns a nonnegative value on success and the value EOF on error.

SioAddCommand

Purpose Adds a built-in command that is supplied by the standard IO
provider application.

Declared In StdIOPalm.h

Prototype void SioAddCommand (const Char *cmdStr,
SioMainProcPtr cmdProcP)

Parameters -> cmdStr Pointer to a string that is the command name.

-> cmdProcP Pointer to the command entry point function
(the SioMain function).

Result Returns nothing.

Comments This routine is useful for registering a command that is inside the
standard IO provider application instead of in its own database.

This routine must be used to test commands under the Simulator
since it can’t launch application databases.

Standard IO
Standard IO Functions

906 Palm OS Programmer’s API Reference

Siofgetc
Return the next character from the input stream.

Declared In StdIOPalm.h

Prototype Int16 Siofgetc (FILE *fs)

Parameters -> fs An input stream from which to read the next
character. You can specify only the value stdin
for this parameter; alternate streams are not
currently implemented.

Result The next character from the input stream. The return value EOF
indicates an error occurred.

See Also fgetc

Siofgets

Purpose Return a string from the input stream.

Declared In StdIOPalm.h

Prototype Char *Siofgets (Char *strP, UInt16 maxChars,
FILE *fs)

Parameters <- strP A pointer to the returned string.

-> maxChars The number of characters to read from the
input stream, plus one for the null terminator.

-> fs An input stream from which to read the next
character. You can specify only the value stdin
for this parameter; alternate streams are not
currently implemented.

Result A pointer to the string read from the input stream. If an error or EOF
occurs before any characters are read, returns NULL.

Standard IO
Standard IO Functions

Palm OS Programmer’s API Reference 907

Comments The returned string is always terminated by a null character.

See Also fgets

Siofprintf

Purpose Write formatted output to an output stream.

Declared In StdIOPalm.h

Prototype Int16 Siofprintf (FILE *fs, const Char *formatP,
...)

Parameters -> fs An output stream to which to write the
formatted output. You can specify only the
value stdout for this parameter; alternate
streams are not currently implemented.

-> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> ... Zero or more parameters to be formatted as
specified by the formatP string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings). Returns a negative number
if there is an error.

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported.

See Also fprintf

Standard IO
Standard IO Functions

908 Palm OS Programmer’s API Reference

Siofputc

Purpose Write a character to the output stream.

Declared In StdIOPalm.h

Prototype Int16 Siofputc (Int16 c, FILE *fs)

Parameters -> c A character to write to the output stream.

-> fs An output stream to which to write the
character. You can specify only the value
stdout for this parameter; alternate streams
are not currently implemented.

Result The character that was written. If an error occurs, the value EOF is
returned.

See Also fputc

Siofputs

Purpose Write a string to the output stream.

Declared In StdIOPalm.h

Prototype Int16 Siofputs (const Char *strP, FILE *fs)

Parameters -> strP A pointer to the string to write.

-> fs An output stream to which to write the string.
You can specify only the value stdout for this
parameter; alternate streams are not currently
implemented.

Result Returns 0 on success and the value EOF on error.

See Also fputs

Standard IO
Standard IO Functions

Palm OS Programmer’s API Reference 909

Siogets

Purpose Read a string from the stdin input stream.

Declared In StdIOPalm.h

Prototype Char *Siogets (Char *strP)

Parameters <- strP A pointer to the returned string.

Result A pointer to the string read from the input stream. If an error or EOF
occurs before any characters are read, returns NULL.

Comments The returned string does not include a null terminator. You must
ensure that the input line, if any, is sufficiently short to fit in the
string.

See Also gets

Sioprintf

Purpose Write formatted output to the stdout output stream.

Declared In StdIOPalm.h

Prototype Int16 Sioprintf (const Char *formatP, ...)

Parameters -> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> ... Zero or more parameters to be formatted as
specified by the formatP string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings).

Standard IO
Standard IO Functions

910 Palm OS Programmer’s API Reference

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported. Returns a negative number if there is an error.

See Also printf

Sioputs

Purpose Write a string to the output stream stdout.

Declared In StdIOPalm.h

Prototype Int16 Sioputs (const Char *strP)

Parameters -> strP A pointer to the string to write to stdout.

Result Returns a nonnegative value on success and the value EOF on error.

See Also puts

Siosystem

Purpose Execute another Stdio command.

Declared In StdIOPalm.h

Prototype Int16 Siosystem (const Char *cmdStrP)

Parameters -> cmdStrP A pointer to a string containing the command
line to execute.

Result Returns a value >= 0 on success or < 0 on failure.

Comments This function first looks for a built-in command with the specified
name. If none is found, it looks for a Stdio application database with

Standard IO
Standard IO Functions

Palm OS Programmer’s API Reference 911

the name "Cmd-cmdname" where cmdname is the first word in the
command string cmdStrP.

See Also SioExecCommand, system

Siovfprintf

Purpose Write formatted output to the stdout output stream.

Declared In StdIOPalm.h

Prototype Int16 Siovfprintf (FILE *fs, const Char *formatP,
_Palm_va_list args)

Parameters -> fs An output stream to which to write the
formatted output. You can specify only the
value stdout for this parameter; alternate
streams are not currently implemented.

-> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> args A pointer to a list of zero or more parameters to
be formatted as specified by the formatP
string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings). Returns a negative number
if there is an error.

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported.

See Also vfprintf

Standard IO
Standard IO Functions

912 Palm OS Programmer’s API Reference

sprintf

Purpose Macro that calls StrPrintF to write formatted output to the stdout
output stream.

Declared In StdIOPalm.h

Prototype sprintf (formatP, ...)

Parameters -> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> ... Zero or more parameters to be formatted as
specified by the formatP string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings).

Comments See StrVPrintF for details on which format specifications are
supported. Returns a negative number if there is an error.

system

Purpose Macro that calls Siosystem to execute another Stdio command.

Declared In StdIOPalm.h

Prototype system (cmdStrP)

Parameters -> cmdStrP A pointer to a string containing the command
line to execute.

Result Returns a value >= 0 on success or < 0 on failure.

Comments This function first looks for a built-in command with the specified
name. If none is found, it looks for a Stdio application database with

Standard IO
Standard IO Functions

Palm OS Programmer’s API Reference 913

the name "Cmd-cmdname" where cmdname is the first word in the
command string cmdStrP.

See Also SioExecCommand

vfprintf

Purpose Macro that calls Siovfprintf to write formatted output to the
stdout output stream.

Declared In StdIOPalm.h

Prototype vfprintf (fs, formatP, args)

Parameters -> fs An output stream to which to write the
formatted output. You can specify only the
value stdout for this parameter; alternate
streams are not currently implemented.

-> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> args A pointer to a list of zero or more parameters to
be formatted as specified by the formatP
string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings). Returns a negative number
if there is an error.

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported.

Standard IO
Standard IO Provider Functions

914 Palm OS Programmer’s API Reference

vsprintf

Purpose Macro that calls StrVPrintF to write formatted output to the
stdout output stream.

Declared In StdIOPalm.h

Prototype vsprintf (fs, formatP, args)

Parameters -> fs An output stream to which to write the
formatted output. You can specify only the
value stdout for this parameter; alternate
streams are not currently implemented.

-> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> args A pointer to a list of zero or more parameters to
be formatted as specified by the y string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings). Returns a negative number
if there is an error.

Comments See StrVPrintF for details on which format specifications are
supported.

Standard IO Provider Functions
These functions are used by a standard IO provider application.

Standard IO
Standard IO Provider Functions

Palm OS Programmer’s API Reference 915

SioClearScreen

Purpose Clears the entire standard IO output field.

Declared In StdIOProvider.h

Prototype void SioClearScreen (void)

Parameters None.

Result Returns nothing.

SioExecCommand

Purpose Executes a command line.

Declared In StdIOProvider.h

Prototype Int16 SioExecCommand (const Char *cmd)

Parameters -> cmd A pointer to a string containing the command
line to execute.

Result Returns a value >= 0 on success or < 0 on failure.

Comments This function first looks for a built-in command with the specified
name. If none is found, it looks for a Stdio application database with
the name "Cmd-cmdname" where cmdname is the first word in the
command string cmd.

If you pass the string “help” or “?” for the cmd parameter,
SioExecCommand causes a help string to be printed for each built-
in command. It actually executes each built-in command, passing
the string “?” as argv[1]. Each command should handle this
argument by printing a help line.

The SioExecCommand function is faster than calling system to
execute a command. However, SioExecCommand can be called

Standard IO
Standard IO Provider Functions

916 Palm OS Programmer’s API Reference

only by the standard IO provider application, not the standard IO
application.

SioFree

Purpose Closes down the standard IO manager.

Declared In StdIOProvider.h

Prototype Err SioFree (void)

Parameters None.

Result Returns 0 on success.

SioHandleEvent

Purpose Handles an event in the form that contains the standard IO output
field and scroll arrows if the event belongs to the text field or scroll
arrows.

Declared In StdIOProvider.h

Prototype Boolean SioHandleEvent (SysEventType *event)

Parameters -> event Pointer to an EventType structure.

Result Returns true if the event was handled and should not be processed
by the application’s own form event handler; returns false
otherwise.

Comments This function must be called from the form event handler before it
does its own processing with any of the objects unrelated to
standard IO in the form.

Standard IO
Standard IO Provider Functions

Palm OS Programmer’s API Reference 917

SioInit

Purpose Initializes the standard IO manager.

Declared In StdIOProvider.h

Prototype Err SioInit (UInt16 formID, UInt16 fieldID,
UInt16 scrollerID)

Parameters -> formID The ID of the form that contains the input/
output field.

-> fieldID The ID of the field to be used for input/output.

-> scrollerID The ID of the scroller associated with the
input/output form.

Result Returns 0 on success.

Standard IO
Application-Defined Function

918 Palm OS Programmer’s API Reference

Application-Defined Function
You must supply this function in your stdio application.

SioMain

Purpose The main entry point for the stdio application.

Declared In StdIOPalm.h

Prototype Int16 SioMain (UInt16 argc, const Char *argv[])

Parameters -> argc The number of parameters passed on the
command line.

-> argv An array of character pointers, one for each
parameter passed on the command line.

Result The return value from this routine is passed back to the system call
that invoked it. Return 0 for no error.

Palm OS Programmer’s API Reference 919

47
String Manager
This chapter provides reference material for the string manager. The
string manager API is declared in the header file StringMgr.h.

For more information, see Chapter 8, “Text,” on page 251 of the Palm
OS Programmer’s Companion, vol. I.

String Manager Functions

StrAToI

Purpose Convert a string to an integer.

Declared In StringMgr.h

Prototype Int32 StrAToI (const Char *str)

Parameters -> str Pointer to a string to convert.

Result Returns the integer.

Comments Use this function instead of the standard atoi routine.

String Manager
String Manager Functions

920 Palm OS Programmer’s API Reference

StrCaselessCompare

Purpose Compare two strings with case and accent insensitivity.

Declared In StringMgr.h

Prototype Int16 StrCaselessCompare (const Char *s1,
const Char *s2)

Parameters -> s1 Pointer to a string.

-> s2 Pointer to a string.

Result Returns 0 if the strings match.

Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

Comments Use this function instead of the standard stricmp routine.

To support systems that use multi-byte character encodings,
consider using TxtCaselessCompare instead of this function (or
TxtCompare for a case-sensitive comparison). Both functions can
match single-byte characters with their multi-byte equivalents, but
TxtCaselessCompare can also return the length of the matching
text.

See Also StrNCaselessCompare, TxtCaselessCompare,
StrCompare, StrNCompare

String Manager
String Manager Functions

Palm OS Programmer’s API Reference 921

StrCat

Purpose Concatenate one null-terminated string to another.

Declared In StringMgr.h

Prototype Char *StrCat (Char *dst, const Char *src)

Parameters -> dst Pointer to the null-terminated destination
string.

-> src Pointer to the null-terminated source string.

Result Returns a pointer to the destination string.

Comments Use this function instead of the standard strcat routine.

StrChr

Purpose Look for a character within a string.

Declared In StringMgr.h

Prototype Char *StrChr (const Char *str, WChar chr)

Parameters -> str Pointer to the string to be searched.

-> chr Character to search for.

Result Returns a pointer to the first occurrence of character in str. Returns
NULL if the character is not found.

Comments Use this function instead of the standard strchr routine.

This function can handle both single-byte characters and multi-byte
characters correctly. However, you should make sure that you pass a
WChar variable to StrChr instead of a Char. If you pass a Char
variable, the function sign-extends the variable to a WChar, which
causes problems if the value is 0x80 or higher.

String Manager
String Manager Functions

922 Palm OS Programmer’s API Reference

Compatibility This routine does not correctly find a ‘\0’ character on Palm OS®
version 1.0.

See Also StrStr

StrCompare

Purpose Compare two strings.

Declared In StringMgr.h

Prototype Int16 StrCompare (const Char *s1, const Char *s2)

Parameters -> s1 Pointer to a string.

-> s2 Pointer to a string.

Result Returns 0 if the strings match.

Returns a positive number if s1 sorts after s2 alphabetically.

Returns a negative number if s1 sorts before s2 alphabetically.

Comments Use this function or StrCompareAscii instead of the standard
strcmp routine. This function is case sensitive.

To support systems that use multi-byte character encodings,
consider using TxtCompare instead of this function. Both functions
can match single-byte characters with their multi-byte equivalents,
but TxtCompare can also return the length of the matching text.

Compatibility Prior to Palm OS 4.0, StrCompare and TxtCompare only
performed one level of comparison and returned as soon as they
found two unequal characters. For example, if you compared the
string “celery” with the string “Cauliflower,” both functions
returned a value indicating that “celery” should appear before
“Cauliflower” because they sorted “c” before “C.”

In Palm OS 4.0, StrCompare calls TxtCompare, and TxtCompare
performs a comparison using up to six comparison tables for sorting

String Manager
String Manager Functions

Palm OS Programmer’s API Reference 923

with increasing precision. As a result, in Palm OS 4.0 and higher,
StrCompare sorts “Cauliflower” before “celery.”

See Also StrNCompare, StrNCaselessCompare, TxtCaselessCompare

StrCompareAscii

Purpose Compare two ASCII strings.

Declared In StringMgr.h

Prototype Int16 StrCompareAscii (const Char *s1,
const Char *s2)

Parameters -> s1 Pointer to a string.

-> s2 Pointer to a string.

Result Returns 0 if the strings match.

Returns a positive number if s1 sorts after s2 alphabetically.

Returns a negative number if s1 sorts before s2 alphabetically.

Comments Use this function instead of the standard strcmp routine. Use it to
do case-sensitive comparisons on strings that are guaranteed to be
7-bit ASCII strings. This function performs a fast, simple byte-to-
byte comparison that is guaranteed never to change.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also StrCompare, StrNCompare, TxtCompare,
StrCaselessCompare, StrNCaselessCompare,
TxtCaselessCompare, StrNCompareAscii

String Manager
String Manager Functions

924 Palm OS Programmer’s API Reference

StrCopy

Purpose Copy one string to another.

Declared In StringMgr.h

Prototype Char *StrCopy (Char *dst, const Char *src)

Parameters -> dst Pointer to the destination string.

-> src Pointer to the source string.

Result Returns a pointer to the destination string.

Comments Use this function instead of the standard strcpy routine.

This function does not work properly with overlapping strings.

StrDelocalizeNumber

Purpose Delocalize a number passed in as a string. Convert the number from
any localized notation to US notation (decimal point and
thousandth comma). The current thousand and decimal separators
have to be passed in.

Declared In StringMgr.h

Prototype Char *StrDelocalizeNumber (Char *s,
Char thousandSeparator, Char decimalSeparator)

Parameters <-> s Pointer to the number as an ASCII string.

-> thousandSeparator
Current thousand separator.

-> decimalSeparator
Current decimal separator.

Result Returns a pointer to the changed number and modifies the string in
s.

String Manager
String Manager Functions

Palm OS Programmer’s API Reference 925

Comments The current thousandSeparator and decimalSeparator can
be determined by obtaining the value of the prefNumberFormat
preference using PrefGetPreference and then passing the
returned NumberFormatType to LocGetNumberSeparators.
For example:

Char *localizedNum;
NumberFormatType numFormat;
Char thousandsSeparator, decimalSeparator;

numFormat = (NumberFormatType)
 PrefGetPreference(prefNumberFormat);
LocGetNumberSeparators(numFormat,
 &thousandsSeparator, &decimalSeparator);
StrDelocalizeNumber(localizedNum,
 thousandsSeparator, decimalSeparator);

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrLocalizeNumber, LocGetNumberSeparators

StrIToA

Purpose Convert an integer to ASCII.

Declared In StringMgr.h

Prototype Char *StrIToA (Char *s, Int32 i)

Parameters <- s Pointer to a string of size maxStrIToALen in
which to store the results.

-> i Integer to convert.

Result Returns a pointer to the result string.

See Also StrAToI, StrIToH

String Manager
String Manager Functions

926 Palm OS Programmer’s API Reference

StrIToH

Purpose Convert an integer to hexadecimal ASCII.

Declared In StringMgr.h

Prototype Char *StrIToH (Char *s, UInt32 i)

Parameters <- s Pointer to a string in which to store the results.

-> i Integer to convert.

Result Returns the string pointer s.

See Also StrIToA

StrLen

Purpose Compute the length of a string.

Declared In StringMgr.h

Prototype UInt16 StrLen (const Char *src)

Parameters -> src Pointer to a string.

Result Returns the length of the string in bytes.

Comments Use this function instead of the standard strlen routine.

This function returns the length of the string in bytes. On systems
that support multi-byte characters, the number returned does not
always equal the number of characters.

Compatibility In Palm OS 3.5 and Palm OS 4.x this function was declared to return
an Int16. In Palm OS 5, and prior to Palm OS 3.5, this function
returns a UInt16.

String Manager
String Manager Functions

Palm OS Programmer’s API Reference 927

StrLocalizeNumber

Purpose Convert a number (passed in as a string) to localized format, using a
specified thousands separator and decimal separator.

Declared In StringMgr.h

Prototype Char *StrLocalizeNumber (Char *s,
Char thousandSeparator, Char decimalSeparator)

String Manager
String Manager Functions

928 Palm OS Programmer’s API Reference

Parameters <-> s Numeric ASCII string to localize.

-> thousandSeparator
Localized thousand separator.

-> decimalSeparator
Localized decimal separator.

Result Returns a pointer to the changed number. Converts the number
string in s by replacing all occurrences of “,” with
thousandSeparator and all occurrences of “.” with
decimalSeparator.

Comments The current thousandSeparator and decimalSeparator can
be determined by obtaining the value of the prefNumberFormat
preference using PrefGetPreference and then passing the
returned NumberFormatType to LocGetNumberSeparators.
For example:

Char *localizedNum;
NumberFormatType numFormat;
Char thousandsSeparator, decimalSeparator;

numFormat = (NumberFormatType)
 PrefGetPreference(prefNumberFormat);
LocGetNumberSeparators(numFormat,
 &thousandsSeparator, &decimalSeparator);
StrLocalizeNumber(localizedNum,
 thousandsSeparator, decimalSeparator);

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrDelocalizeNumber

String Manager
String Manager Functions

Palm OS Programmer’s API Reference 929

StrNCaselessCompare

Purpose Compares two strings out to n characters with case and accent
insensitivity.

Declared In StringMgr.h

Prototype Int16 StrNCaselessCompare (const Char *s1,
const Char *s2, Int32 n)

Parameters -> s1 Pointer to the first string.

-> s2 Pointer to the second string.

-> n Length in bytes of the text to compare.

Result Returns 0 if the strings match.

Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

Comments To support systems that use multi-byte character encodings,
consider using TxtCaselessCompare instead of this function (or
TxtCompare for a case-sensitive comparison). Both functions can
match single-byte characters with their multi-byte equivalents, but
TxtCaselessCompare can also return the length of the matching
text.

Compatibility Implemented only if 2.0 New Feature Set is present. As of Palm OS
4.0, both s1 and s2 must be null-terminated strings.

See Also StrNCompare, StrCaselessCompare, TxtCaselessCompare,
StrCompare

String Manager
String Manager Functions

930 Palm OS Programmer’s API Reference

StrNCat

Purpose Concatenates one string to another clipping the destination string to
a maximum of n bytes (including the null character at the end).

IMPORTANT: The Palm OS implementation of StrNCat differs
from the implementation in the standard C library. See the
Comments section for details.

Declared In StringMgr.h

Prototype Char *StrNCat (Char *dst, const Char *src,
Int16 n)

Parameters -> dst Pointer to the null-terminated destination
string.

-> src Pointer to the source string.

-> n Maximum length in bytes for dst, including
the terminating null character.

Result Returns a pointer to the destination string.

Comment This function differs from the standard C strncat function in these
ways:

• StrNCat treats the parameter n as the maximum length in
bytes for dst. That means it will copy at most n -
StrLen(dst) - 1 bytes from src. The standard C function
always copies n bytes from src into dst. (It copies the entire
src into dst if the length of src is less than n).

• If the length of the destination string reaches n - 1, StrNCat
stops copying bytes from src and appends the terminating
null character to dst. If the length of the destination string is
already greater than or equal to n - 1 before the copying
begins, StrNCat does not copy any data from src.

• In the standard C function, if src is less than n, the entire
src string is copied into dst and then the remaining space is
filled with null characters. StrNCat does not fill the

String Manager
String Manager Functions

Palm OS Programmer’s API Reference 931

remaining space with null characters in released ROMs. In
debug ROMs, StrNCat fills the remaining bytes with the
value 0xFE.

On systems with multi-byte character encodings, this function
makes sure that it does not copy part of a multi-byte character. If the
last byte copied from src contains the high-order or middle byte of
a multi-byte character, StrNCat backs up in dst until the byte after
the end of the previous character, and replaces that byte with a null
character.

Compatibility Implemented only if 2.0 New Feature Set is present.

StrNCompare

Purpose Compare two strings out to n bytes. This function is case and accent
sensitive.

Declared In StringMgr.h

Prototype Int16 StrNCompare (const Char *s1,
const Char *s2, Int32 n)

Parameters -> s1 Pointer to a string.

-> s2 Pointer to a string.

-> n Length in bytes of text to compare.

Result Returns 0 if the strings match.

Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

Comments To support systems that use multi-byte character encodings,
consider using TxtCompare instead of this function. Both functions
can match single-byte characters with their multi-byte equivalents,
but TxtCompare can also return the length of the matching text.

String Manager
String Manager Functions

932 Palm OS Programmer’s API Reference

Compatibility Implemented only if 2.0 New Feature Set is present. As of Palm OS
4.0, both s1 and s2 must be null-terminated strings.

See Also StrCompare, StrNCaselessCompare, StrCaselessCompare,
TxtCaselessCompare, StrNCompareAscii

StrNCompareAscii

Purpose Compare two ASCII strings out to n bytes.

Declared In StringMgr.h

Prototype Int16 StrNCompareAscii (const Char *s1,
const Char *s2, Int32 n)

Parameters -> s1 Pointer to a string.

-> s2 Pointer to a string.

-> n Length in bytes of text to compare.

Result Returns 0 if the strings match.

Returns a positive number if s1 sorts after s2 alphabetically.

Returns a negative number if s1 sorts before s2 alphabetically.

Comments Use this function instead of the standard strncmp routine. Use it to
do case-sensitive comparisons on strings that are guaranteed to be
7-bit ASCII strings. This function performs a fast, simple byte-to-
byte comparison that is guaranteed never to change.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also StrCompare, StrNCompare, TxtCompare,
StrCaselessCompare, StrNCaselessCompare,
TxtCaselessCompare, StrCompareAscii

String Manager
String Manager Functions

Palm OS Programmer’s API Reference 933

StrNCopy

Purpose Copies up to n bytes from a source string to the destination string.
Terminates dst string at index n-1 if the source string length was n-
1 or less.

Declared In StringMgr.h

Prototype Char *StrNCopy (Char *dst, const Char *src,
Int16 n)

Parameters -> dst Pointer to the destination string.

-> src Pointer to the source string.

-> n Maximum number of bytes to copy from src
string.

Result Returns nothing.

Comments On systems with multi-byte character encodings, this function
makes sure that it does not copy part of a multi-byte character. If the
nth byte of src contains the high-order or middle byte of a multi-
byte character, StrNCopy backs up in dst until the byte after the
end of the previous character, and replaces the remaining bytes (up
to n-1) with nulls.

Be aware that the nth byte of dst upon return may contain the last
byte of a multi-byte character. If you plan to terminate the string by
setting its last character to NULL, you must not pass the entire
length of the string to StrNCopy. If you do, your code may
overwrite the final byte of the last character.

// WRONG! You may overwrite part of multi-byte
// character.
Char dst[n];
StrNCopy(dst, src, n);
dst[n-1] = chrNull;

Instead, if you write to the last byte of the destination string, pass
one less than the size of the string to StrNCopy.

String Manager
String Manager Functions

934 Palm OS Programmer’s API Reference

// RIGHT. Instead pass n-1 to StrNCopy.
Char dst[n];
StrNCopy(dst, src, n-1);
dst[n-1] = chrNull;

Compatibility Implemented only if 2.0 New Feature Set is present.

StrPrintF

Purpose Implements a subset of the ANSI C sprintf call, which writes
formatted output to a string.

Declared In StringMgr.h

Prototype Int16 StrPrintF (Char *s,
const Char *formatStr, ...)

Parameters -> s Pointer to a string into which the results are
written.

-> formatStr Pointer to the format specification string.

... Zero or more arguments to be formatted as
specified by formatStr.

Result Number of characters written to destination string. Returns a
negative number if there is an error.

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrVPrintF

String Manager
String Manager Functions

Palm OS Programmer’s API Reference 935

StrStr

Purpose Look for a substring within a string.

Declared In StringMgr.h

Prototype Char *StrStr (const Char *str, const Char *token)

Parameters -> str Pointer to the string to be searched.

-> token Pointer to the string to search for.

Result Returns a pointer to the first occurrence of token in str or NULL if
not found.

Comments Use this function instead of the standard strstr routine.

On systems with multi-byte character encodings, this function
makes sure that it does not match only part of a multi-byte
character. If the matching strings begins at an inter-character
boundary, then this function returns NULL.

NOTE: If the value of the token parameter is the empty string,
this function returns NULL. This is different than the standard
strstr function, which returns str when token is the empty
string.

See Also StrChr

StrToLower

Purpose Convert all the characters in a string to lowercase.

Declared In StringMgr.h

Prototype Char *StrToLower (Char *dst, const Char *src)

Parameters -> dst Pointer to a string.

String Manager
String Manager Functions

936 Palm OS Programmer’s API Reference

-> src Pointer to a null-terminated string.

Result Returns a pointer to the destination string.

Compatibility Prior to Palm OS version 3.5, this function only converted accented
characters on Japanese devices. On Palm OS version 3.5 and higher,
all characters are appropriately lowercased, including accented
characters on Latin devices.

StrVPrintF

Purpose Implements a subset of the ANSI C vsprintf call, which writes
formatted output to a string.

Declared In StringMgr.h

Prototype Int16 StrVPrintF (Char *s, const Char *formatStr,
va_list arg)

Parameters <- s Pointer to a string into which the results are
written. This string is always terminated by a
null terminator.

-> formatStr Pointer to the format specification string.

-> arg Pointer to a list of zero or more parameters to
be formatted as specified by the formatStr
string.

Result Number of characters written to destination string, not including
the null terminator. Returns a negative number if there is an error.

Comments Like the C vsprintf function, this function is designed to be called
by your own function that takes a variable number of arguments
and passes them to this function. For details on how to use it, see
“Using the StrVPrintF Function” on page 267 of the Palm OS
Programmer’s Companion, vol. I, or refer to vsprintf in a standard
C reference book.

String Manager
String Manager Functions

Palm OS Programmer’s API Reference 937

Currently, only the conversion specifications %d, %i, %u, %x, %s, and
%c are implemented by StrVPrintF (and related functions).
Optional modifiers that are supported include: +, -, <space>, *,
<digits>, h and l (long). Following is a brief description of how
these format specifications work (see a C book for more details).

Each conversion specification begins with the % character.
Following the % character, there may be one or more of the
characters list in Table 47.1, in sequence.

Table 47.1 StrVPrintF Format Specification

Character Description

+ Specifies that a sign always be placed
before a number produced by a signed
conversion. A + overrides a space if both
are used. Example:
StrPrintF(s,"%+d %+d",4,-5);
Output to s:
+4 -5

- Specifies that the printed value is left
justified within the field width allowed for
it. Example:
StrPrintF(s,"%5d%-5d%d",6,9,8);
Output to s:
 69 8

<space> Specifies that a minus sign always be
placed before a negative number and a
space before a positive number. Example:
StrPrintF(s,"% d % d",4,-5);
Output to s:
 4 -5

String Manager
String Manager Functions

938 Palm OS Programmer’s API Reference

* Indicates that the next argument (must be
an integer) in the list specifies the field
width. In this case, the argument following
that one is used for the value of this field.
Example:
StrPrintF(s,"%*d%d",4,8,5);
Output to s:
8 5

<number> Specifies a minimum field width. If the
converted value has fewer characters than
the field width, it will be padded with
spaces on the left (or right, if the left
justified flag is also specified) to fill out the
field width. Example:
StrPrintF(s,"%d%5d",4,3);
Output to s:
4 3

h Specifies that the following d, i, u, or x
conversion corresponds to a short or
unsigned short argument. Example:
StrPrintF(s,"%hd",401);
Output to s:
401

l or L Specifies that the following d, i, u, x, or c
conversion corresponds to a long or
unsigned long
StrPrintF(s,"%ld",999999999);
Output to s:
999999999

<character> A character that indicates the type of
conversion to be performed. The supported
conversion characters include:

Table 47.1 StrVPrintF Format Specification (continued)

Character Description

String Manager
String Manager Functions

Palm OS Programmer’s API Reference 939

Example Here’s an example of how to use this call:

d
or
i

A signed integer argument is converted to
decimal notation. Example:
StrPrintF(s,"%d %d",4,-4);
Output to s:
4 -4

u An unsigned integer argument is converted
to decimal notation. Example:
StrPrintF(s,"%u %u",4,-4);
Output to s:
4 65532

x An integer argument is converted to
hexadecimal notation. Example:
StrPrintF(s,"%x",125);
Output to s:
0000007D

s A string (char *) argument is copied to
the destination string. Example:
StrPrintF(s,"ABC%s","DEF");
Output to s:
ABCDEF

c or
C

A single character argument is copied to
the destination string. If C is used or if the l
modifier is used, the argument must be a
WChar. Example:
StrPrintF(s,"Telephone%c",'s');
Output to s:
Telephones

% A % character is copied to the destination
string. Example:
StrPrintF(s,"%%");
Output to s:
%

Table 47.1 StrVPrintF Format Specification (continued)

Character Description

String Manager
String Manager Functions

940 Palm OS Programmer’s API Reference

#include <unix_stdarg.h>
void MyPrintF(Char *s, Char *formatStr, ...)
{
 va_list args;
 Char text[0x100];
 va_start(args, formatStr);
 StrVPrintF(text, formatStr, args);
 va_end(args);
 MyPutS(text);
}

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrPrintF

Palm OS Programmer’s API Reference 941

48
System Event
Manager
This chapter describes functions available in the system event
manager. The system event manager API is declared in the header
files Event.h and SysEvtMgr.h.

For more information on the system event manager, see the chapter
“Event Loop” in the Palm OS Programmer’s Companion, vol. I. The
reference for specific events sent by the system are documented in
“Palm OS Events.”

System Event Manager Data Structures
The following system event manager data structures are
documented in the “Palm OS Events” chapter:

• eventsEnum

• EventType

• EventPtr

System Event Manager
System Event Manager Functions

942 Palm OS Programmer’s API Reference

System Event Manager Functions

EvtAddEventToQueue

Purpose Add an event to the event queue.

Declared In Event.h

Prototype void EvtAddEventToQueue (const EventType *event)

Parameters -> event Pointer to the structure that contains the event.

Result Returns nothing.

Comments This function makes a copy of the structure that you pass in and
adds it to the event queue.

EvtAddUniqueEventToQueue

Purpose Add an event to the event queue, replacing one of the same type if it
is found.

Declared In Event.h

Prototype void EvtAddUniqueEventToQueue
(const EventType *eventP, UInt32 id,
Boolean inPlace)

Parameters -> eventP Pointer to the structure that contains the event.

-> id ID of the event. 0 means match only on the
type.

-> inPlace If true, any existing event is replaced. If
false, the existing event is deleted and a new
event is added to end of queue.

Result Returns nothing.

System Event Manager
System Event Manager Functions

Palm OS Programmer’s API Reference 943

Comments This function looks for an event in the event queue of the same
event type and ID (if specified). The routine replaces it with the new
event, if found.

If no existing event is found, the new event is copied to the queue.

If an existing event is found, the routine proceeds as follows:

• If inPlace is true, the existing event is replaced with a
copy of the new event.

• If inPlace is false, the existing event is removed and the
new event is added to the end of the queue.

Compatibility Implemented only if 2.0 New Feature Set is present.

System Event Manager
System Event Manager Functions

944 Palm OS Programmer’s API Reference

EvtCopyEvent

Purpose Copy an event.

Declared In Event.h

Prototype void EvtCopyEvent (const EventType *source,
EventType *dest)

Parameters -> source Pointer to the structure containing the event to
copy.

<- dest Pointer to the structure to copy the event to.

Result Returns nothing.

Comments Use this function only if you want to create an event that has the
same type as the source event. The data field in an EventType
structure is specific to events of a given type. If you were to use this
function to copy a keyDownEvent and then change it to a
frmLoadEvent, the resulting frmLoadEvent would not have the
proper data field.

If you want to create an event of a different type, do not use
EvtCopyEvent. First clear the EventType structure using MemSet
and then change the event type:

MemSet(&event, sizeof(EventType), 0);
event.eType = frmLoadEvent;
event.data.frmLoad.formID = formID;
EvtAddEventToQueue(&event);

System Event Manager
System Event Manager Functions

Palm OS Programmer’s API Reference 945

EvtDequeuePenPoint

Purpose Get the next pen point out of the pen queue. This function is called
by recognizers.

Declared In SysEvtMgr.h

Prototype Err EvtDequeuePenPoint (PointType *retP)

Parameters <- retP Return point.

Result Always returns 0.

Comments Called by a recognizer that wishes to extract the points of a stroke.
Returns the point (-1, -1) at the end of a stroke.

Before calling this routine, you must call
EvtDequeuePenStrokeInfo.

EvtDequeuePenStrokeInfo

Purpose Initiate the extraction of a stroke from the pen queue.

Declared In SysEvtMgr.h

Prototype Err EvtDequeuePenStrokeInfo (PointType *startPtP,
PointType *endPtP)

Parameters <- startPtP Start point returned here.

<- endPtP End point returned here.

Result Always returns 0.

Comments Called by the system function EvtGetSysEvent when a
penUpEvent is being generated. This routine must be called before
EvtDequeuePenPoint is called.

Subsequent calls to EvtDequeuePenPoint return points at the
starting point in the stroke and including the end point. After the

System Event Manager
System Event Manager Functions

946 Palm OS Programmer’s API Reference

end point is returned, the next call to EvtDequeuePenPoint
returns the point -1, -1.

See Also EvtDequeuePenPoint

EvtEnableGraffiti

Purpose Set Graffiti® enabled or disabled.

Declared In SysEvtMgr.h

Prototype void EvtEnableGraffiti (Boolean enable)

Parameters -> enable true to enable Graffiti, false to disable
Graffiti.

Result Returns nothing.

EvtEnqueueKey

Purpose Place keys into the key queue.

Declared In SysEvtMgr.h

Prototype Err EvtEnqueueKey (WChar ascii, UInt16 keycode,
UInt16 modifiers)

Parameters -> ascii Character code for the key.

-> keycode Virtual key code of key. This is the keyCode
field of the keyDownEvent and is currently
unused.

-> modifiers Modifiers for keyDownEvent.

Result Returns 0 if successful, or evtErrParamErr if an error occurs.

System Event Manager
System Event Manager Functions

Palm OS Programmer’s API Reference 947

Comments This function disables interrupts while the queue header is being
modified because both interrupt- and non-interrupt-level code can
post keys into the queue.

Entries in the key queue only take 1 byte if the ascii parameter has
a value less than 256 and the keycode and modifiers parameters
are both zero. Otherwise an entry can take up to 7 bytes.

IMPORTANT: Make sure you pass a WChar as the ascii
parameter, not a Char. If you pass a high-ASCII Char, the
compiler sign-extends it to be a 16-bit value, resulting in the
wrong character being added to the key queue.

EvtEventAvail

Purpose Return true if an event is available.

Declared In Event.h

Prototype Boolean EvtEventAvail (void)

Parameters None.

Result Returns true if an event is available, false otherwise.

Compatibility Implemented only if 2.0 New Feature Set is present.

System Event Manager
System Event Manager Functions

948 Palm OS Programmer’s API Reference

EvtFlushKeyQueue

Purpose Flush all keys out of the key queue.

Declared In SysEvtMgr.h

Prototype Err EvtFlushKeyQueue (void)

Parameters None.

Result Always returns 0.

Comments Called by the system function EvtSetPenQueuePtr.

EvtFlushNextPenStroke

Purpose Flush the next stroke out of the pen queue.

Declared In SysEvtMgr.h

Prototype Err EvtFlushNextPenStroke ()

Parameters None.

Result Always returns 0.

Comments Called by recognizers that need only the start and end points of a
stroke. If a stroke has already been partially dequeued (by
EvtDequeuePenStrokeInfo) this routine finishes the stroke
dequeueing. Otherwise, this routine flushes the next stroke in the
queue.

See Also EvtDequeuePenPoint

System Event Manager
System Event Manager Functions

Palm OS Programmer’s API Reference 949

EvtFlushPenQueue

Purpose Flush all points out of the pen queue.

Declared In SysEvtMgr.h

Prototype Err EvtFlushPenQueue (void)

Parameters None

Result Always returns 0.

Comments Called by the system function EvtSetKeyQueuePtr.

See Also EvtPenQueueSize

EvtGetEvent

Purpose Return the next available event.

Declared In Event.h

Prototype void EvtGetEvent (EventType *event, Int32 timeout)

Parameters <- event Pointer to the structure to hold the event
returned.

-> timeout Maximum number of ticks to wait before an
event is returned (evtWaitForever means
wait indefinitely).

Comments Pass evtWaitForever as the timeout in most instances. When
running on the device, this makes the CPU go into doze mode until
the user provides input. For applications that do animation, pass a
timeout value greater than or equal to zero.

Note that a timeout value greater than or equal to zero is simply the
maximum number of ticks which can elapse before EvtGetEvent
returns an event. If any other event—including a nilEvent—

System Event Manager
System Event Manager Functions

950 Palm OS Programmer’s API Reference

occurs before this time has elapsed, EvtGetEvent will return that
event. Otherwise, once the specified time has elapsed
EvtGetEvent generates and returns a nilEvent. If you supply a
value of zero for the timeout parameter, EvtGetEvent returns the
event currently in the queue, or, if there aren’t any events in the
queue, it immediately generates and returns a nilEvent.

Result Returns nothing.

EvtGetPen

Purpose Return the current status of the pen.

Declared In Event.h

Prototype void EvtGetPen (Int16 *pScreenX, Int16 *pScreenY,
Boolean *pPenDown)

Parameters <- pScreenX x location relative to display.

<- pScreenY y location relative to display.

<- pPenDown true or false.

Result Returns nothing.

Comments Called by various UI routines.

See Also EvtGetPenNative, KeyCurrentState

System Event Manager
System Event Manager Functions

Palm OS Programmer’s API Reference 951

EvtGetPenBtnList

Purpose Return a pointer to the silk-screen button array.

Declared In SysEvtMgr.h

Prototype const PenBtnInfoType *EvtGetPenBtnList
(UInt16 *numButtons)

Parameters <- numButtons The number of elements in the returned array.

Result Returns a pointer to an array of the silk-screen buttons.

Comments This function returns an array of PenBtnInfoType structures:

typedef struct PenBtnInfoType {
 RectangleType boundsR;
 WChar asciiCode;
 UInt16 keyCode;
 UInt16 modifiers;
} PenBtnInfoType;

The fields in the PenBtnInfoType contain the following
information:

The number of buttons is device-dependent. Even devices with the
same Palm OS® version may have differing numbers of silk-screen
buttons. For example, Japanese devices typically have four extra

boundsR The button’s bounding rectangle.

asciiCode The character code generated when the button is
tapped. This is typically a virtual character.

keyCode Currently unused.

modifiers Modifiers for the key down event. (See the
description of the modifiers field for
keyDownEvent.)

System Event Manager
System Event Manager Functions

952 Palm OS Programmer’s API Reference

silk-screen buttons used to transliterate characters into different
alphabets.

See Also EvtProcessSoftKeyStroke

New EvtGetPenNative

Purpose Get the current status of the pen using a window’s active coordinate
system.

Declared In Window.h

Prototype void EvtGetPenNative (WinHandle winH,
Int16 *pScreenX, Int16 *pScreenY,
Boolean *pPenDown)

Parameters -> winH Handle to a valid window.

<- pScreenX x location relative to the window.

<- pScreenY y location relative to the window.

<- pPenDown true if the pen is down, false otherwise.

Result Returns nothing.

Comments This function is a variation on EvtGetPen. EvtGetPen returns a
pen sample using the standard coordinate system, relative to the
draw window, whereas EvtGetPenNative returns a pen sample
using the active coordinate system of winH, relative to the window
origin. If the active coordinate system is high density, the returned
pen sample uses high-density coordinates.

On a debug ROM this function displays an error if winH doesn’t
reference a valid window object.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

System Event Manager
System Event Manager Functions

Palm OS Programmer’s API Reference 953

EvtGetSilkscreenAreaList

Purpose Returns a pointer to the silk-screen area array. This array contains
the bounds of each silk-screen area.

Declared In SysEvtMgr.h

Prototype const SilkscreenAreaType
*EvtGetSilkscreenAreaList (UInt16 *numAreas)

Parameters <- numAreas The number of elements in the returned array.

Result Returns a pointer to an array containing the bounds of each silk-
screen area.

Comments This function returns an array of the SilkscreenAreaType
structures:

typedef struct SilkscreenAreaType {
 RectangleType bounds;
 UInt32 areaType;
 UInt16 index;
 } SilkscreenAreaType;

The fields in this structure provide the following information.

bounds The area’s bounds.

System Event Manager
System Event Manager Functions

954 Palm OS Programmer’s API Reference

Compatibility Implemented only if 3.5 New Feature Set is present. If 5.0 New
Feature Set is present, this function should be considered “System
Use Only”; applications should do what they can to avoid using it.

EvtKeydownIsVirtual

Purpose Macro that indicates if eventP is a pointer to a virtual character key
down event.

Declared In Event.h

Prototype EvtKeydownIsVirtual (eventP)

Parameters -> eventP Pointer to an EventType structure.

Result Returns true if the character is a letter in an alphabet or a numeric
digit, false otherwise.

Comments The macro assumes that the caller has already determined the event
is a keyDownEvent.

This macro is intended for use by the system. Applications should
use TxtGlueCharIsVirtual, contained in the PalmOSGlue
Library.

areaType The area type, can be one of the following:

silkscreenRectGraffiti
The Graffiti area.

silkscreenRectScreen
The entire silkscreen area.

Depending on the handheld manufacturer, Palm
Powered™ devices may have other area types.

index If the area type is silkscreenRectGraffiti, this
field is either alphaGraffitiSilkscreenArea to
represent the portion where letters are entered or
numericGraffitiSilkscreenArea to represent
the portion where numbers are entered.

System Event Manager
System Event Manager Functions

Palm OS Programmer’s API Reference 955

Compatibility Implemented in the Palm OS 3.5 SDK.

See Also TxtGlueCharIsVirtual

EvtKeyQueueEmpty

Purpose Return true if the key queue is currently empty.

Declared In SysEvtMgr.h

Prototype Boolean EvtKeyQueueEmpty (void)

Parameters None.

Result Returns true if the key queue is currently empty, otherwise returns
false.

Comments Usually called by the key manager to determine if it should enqueue
auto-repeat keys.

EvtKeyQueueSize

Purpose Return the size of the current key queue in bytes.

Declared In SysEvtMgr.h

Prototype UInt32 EvtKeyQueueSize (void)

Parameters None.

Result Returns size of queue in bytes.

Comments Called by applications that wish to see how large the current key
queue is.

System Event Manager
System Event Manager Functions

956 Palm OS Programmer’s API Reference

EvtPenQueueSize

Purpose Return the size of the current pen queue in bytes.

Declared In SysEvtMgr.h

Prototype UInt32 EvtPenQueueSize (void)

Parameters None.

Result Returns size of queue in bytes.

Comments Call this function to see how large the current pen queue is.

EvtProcessSoftKeyStroke

Purpose Translate a stroke in the system area of the digitizer and enqueue
the appropriate key events in to the key queue.

Declared In SysEvtMgr.h

Prototype Err EvtProcessSoftKeyStroke (PointType *startPtP,
PointType *endPtP)

Parameters -> startPtP Start point of stroke.

-> endPtP End point of stroke.

Result Returns 0 if recognized, -1 if not recognized.

See Also EvtGetPenBtnList, GrfProcessStroke

System Event Manager
System Event Manager Functions

Palm OS Programmer’s API Reference 957

EvtResetAutoOffTimer

Purpose Reset the auto-off timer.

Declared In SysEvtMgr.h

Prototype Err EvtResetAutoOffTimer (void)

Parameters None.

Result Always returns 0.

Comments Called by the serial link manager; can be called periodically by
other managers.

EvtResetAutoOffTimer resets the auto-off timer so that the
device does not turn off until at least the default amount of idle time
has passed. You can use this function to ensure that the device
doesn’t automatically power off during a long operation without
user input (for example, when there is a lot of serial port activity).

If you need more control over the auto-off timer and the 3.5 New
Feature Set is present, consider using EvtSetAutoOffTimer
instead of this function.

See Also SysSetAutoOffTime

EvtSetAutoOffTimer

Purpose Set the auto-off timer.

Declared In SysEvtMgr.h

Prototype Err EvtSetAutoOffTimer (EvtSetAutoOffCmd cmd,
UInt16 timeout)

Parameters -> cmd One of the defined commands.

System Event Manager
System Event Manager Functions

958 Palm OS Programmer’s API Reference

-> timeout A new timeout value in seconds. If cmd is
ResetTimer, this parameter is ignored.

Result Always returns errNone.

Comments Use EvtSetAutoOffTimer to ensure that the device doesn’t
automatically power off during a long operation that has no user
input (for example, when there is a lot of serial port activity).

The cmd parameter specifies the operation you want to perform. It
takes one of the following EvtSetAutoOffCmd constants:

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also EvtResetAutoOffTimer, SysSetAutoOffTime

SetAtLeast Make sure that the device won’t turn off until
timeout seconds of idle time has passed.
(This operation only changes the current value if
it’s less than the value you specify.)

SetExactly Set the timer to turn off in timeout seconds

SetAtMost Make sure the device will turn before timeout
seconds has passed. (This operation only changes
the current value if it’s greater than the value you
specify.)

SetDefault Change the default auto-off timeout to timeout
seconds.

ResetTimer Reset the auto-off timer so that the device does not
turn off until at least the default seconds of idle
time has passed.

System Event Manager
System Event Manager Functions

Palm OS Programmer’s API Reference 959

EvtSetNullEventTick

Purpose Make sure a nilEvent occurs in at least the specified number of
ticks.

Declared In SysEvtMgr.h

Prototype Boolean EvtSetNullEventTick(UInt32 tick)

Parameters -> tick Maximum number of system ticks that should
elapse before a nilEvent is added to the
queue.

Result Returns true if timeout value changed, or false if it did not
change.

Compatibility In versions prior to Palm OS 3.5, this function was implemented as a
macro.

EvtSysEventAvail

Purpose Return true if a low-level system event (such as a pen or key event)
is available.

Declared In SysEvtMgr.h

Prototype Boolean EvtSysEventAvail (Boolean ignorePenUps)

Parameters ignorePenUps If true, this routine ignores pen-up events
when determining if there are any system
events available.

Result Returns true if a system event is available.

Comment Call EvtEventAvail to determine whether high-level software
events are available.

Compatibility Implemented only if 2.0 New Feature Set is present.

System Event Manager
System Event Manager Functions

960 Palm OS Programmer’s API Reference

EvtWakeup

Purpose Force the event manager to wake up and send a nilEvent to the
current application.

Declared In SysEvtMgr.h

Prototype Err EvtWakeup (void)

Parameters None.

Result Always returns 0.

Comments Called by interrupt routines, like the sound manager and alarm
manager.

See Also EvtWakeupWithoutNilEvent

EvtWakeupWithoutNilEvent

Purpose Force the event manager to wake up without sending a nilEvent
to the current application.

Declared In SysEvtMgr.h

Prototype Err EvtWakeupWithoutNilEvent()

Parameters None.

Result Always returns 0.

Comments Called by interrupt routines.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also EvtWakeup

Palm OS Programmer’s API Reference 961

49
System Manager
This chapter provides reference material for the system manager.
The system manager API is declared in the header files
SystemMgr.h and SysUtils.h.

For more information on the system manager, see the chapters
“Application Startup and Stop” and “Palm System Support” in the
Palm OS Programmer’s Companion, vol. I.

System Manager Data Structures

SysDBListItemType
The SysDBListItemType structure describes a single database or
panel. The SysCreateDataBaseList and
SysCreatePanelList functions each create and return an array
of SysDBListItemType structures.

typedef struct {
 Char name[dmDBNameLength];
 UInt32 creator;
 UInt32 type;
 UInt16 version;
 LocalID dbID;
 UInt16 cardNo;
 BitmapPtr iconP;
} SysDBListItemType;

System Manager
System Functions

962 Palm OS Programmer’s API Reference

System Functions

SysAppLaunch

Purpose Launch a specified application as a subroutine of the caller.

Declared In SystemMgr.h

Prototype Err SysAppLaunch (UInt16 cardNo, LocalID dbID,
UInt16 launchFlags, UInt16 cmd, MemPtr cmdPBP,
UInt32 *resultP)

Parameters -> cardNo, dbID The card number and ID of the resource
database of the application to launch.

-> launchFlags Set to 0.

-> cmd Launch code.

-> cmdPBP Launch code parameter block.

<- resultP The value returned from the application’s
PilotMain routine.

Result Returns 0 if no error, or one of sysErrParamErr,
memErrNotEnoughSpace, or sysErrOutOfOwnerIDs.

Comments Applications can use SysAppLaunch to send a specific launch code
to another application and have control return to the calling
application when finished. This function in effect makes the
specified application a subroutine of the caller. If you want to
actually close your application and call another application, use
SysUIAppSwitch instead of this function. SysUIAppSwitch
sends the current application an appStopEvent and then starts the
specified application.

Do not use this function to open the system-supplied Application
Launcher application. If another application has replaced the
default launcher with one of its own, this function will open the
custom launcher instead of the system-supplied one. To open the
system-supplied launcher reliably, enqueue a keyDownEvent that

System Manager
System Functions

Palm OS Programmer’s API Reference 963

contains a launchChr, as shown in the section “Application
Launcher” of the user interface chapter in the Palm OS Programmer’s
Companion, vol. I.

NOTE: For important information regarding the correct use of
this function, see the “Application Startup and Stop” chapter in the
Palm OS Programmer’s Companion, vol. I.

See Also SysBroadcastActionCode, SysUIAppSwitch,
SysCurAppDatabase

SysBatteryInfo

Purpose Retrieve settings for the batteries. Set set to false to retrieve
battery settings. (Applications should not change any of the
settings).

WARNING! Use this function only to retrieve settings!

Declared In SystemMgr.h

Prototype UInt16 SysBatteryInfo (Boolean set,
UInt16 *warnThresholdP,
UInt16 *criticalThresholdP, Int16 *maxTicksP,
SysBatteryKind *kindP, Boolean *pluggedIn,
UInt8 *percentP)

Parameters set If false, parameters with non-NULL pointers
are retrieved. Never set this parameter to true.

warnThresholdP Pointer to battery voltage warning threshold in
volts*100, or NULL.

criticalThresholdP
Pointer to the battery voltage critical threshold
in volts*100, or NULL.

maxTicksP Pointer to the battery timeout, or NULL.

System Manager
System Functions

964 Palm OS Programmer’s API Reference

kindP Pointer to the battery kind, or NULL.

pluggedIn Pointer to pluggedIn return value, or NULL.

percentP Percentage of power remaining in the battery.

Result Returns the current battery voltage in volts*100.

Comments Call this function to make sure an upcoming activity won’t be
interrupted by a low battery warning.

warnThresholdP and maxTicksP are the battery-warning
voltage threshold and time out. If the battery voltage falls below the
threshold, or the timeout expires, a lowBatteryChr key event is
put on the queue. Normally, applications call SysHandleEvent
which calls SysBatteryDialog in response to this event.

criticalThresholdP is the battery voltage threshold. If battery
voltage falls below this level, the system turns itself off without
warning and doesn’t turn on until battery voltage is above it again.

Compatibility This function was revised for Palm OS® 3.0. In Palm OS 3.0, the
percentP parameter was added. This enhancement is
implemented only if 3.0 New Feature Set is present.

See Also SysBatteryInfoV20

SysBatteryInfoV20

Purpose Retrieve settings for the batteries. Set to false to retrieve battery
settings. (Applications should not change any of the settings).

WARNING! Use this function only to retrieve settings!

System Manager
System Functions

Palm OS Programmer’s API Reference 965

Declared In SystemMgr.h

Prototype UInt16 SysBatteryInfoV20 (Boolean set,
UInt16 *warnThresholdP,
UInt16 *criticalThresholdP, Int16 *maxTicksP,
SysBatteryKind *kindP, Boolean *pluggedIn)

Parameters set If false, parameters with non-NULL pointers
are retrieved. Never set this parameter to true.

warnThresholdP Pointer to battery voltage warning threshold in
volts*100, or NULL.

criticalThresholdP
Pointer to the battery voltage critical threshold
in volts*100, or NULL.

maxTicksP Pointer to the battery timeout, or NULL.

kindP Pointer to the battery kind, or NULL.

pluggedIn Pointer to pluggedIn return value, or NULL.

Result Returns the current battery voltage in volts*100.

Comments Call this function to make sure an upcoming activity won’t be
interrupted by a low battery warning.

warnThresholdP and maxTicksP are the battery-warning
voltage threshold and time out. If the battery voltage falls below the
threshold, or the timeout expires, a lowBatteryChr key event is
put on the queue. Normally, applications call SysHandleEvent
which calls SysBatteryDialog in response to this event.

criticalThresholdP is the battery voltage threshold. If battery
voltage falls below this level, the system turns itself off without
warning and doesn’t turn on until battery voltage is above it again.

Compatibility This function corresponds to the Palm OS 2.0 version of
SysBatteryInfo. Implemented only if 3.0 New Feature Set is
present.

See Also SysBatteryInfo

System Manager
System Functions

966 Palm OS Programmer’s API Reference

SysBinarySearch

Purpose Search elements in a sorted array for the specified data according to
the specified comparison function.

Declared In SysUtils.h

Prototype Boolean SysBinarySearch (void const *baseP,
Int16 numOfElements, Int16 width,
SearchFuncPtr searchF, void const *searchData,
Int32 other, Int32 *position, Boolean findFirst)

System Manager
System Functions

Palm OS Programmer’s API Reference 967

Parameters baseP Base pointer to an array of elements

numOfElements Number of elements to search. Must be greater
than 0.

width Width of each array element.

searchF Search function.

searchData Data to search for. This data is passed to the
searchF function.

other Data to be passed as the third parameter (the
other parameter) to the comparison function.

position Pointer to the position result.

findFirst If set to true, the first matching element is
returned. Use this parameter if the array
contains duplicate entries to ensure that the
first such entry will be the one returned.

Result Returns true if an exact match was found. In this case, position
points to the element number where the data was found.

Returns false if an exact match was not found. If false is
returned, position points to the element number where the data
should be inserted if it was to be added to the array in sorted order.

Comments The array must be sorted in ascending order prior to the search. Use
SysInsertionSort or SysQSort to sort the array.

The search starts at element 0 and ends at element
(numOfElements - 1).

The search function’s (searchF) prototype is:

Int16 _searchF (void const *searchData,
void const *arrayData, Int32 other);

The first parameter is the data for which to search, the second
parameter is a pointer to an element in the array, and the third
parameter is any other necessary data.

System Manager
System Functions

968 Palm OS Programmer’s API Reference

The function returns:

• > 0 if the search data is greater than the element

• < 0 if the search data is less than the element

• 0 if the search data is the same as the element

Compatibility Implemented only if 2.0 New Feature Set is present.

SysBroadcastActionCode

Purpose Send the specified action code (launch code) and parameter block to
the latest version of every UI application.

Declared In SystemMgr.h

Prototype Err SysBroadcastActionCode (UInt16 cmd,
MemPtr cmdPBP)

Parameters cmd Action code to send.

cmdPBP Action code parameter block to send.

Result Returns 0 if no error, or one of the following errors:
sysErrParamErr, memErrNotEnoughSpace, or
sysErrOutOfOwnerIDs.

See Also SysAppLaunch, Chapter 2, “Application Startup and Stop.” of the
Palm OS Programmer’s Companion, vol. I

System Manager
System Functions

Palm OS Programmer’s API Reference 969

SysCopyStringResource

Purpose Copy a resource string to a passed string.

Declared In SysUtils.h

Prototype void SysCopyStringResource (Char *string,
Int16 theID)

Parameters string String to copy the resource string to.

theID Resource string ID.

Result Stores a copy of the resource string in string.

System Manager
System Functions

970 Palm OS Programmer’s API Reference

SysCreateDataBaseList

Purpose Generate a list of databases found on the memory cards matching a
specific type and return the result. If lookupName is true then a
name in a tAIN resource is used instead of the database’s name and
the list is sorted. Only the last version of a database is returned.
Databases with multiple versions are listed only once.

Declared In SystemMgr.h

Prototype Boolean SysCreateDataBaseList (UInt32 type,
UInt32 creator, UInt16 *dbCount, MemHandle *dbIDs,
Boolean lookupName)

Parameters type The type of database to find. Use 0 to find all
databases.

creator The creator ID of the database to find. Use 0 to
find any creator ID.

dbCount A pointer to an integer value that is updated by
this function to the number of matching
databases.

dbIDs A pointer to a handle that gets allocated to
contain the database list. Upon return, this
references an array of SysDBListItemType
structures. See the Comments section below for
more information.

lookupName If true, SysCreateDatabaseList uses
tAIN names and sorts the list.

Result Returns false if no databases were found, and true if any
databases were found. The value of dbCount is updated to reflect
the number of databases that were found. If at least one database is
found, dbIDs is updated to reference a array of
SysDBListItemType structures; this array contains dbCount
items.

System Manager
System Functions

Palm OS Programmer’s API Reference 971

Comments This function creates a list of unique databases, where unique is
defined as having a different type and creator ID. Two or more
databases with the same type and creator ID are counted as one.
Thus, you cannot use SysCreateDataBaseList to build a list of
databases that share a common type and creator. There are two
exceptions to this rule, however. If type is 0 or if creator is not 0,
the code that removes “non-unique” databases isn’t run. It also isn’t
run if the type is sysFileTpqa, since web-clipping databases all
have the same type and creator ID.

If this function returns true and the value of dbCount is greater
then 0, than you can iterate through the list of database items, as
shown in Listing 49.1

Listing 49.1 Using the SysCreateDatabaseList function

SysDBListItemType *dbListIDsP;
MemHandle dbListIDsH;
UInt16 dbCount = 0;
Boolean status;
UInt16 counter;
SysDBListItemType theItem;

status = SysCreateDatabaseList(sysFileTpqa, 0,
 &dbCount, &dbListIDsH, false);

if (status == true && dbCount > 0)
 {
 dbListIDsP = MemHandleLock (dbListIDsH);
 for (counter = 0; counter < dbCount; counter++)
 if StrCompare(dbListIDsP[counter].name,
 "MINE") == 0
 // we found my database
 ...
...
 MemPtrFree (dbListIDsP);
 }

NOTE: It is your responsibility to free the memory allocated by
this function for the list of databases.

Compatibility Implemented only if 2.0 New Feature Set is present.

System Manager
System Functions

972 Palm OS Programmer’s API Reference

SysCreatePanelList

Purpose Generate a list of panels found on the memory cards and return the
result. Multiple versions of a panel are listed once.

Declared In SystemMgr.h

Prototype Boolean SysCreatePanelList (UInt16 *panelCount,
MemHandle *panelIDs)

Parameters panelCount Pointer to set to the number of panels.

panelIDs A pointer to a handle that gets allocated to
contain the panel list. Upon return, this
references an array of SysDBListItemType
structures.

Result Returns false if no panels were found, and true if any panels
were found. The value of panelCount is updated to reflect the
number of panels that were found. If at least one panel is found,
panelIDs is updated to reference a array of SysDBListItemType
structures; this array contains panelCount items.

Comments If this function returns true and the value of panelCount is
greater than 0, than you can iterate through the list of panel items, as
shown in Listing 49.1. It is your responsibility to free the memory
allocated for the panel list.

Compatibility Implemented only if 2.0 New Feature Set is present.

System Manager
System Functions

Palm OS Programmer’s API Reference 973

SysCurAppDatabase

Purpose Return the card number and database ID of the current application’s
resource database.

Declared In SystemMgr.h

Prototype Err SysCurAppDatabase (UInt16 *cardNoP,
LocalID *dbIDP)

Parameters cardNoP Pointer to the card number; 0 or 1.

dbIDP Pointer to the database ID.

Result Returns 0 if no error, or SysErrParamErr if an error occurs.

See Also SysAppLaunch, SysUIAppSwitch

SysErrString

Purpose Returns text to describe an error number. This routine looks up the
textual description of a system error number in the appropriate List
resource and creates a string that can be used to display that error.

The actual string will be of the form: "<error message> (XXXX)"
where XXXX is the hexadecimal error number.

This routine looks for a resource of type 'tstl' and resource ID of
(err>>8). It then grabs the string at index (err & 0x00FF) out of that
resource.

The first string in the resource is called index #1 by Constructor,
NOT #0. For example, an error code of 0x0101 will fetch the first
string in the resource.

Declared In SysUtils.h

Prototype Char *SysErrString (Err err, Char *strP,
UInt16 maxLen)

Parameters err Error number

System Manager
System Functions

974 Palm OS Programmer’s API Reference

strP Pointer to space to form the string

maxLen Size of strP buffer.

Result Stores the error number string.

Compatibility Implemented only if 2.0 New Feature Set is present.

SysFormPointerArrayToStrings

Purpose Form an array of pointers to strings in a block. Useful for setting the
items of a list.

Declared In SysUtils.h

Prototype MemHandle SysFormPointerArrayToStrings (Char *c,
Int16 stringCount)

Parameters c Pointer to packed block of strings, each
terminated by a null character.

stringCount Count of strings in block.

Result Unlocked handle to allocated array of pointers to the strings in the
passed block. The returned array points to the strings in the passed
packed block. Note that you’ll need to free the returned handle
when you no longer need it.

See Also LstSetListChoices

System Manager
System Functions

Palm OS Programmer’s API Reference 975

New sysFtrNumProcessorIs68K

Purpose Macro that determines whether or not the underlying processor is
part of the 68K family.

Declared In SystemMgr.h

Prototype #define sysFtrNumProcessorIs68K(x)
(((x&sysFtrNumProcessor68KIfZero)==0)? true :
false)

Parameters -> x Processor type obtained from a call to FtrGet.

Result Returns true if the underlying processor is a 68K, false
otherwise.

Comments This macro is typically used in conjunction with PceNativeCall.

Example UInt32 processorType;

FtrGet(sysFileCSystem, sysFtrNumProcessorID, &processorType);
if (sysFtrNumProcessorIs68K(processorType)){
 // processor is 68K
} else {
 // processor is not 68K
}

System Manager
System Functions

976 Palm OS Programmer’s API Reference

New sysFtrNumProcessorIsARM

Purpose Macro that determines whether or not the underlying processor is
part of the ARM family.

Declared In SystemMgr.h

Prototype #define sysFtrNumProcessorIsARM(x)
(((x&sysFtrNumProcessorARMIfNotZero)!=0)? true :
false)

Parameters -> x Processor type obtained from a call to FtrGet.

Result Returns true if the underlying processor is an ARM core, false
otherwise.

Comments This macro is typically used in conjunction with PceNativeCall.

Example UInt32 processorType;

FtrGet(sysFileCSystem, sysFtrNumProcessorID, &processorType);
if (sysFtrNumProcessorIsARM(processorType)){
 // processor is ARM
} else {
 // processor is not ARM
}

System Manager
System Functions

Palm OS Programmer’s API Reference 977

SysGetOSVersionString

Purpose Return the version number of the Palm™ operating system.

Declared In SystemMgr.h

Prototype Char *SysGetOSVersionString()

Parameters None.

Result Returns a string such as “v. 3.0.”

Comments You must free the returned string using the MemPtrFree function.

Compatibility Implemented only if 3.0 New Feature Set is present.

SysGetROMToken

Purpose Return from ROM a value specified by token.

Declared In SystemMgr.h

Prototype Err SysGetROMToken (UInt16 cardNo, UInt32 token,
UInt8 **dataP, UInt16 *sizeP)

Parameters -> cardNo The card on which the ROM to be queried
resides. Currently, no Palm hardware provides
multiple cards, so this value must be 0.

-> token The value to retrieve, as specified by one of the
following tokens:

sysROMTokenSnum
The serial number of the ROM, expressed
as a text string with no null terminator.

<- dataP Pointer to a text buffer that holds the requested
value when the function returns.

System Manager
System Functions

978 Palm OS Programmer’s API Reference

<- sizeP The number of bytes in the dataP buffer.

Result Returns the requested value if no error, or an error code if an error
occurs. If this function returns an error, or if the returned pointer to
the buffer is NULL, or if the first byte of the text buffer is 0xFF, then
no serial number is available.

Comments The serial number is shown to the user in the Application Launcher,
along with a checksum digit you can use to validate input when
your users read the ID from their device and type it in or tell it to
someone else.

Compatibility Implemented only if 3.0 New Feature Set is present. Serial numbers
are available only on flash ROM-based units.

See Also “Retrieving the ROM Serial Number” section in the Palm OS
Programmer’s Companion, vol. I shows how to retrieve the ROM
serial number and calculate its associated checksum.

SysGetStackInfo

Purpose Return the start and end of the current thread’s stack.

Declared In SystemMgr.h

Prototype Boolean SysGetStackInfo (MemPtr *startPP,
MemPtr *endPP)

Parameters startPP Upon return, points to the start of the stack.

endPP Upon return, points to the end of the stack.

Result Returns true if the stack has not overflowed, that is, the value of
the stack overflow address has not been changed. Returns false if
the stack overflow value has been overwritten, meaning that a stack
overflow has occurred.

Compatibility Implemented only if 3.0 New Feature Set is present.

System Manager
System Functions

Palm OS Programmer’s API Reference 979

SysGetTrapAddress

Purpose Return the address of a function given its system trap.

Declared In SystemMgr.h

Prototype void *SysGetTrapAddress (UInt16 trapNum)

Parameters -> trapNum One of the routine selectors defined in
SysTraps.h (sysTrap...) or CoreTraps.h
on Palm OS version 3.5 and higher.

Result Returns the address of the corresponding function. Returns the
address of the sysTrapSysUnimplemented routine if an invalid
routine selector is passed; compare the results of this function to
SysGetTrapAddress(sysTrapSysUnimplemented) if you
need to check for an invalid routine selector.

Comments Use this function for performance reasons. You can then use the
address it returns to call the function without having to go through
the trap dispatch table. This function is mostly useful for optimizing
the performance of functions called in a tight loop.

The Palm OS trap dispatch mechanism allows the trap table entries
to be modified at any time, either as the result of a system update or
a hack. For this reason, it’s important to call this function
immediately before entering the tight loop. If the trap address
changes in between when you call SysGetTrapAddress and you
use the address, the wrong function will be called.

Compatibility On Palm OS 3.0 and earlier, this function contains a bug that causes
it to return a garbage value if an invalid routine selector is passed.
To prevent this bug from affecting your application, use
SysGlueGetTrapAddress in the PalmOSGlue library instead of
calling this function directly. For more information, see Chapter 75,
“PalmOSGlue Library.”

System Manager
System Functions

980 Palm OS Programmer’s API Reference

SysGremlins

Purpose Query the Gremlins facility. You pass a selector for a function and
parameters for that function. Gremlins performs the function call
and returns the result.

Declared In SysUtils.h

Prototype UInt32 SysGremlins (GremlinFunctionType selector,
GremlinParamsType *params)

Parameters selector The selector for a function to pass to Gremlins.

params Pointer to a parameter block used to pass
parameters to the function specified by
selector.

Result Returns the result of the function performed in Gremlins.

Comments Currently, only one selector is defined, GremlinIsOn, which takes
no parameters. GremlinIsOn returns 0 if Gremlins is not running,
non-zero if it is running.

Currently, non-zero values are returned only from the version of
Gremlins in the Palm OS emulator. The Gremlins running in the
Simulator on a Macintosh and over the serial line via the Palm
Debugger return zero for GremlinIsOn.

Use this function if you need to alter the application’s behavior
when Gremlins is running. For example, the debug 3.0 ROM refuses
to bring up the digitizer panel when Gremlins is running under the
emulator.

Compatibility Implemented only if 3.0 New Feature Set is present.

In Palm OS 3.2 and later, SysGremlins is replaced by the functions
defined in the file HostControl.h. Specifically, the one selector
supported by SysGremlins is replaced with the function
HostGremlinIsRunning. For backward compatibility,
SysGremlins is mapped to HostGremlinIsRunning.

System Manager
System Functions

Palm OS Programmer’s API Reference 981

SysHandleEvent

Purpose Handle defaults for system events such as hard and soft key presses.

Declared In SystemMgr.h

Prototype Boolean SysHandleEvent (EventPtr eventP)

Parameters eventP Pointer to an event.

Result Returns true if the system handled the event.

Comments Applications should call this routine immediately after calling
EvtGetEvent unless they want to override the default system
behavior. However, overriding the default system behavior is
almost never appropriate for an application.

See Also EvtProcessSoftKeyStroke, KeyRates

SysInsertionSort

Purpose Sort elements in an array according to the passed comparison
function.

Declared In SysUtils.h

Prototype void SysInsertionSort (void *baseP,
Int16 numOfElements, Int16 width,
CmpFuncPtr comparF, Int32 other)

Parameters baseP Base pointer to an array of elements.

numOfElements Number of elements to sort (must be at least 2).

width Width of an element.

comparF Comparison function. See Comments, below.

System Manager
System Functions

982 Palm OS Programmer’s API Reference

other Other data passed to the comparison function.

Result Returns nothing.

System Manager
System Functions

Palm OS Programmer’s API Reference 983

Comments Only elements which are out of order move. Moved elements are
moved to the end of the range of equal elements. If a large amount
of elements are being sorted, try to use the quick sort (see
SysQSort).

This is the insertion sort algorithm: Starting with the second
element, each element is compared to the preceding element. Each
element not greater than the last is inserted into sorted position
within those already sorted. A binary search for the insertion point
is performed. A moved element is inserted after any other equal
elements.

In order to use SysInsertionSort you must write a comparison
function with the following prototype:

Int16 comparF (void *p1, void *p2, Int32 other)

Your comparison function must return zero if p1 equals p2, a
positive integer value if p1 is greater than p2, and a negative integer
value if p1 is less than p2. Note that the value of the parameter
named other is passed through from the SysInsertionSort call
and can be used to control the behavior of the comparF function if
appropriate for your application.

Compatibility The Palm OS 2.0 comparison function (comparF) has this
prototype:

Int comparF (VoidPtr, VoidPtr, Long other);

The Palm OS 1.0 comparison function (comparF) has this
prototype:

Int comparF (BytePtr A, BytePtr B, Long other);

See Also SysQSort

System Manager
System Functions

984 Palm OS Programmer’s API Reference

SysKeyboardDialog

Purpose Pop up the system keyboard if there is a field object with the focus.
The field object’s text chunk is edited directly.

Declared In Keyboard.h

Prototype void SysKeyboardDialog (KeyboardType kbd)

Parameters kbd The keyboard type. See Keyboard.h.

Result Returns nothing. Changes the field’s text chunk.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also SysKeyboardDialogV10, FrmSetFocus

SysKeyboardDialogV10

Purpose Pop up the system keyboard if there is a field object with the focus.
The field object’s text chunk is edited directly.

Declared In Keyboard.h

Prototype void SysKeyboardDialogV10 ()

Parameters None.

Result Returns nothing. The field’s text chunk is changed.

Compatibility Corresponds to the 1.0 implementation of SysKeyboardDialog.

See Also SysKeyboardDialog, FrmSetFocus

System Manager
System Functions

Palm OS Programmer’s API Reference 985

SysLibFind

Purpose Return a reference number for a library that is already loaded, given
its name.

Declared In SystemMgr.h

Prototype Err SysLibFind (const Char *nameP,
UInt16 *refNumP)

Parameters nameP Pointer to the name of a loaded library.

refNumP Pointer to a variable for returning the library
reference number (on failure, this variable is
undefined)

Result 0 if no error; otherwise: sysErrLibNotFound (if the library is not
yet loaded), or another error returned from the library's install entry
point.

Comments Most built-in libraries (NetLib, serial, IR) are preloaded
automatically when the system is reset. Third-party libraries must
be loaded before this call can succeed (use SysLibLoad). You can
check if a library is already loaded by calling SysLibFind and
checking for a 0 error return value (it will return a non-zero value if
the library is not loaded).

SysLibInstall

Purpose Installs a library into the Library table and calls the library’s install
entry point.

Declared In SystemMgr.h

Prototype Err SysLibInstall (SysLibEntryProcPtr libraryP,
UInt16 *refNumP)

Parameters -> libraryP Pointer to the library being installed.

System Manager
System Functions

986 Palm OS Programmer’s API Reference

<- refNumP Pointer to the variable in which the installed
library reference number is stored upon return.

Result Returns 0 if no error, memErrNotEnoughSpace if an error occurs
while allocating memory in the library table, or, if an error is
returned by the call to the library’s install entry point, that error is
returned and the reference number is set to sysInvalidRefNum.

Comments This routine is largely used by the Palm OS, but can also be called
by applications that need to install their own libraries.

Compatibility Implemented only if 2.0 New Feature Set is present.

SysLibLoad

Purpose Load a library given its database creator and type.

Declared In SystemMgr.h

Prototype Err SysLibLoad (UInt32 libType,
UInt32 libCreator, UInt16 *refNumP)

Parameters libType Type of library database.

libCreator Creator of library database.

refNumP Pointer to variable for returning the library
reference number (on failure,
sysInvalidRefNum is returned in this
variable)

Result 0 if no error; otherwise: sysErrLibNotFound,
sysErrNoFreeRAM, sysErrNoFreeLibSlots, or other error
returned from the library's install entry point.

Comments Presently, the “load” functionality is not supported when you use
the Palm OS Simulator.

When an application no longer needs a library that it successfully
loaded via SysLibLoad, it is responsible for unloading the library

System Manager
System Functions

Palm OS Programmer’s API Reference 987

by calling SysLibRemove and passing it the library reference
number returned by SysLibLoad. More information is available in
the white paper on shared libraries, which you can find on the Palm
developer support web site.

Compatibility Implemented only if 2.0 New Feature Set is present.

SysLibRemove

Purpose Unload a library previously loaded with SysLibLoad.

Declared In SystemMgr.h

Prototype Err SysLibRemove (UInt16 refNum)

Parameters -> refNum The library reference number.

Result 0 if no error; otherwise sysErrParamErr if the refNum is not a
valid library reference number.

Comments SysLibRemove releases the dynamic memory allocated to the
shared library’s dispatch table, resources, and global variables.

SysQSort

Purpose Sort elements in an array according to the supplied comparison
function.

Declared In SysUtils.h

Prototype void SysQSort (void *baseP, Int16 numOfElements,
Int16 width, CmpFuncPtr comparF, Int32 other)

Parameters baseP Base pointer to an array of elements.

numOfElements Number of elements to sort (must be at least 2).

width Width of an element.

System Manager
System Functions

988 Palm OS Programmer’s API Reference

comparF Comparison function. See Comments, below.

other Other data passed to the comparison function.

Result Returns nothing.

Comments Equal records can be in any position relative to each other because a
quick sort tends to scramble the ordering of records. As a result,
calling SysQSort multiple times can result in a different order if
the records are not completely unique. If you don’t want this
behavior, use the insertion sort instead (see SysInsertionSort).

To pick the pivot point, the quick sort algorithm picks the middle of
three records picked from around the middle of all records. That
way, the algorithm can take advantage of partially sorted data.

These optimizations are built in:

• The routine contains its own stack to limit uncontrolled
recursion. When the stack is full, an insertion sort is used
because it doesn't require more stack space.

• An insertion sort is also used when the number of records is
low. This avoids the overhead of a quick sort which is
noticeable for small numbers of records.

• If the records seem mostly sorted, an insertion sort is
performed to move only those few records that need to be
moved.

In order to use SysQSort you must write a comparison function
with the following prototype:

Int16 comparF (void *p1, void *p2, Int32 other)

Your comparison function must return zero if p1 equals p2, a
positive integer value if p1 is greater than p2, and a negative integer
value if p1 is less than p2. Note that the value of the parameter
named other is passed through from the SysQSort call and can be
used to control the behavior of the comparF function if appropriate
for your application.

Compatibility The Palm OS 2.0 comparison function (comparF) has this
prototype:

System Manager
System Functions

Palm OS Programmer’s API Reference 989

Int comparF (VoidPtr, VoidPtr, Long other);

The Palm OS 1.0 comparison function (comparF) has this
prototype:

Int comparF (BytePtr A, BytePtr B, Long other);

See Also SysInsertionSort

SysRandom

Purpose Return a random number anywhere from 0 to sysRandomMax.

Declared In SysUtils.h

Prototype Int16 SysRandom (Int32 newSeed)

Parameters newSeed New seed value, or 0 to use existing seed.

Result Returns a random number.

SysReset

Purpose Perform a soft reset and reinitialize the globals and the dynamic
memory heap.

Declared In SystemMgr.h

Prototype void SysReset (void)

Parameters None.

Result No return value.

Comments This routine resets the system, reinitializes the globals area and all
system managers, and reinitializes the dynamic heap. All database
information is preserved. This routine is called when the user
presses the hidden reset switch on the device.

System Manager
System Functions

990 Palm OS Programmer’s API Reference

When running an application using the simulator, this routine looks
for two data files that represent the memory of card 0 and card 1. If
these are found, the Palm OS memory image is created using them.
If they are not found, they are created.

When running an application on the device, this routine simply
looks for the memory cards at fixed locations.

SysSetAutoOffTime

Purpose Set the time out value in seconds for auto-power-off. Zero means
never power off.

Declared In SystemMgr.h

Prototype UInt16 SysSetAutoOffTime (UInt16 seconds)

Parameters seconds Time out in seconds, or 0 for no time out.

Result Returns previous value of time out in seconds.

SysSetTrapAddress

Purpose Set the address of the function corresponding to a system trap.

Declared In SystemMgr.h

Prototype Err SysSetTrapAddress (UInt16 trapNum,
void *procP)

Parameters -> trapNum One of the routine selectors defined in
SysTraps.h (sysTrap...) or CoreTraps.h
on Palm OS version 3.5 and higher.

-> procP Pointer to a function that the trap identified by
trapNum is to point to.

Result Returns 0 if no error, or SysErrParamErr if trapNum is greater
than the number of traps in the trap table.

System Manager
System Functions

Palm OS Programmer’s API Reference 991

Comments This function is useful for patching a system trap, in combination
with SysGetTrapAddress. To patch a system trap in your
application, first call SysGetTrapAddress to get the trap address
and then save this value somewhere. Next use
SysSetTrapAddress to set the trap address to point to your
function. Before your application exits, remove the patch by calling
SysSetTrapAddress and passing in the original trap address you
saved.

WARNING! If your application patches a system trap using this
function, you must remove the patch before your application
exits. Do not use this mechanism to permanently patch system
traps as it may cause unpredictable results for the system and
other applications.

Compatibility If 5.0 New Feature Set is present this function is unimplemented.

SysStringByIndex

Purpose Copy a string out of a string list resource by index. String list
resources are of type 'tSTL' and contain a list of strings and a
prefix string.

ResEdit always displays the items in the list as starting at 1, not 0.
Consider this when creating your string list.

Declared In SysUtils.h

Prototype Char *SysStringByIndex (UInt16 resID,
UInt16 index, Char *strP, UInt16 maxLen)

Parameters resID Resource ID of the string list.

index String to get out of the list.

strP Pointer to space to form the string.

System Manager
System Functions

992 Palm OS Programmer’s API Reference

maxLen Size of strP buffer.

Result Returns a pointer to the copied string. The string returned from this
call will be the prefix string appended with the designated index
string. Indices are 0-based; index 0 is the first string in the resource.

Compatibility Implemented only if 2.0 New Feature Set is present.

SysTaskDelay

Purpose Put the processor into doze mode for the specified number of ticks.

Declared In SystemMgr.h

Prototype Err SysTaskDelay (Int32 delay)

Parameters delay Number of ticks to wait (see
SysTicksPerSecond)

Result Returns 0 if no error.

See Also EvtGetEvent

SysTicksPerSecond

Purpose Return the number of ticks per second. This routine allows
applications to be tolerant of changes to the ticks per second rate in
the system.

Declared In SystemMgr.h

Prototype UInt16 SysTicksPerSecond (void)

Parameters None

Result Returns the number of ticks per second.

System Manager
System Functions

Palm OS Programmer’s API Reference 993

Compatibility Implemented only if 2.0 New Feature Set is present.

SysUIAppSwitch

Purpose Try to make the current UI application quit and then launch the UI
application specified by card number and database ID.

Declared In SystemMgr.h

Prototype Err SysUIAppSwitch (UInt16 cardNo, LocalID dbID,
UInt16 cmd, MemPtr cmdPBP)

System Manager
System Functions

994 Palm OS Programmer’s API Reference

Parameters -> cardNo Card number for the new application; currently
only card 0 is valid.

-> dbID ID of the new application’s resource database.

-> cmd Action code (launch code).

-> cmdPBP Action code (launch code) parameter block.

Result Returns 0 if no error.

May display a fatal error message if the cardNo parameter is
invalid. On debug ROMs, displays a fatal error message if there is
no currently running application.

Comments Do not use this function to open the system-supplied Application
Launcher application. If a third-party launch is installed, you’ll
likely want to launch that one instead. To do this, enqueue a
keyDownEvent that contains a launchChr, as shown in the section
“Application Launcher” of the user interface chapter in the Palm OS
Programmer’s Companion, vol. I. This will run whatever is run
whenever you tap on the Applications icon.

If you are passing a parameter block (the cmdPBP parameter), you
must set the owner of the parameter block chunk to the operating
system. To do this, and for more information, see
MemPtrSetOwner. If the parameter block structure contains
references by pointer or handle to any other chunks, you also must
set the owner of those chunks by using MemHandleSetOwner or
MemPtrSetOwner. If you set the owner of this parameter block
properly, the system maintains the parameter block and frees it
when the second application quits. If you don’t set the owner of the
parameter block, the system frees the parameter block as soon as the
calling application quits, causing unpredictable results.

See Also SysAppLaunch, Chapter 2, “Application Startup and Stop,” in the
Palm OS Programmer’s Companion, vol. I.

System Manager
Application-Defined Functions

Palm OS Programmer’s API Reference 995

Application-Defined Functions

PilotMain

Purpose The entry point for all Palm OS applications, this function’s sole
purpose is to receive and respond to launch codes.

Declared In SystemMgr.h

Prototype UInt32 PilotMain(UInt16 cmd, void *cmdPBP,
UInt16 launchFlags)

Parameters -> cmd The launch code to which your application is to
respond. See Chapter 1, “Application Launch
Codes,” on page 3 for a list of predefined
launch codes. You may create additional launch
codes; see “Creating Your Own Launch Codes”
on page 28 of the Palm OS Programmer’s
Companion, vol. I.

-> cmdPBP A pointer to a structure containing any launch-
command-specific parameters, or NULL if the
launch code has none. See the description of
each launch code for a description of the
parameter structure that accompanies it, if any.

-> launchFlags Flags that indicate whether your application’s
global variables are available, whether your
application is now the active application,
whether it already was the active application,
and so on. See “Launch Flags” on page 36 for a
list of launch flags.

Result Return errNone if your application processed the launch code
successfully, or an appropriate error code if there was a problem.
When another application invokes your application using
SysAppLaunch, this value is returned to the caller.

System Manager
Application-Defined Functions

996 Palm OS Programmer’s API Reference

Comments See Chapter 2, “Application Startup and Stop,” on page 19 of the
Palm OS Programmer’s Companion, vol. I for a discussion on how
applications receive and handle launch codes, with examples.

Palm OS Programmer’s API Reference 997

50
Text Manager
This chapter provides information about the text manager API
declared in TextMgr.h by discussing these topics:

• Text Manager Data Structures

• Text Manager Functions

For more information on the text manager, see the chapter
“Localized Applications” on page 363 in the Palm OS Programmer’s
Companion, vol. I.

Text Manager Data Structures

CharEncodingType
The CharEncodingType enum specifies possible character
encodings. The Character Encoding Constants define the possible
values for CharEncodingType variables.

UInt8 CharEncodingType;

A given device supports a single character encoding. The currently
available devices support either the Palm™ version of Windows
code page 1252 (an extension of ISO Latin 1) or the Palm version of
Windows code page 932 (an extension of Shift JIS). These encodings
are identical to their Windows counterparts with some additional
characters added in the control range.

Compatibility Prior to version 4.0, CharEncodingType was an enum that
defined only eight character encodings. The Palm OS® 4.0 definition
of CharEncodingType is compatible with the previous definition.

Text Manager
Text Manager Functions

998 Palm OS Programmer’s API Reference

Text Manager Functions

TxtByteAttr

Purpose Return the possible locations of a given byte within a multi-byte
character.

Declared In TextMgr.h

Prototype UInt8 TxtByteAttr (UInt8 inByte)

Parameters -> inByte A byte representing all or part of a valid
character.

Result Returns a byte with one or more of the following bits set:

Comments If inByte is valid in more than one location of a character, multiple
return bits are set. For example, 0x40 in the Shift JIS character
encoding is valid as a single-byte character and as the low-order
byte of a double-byte character. Thus, the return value for
TxtByteAttr(0x40) on a Shift JIS system has both the
byteAttrSingle and byteAttrLast bits set.

Text manager functions that need to determine the byte positioning
of a character use TxtByteAttr to do so. You rarely need to use
this function yourself.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueByteAttr. For
more information, see Chapter 75, “PalmOSGlue Library.”

byteAttrFirst First byte of multi-byte character.

byteAttrLast Last byte of multi-byte character.

byteAttrMiddle Middle byte of multi-byte character.

byteAttrSingle Single-byte character.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 999

TxtCaselessCompare

Purpose Perform a case-insensitive comparison of two text buffers.

Declared In TextMgr.h

Prototype Int16 TxtCaselessCompare (const Char* s1,
UInt16 s1Len, UInt16* s1MatchLen, const Char* s2,
UInt16 s2Len, UInt16* s2MatchLen)

Parameters -> s1 Pointer to the first text buffer to compare.

-> s1Len Length in bytes of the text pointed to by s1.

<- s1MatchLen Points to the offset of the first character in s1
that determines the sort order. Pass NULL for
this parameter if you don’t need to know this
number.

-> s2 Pointer to the second text buffer to compare.

-> s2Len Length in bytes of the text pointed to by s2.

<- s2MatchLen Points to the offset of the first character in s2
that determines the sort order. Pass NULL for
this parameter if you don’t need to know this
number.

Result Returns one of the following values:

Comments In certain character encodings (such as Shift JIS), one character may
be accurately represented as either a single-byte character or a
multi-byte character. TxtCaselessCompare accurately matches a
single-byte character with its multi-byte equivalent. For this reason,
the values returned in s1MatchLen and s2MatchLen are not
always equal.

< 0 If s1 occurs before s2 in alphabetical order.

> 0 If s1 occurs after s2 in alphabetical order.

0 If the two substrings that were compared are equal.

Text Manager
Text Manager Functions

1000 Palm OS Programmer’s API Reference

You must make sure that the parameters s1 and s2 point to a the
start of a valid character. That is, they must point to the first byte of
a multi-byte character or they must point to a single-byte character;
if they don’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
TxtGlueCaselessCompare. For more information, see Chapter
75, “PalmOSGlue Library.”

In Palm OS 4.0, the TxtCaselessCompare function terminates
when it finds a null byte in the string. In earlier releases, it
terminated only when it reached the ending byte specified by the
length parameters.

See Also StrCaselessCompare, TxtCompare, StrCompare

TxtCharAttr

Purpose Return a character’s attributes.

Declared In TextMgr.h

Prototype UInt16 TxtCharAttr (WChar inChar)

Parameters -> inChar Any valid character.

Result Returns a 16-bit unsigned value with any of the following bits set:

charAttrPrint Printable

charAttrSpace Blank space, tab, or newline

charAttrAlNum Alphanumeric

charAttrAlpha Alphabetic

charAttrCntrl Control character

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1001

Comments The character passed to this function must be a valid character
given the system encoding.

This function is used in the text manager’s character attribute
macros (TxtCharIsAlNum, TxtCharIsCntrl, and so on). The
macros perform operations analogous to the standard C functions
isPunct, isPrintable, and so on. Usually, you’d use one of
these macros instead of calling TxtCharAttr directly.

To obtain attributes specific to a given character encoding, use
TxtCharXAttr.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueCharAttr. For
more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharIsValid

TxtCharBounds

Purpose Return the boundaries of a character containing the byte at a
specified offset in a string.

Declared In TextMgr.h

Prototype WChar TxtCharBounds (const Char* inText,
UInt32 inOffset, UInt32* outStart, UInt32* outEnd)

Parameters -> inText Pointer to the text buffer to search.

-> inOffset A valid offset into the buffer inText. This
location may contain a byte in any position
(start, middle, or end) of a multi-byte character.

charAttrGraph Character that appears on the screen; that is,
is not whitespace, a control character, or a vir-
tual character.

charAttrDelim Word delimiter (whitespace or punctuation).

Text Manager
Text Manager Functions

1002 Palm OS Programmer’s API Reference

<- outStart Points to the starting offset of the character
containing the byte at inOffset.

<- outEnd Points to the ending offset of the character
containing the byte at inOffset.

Result Returns the character located between the offsets outStart and
outEnd.

Comments Use this function to determine the boundaries of a character in a
string or text buffer.

If the byte at inOffset is valid in more than one location of a
character, the function must search back toward the beginning of the
text buffer until it finds an unambiguous byte to determine the
appropriate boundaries. For this reason, TxtCharBounds is often
slow and should be used only where needed.

You must make sure that the parameter inText points to the
beginning of the string. That is, if the string begins with a multi-byte
character, inText must point to the first byte of that character; if it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueCharBounds.
For more information, see Chapter 75, “PalmOSGlue Library.”

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1003

TxtCharEncoding

Purpose Return the minimum encoding required to represent a character.

Declared In TextMgr.h

Prototype CharEncodingType TxtCharEncoding (WChar inChar)

Parameters -> inChar A valid character.

Result A CharEncodingType value that indicates the minimum encoding
required to represent inChar. If the character isn’t recognizable,
charEncodingUnknown is returned.

Comments The minimum encoding is the encoding that takes the lowest
number of bytes to represent the character. For example, if the
character is a blank or a tab character, the minimum encoding is
charEncodingAscii because these characters can be represented
in single-byte ASCII. If the character is a ü, the minimum encoding
is charEncodingISO8859_1.

Because Palm OS only supports a single character encoding at a
time, the result of this function is always logically equal to or less
than the encoding used on the current system. That is, you’ll only
receive a return value of charEncodingISO8859_1 if you’re
running on a US or European system and you pass a non-ASCII
character.

Use this function for informational purposes only. Your code should
not assume that the character encoding returned by this function is
the Palm OS system character encoding. (Instead use FtrGet as
shown in the TxtCharXAttr function description.)

Use TxtMaxEncoding to determine the order of encodings.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call

Text Manager
Text Manager Functions

1004 Palm OS Programmer’s API Reference

TxtGlueCharEncoding. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also TxtStrEncoding, TxtMaxEncoding

TxtCharIsAlNum

Purpose Macro that indicates if the character is alphanumeric.

Declared In TxtMgr.h

Prototype TxtCharIsAlNum (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a letter in an alphabet or a numeric
digit, false otherwise.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsAlNum. For more
information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharIsDigit, TxtCharIsAlpha

TxtCharIsAlpha

Purpose Macro that indicates if a character is a letter in an alphabet.

Declared In TxtMgr.h

Prototype TxtCharIsAlpha (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a letter in an alphabet, false
otherwise.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1005

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsAlpha. For more
information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharIsAlNum, TxtCharIsLower, TxtCharIsUpper

TxtCharIsCntrl

Purpose Macro that indicates if a character is a control character.

Declared In TxtMgr.h

Prototype TxtCharIsCntrl (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a non-printable character, such as
the bell character or a carriage return; false otherwise.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsCntrl. For more
information, see Chapter 75, “PalmOSGlue Library.”

TxtCharIsDelim

Purpose Macro that indicates if a character is a delimiter.

Declared In TxtMgr.h

Prototype TxtCharIsDelim (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a word delimiter (whitespace or
punctuation), false otherwise.

Text Manager
Text Manager Functions

1006 Palm OS Programmer’s API Reference

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsDelim. For more
information, see Chapter 75, “PalmOSGlue Library.”

TxtCharIsDigit

Purpose Macro that indicates if the character is a decimal digit.

Declared In TxtMgr.h

Prototype TxtCharIsDigit (ch)

Parameters -> ch A valid character.

Result Returns true if the character is 0 through 9, false otherwise.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsDigit. For more
information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharIsAlNum, TxtCharIsHex

TxtCharIsGraph

Purpose Macro that indicates if a character is a graphic character.

Declared In TxtMgr.h

Prototype TxtCharIsGraph (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a graphic character, false
otherwise.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1007

Comments A graphic character is any character visible on the screen, in other
words, letters, digits, and punctuation marks. A blank space is not a
graphic character because it is not visible.

This macro differs from TxtCharIsPrint in that it returns false
if the character is whitespace. TxtCharIsPrint returns true if
the character is whitespace.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsGraph. For more
information, see Chapter 75, “PalmOSGlue Library.”

TxtCharIsHardKey

Purpose Macro that returns true if the character is one of the hard keys on the
device.

Declared In TxtMgr.h

Prototype TxtCharIsHardKey (m, ch)

Parameters -> m The modifier keys from the keyDownEvent.

-> ch The character from the keyDownEvent.

Result true if the character is one of the built-in hard keys on the device,
false otherwise.

Compatibility Valid only if International Feature Set is present.

See Also ChrIsHardKey

Text Manager
Text Manager Functions

1008 Palm OS Programmer’s API Reference

TxtCharIsHex

Purpose Macro that indicates if a character is a hexadecimal digit.

Declared In TxtMgr.h

Prototype TxtCharIsHex (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a hexadecimal digit from 0 to F,
false otherwise.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsHex. For more
information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharIsDigit

TxtCharIsLower

Purpose Macro that indicates if a character is a lowercase letter.

Declared In TxtMgr.h

Prototype TxtCharIsLower (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a lowercase letter, false otherwise.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsLower. For more
information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharIsAlpha, TxtCharIsUpper

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1009

TxtCharIsPrint

Purpose Macro that indicates if a character is printable.

Declared In TxtMgr.h

Prototype TxtCharIsPrint (ch)

Parameters -> ch A valid character.

Result Returns true if the character is not a control character, false
otherwise.

Comments This macro differs from TxtCharIsGraph in that it returns true if
the character is whitespace. TxtCharIsGraph returns false if the
character is whitespace.

If you are using a debug ROM and you pass a virtual character to
this macro, a fatal alert is generated.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsPrint. For more
information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharIsValid

Text Manager
Text Manager Functions

1010 Palm OS Programmer’s API Reference

TxtCharIsPunct

Purpose Macro that indicates if a character is a punctuation mark.

Declared In TxtMgr.h

Prototype TxtCharIsPunct (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a punctuation mark, false
otherwise.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsPunct. For more
information, see Chapter 75, “PalmOSGlue Library.”

TxtCharIsSpace

Purpose Macro that indicates if a character is a whitespace character.

Declared In TxtMgr.h

Prototype TxtCharIsSpace (ch)

Parameters -> ch A valid character.

Result Returns true if the character is whitespace such as a blank space,
tab, or newline; false otherwise.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsSpace. For more
information, see Chapter 75, “PalmOSGlue Library.”

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1011

TxtCharIsUpper

Purpose Macro that indicates if a character is an uppercase letter.

Declared In TxtMgr.h

Prototype TxtCharIsUpper (ch)

Parameters -> ch A valid character.

Result Returns true if the character is an uppercase letter, false
otherwise.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueCharIsUpper. For more
information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharIsAlpha, TxtCharIsLower

TxtCharIsValid

Purpose Determine whether a character is valid character given the Palm OS
character encoding.

Declared In TextMgr.h

Prototype Boolean TxtCharIsValid (WChar inChar)

Parameters -> inChar A character.

Result Returns true if inChar is a valid character; false if inChar is not
a valid character.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,

Text Manager
Text Manager Functions

1012 Palm OS Programmer’s API Reference

link with the PalmOSGlue library and call TxtGlueCharIsValid.
For more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharAttr, TxtCharIsPrint

TxtCharSize

Purpose Return the number of bytes required to store the character in a
string.

Declared In TextMgr.h

Prototype UInt16 TxtCharSize (WChar inChar)

Parameters -> inChar A valid character.

Result The number of bytes required to store the character in a string.

Comments Although character variables are always two-byte long WChar
values, in some character encodings such as Shift-JIS, characters in
strings are represented by a mix of one or more bytes per character.
If the character can be represented by a single byte (its high-order
byte is 0), it is stored in a string as a single-byte character.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueCharSize. For
more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharBounds

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1013

TxtCharWidth

Purpose Return the width required to display the specified character in the
current font. If the specified character does not exist within the
current font, the missing character symbol is substituted.

Declared In TextMgr.h

Prototype Int16 TxtCharWidth (WChar inChar)

Parameters -> inChar A valid character.

Result Returns the width of the specified character (in pixels).

Comments Use FntWCharWidth or FntGlueWCharWidth instead of this
routine.

Compatibility Implemented only if International Feature Set is present.

TxtCharXAttr

Purpose Return the extended attribute bits for a character.

Declared In TextMgr.h

Prototype UInt16 TxtCharXAttr (WChar inChar)

Parameters -> inChar A valid character.

Result Returns an unsigned 16-bit value with one or more extended
attribute bits set. For specific return values, look in the header files
that are specific to certain character encodings (CharLatin.h or
CharShiftJIS.h).

Comments To interpret the results, you must know the character encoding
being used. Use FtrGet with sysFtrNumEncoding as the feature
number to determine the character encoding. This returns one of the
CharEncodingType values. For example:

Text Manager
Text Manager Functions

1014 Palm OS Programmer’s API Reference

WChar ch;
UInt16 attr;
UInt32 encoding;
...
attr = TxtCharXAttr(ch);
if (FtrGet(sysFtrCreator, sysFtrNumEncoding,
 &encoding) != errNone)
 encoding = charEncodingPalmLatin;
if (encoding == charEncodingUTF8) {
}

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueCharXAttr.
For more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharAttr

TxtCompare

Purpose Performs a case-sensitive comparison of all or part of two text
buffers.

Declared In TextMgr.h

Prototype Int16 TxtCompare (const Char* s1, UInt16 s1Len,
UInt16* s1MatchLen, const Char* s2, UInt16 s2Len,
UInt16* s2MatchLen)

Parameters -> s1 Pointer to the first text buffer to compare.

-> s1Len The length in bytes of the text pointed to by s1.

<- s1MatchLen Points to the offset of the first character in s1
that determines the sort order. Pass NULL for
this parameter if you don’t need to know this
number.

-> s2 Pointer to the second text buffer to compare.

-> s2Len The length in bytes of the text pointed to by s2.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1015

<- s2MatchLen Points to the offset of the first character in s2
that determines the sort order. Pass NULL for
this parameter if you don’t need to know this
number.

Result Returns one of the following values:

Comments This function performs a case-sensitive comparison. If you want to
perform a case-insensitive comparison, use
TxtCaselessCompare.

The s1MatchLen and s2MatchLen parameters are not as useful
for the TxtCompare function as they are for the
TxtCaselessCompare function because TxtCompare
implements a multi-pass sort algorithm. (See the Compatibility
section below for further details.) For example, comparing the string
“celery” with the string “Cauliflower” returns a positive value to
indicate that “celery” sorts after “Cauliflower,” and it returns a
match length of 1 to indicate that the second letter determines the
sort order (“e” comes after “a”). However, because TxtCompare
ultimately does a case-sensitive comparison, comparing the string
“c” to the string “C” produces a negative result and a match length
of 0.

In certain character encodings (such as Shift JIS), one character may
be accurately represented as either a single-byte character or a
multi-byte character. TxtCompare accurately matches a single-byte
character with its multi-byte equivalent. For this reason, the values
returned in s1MatchLen and s2MatchLen are not always equal.

You must make sure that the parameters s1 and s2 point to the start
of a a valid character. That is, they must point to the first byte of a
multi-byte character or they must point to a single-byte character; if
they don’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,

< 0 If s1 occurs before s2 in alphabetical order.

> 0 If s1 occurs after s2 in alphabetical order.

0 If the two substrings that were compared are equal.

Text Manager
Text Manager Functions

1016 Palm OS Programmer’s API Reference

link with the PalmOSGlue library and call TxtGlueCompare. For
more information, see Chapter 75, “PalmOSGlue Library.”

Prior to Palm OS 4.0, TxtCompare and StrCompare only
performed one level of comparison and returned as soon as they
found two unequal characters. For example, if you compared the
string “celery” with the string “Cauliflower,” both functions
returned a value indicating that “celery” should appear before
“Cauliflower” because they sorted “c” before “C.”

In Palm OS 4.0, StrCompare calls TxtCompare, and TxtCompare
performs a comparison using up to six comparison tables for sorting
with increasing precision. As a result, in Palm OS 4.0 and higher,
TxtCompare sorts “Cauliflower” before “celery.” The
TxtGlueCompare function uses a two-pass sort on pre-4.0 devices,
which will also sort “Cauliflower” before “celery.”

Palm OS 4.0 sorting of Shift-JIS characters attempts to duplicate the
sorting algorithm described by the JIS standard.

In Palm OS 4.0, the TxtCompare function terminates when it finds
a null byte in the string. In earlier releases, it terminated only when
it reached the ending byte specified by the length parameters.

See Also StrCompare, TxtFindString

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1017

TxtConvertEncoding

Purpose Convert a text buffer from one character encoding to another.

Declared In TextMgr.h

Prototype Err TxtConvertEncoding (Boolean newConversion,
TxtConvertStateType *ioStateP,
const Char *srcTextP, UInt16 *ioSrcBytes,
CharEncodingType srcEncoding, Char *dstTextP,
UInt16 *ioDstBytes, CharEncodingType dstEncoding,
const Char *substitutionStr,
UInt16 substitutionLen)

Parameters -> newConversion
true if this function call is starting a new
conversion, or false if this function call is a
continuation of a previous conversion.

<-> ioStateP If newConversion is false, this parameter
must point to the same data used for the
previous invocation. If newConversion is
true and no subsequent calls are planned, this
parameter can be NULL.

-> srcTextP A pointer to a text buffer. If newConversion is
true, this must point to the start of a text
buffer. If newConversion is false, it may
point to a location in the middle of a text buffer.
In either case, it must point to an inter-character
boundary.

<-> ioSrcBytes A pointer to the length in bytes of the text in
srcTextP that needs to be converted. Upon
return, contains the number of bytes
successfully processed.

-> srcEncoding The character encoding that srcTextP
currently uses. This should be one of the
Character Encoding Constants.

Text Manager
Text Manager Functions

1018 Palm OS Programmer’s API Reference

<- dstTextP A pointer to the destination text buffer or NULL.
This should always point to the location where
TxtConvertEncoding can begin writing.

<-> ioDstBytes A pointer to the length in bytes of dstTextP.
Upon return, contains the number of bytes
required to represent srcTextP in the new
encoding.

-> dstEncoding The character encoding to which to convert
srcTextP. This should be one of the Character
Encoding Constants.

-> substitutionStr
A string that should be used to substitute any
invalid or inconvertible characters that occur in
srcTextP. This string must already be in the
destination encoding. If NULL, the function
immediately returns when an invalid character
is encountered.

-> substitutionLen
The number of bytes in substitutionStr,
not including the terminating null byte.

Result Returns errNone upon success or one of the following if an error
occurs:

txtErrConvertOverflow
The destination buffer is not large enough to
contain the converted text.

txtErrConvertUnderflow
The end of the source buffer contains a partial
character.

txtErrNoCharMapping
The device does not contain a mapping
between the source and destination encodings
for at least one of the characters in srcTextP.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1019

txtErrUnknownEncoding
One of the specified encodings is not valid.
Currently, both the source and destination
encodings must match either the device’s
encoding or one of the Unicode character
encodings.

Comments This function converts ioSrcBytes of text in srcTextP from the
srcEncoding to the dstEncoding character encoding and
returns the result in dstTextP.

Currently, the focus of TxtConvertEncoding is to convert
between Unicode-encoded text and the device’s character encoding.
For this reason, TxtConvertEncoding can only handle
conversions between the device’s encoding and one of UTF-8, UCS-
2, UTF-16LE, or UTF-16BE. If you specify any other character
encoding for either the source or the destination buffer, the error
code txtErrUnknownEncoding is returned.

You can retrieve the device’s encoding using the following function:

FtrGet(sysFtrCreator, sysFtrNumEncoding,
 &encoding)

If you’re converting text that was received from the Internet, the
encoding’s name is passed along with the text data. Use the
TxtNameToEncoding function to convert the name to a
CharEncodingType value.

The dstTextP buffer must be large enough to hold the result of
converting srcTextP to the specified encoding. You can pass NULL
for the dstTextP parameter to determine the required length of the
buffer before actually doing the conversion. (The required length is
returned in ioDstBytes.)

If the function encounters an inconvertible character in the source
text, it puts substitutionStr in the destination buffer in that
character’s place and continues the conversion. When the
conversion is complete, it returns txtErrNoCharMapping to
indicate that an error occurred. If substitutionStr is NULL, the
function stops the conversion and immediately returns
txtErrNoCharMapping. ioSrcBytes is set to the offset of the
inconvertible character, dstTextP contains the converted string up

Text Manager
Text Manager Functions

1020 Palm OS Programmer’s API Reference

to that point, and ioDstBytes contains the size of the converted
text. You can examine the character at ioSrcBytes and choose to
move past it and continue the conversion. Follow the rules for
making repeated calls to TxtConvertEncoding as described in
the next paragraph.

You can make repeated calls to TxtConvertEncoding in a loop if
you only want to convert part of the input buffer at a time. When
you make repeated calls to this function, the first call should use
true for newConversion, and srcTextP should point to the start
of the text buffer. All subsequent calls should use the following
values:

newConversion false.

ioStateP The same data that was returned by the
previous invocation.

srcTextP The location where this call should begin
converting. Typically, this would be the
previous srcTextP plus the number of bytes
returned in ioSrcBytes.

If you are skipping over an inconvertible
character, srcTextP must point to the
character after that location.

<-> ioSrcBytes The number of bytes that this function call
should convert.

dstTextP A pointer to a location where this function can
begin writing the converted string. You might
choose to have each function call write to a
different destination buffer. To have successive
calls write to the same buffer, pass the previous
dstTextP plus the number of bytes returned
in ioDstBytes each time.

ioDstBytes The number of bytes available for output in the
dstTextP buffer. In other words, the number
of bytes remaining.

Compatibility Implemented only if 4.0 New Feature Set is present.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1021

TxtEncodingName

Purpose Obtain a character encoding’s name.

Declared In TextMgr.h

Prototype const Char* TxtEncodingName
(CharEncodingType inEncoding)

Parameters -> inEncoding One of the values from CharEncodingType,
indicating a character encoding.

Result A constant string containing the name of the encoding. The possible
return values are defined in PalmLocale.h. They are:

Comments Use this function to obtain the official name of the character
encoding, suitable to pass to an Internet application or any other
application that requires the character encoding’s name to be passed
along with the data.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
TxtGlueEncodingName. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also TxtNameToEncoding

encodingNameAscii us ascii

encodingNameISO8859_1 ISO-8859-1

encodingNameCP1252 ISO-8859-1-Windows-3.1-Latin-1

encodingNameShiftJIS Shift_JIS

encodingNameCP932 Windows-31J

encodingNameUTF8 UTF-8

"" The encoding is not known

Text Manager
Text Manager Functions

1022 Palm OS Programmer’s API Reference

TxtFindString

Purpose Perform a case-insensitive search for a string in another string.

Declared In TextMgr.h

Prototype Boolean TxtFindString (const Char* inSourceStr,
const Char* inTargetStr, UInt32* outPos,
UInt16* outLength)

Parameters -> inSourceStr Pointer to the string to be searched.

-> inTargetStr Prepared version of the string to be found. This
string should either be passed directly from the
strToFind field in the
sysAppLaunchCmdFind launch code’s
parameter block or it should be prepared using
the PalmOSGlue function
TxtGluePrepFindString.

<- outPos Pointer to the offset of the match in
inSourceStr.

<- outLength Pointer to the length in bytes of the matching
text.

Result Returns true if the function finds inTargetStr within
inSourceStr; false otherwise.

If found, the values pointed to by the outPos and outLength
parameters are set to the starting offset and the length of the
matching text. If not found, the values pointed to by outPos and
outLength are set to 0.

The search that TxtFindString performs is locale-dependent. On
most ROMs with Latin-based encodings, TxtFindString returns
true only if the string is at the beginning of a word. On Shift-JIS
encoded ROMs, TxtFindString returns true if the string is
located anywhere in the word.

Comments Use this function instead of FindStrInStr to support the global
system find facility. This function contains an extra parameter,

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1023

outLength, to specify the length of the text that matched. Pass this
value to FindSaveMatch in the appCustom parameter. Then
when your application receives sysAppLaunchCmdGoTo, the
matchCustom field contains the length of the matching text. You
use the length of matching text to highlight the match within the
selected record.

You must make sure that the parameters inSourceStr and
inTargetStr point to the start of a valid character. That is, they
must point to the first byte of a multi-byte character, or they must
point to a single-byte character; if they don’t, results are
unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueFindString.
For more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCaselessCompare

TxtGetChar

Purpose Retrieve the character starting at the specified offset within a text
buffer.

Declared In TextMgr.h

Prototype WChar TxtGetChar (const Char* inText,
UInt32 inOffset)

Parameters -> inText Pointer to the text buffer to be searched.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

Result Returns the character at inOffset in inText.

Comments You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-

Text Manager
Text Manager Functions

1024 Palm OS Programmer’s API Reference

byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueGetChar. For
more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtGetNextChar, TxtSetNextChar

TxtGetNextChar

Purpose Retrieve the character starting at the specified offset within a text
buffer.

Declared In TextMgr.h

Prototype UInt16 TxtGetNextChar (const Char* inText,
UInt32 inOffset, WChar* outChar)

Parameters -> inText Pointer to the text buffer to be searched.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

<- outChar The character at inOffset in inText. Pass
NULL for this parameter if you don’t need the
character returned.

Result Returns the size in bytes of the character at inOffset. If outChar
is not NULL upon entry, it points to the character at inOffset upon
return.

Comments You can use this function to iterate through a text buffer character-
by-character in this way:

UInt16 i = 0;
WChar ch;
while (i < bufferLength) {

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1025

 i += TxtGetNextChar(buffer, i, &ch);
 //do something with ch.
}

You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueGetNextChar.
For more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtGetChar, TxtGetPreviousChar, TxtSetNextChar

TxtGetPreviousChar

Purpose Retrieve the character before the specified offset within a text buffer.

Declared In TextMgr.h

Prototype UInt16 TxtGetPreviousChar (const Char* inText,
UInt32 inOffset, WChar* outChar)

Parameters -> inText Pointer to the text buffer to be searched.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

<- outChar The character immediately preceding
inOffset in inText. Pass NULL for this
parameter if you don’t need the character
returned.

Result Returns the size in bytes of the character preceding inOffset in
inText. If outChar is not NULL upon entry, then it points to the
character preceding inOffset upon return. Returns 0 if inOffset
is at the start of the buffer (that is, inOffset is 0).

Text Manager
Text Manager Functions

1026 Palm OS Programmer’s API Reference

Comments You can use this function to iterate through a text buffer character-
by-character in this way:

WChar ch;
/* Find the start of the character containing
the last byte. */
TxtCharBounds (buffer, bufferLength - 1,
&start, &end);
i = start;
while (i > 0) {
 i -= TxtGetPreviousChar(buffer, i, &ch);
 //do something with ch.
}

This function is often slower to use than TxtGetNextChar because
it must determine the appropriate character boundaries if the byte
immediately before the offset is valid in more than one location
(start, middle, or end) of a multi-byte character. To do this, it must
work backwards toward the beginning of the string until it finds an
unambiguous byte.

You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
TxtGlueGetPreviousChar. For more information, see Chapter
75, “PalmOSGlue Library.”

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1027

TxtGetTruncationOffset

Purpose Return the appropriate byte position for truncating a text buffer
such that it is at most a specified number of bytes long.

Declared In TextMgr.h

Prototype UInt32 TxtGetTruncationOffset (const Char* inText,
UInt32 inOffset)

Parameters -> inText Pointer to a text buffer.

-> inOffset An offset into the buffer inText.

Result Returns the appropriate byte offset for truncating inText at a valid
inter-character boundary. The return value may be less than or equal
to inOffset.

Comments You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
TxtGlueGetTruncationOffset. For more information, see
Chapter 75, “PalmOSGlue Library.”

TxtGetWordWrapOffset

Purpose Locate an appropriate place for a line break in a text buffer.

Declared In TextMgr.h

Prototype UInt32 TxtGetWordWrapOffset (const Char *iTextP,
UInt32 iOffset)

Parameters -> iTextP Pointer to a text buffer.

Text Manager
Text Manager Functions

1028 Palm OS Programmer’s API Reference

-> iOffset Pointer to the offset where the search should
begin. The search is performed backward
starting from this offset.

Result Returns the offset of a character that can begin on a new line
(typically, the beginning of the word that contains iOffset or last
word before iOffset). If an appropriate break could not be found,
returns iOffset.

Comments The FntWordWrap and FntWordWrapReverseNLines functions
call TxtGetWordWrapOffset to locate an appropriate place to
break the text. The returned offset points to the character that
should begin the next line.

This function starts at iOffset and works backward until it finds a
character that typically occurs between words (for example, white
space or punctuation). Then it moves forward until it locates the
character that begins a word (typically, a letter or number). Note
that this function may return an offset value that is greater than the
one passed in if the offset passed in occurs immediately before
white space or in the middle of white space.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TxtWordBounds

TxtMaxEncoding

Purpose Return the higher of two encodings.

Declared In TextMgr.h

Prototype CharEncodingType TxtMaxEncoding
(CharEncodingType a, CharEncodingType b)

Parameters -> a A character encoding to compare.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1029

-> b Another character encoding to compare.

Result Returns the higher of a or b. One character encoding is higher than
another if it is more specific. For example code page 1252 is “higher”
than ISO 8859-1 because it represents more characters than ISO
8859-1.

Comments This function is used by TxtStrEncoding to determine the
encoding required for a string.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueMaxEncoding.
For more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharEncoding, CharEncodingType

TxtNameToEncoding

Purpose Return an encoding’s constant given its name.

Declared In TextMgr.h

Prototype CharEncodingType TxtNameToEncoding
(const Char *iEncodingName)

Parameters -> iEncodingName
One of the string constants containing the
official name of an encoding. See
TxtEncodingName for a list.

Result Returns one of the Character Encoding Constants. Returns
charEncodingUnknown if the specified encoding could not be
found.

Comments Use this function to convert a character encoding’s name as received
from an Internet application into the character encoding constant
that some text manager functions require.

Text Manager
Text Manager Functions

1030 Palm OS Programmer’s API Reference

This function properly converts aliases for a character encoding. For
example, passing the strings “us-ascii”, “ASCII”, “cp367”, and
“IBM367” all return charEncodingAscii.

The known character encodings are device-dependent. For example,
a device with the Shift-JIS encoding will not know all of the aliases
for Latin character encodings; however, it will know all of the
aliases for Shift-JIS.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TxtEncodingName

TxtNextCharSize

Purpose Macro that returns the size of the character starting at the specified
offset within a text buffer.

Declared In TxtMgr.h

Prototype TxtNextCharSize (inText, inOffset)

Parameters -> inText Pointer to the text buffer to be searched.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

Result Returns (as a UInt16) the size in bytes of the character at
inOffset.

Comments You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1031

the PalmOSGlue library and call TxtGlueNextCharSize. For
more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtGetNextChar

TxtParamString

Purpose Replace substrings within a string with the specified values.

Declared In TextMgr.h

Prototype Char* TxtParamString (const Char* inTemplate,
const Char* param0, const Char* param1,
const Char* param2, const Char* param3)

Parameters -> inTemplate The string containing the substrings to replace.

-> param0 String to replace ^0 with or NULL.

-> param1 String to replace ^1 with or NULL.

-> param2 String to replace ^2 with or NULL.

-> param3 String to replace ^3 with or NULL.

Result Returns a pointer to a locked relocatable chunk in the dynamic heap
that contains the appropriate substitutions.

Comments This function searches inTemplate for occurrences of the
sequences ^0, ^1, ^2, and ^3. When it finds these, it replaces them
with the corresponding string passed to this function. Multiple
instances of each sequence will be replaced.

The replacement strings can also contain the substitution strings,
provided they refer to a later parameter. That is, the param0 string
contain have references to ^1, ^2, and ^3, the param1 string can
have references to ^2 and ^3, and the param2 string can have
references to ^3. Any other occurrences of the substitution strings in
the replacement strings are ignored. For example, if param3 is the
string “^0”, any occurrences of ^3 in inTemplate are replaced
with the string “^0”.

Text Manager
Text Manager Functions

1032 Palm OS Programmer’s API Reference

You must make sure that the parameter inTemplate points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

TxtParamString allocates space for the returned string in the
dynamic heap through a call to MemHandleNew, and then returns
the result of calling MemHandleLock with this handle. Your code is
responsible for freeing this memory when it is no longer needed.

Compatibility Implemented if 3.5 New Feature Set is present. To use this function
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGlueParamString. For more
information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtReplaceStr, FrmCustomAlert

TxtPreviousCharSize

Purpose Macro that returns the size of the character before the specified
offset within a text buffer.

Declared In TxtMgr.h

Prototype TxtPreviousCharSize (inText, inOffset)

Parameters -> inText Pointer to the text buffer.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

Result Returns (as a UInt16) the size in bytes of the character preceding
inOffset in inText. Returns 0 if inOffset is at the start of the
buffer (that is, inOffset is 0).

Comments You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1033

This macro is often slower to use than TxtNextCharSize because
it must determine the appropriate character boundaries if the byte
immediately before the offset is valid in more than one location
(start, middle, or end) of a multi-byte character. To do this, it must
work backwards toward the beginning of the string until it finds an
unambiguous byte.

Compatibility Valid only if International Feature Set is present. To use this macro
in code intended to be run on earlier versions of Palm OS, link with
the PalmOSGlue library and call TxtGluePreviousCharSize.
For more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtGetPreviousChar

TxtReplaceStr

Purpose Replace a substring of a given format with another string.

Declared In TextMgr.h

Prototype UInt16 TxtReplaceStr (Char* ioStr,
UInt16 inMaxLen, const Char* inParamStr,
UInt16 inParamNum)

Parameters <-> ioStr The string in which to perform the replacing.

-> inMaxLen The maximum length in bytes that ioStr can
become.

-> inParamStr The string that ^inParamNum should be
replaced with. If NULL, no changes are made.

-> inParamNum A single-digit number (0 to 9).

Result Returns the number of occurrences found and replaced.

Returns a fatal error message if inParamNum is greater than 9.

Comments This function searches ioStr for occurrences of the string
^inParamNum, where inParamNum is any digit from 0 to 9. When it
finds the string, it replaces it with inParamStr. Multiple instances

Text Manager
Text Manager Functions

1034 Palm OS Programmer’s API Reference

will be replaced as long as the resulting string doesn’t contain more
than inMaxLen bytes, not counting the terminating null.

You can set the inParamStr parameter to NULL to determine the
required length of ioStr before actually doing the replacing.
TxtReplaceStr returns the number of occurrences it finds of
^inParamNum. Multiply this value by the length of the
inParamStr you intend to use to determine the appropriate length
of ioStr.

You must make sure that the parameter ioStr points to the start of
a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueReplaceStr.
For more information, see Chapter 75, “PalmOSGlue Library.”

TxtSetNextChar

Purpose Set a character within a text buffer.

Declared In TextMgr.h

Prototype UInt16 TxtSetNextChar (Char* ioText,
UInt32 inOffset, WChar inChar)

Parameters <-> ioText Pointer to a text buffer.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

-> inChar The character to replace the character at
inOffset with. Must not be a virtual
character.

Result Returns the size of inChar.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1035

Comments This function replaces the character in ioText at the location
inOffset with the character inChar. Note that there must be
enough space at inOffset to write the character.

You can use TxtCharSize to determine the size of inChar.

You must make sure that the parameter ioText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueSetNextChar.
For more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtGetNextChar

TxtStrEncoding

Purpose Return the encoding required to represent a string.

Declared In TextMgr.h

Prototype CharEncodingType TxtStrEncoding
(const Char* inStr)

Parameters -> inStr A string.

Result A CharEncodingType value that indicates the encoding required
to represent inChar. If any character in the string isn’t recognizable,
then charEncodingUnknown is returned.

Comments The encoding for the string is the maximum encoding of any
character in that string. For example, if a two-character string
contains a blank space and a ü, the appropriate encoding is
charEncodingISO8859_1. The blank space’s minimum encoding
is ASCII. The minimum encoding for the ü is ISO 8859-1. The
maximum of these two encodings is ISO 8859-1.

Text Manager
Text Manager Functions

1036 Palm OS Programmer’s API Reference

Because Palm OS only supports a single character encoding at a
time, the results of this function is always logically equal to or less
than the encoding used on the current system. That is, you’ll only
receive a return value of charEncodingISO8859_1 if you’re
running on a Latin-based system.

Use this function for informational purposes only. Your code should
not assume that the character encoding returned by this function is
the Palm OS system’s character encoding. (Instead use FtrGet as
shown in the TxtCharXAttr function description.)

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueStrEncoding.
For more information, see Chapter 75, “PalmOSGlue Library.”

See Also TxtCharEncoding, TxtMaxEncoding

TxtTransliterate

Purpose Converts the specified number of bytes in a text buffer using the
specified operation.

Declared In TextMgr.h

Prototype Err TxtTransliterate (const Char* inSrcText,
UInt16 inSrcLength, Char* outDstText,
UInt16* ioDstLength, TranslitOpType inOp)

Parameters -> inSrcText Pointer to a text buffer.

-> inSrcLength The length in bytes of inSrcText.

<- outDstText The output buffer containing the converted
characters.

<->ioDstLength Upon entry, the maximum length of
outDstText. Upon return, the actual length of
outDstText.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1037

-> inOp A 16-bit unsigned value that specifies which
transliteration operation is to be performed.
The values possible for this field are specific to
the character encoding used on a particular
device. These operations are universally
available:

translitOpUpperCase
Converts the character to uppercase
letters.

translitOpLowerCase
Converts the characters to lowercase
letters.

translitOpPreprocess
Don’t actually perform the operation.
Instead, return in ioDstLength the
amount of space required for the output
text.

Result Returns one of the following values:

errNone Success

txtErrUknownTranslitOp
inOp’s value is not recognized

txtErrTranslitOverrun
inSrcText and outDstText point to the
same memory location and the operation has
caused the function to overwrite unprocessed
data in the input buffer.

txtErrTranslitOverflow
outDstText is not large enough to contain the
converted string.

txtErrTranslitUnderflow
The end of the source buffer contains a partial
character.

Comments inSrcText and outDstText may point to the same location if
you want to perform the operation in place. However, you should

Text Manager
Text Manager Functions

1038 Palm OS Programmer’s API Reference

be careful that the space required for outDstText is not larger than
inSrcText so that you don’t generate a
txtErrTranslitOverrun error.

For example, suppose on a Shift JIS encoded system, you want to
convert a series of single-byte Japanese Katakana symbols to
double-byte Katakana symbols. You cannot perform this operation
in place because it replaces a single-byte character with a multi-byte
character. When the first converted character is written to the buffer,
it overwrites the second input character. Thus, a text overrun has
occurred.

You can ensure that you have enough space for the output by OR-
ing your chosen operation with translitOpPreprocess. For
example, to convert a string to uppercase letters, do the following:

outSize = buf2Len;
error = TxtTransliterate(buf1, buf1len, &buf2,
&outSize,
translitOpUpperCase|translitOpPreprocess);
if (outSize > buf2len)
 /* allocate more memory for buf2 */
error = TxtTransliterate(buf1, buf1Len, &buf2,
&outSize, translitOpUpperCase);

You must make sure that the parameter inSrcText points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
TxtGlueTransliterate. For more information, see Chapter 75,
“PalmOSGlue Library.”

In Palm OS 4.0, the TxtTransliterate function terminates when
it finds a null byte in the source string. In earlier releases, it
terminated only when it reached the ending byte specified by the
length parameter.

Text Manager
Text Manager Functions

Palm OS Programmer’s API Reference 1039

TxtWordBounds

Purpose Find the boundaries of a word of text that contains the character
starting at the specified offset.

Declared In TextMgr.h

Prototype Boolean TxtWordBounds (const Char* inText,
UInt32 inLength, UInt32 inOffset,
UInt32* outStart, UInt32* outEnd)

Parameters -> inText Pointer to a text buffer.

-> inLength The length in bytes of the text pointed to by
inText.

-> inOffset A valid offset into the text buffer inText. This
offset must point to the beginning of a
character.

<- outStart The starting offset of the text word.

<- outEnd The ending offset of the text word.

Result Returns true if a word is found. Returns false if the word doesn’t
exist or is punctuation or whitespace.

Comments Assuming the ASCII encoding, if the text buffer contains the string
“Hi! How are you?” and you pass 5 as the offset, TxtWordBounds
returns the start and end of the word containing the character at
offset 5, which is the character “o”. Thus, outStart and outEnd
would point to the start and end of the word “How”.

You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call TxtGlueWordBounds.
For more information, see Chapter 75, “PalmOSGlue Library.”

Text Manager
Text Manager Functions

1040 Palm OS Programmer’s API Reference

In Palm OS 4.0, the TxtWordBounds function terminates when it
finds a null byte in the string. In earlier releases, it terminated only
when it reached the ending byte specified by the length parameter.

See Also TxtCharBounds, TxtCharIsDelim, TxtGetWordWrapOffset

Palm OS Programmer’s API Reference 1041

51
Text Services
Manager
This chapter provides information about the Text Services Manager
API as declared in TextServicesMgr.h. The Text Services
Manager provides the caller with an API for interacting with
various text services, including front-end processors (FEPs), which
are sometimes known as input methods. This chapter discusses the
following topics:

• Text Services Manager Data Structures

• Text Services Manager Functions

Text Services Manager Data Structures

TsmFepModeType
The TsmFepModeType type specifies the input modes used by the
functions TsmGetFepMode and TsmSetFepMode.

typedef UInt16 TsmFepModeType;

TsmFepModeType can be set to one of the defined modes listed in
the following table.

Constant Value Description

tsmFepModeDefault 0 The default input mode for the FEP. For
example, with the Japanese FEP, the default
mode is Hiragana.

Text Services Manager
Text Services Manager Functions

1042 Palm OS Programmer’s API Reference

Text Services Manager Functions

TsmGetFepMode

Purpose Return the current input mode for the active front-end processor
(FEP).

Declared In TextServicesMgr.h

Prototype TsmFepModeType TsmGetFepMode (void *nullParam)

Parameters -> nullParam An unused status pointer that must be set to
NULL.

Result If there is an active FEP, returns the current mode for the active FEP.
If there is no active FEP, returns tsmFepModeOff.

Comments The most common use for this function is to save the current FEP
mode. You could then call TsmSetFepMode to set the current mode
to “off” and again to restore the saved mode once the application
has finished using a special text field.

Compatibility Implemented only if 3.5 New Feature Set is present. In Palm OS 3.5,
the nullParam parameter takes a non-NULL value, allowing the
caller to maintain its own status record. In Palm OS 4.0, this

tsmFepModeOff 1 Indicates that there is no active FEP input
mode (the FEP is off).

tsmFepModeCustom 128 A custom FEP input mode. You can have more
than one custom mode; the starting value is
128. Katagana is an example of a custom input
mode for the Japanese FEP.

Constant Value Description

Text Services Manager
Text Services Manager Functions

Palm OS Programmer’s API Reference 1043

parameter is unused and must be set to NULL. Any other value
generates a non-fatal alert.

See Also TsmSetFepMode

TsmSetFepMode

Purpose Set the input mode for the active front-end processor (FEP) to be the
mode defined by the parameter inNewMode.

Declared In TextServicesMgr.h

Prototype TsmFepModeType TsmSetFepMode (void *nullParam,
TsmFepModeType inNewMode)

Parameters -> nullParam An unused status pointer that must be set to
NULL.

-> inNewMode The new FEP input mode.

Result Returns the previous input mode. If there is no active FEP, returns
tsmFepModeOff.

Comments The most common use for this function is to set the FEP mode to
“off” while the application is using a special text field, and then to
restore the previous mode. See TsmGetFepMode for more
information on saving and restoring the FEP mode.

One common reason for explicitly disabling the FEP in code is when
a text field will only contain 7-bit ASCII (numeric fields
automatically turn off the FEP). For example, if the application has a
password field and the contents of that field will always be 7-bit
ASCII, the application should turn off the FEP to help prevent the
user from entering invalid characters into the field.

Another common case occurs when the application has a numeric
field, but cannot just rely on the numeric field attribute. For
example, if you want the user to be able to enter the minus (“-”)
sign, you cannot use a numeric field because the field code prevents
the user from entering this character: its not a digit or a period. In
this case, you should make it a regular field and have the

Text Services Manager
Text Services Manager Functions

1044 Palm OS Programmer’s API Reference

application screen the characters. The application should disable the
FEP when such a pseudo-numeric field is active.

IMPORTANT: A mode change is currently enqueued as a
keyDown event so that the field and FEP can remain properly
synchronized and so that the mode change doesn’t affect any
pending keyDown events. The mode change does not happen
until the enqueued keyDown event is passed to
FrmHandleEvent; if you call TsmGetFepMode immediately after
calling TsmSetFepMode, you won’t see a mode change.

There are also some current limitations with changing the mode:
there must be an active form; and if there is an active field in the
form, it must not be a numeric field.

Compatibility Implemented only if 3.5 New Feature Set is present. In Palm OS 3.5,
the nullParam parameter takes a non-NULL value, allowing the
caller to maintain its own status record. In Palm OS 4.0, this
parameter is unused and must be set to NULL. Any other value
generates a non-fatal alert.

See Also TsmGetFepMode, EvtEnqueueKey, FrmHandleEvent

Palm OS Programmer’s API Reference 1045

52
Time Manager
This chapter provides reference material for the time manager.

• Time Manager Data Structures

• Time Manager Functions

The header file DateTime.h declares the API that this chapter
describes. For more information on the time manager, see the
section “Time” in the Palm OS Programmer’s Companion, vol. I.

Time Manager Data Structures
The time manager uses these structures to store information.

DateFormatType
The DateFormatType enum specifies the different display formats
for date values.

typedef enum {
 dfMDYWithSlashes,
 dfDMYWithSlashes,
 dfDMYWithDots,
 dfDMYWithDashes,
 dfYMDWithSlashes,
 dfYMDWithDots,
 dfYMDWithDashes,
 dfMDYLongWithComma,
 dfDMYLong,
 dfDMYLongWithDot,
 dfDMYLongNoDay,
 dfDMYLongWithComma,
 dfYMDLongWithDot,
 dfYMDLongWithSpace,
 dfMYMed,
 dfMYMedNoPost,

Time Manager
Time Manager Data Structures

1046 Palm OS Programmer’s API Reference

 dfMDYWithDashes
} DateFormatType;

Value Descriptions

dfMDYWithSlashes The month, day, and year numbers
separated by slashes. For example,
12/31/95.

This is considered a short format.

dfDMYWithSlashes The day, month, and year numbers
separated by slashes. For example,
31/12/95.

This is considered a short format.

dfDMYWithDots The day, month, and year numbers
separated by dots. For example,
31.12.95.

This is considered a short format.

dfDMYWithDashes The day, month, and year numbers
separated by dashes. For example,
31-12-95.

This is considered a short format.

dfYMDWithSlashes The year, month, and day numbers
separated by slashes. For example,
95/12/31.

This is considered a short format.

dfYMDWithDots The year, month, and day numbers
separated by dots. For example,
95.12.31.

This is considered a short format.

Time Manager
Time Manager Data Structures

Palm OS Programmer’s API Reference 1047

dfYMDWithDashes The year, month, and day numbers
separated by dashes. For example,
95-12-31.

This is considered a short format.

dfMDYLongWithComma The month, day, and year in long
format, with a comma. For example,
Dec 31, 1995.

This is considered a long format.

dfDMYLong The month, day, and year in long
format. For example, 31 Dec 1995.

This is considered a long format.

dfDMYLongWithDot The month, day, and year in long
format, with a dot. For example,
31. Dec 1995.

This is considered a long format.

dfDMYLongNoDay The month and year in long format. For
example, Dec 1995.

This is considered a long format.

dfDMYLongWithComma The day, month, and year in long
format, with a comma. For example,
31 Dec, 1995.

This is considered a long format.

dfYMDLongWithDot The year, month, and day in long format
with dot separators. For example,
1995.12.31.

This is considered a long format.

Time Manager
Time Manager Data Structures

1048 Palm OS Programmer’s API Reference

Compatibility The dfMDYWithDashes constant is defined in Palm OS® 4.0 and
higher.

DateTimeType
The DateTimeType structure represents a date and time value.

typedef struct{
 Int16 second;
 Int16 minute;
 Int16 hour;
 Int16 day;
 Int16 month;
 Int16 year;
 Int16 weekDay;
} DateTimeType
typedef DateTimeType *DateTimePtr;

dfYMDLongWithSpace The year, month, and day in long format
with space separators. For example,
1995 Dec 31.

This is considered a long format.

dfMYMed The month in long format with the two-
digit year, preceded by an apostrophe.
For example, Dec '95.

This is considered a medium format.

dfMYMedNoPost The month in long format with the two-
digit year. For example, Dec 95.

This is considered a medium format.

dfMDYWithDashes The month, day, and year numbers
separated by dashes. For example,
12-31-95.

This is considered a short format.

Time Manager
Time Manager Data Structures

Palm OS Programmer’s API Reference 1049

Field Descriptions

DateType
The DateType structure represents a date value.

typedef struct{
 UInt16 year :7;
 UInt16 month :4;
 UInt16 day :5;
} DateType;

typedef DateType *DatePtr;

Field Descriptions

DaylightSavingsTypes
The DaylightSavingsTypes enum specifies the different forms
of daylight savings times that you can specify for date and time
values.

second The number of seconds. This is a value between 0 and 59.

minute The number of minutes. This is a value between 0 and 59.

hour The number of hours. This is a value between 0 and 23.

day The day number. This is a value between 1 and 31.

month The month number. This is a value between 1 and 12.

year The year number.

weekDay The day number. This represents the number of days
since Sunday and is thus a value between 0 and 6.

year The number of years since 1904.

Note that this is the format used on Macintosh
computers.

month The month number. This is a value between 1 and 12.

day The day number. This is a value between 1 and 31.

Time Manager
Time Manager Data Structures

1050 Palm OS Programmer’s API Reference

Note that the table uses “DST” to represent daylight savings time.

typedef enum {
 dsNone,
 dsUSA,
 dsAustralia,
 dsWesternEuropean,
 dsMiddleEuropean,
 dsEasternEuropean,
 dsGreatBritain,
 dsRumania,
 dsTurkey,
 dsAustraliaShifted
} DaylightSavingsTypes;

Value Descriptions

Compatibility If 4.0 New Feature Set is present, this data type is obsolete. In
versions 4.0 and higher, Palm OS represents daylight savings time
as an integer value that gives the number of minutes to add to the
current time for daylight savings time.

dsNone No DST (daylight savings time)

dsUSA U.S.A. DST

dsAustralia Australian DST

dsWesternEuropean Western European DST

dsMiddleEuropean Middle European DST

dsEasternEuropean Eastern European DST

dsGreatBritain Great Britain and Eire DST

dsRumania Rumanian DST

dsTurkey Turkish DST

dsAustraliaShifted Australian DST, with the 1986 shift

Time Manager
Time Manager Data Structures

Palm OS Programmer’s API Reference 1051

DayOfMonthType
The DayOfMonth enum specifies the different day-of-the-week
numeric values that are returned by the DayOfMonth function.
These values are used to represent repeating appointments that
occur on specific days of the month; for example, the first Friday or
the third Tuesday of each month.

typedef enum {
 dom1stSun, dom1stMon, dom1stTue, dom1stWen,
 dom1stThu, dom1stFri, dom1stSat,
 dom2ndSun, dom2ndMon, dom2ndTue, dom2ndWen,
 dom2ndThu, dom2ndFri, dom2ndSat,
 dom3rdSun, dom3rdMon, dom3rdTue, dom3rdWen,
 dom3rdThu, dom3rdFri, dom3rdSat,
 dom4thSun, dom4thMon, dom4thTue, dom4thWen,
 dom4thThu, dom4thFri, dom4thSat,
 domLastSun, domLastMon, domLastTue,
 domLastWen, domLastThu, domLastFri,
 domLastSat
} DayOfWeekType;

Value Descriptions

dom1stSun The first Sunday of the month.

dom1stMon The first Monday of the month.

dom1stTue The first Tuesday of the month.

dom1stWen The first Wednesday of the month.

dom1stThu The first Thursday of the month.

dom1stFri The first Friday of the month.

dom1stSat The first Saturday of the month.

dom2ndSun The second Sunday of the month.

dom2ndMon The second Monday of the month.

dom2ndTue The second Tuesday of the month.

dom2ndWen The second Wednesday of the month.

Time Manager
Time Manager Data Structures

1052 Palm OS Programmer’s API Reference

dom2ndThu The second Thursday of the month.

dom2ndFri The second Friday of the month.

dom2ndSat The second Saturday of the month.

dom3rdSun The third Sunday of the month.

dom3rdMon The third Monday of the month.

dom3rdTue The third Tuesday of the month.

dom3rdWen The third Wednesday of the month.

dom3rdThu The third Thursday of the month.

dom3rdFri The third Friday of the month.

dom3rdSat The third Saturday of the month.

dom4thSun The fourth Sunday of the month.

dom4thMon The fourth Monday of the month.

dom4thTue The fourth Tuesday of the month.

dom4thWen The fourth Wednesday of the month.

dom4thThu The fourth Thursday of the month.

dom4thFri The fourth Friday of the month.

dom4thSat The fourth Saturday of the month.

domLastSun The last Sunday of the month.

domLastMon The last Monday of the month.

domLastTue The last Tuesday of the month.

domLastWen The last Wednesday of the month.

domLastThu The last Thursday of the month.

domLastFri The last Friday of the month.

domLastSat The last Saturday of the month.

Time Manager
Time Manager Data Structures

Palm OS Programmer’s API Reference 1053

Compatibility On Palm OS versions earlier than 4.0, this type was named
DayOfWeekType.

TimeFormatType
The TimeFormatType enum specifies the different display formats
for time values.

typedef enum
 {
 tfColon,
 tfColonAMPM,
 tfColon24h,
 tfDot,
 tfDotAMPM,
 tfDot24h,
 tfHoursAMPM,
 tfHours24h,
 tfComma24h,
 } TimeFormatType;

typedef TimeFormatType *TimeFormatPtr;

Value Descriptions

tfColon The hour and minutes separated by a colon
character. For example, 1:00.

tfColonAMPM The hour and minutes separated by a colon and
followed by an AM/PM indication. For example,
1:00 pm.

tfColon24h The 24-hour time with the hour and minutes
separated by a colon character. For example,
13:00.

tfDot The hour and minutes separated by a dot
character. For example, 1.00.

tfDotAMPM The hour and minutes separated by a period and
followed by an AM/PM indication. For example,
1.00 pm.

Time Manager
Time Manager Constants

1054 Palm OS Programmer’s API Reference

TimeType
The TimeType structure represents a time value.

typedef struct {
 UInt8 hours;
 UInt8 minutes;
} TimeType;
typedef TimeType *TimePtr;

Field Descriptions

Time Manager Constants
The following table shows the constants that represent the
maximum lengths of strings returned by the date and time
formatting routines DateToAscii, DateToDOWDMFormat, and
TimeToAscii.

tfDot24h The 24-hour time with the hour and minutes
separated by a dot character. For example, 13.00.

tfHoursAMPM The hour value followed by an AM/PM
indication. For example, 1 pm.

tfHours24h The 24-hour value, followed by an AM/PM
indication. For example, 13.

tfComma24h The 24-hour time with the hour and minutes
separated by a comma character. For example,
13,00.

hours The number of hours. This is a value between 0 and 23.

minutes The number of minutes. This is value between 0 and 59.

Time Manager
Time Manager Functions

Palm OS Programmer’s API Reference 1055

Time Manager Functions

DateAdjust

Purpose Return a new date +/- the days adjustment.

Declared In DateTime.h

Prototype void DateAdjust (DatePtr dateP, Int32 adjustment)

Parameters <-> dateP A pointer to a DateType structure with the
date to be adjusted.

-> adjustment The number of days by which to adjust the
date.

Result Returns nothing. Upon return, dateP contains the adjusted date.

Constant Value Description

dateStringLength 9 Maximum length of the string returned by
DateToAscii for short date formats.

longDateStrLength 15 Maximum length of the string returned by
DateToAscii for medium and long date
formats.

timeStringLength 9 Maximum length of the string returned by
TimeToAscii.

dowDateStringLength 19 Maximum length of the string returned by
DateToDOWDMFormat for short date
formats.

dowLongDateStrLength 25 Maximum length of the string returned by
DateToDOWDMFormat for both medium
and long date formats.

Time Manager
Time Manager Functions

1056 Palm OS Programmer’s API Reference

Comments This function advances the date and manages month and year
wrapping conditions.

See Also TimAdjust

DateDaysToDate

Purpose Converts a date specified as the number of days since January 1,
1904 to a DateType structure.

Declared In DateTime.h

Prototype void DateDaysToDate (UInt32 days, DatePtr date)

Parameters -> days The number of days since 1/1/1904.

<-> date A pointer to a DateType structure that is
updated with the computed date values.

Result Returns nothing. Upon return, the date information is returned in
the structure referenced by the date parameter.

See Also DateSecondsToDate, DateToDays

DateSecondsToDate

Purpose Converts a date specified as the number of seconds since January 1,
1904 to a DateType structure.

Declared In DateTime.h

Prototype void DateSecondsToDate (UInt32 seconds,
DatePtr date)

Parameters -> seconds The number of seconds since 1/1/1904.

Time Manager
Time Manager Functions

Palm OS Programmer’s API Reference 1057

<- date A pointer to a DateType structure that is
updated with the computed date values.

Result Returns nothing. The structure referenced by the date parameter is
updated with the date information.

See Also DateDaysToDate, DateToDays

DateTemplateToAscii

Purpose Convert the specified date values into a string that is formatted
according to a formatting template specification.

Declared In DateTime.h

Prototype UInt16 DateTemplateToAscii (const Char *templateP,
UInt8 months, UInt8 days, UInt16 years,
Char *stringP, Int16 stringLen)

Parameters -> templateP A pointer to the template string used to format
the date.

See the Comments section below for details on
how to specify date formatting in this template
string.

-> months The month number, which must be a value
between 1 and 12.

-> days The day number, which must be a value
between 1 and 31.

-> years The four-digit year number. For example,
1995.

<- stringP A pointer to a string that is updated with the
result.

If stringP is NULL, this function does not
write an output string; however, it does return
the length required for the output string.

Time Manager
Time Manager Functions

1058 Palm OS Programmer’s API Reference

If stringP is not NULL, this function writes the
formatted string to stringP, writing up to
stringSize bytes into stringP.

-> stringLen The size of the stringP buffer.

Result The length of the formatted string, without the terminating null
byte.

The DateTemplateToAscii returns the required length of the
formatted string even if the stringP parameter is NULL; this allows
you to determine the buffer size at runtime.

Comments This function is intended as a replacement for the DateToAscii
and DateToDOWDMFormat functions.

This function uses the formatting template referenced by
templateP to create a formatted string from the date values that
you pass in.

You specify a series of formatting substrings in templateP. Each
substring has the form:

 ^<valueType><formatModifier>

Each substring has three components:

• The ^ character begins a substring.

• The <valueType> component is a single-digit value that
specifies the value type.

• The <formatModifier> component is a single-letter value
that specifies how you want that value formatted.

The following is an example of a template specification with three
substrings:

^0z ^2l ^4r

Table 52.1 shows the values you can specify for the <valueType>
component. Note that the formatted result depends on the
<modifier> value.

Time Manager
Time Manager Functions

Palm OS Programmer’s API Reference 1059

Table 52.2 shows the values you can specify for the <modifier>
component of each template substring.

Finally, Table 52.3 shows examples of each value type formatted
with each modifier type.

Table 52.1 Template value types for the
DateTemplateToAscii function

Value Value type Formatted examples

0 Day number 1, 01, 23, 31

1 Day name Tue, Tuesday

2 Month name May, Aug, August

3 Month number 4, 04, 11

4 Year number 97, 1997

Table 52.2 Template modifier types for the
DateTemplateToAscii function

Modifier Description

s Formats the value in short form

r Formats the value in regular form

l Formats the value in long form

z Adds a leading zero to the formatted numeric value

Table 52.3 Examples of formatted values

Value type Raw
value

s
(Short
format)

r
(Regular
format)

l
(Long
format)

z
(Zero
format)

0
(Day number)

2 2 2 2 02

1
(Day name)

2 T Tue Tuesday n/a

Time Manager
Time Manager Functions

1060 Palm OS Programmer’s API Reference

For example, calling DateTemplateToAscii as follows:

DateTemplateToAscii("^0z ^2l ^4r", 2, 7,
 2000, myStr, 20)

Produces the following formatted string:

07 February 2000

Compatibility Implemented only if 3.5 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call
DateGlueTemplateToAscii. For more information, see Chapter
75, “PalmOSGlue Library.”

See Also DateToAscii, DateToDOWDMFormat

2
(Month name)

11 N Nov November n/a

3
(Month number)

11 11 11 11 11

4
(Year number)

2000 00 2000 2000 n/a

Table 52.3 Examples of formatted values (continued)

Value type Raw
value

s
(Short
format)

r
(Regular
format)

l
(Long
format)

z
(Zero
format)

Time Manager
Time Manager Functions

Palm OS Programmer’s API Reference 1061

DateToAscii

Purpose Convert the passed date to a string using the format specified by the
dateFormat parameter.

Declared In DateTime.h

Prototype void DateToAscii (UInt8 months, UInt8 days,
UInt16 years, DateFormatType dateFormat,
Char *pString)

Parameters -> months The month number, which must be a value
between 1 and 12.

-> days The day number, which must be a value
between 1 and 31.

-> years The four-digit year number. For example,
1995.

-> dateFormat Any DateFormatType format.

<- pString A pointer to string that is updated with the
result.

This string must be of length
dateStringLength for short formats or
longDateStrLength for medium or long
formats. Note that these lengths do include the
terminating null byte. For more information
about required string lengths, see Time
Manager Constants.

Result Returns nothing. The string reference by pString is updated with
the formatted string.

Comments If you are using a debug ROM, the string buffer is filled with either
dateStringLength or longStrLength debugging bytes,
depending on the value of the dateFormat parameter.

It is important to allocate enough space for your string buffer.
Finding buffer overflow errors can be difficult when using a debug
ROM. One common situation is when you pass a buffer that is too

Time Manager
Time Manager Functions

1062 Palm OS Programmer’s API Reference

small from a form, for an element such as a label or title. Then, the
buffer overflow can clobber objects that follow the form in memory.
When a form element’s location information is corrupted, it
disappears from the display.

Note that you can use the DateTemplateToAscii function
instead of this function if the 3.5 feature set is present. You can call
the DateTemplateToAscii function with a NULL string buffer to
predetermine the required size for your buffer.

See Also TimeToAscii, DateToDOWDMFormat, DateTemplateToAscii

DateToDays

Purpose Convert the DateType structure to the number of days elapsed
from January 1, 1904.

Declared In DateTime.h

Prototype UInt32 DateToDays (DateType date)

Parameters -> date A DateType structure.

Result Returns the number of days elapsed from January 1, 1904 to the
specified date.

See Also DateDaysToDate

Time Manager
Time Manager Functions

Palm OS Programmer’s API Reference 1063

DateToDOWDMFormat

Purpose Convert a date to a formatted string using the format specified by
the dateFormat parameter. The resultant string includes the name
of the day of the week.

Declared In DateTime.h

Prototype void DateToDOWDMFormat (UInt8 months, UInt8 days,
UInt16 years, DateFormatType dateFormat,
Char *pString)

Parameters -> months The month number, which must be a value
between 1 and 12.

-> days The day number, which must be a value
between 1 and 31.

-> years The four-digit year number. For example,
1995.

-> dateFormat Any DateFormatType format.

<- pString A pointer to a string that is updated with the
result. The string must be of length
dowDateStringLength for short formats or
dowLongDateStrLength for medium or long
date formats. See Time Manager Constants for
string buffer lengths.

Result Returns nothing. The string referenced by pString is updated with
the formatted string.

Comments The values of some of the Time Manager Constants that specify the
required string buffer lengths do change from time to time. You
should always use the constants or verify the required lengths by
checking the datetime.h file.

It is important to allocate enough space for your string buffer.
Finding buffer overflow errors can be difficult when using a debug
ROM. One common situation is when you pass a buffer that is too
small from a form, for an element such as a label or title. Then, the

Time Manager
Time Manager Functions

1064 Palm OS Programmer’s API Reference

buffer overflow can clobber objects that follow the form in memory.
When a form element’s location information is corrupted, it
disappears from the display.

Note that you can use the DateTemplateToAscii function
instead of this function if the 3.5 feature set is present. You can call
the DateTemplateToAscii function with a NULL string buffer to
predetermine the required size for your buffer.

Compatibility On Palm OS 3.1 Japanese ROMs, this function contains a bug that
prevented it from properly displaying 4-byte long day names. To
prevent this bug from affecting your application, use
DateGlueToDOWDMFormat in the PalmOSGlue library instead of
calling this function directly. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also DateToAscii, DateTemplateToAscii

DayOfMonth

Purpose Return a value that represents the day of a month on which the
specified date occurs. The value represents a quantity such as “First
Monday” or “Third Friday” as is used for repeating appointments
in the Datebook.

Declared In DateTime.h

Prototype Int16 DayOfMonth (Int16 month, Int16 day,
Int16 year)

Parameters -> month The month number, which must be a value
between 1 and 12.

-> day The day number, which must be a value
between 1 and 31.

-> year The four-digit year number. For example,
1995.

Result Returns a value that represents day of the month. This value is one
of the DayOfMonthType values.

Time Manager
Time Manager Functions

Palm OS Programmer’s API Reference 1065

Comments The returns value can be used to specify on which day of the month
an appointment repeats.

DayOfWeek

Purpose Return the day of the week value for a specified date.

Declared In DateTime.h

Prototype Int16 DayOfWeek (Int16 month, Int16 day,
Int16 year)

Parameters -> month The month number, which must be a value
between 1 and 12.

-> day The day number, which must be a value
between 1 and 31.

-> year The four-digit year number. For example,
1995.

Result Returns one of the following values for the day of the week of the
specified date, as shown in the following table:

Day name Returned day value

Sunday 0

Monday 1

Tuesday 2

Wednesday 3

Thursday 4

Friday 5

Saturday 6

Time Manager
Time Manager Functions

1066 Palm OS Programmer’s API Reference

DaysInMonth

Purpose Return the number of days in the month.

Declared In DateTime.h

Prototype Int16 DaysInMonth (Int16 month, Int16 year)

Parameters -> month The month number, which must be a value
between 1 and 12.

-> year The four-digit year number. For example,
1995.

Result Returns the number of days in the month for the specified year.

TimAdjust

Purpose Return a new date, with the time adjusted by the specified number
of seconds.

Declared In DateTime.h

Prototype void TimAdjust (DateTimePtr dateTimeP,
Int32 adjustment)

Parameters <-> dateTimeP A pointer to a DateType structure.

-> adjustment The number of seconds by which to adjust the
time.

Result Returns nothing. The structure referenced by dateTimeP is
modified to contain the updated date and time.

Comments This function advances the time by the specified number of seconds
and takes care of any wraparound conditions.

See Also DateAdjust

Time Manager
Time Manager Functions

Palm OS Programmer’s API Reference 1067

TimDateTimeToSeconds

Purpose Return the number of seconds elapsed from 12:00 A.M. on January
1, 1904 to the specified date and time.

Declared In DateTime.h

Prototype UInt32 TimDateTimeToSeconds
(DateTimePtr dateTimeP)

Parameters -> dateTimeP A pointer to a DateTimeType structure.

Result The number of seconds elapsed from 12:00 A.M. on January 1, 1904
to the date referenced by dateTimeP.

See Also TimSecondsToDateTime

TimGetSeconds

Purpose Return the current date and time of the device in seconds since 12:00
A.M. on January 1, 1904.

Declared In TimeMgr.h

Prototype UInt32 TimGetSeconds (void)

Parameters None.

Result The number of seconds elapsed from 12:00 A.M. on January 1, 1904
to the current date and time on the device.

See Also TimSetSeconds

Time Manager
Time Manager Functions

1068 Palm OS Programmer’s API Reference

TimGetTicks

Purpose Return the tick count since the last reset. The tick count does not
advance while the device is in sleep mode.

Declared In TimeMgr.h

Prototype UInt32 TimGetTicks (void)

Parameters None.

Result Returns the tick count.

Comments You can call the SysTicksPerSecond routine to determine the
number of ticks per second.

See Also SysTicksPerSecond

TimSecondsToDateTime

Purpose Converts a date specified as the number of seconds since January 1,
1904 to a DateTimeType structure.

Declared In DateTime.h

Prototype void TimSecondsToDateTime (UInt32 seconds,
DateTimePtr dateTimeP)

Parameters -> seconds A date specified as the number of seconds
elapsed from 12:00 A.M. on January 1, 1904 to
the date

Time Manager
Time Manager Functions

Palm OS Programmer’s API Reference 1069

<- dateTimeP A pointer to a DateTimeType structure that is
updated with the date and time values.

Result Returns nothing. The structure referenced by dateTimeP is
updated with the date and time computed for the number of
seconds since 12:00 A.M. on January 1, 1904.

See Also TimDateTimeToSeconds

TimSetSeconds

Purpose Set the clock of the device to the date and time passed as the number
of seconds since 12:00 A.M. on January 1, 1904.

Declared In TimeMgr.h

Prototype void TimSetSeconds (UInt32 seconds)

Parameters -> seconds The number of seconds since 12:00 A.M. on
January 1, 1904.

Result Returns nothing.

Comments If the Notification Feature Set is present, this function broadcasts the
sysNotifyTimeChangeEvent to all interested parties. See
Chapter 39, “Notification Manager,” for more information.

See Also TimGetSeconds

Time Manager
Time Manager Functions

1070 Palm OS Programmer’s API Reference

TimeToAscii

Purpose Convert the time to a string that is formatted according to the
specified timeFormat.

Declared In DateTime.h

Prototype void TimeToAscii (UInt8 hours, UInt8 minutes,
TimeFormatType timeFormat, Char *pString)

Parameters -> hours The number of hours. This must be a value
between 0 and 23.

-> minutes The number of minutes. This must be a value
between 0 and 59.

-> timeFormat The time format for the resultant string. This
must be one of the TimeFormatType values.

<- pString A pointer to a string that is updated with the
resultant string. This string must be of length
timeStringLength.

See Time Manager Constants for information
on string buffer lengths.

Result Returns nothing. The string referenced by pString is updated with
the formatted string.

Comments If you are using a debug ROM in Palm OS 3.5, the string buffer is
filled with timeStringLength debugging bytes.

It is important to allocate enough space for your string buffer.
Finding buffer overflow errors can be difficult when using a debug
ROM. One common situation is when you pass a buffer that is too
small from a form, for an element such as a label or title. Then, the
buffer overflow can clobber objects that follow the form in memory.
When a form element’s location information is corrupted, it
disappears from the display.

See Also DateToAscii

Time Manager
Time Manager Functions

Palm OS Programmer’s API Reference 1071

TimeZoneToAscii

Purpose Convert a time zone to a string.

Declared In DateTime.h

Prototype void TimeZoneToAscii (Int16 timeZone,
const LmLocaleType *localeP, Char *string)

Parameters -> timeZone A pointer to the time zone, given as minutes
east of Greenwich Mean Time (GMT).

-> localeP A pointer to a locale (see LmLocaleType) that
identifies the time zone country. You can use
the constant lmAnyLanguage as the value for
the language field of the structure pointed to by
this parameter.

<- string A pointer to a string in which to return the
result. This string must be of length
timeZoneStringLength.

Result Returns nothing.

Comments This function returns a descriptive string for the specified time zone.
This string identifies the time zone first by its country, such as “USA
(Mountain)” or “Canada (Eastern).” If the function cannot find a
time zone that matches the specified GMT offset and country, it
returns a string containing the time zone as a numeric offset from
the GMT (for example, “GMT+9:00”).

Compatibility Implemented only if 4.0 New Feature Set is present.

Time Manager
Time Manager Functions

1072 Palm OS Programmer’s API Reference

TimTimeZoneToUTC

Purpose Converts a date and time from a given time zone to Universal
Coordinated Time (UTC). UTC is also known as Greenwich Mean
Time (GMT).

Declared In DateTime.h

Prototype UInt32 TimTimeZoneToUTC (UInt32 seconds,
Int16 timeZone, Int16 daylightSavingAdjustment)

Parameters -> seconds The number of seconds since 12:00 A.M. on
January 1, 1904.

-> timeZone The time zone, given as the number of minutes
east of UTC. For time zones west of UTC but
before the international dateline, this is a
negative number.

-> daylightSavingAdjustment
The number of minutes to add to the current
time for daylight savings time in this time zone.

Result Returns the same time as seconds but in the Universal
Coordinated Time. The value is still given as the number of seconds
since 12:00 A.M. on January 1, 1904.

Comments The returned value is not necessarily the time in Greenwich because
Greenwich may be observing daylight saving time.

You can use this function to convert the local time to UTC. The time
zone and the daylight savings adjustment are system preferences
that can be retrieved using PrefGetPreference. For example, the
following code converts the current local time to UTC:

Int16 timeZone =
 PrefGetPreference(prefTimeZone);
Int16 daylightSavingAdjustment =
 PrefGetPreference(
 prefDaylightSavingAdjustment);
UInt32 utcTime =

Time Manager
Time Manager Functions

Palm OS Programmer’s API Reference 1073

 TimTimeZoneToUTC(TimGetSeconds(), timeZone,
 daylightSavingAdjustment);

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TimUTCToTimeZone

TimUTCToTimeZone

Purpose Converts a date and time from Universal Coordinated Time (UTC)
to the specified time zone. UTC is also known as Greenwich Mean
Time (GMT).

Declared In DateTime.h

Prototype UInt32 TimUTCToTimeZone (UInt32 seconds,
Int16 timeZone, Int16 daylightSavingAdjustment)

Parameters -> seconds The number of seconds since 12:00 A.M. on
January 1, 1904 in UTC.

-> timeZone The time zone, given as the number of minutes
east of UTC. For time zones west of UTC before
the international dateline, this is a negative
number.

-> daylightSavingAdjustment
The number of minutes to add to the current
time for daylight savings time in this time zone.

Result Returns the same time as seconds but in the specified time zone.
The value is still given as the number of seconds since 12:00 A.M. on
January 1, 1904.

Comments The seconds value is not necessarily the time in Greenwich
because Greenwich may be observing daylight saving time.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TimTimeZoneToUTC

Time Manager
Time Manager Functions

1074 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1075

53
Virtual File System
Manager
The Virtual File System (VFS) Manager is a layer of software that
manages all installed file system libraries. It provides a unified API
to application developers while allowing them to seamlessly access
many different types of file systems —such as VFAT, HFS, and
NFS—on many different types of media, including Compact Flash,
Memory Stick, and SmartMedia.This chapter provides reference
material for the VFS Manager API as follows:

• VFS Manager Data Structures

• VFS Manager Constants

• VFS Manager Functions

• Application-Defined Functions

The header file VFSMgr.h declares the VFS Manager API. For more
information on the VFS Manager, see Chapter 7, “Expansion,” in
Palm OS Programmer’s Companion, vol. I.

Note that the VFS Manager is an optional system extension; the
functions described in this chapter are implemented only if the VFS
Manager Feature Set is present.

VFS Manager Data Structures

FileInfoType
The FileInfoType structure contains information about a
specified file or directory. This information is returned as a
parameter to VFSDirEntryEnumerate. The structure is defined as
follows:

typedef struct FileInfoTag {
 UInt32 attributes;

Virtual Fi le System Manager
VFS Manager Data Structures

1076 Palm OS Programmer’s API Reference

 Char *nameP;
 UInt16 nameBufLen;
} FileInfoType, *FileInfoPtr;

Field Descriptions

FileRef
The FileRef type is used to encode references to files and
directories.

typedef UInt32 FileRef;

VFSAnyMountParamType
The VFSAnyMountParamType structure is a base structure for
VFSSlotMountParamType, VFSPOSEMountParamType, and
other similar structures that may be defined in the future. Use one
or the other according to how you set the mountClass parameter.

typedef struct VFSAnyMountParamTag {
 UInt16 volRefNum;
 UInt16 reserved;
 UInt32 mountClass;
} VFSAnyMountParamType;

typedef VFSAnyMountParamType
*VFSAnyMountParamPtr;

attributes Characteristics of the file or directory. See File
and Directory Attributes for the bits that make
up this field.

nameP Pointer to the buffer that receives the full name
of the file or directory. Initialize this parameter
to NULL if you don’t want to receive the name.

nameBufLen Size of the nameP buffer, in bytes.

Virtual Fi le System Manager
VFS Manager Data Structures

Palm OS Programmer’s API Reference 1077

Field Descriptions

VFSSlotMountParamType
The VFSSlotMountParamType structure is used when you are
mounting a card located in an Expansion Manager slot. The
vfsMountParam->mountClass field must be set to
VFSMountClass_SlotDriver.

typedef struct VFSSlotMountParamTag {
 VFSAnyMountParamType vfsMountParam;
 UInt16 slotLibRefNum;
 UInt16 slotRefNum;
} VFSSlotMountParamType;

Field Descriptions

volRefNum The volume reference number. This is initially
obtained when you successfully mount a
volume. It can then be used to format a volume
with VFSVolumeFormat or unmount a
volume with VFSVolumeUnmount.

reserved Reserved for future use.

mountClass Defines the type of mount to use with the
specified volume. See Volume Mount Classes
for a list of mount types.

vfsMountParam See the description of
VFSAnyMountParamType for an explanation
of the fields in this structure. Set
vfsMountParam->mountClass to
VFSMountClass_SlotDriver to mount an
Expansion Manager slot.

slotLibRefNum Reference number for the slot driver library
allocated to the given slot number. Obtain this
field by calling ExpSlotLibFind.

slotRefNum Number of the slot to be mounted.

Virtual Fi le System Manager
VFS Manager Data Structures

1078 Palm OS Programmer’s API Reference

VFSPOSEMountParamType
The VFSPOSEMountParamType structure is used when you are
mounting a volume through the Palm OS® Emulator. The
vfsMountParam->mountClass must be set to
VFSMountClass_POSE. Note that ordinary applications and file
systems shouldn’t use VFSPOSEMountParamType.

typedef struct VFSPOSEMountParamTag {
 VFSAnyMountParamType vfsMountParam;
 UInt8 poseSlotNum;
} VFSPOSEMountParamType

Field Descriptions

VolumeInfoType
The VolumeInfoType structure defines information that is
returned to VFSVolumeInfo and used throughout the VFS
functions.

typedef struct VolumeInfoTag {
 UInt32 attributes;
 UInt32 fsType;
 UInt32 fsCreator;
 UInt32 mountClass;
 UInt16 slotLibRefNum;
 UInt16 slotRefNum;
 UInt32 mediaType;
 UInt32 reserved;
} VolumeInfoType, *VolumeInfoPtr;

vfsMountParam See the description of
VFSAnyMountParamType for an
explanation of the fields in this structure.
Set vfsMountParam->mountClass to
VFSMountClass_POSE to mount a
virtual slot.

poseSlotNum Number of the virtual slot number to be
mounted by the Palm OS Emulator.

Virtual Fi le System Manager
VFS Manager Constants

Palm OS Programmer’s API Reference 1079

Field Descriptions

VFS Manager Constants

Defined File Systems
The following file systems are currently defined by the VFS
Manager. These values are used with VFSVolumeInfo in the
VolumeInfoType.fsType parameter.

attributes Characteristics of the volume. See Volume
Attributes for the bits that make up this
field.

fsType File system type for this volume. See
Defined File Systems for a list of the
supported file systems.

fsCreator Creator ID of this volume’s file system
driver. This information is used with
VFSCustomControl.

mountClass Mount class that mounted this volume.
The supported mount classes are listed
under Volume Mount Classes.

slotLibRefNum Reference to the slot driver library with
which the volume is mounted. This field is
only valid when the mount class is
vfsMountClass_SlotDriver.

slotRefNum Slot number where the card containing the
volume is loaded. This field is only valid
when the mount class is
vfsMountClass_SlotDriver.

mediaType Type of card media. See Defined Media
Types in the Expansion Manager chapter
for the list of values. This field is only
valid when the mount class is
vfsMountClass_SlotDriver.

reserved Reserved for future use.

Virtual Fi le System Manager
VFS Manager Constants

1080 Palm OS Programmer’s API Reference

Constant Value Description

vfsFilesystemType_AFS 'afsu' Unix Andrew file
system

vfsFilesystemType_EXT2 'ext2' Linux file system

vfsFilesystemType_FAT 'fats' FAT12 and FAT16,
which only handles
8.3 filenames

vfsFilesystemType_FFS 'ffsb' Unix Berkeley block
based file system

vfsFilesystemType_HFS 'hfss' Macintosh standard
hierarchical file
system

vfsFilesystemType_HFSPlus 'hfse' Macintosh extended
hierarchical file
system

vfsFilesystemType_HPFS 'hpfs' OS2 High
Performance file
system

vfsFilesystemType_MFS 'mfso' Macintosh original
file system

vfsFilesystemType_NFS 'nfsu' Unix Networked
file system

vfsFilesystemType_Novell 'novl' Novell file system

vfsFilesystemType_NTFS 'ntfs' Windows NT file
system

vfsFilesystemType_VFAT 'vfat' FAT12 and FAT16
extended to handle
long filenames

Virtual Fi le System Manager
VFS Manager Constants

Palm OS Programmer’s API Reference 1081

Open Mode Constants
This section describes constants that are used for the openMode
parameter to the VFSFileOpen function. These constants specify
the mode in which a file or directory is opened.

Constant Value Description

vfsModeExclusive 0x0001U Open and lock the file or directory.
This mode excludes anyone else
from using the file or directory
until it is closed.

vfsModeRead 0x0002U Open for read access.

vfsModeWrite 0x0004U |
vfsModeExclusive

Open for write access.

vfsModeReadWrite vfsModeWrite |
vfsModeRead

Open for read/write access.

vfsModeCreate 0x0008U Create the file if it doesn't already
exist. This open mode is
implemented in the VFS layer,
rather than in the file system
library.

vfsModeTruncate 0x0010U Truncate the file to zero (0) bytes
after opening, removing all
existing data. This open mode is
implemented in the VFS layer,
rather than in the file system
library.

vfsModeVFSLayerO
nly

vfsModeCreate |
vfsModeTruncate

Mask used to isolate those flags
that are only used by the VFS
layer. These flags are not passed to
the file system layer.

vfsModeLeaveOpen 0x0020U Leave the file open even after the
application exits.

Virtual Fi le System Manager
VFS Manager Constants

1082 Palm OS Programmer’s API Reference

File and Directory Attributes
The constants in the following table define bits that can be used
individually or in combination when setting or interpreting the file
attributes for a given file or directory. See
VFSFileGetAttributes, VFSFileSetAttributes, and the
FileInfoType data structure for specific use.

Volume Attributes
The constants in the following table define bits that can be used
individually or in combination to make up the attributes field in the
VolumeInfoType structure.

Constant Value Description

vfsFileAttrReadOnly 0x00000001UL Read-only file or directory

vfsFileAttrHidden 0x00000002UL Hidden file or directory

vfsFileAttrSystem 0x00000004UL System file or directory

vfsFileAttrVolumeLabel 0x00000008UL Volume label

vfsFileAttrDirectory 0x00000010UL Directory

vfsFileAttrArchive 0x00000020UL Archived file or directory

vfsFileAttrLink 0x00000040UL Link to another file or directory

Constant Value Description

vfsVolumeAttrHidden 0x00000004UL The volume should not be visible
to the user.

vfsVolumeAttrReadOnly 0x00000002UL The volume is read only.

vfsVolumeAttrSlotBased 0x00000001UL Reserved. Check the mount class
to determine how a volume is
mounted.

Virtual Fi le System Manager
VFS Manager Constants

Palm OS Programmer’s API Reference 1083

Volume Mount Classes
The following constants define how a given volume is mounted.
The mountClass field in the VFSAnyMountParamType and
VolumeInfoType structures takes on one of these values.

Error Codes
The VFS Manager defines the following error codes:

Constant Value Description

vfsMountClass_POSE 'pose' Mount the volume
through the Palm OS
Emulator. This is used
for testing.

vfsMountClass_Simulator sysFileTSimulator Mount the volume
through the simulator.
This is used for testing.

vfsMountClass_SlotDriver sysFileTSlotDriver Mount the volume with
a slot driver shared
library.

Constant Description

vfsErrBadData The operation could not be
completed because of invalid
data.

vfsErrBadName Invalid filename, path, or
volume label.

vfsErrBufferOverflow The supplied buffer is too
small.

vfsErrDirectoryNotFound Returned when the path
leading up to the file does not
exist.

vfsErrDirNotEmpty The directory is not empty and
therefore cannot be deleted.

Virtual Fi le System Manager
VFS Manager Constants

1084 Palm OS Programmer’s API Reference

vfsErrFileAlreadyExists A file with this name exists
already in this location.

vfsErrFileBadRef The file reference is invalid: it
has been closed or was not
obtained from VFSFileOpen.

vfsErrFileEOF The file pointer is at the end of
the file.

vfsErrFileGeneric Generic file error.

vfsErrFileNotFound The file was not found at the
specified location.

vfsErrFilePermissionDeni
ed

The requested permissions
could not be granted.

vfsErrFileStillOpen Returned from the underlying
file system’s delete function if
the file is still open.

vfsErrIsADirectory This operation can only be
performed on a regular file,
not a directory.

vfsErrNameShortened A volume name or filename
was automatically shortened
to conform to the file system
specification.

vfsErrNoFileSystem None of the installed file
systems support this
operation.

vfsErrNotADirectory This operation can only
performed on a directory.

vfsErrVolumeBadRef The volume reference number
is invalid.

Constant Description

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1085

VFS Manager Functions

VFSCustomControl

Purpose Make a custom API call to a particular file system, given its creator
ID. You can use VFSVolumeInfo to determine the creator ID of the
file system for a given volume.

Declared In VfsMgr.h

Prototype Err VFSCustomControl(UInt32 fsCreator,
UInt32 apiCreator, UInt16 apiSelector,
void *valueP, UInt16 *valueLenP)

Parameters -> fsCreator Creator of the file system to call. A value of zero
(0) tells the VFS Manager to check each
registered file system, looking for one which
supports the call.

-> apiCreator Registered creator ID.

-> apiSelector Custom operation to perform.

<-> valueP A pointer to a buffer containing data specific to
the operation. On exit, depending on the
function of the particular custom call and on
the value of valueLenP, the contents of this
buffer may have been updated.

vfsErrVolumeFull There is insufficient space left
on the volume.

vfsErrVolumeStillMounted Returned from the underlying
file system’s format function if
the volume is still mounted.

Constant Description

Virtual Fi le System Manager
VFS Manager Functions

1086 Palm OS Programmer’s API Reference

<-> valueLenP On entry, points to the size of the valueP
buffer. On exit, this value reflects the size of the
data written to the valueP buffer. If
valueLenP is NULL, valueP is passed to the
file system but is not updated on exit.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

expErrUnsupportedOperation
The specified opcode and/or creator is
unsupported or undefined.

sysErrParamErr The valueP buffer is too small.

vfsErrNoFileSystem
VFS Manager cannot find an appropriate file
system to handle the request.

Comments The driver identifies the call and its API by a registered creator ID
and a selector. This allows file system developers to extend the API
by defining selectors for their creator IDs. It also allows file system
developers to support selectors (and custom calls) defined by other
file system developers.

This function must return expErrUnsupportedOperation for all
unsupported or undefined opcodes and/or creators.

Compatibility Implemented only if the VFS Manager Feature Set is present.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1087

VFSDirCreate

Purpose Create a new directory.

Declared In VfsMgr.h

Prototype Err VFSDirCreate(UInt16 volRefNum,
const Char *dirNameP)

Parameters -> volRefNum Volume reference number returned from
VFSVolumeEnumerate.

-> dirNameP Pointer to the full path of the directory to be
created.

Result Returns one of the following error codes:

errNone No error

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrBadName Some or all of the path, up to but not including
the last component specified in the dirNameP
parameter, does not exist.

vfsErrFileAlreadyExists
A file with this name already exists in this
location.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

vfsErrVolumeBadRef
The volume has not been mounted.

vfsErrVolumeFull
There is not enough space left on the volume.

Comments All parts of the path except the last component must already exist.
The vfsFileAttrDirectory attribute is set with this function.

Virtual Fi le System Manager
VFS Manager Functions

1088 Palm OS Programmer’s API Reference

VFSDirCreate does not open the directory. Any operations you
want to perform on this directory require a reference, which is
obtained through a call to VFSFileOpen.

Compatibility Implemented only if the VFS Manager Feature Set is present.

VFSDirEntryEnumerate

Purpose Enumerate the entries in a given directory. Entries can include files,
links, and other directories.

Declared In VfsMgr.h

Prototype Err VFSDirEntryEnumerate (FileRef dirRef,
UInt32 *dirEntryIteratorP, FileInfoType *infoP)

Parameters -> dirRef Directory reference returned from
VFSFileOpen.

<-> dirEntryIteratorP
Pointer to the index of the last entry
enumerated. For the first iteration, initialize
this parameter to the constant
vfsIteratorStart. Upon return, this
references the next entry in the directory. If
infoP is the last entry, this parameter is set to
vfsIteratorStop.

<-> infoP Pointer to the FileInfoType data structure
that contains information about the given
directory entry. The nameP and nameBufLen
fields in this structure must be initialized prior
to calling VFSDirEntryEnumerate.

Result Returns one of the following error codes:

errNone No error.

expErrEnumerationEmpty
There are no directory entries left to enumerate.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1089

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

sysErrParamErr The dirEntryIteratorP is not valid.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrIsNotADirectory
The specified file reference is valid, but does
not point to a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Comments The directory to be enumerated must first be opened with
VFSFileOpen in order to obtain a file reference. In order to obtain
information on all entries in a directory you must make repeated
calls to VFSDirEntryEnumerate inside a loop. Boundaries on the
iteration are the defined constants vfsIteratorStart and
vfsIteratorStop. Before the first call to
VFSDirEntryEnumerate, dirEntryIteratorP should be
initialized to vfsIteratorStart. Each iteration then changes the
value pointed to by dirEntryIteratorP. When information on
the last entry in the directory is returned, dirEntryIteratorP is
set to vfsIteratorStop.

WARNING! Creating, renaming, or deleting any file or directory
invalidates the enumeration. After any such operation, the
enumeration will need to be restarted.

Example The following code excerpt illustrates how to use
VFSDirEntryEnumerate.

FileInfoType info;
FileRef dirRef;
UInt32 dirIterator;
Char *fileName = MemPtrNew(256); // should check for err

// open the directory first, to get the directory reference
// volRefNum must have already been defined

Virtual Fi le System Manager
VFS Manager Functions

1090 Palm OS Programmer’s API Reference

err = VFSFileOpen(volRefNum, "/", vfsModeRead, &dirRef);
if(err == errNone) {

 info.nameP = fileName; // point to local buffer
 info.nameBufLen = 256;
 dirIterator = vfsIteratorStart
 while (dirIterator != vfsIteratorStop) {
 // Get the next file
 err = VFSDirEntryEnumerate (dirRef, &dirIterator,
 &info);
 if (err == errNone) {
 // Do something with the directory entry information
 // Pull the attributes from info.attributes
 // The file name is in fileName
 } else {
 // handle error, possibly by breaking out of the
loop
 }
 } else {
 // handle directory open error here
 }
 MemPtrFree(fileName);
}

Compatibility Implemented only if the VFS Manager Feature Set is present.

VFSExportDatabaseToFile

Purpose Save the specified database to a .pdb or .prc file on an external
storage card.

Declared In VfsMgr.h

Prototype Err VFSExportDatabaseToFile (UInt16 volRefNum,
const Char *pathNameP, UInt16 cardNo,
LocalID dbID)

Parameters -> volRefNum Volume on which the destination file should be
created.

-> pathNameP Pointer to the complete path and name of the
destination file to be created.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1091

-> cardNo Card number on which the .pdb or .prc being
exported resides.

-> dbID ID of the database being exported.

Result Returns one of the following error codes:

errNone No error

expErrNotEnoughPower
There is insufficient battery power to perform
the database export operation.

vfsErrBadName The path name specified in pathNameP is not
valid.

Comments This utility function exports a database from main memory to
a .pdb or .prc file on an external storage card. This function is the
opposite of VFSImportDatabaseFromFile. It first creates the file
specified in the pathNameP parameter with VFSFileCreate.
After opening the file the Exchange Manager function ExgDBWrite
is called with an internal callback function for exporting the file
from the Data Manager. The Exchange Manager makes repeated
calls to this callback function, which receives the data back in
blocks. Once all the data has been exported, VFS Manager closes the
file.

This function is used, for example, to copy applications from main
memory to a storage card.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSExportDatabaseToFileCustom, VFSFileWrite,
VFSImportDatabaseFromFile

VFSExportDatabaseToFileCustom

Purpose Saves the specified database to a .pdb or .prc file on an external
storage card. This function differs from

Virtual Fi le System Manager
VFS Manager Functions

1092 Palm OS Programmer’s API Reference

VFSExportDatabaseToFile in that it allows you to track the
progress of the export operation.

Declared In VfsMgr.h

Prototype Err VFSExportDatabaseToFileCustom
(UInt16 volRefNum, const Char *pathNameP,
UInt16 cardNo, LocalID dbID,
VFSExportProcPtr exportProcP, void *userDataP)

Parameters -> volRefNum Volume on which the destination file should be
created.

-> pathNameP Pointer to the complete path and name of the
destination file to be created.

-> cardNo Card number on which the .pdb or .prc being
exported resides.

-> dbID ID of the database being exported.

-> exportProcP User-defined callback function that tracks the
progress of the export. This function should
allow the user to cancel the export. Pass NULL if
you don’t have a progress callback function.
See VFSExportProcPtr for the requirements
of this function.

-> userDataP Pointer to any data you want to pass to the
callback function specified in exportProcP.
This information is not used internally by the
VFS Manager. Pass NULL if you don’t have a
progress callback function or if that function
doesn’t need any such data.

Result Returns one of the following error codes:

errNone No error.

expErrNotEnoughPower
There is insufficient battery power to perform
the database export operation.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1093

vfsErrBadName The path name specified in pathNameP is not
valid.

This function can also return any error code other than errNone
produced by your callback function.

Comments This function is similar to VFSExportDatabaseToFile in that it
exports a database from main memory to a .pdb or .prc file on an
external storage card. It extends the functionality by allowing you to
specify a callback function that tracks the progress of the export. It
first creates the file specified in the pathNameP parameter with
VFSFileCreate. After opening the file, the Exchange Manager
function ExgDBWrite is called with an internal callback function
for exporting the file from the Data Manager. Exchange Manager
makes repeated calls to this function, which receives the data back
in blocks. The progress tracker, if one has been specified, is also
called every time a new chunk of data is passed back. Once all the
data has been exported, the VFS Manager closes the file.

This function is used, for example, to copy applications from main
memory to a storage card.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSExportDatabaseToFile, VFSFileWrite,
VFSImportDatabaseFromFileCustom

VFSFileClose

Purpose Closes a file or directory that has been opened with VFSFileOpen.

Declared In VfsMgr.h

Prototype Err VFSFileClose (FileRef fileRef)

Parameters -> fileRef File reference number returned from
VFSFileOpen.

Result Returns one of the following error codes:

Virtual Fi le System Manager
VFS Manager Functions

1094 Palm OS Programmer’s API Reference

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

Compatibility Implemented only if the VFS Manager Feature Set is present.

VFSFileCreate

Purpose Create a file. This function cannot be used to create a directory; use
VFSDirCreate instead.

Declared In VfsMgr.h

Prototype Err VFSFileCreate(UInt16 volRefNum,
const Char *pathNameP)

Parameters -> volRefNum Reference number of the volume on which to
create the file. This volume reference number is
returned from VFSVolumeEnumerate.

-> pathNameP Pointer to the full path of the file to be created.
All parts of the path, excluding the filename,
must already exist.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrBadName The pathNameP is invalid.

vfsErrFileAlreadyExists
A file with this name already exists in this
location.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1095

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

vfsErrVolumeBadRef
The volume has not been mounted.

vfsErrVolumeFull
There is not enough space left on the volume.

Comments It is the responsibility of the file system library to ensure that all
filenames are translated into a format that is compatible with the
native format of the file system, such as the 8.3 convention for a FAT
file system without long filename support. See Naming Files in the
Expansion chapter of the Palm OS Programmer’s Companion, vol. I for
a description of how to construct a valid path.

This function does not open the file. Use VFSFileOpen to open the
file.

This function should not be used to create a directory. To create a
directory use VFSDirCreate.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileDelete

VFSFileDBGetRecord

Purpose Load a record from an opened .pdb file on an external card into the
storage heap.

Declared In VfsMgr.h

Prototype Err VFSFileDBGetRecord (FileRef ref,
UInt16 recIndex, MemHandle *recHP,
UInt8 *recAttrP, UInt32 *uniqueIDP)

Parameters -> ref The file reference returned from
VFSFileOpen. Note that the open file must be
a .pdb file.

Virtual Fi le System Manager
VFS Manager Functions

1096 Palm OS Programmer’s API Reference

-> recIndex The index of the record to load.

<- recHP Pointer to the record data’s handle in the
storage heap. If NULL is returned in this
parameter there is either no data in this field or
an error occurred reading this data from the
file. If the handle is not NULL, you must dispose
of the allocated handle using MemHandleFree.

<- recAttrP Pointer to the attributes of the record. The
values returned are identical to the atttributes
returned from DmRecordInfo. See Record
Attribute Constants in the Data and Resource
Manager chapter for a description of each
attribute. Pass NULL for this parameter if you
do not want to retrieve this information.

<- uniqueIDP Pointer to the unique identifier for this record.
Pass NULL for this parameter if you do not
want to retrieve this information.

Result Returns one of the following error codes:

errNone No error.

dmErrIndexOutOfRange
The recIndex is out of range.

dmErrNotRecordDB
The file referenced by ref is not a record
database.

memErrNotEnoughSpace
There is not enough space in memory for the
requested record entry.

sysErrParamErr A NULL value was passed in for the recHP,
recAttrP, and uniqueIDP parameters.

vfsErrBadData The local offsets (localChunkID) from the top
of the .pdb to the start of the raw record data
for this entry are out of order.

Comments This function is analogous to DmGetRecord but works with files on
an external card rather than databases in main memory. This

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1097

function allocates a handle of the appropriate size from the storage
heap and returns it in the recHP parameter. The caller is responsible
for freeing this memory, using MemHandleFree, when it is no
longer needed.

NOTE: This function is not efficient for multiple accesses and
should be used sparingly.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileReadData

VFSFileDBGetResource

Purpose Load a resource into the storage heap from an opened .prc file.

Declared In VfsMgr.h

Prototype Err VFSFileDBGetResource (FileRef ref,
DmResType type, DmResID resID, MemHandle *resHP)

Parameters -> ref The file reference returned from
VFSFileOpen. Note that the open file must be
a .prc file.

-> type The type of resource to load. See the Data and
Resource Manager chapter for more
information on resources.

-> resID The ID of resource to load.

<- resHP Pointer to the resource data handle that was
loaded into memory.

Result Returns one of the following error codes:

errNone No error.

Virtual Fi le System Manager
VFS Manager Functions

1098 Palm OS Programmer’s API Reference

dmErrNotResourceDB
The file referenced by ref is not a resource
database.

dmErrResourceNotFound
The requested resource was not found.

memErrNotEnoughSpace
There is not enough space in memory for the
requested resource entries.

sysErrParamErr resHP is NULL.

Comments This function locates the specified resource in the open .prc file.
See the Palm OS File Format Specification for more information on the
layout of .prc files.

Once the resource is found, VFSFileDBGetResource allocates a
handle of the appropriate size in the storage heap and reads it into
memory. The handle to this memory location is returned through
the resHP parameter. The caller is responsible for freeing this
memory, using MemHandleFree, when it is no longer needed.

NOTE: This function is not efficient for multiple accesses and
should be used sparingly.

Compatibility Implemented only if the VFS Manager Feature Set is present.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1099

VFSFileDBInfo

Purpose Get information about a database represented by an open .prc
or .pdb file.

Declared In VfsMgr.h

Prototype Err VFSFileDBInfo (FileRef ref, Char *nameP,
UInt16 *attributesP, UInt16 *versionP,
UInt32 *crDateP, UInt32 *modDateP,
UInt32 *bckUpDateP, UInt32 *modNumP,
MemHandle *appInfoHP, MemHandle *sortInfoHP,
UInt32 *typeP, UInt32 *creatorP,
UInt16 *numRecordsP)

Parameters -> ref The file reference returned from
VFSFileOpen. Note that the open file must be
a .prc or .pdb file.

<- nameP Pointer to a 32-byte character array in which
the database name is returned. Pass NULL for
this parameter if you do not want to retrieve
the database name.

<- attributesP Pointer to the database attributes stored in the
file. The values returned are identical to the
atttributes returned from DmDatabaseInfo.
See the Database Attribute Constants section
for a description of each attribute. Pass NULL
for this parameter if you do not want to retrieve
the database’s attributes.

<- versionP Pointer to the application-specific version
number of the database. The default version
number is zero (0). Pass NULL for this
parameter if you do not want to retrieve the
version number.

<- crDateP Pointer to the date the database was created,
expressed in seconds since midnight (00:00:00)
January 1, 1904. Pass NULL for this parameter if
you do not want to retrieve the creation date.

Virtual Fi le System Manager
VFS Manager Functions

1100 Palm OS Programmer’s API Reference

<- modDateP Pointer to the date the database was last
modified, expressed in seconds since midnight
(00:00:00) January 1, 1904. A database’s
modification date is updated only if a change
has been made to the database when it is
opened with write access. Pass NULL for this
parameter if you do not want to retrieve the
database’s modification date.

<- bckUpDateP Pointer to the date the database was last backed
up, expressed in seconds since midnight
(00:00:00) January 1, 1904. Pass NULL for this
parameter if you do not want to retrieve the
database’s backup date.

<- modNumP Pointer to the number of times the database
was modified. This number is updated every
time a record is added, modified, or deleted.
Pass NULL for this parameter if you do not
want to retrieve the modification count.

<- appInfoHP Pointer to the application info block handle. If
NULL is returned in this parameter, either there
is no data in this field or an error occurred
reading this data from the file. If a value other
than NULL is returned, you must dispose of the
allocated handle using MemHandleFree. If
you do not want to retrieve the application info
block, pass NULL for this parameter

<- sortInfoHP Pointer to the sort info block handle. If NULL is
returned in this parameter, either there is no
data in this field or an error occurred reading
this data from the file. If a value other than
NULL is returned, you must dispose of the
allocated handle using MemHandleFree. Pass
NULL for this parameter if you do not want to
retrieve the sort info block handle.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1101

<- typeP Pointer to the type of database as it was
created. This may be a user-defined database
type or a database type defined by the Palm OS.
Some of the more common database types
returned here are:

Pass NULL for this parameter if you do not
want to retrieve the database’s type.

<- creatorP Pointer to the database’s creator. Pass NULL for
this parameter if you do not want to retrieve
this information.

<- numRecordsP Pointer to the number of records in the
database. Pass NULL for this parameter if you
do not want to retrieve this information.

Result Returns one of the following error codes:

errNone No error

memErrNotEnoughSpace
There is not enough space in memory for the
database header.

vfsErrBadData The file referenced by the ref parameter is too
small to contain a database header, or the
database header is corrupted.

Type Description

'appl' Standard Palm™ application
(resource database)

'libr' Standard shared library

'libf' File system shared library

'libs' Slot driver shared library

'data' Standard Palm data file (record
database)

Virtual Fi le System Manager
VFS Manager Functions

1102 Palm OS Programmer’s API Reference

Comments This function is analogous to DmDatabaseInfo, but it works with
files on an external card rather than with databases in main
memory. See the Palm OS File Format Specification for a description of
the header block in .prc and .pdb files.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileGetAttributes, VFSFileGetDate

VFSFileDelete

Purpose Deletes a closed file or directory.

Declared In VfsMgr.h

Prototype Err VFSFileDelete(UInt16 volRefNum,
const Char *pathNameP)

Parameters -> volRefNum Volume reference number returned from
VFSVolumeEnumerate.

-> pathNameP Pointer to the full path of the file or directory to
be deleted.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrBadName The path name specified in pathNameP is not
valid.

vfsErrDirNotEmpty
The directory being deleted is not empty.

vfsErrFileStillOpen
The file is still open.

vfsErrFileNotFound
The file could not be found.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1103

vfsErrFilePermissionDenied
The requested permissions could not be
granted.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

vfsErrVolumeBadRef
The volume has not been mounted.

Compatibility Implemented only if the VFS Manager Feature Set is present.

VFSFileEOF

Purpose Get end-of-file status for an open file. This function only operates on
files and cannot be used with directories.

Declared In VfsMgr.h

Prototype Err VFSFileEOF (FileRef fileRef)

Parameters -> fileRef File reference returned from VFSFileOpen.

Result Returns one of the following error codes:

errNone No error. File pointer is not at end of the file.

vfsErrFileEOF The file pointer is at the end of file.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrIsADirectory
The specified file reference points to a directory
instead of a file. This is an invalid operation on
a directory.

Virtual Fi le System Manager
VFS Manager Functions

1104 Palm OS Programmer’s API Reference

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Compatibility Implemented only if the VFS Manager Feature Set is present.

VFSFileGetAttributes

Purpose Obtain the attributes of an open file or directory.

Declared In VfsMgr.h

Prototype Err VFSFileGetAttributes (FileRef fileRef,
UInt32 *attributesP)

Parameters -> fileRef File reference returned from VFSFileOpen.

<- attributesP Pointer to the attributes associated with the file
or directory. See File and Directory Attributes
for a list of values that can be returned through
this parameter.

Result Returns one of the following error codes:

errNone No error

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileDBInfo, VFSFileGetDate, VFSFileSetAttributes

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1105

VFSFileGetDate

Purpose Obtain the dates on an open file or directory.

Declared In VfsMgr.h

Prototype Err VFSFileGetDate (FileRef fileRef,
UInt16 whichDate, UInt32 *dateP)

Parameters -> fileRef File reference returned from VFSFileOpen.

-> whichDate Specifies which date—creation, modification,
or last access—you want. Supply one of the
following values:

vfsFileDateCreated

vfsFileDateModified

vfsFileDateAccessed

Note that not all file systems are required to
support the above dates. If the supplied date
type is not supported by the file system,
VFSFileGetDate returns
expErrUnsupportedOperation.

<- dateP Pointer to the requested date. This field is
expressed in the standard Palm OS date format
— the number of seconds since midnight
(00:00:00) January 1, 1904.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

expErrUnsupportedOperation
The specified date type is not supported by the
underlying file system.

Virtual Fi le System Manager
VFS Manager Functions

1106 Palm OS Programmer’s API Reference

vfsErrFileBadRef
The specified file reference is invalid.

sysErrParamErr The whichDate parameter is not one of the
defined constants.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileDBInfo, VFSFileGetAttributes, VFSFileSetDate

VFSFileOpen

Purpose Opens a file or directory and returns a reference for it.

Declared In VfsMgr.h

Prototype Err VFSFileOpen (UInt16 volRefNum,
const Char *pathNameP, UInt16 openMode,
FileRef *fileRefP)

Parameters -> volRefNum The volume reference number returned from
VFSVolumeEnumerate.

-> pathNameP Pointer to the full path of the file or directory to
be opened. This must be a valid path. It cannot
be empty and can not contain null characters.
The format of the pathname should match what
the underlying file system supports. See
“Naming Files” in Chapter 7, “Expansion,” of
the Palm OS Programmer’s Companion, vol. I for
a description of how to construct a valid path.

-> openMode Mode to use when opening the file. See the
Open Mode Constants section for a list of
accepted modes.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1107

<- fileRefP Pointer to the opened file or directory reference
which is supplied to various other
VFSFile... operations. This value is filled in
on return.

Result Returns one of the following error codes:

errNone No error.

expErrCardReadOnly
The open mode requested includes write access
but the file is read-only.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrBadName The pathNameP parameter is invalid.

vfsErrFileNotFound
The specified file or directory could not be
found.

vfsErrFilePermissionDenied
The file cannot be opened in the requested open
mode, or it has already been opened with
vfsModeExclusive.

vfsErrVolumeBadRef
The specified volume has not been mounted.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileClose, VFSDirEntryEnumerate

Virtual Fi le System Manager
VFS Manager Functions

1108 Palm OS Programmer’s API Reference

VFSFileRead

Purpose Read data from a file into the dynamic heap. This function only
operates on files and cannot be used with directories; use
VFSDirEntryEnumerate to explore the contents of a directory.

Declared In VfsMgr.h

Prototype Err VFSFileRead (FileRef fileRef,
UInt32 numBytes, void *bufP,
UInt32 *numBytesReadP)

Parameters -> fileRef File reference returned from VFSFileOpen.

-> numBytes Number of bytes to read.

<- bufP Pointer to the destination chunk where the data
is to be stored. This can be a pointer to any
writable memory.

<- numBytesReadP
Pointer to an unsigned integer that reflects the
number of bytes actually read. This value is set
on return and does not need to be initialized. If
no bytes are read the value is set to zero. Pass
NULL for this parameter if you do not need to
know how many bytes were read.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrFileEOF The end of the file has been reached.

vfsErrFilePermissionDenied
Read permission is not enabled for this file.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1109

vfsErrIsADirectory
The specified file reference is for a directory
instead of a file. This is an invalid operation on
a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Comments The file system does not use DmWrite and cannot be used to read
data into the storage heap.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileReadData, VFSFileWrite,
VFSImportDatabaseFromFile

VFSFileReadData

Purpose Read data from a file into a chunk of memory in the storage heap.
This function only operates on files and cannot be used with
directories; use VFSDirEntryEnumerate to explore the contents
of a directory.

Declared In VfsMgr.h

Prototype Err VFSFileReadData (FileRef fileRef,
UInt32 numBytes, void *bufBaseP, UInt32 offset,
UInt32 *numBytesReadP)

Parameters -> fileRef File reference returned in VFSFileOpen.

-> numBytes Number of bytes to read.

<- bufBaseP Pointer to the destination chunk in the storage
heap where the data is to be stored. This
pointer must be obtained through the
appropriate call to the Memory Manager API.

-> offset Offset, in bytes, within the bufBaseP chunk
where the data is to be written.

Virtual Fi le System Manager
VFS Manager Functions

1110 Palm OS Programmer’s API Reference

<- numBytesReadP
Pointer to an unsigned integer that reflects the
number of bytes actually read. This value is set
on return and does not need to be initialized. If
no bytes are read, the value is set to zero. Pass
NULL for this parameter if you do not need to
know how many bytes were read.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrFileEOF The end of the file has been reached.

vfsErrFilePermissionDenied
Read permission is not enabled for this file.

vfsErrIsADirectory
The specified file reference is for a directory
instead of a file. This is an invalid operation on
a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Comments When data is read from an external card with VFSFileReadData,
it is copied into a chunk of memory in the storage heap. This chunk
must be allocated by the application before the call to
VFSFileReadData. This function calls DmWrite to put the data in
the storage heap.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileRead, VFSFileWrite

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1111

VFSFileRename

Purpose Rename a closed file or directory. This function cannot be used to
move a file to another directory within the file system.

Declared In VfsMgr.h

Prototype Err VFSFileRename (UInt16 volRefNum,
const Char *pathNameP, const Char *newNameP)

Parameters -> volRefNum Volume reference number returned from
VFSVolumeEnumerate.

-> pathNameP Pointer to the full path of the file or directory to
be renamed.

-> newNameP Pointer to the new filename. Note that this is
the name of the file only and does not include
the path to the file.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrBadName The name provided in either pathNameP or
newNameP is invalid. This is also returned if the
string pointed to by newNameP is a path, rather
than a filename.

vfsErrFileAlreadyExists
A file with the new name already exists in this
location.

vfsErrFileNotFound
The source file could not be found.

vfsErrFilePermissionDenied
Write permission is not enabled for this file.

Virtual Fi le System Manager
VFS Manager Functions

1112 Palm OS Programmer’s API Reference

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

vfsErrVolumeBadRef
The volume has not been mounted.

vfsErrVolumeFull
There is not enough space left on the volume.

Comments WARNING! This function invalidates directory enumeration. You
cannot continue enumerating files after renaming one of them
with this function. If you need to operate on additional files in the
directory, you must first restart the enumeration.

Example Below is an example of how to use VFSFileRename. Note that the
renamed file remains in the /PALM/Programs directory;
VFSFileRename can’t be used to move files from one directory to
another.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1113

// volRefNum must have been previously defined; most likely,
// it was returned by VFSVolumeEnumerate

err = VFSFileRename(volRefNum, "/PALM/Programs/foo.prc”,
 "bar.prc");
if (err != errNone) {
 // handle error...
}

Compatibility Implemented only if the VFS Manager Feature Set is present.

VFSFileResize

Purpose Change the size of an open file. This function only operates on files
and cannot be used with directories.

Declared In VfsMgr.h

Prototype Err VFSFileResize (FileRef fileRef,
UInt32 newSize)

Parameters -> fileRef File reference returned from VFSFileOpen.

-> newSize The desired new size of the file. This can be
larger or smaller then the current file size.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrIsADirectory
The specified file reference points to a directory
instead of a file. This is an invalid operation on
a directory.

Virtual Fi le System Manager
VFS Manager Functions

1114 Palm OS Programmer’s API Reference

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

vfsErrVolumeFull
There is not enough space left on the volume.

Comments The location of the file pointer is undefined after a call to this
function.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileSize

VFSFileSeek

Purpose Set the position within an open file from which to read or write. This
function only operates on files and cannot be used with directories.

Declared In VfsMgr.h

Prototype Err VFSFileSeek (FileRef fileRef,
FileOrigin origin, Int32 offset)

Parameters -> fileRef File reference returned from VFSFileOpen.

-> origin Origin to use when calculating the new
position. The offset parameter indicates the
desired new position relative to this origin,
which can be one of the following:

vfsOriginBeginning
The beginning of the file.

vfsOriginCurrent
The current position within the file.

vfsOriginEnd
The end of the file. Only negative offsets
are allowed when origin is set to
vfsOriginEnd.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1115

-> offset Offset, either positive or negative, from the
origin to which the current position should be
set. A value of zero (0) positions you at the
specified origin.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrFileEOF The file pointer is at the end of file.

vfsErrIsADirectory
The specified file reference points to a directory
instead of a file. This is an invalid operation on
a directory.

sysErrParamErr The specified origin is not one of the defined
constants.

Comments During a call to this function, if the resulting position would be
beyond the end of the file, it sets the position to the end of the file.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileSize, VFSFileTell

VFSFileSetAttributes

Purpose Change the attributes of an open file or directory.

Declared In VfsMgr.h

Prototype Err VFSFileSetAttributes (FileRef fileRef,
UInt32 attributes)

Virtual Fi le System Manager
VFS Manager Functions

1116 Palm OS Programmer’s API Reference

Parameters -> fileRef File reference returned from VFSFileOpen.

-> attributes Attributes to associate with the file or directory.
See File and Directory Attributes for a list of
values you can use when setting this
parameter:

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

sysErrParamErr One of the parameters is invalid.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Comments NOTE: You cannot use this function to set the
vfsFileAttrDirectory or vfsFileAttrVolumeLabel
attributes. The vfsFileAttrDirectory is set when you call
VFSDirCreate. The vfsFileAttrVolumeLabel is set when
you call VFSVolumeSetLabel. This function may fail when
setting other attributes, depending on the underlying file system.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileGetAttributes, VFSFileSetDate

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1117

VFSFileSetDate

Purpose Changes the dates on an open file or directory.

Declared In VfsMgr.h

Prototype Err VFSFileSetDate (FileRef fileRef,
UInt16 whichDate, UInt32 date)

Parameters -> fileRef File reference returned in VFSFileOpen.

-> whichDate Specifies which date—creation, modification,
or last access—to modify. Supply one of the
following values:

vfsFileDateCreated

vfsFileDateModified

vfsFileDateAccessed

Note that not all file systems are required to
support the above dates. If the supplied date
type is not supported by the file system,
VFSFileGetDate returns
expErrUnsupportedOperation.

-> date The new date. This field should be expressed in
the standard Palm OS date format — the
number of seconds since midnight (00:00:00)
January 1, 1904.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

expErrUnsupportedOperation
The specified date type is not supported by the
underlying file system.

sysErrParamErr The whichDate parameter is not one of the
defined constants.

Virtual Fi le System Manager
VFS Manager Functions

1118 Palm OS Programmer’s API Reference

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrFilePermissionDenied
Write permission is not enabled for this file.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileGetDate, VFSFileSetAttributes

VFSFileSize

Purpose Obtain the size of an open file. This function only operates on files
and cannot be used with directories.

Declared In VfsMgr.h

Prototype Err VFSFileSize (FileRef fileRef,
UInt32 *fileSizeP)

Parameters -> fileRef File reference returned from VFSFileOpen.

<- fileSizeP Pointer to the size of the open file.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrIsADirectory
The specified file reference points to a directory
instead of a file. This is an invalid operation on
a directory.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1119

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileResize, VFSFileTell, VFSVolumeSize

VFSFileTell

Purpose Get the current position of the file pointer within an open file. This
function only operates on files and cannot be used with directories.

Declared In VfsMgr.h

Prototype Err VFSFileTell (FileRef fileRef,
UInt32 *filePosP)

Parameters -> fileRef File reference returned from VFSFileOpen.

<- filePosP Pointer to the current file position.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrIsADirectory
The specified file reference points to a directory
instead of a file. This is an invalid operation on
a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Virtual Fi le System Manager
VFS Manager Functions

1120 Palm OS Programmer’s API Reference

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileSeek, VFSFileSize

VFSFileWrite

Purpose Write data to an open file. This function only operates on files and
cannot be used with directories.

Declared In VfsMgr.h

Prototype Err VFSFileWrite (FileRef fileRef,
UInt32 numBytes, const void *dataP,
UInt32 *numBytesWrittenP)

Parameters -> fileRef File reference returned from VFSFileOpen.

-> numBytes The number of bytes to write.

-> dataP Pointer to the data that is to be written.

<- numBytesWrittenP
Pointer to an unsigned integer that reflects the
number of bytes actually written. This value is
set on return and does not need to be
initialized. If no bytes are written the value is
set to zero. Pass NULL for this parameter if you
do not need to know how many bytes were
written.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrFilePermissionDenied
Write permission is not enabled for this file.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1121

vfsErrIsADirectory
The specified file reference points to a directory
instead of a file. This is an invalid operation on
a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

vfsErrVolumeFull
There is not enough space left on the volume.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSExportDatabaseToFile,
VFSExportDatabaseToFileCustom, VFSFileRead,
VFSFileReadData

VFSGetDefaultDirectory

Purpose Determine the default location on the given volume for files of a
particular type.

Declared In VfsMgr.h

Prototype Err VFSGetDefaultDirectory (UInt16 volRefNum,
const Char *fileTypeStr, Char *pathStr,
UInt16 *bufLenP)

Parameters -> volRefNum Volume reference number returned from
VFSVolumeEnumerate.

-> fileTypeStr Pointer to the requested file type, as a null-
terminated string. The file type may either be a
MIME media type/subtype pair, such as
"image/jpeg", “text/plain”, or “audio/basic”;
or a file extension, such as “.jpeg.”

<- pathStr Pointer to the buffer which receives the default
directory path for the requested file type.

Virtual Fi le System Manager
VFS Manager Functions

1122 Palm OS Programmer’s API Reference

<-> bufLenP Pointer to the size of the path. Set this to the
size of pathStr buffer on input. Reflects the
number of bytes copied to pathStr on output.

Result Returns one of the following error codes:

errNone No error.

vfsErrBadName There is no default directory registered for the
requested file type.

vfsErrBufferOverflow
A match was found, but the pathStr buffer is
too small to hold the resulting path string. A
partial path is returned in pathStr.

vfsErrFileNotFound
No match was found for the specified volume.
The error could have occurred with either the
media type specified for this volume or the file
type requested.

Comments This function returns the complete path to the default directory
registered for the specified file type. A default directory can be
registered for each type of media supported. The directory should
be registered under media and file type. Note that this directory is
typically a “root” directory for the file type; any subdirectories
under this root directory should also be searched for files of the
appropriate type.

This function can be used by an image viewer application, for
example, to find the directory containing images without having to
know what type of media the volume was on. This could be
“/DCIM”, “/images”, or something else depending on the type of
media.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSDirEntryEnumerate, VFSRegisterDefaultDirectory,
VFSUnregisterDefaultDirectory

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1123

VFSImportDatabaseFromFile

Purpose Creates a database from a .pdb or .prc file on an external storage
card.

Declared In VfsMgr.h

Prototype Err VFSImportDatabaseFromFile (UInt16 volRefNum,
const Char *pathNameP, UInt16 *cardNoP,
LocalID *dbIDP)

Parameters -> volRefNum Volume on which the source file resides.

-> pathNameP Pointer to the full path and name of the source
file.

<- cardNoP Pointer to a variable that receives the card
number of the newly-created database. If the
database already resides in the storage heap,
the card number of the existing database is
returned along with the error
dmErrAlreadyExists.

<- dbIDP Pointer to a variable that receives the database
ID of the new database. If the database already
resides in the storage heap, the database ID of
the existing database is returned along with the
error dmErrAlreadyExists.

Result Returns one of the following error codes:

errNone No error.

dmErrAlreadyExists
The .prc or .pdb file already exists in the
storage heap. In this case the cardNoP and
dbIDP are set to point to the existing file.

expErrNotEnoughPower
There is insufficient battery power to complete
the requested operation.

Virtual Fi le System Manager
VFS Manager Functions

1124 Palm OS Programmer’s API Reference

vfsErrBadName The path name specified in pathNameP is not
valid.

Comments This utility function imports a .pdb or .prc file resident on an
external storage card into a new database in the storage heap. It first
calls VFSFileOpen to open the file specified in pathNameP.
Assuming that a corresponding .prc or .pdb does not already
exist in the storage heap, VFSImportDatabaseFromFile calls
the Exchange Manager function ExgDBRead with an internal
callback function for importing a file to the Data Manager. The
Exchange Manager makes repeated calls to this function, which
passes the data back in blocks. Once the file has been successfully
imported, the owner (the imported file, if it’s an executable, or the
associated application if it is not) is sent a
sysAppLaunchCmdSyncNotify launch code to make it aware of
the new database.

This function doesn’t provide any progress indication to the user. If
you need to provide feedback to the user as the file import
progresses, use VFSImportDatabaseFromFileCustom instead.

This function is used, for example, to copy applications from a
storage card to main memory.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSExportDatabaseToFile, VFSFileRead

VFSImportDatabaseFromFileCustom

Purpose Create a database from the specified .pdb or .prc file on an
external storage card. This function differs from

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1125

VFSImportDatabaseFromFile in that it allows you to track the
progress of the import operation.

Declared In VfsMgr.h

Prototype Err VFSImportDatabaseFromFileCustom
(UInt16 volRefNum, const Char *pathNameP,
UInt16 *cardNoP, LocalID *dbIDP,
VFSImportProcPtr importProcP, void *userDataP)

Parameters -> volRefNum Volume on which the source file resides.

-> pathNameP Pointer to the full path and name of the source
file.

<- cardNoP Pointer to the variable that receives the card
number of the newly-created database. If the
database already resides in the storage heap,
the card number of the existing database is
returned along with the error
dmErrAlreadyExists.

<- dbIDP Pointer to the variable that receives the
database ID of the new database. If the
database already resides in the storage heap,
the database ID of the existing database is
returned along with the error
dmErrAlreadyExists.

-> importProcP User-defined callback function that tracks the
progress of the import. This function should
allow the user to cancel the import. Pass NULL
if you don’t have a progress callback function.
See VFSImportProcPtr for the requirements
of this function.

Virtual Fi le System Manager
VFS Manager Functions

1126 Palm OS Programmer’s API Reference

-> userDataP Pointer to any data you want to pass to the
callback function specified in importProcP.
This information is not used internally by the
VFS Manager. Pass NULL if you don’t have a
progress callback function, or if that function
doesn’t need any such data.

Result Returns one of the following error codes:

errNone No error

vfsErrBadName The path name specified in pathNameP is not
valid.

expErrNotEnoughPower
The power required to import a database is not
available.

dmErrAlreadyExists
The .prc or .pdb file already exists in main
memory. In this case the cardNoP and dbIDP
are set to point to the existing file.

Comments This function is similar to VFSImportDatabaseFromFile in that
it imports a .pdb or .prc file on an external storage card into a
new database on the storage heap. It extends the functionality by
allowing you to specify a callback function that tracks the progress
of the export. It first calls VFSFileOpen to open the file specified in
pathNameP. If a corresponding .prc or .pdb does not already
exist in main memory, it calls the Exchange Manager function
ExgDBRead with an internal callback function for importing the file
from the Data Manager. The Exchange Manager makes repeated
calls to this function, which receives the data back in blocks. The
progress tracker, if one has been specified, is also called every time a
new chunk of data is passed back. Once the file has been
successfully imported, the owner (the imported file, if it’s an
executable, or the associated application if it is not) is sent a
sysAppLaunchCmdSyncNotify launch code to make it aware of
the new database.

This function is used, for example, to copy applications from a
storage card to main memory.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1127

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSFileRead, VFSExportDatabaseToFileCustom

VFSInstallFSLib

Purpose Install a file system library so that the VFS Manager can use it.

Declared In VfsMgr.h

Prototype Err VFSInstallFSLib (UInt32 creator,
UInt16 *fsLibRefNumP)

Parameters -> creator Creator ID of the database containing the file
system library to be installed.

<- fsLibRefNumP
Pointer to the reference number for the newly
installed file system library. Supply NULL for
this parameter if you don’t need the library
reference number.

Result If the file system library was loaded and installed without error,
errNone is returned. Any error generated by the underlying file
system while opening the file system library or determining its type
will be returned from VFSInstallFSLib. Other errors that can be
generated during the file system library installation process include:

expErrIncompatibleAPIVer
The file system library has an incompatible API
version.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

memErrNotEnoughSpace, memErrChunkNotLocked, or
memErrChunkLocked
A memory problem occurred while inserting
the library reference into the list of installed
libraries.

Virtual Fi le System Manager
VFS Manager Functions

1128 Palm OS Programmer’s API Reference

sysErrLibNotFound, sysErrNoFreeRAM,
sysErrNoFreeLibSlots (or some other
error returned from the library’s install entry
point)
An error occurred while loading the library.

Comments This function calls SysLibLoad to load the file system library into
the library table. Once loaded the appropriate file system is asked to
open the library. At boot time VFSInstallFSLib is called
internally by the Expansion Manager to load all installed file system
libraries and initialize them for use.

VFSInstallFSLib is not normally called by applications.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSRemoveFSLib

VFSRegisterDefaultDirectory

Purpose Registers a specific directory as the default location for files of a
given type on a particular kind of external storage card. This
function is generally called by a slot driver for files and media types
that are supported by that slot driver.

Declared In VfsMgr.h

Prototype Err VFSRegisterDefaultDirectory
(const Char *fileTypeStr, UInt32 mediaType,
const Char *pathStr)

Parameters -> fileTypeStr Pointer to the file type to register. This is a null-
terminated string that can either be a MIME
media type/subtype pair, such as “image/
jpeg”, “text/plain”, or “audio/basic”; or a file
extension, such as “.jpeg”.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1129

-> mediaType Type of card media for which the default
directory is being associated. See Defined
Media Types in the Expansion Manager
chapter for the list of accepted values.

-> pathStr Pointer to the default directory path to be
associated with the specified file type. This
string must be null-terminated, and must be the
full path to the directory.

Result Returns one of the following error codes:

errNone No error.

sysErrParamErr Either the fileTypeStr parameter is NULL or
the pathStr parameter is NULL.

vfsErrFileAlreadyExists
A default directory has already been registered
for this file type on the specified card media
type.

Virtual Fi le System Manager
VFS Manager Functions

1130 Palm OS Programmer’s API Reference

Comments This function first verifies that a default directory has not already
been registered for the specified combination of file type and media
type, and returns vfsErrFileAlreadyExists if one has been
registered. To change an existing entry in the registry, you must first
remove the existing entry with a call to
VFSUnregisterDefaultDirectory before re-registering it with
VFSRegisterDefaultDirectory.

The specified directory registered for a given file type is intended to
be the “root” default directory. If a given default directory has one
or more subdirectories, applications should also search those
subdirectories for files of the appropriate type.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSGetDefaultDirectory

VFSRemoveFSLib

Purpose Remove a file system library from the library table, so that the VFS
Manager can no longer use it.

Declared In VfsMgr.h

Prototype Err VFSRemoveFSLib (UInt16 fsLibRefNum)

Parameters -> fsLibRefNum Library reference number of the file system
library to remove from the library table.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrNoFileSystem
VFS Manager can not find the file system
specified in fsLibRefNum.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1131

Comments This function is not normally called by applications. It unmounts
any volumes that the specified file system may have mounted. It
then closes the library and removes it from the library table with
SysLibRemove.

Compatibility Implemented only if the VFS Manager Feature Set is present.

VFSUnregisterDefaultDirectory

Purpose Sever the association between a particular file type and a default
directory for a given type of card media.

Declared In VfsMgr.h

Prototype Err VFSUnregisterDefaultDirectory
(const Char *fileTypeStr, UInt32 mediaType)

Parameters -> fileTypeStr Pointer to the file type with which the default
directory is associated. This is a null-terminated
string that can either be a MIME media type/
subtype pair, such as “image/jpeg”, “text/
plain”, or “audio/basic”; or a file extension,
such as “.jpeg”.

-> mediaType Type of card media for which the default
directory is associated. See Defined Media
Types in the Expansion Manager chapter for
the list of accepted values.

Result Returns one of the following error codes:

errNone No error.

sysErrParamErr The fileTypeStr parameter is NULL.

vfsErrFileNotFound
A default directory could not be found in the
registry for the specified file and media type.

Virtual Fi le System Manager
VFS Manager Functions

1132 Palm OS Programmer’s API Reference

Comments NOTE: Caution is advised when using this function, since you
may remove another application’s registration, causing data to
mysteriously disappear from those applications.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSGetDefaultDirectory, VFSRegisterDefaultDirectory

VFSVolumeEnumerate

Purpose Enumerate the mounted volumes.

Declared In VfsMgr.h

Prototype Err VFSVolumeEnumerate (UInt16 *volRefNumP,
UInt32 *volIteratorP)

Parameters <- volRefNumP Pointer to the reference number for the volume
represented by the current enumeration, or
vfsInvalidVolRef if there are no more
volumes to be enumerated or an error occurred.

<-> volIteratorP
Pointer to a variable that holds the index of the
current enumeration. Set the variable to
vfsIteratorStart prior to the first iteration.
Each call to VFSVolumeEnumerate updates
the variable to the index of the next volume.
When the last volume is reached, the variable
pointed to by volIteratorP is set to
vfsIteratorStop.

Result Returns one of the following error codes:

errNone No error

expErrEnumerationEmpty
There are no volumes to enumerate.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1133

sysErrParamErr The value pointed to by volIteratorP is not
valid. This error is also returned when
volIteratorP is vfsIteratorStop.

Comments This function returns a pointer to the volume reference number in
the volRefNumP parameter. In order to traverse all volumes you
must make repeated calls to VFSVolumeEnumerate inside a loop.
Before the first call to VFSVolumeEnumerate, the variable pointed
to by volIteratorP should be initialized to
vfsIteratorStart. Each iteration then increments
volIteratorP to the next entry after updating volRefNumP.
When the last volume is reached, *volIteratorP is set to
vfsIteratorStop. If there are no volumes to enumerate,
VFSVolumeEnumerate returns expErrEnumerationEmpty
when first called.

Example Below is an example of how to use VFSVolumeEnumerate.

UInt16 volRefNum;
UInt32 volIterator = vfsIteratorStart;

while (volIterator != vfsIteratorStop) {
 err = VFSVolumeEnumerate(&volRefNum, &volIterator);
 if (err == errNone) {
 // Do something with the volRefNum
 } else {
 // handle error... possibly by
 // breaking out of the loop
 }
}

Compatibility Implemented only if the VFS Manager Feature Set is present.

Virtual Fi le System Manager
VFS Manager Functions

1134 Palm OS Programmer’s API Reference

VFSVolumeFormat

Purpose Format and mount the volume installed in a given slot.

Declared In VfsMgr.h

Prototype Err VFSVolumeFormat (UInt8 flags,
UInt16 fsLibRefNum,
VFSAnyMountParamPtr vfsMountParamP)

Parameters -> flags Flags that control how the volume should be
formatted. Currently, the only flag not reserved
is vfsMountFlagsUseThisFileSystem.
Pass this flag to cause the volume to be
formatted using the file system specified by
fsLibRefNum. Pass zero (0) to have the VFS
Manager attempt to format the volume using a
file system appropriate to the slot.

-> fsLibRefNum Reference number of the file system library for
which the volume should be formatted. This
number is obtained through a call to
SysLibFind with the name of the library you
want to use. If the flags field is not set to
vfsMountFlagsUseThisFileSystem, this
parameter is ignored.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1135

<->vfsMountParamP
Parameters to be used when formatting the
volume and when mounting the volume after it
has been formatted. Supply a pointer to either a
VFSSlotMountParamType or a
VFSPOSEMountParamType structure. Note
that you’ll need to cast your structure pointer to
a VFSAnyMountParamPtr. Set the
mountClass field to the appropriate value: if
you are mounting to an Expansion Manager
slot, set mountClass to
VFSMountClass_SlotDriver and initialize
slotLibRefNum and slotRefNum to the
appropriate values. See the descriptions of
VFSAnyMountParamType,
VFSSlotMountParamType, and
VFSPOSEMountParamType for information on
the fields that make up these data structures.

Result Returns one of the following error codes:

errNone No error.

expErrNotEnoughPower
There is insufficient battery power to format
and/or mount a volume.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Comments The slot driver currently only supports one volume per slot. If the
volume is successfully formatted and mounted, the reference
number of the mounted volume is returned in vfsMountParamP-
>volRefNum. If the format is unsuccessful or cancelled,
vfsMountParamP->volRefNum is set to vfsInvalidVolRef.

If vfsMountFlagsUseThisFileSystem is passed as a flag,
VFSVolumeFormat attempts to format the volume using the file
system library specified by fsLibRefNum. Typically the flag

Virtual Fi le System Manager
VFS Manager Functions

1136 Palm OS Programmer’s API Reference

parameter is not set. In this case VFSVolumeFormat tries to find a
compatible library to format the volume, as follows:

1. Check to see if the default file system library feature is set. If
it is, and if that file system is installed, it is used to format the
volume. You can set the default file system using FtrSet;
supply sysFileCVFSMgr for the feature creator, and
vfsFtrIDDefaultFS for the feature number.

2. Check to see if any of the installed file systems are natively
supported for the slot on which the VFS Manager is trying to
format. If one of them is, it is used to format the volume.

3. If none of the installed file systems can perform the format
using the slot’s native type, a dialog displays warning the
user that their media may become incompatible with other
devices if they continue with the format. The user may
continue or cancel the format. If the user chooses to continue,
VFSVolumeFormat formats the volume using the first file
system library that was installed.

When calling VFSVolumeFormat, the volume can either be
mounted or unmounted. The underlying file system library call
requires the volume to be unmounted. VFSVolumeFormat checks
to see if the volume is currently mounted and unmounts it, if
necessary, using VFSVolumeUnmount before making the file
system call. If the file system successfully formats the volume,
VFSVolumeFormat mounts it and posts a
sysNotifyVolumeMountedEvent notification.

Example The following code excerpt formats a volume on an Expansion
Manager slot using a compatible file system.

VFSSlotMountParamType slotParam;
UInt32 slotIterator = expIteratorStart;

slotParam.vfsMountParamP.mountClass =
 VFSMountClass_SlotDriver;
err = ExpSlotEnumerate(&slotParam.slotRefNum,
 &slotIterator);
err = ExpSlotLibFind(slotParam.slotRefNum,
 &slotParam.slotLibRefNum);

err = VFSVolumeFormat(NULL, NULL,
 (VFSAnyMountParamPtr) & slotParam);

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1137

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSVolumeMount

VFSVolumeGetLabel

Purpose Determine the volume label for a particular volume.

Declared In VfsMgr.h

Prototype Err VFSVolumeGetLabel(UInt16 volRefNum,
Char *labelP, UInt16 bufLen)

Parameters -> volRefNum Volume reference number returned from
VFSVolumeEnumerate.

<- labelP Pointer to a character buffer into which the
volume name is placed.

-> bufLen Length, in bytes, of the labelP buffer.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

vfsErrVolumeBadRef
The specified volume has not been mounted.

vfsErrBufferOverflow
The value specified in bufLen is not big
enough to receive the full volume label.

vfsErrNameShortened
There was an error reading the full volume
name. A shortened version is being returned.

Virtual Fi le System Manager
VFS Manager Functions

1138 Palm OS Programmer’s API Reference

Comments Volume reference numbers can change each time you mount a given
volume. To keep track of a particular volume, save the volume’s
label rather than its reference number. Volume labels can be up to
255 characters long. They can contain any normal character,
including spaces and lower case characters, in any character set as
well as the following special characters: $ % ' - _ @ ~ ` ! () ^ # & + , ;
= [].

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSVolumeSetLabel

VFSVolumeInfo

Purpose Get information about the specified volume.

Declared In VfsMgr.h

Prototype Err VFSVolumeInfo(UInt16 volRefNum,
VolumeInfoType *volInfoP)

Parameters -> volRefNum Volume reference number returned from
VFSVolumeEnumerate.

<- volInfoP Pointer to the structure that receives the
volume information for the specified volume.
See VolumeInfoType for more information on
the fields in this data structure.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1139

vfsErrVolumeBadRef
The specified volume reference number is
invalid.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSVolumeGetLabel, VFSVolumeSize

VFSVolumeMount

Purpose Mount the card’s volume on the specified slot.

Declared In VfsMgr.h

Prototype Err VFSVolumeMount(UInt8 flags,
UInt16 fsLibRefNum,
VFSAnyMountParamPtr vfsMountParamP)

Parameters -> flags Flags that control how the volume should be
mounted. Currently, the only flag not reserved
is vfsMountFlagsUseThisFileSystem.
Pass this flag to cause the volume to be
mounted using the file system specified by
fsLibRefNum. Pass zero (0) to have the VFS
Manager attempt to mount the volume using a
file system appropriate for the slot.

-> fsLibRefNum Reference number of the file system library for
which the volume should be mounted. This
number is obtained through a call to
SysLibFind with the name of the library you
want to use. If the flags field is not set to
vfsMountFlagsUseThisFileSystem, this
parameter is ignored.

Virtual Fi le System Manager
VFS Manager Functions

1140 Palm OS Programmer’s API Reference

<->vfsMountParamP
Parameters to be used when mounting the
volume after it has been formatted. Supply a
pointer to either a VFSSlotMountParamType
or a VFSPOSEMountParamType structure.
Note that you’ll need to cast your structure
pointer to a VFSAnyMountParamPtr. Set the
mountClass field to the appropriate value: if
you are mounting to an Expansion Manager
slot, set mountClass to
VFSMountClass_SlotDriver and initialize
slotLibRefNum and slotRefNum to the
appropriate values. See the descriptions of
VFSAnyMountParamType,
VFSSlotMountParamType, and
VFSPOSEMountParamType for information on
the fields that make up these data structures.

Result Returns one of the following error codes:

errNone No error.

expErrNotEnoughPower
There is insufficient battery power to mount a
volume.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

sysErrParamErr vfsMountParamP was initialized to NULL.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

vfsErrVolumeStillMounted
The volume is already mounted with a
different file system than was specified in
fsLibRefNum.

Comments The slot driver only supports one volume per slot. The reference
number of the mounted volume is returned in vfsMountParamP-
>volRefNum. If vfsMountFlagsUseThisFileSystem is passed

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1141

as a flag, VFSVolumeMount attempts to mount the volume using
the file system library specified by fsLibRefNum. Otherwise
VFSVolumeMount tries to find a file system library which is able to
mount the volume. If none of the installed file system libraries is
able to mount the volume, VFSVolumeMount attempts to re-format
the volume (using VFSVolumeFormat) and then mount it. If
VFSVolumeMount manages to successfully mount the volume, it
ends by posting a sysNotifyVolumeMountedEvent notification.

After VFSVolumeMount successfully mounts a volume, it
broadcasts sysNotifyVolumeMountedEvent. The VFS Manager,
upon being notified of this event, searches the newly-mounted
volume for /PALM/start.prc. If start.prc is found in the /
PALM directory, the VFS Manager copies it to main memory and
launches it. If start.prc is not found, the VFS Manager switches to
the Launcher instead. This behavior can be overridden; see Card
Insertion and Removal in Chapter 7, “Expansion,” Palm OS
Programmer’s Companion, vol. I.

When VFSVolumeMount is called, if the volume is already
mounted with a different file system than was specified in
fsLibRefNum, a vfsErrVolumeStillMounted error is returned.
If the volume is already mounted with the same file system that is
specified in fsLibRefNum, or if
vfsMountFlagsUseThisFileSystem is not set,
VFSVolumeMount returns errNone and sets volRefNumP to the
reference number of the currently mounted volume.

Example The following code excerpt mounts a volume on an Expansion
Manager slot using a compatible file system.

VFSSlotMountParamType slotParam ;
UInt32 slotIterator = expIteratorStart;

slotParam.vfsMountParamP.mountClass =
 VFSMountClass_SlotDriver;
err = ExpSlotEnumerate(&slotParam.slotRefNum,
 &slotIterator);
err = ExpSlotLibFind(slotParam.slotRefNum,
 &slotParam.slotLibRefNum);

err = VFSVolumeMount(NULL, NULL,
 (VFSAnyMountParamPtr) & slotParam);

Virtual Fi le System Manager
VFS Manager Functions

1142 Palm OS Programmer’s API Reference

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSVolumeFormat, VFSVolumeUnmount

VFSVolumeSetLabel

Purpose Changes the volume label for a mounted volume.

Declared In VfsMgr.h

Prototype Err VFSVolumeSetLabel(UInt16 volRefNum,
const Char *labelP)

Parameters -> volRefNum Volume reference number returned from
VFSVolumeEnumerate.

-> labelP Pointer to the label to be applied to the
specified volume. This string must be null-
terminated.

Result Returns one of the following error codes:

errNone No error

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrBadName The supplied label is invalid.

vfsErrNameShortened
Indicates that the label name was too long. A
shortened version of the label name was used
instead.

vfsErrVolumeBadRef
The specified volume has not been mounted.

Comments Volume labels can be up to 255 characters long. They can contain
any normal character, including spaces and lower case characters, in
any character set as well as the following special characters: $ % ' - _
@ ~ ` ! () ^ # & + , ; = []. See Naming Volumes in Chapter 7,

Virtual Fi le System Manager
VFS Manager Functions

Palm OS Programmer’s API Reference 1143

“Expansion,”Palm OS Programmer’s Companion, vol. I for guidelines
on naming.

NOTE: Most clients should not need to call this function. This
function may create or delete a file in the root directory, which
would invalidate any current calls to VFSDirEntryEnumerate.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSVolumeGetLabel

VFSVolumeSize

Purpose Determine the total amount of space on a volume, as well as the
amount that is currently being used.

Declared In VfsMgr.h

Prototype Err VFSVolumeSize(UInt16 volRefNum,
UInt32 *volumeUsedP, UInt32 *volumeTotalP)

Parameters -> volRefNum Volume reference number returned from
VFSVolumeEnumerate.

<- volumeUsedP Pointer to a variable that receives the amount of
space, in bytes, in use on the volume.

<- volumeTotalP
Pointer to a variable that receives the total
amount of space on the volume, in bytes.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

Virtual Fi le System Manager
VFS Manager Functions

1144 Palm OS Programmer’s API Reference

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

vfsErrVolumeBadRef
The specified volume has not been mounted.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSVolumeInfo

VFSVolumeUnmount

Purpose Unmount the given volume.

Declared In VfsMgr.h

Prototype Err VFSVolumeUnmount(UInt16 volRefNum)

Parameters -> volRefNum Volume reference number returned from
VFSVolumeEnumerate.

Result Returns one of the following error codes:

errNone No error.

expErrNotOpen The file system library necessary for this call
has not been installed or has not been opened.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate
file system to handle the request.

vfsErrVolumeBadRef
The specified volume has not been mounted.

Comments This function closes any opened files and posts a
sysNotifyVolumeUnmountedEvent notification once the file
system is successfully unmounted.

Virtual Fi le System Manager
Application-Defined Functions

Palm OS Programmer’s API Reference 1145

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSVolumeMount

Application-Defined Functions

VFSExportProcPtr

Purpose User-defined callback function supplied to
VFSExportDatabaseToFileCustom that tracks the progress of
the export.

Declared In VfsMgr.h

Prototype typedef Err (*VFSExportProcPtr)
(UInt32 totalBytes, UInt32 offset,
void *userDataP)

Parameters totalBytes The total number of bytes being exported.

offset Undefined.

userDataP Pointer to any application-specific data passed
to the callback function. This pointer may be
NULL if your callback doesn’t need any such
data.

Result Your progress tracker should allow the user to abort the export.
Return errNone if the export should continue, or any other value to
abort the export process. If you return a value other than errNone,
that value will be returned by
VFSExportDatabaseToFileCustom.

Comments See the Progress Dialogs section in the Palm OS Programmer’s
Companion, vol. I for more information on writing a progress tracker.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSImportProcPtr

Virtual Fi le System Manager
Application-Defined Functions

1146 Palm OS Programmer’s API Reference

VFSImportProcPtr

Purpose User-defined callback function supplied to
VFSImportDatabaseFromFileCustom that tracks the progress
of the import.

Declared In VfsMgr.h

Prototype typedef Err (*VFSImportProcPtr)
(UInt32 totalBytes, UInt32 offset,
void *userDataP)

Parameters totalBytes The total number of bytes being imported.

offset The number of bytes that have already been
imported. This value, along with the total
number of bytes being imported, allows you to
inform the user how far along the import is.

userDataP Pointer to NY application-specific data passed
to the callback function. This pointer may be
NULL if your callback doesn’t need any such
data.

Result Your progress tracker should allow the user to abort the import.
Return errNone if the import should continue, or any other value
to abort the import process. If you return a value other than
errNone, that value will be returned by
VFSImportDatabaseFromFileCustom.

Comments See the Progress Dialogs section in the Palm OS Programmer’s
Companion, vol. I for more information on writing a progress tracker.

Compatibility Implemented only if the VFS Manager Feature Set is present.

See Also VFSExportProcPtr

Palm OS Programmer’s API Reference 1147

54
Windows
This chapter provides information about windows by discussing
these topics:

• Window Data Structures

• Window Constants

• Window Functions

No resources are associated with window objects.

The header file Window.h declares the API that this chapter
describes. For more information on windows, see the section “Text”
in the Palm OS Programmer’s Companion, vol. I.

Window Data Structures

CustomPatternType
The CustomPatternType type holds an 8-by-8 bit pattern that is
one bit deep. Each byte specifies a row of the pattern. When
drawing, a pattern is tiled to fill a specified region. This pattern is
used by WinFillLine and WinFillRectangle.

The PatternType specifies the name of the current pattern.

typedef UInt8 CustomPatternType [8];

Compatibility In pre-3.5 systems, the CustomPatternType is an array of 4 16-bit
words. Note the size of this data type has not changed.

DrawStateType
The DrawStateType structure defines the current drawing state,
which is the Palm OS® implementation of a pen. This drawing state
is saved with WinPushDrawState and restored with
WinPopDrawState.

Windows
Window Data Structures

1148 Palm OS Programmer’s API Reference

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the DrawStateType structure. Never
access its structure members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct DrawStateType {
WinDrawOperation transferMode;
PatternType pattern;
UnderlineModeType underlineMode;
FontID fontId;
FontPtr font;
CustomPatternType patternData;
IndexedColorType foreColor;
IndexedColorType backColor;
IndexedColorType textColor;
UInt8 reserved;
RGBColorType foreColorRGB;
RGBColorType backColorRGB;
RGBColorType textColorRGB;
UInt16 coordinateSystem;
UInt16 reserved2;
Fixed16 scale;
Fixed16 ntvToActiveScale;
Fixed16 stdToActiveScale;
Fixed16 activeToStdScale;

} DrawStateType;

Windows
Window Data Structures

Palm OS Programmer’s API Reference 1149

Field Descriptions

transferMode The current transfer mode for color drawing.
See WinDrawOperation. Use
WinSetDrawMode to set this value.

pattern The name of the current pattern. See
PatternType. If set to customPattern, the
patternData field contains the actual
pattern. Use WinGetPatternType and
WinSetPatternType to retrieve and set this
value.

underlineMode The current underline mode. See
UnderlineModeType. Use
WinSetUnderlineMode to set this value.

fontId The ID of the current font. Use FntSetFont
to set this value.

font A pointer to the current font. Use
FntSetFont to set this value.

patternData The current pattern being used by the
WinFill functions if pattern is
customPattern. See
CustomPatternType. Use
WinGetPattern and WinSetPattern to
retrieve and set this value.

foreColor Index of the current color used for the
foreground. Use WinSetForeColor to set
this value. This field is only valid for indexed
color bitmaps.

backColor Index of the current color used for the
background. Use WinSetBackColor to set
this value. This field is only valid for indexed
color bitmaps.

textColor Index of the current color used for text. Use
WinSetTextColor to set this value. This
field is only valid for indexed color bitmaps.

Windows
Window Data Structures

1150 Palm OS Programmer’s API Reference

reserved Reserved for future use.

foreColorRGB RGB value of the current color used for the
foreground. Use WinSetForeColorRGB to
set this value. This field is only valid for Palm
OS 4.0 or later, and only valid for direct color
bitmaps.

backColorRGB RGB value of the current color used for the
background. Use WinSetBackColorRGB to
set this value. This field is only valid for Palm
OS 4.0 or later, and only valid for direct color
bitmaps.

textColorRGB RGB value of the current color used for text.
Use WinSetTextColorRGB to set this value.
This field is only valid for Palm OS 4.0 or
later, and only valid for direct color bitmaps.

coordinateSystemActive coordinate system.

reserved2 Reserved for future use.

scale A fixed point value used to convert from the
draw window’s active coordinate system to
native coordinates. This field is defined only if
the High-Density Display Feature Set is
present.

ntvToActiveScaleA fixed point value used to convert from the
native coordinate system to the draw
window’s active coordinate system. This field
is defined only if the High-Density Display
Feature Set is present.

Windows
Window Data Structures

Palm OS Programmer’s API Reference 1151

Compatibility This type is implemented only if 3.5 New Feature Set is present. The
scale, ntvToActiveScale, stdToActiveScale, and
activeToStdScale fields are defined only if the High-Density
Display Feature Set is present.

FrameBitsType
The FrameBitsType structure specifies attributes of a window’s
frame.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the FrameBitsType bit field. Never
access its bit field members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef union FrameBitsType {
 struct {
 UInt16 cornerDiam : 8;
 UInt16 reserved_3 : 3;
 UInt16 threeD : 1;
 UInt16 shadowWidth : 2;
 UInt16 width : 2;
 } bits;
 UInt16 word;
} FrameBitsType;

stdToActiveScaleA fixed point value used to convert from the
standard coordinate system to the draw
window’s active coordinate system. This field
is used internally to convert font metrics,
which are stored as standard coordinates.
This field is defined only if the High-Density
Display Feature Set is present.

activeToStdScaleThe inverse of stdToActive; the active-to-
standard scaling factor. This field is defined
only if the High-Density Display Feature Set
is present.

Windows
Window Data Structures

1152 Palm OS Programmer’s API Reference

Field Descriptions

FrameType
The FrameType type specifies a window frame style.

typedef UInt16 FrameType;

The FrameType can be set to one of the defined frame types shown
in the table below, or a custom frame type as defined by a
FrameBitsType structure.

cornerDiam Corner radius of frame; maximum is 38.

reserved_3 Reserved.

threeD Set this bit to draw a 3D button. This feature
is not currently supported.

shadowWidth Width of shadow.

width Frame width.

word Reserved.

Constant Value Description

noFrame 0 No frame

simpleFrame 1 Plain rectangular frame

rectangleFrame 1 Plain rectangular frame

simple3DFrame 0x0012 3D frame with width of 2. This frame type is
not supported.

roundFrame 0x0401 Round frame with width of 1.

boldRoundFrame 0x0702 Round frame with width of 2.

popupFrame 0x0205 Popup frame style with slight corner
roundness, width of 1 and shadow of 1.

dialogFrame 0x0302 Dialog frame style with slight corner
roundness and width of 2.

menuFrame popupFrame Same as popupFrame.

Windows
Window Data Structures

Palm OS Programmer’s API Reference 1153

IndexedColorType
The IndexedColorType type is used to specify a color by its index
value; that is, by its location in a color table. Color tables are defined
by the ColorTableType structure, which is declared in
Bitmap.h. The IndexedColorType can hold a 1, 2, 4, or 8-bit
index.

typedef UInt8 IndexedColorType;

Compatibility This type is implemented only if 3.5 New Feature Set is present.

PatternType
The PatternType enumerated type specifies a pattern for
drawing. This type is returned by WinGetPatternType and is
used as a parameter to the WinSetPatternType function.

typedef enum {
blackPattern,
whitePattern,
grayPattern,
customPattern,
lightGrayPattern,
darkGrayPattern

} PatternType;

Value Descriptions

blackPattern Pattern with all bits on.

whitePattern Pattern with all bits off.

grayPattern Pattern with alternating on and off bits.

customPattern Custom pattern specified by
CustomPatternType.

Windows
Window Data Structures

1154 Palm OS Programmer’s API Reference

These patterns all operate with current foreground and background
color instead of black and white. In effect, blackPattern is only
black if the current foreground color is black. whitePattern uses
the current background color. grayPattern and customPattern
uses a combination of background and foreground colors.

Patterns are expanded to the destination bit depth by the blitter
when drawing patterned lines and filled rectangles.

The three standard gray patterns—grayPattern,
lightGrayPattern, and darkGrayPattern—are always drawn
by the blitter using the screen density to improve the appearance of
gray fills. Custom patterns, however, are stretched as appropriate by
the blitter based on the destination density.

Compatibility The lightGrayPattern and darkGrayPattern values are
defined only if the High-Density Display Feature Set is present.

UnderlineModeType
The UnderlineModeType enumerated type specifies possible
values for the underline mode stored in DrawStateType.

lightGrayPattern Pattern with one out of four bits in each row
turned on. This value is defined only if the
High-Density Display Feature Set is
present.

darkGrayPattern Pattern with one out of four bits in each row
turned off. This value is defined only if the
High-Density Display Feature Set is
present.

Windows
Window Data Structures

Palm OS Programmer’s API Reference 1155

typedef enum { noUnderline, grayUnderline,
solidUnderline, colorUnderline }
UnderlineModeType;

Value Descriptions

Compatibility The solidUnderline and colorUnderline options are only
available in Palm OS 3.1 and higher.

WindowFlagsType
The WindowFlagsType specifies different window attributes.

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the WindowFlagsType bit field.
Access it only through the functions described below. Never
access its bit field members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct WindowFlagsType {
 UInt16 format:1;
 UInt16 offscreen:1;
 UInt16 modal:1;
 UInt16 focusable:1;
 UInt16 enabled:1;
 UInt16 visible:1;
 UInt16 dialog:1;
 UInt16 freeBitmap:1;

noUnderline No underline.

grayUnderline Underline is drawn using a
dotted line in the current
foreground color.

solidUnderline Underline is drawn using a solid
line in the foreground color.

colorUnderline Underline is drawn using a solid
line in the foreground color.

Windows
Window Data Structures

1156 Palm OS Programmer’s API Reference

 UInt16 reserved :8;
} WindowFlagsType;

Field Descriptions

Compatibility In OS versions previous to 3.5, the freeBitmap flag was not
present. Instead, a compressed flag was present, where 0 specified
uncompressed and 1 specified compressed. This compressed flag is
now part of the BitmapType.

format If set, use the genericFormat. If 0, use
screenFormat.
Screen format is the native format of the video
system; windows in this format can be copied to the
display faster. The generic format is device-
independent. A window cannot be enabled (that is,
accept pen input) unless it uses screen format.

offscreen If set, the window is offscreen. If 0, the window is
onscreen.

modal If set, the window is modal. If 0, the window is not
modal. You set this value when you create the
window. This value is returned by WinModal.

focusable If set, the window can accept the focus. If 0, the
window does not accept the focus. You set this value
when you create the window.

enabled If set, the window is enabled. If 0, the window is
disabled.

visible If set, the window is visible if it is onscreen. If 0, the
window is not visible.

dialog If set, the window is a form. If 0, the window is not a
form. The FrmInitForm function sets this value.

freeBitmap If set, free the bitmap when the window is freed. If 0,
retain the bitmap after the window is freed.

reserved Reserved for future use. Must be 0.

Windows
Window Data Structures

Palm OS Programmer’s API Reference 1157

WindowFormatType
Use this enumeration to specify the window format when creating
an offscreen window with the WinCreateOffscreenWindow
function.

typedef enum {
screenFormat = 0,
genericFormat,
nativeFormat

} WindowFormatType;

Field Values

Compatibility WindowFormatType is defined only if the High-Density Display
Feature Set is present.

WindowType
The WindowType structure represents a window.

screenFormat The window’s bitmap is allocated using the
hardware screen’s depth, but for backward
compatibility the bitmap associated with the
offscreen window is always low density, and the
window always uses a coordinate system that
directly maps offscreen pixels to coordinates.

genericFormatLike screenFormat, except that
genericFormat offscreen windows do not
accept pen input.

nativeFormat Reflects the actual hardware screen format in all
ways, including screen depth, density, and pixel
format. Applications must always use the graphic
API when drawing to a nativeFormat offscreen
window: directly accessing offscreen pixels will
produce undefined results. When using this
format, the width and height arguments must be
specified using the active coordinate system. Like
genericFormat, nativeFormat offscreen
windows do not accept pen input.

Windows
Window Data Structures

1158 Palm OS Programmer’s API Reference

WARNING! PalmSource, Inc. does not support or provide
backward compatibility for the WindowType structure. Access it
only through the functions described below. Never access its
structure members directly, or your code may break in future
versions. Use the information below for debugging purposes only.

typedef struct WindowType {
 Coord displayWidthV20;
 Coord displayHeightV20;
 void *displayAddrV20;
 WindowFlagsType windowFlags;
 RectangleType windowBounds;
 AbsRectType clippingBounds;
 BitmapPtr bitmapP;
 FrameBitsType frameType;
 DrawStateType *drawStateP;
 struct WindowType *nextWindow;
} WindowType;

Field Descriptions

displayWidthV20 Width of the window in pre OS 3.5 devices. In
OS 3.5, use WinGetBounds to return the
window width.

displayHeightV20 Height of the window in pre OS 3.5 devices.
In OS 3.5, use WinGetBounds to return the
window height.

displayAddrV20 Pointer to the window display memory buffer
in pre OS 3.5 devices. In OS 3.5 or later, call
WinGetBitmap and then BmpGetBits to
obtain the window’s memory buffer.

WARNING! Writing directly to screen
memory will not be supported in all devices.

windowFlags Window attributes (see WindowFlagsType).

Windows
Window Data Structures

Palm OS Programmer’s API Reference 1159

Compatibility In OS versions previous to 3.5, this structure is slightly different.
Specifically, the bitmapP field is instead a viewOrigin field of
type PointType and specified the window origin point on the
display. The drawStateP was named gstate and was of type
GraphicStatePtr. The complete definition is shown below:

typedef struct WinTypeStruct {
 Word displayWidth;
 Word displayHeight;
 VoidPtr displayAddr;
 WindowFlagsType windowFlags;
 RectangleType windowBounds;
 AbsRectType clippingBounds;
 PointType viewOrigin;
 FrameBitsType frameType;
 GraphicStatePtr gstate;
 struct WinTypeStruct *nextWindow;

windowBounds Display-relative bounds of the window. Use
WinGetBounds and WinSetBounds to
retrieve and set this value.

clippingBounds Bounds for clipping any drawing within the
window. Use WinGetClip and WinSetClip
to retrieve and set this value.

bitmapP Pointer to the window bitmap, which holds
the window’s contents. Use WinGetBitmap
to retrieve this value.

frameType Frame attributes; see FrameBitsType.

drawStateP Pointer to a state of the current transfer mode,
pattern mode, font, underline mode, and
colors. See DrawStateType.
Only one drawing state exists in the system.
Each window points to the same structure.

nextWindow Pointer to the next window in a linked list of
windows. This linked list of windows is called
the active window list. Do not change this
field.

Windows
Window Data Structures

1160 Palm OS Programmer’s API Reference

} WindowType;

WinDrawOperation
The WinDrawOperation enumerated type specifies the transfer
mode for color drawing. This type is used as a parameter to the
WinCopyRectangle and WinSetDrawMode functions.

typedef enum {winPaint, winErase, winMask,
winInvert, winOverlay, winPaintInverse,
winSwap} WinDrawOperation;

Value Descriptions

winPaint Write color-matched source pixels to the
destination. If a bitmap’s
hasTransparency flag is set, winPaint
behaves like winOverlay instead.

winErase Write backColor if the source pixel is
transparent.

winMask Write backColor if the source pixel is not
transparent.

winInvert Bitwise XOR the color-matched source pixel
onto the destination. This mode does not
honor the transparent color in any way.

winOverlay Write color-matched source pixel to the
destination if the source pixel is not
transparent. Transparent pixels are skipped.
For a 1-bit display, the “off” bits are
considered to be the transparent color. Note
that this definition of winOverlay is new
for Palm OS 5: in Palm OS 4.x, the
destination is set (only) where the source
pixels are “on.”

Windows
Window Data Structures

Palm OS Programmer’s API Reference 1161

Note that 2-bit, 4-bit, and 8-bit source bitmaps that don’t have a
color table inherit the system default color table for their given
depth. 1-bit sources (bitmap, text, and patterns) that don’t have a
color table are given a color table where entry 0 is the backColor
and entry 1 is the foreColor (textColor for text).

winSwap is not a color invert operation, although a pair of
winSwap operations will restore the original graphics data. This
mode is used by the OS to select and deselect areas of the screen. It
changes destination pixels matching the foreground color to the
background color, and changes destination pixels matching the
background color to the foreground color. It is a mode available for
rectangles, lines, and pixels, but not text or bitmaps. This mode
ignores the current pattern. The Transparent Color

As of Palm OS 4.0, bitmaps have a hasTransparency flag and
may designate a transparent color. These concepts are augmented
somewhat in Palm OS 5 to make the transfer modes more
consistent:

• Bitmaps that don’t specify any transparent color (text,
patterns, and version 0 bitmaps) are assumed to have a
transparent color of index 0 and the hasTransparency bit
is assumed to be false.

• When the hasTransparency flag is set and the transfer
mode is winPaint, only the non-transparent pixels are
copied to the destination. With text and patterns, the Palm
OS assumes that the “off” bits are the ones designated as
transparent and acts as if the hasTransparency flag is
always false. This assumption retains backwards
compatibility and unifies the use of transparency across all
source data.

winPaintInverse Invert the source pixel color and then
proceed as with winPaint.

winSwap Swap the backColor and foreColor
destination colors if the source is a pattern
(the type of pattern is disregarded). If the
source is a bitmap, then the bitmap is
transferred using winPaint mode instead.

Windows
Window Data Structures

1162 Palm OS Programmer’s API Reference

Compatibility This type is implemented only if 3.5 New Feature Set is present. In
earlier releases, this type is named ScrOperation and its values
begin with the prefix scr rather than win. WinDrawOperation is
fully compatible with ScrOperation. Transparency is only
available if 4.0 New Feature Set is present, and as mentioned in
“winSwap is not a color invert operation, although a pair of
winSwap operations will restore the original graphics data. This
mode is used by the OS to select and deselect areas of the screen. It
changes destination pixels matching the foreground color to the
background color, and changes destination pixels matching the
background color to the foreground color. It is a mode available for
rectangles, lines, and pixels, but not text or bitmaps. This mode
ignores the current pattern. The Transparent Color” the behavior of
the window drawing modes—winOverlay in particular—changes
slightly if 5.0 New Feature Set is present.

WinHandle
The WinHandle type is a pointer to a WindowType structure. Note
that this may change.

typedef WindowType *WinHandle;

WinLineType
The WinLineType structure defines a line.

typedef struct WinLineType {
 Coord x1;
 Coord y1;
 Coord x2;
 Coord y2;
} WinLineType;

Field Descriptions

x1 X coordinate of the first endpoint of the line.

y1 Y coordinate of the first endpoint of the line.

x2 X coordinate of the second endpoint of the line.

y2 Y coordinate of the second endpoint of the line.

Windows
Window Constants

Palm OS Programmer’s API Reference 1163

Compatibility This type is implemented only if 3.5 New Feature Set is present.

WinPtr
The WinPtr type is a pointer to a WindowType structure.

typedef WindowType *WinPtr;

Window Constants
If the 5.0 New Feature Set or the High-Density Display Feature Set
are present, the following constants are defined:

• Window Coordinate System Constants

New Window Coordinate System Constants
These constants specify the coordinate system to be used when
drawing within a given window:

Constant Value Description

kCoordinatesNative 0 Use the bitmap’s native coordinate system;
this enables a 1-to-1 correspondence
between coordinates and pixels.

kCoordinatesStandard 72 The coordinate system used by most
handhelds running Palm OS 4.0 and earlier.
On a single-density handheld, there is one
screen pixel per standard coordinate. On a
high-density screen, there is more than one
screen pixel per standard coordinate.

kCoordinatesOneAndAHalf 108 One and a half times the standard
coordinate system.

kCoordinatesDouble 144 Twice the standard coordinate system.

kCoordinatesTriple 216 Three times the standard coordinate
system.

kCoordinatesQuadruple 288 Four times the standard coordinate system.

Windows
Window Functions

1164 Palm OS Programmer’s API Reference

IMPORTANT: Not all coordinate systems listed in the above
table are supported in this version of the High-Density Display
Feature Set. For Palm OS 5, only kCoordinatesNative,
kCoordinatesStandard, and kCoordinatesDouble are
supported.

Pass one of these constants as an argument to
WinSetCoordinateSystem. These values are returned by
WinGetCoordinateSystem.

Compatibility Defined only if the High-Density Display Feature Set is present.

Window Functions

WinClipRectangle

Purpose Shrink the rectangle to make it fit within the clipping region of the
current draw window.

Declared In Window.h

Prototype void WinClipRectangle (RectangleType *rP)

Parameters <-> rP Pointer to a structure holding the rectangle to
clip. The rectangle returned is the intersection
of the rectangle passed and the clipping bounds
of the draw window.

Result Returns nothing.

Comments This function does not change the clipping rectangle of the window.
To modify the window’s clipping rectangle, use the WinSetClip
and WinResetClip functions.

Windows
Window Functions

Palm OS Programmer’s API Reference 1165

The draw window is the window to which all drawing functions
send their output. It is returned by WinGetDrawWindow.

See Also WinCopyRectangle, WinDrawRectangle,
WinEraseRectangle, WinGetClip

WinCopyRectangle

Purpose Copy a rectangular region from one place to another (either
between windows or within a single window).

Declared In Window.h

Prototype void WinCopyRectangle (WinHandle srcWin,
WinHandle dstWin, const RectangleType *srcRect,
Coord destX, Coord destY, WinDrawOperation mode)

Parameters -> srcWin Window from which the rectangle is copied. If
NULL, use the draw window.

-> dstWin Window to which the rectangle is copied. If
NULL, use the draw window.

-> srcRect Bounds of the region to copy.

-> destX Top bound of the rectangle in destination
window.

-> destY Left bound of the rectangle in destination
window.

-> mode The method of transfer from the source to the
destination window (see
WinDrawOperation).

Result Returns nothing.

Comments Copies the bits of the window inside the rectangle region.

If the destination bitmap is compressed, the mode parameter must
be winPaint, and the destination coordinates must be (0,0). If the
width of the destination rectangle is less than 16 pixels or if the

Windows
Window Functions

1166 Palm OS Programmer’s API Reference

destination coordinates are not (0,0), then this function turns off
compression for the destination bitmap. Normally, you do not copy
to a compressed bitmap. Instead, you copy to an uncompressed
bitmap and compress it afterwards.

Compatibility In OS versions before 3.5, the mode parameter was defined as type
ScrOperation. It is defined as type WinDrawOperation only if
3.5 New Feature Set is present. ScrOperation and
WinDrawOperation are fully compatible with each other.

In OS versions before 3.5, it was common practice to render a
bitmap in an offscreen window and then use WinCopyRectangle
to draw it on the screen. In version 3.5 and higher, the preferred
method of doing this is to use WinDrawBitmap or
WinPaintBitmap.

See Also WinDrawBitmap

WinCreateBitmapWindow

Purpose Create a new offscreen window.

Declared In Window.h

Prototype WinHandle WinCreateBitmapWindow
(BitmapType *bitmapP, UInt16 *error)

Parameters -> bitmapP Pointer to a bitmap to associate with the
window. (See BitmapType.)

<- error Pointer to any error this function encounters.

Result Returns the handle of the new window upon success, or NULL if an
error occurs. The error parameter contains one of the following:

errNone No error.

sysErrParamErr The bitmapP parameter is invalid. The bitmap
must be uncompressed and it must have a valid
pixel size (1, 2, 4, or 8). It must not be the screen
bitmap.

Windows
Window Functions

Palm OS Programmer’s API Reference 1167

sysErrNoFreeResource
There is not enough memory to allocate a new
window structure.

Comments Use WinCreateBitmapWindow if you want to draw into a
previously created bitmap, such as a bitmap created using
BmpCreate.

This function generates a window wrapper for the specified bitmap.
The newly created window is offscreen, uses the generic format (for
device independence), and is added to the active window list. Use
WinSetDrawWindow to make it the draw window, and then use the
window drawing functions to modify the bitmap.

When you use this function to create a window and then delete the
window with WinDeleteWindow, the bitmap is not freed when the
window is freed.

WinCreateOffscreenWindow uses this function to create its
offscreen window. If you call WinCreateOffscreenWindow
instead of using this function, the bitmap is freed when
WinDeleteWindow is called.

The bitmap data will not be blitted properly if the depth of the
screen is changed using WinScreenMode and the new window
uses a bitmap that does not define the bitmap’s color table. See
WinScreenMode for information on how to work around this
limitation.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinCreateWindow, WinCreateOffscreenWindow

Windows
Window Functions

1168 Palm OS Programmer’s API Reference

WinCreateOffscreenWindow

Purpose Create a new offscreen window and add it to the window list.

Declared In Window.h

Prototype WinHandle WinCreateOffscreenWindow (Coord width,
Coord height, WindowFormatType format,
UInt16 *error)

Parameters -> width Width of the window in pixels. The coordinate
system you use for this parameter depends
upon the value of format.

-> height Height of the window in pixels. The coordinate
system you use for this parameter depends
upon the value of format.

-> format One of the window formats defined by
WindowFormatType.

<- error Pointer to any error this function encounters.

Result Returns the handle of the new window upon success, or NULL if an
error occurs. The error parameter contains one of the following:

errNone No error.

sysErrParamErr The width or height parameter is NULL or
the current color table is invalid.

sysErrNoFreeResource
There is not enough memory to complete the
function.

The debug ROM gives a warning if you try to draw to a bad
window address.

Comments Windows created with this routine draw to a memory buffer instead
of the display. Use this function for temporary drawing operations
such as double-buffering or save-behind operations.

The memory buffer has two formats: screen format and generic
format. Screen format is the native format of the video system;

Windows
Window Functions

Palm OS Programmer’s API Reference 1169

windows in this format can be copied to the display faster. The
generic format is device-independent. A window cannot be enabled
(that is, accept pen input) unless it uses screen format.

This function differs from WinCreateBitmapWindow in the
following ways:

• WinCreateOffscreenWindow creates a new bitmap in the
same depth as the current screen.
WinCreateBitmapWindow uses the bitmap you pass in,
which may or may not be in the same depth as the current
screen.

• WinCreateOffscreenWindow uses the screen format you
specify. WinCreateBitmapWindow always uses
genericFormat for the format argument.

• When you delete the window created with
WinCreateOffscreenWindow, its bitmap is freed along
with the window. The bitmap used in the
WinCreateBitmapWindow is not freed when the window is
freed.

Note that if you aren’t directly accessing the bits of an offscreen
window’s bitmap but are just using the APIs, you can always pass
nativeFormat for the screen format even on pre-Palm OS 5
handhelds and things will work as expected. If you need direct
access to the bits of the offscreen window’s bitmap, however, call
BmpCreate and then call WinCreateBitmapWindow. Because you
created the bitmap, you know its format and thus can safely
manipulate its bits. Calling WinCreateOffscreenWindow with a
format argument of nativeFormat can result in a bitmap with an
unexpected format: the endianness, number of bits per pixel, and so
on would match the screen and therefore be fastest to draw, but
your application wouldn't be able to manipulate the pixels directly.

The bitmap data will not be blitted properly if the depth of the
screen is changed using WinScreenMode and the new window
uses a bitmap that does not define the bitmap’s color table. See
WinScreenMode for information on how to work around this
limitation.

See Also WinCreateWindow, WinScreenMode,

Windows
Window Functions

1170 Palm OS Programmer’s API Reference

WinCreateWindow

Purpose Create a new window and add it to the window list.

Declared In Window.h

Prototype WinHandle WinCreateWindow
(const RectangleType *bounds, FrameType frame,
Boolean modal, Boolean focusable, UInt16 *error)

Parameters -> bounds Display-relative bounds of the window.

-> frame Type of frame around the window (see
FrameType).

-> modal true if the window is modal.

-> focusable true if the window can be the active window.

<- error Pointer to any error encountered by this
function.

Result Returns the handle of the new window upon success, or NULL if an
error occurs. The error parameter contains one of the following:

errNone No error.

sysErrNoFreeResource
There is not enough memory to complete the
operation.

Comments Windows created by this routine draw to the display. See
WinCreateOffscreenWindow for information on drawing off
screen.

You typically don’t call this function directly. Instead, you use
FrmInitForm to create form windows from a resource. Forms are
much more flexible and have better system support. All forms are
windows, but not all windows are forms.

The window is created with the bounds and frame type that you
specify and uses the bitmap and drawing state of the current draw
window. Its clipping region is reset according to the bounds you
specify.

Windows
Window Functions

Palm OS Programmer’s API Reference 1171

All window flags are set to 0 except for the modal and focusable
flags, which you pass as a parameter to this function. Specifically,
newly created windows are disabled and invisible. You must
specifically enable the window before the window can accept input.
You can do so with WinSetActiveWindow.

See Also WinDeleteWindow

WinDeleteWindow

Purpose Remove a window from the window list and free the memory used
by the window.

Declared In Window.h

Prototype void WinDeleteWindow (WinHandle winHandle,
Boolean eraseIt)

Parameters -> winHandle Handle of window to delete.

-> eraseIt If true, the window is erased before it is
deleted. If false, the window is not erased.

Result Returns nothing.

Comments This function frees all memory associated with the window.
Windows created using WinCreateOffscreenWindow have their
bitmaps freed; windows created using WinCreateWindow or
WinCreateBitmapWindow do not.

The eraseIt parameter affects onscreen windows only; offscreen
windows are never erased. As a performance optimization, you
might set eraseIt to false for an onscreen window if you know
that you are going to immediately redraw the area anyway. For
example, when the form manager closes a form dialog, it restores
the area with the save-behind bits it had stored for that form. For
this reason, when the form manager deletes the dialog window, it
passes false for eraseIt because the entire area will be redrawn.

Windows
Window Functions

1172 Palm OS Programmer’s API Reference

WinDisplayToWindowPt

Purpose Convert a display-relative coordinate to a window-relative
coordinate. The coordinate returned is relative to the display
window.

Declared In Window.h

Prototype void WinDisplayToWindowPt (Coord *extentX,
Coord *extentY)

Parameters <-> extentX Pointer to x coordinate to convert.

<-> extentY Pointer to y coordinate to convert.

Result Returns nothing.

See Also WinWindowToDisplayPt

WinDrawBitmap

Purpose Draw a bitmap at the given coordinates in winPaint mode (see
WinDrawOperation for mode details).

Declared In Window.h

Prototype void WinDrawBitmap (BitmapPtr bitmapP, Coord x,
Coord y)

Parameters -> bitmapP Pointer to a bitmap.

-> x The x coordinate of the top-left corner.

-> y The y coordinate of the top-left corner.

Result Returns nothing.

Comments If the bitmap has multiple depths (is a bitmap family), the closest
match less than or equal to the current draw window depth is used.

Windows
Window Functions

Palm OS Programmer’s API Reference 1173

If such a bitmap does not exist, the bitmap with the closest match
greater than the draw window depth is used.

If the bitmap has its own color table, color conversion to the draw
window color table will be applied (on OS 3.5 or later). This color
conversion is slow and not recommended. Instead of including a
color table in the bitmap, consider using WinPalette to change the
system color table, draw the bitmap, and then change the system
color table back when the bitmap is no longer visible.

This function differs from WinPaintBitmap in that this function
always uses winPaint mode (copy mode) as the transfer mode.
WinPaintBitmap uses the current drawing state transfer mode.

See Also WinEraseRectangle

WinDrawChar

Purpose Draw the specified character in the draw window.

Declared In Window.h

Prototype void WinDrawChar (WChar theChar, Coord x,
Coord y)

Parameters -> theChar The character to draw. This may be either a
single-byte character or a multi-byte character.

-> x x coordinate of the location where the character
is to be drawn (left bound).

-> y y coordinate of the location where the character
is to be drawn (top bound).

Result Returns nothing.

Comments Before calling this function, call WinSetUnderlineMode and
FntSetFont to set the desired underline and font to draw the
characters.

This function differs from WinPaintChar in that this function
always uses winPaint mode (see WinDrawOperation). This

Windows
Window Functions

1174 Palm OS Programmer’s API Reference

means the on bits are drawn in the text color, the off bits are in the
background color, and underlines are in the foreground color.
WinPaintChar uses the current drawing state transfer mode
instead of winPaint.

Compatibility Implemented only if 3.1 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call WinGlueDrawChar. For
more information, see Chapter 75, “PalmOSGlue Library.”

See Also WinDrawChars, WinDrawInvertedChars,
WinDrawTruncChars, WinEraseChars, WinInvertChars,
WinPaintChars

WinDrawChars

Purpose Draw the specified characters in the draw window.

Declared In Window.h

Prototype void WinDrawChars (const Char *chars, Int16 len,
Coord x, Coord y)

Parameters -> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

-> x x coordinate of the first character to draw (left
bound).

-> y y coordinate of the first character to draw (top
bound).

Result Returns nothing.

Comments This function is useful for printing non-editable status or warning
messages on the screen.

Before calling this function, call WinSetUnderlineMode and
FntSetFont to set the desired underline and font to draw the
characters.

Windows
Window Functions

Palm OS Programmer’s API Reference 1175

This function differs from WinPaintChars in that this function
always uses winPaint mode (see WinDrawOperation). This
means the on bits are drawn in the text color, the off bits are in the
background color, and underlines are in the foreground color.
WinPaintChar uses the current drawing state transfer mode
instead of winPaint.

See Also WinDrawChar, WinDrawInvertedChars,
WinDrawTruncChars, WinEraseChars, WinInvertChars,
WinPaintChar

WinDrawGrayLine

Purpose Draw a dashed line in the draw window.

Declared In Window.h

Prototype void WinDrawGrayLine (Coord x1, Coord y1,
Coord x2, Coord y2)

Parameters -> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

Comments This routine does not draw in the gray color; it draws with
alternating foreground and background pixels. That is, it uses the
grayPattern pattern type.

See Also WinDrawLine, WinEraseLine, WinFillLine, WinInvertLine,
WinPaintLine, WinPaintLines

Windows
Window Functions

1176 Palm OS Programmer’s API Reference

WinDrawGrayRectangleFrame

Purpose Draw a gray rectangular frame in the draw window.

Declared In Window.h

Prototype void WinDrawGrayRectangleFrame (FrameType frame,
const RectangleType *rP)

Parameters -> frame Type of frame to draw (see FrameType).

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

Comments This routine does not draw in the gray color; it draws with
alternating foreground and background pixels. The standard gray
pattern is not used by this routine; rather, the frame is drawn so that
the top-left pixel of the frame is always on.

See Also WinDrawRectangleFrame, WinEraseRectangleFrame,
WinGetFramesRectangle, WinInvertRectangleFrame,
WinPaintRectangleFrame

WinDrawInvertedChars

Purpose Draw the specified characters inverted (background color) in the
draw window.

Declared In Window.h

Prototype void WinDrawInvertedChars (const Char *chars,
Int16 len, Coord x, Coord y)

Parameters -> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

-> x x coordinate of the first character to draw (left
bound).

Windows
Window Functions

Palm OS Programmer’s API Reference 1177

-> y y coordinate of the first character to draw (top
bound).

Result Returns nothing.

Comments This routine draws the on bits and any underline in the background
color and the off bits in the text color. (Black and white uses copy
NOT mode.) This is the standard function for drawing inverted text.

Before calling this function, consider calling
WinSetUnderlineMode and FntSetFont.

See Also WinDrawChar, WinDrawChars, WinDrawTruncChars,
WinEraseChars, WinInvertChars, WinPaintChar,
WinPaintChars

WinDrawLine

Purpose Draw a line in the draw window using the current foreground color.

Declared In Window.h

Prototype void WinDrawLine (Coord x1, Coord y1, Coord x2,
Coord y2)

Parameters -> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

Comments This function differs from WinPaintLine in that it always uses
winPaint mode (see WinDrawOperation). WinPaintLine uses
the current drawing state transfer mode instead of winPaint.

See Also WinDrawGrayLine, WinEraseLine, WinFillLine,
WinInvertLine, WinPaintLine, WinPaintLines

Windows
Window Functions

1178 Palm OS Programmer’s API Reference

WinDrawPixel

Purpose Draw a pixel in the draw window using the current foreground
color.

Declared In Window.h

Prototype void WinDrawPixel (Coord x, Coord y)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns nothing. May display a fatal error message if the draw
window’s bitmap is compressed.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinErasePixel, WinInvertPixel, WinPaintPixel,
WinPaintPixels

WinDrawRectangle

Purpose Draw a rectangle in the draw window using the current foreground
color.

Declared In Window.h

Prototype void WinDrawRectangle (const RectangleType *rP,
UInt16 cornerDiam)

Parameters -> rP Pointer to the rectangle to draw.

-> cornerDiam Radius of rounded corners. Specify zero for
square corners.

Result Returns nothing.

Windows
Window Functions

Palm OS Programmer’s API Reference 1179

Comments The cornerDiam parameter specifies the radius of four imaginary
circles used to form the rounded corners. An imaginary circle is
placed within each corner tangent to the rectangle on two sides.

This function differs from WinPaintRectangle in that it always
uses winPaint mode (see WinDrawOperation).
WinPaintRectangle uses the current drawing state transfer
mode instead of winPaint.

See Also WinEraseRectangle, WinFillRectangle,
WinInvertRectangle

WinDrawRectangleFrame

Purpose Draw a rectangular frame in the draw window using the current
foreground color.

Declared In Window.h

Prototype void WinDrawRectangleFrame (FrameType frame,
const RectangleType *rP)

Parameters -> frame Type of frame to draw (see FrameType).

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

Comments The frame is drawn outside the specified rectangle.

This function differs from WinPaintRectangleFrame in that it
always uses winPaint mode (see WinDrawOperation).
WinPaintRectangleFrame uses the current drawing state
transfer mode instead of winPaint.

See Also WinDrawGrayRectangleFrame, WinEraseRectangleFrame,
WinGetFramesRectangle, WinInvertRectangleFrame

Windows
Window Functions

1180 Palm OS Programmer’s API Reference

WinDrawTruncChars

Purpose Draw the specified characters in the draw window, truncating the
characters to the specified width.

Declared In Window.h

Prototype void WinDrawTruncChars (const Char *chars,
Int16 len, Coord x, Coord y, Coord maxWidth)

Parameters -> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

-> x x coordinate of the first character to draw (left
bound).

-> y y coordinate of the first character to draw (top
bound).

-> maxWidth Maximum width in pixels of the characters that
are to be drawn.

Result Returns nothing.

Comments Before calling this function, consider calling
WinSetUnderlineMode and FntSetFont.

If drawing all of the specified characters requires more space than
maxWidth allows, WinDrawTruncChars draws one less than the
number of characters that can fit in maxWidth and then draws an
ellipsis (...) in the remaining space. (If the boundary characters are
narrower than the ellipsis, more than one character may be dropped
to make room.) If maxWidth is narrower than the width of an
ellipsis, nothing is drawn.

Use this function to truncate text that may contain multi-byte
characters.

Compatibility Implemented only if 3.1 New Feature Set is present. To use this
function in code intended to be run on earlier versions of Palm OS,
link with the PalmOSGlue library and call

Windows
Window Functions

Palm OS Programmer’s API Reference 1181

WinGlueDrawTruncChars. For more information, see Chapter 75,
“PalmOSGlue Library.”

See Also WinDrawChar, WinDrawChars, WinDrawInvertedChars,
WinEraseChars, WinInvertChars, WinPaintChar,
WinPaintChars

WinEraseChars

Purpose Erase the specified characters in the draw window.

Declared In Window.h

Prototype void WinEraseChars (const Char *chars, Int16 len,
Coord x, Coord y)

Parameters -> chars Pointer to the characters to erase.

-> len Length in bytes of the characters to erase.

-> x x coordinate of the first character to erase (left
bound).

-> y y coordinate of the first character to erase (top
bound).

Result Returns nothing.

Comments The winMask transfer mode is used to erase the characters. See
WinDrawOperation for more information. This has the effect of
erasing only the on bits for the characters rather than the entire text
rectangle. This function only works if the foreground color is black
and the background color is white.

See Also WinDrawChar, WinDrawChars, WinDrawInvertedChars,
WinDrawTruncChars, WinInvertChars, WinPaintChar,
WinPaintChars

Windows
Window Functions

1182 Palm OS Programmer’s API Reference

WinEraseLine

Purpose Draw a line in the draw window using the current background
color.

Declared In Window.h

Prototype void WinEraseLine (Coord x1, Coord y1, Coord x2,
Coord y2)

Parameters -> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

See Also WinDrawGrayLine, WinDrawLine, WinFillLine,
WinInvertLine, WinPaintLine, WinPaintLines

WinErasePixel

Purpose Draw a pixel in the draw window using the current background
color.

Declared In Window.h

Prototype void WinErasePixel (Coord x, Coord y)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns nothing.

Windows
Window Functions

Palm OS Programmer’s API Reference 1183

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawPixel, WinInvertPixel, WinPaintPixel,
WinPaintPixels

WinEraseRectangle

Purpose Draw a rectangle in the draw window using the current background
color.

Declared In Window.h

Prototype void WinEraseRectangle (const RectangleType *rP,
UInt16 cornerDiam)

Parameters -> rP Pointer to the rectangle to erase.

-> cornerDiam Radius of rounded corners. Specify zero for
square corners.

Result Returns nothing.

Comments The cornerDiam parameter specifies the radius of four imaginary
circles used to form the rounded corners. An imaginary circle is
placed within each corner tangent to the rectangle on two sides.

See Also WinDrawRectangle, WinFillRectangle,
WinInvertRectangle, WinPaintRectangle

Windows
Window Functions

1184 Palm OS Programmer’s API Reference

WinEraseRectangleFrame

Purpose Draw a rectangular frame in the draw window using the current
background color.

Declared In Window.h

Prototype void WinEraseRectangleFrame (FrameType frame,
const RectangleType *rP)

Parameters -> frame Type of frame to draw (see FrameType).

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

See Also WinDrawGrayRectangleFrame, WinDrawRectangleFrame,
WinGetFramesRectangle, WinInvertRectangleFrame,
WinPaintRectangleFrame

WinEraseWindow

Purpose Erase the contents of the draw window.

Declared In Window.h

Prototype void WinEraseWindow (void)

Parameters None.

Result Returns nothing.

Comments WinEraseRectangle is used to erase the window. This routine
doesn’t erase the frame around the draw window. See
WinEraseRectangleFrame and WinGetWindowFrameRect.

Windows
Window Functions

Palm OS Programmer’s API Reference 1185

WinFillLine

Purpose Fill a line in the draw window with the current pattern.

Declared In Window.h

Prototype void WinFillLine (Coord x1, Coord y1, Coord x2,
Coord y2)

Parameters -> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

Comments You can set the current pattern with WinSetPattern.

See Also WinDrawGrayLine, WinDrawLine, WinEraseLine,
WinInvertLine, WinPaintLine, WinPaintLines

WinFillRectangle

Purpose Draw a rectangle in the draw window with current pattern.

Declared In Window.h

Prototype void WinFillRectangle (const RectangleType *rP,
UInt16 cornerDiam)

Parameters -> rP Pointer to the rectangle to draw.

-> cornerDiam Radius of rounded corners. Specify zero for
square corners.

Result Returns nothing.

Windows
Window Functions

1186 Palm OS Programmer’s API Reference

Comments You can set the current pattern with WinSetPattern.

The cornerDiam parameter specifies the radius of four imaginary
circles used to form the rounded corners. An imaginary circle is
placed within each corner tangent to the rectangle on two sides.

See Also WinDrawRectangle, WinEraseRectangle,
WinInvertRectangle, WinPaintRectangle

WinGetActiveWindow

Purpose Return the window handle of the active window.

Declared In Window.h

Prototype WinHandle WinGetActiveWindow (void)

Parameters None.

Result Returns the handle of the active window. All user input is directed
to the active window.

See Also WinSetActiveWindow, WinGetDisplayWindow,
WinGetFirstWindow, WinGetDrawWindow

WinGetBitmap

Purpose Return a pointer to a window’s bitmap, which holds the window
contents.

Declared In Window.h

Prototype BitmapType *WinGetBitmap (WinHandle winHandle)

Parameters -> winHandle Handle of window from which to get the
bitmap.

Result Returns a pointer to the bitmap or NULL if winHandle is invalid.

Windows
Window Functions

Palm OS Programmer’s API Reference 1187

Comments For onscreen windows, the bitmap returned always represents the
whole screen. Thus, the top-left corner of the returned bitmap may
not be the top-left corner of the window.

Compatibility Implemented only if 3.5 New Feature Set is present.

WinGetBounds

Purpose Return the bounds of the current draw window in display-relative
coordinates.

Declared In Window.h

Prototype void WinGetBounds (WinHandle winH,
RectangleType *rP)

Parameters -> winH Handle to a window.

<- rP Pointer to a rectangle.

Result Returns nothing.

Comments This function returns in rP the bounds of the window represented
by winH. This corresponds to the convention used by
WinSetBounds, because it takes a window handle as an argument.

Prior to Palm OS 4.0, WinGetBounds returned the bounds of the
draw window, and did not take a window handle as an argument. If
an application needed to determine the bounds of an arbitrary
window, the application would call WinSetDrawWindow to
temporarily set the draw window to the desired window, then
WinGetBounds would be called to get the bounds of the draw
window, then WinSetDrawWindow would be called again to
restore the draw window. This is no longer necessary.

Compatibility Implemented only if 4.0 New Feature Set is not present. As of Palm
OS 4.0, applications should use WinGetDrawWindowBounds.

See Also WinGetWindowExtent, WinGetDrawWindowBounds

Windows
Window Functions

1188 Palm OS Programmer’s API Reference

WinGetClip

Purpose Return the clipping rectangle of the draw window.

Declared In Window.h

Prototype void WinGetClip (RectangleType *rP)

Parameters <- rP Pointer to a structure to hold the clipping
bounds.

Result Returns nothing.

See Also WinSetClip

New WinGetCoordinateSystem

Purpose Get the coordinate system

Declared In Window.h

Prototype UInt16 WinGetCoordinateSystem (void)

Parameters None.

Result Returns a value representing the current coordinate system. See
“Window Coordinate System Constants” on page 1163 for the
values that this function can return.

Comments Use this function to determine the active coordinate system. Armed
with this information, an application can properly initialize graphic
primitive coordinates and dimensions, or can modify the coordinate
system with WinSetCoordinateSystem.

Compatibility Implemented only if the High-Density Display Feature Set is

Windows
Window Functions

Palm OS Programmer’s API Reference 1189

present.

See Also WinSetCoordinateSystem

WinGetDisplayExtent

Purpose Return the width and height of the display (the screen).

Declared In Window.h

Prototype void WinGetDisplayExtent (Coord *extentX,
Coord *extentY)

Parameters <- extentX Pointer to the width of the display in pixels.

<- extentY Pointer to the height of the display in pixels.

Result Returns nothing.

WinGetDisplayWindow

Purpose Return the window handle of the display (screen) window.

Declared In Window.h

Prototype WinHandle WinGetDisplayWindow (void)

Parameters None.

Result Returns the handle of display window.

Comments The display window is created by the system at start-up; it has the
same size as the Palm OS drawable area of the physical display
(screen).

See Also WinGetDisplayExtent, WinGetActiveWindow,
WinGetDrawWindow

Windows
Window Functions

1190 Palm OS Programmer’s API Reference

WinGetDrawWindow

Purpose Return the window handle of the current draw window.

Declared In Window.h

Prototype WinHandle WinGetDrawWindow (void)

Parameters None.

Result Returns handle of draw window.

See Also WinGetDisplayWindow, WinGetActiveWindow,
WinSetDrawWindow

WinGetDrawWindowBounds

Purpose Return the bounds of the draw window.

Declared In Window.h

Prototype void WinGetDrawWindowBounds (RectangleType *rP)

Parameters <- rP Pointer to the window bounds.

Result Returns nothing.

Comments A pointer to the bounds of the draw window is returned. This
function is equivalent to WinGetBounds that was in Palm OS prior
to 4.0.

See Also WinGetBounds

Windows
Window Functions

Palm OS Programmer’s API Reference 1191

WinGetFirstWindow

Purpose Return a pointer to the first window in the linked list of windows.

Declared In Window.h

Prototype WinHandle WinGetFirstWindow (void)

Parameters None.

Result Returns handle of first window.

Comments This function is usually used by the system only.

See Also WinGetActiveWindow

WinGetFramesRectangle

Purpose Return the rectangle that includes a rectangle together with the
specified frame around it.

Declared In Window.h

Prototype void WinGetFramesRectangle (FrameType frame,
const RectangleType *rP,
RectangleType *obscuredRect)

Parameters -> frame Type of rectangle frame (see FrameType).

-> rP Pointer to the rectangle to frame.

<- obscuredRect
Pointer to the rectangle that includes both the
specified rectangle and its frame.

Result Returns nothing.

Windows
Window Functions

1192 Palm OS Programmer’s API Reference

Comments Frames are always drawn around (outside) a rectangle.

See Also WinGetWindowFrameRect, WinGetBounds

WinGetPattern

Purpose Return the current fill pattern.

Declared In Window.h

Prototype void WinGetPattern (CustomPatternType *patternP)

Parameters <- patternP Buffer where the current pattern is returned
(see CustomPatternType).

Result Returns nothing.

Comments The fill pattern is used by WinFillLine and WinFillRectangle.

This function returns the value of patternData in the current
drawing state. (See DrawStateType.) The patternData field is
only set if the pattern field is customPattern. Therefore, it’s a
good idea to use WinGetPatternType instead of this function on
systems that support WinGetPatternType.

See Also WinSetPattern

Windows
Window Functions

Palm OS Programmer’s API Reference 1193

WinGetPatternType

Purpose Return the current pattern type.

Declared In Window.h

Prototype PatternType WinGetPatternType (void)

Parameters None.

Result Returns the current draw window pattern type (see PatternType).
If the return value is customPattern, you can retrieve the pattern
with WinGetPattern.

Comments The fill pattern is used by WinFillLine and WinFillRectangle.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinSetPatternType

WinGetPixel

Purpose Return the color value of a pixel in the current draw window.

Declared In Window.h

Prototype IndexedColorType WinGetPixel (Coord x, Coord y)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns the indexed color value of the pixel. See
IndexedColorType. A return value of 0 means either that the
coordinates do not lie in the current draw window or that they do
and the color of that pixel is index 0 (typically white).

Windows
Window Functions

1194 Palm OS Programmer’s API Reference

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinIndexToRGB

WinGetPixelRGB

Purpose Return the RGB color values of a pixel in the current draw window.

Declared In Window.h

Prototype Err WinGetPixelRGB (Coord x, Coord y,
RGBColorType *rgbP)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

<- rgbP RGB color components of the pixel.

Result Returns errNone or sysErrParamErr. sysErrParamErr is
returned when the x or y arguments are < 0 or when they are
outside the bounds of the draw window.

Comments The RGB color values of the pixel are returned as an
RGBColorType. This function can be used with both indexed or
direct color modes. A return value of sysErrParamErr means that
the coordinates do not lie in the current draw window.

Compatibility Implemented only if 4.0 New Feature Set is present.

Windows
Window Functions

Palm OS Programmer’s API Reference 1195

New WinGetSupportedDensity

Purpose Enumerate the various display densities supported by the blitter.

Declared In Window.h

Prototype Err WinGetSupportedDensity (UInt16 *densityP)

Parameters <-> densityP Pointer to a supported density value. Set this
value to zero before calling this function for the
first time. Subsequent calls cause this value to
be set to one of the display densities supported
by the handheld.

Result Returns errNone unless the value you supply in *densityP isn’t
a supported density and isn’t zero, in which case this function
returns SysErrParamErr.

Comments Initialize *densityP to zero before your application calls this
function for the first time. Repeated calls to
WinGetSupportedDensity will cause the value pointed to by
densityP to change; these values represent the supported display
densities, in order from low to high density. After the last supported
density value, this function sets *densityP back to zero.

NOTE: The densities reported by this function are those that are
supported by the blitter. These densities are not necessarily
supported by the underlying hardware. A handheld with a low-
density screen that is able to scale high-density bitmaps will
report that it can handle both high and low density bitmaps. Use
WinScreenGetAttribute to determine the density of the
handheld’s screen.

Density values are defined in Bitmap.h; see the DensityType
enum. Only those values supported by a given handheld will be
returned by WinGetSupportedDensity,. For example, on a

Windows
Window Functions

1196 Palm OS Programmer’s API Reference

handheld with a double-density display this function returns
kDensityLow, followed by kDensityDouble, followed by 0. For
each supported density, the inverse scaling factor is supported. In
this example, the blitter supports pixel-doubling low-density data
for a double-density destination, and the blitter supports pixel-
halving high-density data for a low-density destination.

The value pointed to by densityP should only be zero or one of
the density values supported by the handheld. If it has any other
value when you call WinGetSupportedDensity, this function
will simply return sysErrParamErr.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

WinGetWindowExtent

Purpose Return the width and height of the current draw window.

Declared In Window.h

Prototype void WinGetWindowExtent (Coord *extentX,
Coord *extentY)

Parameters <- extentX Pointer to the width in pixels of the draw
window.

<- extentY Pointer to the height in pixels of the draw
window.

Result Returns nothing.

See Also WinGetBounds, WinGetWindowFrameRect,

Windows
Window Functions

Palm OS Programmer’s API Reference 1197

WinGetWindowFrameRect

Purpose Return a rectangle, in display-relative coordinates, that defines the
size and location of a window and its frame.

Declared In Window.h

Prototype void WinGetWindowFrameRect (WinHandle winHandle,
RectangleType *r)

Parameters -> winHandle Handle of window whose coordinates are
desired.

<- r Pointer to the coordinates of the window.

Result Returns nothing.

See Also WinGetBounds

WinIndexToRGB

Purpose Convert an index in the currently active color table to an RGB value.

Declared In Window.h

Prototype void WinIndexToRGB (IndexedColorType i,
RGBColorType *rgbP)

Parameters -> i A color index value. See IndexedColorType.

<- rgbP Pointer to an RGB color value corresponding to
the index value i. See RGBColorType.

Result Returns nothing.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinRGBToIndex

Windows
Window Functions

1198 Palm OS Programmer’s API Reference

WinInvertChars

Purpose Invert the specified characters in the draw window.

Declared In Window.h

Prototype void WinInvertChars (const Char *chars,
Int16 len, Coord x, Coord y)

Parameters -> chars Pointer to the characters to invert.

-> len Length in bytes of the characters to invert.

-> x x coordinate of the first character to invert (left
bound).

-> y y coordinate of the first character to invert (top
bound).

Result Returns nothing.

Comments This function applies the winInvert operation of
WinDrawOperation to the characters in the draw window.

To perform color inverting, use WinSetTextColor and
WinSetBackColor to choose the desired colors, and call
WinPaintChar.

See Also WinDrawChar, WinDrawChars, WinDrawInvertedChars,
WinDrawTruncChars, WinEraseChars, WinPaintChar,
WinPaintChars

Windows
Window Functions

Palm OS Programmer’s API Reference 1199

WinInvertLine

Purpose Invert a line in the draw window (using the WinDrawOperation
winInvert).

Declared In Window.h

Prototype void WinInvertLine (Coord x1, Coord y1, Coord x2,
Coord y2)

Parameters -> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

See Also WinDrawGrayLine, WinDrawLine, WinEraseLine,
WinFillLine, WinPaintLine, WinPaintLines

WinInvertPixel

Purpose Invert a pixel in the draw window (using the WinDrawOperation
winInvert).

Declared In Window.h

Prototype void WinInvertPixel (Coord x, Coord y)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns nothing.

Windows
Window Functions

1200 Palm OS Programmer’s API Reference

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawPixel, WinErasePixel, WinPaintPixel,
WinPaintPixels

WinInvertRectangle

Purpose Invert a rectangle in the draw window (using the
WinDrawOperation winInvert).

Declared In Window.h

Prototype void WinInvertRectangle (const RectangleType *rP,
UInt16 cornerDiam)

Parameters -> rP Pointer to the rectangle to invert.

-> cornerDiam Radius of rounded corners. Specify zero for
square corners.

Result Returns nothing.

Comments The cornerDiam parameter specifies the radius of four imaginary
circles used to form the rounded corners. An imaginary circle is
placed within each corner tangent to the rectangle on two sides.

The operating system itself does not use the inverting routines.
Instead, it uses the winSwap transfer mode, or it changes the color
selection and uses the WinPaint... routines.

See Also WinDrawRectangle, WinEraseRectangle,
WinFillRectangle, WinPaintRectangle

Windows
Window Functions

Palm OS Programmer’s API Reference 1201

WinInvertRectangleFrame

Purpose Invert a rectangular frame in the draw window (using the
WinDrawOperation winInvert).

Declared In Window.h

Prototype void WinInvertRectangleFrame (FrameType frame,
const RectangleType *rP)

Parameters -> frame Type of frame to draw (see FrameType).

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

See Also WinDrawGrayRectangleFrame, WinDrawRectangleFrame,
WinEraseRectangleFrame, WinGetFramesRectangle,
WinPaintRectangleFrame

WinModal

Purpose Return true if the specified window is modal.

Declared In Window.h

Prototype Boolean WinModal (WinHandle winHandle)

Parameters -> winHandle Handle of a window.

Result Returns true if the window is modal, otherwise false.

Comments A window is modal if it cannot lose the focus.

See Also FrmAlert, FrmCustomAlert, FrmDoDialog

Windows
Window Functions

1202 Palm OS Programmer’s API Reference

WinPaintBitmap

Purpose Draw a bitmap in the current draw window at the specified
coordinates with the current draw mode.

Declared In Window.h

Prototype void WinPaintBitmap (BitmapType *bitmapP,
Coord x, Coord y)

Parameters -> bitmapP Pointer to a bitmap.

-> x The x coordinate of the top-left corner.

-> y The y coordinate of the top-left corner.

Result Returns nothing.

Comments If the bitmap has multiple depths (is a bitmap family), the closest
match less than or equal to the current draw window depth is used.
If such a bitmap does not exist, the bitmap with the closest match
greater than the draw window depth is used.

Using WinPaintBitmap is now recommended instead of the
previous practice of rendering bitmaps into an offscreen window
and then using WinCopyRectangle to draw them on screen.

The current draw mode is set by WinSetDrawMode.

If the bitmap has its own color table, color conversion to the draw
window color table will be applied (on OS 3.5 or later). This color
conversion is slow and not recommended. Instead of including a
color table in the bitmap, consider using WinPalette to change the
system color table, draw the bitmap, and then change the system
color table back when the bitmap is no longer visible.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawBitmap, WinEraseRectangle,
WinPaintTiledBitmap

Windows
Window Functions

Palm OS Programmer’s API Reference 1203

WinPaintChar

Purpose Draw a character in the draw window using the current drawing
state.

Declared In Window.h

Prototype void WinPaintChar (WChar theChar, Coord x,
Coord y)

Parameters -> theChar The character to draw. This may be either a
single-byte character or a multi-byte character.

-> x x coordinate of the location where the character
is to be drawn (left bound).

-> y y coordinate of the location where the character
is to be drawn (top bound).

Result Returns nothing.

See Also WinPaintChar draws the on bits in the text color and the off bits
in the background color, with underlines (if any) drawn in the
foreground color using the current drawing mode.

This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the values
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawChar, WinDrawChars, WinDrawInvertedChars,
WinDrawTruncChars, WinEraseChars, WinInvertChars,
WinPaintChars

Windows
Window Functions

1204 Palm OS Programmer’s API Reference

WinPaintChars

Purpose Draw the specified characters in the draw window with the current
draw state.

Declared In Window.h

Prototype void WinPaintChars (const Char *chars, Int16 len,
Coord x, Coord y)

Parameters -> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

-> x x coordinate of the first character to draw (left
bound).

-> y y coordinate of the first character to draw (top
bound).

Result Returns nothing.

Comments WinPaintChars draws the on bits in the text color and the off bits
in the background color, with underlines (if any) drawn in the
foreground color using the current drawing mode.

This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Before calling this function, consider calling
WinSetUnderlineMode and FntSetFont.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawChar, WinDrawChars, WinDrawInvertedChars,
WinDrawTruncChars, WinEraseChars, WinInvertChars,
WinPaintChar

Windows
Window Functions

Palm OS Programmer’s API Reference 1205

WinPaintLine

Purpose Draw a line in the draw window using the current drawing state.

Declared In Window.h

Prototype void WinPaintLine (Coord x1, Coord y1, Coord x2,
Coord y2)

Parameters -> x1 x coordinate of line beginning point.

-> y1 y coordinate of line beginning point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

Comments This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawLine, WinDrawGrayLine, WinEraseLine,
WinFillLine, WinInvertLine, WinPaintLines

WinPaintLines

Purpose Draw several lines in the draw window using the current drawing
state.

Declared In Window.h

Prototype void WinPaintLines (UInt16 numLines,
WinLineType lines[])

Parameters -> numLines Number of lines to paint.

Windows
Window Functions

1206 Palm OS Programmer’s API Reference

-> lines Array of lines. See WinLineType.

Result Returns nothing.

Comments This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawLine, WinDrawGrayLine, WinEraseLine,
WinFillLine, WinInvertLine, WinPaintLine

WinPaintPixel

Purpose Render a pixel in the draw window using the current drawing state.

Declared In Window.h

Prototype void WinPaintPixel (Coord x, Coord y)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns nothing.

Comments This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawPixel, WinErasePixel, WinInvertPixel,
WinPaintPixels

Windows
Window Functions

Palm OS Programmer’s API Reference 1207

WinPaintPixels

Purpose Render several pixels in the draw window using the current
drawing state.

Declared In Window.h

Prototype void WinPaintPixels (UInt16 numPoints,
PointType pts[])

Parameters -> numPoints Number of pixels to paint.

-> pts Array of pixels.

Result Returns nothing.

Comments This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawPixel, WinErasePixel, WinInvertPixel,
WinPaintPixel

WinPaintRectangle

Purpose Draw a rectangle in the draw window using the current drawing
state.

Declared In Window.h

Prototype void WinPaintRectangle (const RectangleType *rP,
UInt16 cornerDiam)

Parameters -> rP Pointer to the rectangle to draw.

Windows
Window Functions

1208 Palm OS Programmer’s API Reference

-> cornerDiam Radius of rounded corners. Specify zero for
square corners.

Result Returns nothing.

Comments The cornerDiam parameter specifies the radius of four imaginary
circles used to form the rounded corners. An imaginary circle is
placed within each corner tangent to the rectangle on two sides.

This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawRectangle, WinEraseRectangle,
WinFillRectangle, WinInvertRectangle

WinPaintRectangleFrame

Purpose Draw a rectangular frame in the draw window using the current
drawing state.

Declared In Window.h

Prototype void WinPaintRectangleFrame (FrameType frame,
const RectangleType *rP)

Parameters -> frame Type of frame to draw (see FrameType).

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

Comments The frame is drawn outside the specified rectangle.

This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to

Windows
Window Functions

Palm OS Programmer’s API Reference 1209

learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawGrayRectangleFrame, WinDrawRectangleFrame,
WinEraseRectangleFrame, WinGetFramesRectangle,
WinInvertRectangleFrame,
WinPaintRoundedRectangleFrame

New WinPaintRoundedRectangleFrame

Purpose Draw a rectangular frame with rounded corners in the draw
window using the current drawing state.

Declared In Window.h

Prototype void WinPaintRoundedRectangleFrame
(const RectangleType *rP, Coord width,
Coord cornerRadius, Coord shadowWidth)

Parameters -> rP Pointer to the rectangle to frame.

-> width The width of the frame, interpreted using the
active coordinate system.

-> cornerRadiusThe radius of the rectangle’s rounded corners,
interpreted using the active coordinate system.

-> shadowWidth The shadow offset, interpreted using the active
coordinate system.

Result Returns nothing.

Comments This function allows you to draw a rectangle with a frame width
and corner radius specified in the active coordinate system. It is
necessary because WinPaintRectangleFrame doesn’t allow you
to draw rounded rectangles with a frame width greater than 2. Note
that because there isn’t a function that parallels either

Windows
Window Functions

1210 Palm OS Programmer’s API Reference

WinDrawRectangleFrame, WinEraseRectangleFrame, or
WinInvertRectangleFrame, you must set the drawing mode
and colors as appropriate and use
WinPaintRoundedRectangleFrame to achieve the desired
effect.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

New WinPaintTiledBitmap

Purpose Fill a rectangle with a pattern defined by a bitmap.

Declared In Window.h

Prototype void WinPaintTiledBitmap (BitmapType *bitmapP,
RectangleType *rectP)

Parameters -> bitmapP Pointer to the bitmap that contains the desired
pattern.

-> rectP Pointer to the rectangle that is to be filled.

Result Returns nothing. On a debug ROM, if either bitmapP or rectP are
NULL, an error is displayed.

Comments This function makes it possible for an application to define a pattern
that is larger than the standard 8 by 8 custom pattern, and to define
high-density custom patterns.

The pattern is scaled by the blitter using the density of bitmapP
and the density of the screen bitmap. bitmapP can be a bitmap
family; if it is, the Window Manager selects a bitmap using the same
algorithm used by WinPaintBitmap. As with other patterns, the
tiled pattern is anchored to the window’s origin.

If bitmapP does not match the depth or density of the destination
bitmap, the blitter converts the bitmap using a temporary buffer.

Windows
Window Functions

Palm OS Programmer’s API Reference 1211

Note that if there isn’t enough heap space for the temporary buffer,
WinPaintTiledBitmap will be slow.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

WinPalette

Purpose Set or retrieve the palette for the draw window.

Declared In Window.h

Prototype Err WinPalette (UInt8 operation,
Int16 startIndex, UInt16 paletteEntries,
RGBColorType *tableP)

Parameters -> operation Specify one of the following values:

winPaletteGet
Retrieve the palette. Entries are read
from the palette beginning at
startIndex and placed into tableP
beginning at index 0.

winPaletteSet
Set the palette. Entries from tableP
(beginning at index 0) are set into the
palette beginning at startIndex in the
palette.

winPaletteSetToDefault
Set the palette to the default system
palette.

Windows
Window Functions

1212 Palm OS Programmer’s API Reference

-> startIndex Identifies where in the palette to start reading
or writing. Specify WinUseTableIndexes to
indicate that the entries are not to be set or read
sequentially; instead, the index value in each
RGBColorType entry in tableP determines
which slot in the palette is to be set or read. You
can use this technique to get or set several
discontiguous palette entries with a single
function call.

-> paletteEntries
Number of palette entries to get or set.

<-> tableP A pointer to a buffer of RGBColorType entries
that is either read from or written to, depending
on the operation parameter; the table entries
from 0 to paletteEntries – 1 are affected by
this routine.

Result Returns one of the following values:

errNone Success.

winErrPalette The current draw window does not have a
color table, a set operation has overflowed the
color table, or one of the entries in tableP has
an invalid index value

sysErrParamErr The startIndex value is invalid.

Comments Here are some examples of how this routine works:

• If startIndex is 0 and paletteEntries is 10, the first 10
elements of the palette will be set from tableP or will be
copied into tableP.

• If startIndex is 10 and paletteEntries is 5, then entries
10, 11, 12, 13, and 14 in the palette will be set from or copied
to elements 0, 1, 2, 3, and 4 in tableP.

• If startIndex is WinUseTableIndexes and
paletteEntries is 1, then the index value in the
RGBColorType of element 0 of tableP will be read from or
copied to tableP; in this case, the index field of the
RGBColorType will not change.

Windows
Window Functions

Palm OS Programmer’s API Reference 1213

During a set operation, this function broadcasts the
sysNotifyDisplayChangeEvent to notify any interested
observer that the color palette has changed.

One use for this function is if you need to display a bitmap that uses
a color table other than the one in use by the system. You can attach
a custom color table to a bitmap, and if you do, the bitmap is drawn
using that color table. However, this is a performance drain. As an
optimization, you can use WinPalette to change the system color
table to match that used by the bitmap, display the bitmap, and use
WinPalette to reset the color table when the bitmap is no longer
visible.

Compatibility Implemented only if 3.5 New Feature Set is present.

WinPopDrawState

Purpose Restore the draw state values to the last saved set on the stack.

Declared In Window.h

Prototype void WinPopDrawState (void)

Parameters None.

Result Returns nothing.

Comments Use this routine to restore the draw state saved by the previous call
to WinPushDrawState.

After you call this function, the current draw window’s
drawStateP field points to the restored drawing state.

Compatibility Implemented only if 3.5 New Feature Set is present.

Windows
Window Functions

1214 Palm OS Programmer’s API Reference

WinPushDrawState

Purpose Save the current draw state values onto the draw state stack.

Declared In Window.h

Prototype void WinPushDrawState (void)

Parameters None.

Result Returns nothing.

Comments Use this routine to save the current draw state before making
changes to it using the functions listed in the DrawStateType
structure’s description. Call WinPopDrawState to restore the
saved settings.

Compatibility Implemented only if 3.5 New Feature Set is present.

WinResetClip

Purpose Reset the clipping rectangle of the draw window to the portion of
the draw window that is within the bounds of the display.

Declared In Window.h

Prototype void WinResetClip (void)

Parameters None.

Result Returns nothing.

See Also WinSetClip

Windows
Window Functions

Palm OS Programmer’s API Reference 1215

WinRestoreBits

Purpose Copy the contents of the specified window to the draw window and
delete the passed window.

Declared In Window.h

Prototype void WinRestoreBits (WinHandle winHandle,
Coord destX, Coord destY)

Parameters -> winHandle Handle of window to copy and delete.

-> destX x coordinate in the draw window to copy to.

-> destY y coordinate in the draw window to copy to.

Result Returns nothing.

Comments This routine is generally used to restore a region of the display that
was saved with WinSaveBits.

See Also WinSaveBits

WinRGBToIndex

Purpose Convert an RGB value to the index of the closest color in the
currently active color lookup table (CLUT).

Declared In Window.h

Prototype IndexedColorType WinRGBToIndex
(const RGBColorType *rgbP)

Parameters -> rgbP Pointer to an RGB color value.

Result Returns the index of the closest matching color in the CLUT.

Comments Palm OS 3.5 supports a maximum of 256 colors. The number of
possible RGB colors greatly exceeds this amount. For this reason, an

Windows
Window Functions

1216 Palm OS Programmer’s API Reference

exact match may not be available for rgbP. If there is no exact RGB
match, then a luminance best-fit is used if the color lookup table is
entirely gray scale (red, green, and blue values for each entry are
identical), or a shortest-distance fit in RGB space is used if the
palette contains colors. RGB shortest distance may not always
produce the actual closest perceptible color, but it’s relatively fast
and works for the system palette.

WinRGBToIndex uses the draw window’s color table to return the
appropriate color table index. If the draw window does not have a
color table, the default color table of the current screen is used.

If the draw window does not have a color table, and if the depth of
the draw window and the depth of the screen are different, this
function will return an inappropriate index. If this situation exists,
the application should either define a color table for the draw
window, or use WinScreenMode to set the screen depth to the same
depth as the draw window before calling WinRGBToIndex.

NOTE: The bitmap data will not be blitted properly if the depth of
the screen is changed using WinScreenMode and the new
window uses a bitmap that does not define the bitmap’s color
table. See WinScreenMode for information on how to work
around this limitation.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinIndexToRGB, WinScreenMode

Windows
Window Functions

Palm OS Programmer’s API Reference 1217

WinSaveBits

Purpose Create an offscreen window and copy the specified region from the
draw window to the offscreen window.

Declared In Window.h

Prototype WinHandle WinSaveBits
(const RectangleType *source, UInt16 *error)

Parameters -> source Pointer to the bounds of the region to save,
relative to the display.

<- error Pointer to any error encountered by this
function.

Result Returns the handle of the window containing the saved image, or
zero if an error occurred.

Comments The offscreen window is the same size as the region to copy.

This function tries to copy the window’s bitmap using compressed
format if possible. It may display a fatal error message if an error
occurs when it tries to shrink the pointer for the compressed bits.

See Also WinRestoreBits

Windows
Window Functions

1218 Palm OS Programmer’s API Reference

New WinScaleCoord

Purpose Convert a single coordinate from the standard coordinate system to
the active coordinate system.

Declared In Window.h

Prototype Coord WinScaleCoord (Coord coord,
Boolean ceiling)

Parameters -> coord A coordinate in the standard coordinate
system.

-> ceiling Pass true to round up, false to truncate the
fractional part when scaling.

Result Returns the coordinate scaled to the active coordinate system.

Comments This function converts a coordinate by multiplying it by the
coordinate scaling factor, and then truncating or rounding the result
to an integer value depending on the value of ceiling.

If the active coordinate system is kCoordinatesStandard, the
returned coordinate is equal to the supplied coordinate.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

See Also WinScalePoint, WinScaleRectangle, WinUnscaleCoord

Windows
Window Functions

Palm OS Programmer’s API Reference 1219

New WinScalePoint

Purpose Convert a point from the standard coordinate system to the active
coordinate system.

Declared In Window.h

Prototype void WinScalePoint (PointType *pointP,
Boolean ceiling)

Parameters <-> pointP Pointer to a PointType structure that, before
the call, should contain a point’s standard
coordinate system coordinates. After this
function is called the PointType structure
contains the coordinates of the point scaled to
the active coordinate system.

-> ceiling Pass true to round up, false to truncate the
fractional part when scaling.

Result Returns nothing. The coordinates of the point indicated by pointP
are converted to the active coordinate system.

Comments This function converts a point by multiplying its x and y
coordinates by the coordinate scaling factor and then truncating or
rounding the the results depending on the value of ceiling.

If the active coordinate system is kCoordinatesStandard,
pointP is not changed by this function.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

See Also WinScaleCoord, WinScaleRectangle, WinUnscalePoint

Windows
Window Functions

1220 Palm OS Programmer’s API Reference

New WinScaleRectangle

Purpose Convert a rectangle from the standard coordinate system to the
active coordinate system.

Declared In Window.h

Prototype void WinScaleRectangle (RectangleType *rectP)

Parameters <-> rectP Pointer to a RectangleType structure that,
before the call, should contain a rectangle’s
standard coordinate system coordinates. After
this function is called the RectangleType
structure contains the coordinates of the
rectangle scaled to the active coordinate
system.

Result Returns nothing. The coordinates of the rectangle indicated by
rectP are converted to the native coordinate system.

Comments This function scales the rectangle’s topLeft and extent points by
multiplying their x and y coordinates by the coordinate scaling
factor. All values are then truncated, but if either topLeft.x or
extent.x had a fractional part, extent.x is incremented by 1
(and, similarly, if either topLeft.y or extent.y had a fractional
part, extent.y is incremented by 1).

If the active coordinate system is kCoordinatesStandard, rectP
is not changed by this function.

You can use this function when your gadget handler draws using a
more precise coordinate system than the Form Manager and needs
to convert the form-based bounds of the gadget to the high-density
bounds used by the gadget’s drawing function.

Compatibility Implemented only if the High-Density Display Feature Set is

Windows
Window Functions

Palm OS Programmer’s API Reference 1221

present.

See Also WinScaleCoord, WinScalePoint, WinUnscaleRectangle

New WinScreenGetAttribute

Purpose Get various attributes of the screen.

Declared In Window.h

Prototype Err WinScreenGetAttribute
(WinScreenAttrType selector, UInt32 *attrP)

Parameters -> selector A value indicating which attribute to return.
See the description of WinScreenAttrType in
the Comments section, below, for the values
you can supply to this parameter.

<- attrP Pointer to a UInt32 into which the specified
attribute value is placed by this function.

Result Returns errNone if the function successfully retrieved the specified
attribute, or sysErrParamErr if selector doesn’t represent a
screen attribute.

Comments This function returns many of the attributes that can be obtained
with WinScreenMode. Unlike WinScreenMode, however, this
function can also return the number of bytes used by each row in
the screen buffer as well as the number of pixels per inch on the
screen’s x and y axes.

Unlike WinScreenMode, you cannot set any attributes with this
function. Also, you cannot use this function to obtain the “color
enabled” attribute. And unlike WinScreenMode, this function
always returns the true screen dimensions; WinScreenMode
converts the dimensions to the active coordinate system.

Windows
Window Functions

1222 Palm OS Programmer’s API Reference

Applications can use the screen resolution information to make
intelligent decisions about how to draw primitives on Palm
Powered handhelds with different screen resolutions.

WinScreenAttrType

This enum defines the selectors that can be used with the
WinScreenGetAttribute function.

typedef enum {
winScreenWidth,
winScreenHeight,
winScreenRowBytes,
winScreenDepth,
winScreenAllDepths,
winScreenDensity,
winScreenPixelFormat,
winScreenResolutionX,
winScreenResolutionY

} WinScreenAttrType;

Value Descriptions

Compatibility Implemented only if the High-Density Display Feature Set is

winScreenWidth The width of the screen, in pixels.

winScreenHeight The height of the screen, in pixels.

winScreenRowBytes The number of bytes used by each row
in the screen buffer.

winScreenDepth The screen depth.

winScreenAllDepths All screen depths (in bitmap format).

winScreenDensity The screen bitmap’s density.

winScreenPixelFormatThe PixelFormatType appropriate for
the screen.

winScreenResolutionXThe number of pixels per inch along the
screen’s x axis.

winScreenResolutionYThe number of pixels per inch along the
screen’s yaxis.

Windows
Window Functions

Palm OS Programmer’s API Reference 1223

present.

See Also WinScreenMode

WinScreenLock

Purpose “Lock” the current screen by switching the UI concept of the screen
base address to an area that is not reflected on the display.

Declared In Window.h

Prototype UInt8 *WinScreenLock (WinLockInitType initMode)

Parameters -> initMode Indicates how to initialize the new screen area.
Specify one of the following values:

winLockCopy
Copy old screen to new.

winLockErase
Erase new screen to white.

winLockDontCare
Don't do anything

Result Returns a pointer to the new screen base address, or NULL if this
routine fails.

Comments This routine can be used to “freeze” the display while doing lengthy
drawing operations to avoid a flickering effect. Call
WinScreenUnlock to unlock the display and cause it to be
updated with any changes. The screen must be unlocked as many
times as it is locked to actually update the display.

Because this function copies the screen, using it is a relatively
expensive operation.

Compatibility Implemented only if 3.5 New Feature Set is present.

Windows
Window Functions

1224 Palm OS Programmer’s API Reference

WinScreenMode

Purpose Sets or returns display parameters, including display geometry, bit
depth, and color support.

Declared In Window.h

Prototype Err WinScreenMode
(WinScreenModeOperation operation,
UInt32 *widthP, UInt32 *heightP, UInt32 *depthP,
Boolean *enableColorP)

Parameters The widthP, heightP, depthP, and enableColorP parameters
are used in different ways for different operations. See Comments at
the end of this description for details.

-> operation The work this function is to perform, as
specified by one of the following selectors:

winScreenModeGet
Return the current settings for the
display.

winScreenModeGetDefaults
Return the default settings for the
display.

winScreenModeGetSupportedDepths
Return in depthP a hexadecimal value
indicating the supported screen depths.
The binary representation of this value
defines a bitfield in which the value 1
indicates support for a particular display
depth. The position representing a
particular bit depth corresponds to the
value 2(bitDepth-1). See the Example at the
end of this function description for more
information.

Windows
Window Functions

Palm OS Programmer’s API Reference 1225

winScreenModeGetSupportsColor
Return true as the value of the
enableColorP parameter when color
mode can be enabled.

winScreenModeSet
Change display settings to the values
specified by the other arguments to the
WinScreenMode function.

winScreenModeSetToDefaults
Change display settings to default
values.

<-> widthP Pointer to new/old screen width. For backward
compatibility, when operation is
winScreenModeGet or
winScreenModeGetDefaults, a single-
density width is returned, even if the handheld
has a double-density display. Use
WinScreenGetAttribute to retrieve the true
hardware dimensions of the display.

<-> heightP Pointer to new/old screen height. . For
backward compatibility, when operation is
winScreenModeGet or
winScreenModeGetDefaults, a single-
density height is returned, even if the handheld
has a double-density display. Use
WinScreenGetAttribute to retrieve the true
hardware dimensions of the display.

<-> depthP Pointer to new/old/available screen depth.

Windows
Window Functions

1226 Palm OS Programmer’s API Reference

<-> enableColorP
Pass true to enable color drawing mode. The
returned value (when using an operation that
returns a value through this parameter) simply
indicates whether or not the hardware supports
color; its value does not change based on the
current screen depth.

Result If no error, returns values as specified by the operation argument.
Various invalid arguments may cause this function to return a
sysErrParamErr result code. In rare cases, a failed allocation can
cause this function to return a memErrNotEnoughSpace error.

Comments The widthP, heightP, depthP, and enableColorP parameters
are used in different ways for different operations. All “get”
operations overwrite these values with a result when the function
returns. The winScreenModeSet operation changes current
display parameters when passed valid argument values that are not
NULL pointers. The winScreenModeSetToDefaults operation
ignores values passed for all of these parameters.

Table 54.1 summarizes parameter usage for each operation this
function performs.

Windows
Window Functions

Palm OS Programmer’s API Reference 1227

This function ignores NULL pointer arguments to the widthP,
heightP, depthP, and enableColorP parameters; thus, you can
pass a NULL pointer for any of these values to leave the current
value unchanged. Similarly, when getting values, this function does
not return a value for any NULL pointer argument.

If you change the display depth, it is recommended that you restore
it to its previous state when your application closes, even though
the system sets display parameters back to their default values
when launching an application.

Note that none of the other operations interprets the depth
parameter the same way that
winScreenModeGetSupportedDepths does. For example, to set
the display depth to 8-bit mode, you use 8 (decimal) for the display
depth, not 0x80 (128 decimal).

When a window is created, and if the window's associated bitmap
does not have its own color table, the window will use the system's
default color translation tables when a blitting operation occurs to
that window. When the system's bit depth changes, the system's
default color translation tables are recalculated based on the new
screen depth. When the blit occurs at the new screen depth to the
offscreen window, the color translation tables are out of sync.

To workaround this system limitation, developers should either:

• allocate offscreen windows after changing the depth, or

Table 54.1 Use of parameters to WinScreenMode function

Operation winScreenMode… widthP heightP depthP enableColorP

…Get returned returned returned returned

…GetDefaults returned returned returned returned

…GetSupportedDepths ignored ignored returned pass in

…GetSupportsColor ignored ignored pass in returned

…Set pass in pass in pass in pass in

…SetToDefaults ignored ignored ignored ignored

Windows
Window Functions

1228 Palm OS Programmer’s API Reference

• use WinCreateBitmapWindow so that it uses a bitmap with
a defined color table.

The latter workaround causes the system to perform color matching
when blitting, so the first workaround may be preferred.

Compatibility Implemented only if 3.5 New Feature Set is present. In OS versions
prior to 3.5, this function is called ScrDisplayMode. The prototype
for ScrDisplayMode is similar to WinScreenMode:

Err ScrDisplayMode (
ScrDisplayModeOperation operation,
DWordPtr widthP, DWordPtr heightP,
DWordPtr depthP, BooleanPtr enableColorP)

The only other difference between ScrDisplayMode and
WinScreenMode is that the ScrDisplayModeOperation
constants begin with the prefix scrDisplayMode rather than
winScreenMode.

Example Here are some additional examples of return values provided by the
winScreenModeGetSupportedDepths mode of the
WinScreenMode function.

This function indicates support for 4-bit drawing by returning a
value of 0x08, or 23, which corresponds to a binary value of 1000.
Support for bit depths of 2 and 1 is indicated by a return value of
0x03. Support for bit depths of 4, 2, and 1 is indicated by 0x0B,
which is a binary value of 1011. Support for bit depths of 16, 8, 4
and 2 is indicated by 0x808A. The figure immediately following
depicts this final example graphically.

See Also WinScreenGetAttribute

1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0

16-bit drawing 8-bit drawing

4-bit drawing

2-bit drawing

2

15

2

7

2

3

2

1

Windows

Window Functions

Palm OS Programmer’s API Reference

1229

WinScreenUnlock

Purpose

Unlock the screen and update the display.

Declared In

Window.h

Prototype

void WinScreenUnlock (void)

Parameters

None.

Result

Returns nothing.

Comments

The screen must be unlocked as many times as it is locked to
actually update the display.

Compatibility

Implemented only if 3.5 New Feature Set is present.

See Also

WinScreenLock

WinScrollRectangle

Purpose

Scroll a rectangle in the draw window.

Declared In

Window.h

Prototype

void WinScrollRectangle (const RectangleType *rP,
WinDirectionType direction, Coord distance,
RectangleType *vacatedP)

Parameters

-> rP

Pointer to the rectangle to scroll.

-> direction

Direction to scroll (winUp, winDown, winLeft,
or winRight).

-> distance Distance to scroll in pixels.

Windows
Window Functions

1230 Palm OS Programmer’s API Reference

<- vacatedP Pointer to the rectangle that needs to be
redrawn because it has been vacated as a result
of the scroll.

Result Returns nothing.

Comments The rectangle scrolls within its own bounds. Any portion of the
rectangle that is scrolled outside its bounds is clipped.

WinSetActiveWindow

Purpose Make a window the active window.

Declared In Window.h

Prototype void WinSetActiveWindow (WinHandle winHandle)

Parameters -> winHandle Handle of a window.

Result Returns nothing.

Comments The active window is not actually set in this routine; flags are set to
indicate that a window is being exited and another window is being
entered. The routine EvtGetEvent sends a winExitEvent and a
winEnterEvent when it detects these flags. The active window is
set by EvtGetEvent when it sends the winEnterEvent. The
draw window is also set to the new active window when the active
window is changed.

The window is enabled before it is made active.

All user input is directed to the active window.

See Also WinGetActiveWindow, EvtGetEvent

Windows
Window Functions

Palm OS Programmer’s API Reference 1231

WinSetBackColor

Purpose Set the background color to use in subsequent draw operations.

Declared In Window.h

Prototype IndexedColorType WinSetBackColor
(IndexedColorType backColor)

Parameters -> backColor Color to set; specify a value of type
IndexedColorType.

Result Returns the previous background color index.

Comments This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

To set the foreground color to a predefined UI color default, use
UIColorGetTableEntryIndex as an input to this function. For
example:

curColor = WinSetBackColor
(UIColorGetTableEntryIndex(UIFieldBackground));

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinSetForeColor, WinSetTextColor

Windows
Window Functions

1232 Palm OS Programmer’s API Reference

WinSetBackColorRGB

Purpose Set the background color to use in subsequent draw operations.

Declared In Window.h

Prototype void WinSetBackColorRGB
(const RGBColorType *newRgbP,
RGBColorType *prevRgbP)

Parameters -> newRgbP Color to set; specify a value of type
RGBColorType.

<- prevRgbP Previous color; specify a value of type
RGBColorType.

Result Returns nothing

Comments This function takes new and previous RGBColorType arguments.
It is okay to set newRgbP or prevRgbP to NULL. If an application
only wants to get the current color, the newRgbP argument is set to
NULL. If the application does not care about the previous color,
prevRgbP can be set to NULL.

This function sets the backColorRGB field of the DrawStateType
structure to the value specified by newRgbP. It then sets the index
field of backColorRGB to the 8 bit system palette entry that most
closely matches the RGB components. Finally, it sets the
backColor index field of DrawStateType to this index value.

This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also WinSetForeColorRGB, WinSetTextColorRGB

Windows
Window Functions

Palm OS Programmer’s API Reference 1233

WinSetBounds

Purpose Set the bounds of the window to display-relative coordinates.

Declared In Window.h

Prototype void WinSetBounds (WinHandle winHandle,
const RectangleType *rP)

Parameters -> winHandle Handle for the window for which to set the
bounds.

-> rP Pointer to a rectangle to use for bounds.

Result Returns nothing.

Comments A visible window cannot have its bounds modified.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also WinGetBounds

WinSetClip

Purpose Set the clipping rectangle of the draw window.

Declared In Window.h

Prototype void WinSetClip (const RectangleType *rP)

Parameters -> rP Pointer to a structure holding the clipping
bounds.

Result Returns nothing.

See Also WinClipRectangle, WinSetClip, WinGetClip

Windows
Window Functions

1234 Palm OS Programmer’s API Reference

WinSetDrawMode

Purpose Set the transfer mode to use in subsequent draw operations.

Declared In Window.h

Prototype WinDrawOperation WinSetDrawMode
(WinDrawOperation newMode)

Parameters -> newMode Transfer mode to set; specify one of the
WinDrawOperation values.

Result Returns the previous transfer mode.

Comments This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

Compatibility Implemented only if 3.5 New Feature Set is present.

New WinSetCoordinateSystem

Purpose Establish the coordinate system to be used for subsequent drawing
operations.

Declared In Window.h

Prototype UInt16 WinSetCoordinateSystem (UInt16 coordSys)

Parameters -> coordSys The desired coordinate system. Supply one of
the values defined in “Window Coordinate
System Constants” on page 1163.

Result Returns the previous coordinate system value.

Windows
Window Functions

Palm OS Programmer’s API Reference 1235

Comments This function modifies the scale field in the draw state (a
DrawStateType structure). As when making other modifications
to a window’s draw state, applications should call
WinPushDrawState before modifying the coordinate system. To
restore the coordinate system, your application can then call
WinPopDrawState.

To calculate the draw state scale field, the Window Manager
divides the density of the bitmap associated with the draw window
by coordSys. If coordSys is kCoordinatesNative, the
Window Manager sets the scale field to 1.0, which to enables 1-to-1
mapping of coordinates to pixels.

If you supply a value of kCoordinatesStandard for coordSys,
subsequent drawing will use the standard coordinate system.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

See Also WinGetCoordinateSystem

WinSetDrawWindow

Purpose Set the draw window. (All drawing operations are relative to the
draw window.)

Declared In Window.h

Prototype WinHandle WinSetDrawWindow (WinHandle winHandle)

Parameters -> winHandle Handle of a window.

Result Returns the previous draw window.

Compatibility OS versions before 3.5 allowed you to use NULL as a parameter to
this function to set the draw window to the display window (or
screen window). In version 3.5 and higher, this practice is
discouraged. If winHandle is NULL, the debug ROM sets the draw

Windows
Window Functions

1236 Palm OS Programmer’s API Reference

window to badDrawWindowValue, and you are warned if you try
to draw to it.

See Also WinGetDrawWindow, WinSetActiveWindow

WinSetForeColor

Purpose Set the foreground color to use in subsequent draw operations.

Declared In Window.h

Prototype IndexedColorType WinSetForeColor
(IndexedColorType foreColor)

Parameters -> foreColor Color to set; specify a value of type
IndexedColorType.

Result Returns the previous foreground color index.

Comments This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

To set the foreground color to a predefined UI color default, use
UIColorGetTableEntryIndex as an input to this function. For
example:

curColor = WinSetForeColor
 (UIColorGetTableEntryIndex
 (UIObjectForeground));

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinSetBackColor, WinSetTextColor

Windows
Window Functions

Palm OS Programmer’s API Reference 1237

WinSetForeColorRGB

Purpose Set the foreground color to use in subsequent draw operations.

Declared In Window.h

Prototype void WinSetForeColorRGB
(const RGBColorType *newRgbP,
RGBColorType *prevRgbP)

Parameters -> newRgbP Color to set; specify a value of type
RGBColorType.

<- prevRgbP Previous color; specify a value of type
RGBColorType.

Result Returns nothing.

Comments This function takes new and previous RGBColorType arguments.
It is okay to set newRgbP or prevRgbP to NULL. If an application
only wants to get the current color, the newRgbP argument is set to
NULL. If the application does not care about the previous color,
prevRgbP can be set to NULL.

This function sets the foreColorRGB field of the DrawStateType
structure to the value specified by newRgbP. It then sets the index
field of foreColorRGB to the 8 bit system palette entry that most
closely matches the RGB components. Finally, it sets the
foreColor index field of DrawStateType to this index value.

This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also WinSetBackColorRGB, WinSetTextColorRGB

Windows
Window Functions

1238 Palm OS Programmer’s API Reference

WinSetPattern

Purpose Set the current fill pattern.

Declared In Window.h

Prototype void WinSetPattern
(const CustomPatternType *patternP)

Parameters -> patternP Pattern to set (see CustomPatternType).

Result Returns nothing.

Comments The fill pattern is used by WinFillLine and WinFillRectangle.

This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

See Also WinGetPattern

WinSetPatternType

Purpose Set the current pattern type.

Declared In Window.h

Prototype void WinSetPatternType (PatternType newPattern)

Parameters -> newPattern Pattern type to set for the draw window (see
PatternType).

Result Returns nothing.

Comments This function sets the pattern field of the drawing state to
newPattern and sets the patternData field to NULL. To set
patternData to a custom pattern use WinSetPattern.

The fill pattern is used by WinFillLine and WinFillRectangle.

Windows
Window Functions

Palm OS Programmer’s API Reference 1239

This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinGetPatternType

WinSetTextColor

Purpose Set the color to use for drawing characters in subsequent draw
operations.

Declared In Window.h

Prototype IndexedColorType WinSetTextColor
(IndexedColorType textColor)

Parameters -> textColor Color to set; specify a value of type
IndexedColorType.

Result Returns the previous text color index.

Comments This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

To set the foreground color to a predefined UI color default, use
UIColorGetTableEntryIndex as an input to this function. For
example:

curColor = WinSetTextColor
 (UIColorGetTableEntryIndex(UIFieldText));

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinSetBackColor, WinSetForeColor

Windows
Window Functions

1240 Palm OS Programmer’s API Reference

WinSetTextColorRGB

Purpose Set the color to use for drawing characters in subsequent draw
operations.

Declared In Window.h

Prototype void WinSetTextColorRGB
(const RGBColorType *newRgbP,
RGBColorType *prevRgbP)

Parameters -> newRgbP Color to set; specify a value of type
RGBColorType.

<- prevRgbP Previous color; specify a value of type
RGBColorType.

Result Returns nothing.

Comments This function takes new and previous RGBColorType arguments.
It is okay to set newRgbP or prevRgbP to NULL. If an application
only wants to get the current color, the newRgbP argument is set to
NULL. If the application does not care about the previous color,
prevRgbP can be set to NULL.

This function sets the textColorRGB field of the DrawStateType
structure to the value specified by newRgbP. It then sets the index
field of textColorRGB to the 8 bit system palette entry that most
closely matches the RGB components. Finally, it sets the
textColor index field of DrawStateType to this index value.

This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also WinSetBackColorRGB, WinSetForeColorRGB

Windows
Window Functions

Palm OS Programmer’s API Reference 1241

WinSetUnderlineMode

Purpose Set the graphic state to enable or disable the underlining of
characters.

Declared In Window.h

Prototype UnderlineModeType WinSetUnderlineMode
(UnderlineModeType mode)

Parameters <-> mode New underline mode type; see
UnderlineModeType.

Result Returns the previous underline mode type.

Comments This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

See Also WinDrawChars

New WinUnscaleCoord

Purpose Convert a single coordinate from the active coordinate system to the
standard coordinate system.

Declared In Window.h

Prototype Coord WinUnscaleCoord (Coord coord,
Boolean ceiling)

Parameters -> coord A coordinate in the active coordinate system.

-> ceiling Pass true to round up, false to truncate the
fractional part when scaling.

Result Returns the coordinate scaled to the standard coordinate system.

Windows
Window Functions

1242 Palm OS Programmer’s API Reference

Comments This function converts a coordinate by dividing it by the coordinate
scaling factor, truncating or rounding the result to an integer value
depending on the value of ceiling.

If the active coordinate system is kCoordinatesStandard, the
returned coordinate is equal to the supplied coordinate.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

See Also WinScaleCoord, WinUnscalePoint, WinUnscaleRectangle

New WinUnscalePoint

Purpose Convert a point from the active coordinate system to the standard
coordinate system.

Declared In Window.h

Prototype void WinUnscalePoint (PointType *pointP,
Boolean ceiling)

Parameters <-> pointP Pointer to a PointType structure that, before
the call, should contain a point’s coordinates
using the active coordinate system. After this
function is called the PointType structure
contains the coordinates of the point scaled to
the standard coordinate system.

-> ceiling Pass true to round up, false to truncate the
fractional part when scaling.

Result Returns nothing. The coordinates of the point indicated by pointP
are converted to the standard coordinate system.

Comments This function converts a point by dividing its x and y coordinates by
the coordinate scaling factor, truncating or rounding the results to
integer values depending on the value of ceiling. For instance,

Windows
Window Functions

Palm OS Programmer’s API Reference 1243

the input coordinates (11, 13) are transformed to (6, 7) if the input
values represent native coordinates on a handheld with a double-
density screen and ceiling is set to true. If ceiling is set to
false, the same input coordinates are transformed to (5, 6).

If the active coordinate system is kCoordinatesStandard,
pointP is not changed by this function.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

See Also WinScalePoint, WinUnscaleCoord, WinUnscaleRectangle

New WinUnscaleRectangle

Purpose Convert a rectangle from the active coordinate system to the
standard coordinate system.

Declared In Window.h

Prototype void WinUnscaleRectangle (RectangleType *rectP)

Parameters <-> rectP Pointer to a RectangleType structure that,
before the call, should contain a rectangle’s
coordinates using the active coordinate system.
After this function is called the
RectangleType structure contains the
coordinates of the rectangle scaled to the
standard coordinate system.

Result Returns nothing. The coordinates of the rectangle indicated by
rectP are converted to the standard coordinate system.

Comments This function scales the rectangle’s topLeft and extent points by
dividing their x and y coordinates by the coordinate scaling factor.
All values are then truncated, but if either topLeft.x or
extent.x had a fractional part, extent.x is incremented by 1

Windows
Window Functions

1244 Palm OS Programmer’s API Reference

(and, similarly, if either topLeft.y or extent.y had a fractional
part, extent.y is incremented by 1).

If the active coordinate system is kCoordinatesStandard, rectP
is not changed by this function.

Compatibility Implemented only if the High-Density Display Feature Set is
present.

See Also WinScaleRectangle, WinUnscaleCoord, WinUnscalePoint

WinValidateHandle

Purpose Return true if the specified handle references a valid window
object.

Declared In Window.h

Prototype Boolean WinValidateHandle (WinHandle winHandle)

Parameters -> winHandle The handle to be tested.

Result Returns true if the specified handle references a non-NULL pointer
to a window in the active window list, false if the handle
references a window whose values are out of sync with the current
system state.

Comments For debugging purposes only. Do not include this function in
commercial applications.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmValidatePtr, FrmRemoveObject

Windows
Window Functions

Palm OS Programmer’s API Reference 1245

WinWindowToDisplayPt

Purpose Convert a window-relative coordinate to a display-relative
coordinate.

Declared In Window.h

Prototype void WinWindowToDisplayPt (Coord *extentX,
Coord *extentY)

Parameters <-> extentX Pointer to x coordinate to convert.

<-> extentY Pointer to y coordinate to convert.

Result Returns nothing.

Comments The coordinate passed is assumed to be relative to the draw
window.

See Also WinDisplayToWindowPt

Windows
Window Functions

1246 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1247

55
Miscellaneous
System Functions
This chapter describes miscellaneous system functions. The
functions in this chapter are declared in the header files Crc.h,
DLServer.h, IntlMgr.h, and Localize.h.

Crc16CalcBlock

Purpose Calculate the 16-bit CRC of a data block using the table lookup
method.

Declared In Crc.h

Prototype UInt16 Crc16CalcBlock (const void *bufP,
UInt16 count, UInt16 crc)

Parameters bufP Pointer to the data buffer.

count Number of bytes in the buffer.

crc Seed crc value.

Result A 16-bit CRC for the data buffer.

Miscellaneous System Functions

1248 Palm OS Programmer’s API Reference

DlkControl

Purpose Perform an operation at the behest of the desktop software. Among
other things, this function is used to return values to the conduit
during the handling of sysAppLaunchCmdHandleSyncCallApp.

Declared In DLServer.h

Prototype Err DlkControl (DlkCtlEnum op, void *param1P,
void *param2P)

Parameters -> op Desktop Link control code. Use
dlkCtlSendCallAppReply when sending a
result back to the conduit while handling a
sysAppLaunchCmdHandleSyncCallApp
launch code.

<-> param1P Pointer to the first parameter (operation-
specific). For dlkCtlSendCallAppReply,
this parameter should point to a
DlkCallAppReplyParamType structure.

<-> param2P Pointer to the second parameter (operation-
specific). For dlkCtlSendCallAppReply,
this parameter should be set to NULL.

Result errNone if no error, or an error code if there was a problem during
the call to DlkControl. In either case, place the value returned
from DlkControl into the replyErr field of the
SysAppLaunchCmdHandleSyncCallAppType structure when
handling sysAppLaunchCmdHandleSyncCallApp.

Comments This function is needed to return data back to a conduit during the
handling of sysAppLaunchCmdHandleSyncCallApp. Set
param1P to point to a DlkCallAppReplyParamType structure, as
described below. See the Example on page 1249 for an illustration of
how to handle sysAppLaunchCmdHandleSyncCallApp.

Miscellaneous System Functions

Palm OS Programmer’s API Reference 1249

DlkCallAppReplyParamType

Prototype typedef struct DlkCallAppReplyParamType {
 UInt16 pbSize;
 UInt32 dwResultCode;
 const void *resultP;
 UInt32 dwResultSize;
 void *dlRefP;
 UInt32 dwReserved1;
} DlkCallAppReplyParamType;

Fields pbSize Size of this parameter block. Set it to
sizeof(DlkCallAppReplyParamType).

dwResultCode Result code to be returned to the remote caller.

resultP Pointer to result data.

dwResultSize Size of result data block (number of bytes).

dlRefP Desktop Link reference pointer from
SysAppLaunchCmdHandleSyncCallAppTy
pe.

dwReserved1 Reserved. Set to NULL.

Example The SysAppLaunchCmdHandleSyncCallAppType structure that
accompanies the sysAppLaunchCmdHandleSyncCallApp launch
code contains all of the information passed into
SyncCallRemoteModule on the desktop as well as the necessary
fields to pass the result pack to the desktop. At the end of your
sysAppLaunchCmdHandleSyncCallApp launch code handler,
you'll need to send a DlkCallAppReplyParamType reply
structure back to the device using DlkControl.

#include <DLServer.h>
...
case sysAppLaunchCmdHandleSyncCallApp:
{
 SysAppLaunchCmdHandleSyncCallAppType *theCommandPtr;
 DlkCallAppReplyParamType theReplyParams;
 CharPtr theReplyBuffer = "SUCCESS";

 // Cast the cmdPBP to a SysAppLaunchCmdHandleSyncCallAppType
 // pointer so that we can work with it.
 theCommandPtr = (SysAppLaunchCmdHandleSyncCallAppType*)cmdPBP;

Miscellaneous System Functions

1250 Palm OS Programmer’s API Reference

 // Do whatever work is necessary here. If you set the m_wActionCode
 // field in your CCallModuleParams class on the desktop, then you
 // can handle that code by looking at the action field of theCommandPtr
 // (i.e.) if (theCommandPtr->action == 1)

 // Create the reply to send back to the desktop

 // First clear out all the fields. This is necessary so that the reserved
 // fields are set to NULL.
 MemSet(&theReplyParams, sizeof(DlkCallAppReplyParamType), 0);

 // Set the size of the reply. This is required.
 theReplyParams.pbSize = sizeof(DlkCallAppReplyParamType);

 // Set the result code. Normally this will be set to zero unless you want
 // to send an error code back to the desktop.
 theReplyParams.dwResultCode = 0;

 // Fill in the reply buffer and buffer length
 theReplyParams.resultP = theReplyBuffer;
 theReplyParams.dwResultSize = StrLen(theReplyBuffer) + 1;

 // Fill in the DL reference pointer. This is required.
 theReplyParams.dlRefP = theCommandPtr->dlRefP;

 // Set the handled field to true. This is required to let the desktop
 // know that the sysAppLaunchCmdHandleSyncCallApp was handled. If you
 // don't set this to true, the call to SyncCallRemoteModule will return
 // SYNCERR_UNKNOWN_REQUEST.
 theCommandPtr->handled = true;

 // Finally, set the replyErr field by passing the reply parameters to
 // DlkControl. This is required for the DLServer to properly handle the
 // reply request.
 theCommandPtr->replyErr = DlkControl (dlkCtlSendCallAppReply,
 &theReplyParams, NULL);

 break;
}

Table 55.1 and Table 55.2 list some important mappings from the
CCallModuleParams class on the desktop to the
SysAppLaunchCmdHandleSyncCallAppType and
DlkCallAppReplyParamType structures on the handheld.

Miscellaneous System Functions

Palm OS Programmer’s API Reference 1251

DlkGetSyncInfo

Purpose Get the sync info managed by Desktop Link. This function is often
used to obtain the user name on the handheld.

Declared In DLServer.h

Prototype Err DlkGetSyncInfo (UInt32 *succSyncDateP,
UInt32 *lastSyncDateP,
DlkSyncStateType *syncStateP, Char *nameBufP,
Char *logBufP, Int32 *logLenP)

Parameters <- succSyncDateP
Pointer to the location where the date of the last
successful sync is stored. Supply NULL for this
parameter if this date isn’t needed.

Table 55.1 CCallModuleParams to
SysAppLaunchCmdHandleSyncCallAppType
mapping

CCallModuleParams SysAppLaunchCmdHandleSyncCall
AppType

m_wActionCode action

m_dwParamSize dwParamSize

m_pParam paramP

Table 55.2 CCallModuleParams to DlkCallAppReplyParamType
mapping

CCallModuleParams DlkCallAppReplyParamType

m_dwResultBufSize dwResultSize

m_pResultBuf resultP

m_dwResultCode dwResultCode

Miscellaneous System Functions

1252 Palm OS Programmer’s API Reference

<- lastSyncDateP
Pointer to the location where the date of the last
sync, successful or otherwise, is stored. Supply
NULL for this parameter if this date isn’t
needed.

<- syncStateP Pointer to a DlkSyncStateType enum into
which the state of the last sync is stored. Supply
NULL for this parameter if the state information
isn’t needed. See the Comments, below, for a
description of this enum.

<- nameBufP Pointer to a string buffer into which the null-
terminated handheld user name is stored. This
string buffer must have been preallocated to be
at least dlkUserNameBufSize bytes in
length. Supply NULL for this parameter if the
user name isn’t needed.

<- logBufP Pointer to a string buffer into which the sync
log text, null-terminated, is stored. Supply
NULL for this parameter if the log text isn’t
needed. If you supply a valid pointer for this
parameter, you must specify the preallocated
buffer length using the logLenP parameter;
the returned log text will be truncated, if
necessary, to fit within the buffer.

<-> logLenP Pointer to the log buffer size. If logBufP is not
NULL, on entry you must set this value to the
size of the logBufP buffer. When this function
returns, this value indicates the actual length of
the log text, not counting the null terminator.

Result Returns errNone if no error, or dlkErrMemory if the Desktop Link
preferences resource couldn’t be locked.

Comments The state information returned through syncStateP has one of the
values defined by the DlkSyncStateType enum:

typedef enum DlkSyncStateType {
 dlkSyncStateNeverSynced = 0,
 dlkSyncStateInProgress,

Miscellaneous System Functions

Palm OS Programmer’s API Reference 1253

 dlkSyncStateLostConnection,
 dlkSyncStateLocalCan,
 dlkSyncStateRemoteCan,
 dlkSyncStateLowMemoryOnTD,
 dlkSyncStateAborted,
 dlkSyncStateCompleted,
 dlkSyncStateIncompatibleProducts,
 dlkSyncStateNPOD
} DlkSyncStateType;

Value Description

dlkSyncStateNeverSynced The handheld has never been
synced.

dlkSyncStateInProgress A sync is currently in progress.

dlkSyncStateLostConnect
ion

The connection was lost during
sync.

dlkSyncStateLocalCan Sync was cancelled by the user
on the handheld.

dlkSyncStateRemoteCan Sync was cancelled by the user
from the desktop.

dlkSyncStateLowMemoryOn
TD

Sync ended due to a low
memory condition on the
handheld.

dlkSyncStateAborted Sync was aborted for some
other reason.

dlkSyncStateCompleted Sync completed normally.

Miscellaneous System Functions

1254 Palm OS Programmer’s API Reference

Example This function is most often used to obtain the handheld user name.
The following code excerpt shows how to do this (for clarity, error-
checking has been omitted):

MemHandle nameH;
char *nameP;

// Allocate a buffer for the user name
nameH = MemHandleNew(dlkUserNameBufSize);
nameP = MemHandleLock(nameH);

// Obtain the user's name
DlkGetSyncInfo(NULL, NULL, NULL, nameP, NULL, NULL);

// ... Do something with the user name here ...

// Now that we’re done with the user name, free the buffer
MemPtrUnlock(nameP);

Compatibility The dlkSyncStateIncompatibleProducts enum value was
added in Palm OS 3.0. The dlkSyncStateNPOD enum value was
added in Palm OS 4.0.

dlkSyncStateIncompatibl
eProducts

Sync ended because the
desktop HotSync product is
incompatible with this version
of the handheld HotSync.

dlkSyncStateNPOD The sync could not take place
because the handheld has a 4.0-
style password but the desktop
hasn’t yet been updated to a
compatible version.

Value Description

Miscellaneous System Functions

Palm OS Programmer’s API Reference 1255

IntlGetRoutineAddress

Purpose Return the address of an international manager or text manager
function.

Declared In IntlMgr.h

Prototype void *IntlGetRoutineAddress
(IntlSelector inSelector)

Parameters -> inSelector One of the routine selectors defined in
IntlMgr.h.

Result Returns the address of the corresponding function. Returns NULL if
an invalid routine selector is passed.

Comments Use this function for performance reasons. It returns the address of
an international manager or text manager function. You can then
use this address to call the function without having to go through
the international manager’s trap dispatch table. This function is
mostly useful for optimizing the performance of text manager
routines that are called in a tight loop.

You might also use this function to check for the presence of newer
international manager and text manager functions. If the result is
NULL, the function is not implemented on this device.

Compatibility Implemented only if International Feature Set is present.

See Also IntlSetRoutineAddress, SysGetTrapAddress

Miscellaneous System Functions

1256 Palm OS Programmer’s API Reference

IntlSetRoutineAddress

Purpose Set the address of the function corresponding to an international
manager or text manager function.

Declared In IntlMgr.h

Prototype Err IntlSetRoutineAddress
(IntlSelector iSelector, void *iProcPtr)

Parameters -> iSelector One of the routine selectors defined in
IntlMgr.h.

-> iProcPtr Pointer to a function that the routine identified
by iSelector should point to.

Result Returns errNone if no error, or intlErrInvalidSelector if
iSelector does not refer to a valid international manager or text
manager routine.

Comments This function is useful for patching an international or text manager
function. Normally only a locale module would need to patch one
of these functions.

WARNING! If your application patches an international manager
function using this function, you must remove the patch before
your application exits. Do not use this mechanism to permanently
patch international manager functions as it may cause
unpredictable results for the system and other applications.

Compatibility Implemented only if 4.0 New Feature Set is present. If 5.0 New
Feature Set is present this function is unimplemented.

See Also IntlGetRoutineAddress, SysSetTrapAddress

Miscellaneous System Functions

Palm OS Programmer’s API Reference 1257

LocGetNumberSeparators

Purpose Get localized number separators.

Declared In Localize.h

Prototype void LocGetNumberSeparators
(NumberFormatType numberFormat,
Char *thousandSeparator, Char *decimalSeparator)

Parameters -> numberFormat The format to use (see NumberFormatType).

<- thousandSeparator
The character used for the thousands separator.

<- decimalSeparator
The character used for the decimal separator.

Result Returns nothing.

Comments The format to use is stored in the system preferences. You can obtain
it by passing prefNumberFormat to PrefGetPreference.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrLocalizeNumber, StrDelocalizeNumber, “Localized
Applications” in the Palm OS Programmer’s Companion, vol. I

Miscellaneous System Functions

1258 Palm OS Programmer’s API Reference

New PceNativeCall

Purpose Call a native ARM or Windows NT function from code running in
the PACE (68k) environment.

Declared In PceNativeCall.h

Prototype UInt32 PceNativeCall(
NativeFuncType *nativeFuncP, void *userDataP)

Parameters -> nativeFuncP On a handheld with an ARM processor, this is a
pointer to the ARM function to be executed. On
Palm OS Simulator, this is a pointer to the name
of a DLL and the name of the entry point
within that DLL that is to be executed,
separated by a null character and terminated
with a null character. See the Comments, below,
for more details on the format of this argument.

<-> userDataP Pointer to an application-specific block of data
that is passed to the ARM function. This block
has no specific alignment requirements; it
needn’t be aligned on a 16- or 32-bit boundary.
Note that your ARM function may impose
specific alignment requirements, however.

Result The return value of the specified ARM function is returned by
PceNativeCall. This value is placed in both the A0 and D0
registers in the emulated 68k CPU, allowing PceNativeCall to
support both pointer and immediate return value conventions.

Comments Applications that employ PceNativeCall won’t work on
handhelds running a version of Palm OS prior to Palm OS 5. Before
calling PceNativeCall, your application must verify the
underlying processor type, since the calling convention is different
on Palm OS Simulator. See “Calling an ARM Function” on page 340
of Palm OS Programmer’s Companion, vol. I for more information and
an example.

Miscellaneous System Functions

Palm OS Programmer’s API Reference 1259

PceNativeCall byte-swaps the parameter pointer and return
value as appropriate for the Dragonball-to-ARM transition. This
allows you to dereference userDataP directly from your ARM
code. Because the operating system has no knowledge of the
structure of the parameter block, however, it performs no byte-
swapping within this block. Your ARM code must do this as
necessary for your application (see “Accessing 68K Data From an
ARM Function” on page 342 of the Palm OS Programmer’s
Companion, vol. I for more information).

On Palm OS Simulator, rather than passing a pointer to a block of
ARM code in nativeFuncP, you instead pass a pointer to the name
of a DLL and the name of the function within that DLL that is to be
executed. These two names must be separated by a null character,
and the entire sequence must be terminated by a null character. For
example, to load the DLL found at
C:\TEST_DLL\Debug\Simple.dll and call the function
TestNativeCall within that DLL, you might pass a pointer to the
following character string literal:

"C:\\TEST_DLL\\Debug\\Simple.dll\0TestNativeCall"

Note that if you don’t supply an absolute path, Simulator looks for
the DLL in (or relative to) the directory from which PalmSim.exe
is running. Thus, if the DLL is located in the same directory as
PalmSim.exe, you can call the above function with:

"Simple.dll\0TestNativeCall"

On release ROMs, PceNativeCall fails silently if nativeFuncP
is NULL. On debug ROMs, it generates an error. All other pointers
are treated as valid code and followed. If nativeFuncP is invalid,
the processor will try to execute the code anyway and will
eventually generate an error.

NOTE: The call to your native function is guaranteed to be
made from ARM mode.

For more information on how the ARM code should be structured
and how to call back and forth between the PACE and ARM
environments, see “ARM-Native Functions” on page 339 of the
Palm OS Programmer’s Companion, vol. I.

Miscellaneous System Functions

1260 Palm OS Programmer’s API Reference

Compatibility Implemented only if 5.0 New Feature Set is present.

Part III: Communications

Palm OS Programmer’s API Reference 1263

56
Connection Manager
The Connection Manager allows other applications to access, add,
and delete connection profiles contained in the Connection panel.

This chapter provides reference material for the Connection
Manager API declared in the header file ConnectionMgr.h:

• Connection Manager Constants

• Connection Manager Functions

For more information on the Connection Manager, see the chapter
“Serial Communication” on page 89 in the Palm OS Programmer’s
Companion, vol. II, Communications.

Connection Manager Data Types

CncProfileID
The CncProfileID type uniquely identifies a connection profile
within the Connection Manager profile database. You pass this ID as
a parameter to several of the Connection Manager functions. You
can obtain a connection’s profile ID using
CncProfileGetIDFromName or CncProfileGetIDFromIndex.

typedef UInt32 CncProfileID

Compatibility Defined only if Connection Manager Feature Set is present.

Connection Manager Constants

Profile Parameter Constants
The Connection Manager defines the following constants to
represent individual parameters in the preinstalled connection
profiles. Not all parameters work for all types of profiles.

Connection Manager
Connection Manager Constants

1264 Palm OS Programmer’s API Reference

Parameter Name Parameter
Type

Description

kCncParamBaud UInt32 The baud rate to use for the
connection.

kCncParamBluetoothDevice
Addr

buffer The 48-bit address (BD_ADDR) of the
device that the handheld is
connected to through the Bluetooth
port. This parameter is only valid if
kCncParamPort specifies the
Bluetooth port.

kCncParamBluetoothDevice
Name

string The name of the device that the
handheld is connected to through
the Bluetooth port. The device name
uses the UTF-8 character encoding.
This parameter is only valid if
kCncParamPort specifies the
Bluetooth port.

kCncParamCountryIndex UInt16 The index into the list of strings
returned by
kCncParamIntlModemCountrySt
ringList and
kCncParamIntlModemResetStri
ngList that provides the name of
the country and the reset commands
for this profile.

kCncParamDeviceKind UInt16 The type of connection being made
(general serial connection,
connection to a modem, connection
to a phone, and so on). This value is
one of the Device Kind Constants.

kCncParamDialingMode UInt8 For modem profiles, the dialing
mode. 1 for Pulse dialing, 0 for
TouchTone.

Connection Manager
Connection Manager Constants

Palm OS Programmer’s API Reference 1265

kCncParamCountryIndex UInt16 The index into the list of strings
returned by
kCncParamIntlModemCountrySt
ringList and
kCncParamIntlModemResetStri
ngList that provides the name of
the country and the reset commands
for this profile.

kCncParamDeviceKind UInt16 The type of connection being made
(general serial connection,
connection to a modem, connection
to a phone, and so on). This value is
one of the Device Kind Constants.

kCncParamDialingMode UInt8 For modem profiles, the dialing
mode. 1 for Pulse dialing, 0 for
TouchTone.

Connection Manager
Connection Manager Constants

1266 Palm OS Programmer’s API Reference

kCncParamIntlModem
CountryStringList

buffer For modem profiles, a data buffer
containing a list of possible
countries. This list contains the
countries in which the modem can
operate and is shown in the
Connection panel Details form for
this profile. The selected country
controls the dialing prefix and the
modem reset string. The
kCncParamCountryIndex
parameter specifies the country
selected from this list.

The data buffer contains a packed
block of null-terminated strings,
each containing a country name. The
first 16 bits of the data buffer (a
UInt16 value) tells how many
strings are contained in the block.
You can use
SysFormPointerArrayToString
s to convert the data buffer into an
array of strings.

Because this parameter value has a
variable size, you must first call
CncProfileSettingGet with a
NULL data pointer to obtain the
correct size.

kCncParamIntlModem
ResetStringList

buffer For modem profiles, a data buffer
containing possible reset strings. The
kCncParamCountryIndex
parameter specifies which reset
string from this list is to be used. The
actual string used is itself stored in
the kCncParamResetString
parameter.

Parameter Name Parameter
Type

Description

Connection Manager
Connection Manager Constants

Palm OS Programmer’s API Reference 1267

The data buffer contains a packed
block of null-terminated strings,
each containing a reset string. The
first 16 bits of the data buffer (a
UInt16 value) tells how many
strings are contained in the block.
You can use
SysFormPointerArrayToString
s to convert the data buffer into an
array of strings.

Because this parameter value has a
variable size, you must first call
CncProfileSettingGet with a
NULL data pointer to obtain the
correct size.

kCncParamInvisible system flag If true, the profile is hidden from
the user. If false, the profile is
visible. This parameter is not
currently used.

kCncParamLocked system flag If true, the profile is locked so that
the user cannot edit it. If false, the
profile can be edited. This parameter
can be set by profiles, such as phone
profiles, created by third party
utilities.

kCncParamName string The name of the profile.

kCncParamNoDetails system flag If true, the profile details should
not be displayed. If false, they can
be displayed. The profile details are
the parameters that appear in the
Details form of the Connection
panel.

Parameter Name Parameter
Type

Description

Connection Manager
Connection Manager Constants

1268 Palm OS Programmer’s API Reference

kCncParamNonEditable system flag If true, the Connection panel’s Edit
form should be suppressed for this
profile. If false, the Edit form can
be displayed.

This parameter differs from
kCncParamLocked and
kCncParamReadOnly in that it
causes an alert to be displayed if the
user taps the Edit button. The other
parameters allow the Edit form to be
displayed but do not allow changes
to be made. Also, a non-editable
profile can be deleted, but a read-
only or locked profile cannot.

kCncParamPort UInt32 The logical, physical, or virtual port
identifier. See “Port Constants” on
page 1557 in the “Serial Manager”
chapter for more information.

kCncParam_PSDCreator UInt32 For phone profiles, the creator ID of
the phone driver.

kCncParam_PSDName string For phone profiles, the name of the
phone driver.

kCncParam_PSDParameter
Buffer

buffer For phone profiles, a data buffer
containing any necessary data that
the phone driver needs to store. This
parameter typically holds data that
is set using the Details form of the
Connection panel.

kCncParam_PSDType UInt32 For phone profiles, the database
type for the phone driver.

Parameter Name Parameter
Type

Description

Connection Manager
Connection Manager Constants

Palm OS Programmer’s API Reference 1269

kCncParamReadOnly system flag If true, the profile is read-only and
cannot be edited. If false, the
profile can be edited. This parameter
is only intended to be used by
profiles pre-installed in the Palm OS.

kCncParamReceiveTimeOut UInt32 For phone profiles, the number of
milliseconds to wait for a response
from the phone. This time-out value
is used by telephony functions that
don’t need to access the network (for
example, the function
TelNwkGetSelectedNetwork).

kCncParamResetString string For modem and phone profiles, the
reset string. For modem profiles, this
is one of the strings in
kCncParamIntlModemResetStri
ngList.

kCncParamSerialPortFlags UInt32 For phone profiles, bit flags that
correspond to various serial port
hardware settings. See “Serial
Settings Constants” on page 1560 for
more information.

kCncParamSystemFlags UInt32 A bit flag representing all system
flags. Currently, only bits 0 through
4 have a meaning. These correspond
to the read-only bit, the invisible bit,
the noneditable bit, the no details bit,
and the locked bit, respectively.

kCncParamTimeOut UInt32 The amount of time in milliseconds
to wait for a response when CTS is
unasserted and hardware flow
control is on.

Parameter Name Parameter
Type

Description

Connection Manager
Connection Manager Constants

1270 Palm OS Programmer’s API Reference

Compatibility Defined only if Connection Manager Feature Set is present.

Profile Parameter Size Constants
The size constants specify the size of each of the predefined
parameters described in “Profile Parameter Constants.” The
following table lists the parameter name, the size of its value, and
the size constant that gives this size. These size constants are
suitable for passing to CncProfileSettingGet and
CncProfileSettingSet.

kCncParamTTCreator UInt32 For phone profiles, the creator ID of
the telephony task used by the
phone driver.

kCncParamTTType UInt32 For phone profiles, the database
type for the telephony task used by
the phone driver.

kCncParamVersion UInt8 The version of the Connection
Manager API under which this
profile was created. The current
version number is
kCncProfileVersion.

kCncParamVolume UInt16 For modem profiles, the modem
volume.

Parameter Name Parameter
Type

Description

Profile Parameter Name Size Size Constant

kCncParamBaud 32 kCncParamBaudSize

kCncParamBluetoothDevice
Addr

8 kCncParamBluetoothDeviceAdd
rSize

kCncParamBluetoothDevice
Name

249 kCncParamBluetoothDeviceNam
eMaxSize

kCncParamCountryIndex 16 kCncParamCountryIndexSize

Connection Manager
Connection Manager Constants

Palm OS Programmer’s API Reference 1271

kCncParamDeviceKind 16 kCncParamDeviceKindSize

kCncParamDialingMode 8 kCncParamDialingModeSize

kCncParamFlowControl 16 kCncParamFlowControlSize

kCncParamInitString 81 kCncParamInitStringMaxSize

81 kCncProfileUsualInitStringS
ize

kCncParamInvisible 8 kCncParamInvisibleSize

kCncParamLocked 8 kCncParamLockedSize

kCncParamName 22 kCncParamNameMaxSize

22 kCncProfileNameSize

kCncParamNoDetails 8 kCncParamNoDetailsSize

kCncParamNonEditable 8 kCncParamNonEditableSize

kCncParamPort 32 kCncParamPortSize

kCncParam_PSDCreator 32 kCncParam_PSDCreatorSize

kCncParam_PSDName 32 kCncParam_PSDNameSize

kCncParam_PSDType 32 kCncParam_PSDTypeSize

kCncParamReadOnly 8 kCncParamReadOnlySize

kCncParamReceiveTimeOut 32 kCncParamReceiveTimeOutSize

kCncParamResetString 81 kCncParamResetStringMaxSize

8 kCncProfileClassicResetStri
ngSize

81 kCncProfileUsualResetString
Size

kCncParamSystemFlags 32 kCncParamSystemFlagsSize

kCncParamTimeOut 32 kCncParamTimeOutSize

Profile Parameter Name Size Size Constant

Connection Manager
Connection Manager Constants

1272 Palm OS Programmer’s API Reference

Compatibility Defined only if Connection Manager Feature Set is present.

Device Kind Constants
The device kind constants specify the type of connection being
made. You specify the type of connection by defining a value for the
kCncParamDeviceKind parameter using
CncProfileSettingSet.

Compatibility Defined only if Connection Manager Feature Set is present.

Profile Parameter Types
The parameter type constants specify the type of value stored for a
parameter in a connection profile. If you define a new parameter
using CncDefineParamID, you must use one of these constants to
specify the type of data the parameter stores. The macro
CncGetParamType can return this information for any parameter
in the profile.

kCncParamTTCreator 32 kCncParamTTCreatorSize

kCncParamTTType 32 kCncParamTTTypeSize

kCncParamVersion 8 kCncParamVersionSize

kCncParamVolume 16 kCncParamVolumeSize

Profile Parameter Name Size Size Constant

Constant Value Description

 kCncDeviceKindSerial 0 The connection is through the serial
port.

kCncDeviceKindModem 1 The connection is to a modem.

kCncDeviceKindPhone 2 The connection is to a phone.

kCncDeviceKindLocalNetwork 3 The connection is to a LAN.

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1273

Compatibility Defined only if Connection Manager Feature Set is present.

Connection Manager Functions

CncAddProfile

Purpose Adds a profile to the Connection Manager.

Declared In ConnectionMgr.h

Prototype Err CncAddProfile (Char *name, UInt32 port,
UInt32 baud, UInt16 volume, UInt16 handShake,
const Char *initString, const Char *resetString,
Boolean isModem, Boolean isPulse)

Parameters <-> name Pointer to the profile name to be added. If the
name is already taken in the Connection panel
then a duplication number is appended to it.
The name added is returned here.

Constant Value Description

kCncParamSystemFlag 0x00 A system flag parameter. The Connection
Manager can store up to 32 system flags. Flags
are stored in a single bit and returned as a
UInt8 value. The entire system flags word can
be returned if you pass
kCncParamSystemFlags to
CncProfileSettingGet.

kCncParamUInt8 0x01 A UInt8 parameter.

kCncParamUInt16 0x02 A UInt16 parameter.

kCncParamUInt32 0x03 A UInt32 parameter.

kCncParamString 0x04 A string parameter.

kCncParamBuffer 0x05 A generic block of data.

Connection Manager
Connection Manager Functions

1274 Palm OS Programmer’s API Reference

-> port The port identification used by the profile. See
“Specifying the Port” on page 100 of the Palm
OS Programmer’s Companion, vol. II,
Communications for more information.

-> baud The baud rate used by the profile.

-> volume The volume setting for the device (for Modem
only).

-> handShake Flow control setting (hardware handshaking). 0
specifies automatic (on at speeds > 2400 baud),
1 specifies always on, and 2 specifies always
off.

-> initString Pointer to the initialization string used by a
modem (for Modem only).

-> resetString Pointer to the reset string used by a modem (for
Modem only).

-> isModem true if Modem, false if Direct.

-> isPulse true if Pulse dial, false if TouchTone.

Result errNone No error.

cncErrAddProfileFailed
The add operation failed.

cncErrProfileListFull
The add operation failed because the profile list
is full.

cncErrConDBNotFound
The connection database is missing.

Comments All profiles within the Connection Manager must have a unique
name. The Connection Manager tries to append a duplication
number to the end of the name if you specify a name that is already
taken.

There is a maximum limit to the number of profiles that can be
maintained by the Connection Manager. If the limit is passed, an
error is returned and that profile will not be added.

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1275

Profiles that do not need certain fields may pass NULL in the place of
a value.

Compatibility Implemented only if New Serial Manager Feature Set is present.

If Connection Manager Feature Set is present, use
CncProfileCreate instead of using this function.
CncAddProfile is still supported for backward compatibility. In
Palm OS 4.0 and higher, the maximum number of profiles that can
be defined has greatly increased.

Example AddMyProfile()
{
 Char *myConNameP;
 Err err;

 myConNameP = MemPtrNew(cncProfileNameSize);

 StrCopy(myConNameP, "Foobar");

 err = CncAddProfile(myConNameP, 'u328', 57600, 0, 0,
 "AT&FX4", 0, true, false);

 MemPtrFree(myConNameP);
}

CncDefineParamID

Purpose Macro that creates and returns a parameter ID.

Declared In ConnectionMgr.h

Prototype CncDefineParamID (parameterRange, parameterType,
parameterID)

Parameters -> parameterRange
Use kCncParamThirdPartiesRange to
specify that this parameter is not defined by the
OS.

Connection Manager
Connection Manager Functions

1276 Palm OS Programmer’s API Reference

-> parameterType
The type of value stored for the parameter. See
“Profile Parameter Types” for a list of possible
values.

-> parameterID A unique value between 0 to 1023. The value
must be unique within the profile for which
you are defining the parameter.

If you are using a parameterType of
kCncParamSystemFlag, specify a value from
0 to 31 to identify which of the system flag bit is
to be set.

Result Returns the parameter ID as a UInt16 value.

Comments You use this macro only if you are defining your own connection
profile and have a parameter that you need to define within that
profile. The parameter ID immediately precedes its parameter value
in the Connection Manager profile database. Because of how the
database is formatted, the parameter ID must tell the Connection
Manager how to interpret the next series of bytes. For this reason,
the high order bits of the parameter ID include information about
the type of value and whether the value is defined by the system or
a third party.

Compatibility Parameter IDs of this format are only used if 4.0 New Feature Set is
present.

See Also CncProfileSettingSet, CncProfileSettingGet

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1277

CncDeleteProfile

Purpose Removes a profile from the Connection Manager.

Declared In ConnectionMgr.h

Prototype Err CncDeleteProfile (const Char *name)

Parameters -> name Pointer to the name of the profile to be deleted.

Result errNone No error.

cncErrProfileReadOnly
The profile could not be deleted because it is
read only.

cncErrProfileNotFound
The profile could not be found.

cncErrConDBNotFound
The connection database is missing.

Comments The profiles that come preinstalled on the unit are read only and
cannot be deleted.

Compatibility Implemented only if New Serial Manager Feature Set is present.

If Connection Manager Feature Set is present, use
CncProfileDelete instead of using this function.

Connection Manager
Connection Manager Functions

1278 Palm OS Programmer’s API Reference

CncGetParamType

Purpose Macro that returns the parameter type portion of the parameter ID.

Declared In ConnectionMgr.h

Prototype CncGetParamType (parameterID)

Parameters -> parameterID A UInt16 that contains the parameter ID.

Result Returns a UInt16 value where bits 11 through 14 contain one of the
values in “Profile Parameter Types” and the other bits are clear.

Compatibility Parameter IDs of this format are only used if 4.0 New Feature Set is
present.

See Also CncProfileSettingSet, CncProfileSettingGet

CncGetProfileInfo

Purpose Returns the settings for a profile.

Declared In ConnectionMgr.h

Prototype Err CncGetProfileInfo (Char *name, UInt32 *port,
UInt32 *baud, UInt16 *volume, UInt16 *handShake,
Char *initString, Char *resetString,
Boolean *isModem, Boolean * isPulse)

Parameters -> name Pointer to the name of the profile to be
returned. Passing in NULL causes this function
to return the settings for the profile currently
selected in the Connection panel.

<- port Pointer to the port identifier that the profile
uses.

<- baud Pointer to the baud rate that has been set for
this profile.

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1279

<- volume Pointer to the volume of the device (applies
only to modems).

<- handShake Pointer to the flow control setting (hardware
handshaking). 0 indicates automatic (on at
speeds > 2400 baud), 1 indicates always on, and
2 indicates always off.

<- initString Pointer to the initialization string for the device
(applies only to modems).

<- resetString Pointer to the reset string for the device (applies
only to modems).

<- isModem Pointer to a Boolean value: true for Modem,
false for Direct.

<- isPulse Pointer to a Boolean value: true for Pulse dial,
false for TouchTone.

Result errNone No error.

cncErrGetProfileFailed
The get profile operation failed. The profile
may or may not be there.

cncErrProfileNotFound
The profile could not be found

cncErrConDBNotFound
The connection database is missing.

Comments One or more of the parameters may be set to NULL if that
information is not desired.

Compatibility Implemented only if New Serial Manager Feature Set is present.

If Connection Manager Feature Set is present, use
CncProfileSettingGet with one of the “Profile Parameter
Constants” instead of using this function.

Example {
 UInt32 portID, baud;
 UInt16 openPort;
 // get port id
 err = CncGetProfileInfo("Direct Serial", &portID, &baud,

Connection Manager
Connection Manager Functions

1280 Palm OS Programmer’s API Reference

 0, 0, 0, 0, 0, 0);
 if(!err)
 { // open the port
 SrmOpen(portID, baud, &openPort);
 }
}

CncGetProfileList

Purpose Returns a list of available profiles that are available through the
Connection Manager.

Declared In ConnectionMgr.h

Prototype Err CncGetProfileList (Char ***nameListPPP,
UInt16 *countP)

Parameters <- nameListPPP Pointer to a pointer to a list of profile names.

<- countP Pointer to the number of profile names.

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1281

Connection Manager
Connection Manager Functions

1282 Palm OS Programmer’s API Reference

Result errNone No error.

cncErrGetProfileListFailed
The profile list could not be found.

cncErrConDBNotFound
The connection database is missing.

Comments Allocation of the list is handled by the Connection Manager;
deallocation is the responsibility of the calling application.
Appended to the end of the list will be “-Current-”, which
represents the profile currently selected in the Connection panel.

Compatibility Implemented only if New Serial Manager Feature Set is present.

Example //Declared globally
Char ** globalProfileList;
ListType *listP;
UInt16 globalProfileCount;

void SetConnectionList()
{
 //Get the list from the Connection Manager
 err = CncGetProfileList(&globalProfileList,
 &globalProfileCount);
 //Set the UI list
 LstSetListChoices(listP, globalProfileList,
 globalProfileCount);
}

void StopApplication()
{
 UInt16 i;

 //Deallocate the connection list
 For(i = 0; i < globalProfileCount; i++)
 MemPtrFree(globalProfileList[i]);
 MemPtrFree(globalProfileList);
}

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1283

CncGetSystemFlagBitnum

Purpose Macro that returns the number uniquely identifying a system flag
parameter.

Declared In ConnectionMgr.h

Prototype CncGetSystemFlagBitnum (parameterID)

Parameters -> parameterID The UInt16 containing the parameter ID.

Result Returns the ID of the system flag parameter, which is a value from 0
to 31.

Compatibility Parameter IDs of this format are only used if Connection Manager
Feature Set is present.

See Also CncProfileSettingSet, CncProfileSettingGet

CncGetTrueParamID

Purpose Macro that returns the portion of the parameter ID that uniquely
identifies the parameter.

Declared In ConnectionMgr.h

Prototype CncGetTrueParamID (parameterID)

Parameters -> parameterID A UInt16 containing the parameter ID.

Result Returns a UInt16 containing just the parameter ID. The high-order
bits, which specify the parameter type and address space, are clear.

Compatibility Parameter IDs of this format are only used if Connection Manager
Feature Set is present.

See Also CncProfileSettingSet, CncProfileSettingGet

Connection Manager
Connection Manager Functions

1284 Palm OS Programmer’s API Reference

CncIsFixedLengthParamType

Purpose Macro that specifies whether the parameter value is fixed length or
variable length.

Declared In ConnectionMgr.h

Prototype CncIsFixedLengthParamType (parameterID)

Parameters -> parameterID A UInt16 containing the parameter ID.

Result Returns true if the parameter is a fixed length parameter type such
as UInt32, or false if it is a variable length type.

Compatibility Parameter IDs of this format are only used if Connection Manager
Feature Set is present.

See Also CncProfileSettingSet, CncProfileSettingGet

CncIsSystemFlags

Purpose Macro that returns whether the parameter value is a system flag.

Declared In ConnectionMgr.h

Prototype CncIsSystemFlags (parameterID)

Parameters -> parameterID The UInt16 containing the parameter ID.

Result Returns true if the parameter type is a system flag. Returns false
otherwise.

Compatibility Parameter IDs of this format are only used if Connection Manager
Feature Set is present.

See Also CncProfileSettingSet, CncProfileSettingGet

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1285

CncIsSystemRange

Purpose Macro that specifies whether the parameter is in the system range or
in the third-party range.

Declared In ConnectionMgr.h

Prototype CncIsSystemRange (parameterID)

Parameters -> parameterID A UInt16 containing the parameter ID.

Result Returns true if the parameter ID is defined by Palm OS, or false
if it is defined by a third party.

Compatibility Parameter IDs of this format are only used if Connection Manager
Feature Set is present.

See Also CncProfileSettingSet, CncProfileSettingGet

CncIsThirdPartiesRange

Purpose Macro that specifies whether the parameter is defined by a third
party.

Declared In ConnectionMgr.h

Prototype CncIsThirdPartiesRange (parameterID)

Parameters -> parameterID A UInt16 containing the parameter ID.

Result Returns true if the parameter is a third-party parameter, or false
if it is a system parameter.

Compatibility Parameter IDs of this format are only used if Connection Manager
Feature Set is present.

See Also CncProfileSettingSet, CncProfileSettingGet

Connection Manager
Connection Manager Functions

1286 Palm OS Programmer’s API Reference

CncIsVariableLengthParamType

Purpose Macro that returns whether the parameter value is a variable-length
type.

Declared In ConnectionMgr.h

Prototype CncIsVariableLengthParamType (parameterID)

Parameters -> parameterID A UInt16 containing the parameter ID.

Result Returns true if the parameter is a variable-length string or a buffer
or false if it holds a fixed-length type such as an integer.

Compatibility Parameter IDs of this format are only used if Connection Manager
Feature Set is present.

See Also CncProfileSettingSet, CncProfileSettingGet

CncProfileCloseDB

Purpose Closes the Connection Manager profile database.

Declared In ConnectionMgr.h

Prototype Err CncProfileCloseDB (void)

Parameters None.

Result errNone No error.

kCncErrDBAccessFailed
The database could not be closed or this is a
reference counting error.

Comments Use CncProfileOpenDB and CncProfileCloseDB as an
optimization if you make several Connection Manager calls in
succession. All Connection Manager calls open the profile database

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1287

when they begin and close the database when they are finished. The
Connection Manager maintains a reference count that tells it
whether the database is open. If you call CncProfileOpenDB
before making another Connection Manager call, the next call does
not open or close the database. This saves your application the
overhead of opening and closing the database each time a call is
made.

Compatibility Implemented only if Connection Manager Feature Set is present.

CncProfileCount

Purpose Returns the number of connection profiles currently defined in the
Connection Manager profile database.

Declared In ConnectionMgr.h

Prototype Err CncProfileCount (UInt16 *profilesCountP)

Parameters <- profilesCountP
The number of profiles.

Result errNone No error.

kCncErrDBAccessFailed
The profile database could not be opened.

Compatibility Implemented only if Connection Manager Feature Set is present.

See Also CncGetProfileList

Connection Manager
Connection Manager Functions

1288 Palm OS Programmer’s API Reference

CncProfileCreate

Purpose Adds a profile record to the Connection Manager profile database.

Declared In ConnectionMgr.h

Prototype Err CncProfileCreate (CncProfileID *profileIdP)

Parameters <- profileIdP Upon return, the unique ID of the new profile.

Result errNone No error.

kCncErrDBAccessFailed
The profile database could not be opened.

a Data Manager error
The new record could not be created.

Comments This function creates a new empty record in the Connection
Manager profile database. To populate the profile, use
CncProfileSettingSet to set parameter values, including the
profile name. Use CncDefineParamID if you need to store
information unique to your profile.

Compatibility Implemented only if Connection Manager Feature Set is present.

See Also CncAddProfile, CncProfileDelete

CncProfileDelete

Purpose Deletes a profile.

Declared In ConnectionMgr.h

Prototype Err CncProfileDelete (CncProfileID profileId)

Parameters profileId The ID of the profile to delete.

Result errNone No error.

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1289

kCncErrDBAccessFailed
The profile database could not be opened, or
the record could not be deleted.

kCncErrProfileParamNotFound
The database does not contain a profile with the
specified ID.

Comments The profiles that come preinstalled on the unit are read only and
cannot be deleted.

Compatibility Implemented only if Connection Manager Feature Set is present.

See Also CncDeleteProfile, CncProfileCreate

CncProfileGetCurrent

Purpose Returns the ID of the currently selected profile in the Connection
panel.

Declared In ConnectionMgr.h

Prototype Err CncProfileGetCurrent
(CncProfileID *profileIdP)

Parameters <- profileIdP The ID of the current profile.

Result errNone No error.

kCncErrDBAccessFailed
The profile database could not be opened.

Compatibility Implemented only if Connection Manager Feature Set is present.

See Also CncProfileGetIDFromIndex, CncProfileGetIDFromName,
CncProfileGetIndex, CncProfileSetCurrent

Connection Manager
Connection Manager Functions

1290 Palm OS Programmer’s API Reference

CncProfileGetIDFromIndex

Purpose Returns the profile ID given its index into the Connection Manager
profile database.

Declared In ConnectionMgr.h

Prototype Err CncProfileGetIDFromIndex (UInt16 index,
CncProfileID *profileIdP)

Parameters -> index The index of the Connection Manager profile.

<- profileIdP The ID of the Connection Manager profile.

Result errNone No error.

kCncErrDBAccessFailed
The profile database could not be opened.

kCncErrProfileParamNotFound
No profile at that index.

Compatibility Implemented only if Connection Manager Feature Set is present.

See Also CncProfileGetIDFromName, CncProfileGetCurrent,
CncProfileGetIndex

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1291

CncProfileGetIDFromName

Purpose Returns the profile ID given its name.

Declared In ConnectionMgr.h

Prototype Err CncProfileGetIDFromName
(const Char *profileNameP,
CncProfileID *profileIdP)

Parameters -> profileNameP The name of the profile. The name is displayed
in a pop-up list in the Connection panel. If you
pass the string “-Current-”, this function
returns the ID of the current profile.

<- profileIdP The profile ID.

Result errNone No error.

kCncErrDBAccessFailed
The profile database could not be opened.

kCncErrProfileParamNotFound
No profile with the specified name.

Compatibility Implemented only if Connection Manager Feature Set is present.

See Also CncProfileGetCurrent, CncProfileGetIDFromIndex,
CncProfileGetIndex

CncProfileGetIndex

Purpose Returns the index of the profile given its ID.

Declared In ConnectionMgr.h

Prototype Err CncProfileGetIndex (CncProfileID profileId,
UInt16 *indexP)

Parameters -> profileId The profile ID.

Connection Manager
Connection Manager Functions

1292 Palm OS Programmer’s API Reference

<- indexP The index of the profile’s record in the
Connection Manager profile database.

Result errNone No error.

kCncErrDBAccessFailed
The profile database could not be opened.

kCncErrProfileParamNotFound
No profile with the specified ID.

Compatibility Implemented only if Connection Manager Feature Set is present.

See Also CncProfileGetIDFromIndex

CncProfileOpenDB

Purpose Opens the Connection Manager profile database.

Declared In ConnectionMgr.h

Prototype Err CncProfileOpenDB (void)

Parameters None

Result errNone No error.

kCncErrDBAccessFailed
The profile database could not be opened.

Comments Use CncProfileOpenDB and CncProfileCloseDB as an
optimization if you make several Connection Manager calls in
succession. All Connection Manager calls open the profile database
when they begin and close the database when they are finished. The
Connection Manager maintains a reference count that tells it
whether the database is open. If you call CncProfileOpenDB
before making another Connection Manager call, the next call does
not open or close the database. This saves your application the
overhead of opening and closing the database each time a call is
made.

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1293

The Connection Manager profile database is created if it does not
exist.

Compatibility Implemented only if Connection Manager Feature Set is present.

CncProfileSetCurrent

Purpose Sets the current profile.

Declared In ConnectionMgr.h

Prototype Err CncProfileSetCurrent (CncProfileID profileId)

Parameters -> profileId The ID of the profile to be made current.

Result errNone No error.

kCncErrDBAccessFailed
The profile database could not be opened.

Comments The current profile is the profile that is used for the next network
connection attempt.

Compatibility Implemented only if Connection Manager Feature Set is present.

See Also CncProfileGetCurrent

Connection Manager
Connection Manager Functions

1294 Palm OS Programmer’s API Reference

CncProfileSettingGet

Purpose Obtains a value stored in one of the Connection Manager profiles.

Declared In ConnectionMgr.h

Prototype Err CncProfileSettingGet (CncProfileID profileId,
UInt16 paramId, void *paramBufferP,
UInt16 *ioParamSizeP)

Parameters -> profileId The ID of the profile from which to obtain a
parameter value.

-> paramId The ID of the parameter to obtain. See “Profile
Parameter Constants” for a list of the
parameters used in the profiles that come
preinstalled on the device.

<- paramBufferP A pointer to a buffer into which to write the
parameter value. If the parameter stores a
variable-sized value, you can determine the
necessary size by passing NULL for
paramBufferP. Upon return, paramSize
contains the required size.

<-> ioParamSizeP
On input, a pointer to the size of the buffer into
which to write the parameter. On output,
points to the number of bytes written to
paramBufferP.

Result errNone No error.

kCncErrDBAccessFailed
The profile database could not be opened.

kCncErrProfileGetParamFailed
The Connection Manager failed to obtain the
value of the parameter.

kCncErrProfileBadSystemFlagBitnum
An attempt was made to obtain the value of a
system flag that is undefined.

Connection Manager
Connection Manager Functions

Palm OS Programmer’s API Reference 1295

kCncErrProfileBadParamSize
The paramBufferP buffer is too small.
ioParamSizeP contains the correct size for the
buffer.

kCncErrProfileParamNotFound
The specified parameter is not defined in the
profile.

Compatibility Implemented only if Connection Manager Feature Set is present.

See Also CncProfileSettingSet, CncGetProfileInfo

CncProfileSettingSet

Purpose Sets a parameter value in the specified profile.

Declared In ConnectionMgr.h

Prototype Err CncProfileSettingSet (CncProfileID iProfileId,
UInt16 paramId, const void *paramBufferP,
UInt16 paramSize)

Parameters -> iProfileId The ID of the profile.

-> paramId The ID of the parameter. See “Profile Parameter
Constants” for a list of the parameters defined
in the preinstalled connection profiles.

-> paramBufferP
A pointer to the value to set for this parameter.

-> paramSize The size of the buffer passed in
paramBufferP. See “Profile Parameter Size
Constants.”

Result errNone No error.

kCncErrDBAccessFailed
The profile database could not be opened.

Connection Manager
Connection Manager Functions

1296 Palm OS Programmer’s API Reference

kCncErrProfileParamNotFound
No profile with the specified ID.

kCncErrProfileSetParamFailed
The Connection Manager failed to set the value
of the parameter.

kCncErrProfileBadParamSize
The paramBufferP buffer is too small. Most
likely, the passed in size does not allow space
for a string parameter’s null terminator.

kCncErrProfileParamNameHasChange
An attempt was made to set the profile name to
a name that is already used. The Connection
Manager appends a duplication number to the
end of the name and returns this error. You
should use CncProfileSettingGet to find
out the new name.

Compatibility Implemented only if Connection Manager Feature Set is present.

See Also CncDefineParamID, CncProfileSettingGet

Palm OS Programmer’s API Reference 1297

57
Exchange Manager
This chapter describes the Exchange Manager API declared in the
header file ExgMgr.h and the Exchange Local Library API declared
in the header file ExgLocalLib.h. It discusses the following
topics:

• Exchange Manager Data Structures

• Exchange Manager Constants

• Exchange Manager Functions

• Application-Defined Functions

For more information on the Exchange Manager, see the chapter
“Object Exchange” on page 1 of Palm OS Programmer’s Companion,
vol. II, Communications.

Exchange Manager Data Structures

ExgAskResultType
The ExgAskResultType enum defines possible values for the
result field of the sysAppLaunchCmdExgAskUser launch code
parameter block.

typedef enum {
 exgAskDialog,
 exgAskOk,
 exgAskCancel }
ExgAskResultType;

Exchange Manager
Exchange Manager Data Structures

1298 Palm OS Programmer’s API Reference

Value Descriptions

ExgGoToType
The ExgGoToType structure defines the goToParams field of the
ExgSocketType structure. Applications that want to be launched
after the data is received place their creator IDs in the
goToCreator field and define the goToParams field. The values
in this structure are copied to the sysAppLaunchCmdGoto launch
code’s parameter block.

typedef struct {
 UInt16 dbCardNo;
 LocalID dbID;
 UInt16 recordNum;
 UInt32 uniqueID;
 UInt32 matchCustom;
} ExgGoToType;

Field Descriptions

exgAskDialog The Exchange Manager should display a dialog
that prompts the user to confirm the receipt of
data. See ExgDoDialog.

exgAskOk Accept the data.

exgAskCancel Reject the data.

dbCardNo The card number of the database that contains
the added record.

dbID The local ID of the database that contains the
added record.

recordNum The index of the record that was added.

uniqueID The unique ID of the record that was added. This
field is not used.

matchCustom Application-specific information.

Exchange Manager
Exchange Manager Data Structures

Palm OS Programmer’s API Reference 1299

ExgLocalSocketInfoType
The ExgLocalSocketInfoType structure identifies information
specific to the Local Exchange Library. The socketRef field of the
ExgSocketType structure is set to this structure when you send
and receive data using the Local Exchange Library. The Local
Exchange Library creates this structure if it does not already exist.
You only need to create it if you want to supply non-default values
for the noAsk or previewInfoP fields.

typedef struct {
 Boolean freeOnDisconnect;
 Boolean noAsk;
 ExgPreviewInfoType *previewInfoP;
 FileHand tempFileH;
 Err err;
 ExgLocalOpType op;
} ExgLocalSocketInfoType;

Field Descriptions

freeOnDisconnect Whether the structure is freed when the
ExgDisconnect call is made. The default is
true. In general, code that allocates a
structure should be responsible for freeing
that structure. Therefore, if you have
allocated ExgLocalSocketInfoType, you
should set this field to false and explicitly
free the structure when you are finished with
it.

noAsk Set to true to disable the display of the
exchange dialog. If you want to, for example,
create a vCalendar object and send it to the
Datebook application in response to a user
command, you probably want to set noAsk
to true so that the user does not have to
confirm the receipt of the data they just
requested you to send.

Exchange Manager
Exchange Manager Data Structures

1300 Palm OS Programmer’s API Reference

previewInfoP A pointer to an ExgPreviewInfoType
structure, used to display a preview of the
data. If you wanted to simply use another
application to help display data, you would
create and initialize this structure.

tempFileH A temporary buffer that the Local Exchange
Library uses. Do not set this field directly;
the Local Exchange Library should set it.

err The error code returned from the Local
Exchange Library. Do not set this field
directly; the Local Exchange Library should
set it.

op The operation in progress. Do not set this
field directly. The Local Exchange Library
sets this field to one of the following:

exgLocalOpNone No operation in
progress.

exgLocalOpPut A send is in progress.

exgLocalOpAccept
A receive is in progress.

exgLocalOpGet A get is in progress.

exgLocalOpGetSender
The library is receiving
information from the
sending application
during a get operation.

Exchange Manager
Exchange Manager Data Structures

Palm OS Programmer’s API Reference 1301

ExgPreviewInfoType
The ExgPreviewInfoType structure provides information to the
ExgNotifyPreview function. The ExgNotifyPreview function
uses this information to have the application display a preview of
the data to be received in the exchange dialog.

typedef struct {
 UInt16 version;
 ExgSocketType *socketP;
 UInt16 op;
 Char *string;
 UInt32 size;
 RectangleType bounds;
 UInt16 types;
 Err error;
} ExgPreviewInfoType;

Field Descriptions

-> version Set this field to 0 to specify version 0 of this
structure.

-> socketP A pointer to the socket structure (see
ExgSocketType). The libraryRef field must
identify the exchange library from which preview
data should be received, and the target, type, or
name field should be defined as well.

-> op One of the following constants:

exgPreviewDialog
Display a modal dialog
containing the preview. This
constant is only used in
situations where one
application launches another to
display data.

exgPreviewDraw
The preview is a graphic.

exgPreviewLongString
The preview is a long string.

Exchange Manager
Exchange Manager Data Structures

1302 Palm OS Programmer’s API Reference

Applications can define and use their own constants for the preview
operation. Operations specific to an application are numbered
starting at exgPreviewFirstUser and should be no greater than
exgPreviewLastUser.

Compatibility This structure is only defined if 4.0 New Feature Set is present.

exgPreviewQuery
Ask the application which
preview operations it supports.
The answer is returned in the
types field. If the application
does not support any preview
modes, the error field contains
exgErrNotSupported.

exgPreviewShortString
The preview is a short string.

<- string A buffer into which the application places the string
preview if exgPreviewLongString or
exgPreviewShortString is specified.

-> size The allocated size of the string field.

-> bounds The bounds of the rectangle in which the application
draws the graphic if exgPreviewDraw is specified.

<- types Upon return from an exgPreviewQuery operation,
a bit field identifying the types of previews the
application supports.

<- error The error code returned from the application. If
errNone, the preview operation was successful.

Exchange Manager
Exchange Manager Data Structures

Palm OS Programmer’s API Reference 1303

ExgSocketType
The ExgSocketType structure defines an Exchange Manager
socket, which is passed to most Exchange Manager functions. The
ExgSocketPtr type points to a ExgSocketType structure.

typedef struct ExgSocketType {
 UInt16 libraryRef;
 UInt32 socketRef;
 UInt32 target;
 UInt32 count;
 UInt32 length;
 UInt32 time;
 UInt32 appData;
 UInt32 goToCreator;
 ExgGoToType goToParams;
 UInt16 localMode:1;
 UInt16 packetMode:1;
 UInt16 noGoTo:1;
 UInt16 noStatus:1;
 UInt16 preview:1;
 UInt16 reserved:11;
 Char *description;
 Char *type;
 Char *name;
} ExgSocketType;

typedef ExgSocketType* ExgSocketPtr;

Note that when data is received, some of the fields in this structure
may not have values. When you are sending data, it is
recommended that you provide values for all of these fields, but you
should not rely on receiving values for the fields marked optional.

Exchange Manager
Exchange Manager Data Structures

1304 Palm OS Programmer’s API Reference

Field Descriptions

libraryRef The exchange library in use. When an application
or library receives a socket, this field is already
assigned.

When sending data, applications may identify the
exchange library they want to connect with by
providing a URL in the name field. If so, they
should use 0 for the libraryRef field. The
Exchange Manager then determines which library
corresponds to the URL and assigns the
libraryRef field. See the Comments in the
ExgPut function description for more
information.

socketRef The connection identifier. This value is supplied by
the exchange library when a connection is
established. It contains any necessary library-
specific data.

target The creator ID of the application that should
receive the message.

count The number of objects in this connection, usually 1
(optional).

length The total byte count for all objects being sent
(optional).

time The last modified time of object (optional).

appData Application-specific information (optional).

goToCreator The creator ID of the application to launch using
the sysAppLaunchCmdGoto launch code after the
item is received if noGoTo is 0. The value is
assigned by the application that receives the object.
See the Comments section in ExgDisconnect for
more information.

goToParams If goToCreator is specified, then this field
contains data that is copied into the launch code’s
parameter block. See ExgGoToType.

Exchange Manager
Exchange Manager Data Structures

Palm OS Programmer’s API Reference 1305

localMode Set to 1 to exchange with local device only. A
localMode of 1 is equivalent to specifying a URL
with the exgLocalPrefix. Set to 0 to enable an
exchange with a remote machine. The default is 0.

packetMode Set to 1 to use connectionless packet mode (Ultra).
The default is 0. Ultra mode is not currently
supported.

noGoTo Set to 1 to disable launching the application with
sysAppLaunchCmdGoto. The default is 0.

noStatus If true, the exchange library should not display a
progress dialog. If false, the library can display a
progress dialog. The default is false.

The Exchange Manager sets and clears this bit at
various times while data is received. Applications
may also want to set this bit if they use the Local
Exchange Library and want to prevent the
progress dialog from being displayed during a
send.

preview If true, a preview is in progress. The
ExgNotifyPreview function sets this bit while
the preview takes place and clears it when the
preview is finished. Exchange libraries should not
discard any data while a preview is in progress
because the full data must be sent later if the
receiving user accepts it.

reserved Reserved system flags.

description A pointer to the text description of the object
(optional).

type A pointer to the MIME type of the object
(optional).

Exchange Manager
Exchange Manager Constants

1306 Palm OS Programmer’s API Reference

Compatibility The noGoTo and noStatus flags are only defined if 3.5 New
Feature Set is present, and the noStatus flag has no effect unless
4.0 New Feature Set is present. The preview flag is only defined if
4.0 New Feature Set is present.

Exchange Manager Constants

Registry ID Constants
The registry ID constants are used in the Exchange Manager
registry. Exchange libraries register for the URL prefixes they
handle, and applications register for the types of data they receive.
The registry ID constants specify which type of data is being
registered for.

name The name of the object being sent. This can be a
URL whose scheme identifies the exchange library
to connect with.

If the name has a colon, it is treated as a URL.

Exchange Manager
Exchange Manager Constants

Palm OS Programmer’s API Reference 1307

Compatibility The exgRegCreatorID and exgRegSchemeID constants are only
defined if 4.0 New Feature Set is present.

Predefined URL Schemes
The Exchange Manager provides these predefined URL schemes,
for which exchange libraries can register.

Constant Value Description

exgRegCreatorID 0xfffb Register for a creator ID. The target field of the
ExgSocketType contains the creator ID of the
application that should receive the data. Typically,
the application with the matching creator ID
receives the data, but it is possible for one
application to register for another’s creator ID and
receive data in its place.

exgRegSchemeID 0xfffc Register for a URL scheme. Typically, only
exchange libraries register for URL schemes.
Applications can register for URL schemes, but
they only receive the URL when ExgRequest is
called. If the name field of the ExgSocketType
contains a colon (:), the portion of the URL before
the colon is the URL scheme. The default library
registered for URLs with that scheme will handle
the message.

exgRegExtensionID 0xfffd Register for a filename extension. If the name field
of the ExgSocketType contains a period (.), the
portion of the name after the last period is the
filename extension. The application registered to
handle files of that extension will handle the
message.

exgRegTypeID 0xfffe Register for a MIME type. If the type field of the
ExgSocketType contains a value, the application
registered to receive that MIME type handles the
message.

Exchange Manager
Exchange Manager Constants

1308 Palm OS Programmer’s API Reference

Compatibility These constants are only defined if 4.0 New Feature Set is present.

Predefined URL Prefixes
The Exchange Manager provides the following prefixes, which can
be used to construct URLs appropriate for the name field of the
ExgSocketType structure. When sending data, applications
provide a URL to identify the exchange library that should transport
the data.

Constant Value Description

exgBeamScheme "_beam" The URL scheme for Beam commands. By
default, the IR Library handles this scheme.

exgSendScheme "_send" The URL scheme for Send commands. The
purpose of the Send command is to provide a
choice of transport mechanisms to the user;
therefore, any exchange library that sends data
should register for this scheme.

exgLocalScheme "_local" The URL scheme for the Local Exchange
Library.

Constant Value Description

exgBeamPrefix (exgBeamScheme ":") The URL to beam data.

exgSendPrefix ("?" exgSendScheme ":") A URL for the general Send
command. Because this URL
begins with a question mark (?),
the Exchange Manager displays
a dialog with a list of exchange
libraries registered for the
exgSendScheme. The user
then chooses the desired
exchange library.

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1309

Compatibility These constants are only defined if 4.0 New Feature Set is present.

Exchange Manager Functions

ExgAccept

Purpose Accepts a connection from a remote device.

Declared In ExgMgr.h

Prototype Err ExgAccept (ExgSocketType *socketP)

Parameters -> socketP A pointer to the socket structure (see
ExgSocketType).

Result Returns one of the following error codes:

exgSendBeamPrefix ("?" exgSendScheme ";"
exgBeamScheme ":")

A URL for the general Send
command. The Exchange
Manager displays a dialog with
a list of exchange libraries
registered for either the
exgSendScheme or the
exgBeamScheme.

exgLocalPrefix (exgLocalScheme ":") The URL for using the Local
Exchange Library.

Constant Value Description

errNone Success

exgErrBadLibrary Couldn’t find default exchange library

exgErrNotSupported A preview is in progress, and the
exchange library identified by
libraryRef doesn’t support preview
mode

Exchange Manager
Exchange Manager Functions

1310 Palm OS Programmer’s API Reference

Other error codes depend on the exchange library.

Displays a fatal error message if socketP does not have a
libraryRef specified.

Comments Applications call this function when launched with the
sysAppLaunchCmdExgReceiveData or
sysAppLaunchCmdExgPreview launch code. The launch code
contains socketP in its parameter block. Applications should pass
this socket to ExgAccept to accept the connection, then call
ExgReceive one or more times to receive the data, and then call
ExgDisconnect to disconnect.

NOTE: Don’t create the socket on the receiving side of an
exchange. The socket is passed to you in the command
parameter block of the sysAppLaunchCmdExgReceiveData or
sysAppLaunchCmdExgPreview launch code.

Compatibility Implemented only if 3.0 New Feature Set is present. Preview mode
is supported only if 4.0 New Feature Set is present.

See Also ExgConnect, ExgPut, ExgGet

ExgConnect

Purpose Establishes a connection with a remote socket.

Declared In ExgMgr.h

Prototype Err ExgConnect (ExgSocketType *socketP)

Parameters -> socketP A pointer to the socket structure (see
ExgSocketType). Specify either a value for
the libraryRef field or a URL in the name
field. libraryRef should be 0 if the name
field contains a URL.

Result Returns one of the following error codes:

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1311

Other error codes depend on the exchange library.

Comments Applications can call this function to initiate a connection for
sending multiple objects or for performing two-way
communications. Some exchange libraries support sending multiple
objects but do not support this call. See “Sending Multiple Objects”
on page 17 of Palm OS Programmer’s Companion, vol. II,
Communications for more information.

Before calling this function, the application must initialize the
socketP parameter. The socket should identify the exchange
library to connect with by providing either a library reference
number in the libraryRef field or a URL in the name field. The
default exchange library registered for that type of URL handles the
connection.

To provide users with a choice of transport mechanisms, specify a
URL that begins with a question mark (?). The Exchange Manager
displays a dialog with a list of all exchange libraries that respond to
URLs of the specified type. If only one exchange library is registered
for this URL scheme, no dialog is displayed.

For example, many applications on Palm OS® 4.0 or higher support
a Send command. This command generates a URL with the prefix
exgSendPrefix (see Predefined URL Prefixes). The Exchange
Manager displays a dialog containing a list of libraries registered for
that URL scheme. The user selects an exchange library, and that
library’s ExgLibConnect function is called.

errNone Success

exgErrBadLibrary Couldn’t find exchange library

exgErrNotSupported The library doesn’t support the
operation specified in socketP

exgErrUserCancel The user cancelled the connection
operation

exgMemError There isn’t enough free memory to
respond to the request

exgErrNotEnoughPower The battery does not have enough
power to perform the operation

Exchange Manager
Exchange Manager Functions

1312 Palm OS Programmer’s API Reference

If the library is not specified by either URL or library reference
number (in the libraryRef field), the Exchange Manager by
default uses the IR Library; however, if the localMode flag is set,
the Local Exchange Library is used instead.

In addition to specifying the library, you can set the count field in
socketP before making this call to indicate the number of objects
that are going to be sent. Use a count of 0 if the number of objects
isn’t known in advance.

If no error is returned from ExgConnect, applications can follow
this call either by sending multiple objects or requesting data from
the remote device or both. To send an object, call ExgPut at the
beginning of each object and call ExgSend one or more times per
object to send the data. To request data from the remote device, use
ExgGet (and then use ExgReceive to receive the requested data).
You can use these calls in combination with each other to support
two-way communications. After all of the objects have been sent
and received, call ExgDisconnect to disconnect.

IMPORTANT: Not all exchange libraries support the sending of
multiple objects or using ExgGet to request data.

Compatibility Implemented only if 3.0 New Feature Set is present. ExgConnect
was for system use only until the release of Palm OS 4.0. Multiple
object sending and identifying exchange libraries by URL are
supported only if 4.0 New Feature Set is present. On earlier releases,
this function is an alias for the ExgPut function.

See Also ExgPut, ExgAccept, ExgGet

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1313

ExgControl

Purpose Requests that an exchange library perform an operation.

Declared In ExgMgr.h

Prototype Err ExgControl (ExgSocketType *socketP,
UInt16 op, void *valueP, UInt16 *valueLenP)

Parameters -> socketP A pointer to the socket structure (see
ExgSocketType). Specify either a value for
the libraryRef field or a URL in the name
field. libraryRef should be 0 if the name
field contains a URL.

-> op A constant identifying the operation that the
exchange library should perform. See the
Comments section for more information.

<-> valueP Upon entry, a parameter that the exchange
library requires to perform the operation, if any.
Most operations do not require an input
parameter. Upon return, contains the result of
the operation.

<-> valueLenP The size of the valueP buffer. The size is
updated upon return to show the actual length
of the content returned.

Result Returns one of the following error codes:

Other error codes depend on the exchange library.

errNone Success

exgErrBadLibrary Couldn’t find the requested exchange
library

exgErrNotSupported The exchange library does not support the
requested operation

Exchange Manager
Exchange Manager Functions

1314 Palm OS Programmer’s API Reference

Comments The Exchange Manager uses this function to request information
from the exchange library. Applications may also call this function.

The Exchange Manager defines and uses a set of operation constants
that it might send to any exchange library. These constants begin
with the prefix exgLibCtlGet. The type of the variable pointed to
by valueP depends on the type of operation to be performed. Table
57.1 lists and describes the predefined Exchange Manager
operations.

An exchange library may also define its own operations. For
example, the IR Library supports operations to enable or disable
beaming, to set the baud rates, or to use the serial port (see “IR
Control Constants” on page 1378). The SMS Library supports
operations that allow you to set the SMS preferences for sending
messages or to manipulate multipart messages (see “SMS Control

Table 57.1 ExgControl operations for all exchange libraries

Operation
exgLibCtlGet...

value Data Type Description

Preview Boolean. Output only. Returns true if the exchange library
supports preview mode or false if
not. If the exchange library does not
respond to this operation, it is
assumed to support preview mode.

Title String buffer of size
exgTitleBufferSize
bytes. Output only.

Returns the name of the exchange
library as it should appear in the
Send dialog. All exchange libraries
must respond to this operation.

Version UInt16. Output only. Returns the version of the exchange
library API that this library
implements. The constant
exgLibAPIVersion defines the
current version number. If the
exchange library does not respond
to this operation, the library
supports the version of the Exchange
Library API defined in Palm OS 4.0.

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1315

Constants” on page 2232). Operations specific to an exchange
library are numbered starting at exgLibCtlSpecificOp.

The socketP passed to this function must identify an exchange
library either using the libraryRef field or using a URL in the
name field. The Comments section in ExgConnect describes how
an application should identify the exchange library.

Compatibility Implemented only if 4.0 New Feature Set is present.

ExgDBRead

Purpose Converts a Palm OS database from its internal format and writes it
to storage RAM.

Declared In ExgMgr.h

Prototype Err ExgDBRead (ExgDBReadProcPtr readProcP,
ExgDBDeleteProcPtr deleteProcP, void* userDataP,
LocalID* dbIDP, UInt16 cardNo,
Boolean* needResetP, Boolean keepDates)

Parameters -> readProcP A pointer to a function that reads in the
database and passes it to ExgDBRead. See
ExgDBReadProcPtr for details.

-> deleteProcP A pointer to a function that is called if a
database with an identical name already exists
on the device. See ExgDBDeleteProcPtr for
details.

-> userDataP A pointer to any data you want to pass to either
the readProcP or deleteProcP functions.
Often, this parameter is used to pass the
ExgSocketType that is required by many
Exchange Manager functions.

<- dbIDP The ID of the database that ExgDBRead created
on the local device.

<- cardNo The number of the card on which the database
was stored by ExgDBRead.

Exchange Manager
Exchange Manager Functions

1316 Palm OS Programmer’s API Reference

<- needResetP Set to true by ExgDBRead if the
dmHdrAttrResetAfterInstall attribute
bit is set in the received database.

-> keepDates Specify true to retain the creation,
modification, and last backup dates as set in the
received database header. Specify false to
reset these dates to the current date.

Result Returns errNone if successful; otherwise, returns one of the data
manager error codes (dmErr...) or a callback-specific error code.
(If the readProcP function returns an error, it is also returned by
ExgDBRead.)

Comments This function converts data received from an exchange library or
from any other transport mechanism into a Palm OS database and
stores that database in the storage heap. It is not required that you
use this function in conjunction with Exchange Manager calls. That
is, it’s possible to use this function to perform other operations, such
as converting a database created on the desktop computer to a Palm
OS formatted database in the storage heap.

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1317

The primary use of this function, however, is to receive a database
that has been beamed onto the device. In this case, call ExgDBRead
in response to the launch code
sysAppLaunchCmdExgReceiveData after calling ExgAccept to
accept the connection. Place the call to ExgReceive in the read
callback function you passed as the readProcP parameter. Pass the
ExgSocketType structure returned from ExgAccept in the
userDataP parameter so that you have access to it in the read
callback function.

The read callback function performs the actual reading of data.
ExgDBRead calls the read callback function multiple times. Each
time, the sizeP parameter contains the number of bytes
ExgDBRead expects the data returned in dataP to contain. It’s
important for the read callback function to set the number of bytes
(in sizeP) that it actually placed in dataP if it’s not the same as
what ExgDBRead expected. ExgDBRead stops calling the read
callback function after 0 is returned in sizeP.

The callback function you pass in deleteProcP handles the case
where the database being read already exists on the device. It is
called only in that circumstance. The callback function may want to
close the database if it is open, change the existing database’s name,
or delete the existing database to allow an overwrite. See
ExgDBDeleteProcPtr for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also ExgDBWrite

Exchange Manager
Exchange Manager Functions

1318 Palm OS Programmer’s API Reference

ExgDBWrite

Purpose Converts a given Palm OS database from its internal format on the
local device and writes it using a function you supply.

Declared In ExgMgr.h

Prototype Err ExgDBWrite (ExgDBWriteProcPtr writeProcP,
void* userDataP, const char* nameP, LocalID dbID,
UInt16 cardNo)

Parameters -> writeProcP A pointer to a function that writes out the
database identified by dbID. See
ExgDBWriteProcPtr for details.

-> userDataP A pointer to any data you want to pass to the
writeProcP function. Often, this parameter is
used to pass the ExgSocketType that is
required by many Exchange Manager
functions.

-> nameP A pointer to the name of the database that you
want ExgDBWrite to write. This database is
passed to writeProcP.

-> dbID The ID of the database that you want
ExgDBWrite to pass to writeProcP. If you
don’t supply an ID, then nameP is used to
search for the database by name.

-> cardNo The number of the card on which to look for the
database identified by nameP.

Result Returns errNone if successful; otherwise, returns one of the data
manager error codes (dmErr...) or a callback-specific error code.
(If the writeProcP function returns an error, it is also returned by
ExgDBWrite.)

Comments This function converts a Palm OS formatted database on the storage
heap into a stream of bytes that can be sent over the Internet or over

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1319

any other transport mechanism. It is not required that you use this
function in conjunction with Exchange Manager calls.

The primary use of this function, however, is to write a database
that is going to be beamed onto another device. In this case, call
ExgDBWrite after establishing the connection with ExgPut. Place
the call to ExgSend in the write callback function you passed as the
writeProcP parameter. Pass the ExgSocketType structure
returned from ExgSend in the userDataP parameter so that you
have access to it in the write callback function.

The write callback function performs the actual writing of data.
ExgDBWrite calls the write callback function multiple times. Each
time, the sizeP parameter contains the number of bytes of dataP
that are to be written. If the write callback function didn’t handle it
all, it’s important that it set in sizeP the number of bytes that it did
handle successfully. ExgDBWrite stops calling the write callback
function after 0 is returned in sizeP.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also ExgDBRead

ExgDisconnect

Purpose Terminates an Exchange Manager transfer and disconnects.

Declared In ExgMgr.h

Prototype Err ExgDisconnect (ExgSocketType *socketP,
Err error)

Parameters -> socketP A pointer to the socket structure (see
ExgSocketType) identifying the connection
to terminate.

Exchange Manager
Exchange Manager Functions

1320 Palm OS Programmer’s API Reference

-> error Any error that occurred. This parameter tells
the exchange library why the connection is
being broken. Normally the error code from
ExgSend or ExgReceive is passed in here.

Result Returns one of the following error codes:

Other error codes depend on the exchange library.

May display a fatal error message if socketP doesn’t contain a
libraryRef value.

Comments Applications must call this function when finished sending data or
receiving data. It terminates the connection made with
ExgConnect, ExgAccept, ExgPut, or ExgGet.

In the error parameter, pass any error that occurs during the
application loop, including errors returned from other Exchange
Manager functions. This ensures that the connection is shut down
knowing that it failed rather than succeeded.

It’s especially important to check the result code from this function,
since this will tell you if the transfer was successful. An errNone
return value means that the item was delivered to the destination
successfully. It does not mean that the user on the other end actually
kept the data.

ExgDisconnect is used after sending and receiving. When
receiving, the application can insert its creator ID into the
goToCreator field in the socket structure and add other goto
information in the goToParams field. After the application returns
from the sysAppLaunchCmdExgReceiveData launch code, the
exchange library may call ExgNotifyGoto, which launches the
goToCreator application with the standard launch code
sysAppLaunchCmdGoto.

errNone Success

exgErrBadLibrary Couldn’t find default exchange library

exgMemError Couldn’t read data to send

exgErrUserCancel User cancelled transfer

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1321

IMPORTANT: Placing your creator ID in the goToCreator field
is no longer a guarantee that you receive this launch code starting
in Palm OS 4.0 because Palm OS 4.0 supports the sending of
multiple objects at once. Thus, another application might
overwrite the goToCreator field after your application has
disconnected, making that application the recipient of the launch
code.

Note that some exchange libraries wait to establish a connection
until ExgDisconnect is called. The IR Library, for example, buffers
the data that it receives and then waits until ExgDisconnect to
actually send this data unless ExgConnect is called to establish a
multi-object send connection.

Compatibility Implemented only if 3.0 New Feature Set is present.

Prior to Palm OS release 4.0, the Exchange Manager always
launched the goToCreator application, if one was provided, upon
return from this function. If 4.0 New Feature Set is present, the
Exchange Manager does not launch the goToCreator application.
Exchange libraries that want the previous behavior must explicitly
call ExgNotifyGoto.

See Also ExgReceive, ExgSend

Exchange Manager
Exchange Manager Functions

1322 Palm OS Programmer’s API Reference

ExgDoDialog

Purpose Displays a dialog that allows users to accept or reject the receipt of
data.

Declared In ExgMgr.h

Prototype Boolean ExgDoDialog (ExgSocketType *socketP,
ExgDialogInfoType *infoP, Err *errP)

Parameters -> socketP A pointer to the socket structure (see
ExgSocketType) identifying the connection.
A value must be provided for the libraryRef
field.

Applications can obtain the socket structure
from the sysAppLaunchCmdExgAskUser
launch code parameter block.

<-> infoP A pointer to an ExgDialogInfoType
structure (see the Comments section below).

<- errP errNone if no error, or the error code if an
error occurred. Currently, no errors are
returned.

Result Returns true if the user clicks the OK button on the dialog, or
false otherwise.

Comments This function displays the exchange dialog, which prompts the user
to accept or reject incoming data.

By default, the Exchange Manager calls this function if the receiving
application doesn’t handle the sysAppLaunchCmdExgAskUser
launch code or if it returns exgAskDialog from the launch code
handler. When the Exchange Manager calls ExgDoDialog, the
dialog displays a message similar to “Do you want to accept ‘John
Doe’ into Address Book?” and allows the user to accept or reject the
data. If the user clicks OK, the data should be received as an unfiled
record.

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1323

The Exchange Manager attempts to display a preview of the data in
the exchange dialog to provide users with enough information to
determine if they want to accept or reject the data. To display the
preview data, it calls ExgNotifyPreview. Applications wishing to
support preview mode should respond to the launch code
sysAppLaunchCmdExgPreview. See the ExgNotifyPreview
function’s description for more information.

Applications may also want to allow users to select a category in
which to accept the incoming data. To do so, handle
sysAppLaunchCmdExgAskUser to call ExgDoDialog directly
and pass it a pointer to an ExgDialogInfoType structure. The
ExgDialogInfoType structure is defined as follows:

typedef struct {
 UInt16 version;
 DmOpenRef db;
 UInt16 categoryIndex;
} ExgDialogInfoType;

-> version Set this field to 0 to specify version 0 of this
structure.

-> db A pointer to an open database that defines the
categories the dialog should display.

<- categoryIndex
The index of the category in which the user
wants to file the incoming data.

If db is valid, the function extracts the category information from
the specified database and displays it in a pop-up list. Upon return,
the categoryIndex field contains the index of the category the
user selected, or dmUnfiledCategory if the user did not select a
category.

If the call to ExgDoDialog is successful, your application is
responsible for retaining the value returned in categoryIndex
and using it to file the incoming data as a record in that category.
One way to do this is to store the categoryIndex in the socket’s
appData field (see ExgSocketType) and then extract it from the
socket in your response to the launch code
sysAppLaunchCmdExgReceiveData. For example:

Exchange Manager
Exchange Manager Functions

1324 Palm OS Programmer’s API Reference

if (cmd == sysAppLaunchCmdExgReceiveData) {
 UInt16 category =
 (ExgSocketPtr)cmdPBP->appData;
 /* other declarations */

/* Receive the data, and create a new record
 using the received data. indexNew is the
 index of this record. */

 if (category !- dmUnfiledCategory) {
 UInt16 attr;
 Err err;
 err = DmRecordInfo(dbP, indexNew, &attr,
 NULL, NULL);

 // Set the category to the one the user
 // specified, and mark the record dirty.
 if ((attr & dmRecAttrCategoryMask) !=
 category) {
 attr &= ~dmRecAttrCategoryMask;
 attr |= category | dmRecAttrDirty;
 err = DmSetRecordInfo(dbP, indexNew,
 &attr, NULL);
 }
 }
}

Some of the Palm OS built-in applications (Address Book, Memo,
and ToDo) use this method of setting the category on data received
through beaming. Refer to the example code for these applications
provided in the SDK for a more complete example of how to use
ExgDoDialog.

When you explicitly call ExgDoDialog, you must set the result
field of the sysAppLaunchCmdExgAskUser launch code’s
parameter block to either exgAskOk (upon success) or
exgAskCancel (upon failure) to prevent the system from
displaying the dialog a second time.

Compatibility Implemented only if 3.5 New Feature Set is present.

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1325

Preview mode display in the exchange dialog is implemented only
if 4.0 New Feature Set is present.

ExgGet

Purpose Establishes a connection and requests an object from a remote
device.

Declared In ExgMgr.h

Prototype Err ExgGet (ExgSocketType *socketP)

Parameters -> socketP A pointer to the socket structure (see
ExgSocketType). Specify either a value for
the libraryRef field or a URL in the name
field. libraryRef should be 0 if the name
field contains a URL. The target, type, or
name fields should identify the data being
requested.

Result Returns one of the following error codes:

Other error codes depend on the exchange library.

Comments Applications use this function to request data (initiate a send) from
a remote device. Not all exchange libraries support this operation.

Before calling this function, the application must initialize the
socketP parameter. The socket should identify the exchange
library to connect with by providing either a library reference
number in the libraryRef field or a URL in the name field. The
default exchange library registered for the URL’s scheme handles

errNone Success

exgErrBadLibrary Couldn’t find default exchange library

exgErrUserCancel The user cancelled the operation

exgMemError There is not enough free memory to
perform the operation

Exchange Manager
Exchange Manager Functions

1326 Palm OS Programmer’s API Reference

the connection. The socket should also specify what data it is
requesting by providing values for at least one of the target,
name, and type fields. Specifying the data in the name field is the
most common method.

To provide users with a choice of transport mechanisms, the
application can provide a URL that begins with a question mark (?).
The Exchange Manager displays a dialog with a list of all exchange
libraries that respond to URLs of the specified type. If only one
exchange library is registered for this URL scheme, no dialog is
displayed.

If the library is not specified by either URL or library reference
number, the Exchange Manager by default uses the IR Library;
however, if the localMode flag is set, the Local Exchange Library is
used instead.

Applications can use ExgGet to initiate a send from the Local
Exchange Library. For more information, see “Sending and
Receiving Locally” on page 32 of the Palm OS Programmer’s
Companion, vol. II, Communications.

If no error is returned, applications should follow this call with one
or more calls to ExgReceive, to receive the data, or
ExgDisconnect, to disconnect.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgPut, ExgConnect

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1327

ExgGetDefaultApplication

Purpose Retrieves the default application for the specified type of data or the
default exchange library for URLs with the specified scheme.

Declared In ExgMgr.h

Prototype Err ExgGetDefaultApplication (UInt32 *creatorIDP,
UInt16 id, const Char *dataTypeP)

Parameters <- creatorIDP A pointer to the creator ID of the default
application or default exchange library.

-> id The registry ID constant identifying the type of
data in dataTypeP. See Registry ID Constants.

-> dataTypeP A pointer to a string that contains the type of
data for which to retrieve the default
application or library. If dataTypeP is a file
extension, do not include the period (.). If it is a
URL, do not include the colon (:).

Result Returns errNone if a match was found or
exgErrNoKnownTarget if there is no default application or library
for this type of data.

Comments You might use this function to see which application on this device
will receive a particular type of data or to see which library on this
device handles URLs of a particular scheme.

For example, to find out which application receives TXT files on this
device, do the following:

UInt32 creatorID;
Err error;
error = ExgGetDefaultApplication(&creatorID,
 exgRegExtensionID, "TXT");
if (!error) {
 //creatorID contains default application.

To find out which exchange library handles URLs that use the beam
prefix, do the following:

Exchange Manager
Exchange Manager Functions

1328 Palm OS Programmer’s API Reference

UInt32 creatorID;
Err error;
error = ExgGetDefaultApplication(&creatorID,
 exgRegSchemeID, exgBeamScheme);
if (!error) {
 //creatorID contains default library.

It’s possible to have several applications registered to receive the
same type of data, but none of them is the default. When the
Exchange Manager receives an object of that type, it selects an
application to receive the data, and it selects that same application
every time. The selected application effectively becomes the default
for the data type even though it is not explicitly set as the default. If
this is the case, the ExgGetDefaultApplication function
returns the creator ID of this de-facto default application.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgGetRegisteredApplications,
ExgGetRegisteredTypes, ExgRegisterDatatype,
ExgSetDefaultApplication

ExgGetRegisteredApplications

Purpose Retrieves a list of all applications registered to receive data of a
specified type.

Declared In ExgMgr.h

Prototype Err ExgGetRegisteredApplications
(UInt32 **creatorIDsP, UInt32 *numAppsP,
Char **namesP, Char **descriptionsP, UInt16 id,
const Char *dataTypeP)

Parameters <- creatorIDsP An array of the creator IDs of the applications
registered to receive objects of this type. Pass
NULL for this parameter if you only want to
know how many applications are registered for
this type.

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1329

<- numAppsP The number of applications registered to
receive objects of this type. This is the number
of elements in the creatorIDsP array, the
namesP array, and the descriptionsP array.

<- namesP A packed list of strings, suitable for passing to
SysFormPointerArrayToStrings,
containing the names of the applications or
libraries. Each string is no more than
exgMaxTitleLen characters. Pass NULL for
this parameter if you don’t want to retrieve it.

<- descriptionsP
A packed list of strings, suitable for passing to
SysFormPointerArrayToStrings,
containing the descriptions of the applications
or libraries. Descriptions are specified when the
applications or libraries register for data. Each
string is no more than
exgMaxDescriptionLength characters. Pass
NULL for this parameter if you don’t want to
retrieve it.

-> id The registry ID constant identifying the type of
data in dataTypeP. See Registry ID Constants.

-> dataTypesP A pointer to a tab-delimited, null-terminated
string listing the items to register. (Use \t for
the tab character.) Each item in the string must
be no more than exgMaxTypeLength
characters. There can be no more than 16 types
total.

Result Returns errNone upon success or exgMemError if the function
cannot allocate space for the creator IDs, names, or descriptions.

IMPORTANT: This function allocates enough space for the
creatorIDsP, namesP, and descriptionsP arrays as long as
you do not pass NULL for the parameters. You are still
responsible for freeing these arrays.

Exchange Manager
Exchange Manager Functions

1330 Palm OS Programmer’s API Reference

Comments You might use this function to see which applications on this device
can receive a particular type of data or to see which libraries on this
device handle URLs of a particular scheme. You can also use it to
built a list of choices from which the user can select a default
application or default exchange library for a particular data type or
URL scheme. For example, iMessenger uses this function to build a
list of mailto handlers so that the user can choose one of them to be
the default.

The Exchange Manager itself uses
ExgGetRegisteredApplications to find exchange libraries
when it is given a URL that begins with a question mark (?). It
displays the returned list to the user in the Send With dialog.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgGetDefaultApplication, ExgGetRegisteredTypes,
ExgRegisterDatatype, ExgSetDefaultApplication

ExgGetRegisteredTypes

Purpose Retrieve a list of all data types for which a registration exists.

Declared In ExgMgr.h

Prototype Err ExgGetRegisteredTypes (Char **dataTypesP,
UInt32 *sizeP, UInt16 id)

Parameters <- dataTypesP A packed list of strings, suitable for passing to
SysFormPointerArrayToStrings,
containing a sorted list of data types for which
a registration exists. Each string is no more than
exgMaxTypeLength characters.

<- sizeP The number of elements in the dataTypesP
array.

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1331

-> id The type of data to search for. For example, you
can search for all registered creator IDs, all
registered MIME types, and so on.

Result Returns errNone upon success or exgMemError if the function
cannot allocate space for the data types array.

IMPORTANT: This function allocates enough space for the
dataTypesP array as long as you do not pass NULL for the
parameter. You are still responsible for freeing this array.

Comments This function could be used to create an application that allows
users to choose the default application for each data type.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgGetDefaultApplication,
ExgGetRegisteredApplications, ExgRegisterDatatype,
ExgSetDefaultApplication

ExgGetTargetApplication

Purpose Retrieves the application that should receive a specific message.
This function does not search for libraries.

Declared In ExgMgr.h

Prototype Err ExgGetTargetApplication
(ExgSocketType *socketP, Boolean unwrap,
UInt32 *creatorIDP, Char *descriptionP,
UInt32 descriptionSize)

Parameters -> socketP A pointer to the socket structure (see
ExgSocketType). The structure should
contain values for the target, type, or name
fields.

Exchange Manager
Exchange Manager Functions

1332 Palm OS Programmer’s API Reference

-> unwrap If true, only an application that registered to
receive the data type with the exgUnwrap flag
set should be the target application. If false,
the target application should be an application
that registered with the exgUnwrap flag clear.

<- creatorIDP The creator ID of the application that should
receive this object.

<-> descriptionP
The application’s description from the registry,
if any.

-> descriptionSize
The size of the descriptionP buffer.

Result Returns one of the following error codes:

Comments The Exchange Manager uses this function to determine which
application should be launched to receive incoming data.
Applications and libraries may call this function as well.

ExgGetTargetApplication determines the target application by
doing the following:

• If the socketP->target field contains a creator ID, the
Exchange Manager searches the registry to see if an
application is registered for that creator ID as the default
application. If the registry does not contain an entry for the
creator ID, it checks to see if the application identified by the
creator ID is installed on this device. If an application is
found for the target, that is the application returned.

• If the socketP->type field contains a MIME type, the
Exchange Manager searches the registry for an application

errNone Success

exgErrTargetMissing The target field contains a creator ID,
but the application with that creator ID
does not exist

exgErrNoKnownTarget No application is registered to receive
the data type

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1333

registered to receive objects of that type. If one is found, that
is the application returned.

• If the socketP->name field contains a period (.), the portion
after the last period is taken to be the file extension. The
Exchange Manager searches the registry for an application
registered to receive a file with the specified extension. If one
is found, that is the application returned. If not,
exgErrNoKnownTarget is returned.

If more than one application is registered for the target, type, or file
extension, this function returns the one that is registered as the
default. If no application is registered as the default, then a specific
application is chosen. The Exchange Manager chooses this same
application each time. That is, each time a file with a TXT extension
is sent with no target or MIME type specified, the
ExgGetTargetApplication returns the same application to
handle the receipt.

Set the unwrap parameter to true if the object was sent as part of
another object, such as a vStock object that was sent as an
attachment to an e-mail message. In this case, the Exchange
Manager searches for an application that registered to receive the
target, the type, or the file extension of the vStock object with the
exgUnwrap flag set. If an application is found, the vStock object is
delivered, and the exchange library should discard the object that
contained it (the e-mail message). If there is no application
registered to receive the data with the exgUnwrap flag set, this
function returns exgErrNoKnownTarget. In this case, the
exchange library should call ExgNotifyReceive again passing
the entire e-mail message instead of just the vStock attachment.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgSetDefaultApplication, ExgNotifyPreview,
ExgNotifyReceive, ExgRegisterDatatype

Exchange Manager
Exchange Manager Functions

1334 Palm OS Programmer’s API Reference

ExgNotifyGoto

Purpose Launches the target application using sysAppLaunchCmdGoto.

Declared In ExgMgr.h

Prototype Err ExgNotifyGoto (ExgSocketType *socketP,
UInt16 flags)

Parameters -> socketP A socket identifying the object to deliver (see
ExgSocketType). The goToCreator field
contains the application to be launched, and the
goToParams field contains data for the launch
code’s parameter block.

-> flags Not currently used. Pass 0 for this parameter.

Result Returns one of the following error codes:

Comments Exchange libraries call this function if they want to support
immediate display of the received object. Applications do not call
this function.

Most exchange libraries should call ExgNotifyGoto after the
return from ExgNotifyReceive so that the user can inspect the
newly received data. If the exchange library is most often used by a
single application that does not require the launch code, this call to
ExgNotifyGoto can be skipped. For example, the SMS Library
does not call ExgNotifyGoto. SMS messages are received by the
SMS Messenger application, which does not launch upon receiving
data.

errNone Success or the goToCreator field is
empty

dmErr... (one of the data
manager error codes)

The specified application could not
be found

memErrNotEnoughSpace Not enough memory available to
create the launch code’s parameter
block

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1335

ExgNotifyGoto only launches an application if one is specified in
the goToCreator field and the noGoTo parameter is false. If a
goToCreator is not specified, it is not considered an error. This
gives the application a way to override the default behavior.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgNotifyReceive, ExgDisconnect

ExgNotifyPreview

Purpose Displays a preview in the exchange dialog of the data to be received.

Declared In ExgMgr.h

Prototype Err ExgNotifyPreview (ExgPreviewInfoType *infoP)

Parameters <-> infoP An ExgPreviewInfoType structure
containing information about the preview
operation.

Result Returns one of the following error codes:

Other error codes depend on the application.

Comments This function performs the preview operation specified in the op
field of the infoP parameter. The ExgDoDialog function calls this
function to show a data preview in the exchange dialog. Exchange
libraries might want to call this function in certain circumstances.
An application rarely calls this function, but it may do so if it
displays its own dialog in response to the launch code
sysAppLaunchCmdExgAskUser.

errNone Success

exgErrNotSupported The exchange library doesn’t support
preview mode

exgErrNoKnownTarget There is no application registered to
receive the type of object

Exchange Manager
Exchange Manager Functions

1336 Palm OS Programmer’s API Reference

ExgNotifyPreview uses ExgGetTargetApplication to
determine the appropriate target application for this data and then
launches that application with the launch code
sysAppLaunchCmdExgPreview, passing infoP as the parameter
block. The application responds to this launch code by accepting the
connection, receiving the data from the exchange library, and
depending on the operation requested, drawing the data into the
infoP->bounds rectangle or returning it in the infoP->string
field, and then disconnecting. The ExgDoDialog function uses the
returned information to draw the preview portion of the dialog.

If the preview data is a string, the ExgNotifyPreview provides a
series of fallback strings that are used if the exchange library doesn’t
support preview or the application doesn’t respond to the launch
code. If the application fails to return a string, this function provides
one of the following:

• the data’s description from socketP->description

• the filename in socketP->name

• the target application’s description as stored in the exchange
registry

• the MIME type in socketP->type

• the file extension in socketP->name

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgNotifyReceive, ExgDisconnect

ExgNotifyReceive

Purpose Delivers an object to the appropriate application using the registry.

Declared In ExgMgr.h

Prototype Err ExgNotifyReceive (ExgSocketType *socketP,
UInt16 flags)

Parameters <-> socketP A pointer to the socket structure (see
ExgSocketType).

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1337

-> flags A bit field. Pass 0 or a combination of the
following constants (OR the constants together
to specify more than one):

exgUnwrap
The object being delivered should only
be handled by an application that
registered to receive it with the
exgUnwrap flag set.

exgNoAsk
Do not ask the user to confirm receipt of
data. If this constant is passed, the target
application does not receive the
sysAppLaunchCmdExgAskUser
launch code, and the Exchange Manager
does not call ExgDoDialog to display
the user confirmation dialog.

exgGet
Specifies that this is a request for the
application to send data rather than to
receive data.

Result Returns one of the following error codes:

Other error codes depend on the application that is launched.

Comments Exchange libraries call this function to initiate a receive operation on
the receiving device. Applications do not call this function.

The ExgNotifyReceive function uses
ExgGetTargetApplication to determine which application

errNone Success

exgErrTargetMissing The target field contains a creator ID,
but the application with that creator ID
does not exist

exgErrNoKnownTarget No application is registered to receive
the data type

exgErrUserCancel The user cancelled the operation

Exchange Manager
Exchange Manager Functions

1338 Palm OS Programmer’s API Reference

should receive the data, then sends that application the appropriate
launch codes.

If the flags parameter is 0, a receive operation is assumed. The
ExgNotifyReceive function does the following:

1. It sends the application the
sysAppLaunchCmdExgAskUser launch code.

2. If the application returns exgAskDialog or does not
respond to the launch code, it calls ExgDoDialog, which
sends the application the sysAppLaunchCmdExgPreview
launch code to have the application receive preview data for
the dialog.

3. It sends the application the
sysAppLaunchCmdExgReceiveData launch code to tell
the application to receive the data.

If the flags field contains the exgNoAsk flag, the first and second
steps are skipped.

If the flags field contains exgGet, this function is a request for
data to send to the remote device, not a request to receive data from
the remote device. In this case, ExgNotifyReceive launches the
target application with the sysAppLaunchCmdExgGetData
launch code.

If the flags field has the exgUnwrap bit set, it means that the
object to be received was sent as part of another object, and it should
only be sent to an application that registered to receive it with the
exgUnwrap flag set. For example, if the exchange library receives
an e-mail message with an attached vStock object, the exchange
library may call ExgNotifyReceive with the exgUnwrap flag set
and a socket that describes the vStock data type to see if there is an
application that registered to receive it directly. If no application is
registered to receive vStock objects with the exgUnwrap flag set,
ExgNotifyReceive returns exgErrNoKnownTarget. The
exchange library should then call ExgNotifyReceive again, but
this time without the exgUnwrap flag and with a socket that
describes the e-mail message data type. This second call sends the
object to the application registered to receive the e-mail message
rather than its vStock attachment. That application may extract the
vStock attachment from the message and use the Local Exchange
Library to send it to an application registered to receive vStock
objects normally (without the exgUnwrap flag).

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1339

Compatibility Implemented only if 3.0 New Feature Set is present.
ExgNotifyReceive was a system use only function until the
release of Palm OS 4.0.

If the 4.0 New Feature Set is not present, the flags parameter is not
supported, so libraries cannot suppress the exchange dialog, send
objects with attachments, or perform a get operation. These features
are all added in the 4.0 New Feature Set. Also, if the 4.0 new feature
set is not present, this function performs the equivalent of
ExgNotifyGoto after the application has returned from receiving
data. Exchange libraries wishing to support this functionality
should call ExgNotifyGoto immediately after calling
ExgNotifyReceive.

See Also ExgNotifyPreview

ExgPut

Purpose Initiates the transfer of data to the destination device.

Declared In ExgMgr.h

Prototype Err ExgPut (ExgSocketType *socketP)

Parameters -> socketP Pointer to the socket structure (see
ExgSocketType). Specify either a value for
the libraryRef field or a URL in the name
field. libraryRef should be 0 if the name
field contains a URL. The structure should also
contain a value for the target, type, or name
field.

Result Returns one of the following error codes:

errNone Success

exgErrBadLibrary Couldn’t find default exchange
library

Exchange Manager
Exchange Manager Functions

1340 Palm OS Programmer’s API Reference

Other error codes depend on the exchange library.

Comments Applications call this function to start a send operation.

If the connection does not already exist, this function establishes
one. You must create and initialize an ExgSocketType structure
containing information about the data to send and the destination
application. All unused fields in the structure must be set to 0.

If no error is returned, this call must be followed by ExgSend, to
begin sending data, or ExgDisconnect, to disconnect. You may
need to call ExgSend multiple times to send all the data.

The socket’s libraryRef field or the name field must identify the
library that performs the transfer. The libraryRef field identifies
the exchange library by its library reference number. The name field
identifies the library by URL. The socket should also specify what
data is being sent by providing values for at least one of the
target, name, and type fields. Use of the name field is the most
common method.

To provide users with a choice of transport mechanisms, the
application can provide a URL that begins with a question mark (?).
The Exchange Manager displays a dialog with a list of all exchange
libraries that respond to URLs of the specified type. If only one
exchange library is registered for this URL scheme, no dialog is
displayed.

For example, many applications on Palm OS 4.0 or higher support a
Send command. This command generates a URL with the prefix
exgSendPrefix (see Predefined URL Prefixes). The Exchange
Manager displays a dialog containing a list of libraries registered for
that URL scheme. The user selects an exchange library, and that
library’s ExgLibSend function is called.

If the library is not specified by either URL or library reference
number, the Exchange Manager by default uses the IR Library;

exgMemError Not enough memory to initialize
transfer

exgErrNotEnoughPower The battery does not have enough
power to perform the operation

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1341

however, if the localMode flag is set, the Local Exchange Library is
used instead.

Compatibility Implemented only if 3.0 New Feature Set is present.

Support for identifying exchange libraries by URL is implemented
only if 4.0 New Feature Set is present.

See Also ExgDisconnect, ExgSend, ExgConnect

ExgReceive

Purpose Receives data from a remote device.

Declared In ExgMgr.h

Prototype UInt32 ExgReceive (ExgSocketType *socketP,
void *bufP, UInt32 bufLen, Err *err)

Parameters -> socketP A pointer to the socket structure (see
ExgSocketType).

<- bufP A pointer to the buffer in which to receive the
data.

-> bufLen The number of bytes to receive.

<- err A pointer to an error code result.

Result Returns the number of bytes actually received. A zero result
indicates the end of the transmission.

An error code is returned in the address indicated by err. The error
code exgErrUserCancel is returned if the user cancels the
operation. The error code exgErrNotSupported is returned if the
application calls this function during a preview and the exchange
library does not have any more data available or does not support
preview.

May display a fatal error message if the library reference number is
not provided in socketP.

Exchange Manager
Exchange Manager Functions

1342 Palm OS Programmer’s API Reference

Comments Applications call this function in the following circumstances:

• In response to the sysAppLaunchCmdExgReceiveData
launch code, following a successful call to ExgAccept.

• In response to the sysAppLaunchCmdExgPreview launch
code, following a successful call to ExgAccept.

• To receive requested data following a successful call to
ExgGet.

After receiving the data, applications call ExgDisconnect to
terminate the connection.

This function blocks the application until the end of the
transmission or until the requested number of bytes has been
received. However, exchange libraries can provide their own user
interface that is shown during this call, is updated as necessary, and
allows the user to cancel the operation in progress.

Compatibility Implemented only if 3.0 New Feature Set is present. Preview mode
and ExgGet are only supported if 4.0 New Feature Set is present.

See Also ExgNotifyReceive

ExgRegisterDatatype

Purpose Registers an application to receive a specific type of data, or
registers an exchange library to handle specific URL schemes.

Declared In ExgMgr.h

Prototype Err ExgRegisterDatatype (UInt32 creatorID,
UInt16 id, const Char *dataTypesP,
const Char *descriptionsP, UInt16 flags)

Parameters -> creatorID The creator ID of the registering application or
exchange library.

-> id A registry ID constant identifying the type of
the items being registered. See Registry ID
Constants.

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1343

-> dataTypesP Pointer to a tab-delimited, null-terminated
string listing the items to register. (Use "\t" for
the tab character.) To unregister, pass a NULL
value. Each item in the string must be no more
than exgMaxTypeLength characters. There
can be no more than 16 types total.

NOTE: If specifying file extensions, do not include the period (.)
that precedes the extension. If specifying URL prefixes, do not
include the colon (:) at the end of the prefix.

-> descriptionsP
Pointer to a tab-delimited, null-terminated
string that lists descriptions for the items in the
dataTypesP parameter. (Use "\t" for the tab
character.) Each description must be no longer
than exgMaxDescriptionLength. Pass
NULL to leave out the descriptions.

There must either be one description for all
types or the number of descriptions must
match the number of types.

The descriptions are used in dialogs displayed
by Exchange Manager to identify applications
or libraries.

Exchange Manager
Exchange Manager Functions

1344 Palm OS Programmer’s API Reference

-> flags A bit field specifying registration options.
Currently, only one bit is used: the unwrap bit.
Pass the exgUnwrap constant to specify that
the application is registering to receive objects
of this type directly if the object is sent as part
of another object. For example, if a vStock
object is sent as an attachment to an email
message, the Exchange Manager should send
the vStock object to this application directly
rather than sending the message to the email
application.

Result Returns errNone if successful, exgMemError if there is not
enough memory to save the registration info, or one of the data
manager error codes (dmErr...).

Comments Both applications and exchange libraries use this function to register
with the Exchange Manager to receive certain types of data.

Applications must register with the Exchange Manager to receive
data objects that do not specifically target that application using the
creator ID in the target field.

Exchange libraries register to receive data with certain URL
schemes. If an exchange library is not registered to receive URLs, it
only handles the receipt and sending of data if its library reference
number is explicitly specified in the ExgSocketType structure.
Otherwise, the IR Library handles all incoming data for which a
library could not be found.

Both applications and libraries should register to receive data as
soon as possible after they are installed and as soon as possible after
a hard reset. For example, applications can call
ExgRegisterDatatype in response to the
sysAppLaunchCmdSyncNotify launch code, which they receive
immediately after install. Exchange libraries implemented as
applications can also use this strategy. Exchange libraries
implemented as shared libraries should call
ExgRegisterDatatype in their startup functions.

Make only one call to ExgRegisterDatatype per registry type. If
you want to register to receive multiple items, use a tab character

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1345

(\t) to separate the items. If you were to, for example, make one call
to register for the DOC file extension and one call to register for the
TXT extension, the second call overwrites the first. However, if you
want to register with the exgUnwrap flag set, make one call without
the exgUnwrap flag and one call with the exgUnwrap flag set. The
application registered with the exgUnwrap flag set is stored in a
different part of the registry.

Specify exgRegExtensionID to register to receive data that has a
filename with a particular extension. For example, if your
application wants to receive files with a TXT extension, it could
register like this:

ExgRegisterDatatype(myCreator,
 exgRegExtensionID, "TXT", NULL, 0);

If the application wants to receive files with a TXT extension or with
a DOC extension, it could register like this:

ExgRegisterDatatype(myCreator,
 exgRegExtensionID, "TXT\tDOC", NULL, 0);

Specify exgRegTypeID to register to receive data with a specific
MIME type. For example, if your application wants to receive
“setext” text files, it could register like this:

ExgRegisterDatatype(myCreator, exgRegTypeID,
"text/x-setext", NULL, 0);

Specify exgRegCreatorID to register to receive data targeted for a
particular creator ID. For example, if your application wants to
handle all data intended for the ToDo application, it could register
like this:

Char toDoCreatorStr[5];
MemMove(toDoCreatorStr, sysFileCToDo, 4);
toDoCreatorStr[4] = chrNull;
ExgRegisterDatatype(myCreator, exgRegCreatorID,
 toDoCreatorStr, NULL, 0);

NOTE: To override one application’s receipt of data, you need
to also set your application as the default for this creator ID. See
ExgSetDefaultApplication.

Exchange Manager
Exchange Manager Functions

1346 Palm OS Programmer’s API Reference

Most exchange libraries will want to register for a unique URL
scheme that identifies only that library, plus they should register for
a more general scheme, such as the send scheme
(exgSendScheme), which causes the library to be listed in the Send
With dialog when the user performs the Send command. The
registry ID constant for URL prefixes is exgRegSchemeID.

ExgRegisterDatatype(myLibCreator,
 exgRegSchemeID, myScheme "\t" exgSendScheme,
 NULL, 0);

Registrations are active until a hard reset or until the application or
library is removed. The registration information is preserved across
a soft reset. When an application is removed, its registry
information is also automatically removed from the registry, so
there is not normally a need to unregister. If you want to unregister,
you can call ExgRegisterDatatype with a NULL value for the
dataTypesP parameter.

Multiple applications can be registered to receive the same type of
data. If this is the case, the application that is registered as the
default (using ExgSetDefaultApplication) is the one that
receives the data unless the exchange socket explicitly specifies
another application should receive it. If there is no default specified,
the Exchange Manager determines a default.

Multiple libraries may also be registered to receive the same type of
URL. In this case, if the URL begins with a question mark (?), the
Exchange Manager displays a dialog so that the user can select
which exchange library to use. If the URL does not begin with a
question mark, the exchange library registered as the default is
used. If there is no default specified, the Exchange Manager
determines a default.

Compatibility Implemented only if 4.0 New Feature Set is present.
ExgRegisterDatatype replaces the ExgRegisterData
function.

See Also ExgRegisterData, ExgGetTargetApplication, ExgPut,
ExgGetDefaultApplication,
ExgGetRegisteredApplications, ExgGetRegisteredTypes

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1347

ExgRegisterData

Purpose Registers an application to receive a specific type of data. This
function is deprecated and replaced with ExgRegisterDatatype.

Declared In ExgMgr.h

Prototype Err ExgRegisterData (UInt32 creatorID, UInt16 id,
const Char *dataTypesP)

Parameters -> creatorID Creator ID of the registering application.

-> id Registry ID identifying the type of the items
being registered. Specify
exgRegExtensionID or exgRegTypeID.

-> dataTypesP Pointer to a tab-delimited, null-terminated
string listing the items to register. (Use \t for
the tab character.) These include file extensions
or MIME types. To unregister, pass a NULL
value.

Result Returns errNone if successful, otherwise, one of the data manager
error codes (dmErr...).

Comments Applications that wish to receive data from anything other than
another Palm Powered™ handheld running the same application
must use this function to register for the kinds of data they can
receive. Call this function when your application is loaded on the
device.

Compatibility This function corresponds to the Palm OS 3.5 version of
ExgRegisterDatatype. It is implemented only if 3.0 New
Feature Set is present.

Exchange Manager
Exchange Manager Functions

1348 Palm OS Programmer’s API Reference

ExgRequest

Purpose Requests some data from an exchange library or an application
using a URL.

Declared In ExgMgr.h

Prototype Err ExgRequest (ExgSocketType *socketP)

Parameters -> socketP Pointer to the socket structure (see
ExgSocketType). Specify a URL in the name
field and a libraryRef of 0.

Result Returns one of the following error codes:

Other error codes depend on the exchange library or application.

Comments The ExgRequest function is similar to ExgGet in that both are
used to request data. The difference is that the application that calls
ExgGet is always the application that receives the data. When you
call ExgRequest, the application that receives the data is the
application that is registered to receive it. For example, using
ExgRequest, it is possible for one application to use the Exchange
Manager to retrieve a vCard using any supported transport
mechanism and have that data sent directly to the Address Book
application instead of to the calling application.

The socketP passed to this function identifies the exchange library
using a URL in the name field. The application must know before-
hand the proper URL prefix for the exchange library with which it

errNone Success

exgErrBadLibrary Couldn’t find default exchange
library

exgErrNotEnoughPower The device does not have enough
power to perform the operation

sysErrLibNotFound Couldn’t find library or application
to respond to URL

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1349

wants to connect. See Predefined URL Prefixes for a list of URL
prefixes that the Exchange Manager provides.

If the provided URL begins with a question mark (?) and there are
several exchange libraries registered for the specified URL scheme,
the Exchange Manager displays a dialog from which the user selects
the appropriate transport mechanism.

If the Exchange Manager cannot find a library that is registered for
the specified URL, it assumes that an application is registered to
receive the URL, and it launches that application with the
sysAppLaunchCmdGoToURL launch code.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgGet, ExgNotifyReceive

ExgSend

Purpose Sends data to the destination device.

Declared In ExgMgr.h

Prototype UInt32 ExgSend (ExgSocketType *socketP,
const void *bufP, UInt32 bufLen, Err * err)

Parameters -> socketP A pointer to the socket structure (see
ExgSocketType). A value must be provided
for the libraryRef field. The structure should
also contain values for the target, type, or
name fields.

-> bufP A pointer to the data to send.

-> bufLen The number of bytes to send.

<- err A pointer to an error code result.

Result Returns the number of bytes actually sent, normally the same
number as specified in bufLen. An error code is returned in the
address indicated by err. The error code exgErrUserCancel is
returned if the user cancels the operation.

Exchange Manager
Exchange Manager Functions

1350 Palm OS Programmer’s API Reference

May display a fatal error message if the socketP parameter does
not contain a value for the libraryRef field.

Comments Call this function one or more times to send all the data, following a
successful call to ExgPut. After sending the data, call
ExgDisconnect to terminate the connection.

The exchange library may break large amounts of data into multiple
packets or assemble small send commands together into larger
packets, but the application will not be aware of these transport
level details.

This function blocks the application until all the data is sent.
However, the exchange library may provide its own user interface
that is updated as necessary and allows the user to cancel the
operation in progress.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also ExgReceive, ExgGet

ExgSetDefaultApplication

Purpose Sets the application that receives a specified type of data by default.
This function also sets the default exchange library that handles
particular URL schemes.

Declared In ExgMgr.h

Prototype Err ExgSetDefaultApplication (UInt32 creatorID,
UInt16 id, const Char *dataTypeP)

Parameters -> creatorID The creator ID of the application or library that
should become the default for this type of data.

-> id A registry ID constant identifying the type of
data in dataTypeP. See Registry ID Constants.

-> dataTypesP A pointer to a null-terminated string containing
the desired type of data.

Exchange Manager
Exchange Manager Functions

Palm OS Programmer’s API Reference 1351

NOTE: If specifying a file extension, do not include the period (.)
that precedes the extension. If specifying a URL prefix, do not
include the colon (:) at the end of the prefix.

Result Returns errNone upon success or exgErrNoKnownTarget if the
specified application is not registered to receive the specified data
type.

Comments This function sets the default application that receives data of a
certain type when no target is specified and the default exchange
library that handles URLs with a certain prefix if no library
reference number is specified.

Palm™ strongly recommends that applications allow the user to
determine which application should become the default recipient
for a data type. To do so, an application can use
ExgGetRegisteredApplications to get the list of applications
registered for the same type of data as it is, and then display a dialog
listing those applications and allow the user to select it. Then it
should call ExgSetDefaultApplication with the user-specified
default.

If you call ExgSetDefaultApplication with an application or
library that is already the default, this function has no effect.

An application can become the default for its own creator ID even if
it has not specifically registered to receive its own creator ID. That
is, suppose several applications are registered to receive objects
targeted for the ToDo application’s creator ID. The ToDo application
itself is not registered for its own creator ID, as it is not necessary to
do so. However, an application can use code like the following to set
the ToDo application as the default for its own creator ID.

Char toDoCreatorStr[5];
MemMove(toDoCreatorStr, sysFileCToDo, 4);
toDoCreatorStr[4] = chrNull;
ExgSetDefaultApplication(sysFileCToDo,
 exgRegCreatorID, toDoCreatorStr);

Exchange Manager
Application-Defined Functions

1352 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgGetDefaultApplication, ExgRegisterDatatype

Application-Defined Functions

ExgDBDeleteProcPtr

Purpose Handles the case where a database with an identical name already
exists on the device.

Declared In ExgMgr.h

Prototype Boolean (*ExgDBDeleteProcPtr) (const char* nameP,
UInt16 version, UInt16 cardNo, LocalID dbID,
void* userDataP)

Parameters -> nameP A pointer to the name of the identical database.

-> version The version of the identical database.

-> cardNo The card number of the identical database.

-> dbID The database ID of the identical database.

-> userDataP The userDataP parameter you passed to
ExgDBRead. If used, this parameter contains
any application-specific data you find
necessary. If the ExgDBReadProcPtr function
is implemented using Exchange Manager calls,
this often contains the ExgSocketType
structure.

Result Return true to have the ExgDBRead function continue to read the
database. Use this return value if you have deleted or moved the
existing database or if you want the database to be overwritten.
Return false to have ExgDBRead exit without reading the
database.

Exchange Manager
Application-Defined Functions

Palm OS Programmer’s API Reference 1353

Comments This function is called if the Data Manager can’t create the incoming
database because a database with the same name already exists. You
should delete the existing database or take some other action, such
as changing the database name. It is appropriate to prompt the user
before choosing to delete or move the database.

ExgDBReadProcPtr

Purpose Reads in the database and pass it to ExgDBRead.

Declared In ExgMgr.h

Prototype Err (*ExgDBReadProcPtr) (void* dataP,
UInt32* sizeP, void* userDataP)

Parameters <- dataP A pointer to a buffer where this function should
place the database data. This buffer is allocated
in the dynamic heap by ExgDBRead; you don’t
need to use DmWrite when filling it.

<-> sizeP The size of dataP. This value is set by
ExgDBRead to the number of bytes it expects to
receive in dataP. You must set this value to the
number of bytes you return in dataP (if it’s not
the same).

-> userDataP The userDataP parameter you passed to
ExgDBRead. Pass the ExgSocketType
structure if you implement this function using
Exchange Manager calls.

Result Return an error number, or errNone if there is no error. If this
function returns an error, ExgDBRead deletes the database it was
creating, cleans up any memory it allocated, then exits, returning
the error passed back from this function.

Comments ExgDBRead is commonly used to receive a database from a beam or
from some other transport mechanism. In this case, an appropriate
implementation of this callback function is to call ExgReceive as
shown here:

Exchange Manager
Application-Defined Functions

1354 Palm OS Programmer’s API Reference

Err MyReadDBProc (void *dataP, UInt32 *sizeP,
 void *userDataP)
{
 Err err = errNone;

 //userDataP contains ExgSocketType pointer.
 *sizeP =
 ExgReceive((ExgSocketType *)userDataP,
 dataP, *sizeP, &err);
 return err;
}

ExgDBWriteProcPtr

Purpose Writes out the database.

Declared In ExgMgr.h

Prototype Err (*ExgDBWriteProcPtr) (const void* dataP,
UInt32* sizeP, void* userDataP)

Parameters -> dataP A pointer to a buffer containing the database
data, placed there by ExgDBWrite.

<-> sizeP The number of bytes placed in dataP by
ExgDBWrite. If you were unable to write out
or send all of the data in this chunk, on exit, set
sizeP to the number of bytes you did write.

-> userDataP The userDataP parameter you passed to
ExgDBWrite. You can use it for application-
specific data. Pass the ExgSocketType
structure if you implement this function using
Exchange Manager calls.

Result Return an error number, or errNone if there is no error. If this
function returns an error, ExgDBWrite closes the database it was
reading, cleans up any memory it allocated, then exits, returning the
error passed back from this function.

Exchange Manager
Application-Defined Functions

Palm OS Programmer’s API Reference 1355

Comments ExgDBWrite is commonly used to write a database that is going to
be beamed to another device (or sent through some other transport
mechanism). In this case, an appropriate implementation of this
callback function is to call ExgSend as shown here:

Err MyWriteDBProc (void *dataP, UInt32 *sizeP,
 void *userDataP)
{
 Err err = errNone;

 //userDataP contains ExgSocketType pointer.
 *sizeP =
 ExgSend((ExgSocketType *)userDataP,
 dataP, *sizeP, &err);
 return err;
}

Exchange Manager
Application-Defined Functions

1356 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1357

58
Exchange Library
The Exchange Library API described in this chapter and declared in
ExgLib.h specifies a minimal set of functions that all exchange
libraries must implement. This chapter is directed towards
developers who use or create exchange libraries. Developers
creating an exchange library should also read the Exchange
Libraries chapter of the Palm OS Programmer’s Companion, vol. II,
Communications.

Exchange Library Functions

ExgLibAccept

Purpose Accept an incoming connection.

Declared In ExgLib.h

Prototype Err ExgLibAccept(UInt16 libRefnum,
ExgSocketType *exgSocketP)

Parameters -> libRefnum Reference number of this exchange library.

-> exgSocketP A pointer to the socket structure (see
ExgSocketType).

Result Returns errNone if no error. exgErrNotSupported is returned if
a preview is in progress and the exchange library does not support
preview. Other error codes are defined by each exchange library.

Comments The Exchange Manager’s ExgAccept function simply calls
ExgLibAccept in the exchange library identified by the
ExgSocketType structure passed to ExgAccept. An application
calls the Exchange Manager’s ExgAccept function when:

Exchange Library
Exchange Library Functions

1358 Palm OS Programmer’s API Reference

• The application wants to initiate a connection to receive data,
which it does in response to
sysAppLaunchCmdExgReceiveData.

• The application wants to initiate a connection to receive a
preview of the data, which it does in response to
sysAppLaunchCmdExgAskUser.

Any implementation of ExgLibAccept should update any
progress dialogs to indicate that data is being accepted (or received)
into an application.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgLibPut

ExgLibClose

Purpose Library-specific. Although this function is not called by the
Exchange Manager, all shared libraries normally implement it.

Declared In ExgLib.h

Prototype Err ExgLibClose (UInt16 libRefnum)

Parameters -> libRefnum Reference number of this exchange library.

Comments Exchange libraries are free to implement this function for internal or
external use. The Exchange Manager does not call it.

Exchange Library
Exchange Library Functions

Palm OS Programmer’s API Reference 1359

ExgLibConnect

Purpose Open a connection in preparation for sending or receiving objects.

Declared In ExgLib.h

Prototype Err ExgLibConnect(UInt16 libRefNum,
ExgSocketType *exgSocketP)

Parameters -> libRefNum Reference number of this exchange library.

<-> exgSocketP A pointer to an ExgSocketType structure
identifying the socket through which objects
will be sent or received.

Result Returns errNone if no error. If ExgLibConnect is not supported
by this library, this function returns exgErrNotSupported; if its
use is optional, errNone is returned. Other error codes are defined
by each exchange library.

Comments The Exchange Manager may call this function to initiate a
connection for sending multiple objects or for performing two-way
communications. Some exchange libraries support sending multiple
objects but do not support this call. See “Sending Multiple Objects”
on page 17 of Palm OS Programmer’s Companion, vol. II,
Communications for more information.

Not all exchange libraries support this operation. In this case, the
first call to ExgLibPut must clean up after itself before returning an
error. The exchange library should not expect to get an
ExgLibDisconnect call.

If ExgLibConnect is supported and an application calls
ExgConnect, the exchange library should delay any cleanup until
ExgLibDisconnect, unless ExgLibConnect returns an error, in
which case it should clean up after itself. The library can expect to
get an ExgLibDisconnect call if it returns errNone from
ExgLibConnect. If the application does not call ExgConnect, the
first call to ExgLibPut must clean up after itself before returning an
error and the exchange library should not expect to get an
ExgLibDisconnect call.

Exchange Library
Exchange Library Functions

1360 Palm OS Programmer’s API Reference

The Exchange Manager’s ExgConnect function calls
ExgLibConnect in the exchange library identified by the
ExgSocketType structure passed to ExgConnect. If
ExgLibConnect is implemented to return
exgErrNotEnoughPower, the Exchange Manager puts up an alert,
so there is no need for the exchange library to do so. Other error
codes are not treated specially by the Exchange Manager; the
exchange library must put up its own alerts when appropriate.

The exchange library may prompt the user for addressing
information.

Compatibility Implemented only if 4.0 New Feature Set is present.

ExgLibControl

Purpose Supply information about the exchange library.

Declared In ExgLib.h

Prototype Err ExgLibControl(UInt16 libRefNum, UInt16 op,
void *valueP, UInt16 *valueLenP)

Parameters -> libRefNum Reference number of this exchange library.

-> op The operation to perform.

<-> valueP An operation specific parameter. See comments
below.

<-> valueLenP An operation specific parameter. See comments
below.

Result Returns errNone if no error. exgErrNotSupported is returned if
the specified operation is not supported by the exchange library.
exgErrBadParam is returned if the parameters (valueP and
valueLenP) are not appropriate for the operation. Additional error
codes are defined by each exchange library.

Comments ExgLibControl is a general purpose function that performs
various minor operations based upon a selector. ExgMgr.h defines

Exchange Library
Exchange Library Functions

Palm OS Programmer’s API Reference 1361

three selectors: exgLibCtlGetTitle, which should be supported
by all exchange libraries, exgLibCtlGetVersion, and
exgLibCtlGetPreview. Additional library-specific selectors
should be numbered starting at exgLibCtlSpecificOp (0x8000).

Upon receiving exgLibCtlGetTitle, the exchange library must
return a library title suitable for use in Exchange Manager dialogs.
Exchange libraries that are built as applications should generally
return their 'tAIN' resource as their title. Be sure that the title
returned through valueP honors the maximum length specified in
valueLenP.

An exchange library that implements the Palm OS 4.0 version of the
Exchange Library API needn’t do anything special upon receiving
exgLibCtlGetVersion; it should simply return
exgErrNotSupported. Otherwise, set valueP to a two-byte
value indicating the API version number and return errNone. Note
that a version number of zero corresponds to the Palm OS 4.0
version of the Exchange Library API.

The exgLibCtlGetPreview operation is used by the Exchange
Manager to determine whether a given exchange library supports
preview. The Exchange Manager assumes that an exchange library
supports preview if the exchange library doesn’t implement this
operation. To indicate that a library does not support preview, set
valueP to false and return errNone.

The Exchange Manager’s ExgControl function simply calls
ExgLibControl in the exchange library identified by the
ExgSocketType structure passed to ExgControl.

Compatibility Implemented only if 4.0 New Feature Set is present.

Exchange Library
Exchange Library Functions

1362 Palm OS Programmer’s API Reference

ExgLibDisconnect

Purpose Disconnect a connection made with ExgLibConnect,
ExgLibAccept, ExgLibPut, or ExgLibGet.

Declared In ExgLib.h

Prototype Err ExgLibDisconnect(UInt16 libRefnum,
ExgSocketType *exgSocketP, Err error)

Parameters -> libRefnum Reference number of this exchange library.

-> exgSocketP A pointer to an ExgSocketType structure
identifying the socket connection to be
disconnected.

-> error The current error state. Used to indicate why
the connection is being broken, for example,
user cancel or out of memory.

Result Typically the same error code passed in. However, this function may
return an error even if errNone is passed in.

Comments ExgLibDisconnect may be used to finish reading the data during
a preview; in this case, the connection, if any, is not shut down.

Applications call ExgLibDisconnect when all data has been sent
or the application wants to stop the send process. If the send data
process is not completed, the caller should pass an error parameter
indicating why the operation was stopped. ExgLibDisconnect is
responsible for completing the operation and closing any
communication ports if necessary. If data was buffered for sending
in ExgLibSend, then the disconnect process may actually perform
the entire transmit operation. It is important to note that the
ExgLibDisconnect function can be called for an ExgLibPut,
ExgLibAccept or ExgLibGet function. So it is equally important
to keep track of the current operation in the ExgSocketType. If
dialogs are displayed, this function must update them as
appropriate. If there are errors, ExgLibDisconnect should
display them (if allowed by the application).

Exchange Library
Exchange Library Functions

Palm OS Programmer’s API Reference 1363

If ExgLibConnect is not supported, the first call to ExgLibPut
must clean up after itself before returning an error and the exchange
library should not expect to get an ExgLibDisconnect call.

If ExgLibConnect is supported and an application calls
ExgConnect, the exchange library should delay any cleanup until
ExgLibDisconnect, unless ExgLibConnect returns an error, in
which case it should clean up after itself. The library can expect to
get an ExgLibDisconnect call if it returns errNone from
ExgLibConnect. If the application does not call ExgConnect, the
first call to ExgLibPut must clean up after itself before returning an
error and the exchange library should not expect to get an
ExgLibDisconnect call.

The Exchange Manager’s ExgDisconnect function simply calls
ExgLibDisconnect in the exchange library identified by the
ExgSocketType structure passed to ExgDisconnect.

Compatibility Implemented only if 4.0 New Feature Set is present.

ExgLibGet

Purpose Establish a connection and request data from a remote device.

Declared In ExgLib.h

Prototype Err ExgLibGet(UInt16 libRefNum,
ExgSocketType *exgSocketP)

Parameters -> libRefNum Reference number of this exchange library.

<-> exgSocketP A pointer to the socket structure (see
ExgSocketType).

Result Returns errNone if no error. exgErrNotSupported is returned if
this operation is not supported by this library. Other error codes are
defined by each exchange library.

Comments ExgLibGet informs the library that it should make a connection to
the remote device and request information from it. When an

Exchange Library
Exchange Library Functions

1364 Palm OS Programmer’s API Reference

exchange library's ExgLibGet function is called, it should fetch the
requested data and prepare to deliver it when the application calls
ExgReceive. After ExgLibReceive is called, possibly more than
once, ExgLibDisconnect follows.

The Exchange Manager’s ExgGet function calls ExgLibGet in the
exchange library identified in the ExgSocketType structure
passed to ExgGet. If an exchange library’s implementation of
ExgLibGet returns exgErrNotEnoughPower, the Exchange
Manager puts up an alert, so there is no need for the exchange
library to do so. Other error codes are not treated specially by the
Exchange Manager; an exchange library must put up its own alerts
when appropriate.

Compatibility Implemented only if 4.0 New Feature Set is present.

ExgLibHandleEvent

Purpose Handle exchange-library-specific events.

Declared In ExgLib.h

Prototype Boolean ExgLibHandleEvent(UInt16 libRefnum,
void *eventP)

Parameters -> libRefnum Reference number of this exchange library.

-> eventP The event to handle.

Result Returns true if the event was handled.

Comments Exchange libraries are free to implement this function for internal or
external use. The Exchange Manager does not call it.

Exchange Library
Exchange Library Functions

Palm OS Programmer’s API Reference 1365

ExgLibOpen

Purpose Library-specific. Although this function is not called by the
Exchange Manager, all shared libraries normally implement it.

Declared In ExgLib.h

Prototype Err ExgLibOpen (UInt16 libRefnum)

Parameters -> libRefnum Reference number of this exchange library.

Comments Exchange libraries are free to implement this function for internal or
external use. The ExgLibDisconnect does not call it.

Exchange Library
Exchange Library Functions

1366 Palm OS Programmer’s API Reference

ExgLibPut

Purpose Signals the start of an object to be transferred to the destination
device.

Declared In ExgLib.h

Prototype Err ExgLibPut(UInt16 libRefnum,
ExgSocketType *exgSocketP)

Parameters -> libRefnum Reference number of this exchange library.

<- exgSocketP Pointer to the socket structure (see
ExgSocketType).

Result Returns errNone if no error. Error codes are defined by each
exchange library.

Comments Opens a connection if necessary. The actual data should be sent
using ExgLibSend after which the connection should be shut
down with ExgLibDisconnect. The exchange library may
prompt the user for addressing information.

The first time this library is called, it may be necessary to allocate
global variables and perform other initialization steps. It is usually a
good idea to keep any state information about the open connection
in the socketRef field of the exgSocketP structure. This data can
then be passed to subsequent operations on that socket.

ExgLibPut should then check if the socketRef field of
exgSocketP has been initialized. In some cases, an application
may already have filled socketRef with addressing information.
The use of socketRef is entirely up to the exchange library. If
socketRef is empty, the exchange library needs to fill in any
addressing information. In order to do this, the exchange library
needs to open its own dialog asking the user for whatever
addressing information would be appropriate.

Exchange libraries are responsible for any validation of data entered
in the addressing dialog and may use Address Book lookup or other
system features to improve the user experience.

Exchange Library
Exchange Library Functions

Palm OS Programmer’s API Reference 1367

Once the user has completed addressing and confirmed the dialog,
the exchange library should, in general, call the Progress Manager to
open a progress dialog that remains open during the entire put
operation. The progress dialog should not be opened if the
noStatus option was passed or if the transaction is in
asynchronous mode.

If the exchange library is displaying dialogs, it must also look for
events and pass them to the Progress Manager.

Other operations within ExgLibPut depend on the exchange
library. The exchange library may open communications ports and
establish remote links at this time. Or it may just open a stream for
buffering data until a later operation. If any errors occur in this
process, the exchange library is responsible for removing any
progress dialogs and returning an error. If displaying progress, the
exchange library may also need to display an error using the
Progress Manager before returning.

NOTE: The progress dialog is converted to an error dialog and
waits until the user dismisses it. This may occur in ExgLibPut or
later in ExgLibDisconnect. It depends on whether the
connection was made in ExgLibPut or whether it used an
existing connection made by a previous call to ExgLibConnect
or ExgLibPut.

The first call to ExgLibPut must clean up after itself before
returning an error if one of the following conditions exists:

• If ExgLibConnect is not supported.

• If ExgLibConnect is supported and an application does not
call ExgLibConnect.

The Exchange Manager’s ExgPut function calls ExgLibPut in the
exchange library identified by the ExgSocketType structure
passed to ExgPut. If ExgLibPut returns
exgErrNotEnoughPower, the Exchange Manager puts up an alert,
so there is no need for the exchange library to do so. Other error
codes are not treated specially by the Exchange Manager; an
exchange library must put up its own alerts when appropriate.

Exchange Library
Exchange Library Functions

1368 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

ExgLibReceive

Purpose Receive data from a remote device.

Declared In ExgLib.h

Prototype UInt32 ExgLibReceive(UInt16 libRefNum,
ExgSocketType *exgSocketP, void *bufP,
UInt32 bufSize, Err *errP)

Parameters -> libRefNum Reference number of this exchange library.

<-> exgSocketP A pointer to the socket structure (see
ExgSocketType).

-> bufP A pointer to a buffer into which the data is put.

-> bufSize The size of the buffer in bytes.

<- errP The error code result: errNone if no error.
exgErrNotSupported is returned if used
during a preview and the exchange library does
not support preview or if there appears to be
more data available but ExgLibReceive
cannot obtain it.Error codes are defined by each
exchange library.

Result The number of bytes received. Returns 0 if the object is complete.
ExgLibReceive blocks until at least one byte is available or the
object is complete.

Comments Use after ExgLibGet or ExgLibAccept to receive the contents of
the object. May be used after ExgLibAccept to examine the
contents during a preview.

ExgLibReceive must update any progress dialogs to indicate that
data is being received. The ExgLibReceive should fill the buffer
passed as much as possible and return the actual number of bytes
that were stored in the buffer. ExgLibReceive must block for at

Exchange Library
Exchange Library Functions

Palm OS Programmer’s API Reference 1369

least one byte if the stream is not complete. Returning zero bytes
indicates the end of the data.

The Exchange Manager’s ExgReceive function simply calls
ExgLibReceive in the exchange library identified by the
ExgSocketType structure passed to ExgReceive.

Compatibility Implemented only if 4.0 New Feature Set is present.

ExgLibRequest

Purpose Requests an object using a URL, then has the Exchange Manager
send it to the default application registered for the object’s type.

Declared In ExgLib.h

Prototype Err ExgLibRequest(UInt16 libRefNum,
ExgSocketType *socketP)

Parameters -> libRefNum Reference number of this exchange library.

<-> socketP Pointer to the socket structure (see
ExgSocketType). The name field contains the
URL of the object being requested.

Result Returns errNone if no error. exgErrNotSupported is returned if
the exchange library does not support this operation. Other error
codes are defined by each exchange library.

Comments The exchange library may prompt the user for addressing
information. The socket’s name field may contain a URL with any of
the schemes for which the exchange library registered. Not all
exchange libraries support this operation.

NOTE: This function is often used to tickle an exchange library
to make it check to see if there are new messages. These
messages are then delivered as usual. So there may or may not
be a specific object being requested.

Exchange Library
Exchange Library Functions

1370 Palm OS Programmer’s API Reference

The Exchange Manager’s ExgRequest function calls
ExgLibRequest in the exchange library identified by the
ExgSocketType structure passed to ExgRequest. If
ExgLibRequest returns exgErrNotEnoughPower, the Exchange
Manager puts up an alert, so there is no need for the exchange
library to do so. Other error codes are not treated specially by the
Exchange Manager; an exchange library must put up its own alerts
when appropriate.

See Also ExgRegisterDatatype

ExgLibSend

Purpose Send data for an object to a destination device.

Declared In ExgLib.h

Prototype UInt32 ExgLibSend(UInt16 libRefNum,
ExgSocketType *exgSocketP, const void *bufP,
UInt32 bufLen, Err *errP)

Parameters -> libRefNum Reference number of this exchange library.

<- exgSocketP A pointer to the socket structure (see
ExgSocketType).

-> bufP A pointer to a buffer containing the data to
send.

-> bufLen The number of bytes to send.

<- errP The error code result. Error codes are defined
by each exchange library

Result Returns the number of bytes sent.

Comments Applications call ExgSend after ExgPut and in response to
sysAppLaunchCmdExgGetData.

This function blocks until all bytes to be sent are actually sent, or
until an error occurs (such as device full).

Exchange Library
Exchange Library Functions

Palm OS Programmer’s API Reference 1371

ExgLibSend may be called any number of times with varying size
buffers to transmit information. If dialogs are being displayed,
ExgLibSend must keep them updated (perhaps with animation or
progress information). ExgLibSend must also check for events and
let the Progress Manager handle them.

The Exchange Manager’s ExgSend function simply calls
ExgLibSend in the exchange library identified by the
ExgSocketType structure passed to ExgSend.

Compatibility Implemented only if 4.0 New Feature Set is present.

ExgLibSleep

Purpose The device is going to sleep.

Declared In ExgLib.h

Prototype Err ExgLibSleep(UInt16 libRefnum)

Parameters -> libRefnum Reference number of this exchange library.

Result Returns errNone if no error. Error codes are defined by each
exchange library.

Comments The device goes into sleep mode when the user turns the device off,
the auto-off timer expires, or power is low. All shared libraries must
implement ExgLibSleep; however, no processing is required and
simply returning errNone is enough.

IMPORTANT: Libraries must return from this function quickly to
allow sufficient time for emergency shutdown situations (removal
of batteries, for example).

Exchange Library
Exchange Library Functions

1372 Palm OS Programmer’s API Reference

ExgLibWake

Purpose The device is waking up.

Declared In ExgLib.h

Prototype Err ExgLibWake(UInt16 libRefnum)

Parameters -> libRefnum Reference number of this exchange library.

Result Returns errNone if no error. Error codes are defined by each
exchange library.

Comments The device wakes up when the user turns the device on. All shared
libraries must implement ExgLibWake, although no processing is
required; it is enough to simply return errNone.

Palm OS Programmer’s API Reference 1373

59
IR Library
The IR (InfraRed) library is a shared library that provides a direct
interface to the IR communications capabilities of the Palm OS®.
This chapter provides reference material for the IR library API:

• IR Library Data Structures

• IR Library Constants

• IR Stack Callback Events

• IR Library Functions

• IAS Functions

• Application-Defined Functions

The header file irlib.h declares the IR library API. For more
information on the IR library, see the chapter “Beaming (Infrared
Communication)” in the Palm OS Programmer’s Companion, vol. II,
Communications.

IR Library Data Structures
This section lists some of the more important data types used by the
IR library functions.

IrConnect
The IrConnect structure is used to manage an IrLMP or Tiny TP
connection.

typedef struct _hconnect {
 UInt8 lLsap;
 UInt8 rLsap;
 UInt8 flags;
 UInt8 reserved;
 IrCallBack callBack;
 IrPacket packet;
 ListEntry packets;

IR Library
IR Library Data Structures

1374 Palm OS Programmer’s API Reference

 UInt16 sendCredit;
 UInt8 availCredit;
 UInt8 dataOff;
} _hconnect;

Field Descriptions

IrPacket
The IrPacket structure is used for sending IrDA packets.

typedef struct _IrPacket {
 ListEntry node;
 UInt8 *buff;
 UInt16 len;
 IrConnect* origin;
 UInt8 headerLen;
 UInt8 header[14];
 UInt8 reserved;
} IrPacket;

Field Descriptions

lLsap The local LSAP on which this connection listens.

rLsap The LSAP assigned to the remote side.

flags For system use only.

reserved Reserved for future use.

callBack Pointer to callback function. For system use only.

packet For system use only.

packets List of packets to send.

sendCredit Amount of credit from peer.

availCredit Amount of credit to give to peer.

dataOff Amount of data less than IrLAP size.

node For system use only.

buff Pointer to the send data buffer.

IR Library
IR Library Data Structures

Palm OS Programmer’s API Reference 1375

IMPORTANT: The node field must be the first field in the
structure. It is used internally by the stack.

IrIASObject
The IrIASObject structure is used as storage for an IAS object
managed by the local IAS server. An object of this type is passed as
the obj parameter to the IrIAS_Add function.

typedef struct _IrIasObject {
 UInt8 *name;
 UInt8 len;
 UInt8 nAttribs;
 IrIasAttribute* attribs;
} IrIasObject;

Field Descriptions

len Number of bytes in data buffer.

origin Pointer to connection that owns the packet. For
system use only.

headerLen Number of bytes contained in the header. For
system use only.

header Storage for header. For system use only.

reserved Reserved for future use.

name Pointer to name of object.

len Length of object name.

nAttribs Number of attributes.

attribs Pointer to an array of attributes.

IR Library
IR Library Data Structures

1376 Palm OS Programmer’s API Reference

IrIasQuery
The IrIasQuery structure is used to perform IAS queries. The
IrIasQuery object is passed as the token parameter to functions
such as IrIAS_Query and IrIAS_Next.

typedef struct _IrIasQuery {
 UInt8 queryLen;
 UInt8 reserved;
 UInt8 *queryBuf;
 UInt16 resultBufSize;
 UInt16 resultLen;
 UInt16 listLen;
 UInt16 offset;
 UInt8 retCode;
 UInt8 overFlow;
 UInt8 *result;
 IrIasQueryCallBack callBack;
} _IrIasQuery;

Field Descriptions

queryLen Total length of the query.

reserved Reserved for future use.

queryBuf Pointer to buffer containing the query.

resultBufSize Size of the result buffer.

resultLen Actual number of bytes in the result buffer.

listLen Number of items in the result list.

offset Offset into the results buffer.

retCode Return code of operation.

overFlow Set to true if result exceeded result buffer size.

result Pointer to buffer containing result.

callBack Pointer to query callback function.

IR Library
IR Library Data Structures

Palm OS Programmer’s API Reference 1377

IrCallbackParms
The IrCallbackParms structure is used to pass information from
the stack to the upper layer of the stack (application). Not all fields
are valid at any given time. The type of event determines which
fields are valid. The IrCallbackParms object is passed as the
second parameter to the IrCallback function.

typedef struct {
 IrEvent event;
 UInt8 reserved1;
 UInt8 *rxBuff;
 UInt16 rxLen;
 IrPacket* packet;
 IrDeviceList* deviceList;
 IrStatus status;
 UInt8 reserved2;
} IrCallBackParms;

Field Descriptions

IrStatsType
The IrStatsType structure defines performance statistics for the
IR Library. Use the ExgControl function with an
irGetStatistics operation to retrieve these statistics. See IR
Control Constants for more information.

event Event causing the callback.

reserved1 Reserved for future use.

rxBuff Received data buffer.

rxLen Length of data in received buffer.

packet Pointer to packet being returned.

deviceList Pointer to discovery device list.

status Status of stack.

reserved2 Reserved for future use.

IR Library
IR Library Constants

1378 Palm OS Programmer’s API Reference

typedef struct {
 UInt16 recLineErrors;
 UInt16 crcErrors;
} IrStatsType;

Field Descriptions

IR Library Constants

IR Control Constants
The IR control constants define operations that the IR Exchange
Library can perform. You pass these constants as the operation
parameter to ExgControl. The following table lists the operation
constants, the data that should be passed as the valueP parameter
to ExgControl, and what operation is performed in response.

recLineErrors The number of serial errors since the library
opened.

crcErrors The number of CRC errors since the library
opened.

Operation Constant value Data Type Description

irGetScanningMode Boolean. Output
only.

Returns true in *valueP if
beaming is enabled or false if
beaming is disabled.

irGetStatistics IrStatsType.
Output only.

Returns performance statistics.

irRestoreScanning None Re-enables beaming after an
irSuppressScanning
operation. This operation keeps
track of the number of requests
that beaming be disabled and re-
enables beaming only when the
count reaches 0.

IR Library
IR Library Constants

Palm OS Programmer’s API Reference 1379

This operation differs from
irSetScanningMode in that it
does not update the saved
preferences.

irSetScanningMode Boolean. Input
only.

Enables or disables beaming.

This operation modifies the saved
preferences database, which is
back up during a HotSync®
operation. Because of this,
beaming may remain disabled
after a reset if you use this
operation to disable it. If you want
to temporarily disable beaming
use irSuppressScanning and
irRestoreScanning instead.

irSetBaudMask UInt16 containing a
mask of the
irOpenOptSpeed...
constants defined in
IrLib.h. Input
only.

Sets the possible baud rates that
the IR Library will use to those
specified in *valueP. OR the
irOpenOptSpeed... constants
together to specify more than one.
The default rate is 0, which causes
the baud rate to be determined by
the hardware.

This operation is sometimes useful
for debugging connections.
Generally, you should set all bits
up to the fastest rate you want to
allow. To reset, use this operation
again and pass 0 in *valueP.

If you change the baud rate, your
changes are until the device is reset
or you perform this operation
again.

Operation Constant value Data Type Description

IR Library
IR Stack Callback Events

1380 Palm OS Programmer’s API Reference

IR Stack Callback Events
The IR stack calls the application by way of a callback function
stored in each IrConnect structure. The callback function is called
with a pointer to the IrConnect structure and a pointer to a
parameter structure. The parameter structure contains an event
field, which indicates the reason the callback is called, and other
parameters, which have meaning based on the event.

irSetSerialMode Boolean. Input
only.

If the specified value is true, the
IR Library uses the serial port
instead of the infrared port until
the device is reset. This option is
useful for debugging. You can run
your application in POSE and use
the IR Library to communicate
with a device connected in the
cradle.

irSetSupported Boolean. Input
only.

If true, IR is supported on this
device. If false, IR is not
supported. You can use this
constant to disable the
unsupported dialog that normally
displays when a beam is attempted
and no IR support is available.

irSuppressScanning None Temporarily disables beam
receive. This operation keeps track
of the number of requests that
beaming be disabled and re-
enables beaming (through
irRestoreScanning) only when
the count reaches 0.

This operation differs from
irSetScanningMode in that it
does not update the saved
preferences.

Operation Constant value Data Type Description

IR Library
IR Stack Callback Events

Palm OS Programmer’s API Reference 1381

The meaning of the events is described in the following sections.

LEVENT_DATA_IND
Data has been received. The received data is accessed using fields
rxBuff and rxLen.

LEVENT_DISCOVERY_CNF
Indicates the completion of a discovery operation. The field
deviceList points to the discovery list.

LEVENT_LAP_CON_CNF
The requested IrLAP connection has been made successfully. The
callback function of all bound IrConnect structures is called.

LEVENT_LAP_CON_IND
Indicates that the IrLAP connection has come up. The callback of all
bound IrConnect structures is called.

LEVENT_LAP_DISCON_IND
Indicates that the IrLAP connection has gone down. This means that
all IrLMP connections are also down. A callback with event
LEVENT_LM_CON_IND is not given. The callback function of all
bound IrConnect structures is called.

LEVENT_LM_CON_CNF
The requested IrLMP/Tiny TP connection has been made
successfully. Connection data from the other side is found using
fields rxBuff and rxLen.

LEVENT_LM_CON_IND
Other device has initiated a connection. IrConnectRsp should be
called to accept the connection. Any data associated with the
connection request can be found using fields rxBuff and rxLen,
data pointer and length, respectively.

IR Library
IR Stack Callback Events

1382 Palm OS Programmer’s API Reference

LEVENT_LM_DISCON_IND
The IrLMP/Tiny TP connection has been disconnected. Any data
associated with the disconnect indication can be found using fields
rxBuff and rxLen, data pointer and length, respectively.

LEVENT_PACKET_HANDLED
A packet is being returned. A pointer to the packet exists in field
packet.

LEVENT_STATUS_IND
Indicates that a status event from the stack has occurred. The
status field indicates the status generating the event. Possible
status values are as follows:

• IR_STATUS_NO_PROGRESS which means that IrLAP has no
progress for 3 seconds threshold time (for example, the beam
is blocked).

• IR_STATUS_LINK_OK which indicates that the no progress
condition has cleared.

• IR_STATUS_MEDIA_NOT_BUSY which indicates that the IR
media has transitioned from busy to not busy.

LEVENT_TEST_CNF
Indicates that a TEST command has completed. The status field
indicates if the test was successful.

• IR_STATUS_SUCCESS indicates that the operation was
successful and the data in the test response can be found by
using the rxBuff and rxLen fields.

• IR_STATUS_FAILED indicates that no TEST response was
received. The packet passed to perform the test command is
passed back in the packet field and is now available (no
separate packet handled event occurs).

LEVENT_TEST_IND
Indicates that a TEST command frame has been received. A pointer
to the received data is in rxBuff and rxLen. A pointer to the

IR Library
IR Library Functions

Palm OS Programmer’s API Reference 1383

packet that is sent in response to the test command is in the packet
field. The packet is currently set up to respond with the same data
sent in the command TEST frame. If different data is desired as a
response, then you need to modify the packet structure. This event
is sent to the callback function in all bound IrConnect structures.
The IAS connections ignore this event.

IR Library Functions

IrAdvanceCredit

Purpose Advances the credit to the other side of the connection.

Declared In IrLib.h

Prototype void IrAdvanceCredit (IrConnect* con,
UInt8 credit)

Parameters --> con Pointer to IrConnect structure representing
connection to which credit is advanced.

--> credit Amount of credit to advance.

Result Returns nothing.

Comments The credit passed by this function is added to the existing available
credit, which must not exceed 127. This function only makes sense
for a Tiny TP connection.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

1384 Palm OS Programmer’s API Reference

IrBind

Purpose Obtains a local LSAP selector and registers the connection with the
protocol stack.

Declared In IrLib.h

Prototype IrStatus IrBind (UInt16 refNum, IrConnect* con,
IrCallBack callBack)

Parameters --> refnum IR library refNum.

<--> con Pointer to IrConnect structure.

--> callBack Pointer to a callBack function that handles the
indications and confirmation from the protocol
stack.

Result IR_STATUS_SUCCESS means the operation completed successfully.
The assigned LSAP can be found in con->lLsap.

IR_STATUS_FAILED means the operation failed for one of the
following reasons:

• con is already bound to the stack.

• There is no room in the connection table.

Comments The IrConnect structure is re-initialized. Any values stored in the
structure are lost. The assigned LSAP is returned in the lLsap field
of con. The type of the connection is set to IrLMP. The IrConnect
must be bound to the stack before it can be used.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

Palm OS Programmer’s API Reference 1385

IrClose

Purpose Closes the IR library. This releases the global memory for the IR
stack and any system resources it uses. This must be called when an
application is done with the IR library.

Declared In IrLib.h

Prototype Err IrClose (UInt16 refnum)

Parameters --> refnum IR library refNum.

Result Returns 0 if successful.

Comments Do not call this function unless the call to IrOpen was successful.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrConnectIrLap

Purpose Starts an IrLAP connection.

Declared In IrLib.h

Prototype IrStatus IrConnectIrLap (UInt16 refNum,
IrDeviceAddr deviceAddr)

Parameters --> refnum IR library refNum.

--> deviceAddr 32-bit address of device to which connection
should be made.

Result IR_STATUS_PENDING means the operation started successfully;
the result is returned by way of a callback.

IR_STATUS_MEDIA_BUSY means the operation failed because the
media is busy. Media busy is caused by one of the following
reasons:

• Other devices are using the IR medium.

IR Library
IR Library Functions

1386 Palm OS Programmer’s API Reference

• An IrLAP connection already exists.

• A discovery process is in progress.

Comments The result is signaled to all bound IrConnect structures by way of
the callback function. The callback event is LEVENT_LAP_CON_CNF
if successful or LEVENT_LAP_DISCON_IND if unsuccessful.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrConnectReq

Purpose Requests an IrLMP or Tiny TP connection.

Declared In IrLib.h

Prototype IrStatus IrConnectReq (UInt16 refNum,
IrConnect* con, IrPacket* packet, UInt8 credit)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure for handling
the connection. The rLsap field must contain
the LSAP selector for the peer on the other
device. Also the type of the connection must be
set. Use IR_SetConTypeLMP to set the type to
an IrLMP connection or IR_SetConTypeTTP
to set the type to a Tiny TP connection.

--> packet Pointer to a packet that contains connection
data. Even if no connection data is needed, the
packet must point to a valid IrPacket
structure. The packet is returned by way of the
callback function with the
LEVENT_PACKET_HANDLED event if no errors
occur. The maximum size of the packet is
IR_MAX_CON_PACKET for an IrLMP
connection or IR_MAX_TTP_CON_PACKET for
a Tiny TP connection.

IR Library
IR Library Functions

Palm OS Programmer’s API Reference 1387

--> credit Initial amount of credit advanced to the other
side. Must be less than 127. It is ANDed with
0x7f, so if it is greater than 127, unexpected
results occur. This parameter is ignored if the
connection is an IrLMP connection.

Result IR_STATUS_PENDING means the operation has been started
successfully and the result is returned by way of the callback
function with the event LEVENT_LM_CON_CNF if the connection is
made or LEVENT_LM_DISCON_IND if connection fails. The packet
is returned by way of the callback with the event
LEVENT_PACKET_HANDLED.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• The connection is busy (already involved in a connection).

• The IrConnect structure is not bound to the stack.

• The packet size exceeds maximum allowed.

IR_STATUS_NO_IRLAP means the operation failed because there is
no IrLAP connection (the packet is available immediately).

Comments The result is signaled by way of the callback specified in the
IrConnect structure. The callback event LEVENT_LM_CON_CNF
indicates that the connection is up and LEVENT_LM_DISCON_IND
indicates that the connection failed. Before calling this function the
fields in the con structure must be properly set.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

1388 Palm OS Programmer’s API Reference

IrConnectRsp

Purpose Accepts an incoming connection that has been signaled by way of
the callback with the event LEVENT_LM_CON_IND.

Declared In IrLib.h

Prototype IrStatus IrConnectRsp (UInt16 refNum,
IrConnect* con, IrPacket* packet, UInt8 credit)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure.

--> packet Pointer to a packet that contains connection
data. Even if no connection data is needed, the
packet must point to a valid IrPacket
structure. The packet is returned by way of the
callback with the LEVENT_PACKET_HANDLED
event if no errors occur. The maximum size of
the packet is IR_MAX_CON_PACKET for an
IrLMP connection or
IR_MAX_TTP_CON_PACKET for a Tiny TP
connection.

--> credit Initial amount of credit advanced to the other
side. Must be less than 127. It is ANDed with
0x7f, so if it is greater than 127, unexpected
results occur. This parameter is ignored if the
connection is an IrLMP connection.

Result IR_STATUS_PENDING means the operation has been started
successfully and the packet is returned by way of the callback
function with the event LEVENT_PACKET_HANDLED.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• The connection is not in the proper state to require a
response.

• The IrConnect structure is not bound to the stack.

IR Library
IR Library Functions

Palm OS Programmer’s API Reference 1389

• The packet size exceeds the maximum allowed.

IR_STATUS_NO_IRLAP means the operation failed because there is
no IrLAP connection (the packet is available immediately).

Comments IrConnectRsp can be called during the callback or later to accept
the connection. The type of the connection must already have been
set to IrLMP or Tiny TP before the LEVENT_LM_CON_IND event.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrDataReq

Purpose Sends a data packet.

Declared In IrLib.h

Prototype IrStatus IrDataReq (UInt16 refNum,
IrConnect* con, IrPacket* packet)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure that specifies
the connection over which the packet should be
sent.

--> packet Pointer to a valid IrPacket structure that
contains data to send. The packet should not
exceed the maximum size found with
IrMaxTxSize.

Result IR_STATUS_PENDING means the packet has been queued by the
stack. The packet is returned by way of the callback with event
LEVENT_PACKET_HANDLED.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• The IrConnect structure is not bound to the stack.

• The packet size exceeds the maximum allowed.

IR Library
IR Library Functions

1390 Palm OS Programmer’s API Reference

• The IrConnect structure does not represent an active
connection.

Comments The packet is owned by the stack until it is returned by way of the
callback with event LEVENT_PACKET_HANDLED. The largest packet
that can be sent is found by calling IrMaxTxSize.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrDisconnectIrLap

Purpose Disconnects an IrLAP connection.

Declared In IrLib.h

Prototype IrStatus IrDisconnectIrLap (UInt16 refNum)

Parameters --> refnum IR library refNum.

Result IR_STATUS_PENDING means the operation started successfully
and all bound IrConnect structures are called back when
complete.

IR_STATUS_NO_IRLAP means the operation failed because no
IrLAP connection exists.

Comments When the IrLAP connection goes down, the callback of all bound
IrConnect structures is called with event
LEVENT_LAP_DISCON_IND.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

Palm OS Programmer’s API Reference 1391

IrDiscoverReq

Purpose Starts an IrLMP discovery process.

Declared In IrLib.h

Prototype IrStatus IrDiscoverReq (UInt16 refNum,
IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to a bound IrConnect structure.

Result IR_STATUS_PENDING means the operation is started successfully;
the result is returned by way of callback.

IR_STATUS_MEDIA_BUSY means the operation failed because the
media is busy. Media busy is caused by one of the following
reasons:

• Other devices are using the IR medium.

• A discovery process is already in progress.

• An IrLAP connection exists.

IR_STATUS_FAILED means the operation failed because the
IrConnect structure is not bound to the stack.

Comments The result is signaled by way of the callback function specified in
the IrConnect structure with the event
LEVENT_DISCOVERY_CNF. Only one discovery can be invoked at a
time.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

1392 Palm OS Programmer’s API Reference

IrIsIrLapConnected

Purpose Determines if an IrLAP connection exists.

Declared In IrLib.h

Prototype BOOL IrIsIrLapConnected (UInt16 refNum)

Parameters --> refnum IR library refNum.

Result true if IrLAP is connected, false otherwise.

Comments Only available if IR_IS_LAP_FUNCS is defined.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIsMediaBusy

Purpose Determines if the IR media is busy.

Declared In IrLib.h

Prototype BOOL IrIsMediaBusy (UInt16 refNum)

Parameters --> refnum IR library refNum.

Result true if IR media is busy, false otherwise.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

Palm OS Programmer’s API Reference 1393

IrIsNoProgress

Purpose Determines if IrLAP is not making progress.

Declared In IrLib.h

Prototype BOOL IrIsNoProgress (UInt16 refNum)

Parameters --> refnum IR library refNum.

Result ture if IrLAP is not making progress, false otherwise.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIsRemoteBusy

Purpose Determines if IrLAP of the other device is busy.

Declared In IrLib.h

Prototype BOOL IrIsRemoteBusy (UInt16 refNum)

Parameters --> refnum IR library refNum.

Result ture if IrLAP of the other device is busy, false otherwise.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrLocalBusy

Purpose Sets the IrLAP local busy flag.

Declared In IrLib.h

Prototype void IrLocalBusy (UInt16 refNum, BOOL flag)

Parameters --> refnum IR library refNum.

IR Library
IR Library Functions

1394 Palm OS Programmer’s API Reference

--> flag Value (true or false) to set for local busy flag
of IrLAP.

Result Returns nothing.

Comments If local busy is set to true, then the local IrLAP layer sends RNR
(Receive Not Ready) frames to the other side indicating it cannot
receive any more data. If the local busy is set to false, IrLAP is ready
to receive frames.

The setting takes effect the next time IrLAP sends an RR (Receive
Ready) frame. If IrLAP has data to send, the data is sent first, so it
should be used carefully.

This function should not be used when using Tiny TP or when
multiple connections exist.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrMaxRxSize

Purpose Returns the maximum size buffer that can be sent by the other
device.

Declared In IrLib.h

Prototype UInt16 IrMaxRxSize (UInt16 refNum,
IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure that represents
an active connection.

Result Returns the maximum size buffer that can be sent by the other
device (maximum bytes that can be received). The value returned is
only valid for active connections. The maximum size varies for each
connection and is based on the negotiated IrLAP parameters and
the type of the connection.

IR Library
IR Library Functions

Palm OS Programmer’s API Reference 1395

Compatibility Implemented only if 3.0 New Feature Set is present.

IrMaxTxSize

Purpose Returns the maximum size allowed for a transmit packet.

Declared In IrLib.h

Prototype UInt16 IrMaxTxSize (UInt16 refNum,
IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure that represents
an active connection.

Result Returns the maximum size allowed for a transmit packet. The value
returned is only valid for active connections. The maximum size
varies for each connection and is based on the negotiated IrLAP
parameters and the type of the connection.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrOpen

Purpose Opens the IR library. This allocates the global memory for the IR
stack and reserves the system resources it requires. This must be
done before any other IR library calls are made.

Declared In IrLib.h

Prototype Err IrOpen (UInt16 refnum, UInt32 options)

Parameters --> refnum IR library refNum. This value is returned from
the function SysLibFind, which you must call
first to load the IR library.

IR Library
IR Library Functions

1396 Palm OS Programmer’s API Reference

--> options Open options flags. See the Comments section
for details.

Result Returns 0 if successful.

Comments The following flags can be specified for the options parameter to
set the speed of the connection:

Compatibility Implemented only if 3.0 New Feature Set is present.

IrSetConTypeLMP

Purpose Sets the type of the connection to IrLMP. This function must be
called after the IrConnect structure is bound to the stack.

Declared In IrLib.h

Prototype void IrSetConTypeLMP (IrConnect* con)

Parameters --> con Pointer to IrConnect structure.

Result Returns nothing.

Compatibility Implemented only if 3.0 New Feature Set is present.

irOpenOptSpeed115200 Set to maximum negotiated baud rate.

irOpenOptSpeed57600 Set to 57600 bps (default if no flags
given).

irOpenOptSpeed9600 Set to 9600 bps.

IR Library
IR Library Functions

Palm OS Programmer’s API Reference 1397

IrSetConTypeTTP

Purpose Sets the type of the connection to Tiny TP. This function must be
called after the IrConnect structure is bound to the stack.

Declared In IrLib.h

Prototype void IrSetConTypeTTP (IrConnect* con)

Parameters --> con Pointer to IrConnect structure.

Result Returns nothing.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrSetDeviceInfo

Purpose Sets the XID info string used during discovery to the given string
and length.

Declared In IrLib.h

Prototype IrStatus IrSetDeviceInfo (UInt16 refNum,
UInt8 *info, UInt8 len)

Parameters --> refnum IR library refNum.

--> info Pointer to array of bytes.

--> len Number of bytes pointed to by info.

Result IR_STATUS_SUCCESS means the operation is successful.

IR_STATUS_FAILED means the operation failed because info is
too big.

Comments The XID info string contains hints and the nickname of the device.
The size cannot exceed IR_MAX_DEVICE_INFO bytes.

IR Library
IR Library Functions

1398 Palm OS Programmer’s API Reference

Compatibility Implemented only if 3.0 New Feature Set is present.

IrTestReq

Purpose Requests a TEST command frame be sent in the NDM (Normal
Disconnect Mode) state.

Declared In IrLib.h

Prototype IrStatus IrTestReq (UInt16 refNum,
IrDeviceAddr devAddr, IrConnect* con,
IrPacket* packet)

Parameters --> refnum IR library refNum.

--> devAddr Address of device where TEST is sent. This
address is not checked so it can be the
broadcast address or 0.

--> con Pointer to IrConnect structure specifying the
callback function to call to report the result.

--> packet Pointer to an IrPacket structure that contains
the data to send in the TEST command packet.
The maximum size data that can be sent is
IR_MAX_TEST_PACKET. Even if no data is to
be sent, a valid packet must be passed.

Result IR_STATUS_PENDING means the operation has been started
successfully and the result is returned by way of the callback
function with the event LEVENT_TEST_CNF. This is also the
indication returning the packet.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• The IrConnect structure is not bound to the stack.

• The packet size exceeds the maximum allowed.

IR_STATUS_MEDIA_BUSY means the operation failed because the
media is busy or the stack is not in the NDM state (the packet is
available immediately).

IR Library
IAS Functions

Palm OS Programmer’s API Reference 1399

Comments The result is signaled by way of the callback specified in the
IrConnect structure. The callback event is LEVENT_TEST_CNF
and the status field indicates the result of the operation.
IR_STATUS_SUCCESS indicates success and IR_STATUS_FAILED
indicates no response was received. A packet must be passed
containing the data to send in the TEST frame. The packet is
returned when the LEVENT_TEST_CNF event is given.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrUnbind

Purpose Unbinds the IrConnect structure from the protocol stack, freeing
its LSAP selector.

Declared In IrLib.h

Prototype IrStatus IrUnbind (UInt16 refNum, IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure to unbind.

Result IR_STATUS_SUCCESS means the operation completed successfully.

IR_STATUS_FAILED means the operation failed for one of the
following reasons:

• The IrConnect structure was not bound.

• The lLsap field contained an invalid number.

Compatibility Implemented only if 3.0 New Feature Set is present.

IAS Functions
This section describes the following functions and macros related to
IAS database:

• IrIAS_Add

• IrIAS_GetInteger

IR Library
IAS Functions

1400 Palm OS Programmer’s API Reference

• IrIAS_GetIntLsap

• IrIAS_GetObjectID

• IrIAS_GetOctetString

• IrIAS_GetOctetStringLen

• IrIAS_GetType

• IrIAS_GetUserString

• IrIAS_GetUserStringCharSet

• IrIAS_GetUserStringLen

• IrIAS_Next

• IrIAS_Query

• IrIAS_SetDeviceName

• IrIAS_StartResult

IrIAS_Add

Purpose Adds an IAS object to the IAS Database.

Declared In IrLib.h

Prototype IrStatus IrIAS_Add (UInt16 refNum,
IrIasObject* obj)

Parameters --> refnum IR library refNum.

--> obj Pointer to an IrIASObject structure.

Result IR_STATUS_SUCCESS means the operation is successful.

IR_STATUS_FAILED means the operation failed for one of the
following reasons:

• There is no space in the database.

• An entry with the same class name already exists.

• The attributes of the object violate the IrDA Lite rules
(attribute name exceeds IR_MAX_IAS_NAME, or attribute
value exceeds IR_MAX_IAS_ATTR_SIZE).

IR Library
IAS Functions

Palm OS Programmer’s API Reference 1401

• The class name exceeds IR_MAX_IAS_NAME.

Comments The object is not copied, so the memory for the object must exist for
as long as the object is in the database. The IAS database is designed
to allow only objects with unique class names, and it checks for this.
Class names and attributes names must not exceed
IR_MAX_IAS_NAME. Also, attribute values must not exceed
IR_MAX_IAS_ATTR_SIZE.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetInteger

Purpose Macro to return an integer value, assuming that the current result
item is of type IAS_ATTRIB_INTEGER. (Call IrIAS_GetType to
determine the type of the current result item.)

Declared In IrLib.h

Prototype IrIAS_GetInteger (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Integer value returned as a UInt32.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetIntLsap

Purpose Macro to return an integer value that represents an LSAP, assuming
that the current result item is of type IAS_ATTRIB_INTEGER. (Call

IR Library
IAS Functions

1402 Palm OS Programmer’s API Reference

IrIAS_GetType to determine the type of the current result item.)
Usually integer values returned in a query are LSAP selectors.

Declared In IrLib.h

Prototype IrIAS_GetIntLsap (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Integer value returned as a UInt8.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetObjectID

Purpose Macro to return the unique object ID of the current result item.

Declared In IrLib.h

Prototype IrIAS_GetObjectID (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Returns the object ID as a UInt16 type.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IAS Functions

Palm OS Programmer’s API Reference 1403

IrIAS_GetOctetString

Purpose Macro to return a pointer to an octet string, assuming that the
current result item is of type IAS_ATTRIB_OCTET_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Declared In IrLib.h

Prototype IrIAS_GetOctetString (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Pointer to octet string of type UInt8.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetOctetStringLen

Purpose Macro to return the length of an octet string, assuming that the
current result item is of type IAS_ATTRIB_OCTET_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Declared In IrLib.h

Prototype IrIAS_GetOctetStringLen (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Length of octet string returned as a UInt16.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IAS Functions

1404 Palm OS Programmer’s API Reference

IrIAS_GetType

Purpose Macro to return the type of the current result item.

Declared In IrLib.h

Prototype IrIAS_GetType (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Type of result item, such as IAS_ATTRIB_INTEGER,
IAS_ATTRIB_OCTET_STRING or IAS_ATTRIB_USER_STRING.
The return value is of type UInt8.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetUserString

Purpose Macro to return a pointer to a user string, assuming that the current
result item is of type IAS_ATTRIB_USER_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Declared In IrLib.h

Prototype IrIAS_GetUserString (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Pointer to result string of type UInt8.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetUserStringCharSet

Purpose Macro to return the character set of the user string, assuming that
the current result item is of type IAS_ATTRIB_USER_STRING.

IR Library
IAS Functions

Palm OS Programmer’s API Reference 1405

(Call IrIAS_GetType to determine the type of the current result
item.)

Declared In IrLib.h

Prototype IrIAS_GetUserStringCharSet (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Character set returned as an IrCharSet value.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetUserStringLen

Purpose Macro to return the length of a user string, assuming that the
current result item is of type IAS_ATTRIB_USER_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Declared In IrLib.h

Prototype IrIAS_GetUserStringLen (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Length of user string returned as a UInt8 value.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IAS Functions

1406 Palm OS Programmer’s API Reference

IrIAS_Next

Purpose Moves the internal pointer to the next result item.

Declared In IrLib.h

Prototype UInt8* IrIAS_Next (UInt16 refNum,
IrIasQuery* token)

Parameters --> refnum IR library refNum.

--> token Pointer to an IrIasQuery structure.

Result Pointer to the next result item, or 0 if there are no more items.

Comments This function returns a pointer to the start of the next result item. If
the pointer is 0, then there are no more result items.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_Query

Purpose Makes an IAS query of the IAS database of another device.

Declared In IrLib.h

Prototype IrStatus IrIAS_Query (UInt16 refNum,
IrIasQuery* token)

Parameters --> refnum IR library refNum.

--> token Pointer to an IrIasQuery structure initialized
as described in the Comments section.

Result IR_STATUS_SUCCESS means the operation is started successfully
and the result is signaled by way of the callback function.

IR_STATUS_FAILED means the operation failed for one of the
following reasons:

IR Library
IAS Functions

Palm OS Programmer’s API Reference 1407

• The query exceeds IR_MAX_QUERY_LEN.

• The result field of token is 0.

• The resultBufSize field of token is 0.

• The callback field of token is 0.

• A query is already in progress.

IR_STATUS_NO_IRLAP means the operation failed because there is
no IrLAP connection.

Comments An IrLAP connection must exist to the other device. The IAS query
token must be initialized as described below. The result is signaled
by calling the callback function whose pointer exists in the
IrIasQuery structure. Only one query can be made at a time.

The IrIasQuery structure passed in the token parameter must be
initialized as follows:

• Assign a pointer to a callback function in which the result is
signaled.

• Set result to point to a buffer large enough to hold the
result of the query.

• Set resultBufSize to the size of the result buffer.

• Set queryBuf to point to a valid query.

• Set queryLen to the number of bytes in queryBuf. The
length must not exceed IR_MAX_QUERY_LEN.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IAS Functions

1408 Palm OS Programmer’s API Reference

IrIAS_SetDeviceName

Purpose Sets the value field of the device name attribute of the “Device”
object in the IAS database.

Declared In IrLib.h

Prototype IrStatus IrIAS_SetDeviceName (UInt16 refNum,
UInt8 *name, UInt8 len)

Parameters --> refnum IR library refNum.

--> name Pointer to an IAS value field for the device
name attribute of the device object. It includes
the attribute type, character set and device
name. This value field should be a constant
and the pointer must remain valid until
IrIAS_SetDeviceName is called with
another pointer.

--> len Total length of the value field. Maximum size
allowed is IR_MAX_IAS_ATTR_SIZE.

Result IR_STATUS_SUCCESS means the operation is successful.

IR_STATUS_FAILED means len is too big, or the value field is
not a valid user string.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
Application-Defined Functions

Palm OS Programmer’s API Reference 1409

IrIAS_StartResult

Purpose Macro to put the internal pointer to the start of the result buffer.

Declared In IrLib.h

Prototype IrIAS_StartResult (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Returns nothing.

Compatibility Implemented only if 3.0 New Feature Set is present.

Application-Defined Functions
The functions in this section are supplied by the developer and can
be named anything.

IrIasQueryCallBack

Purpose Signals the result of IAS query. The result of IAS queries is signaled
by calling this callback function which is pointed to by the
callBack field of the IrIasQuery structure.

Declared In IrLib.h

Prototype void IrIasQueryCallBack (IrStatus status)

Parameters --> status The status of the query operation. The
following values can be passed:

IR_STATUS_SUCCESS means the query
operation finished successfully and the
results can be parsed.

IR_STATUS_DISCONNECT means the link or
IrLMP connection was disconnected

IR Library
Application-Defined Functions

1410 Palm OS Programmer’s API Reference

during the query, so the results are not
valid.

Result Returns nothing.

Palm OS Programmer’s API Reference 1411

60
Modem Manager
This chapter provides reference material for the modem manager
API. The header file ModemMgr.h declares the modem manager
API.

Modem Manager Functions

MdmDial

Purpose Initialize the modem, dial the phone number and wait for result.

Declared In ModemMgr.h

Prototype Err MdmDial (MdmInfoPtr modemP, Char *okDialP,
Char *userInitP, Char *phoneNumP)

Parameters modemP Pointer to modem info structure (filled in by
caller)

okDialP (NOT IMPLEMENTED) Pointer to string of
chars allowed in dial string

userInitP Pointer to modem setup string without the AT
prefix.

phoneNumP Pointer to phone number string

Result 0 if successful; otherwise mdmErrNoTone, mdmErrNoDCD,
mdmErrBusy, mdmErrUserCan, mdmErrCmdError

Comments When executing this function, the system performs these steps:

• Switch to the requested initial baud rate.

• If HW hand-shake is requested, enable CTS/RTS hand-
shaking; otherwise, disable it.

Modem Manager
Modem Manager Functions

1412 Palm OS Programmer’s API Reference

• Reset the modem.

• Execute the setup string (if any).

• Configure the modem with required settings.

• Dial the phone number.

• Wait for CONNECT XXXXX or other response.

• If auto-baud is requested, switch to the connected baud rate.

MdmHangUp

Purpose Hang up the modem.

Declared In ModemMgr.h

Prototype Err MdmHangUp (MdmInfoPtr modemP)

Parameters modemP Pointer to modem info structure (filled in by caller)

Result 0 if successful.

WARNING! This function alters configuration of the serial port
(without restoring it).

Palm OS Programmer’s API Reference 1413

61
Net Library
This chapter describes the API available in the net library and its
Berkeley sockets equivalents. The header file NetMgr.h declares
the net library API. The chapter covers:

• Net Library Data Structures

• Net Library Constants

• Net Library Functions

For more information on the net library, see the chapter “Network
Communication” in the Palm OS Programmer’s Companion, vol. II,
Communications.

IMPORTANT: Applications cannot directly use the net library to
make wireless connections. Use the INetLib for wireless
connections.

Net Library Data Structures

New NetConfigNameType
The NetConfigNameType structure defines a configuration name.
A configuration is a specific set of values for the net library settings.
Typically, users set up configurations and assign names to them
using the Network preferences panel.

typedef struct {
Char name[netConfigNameSize];

} NetConfigNameType, NetConfigNamePtr;

name is the configuration’s name. The netConfigNameSize
constant is currently defined to be 32.

Net Library
Net Library Data Structures

1414 Palm OS Programmer’s API Reference

Compatibility

Supported only if 3.2 New Feature Set is present.

NetHostInfoBufType
The NetHostInfoBufType struct contains information about a
host. The NetHostInfoType struct, which maps to the hostent
struct, points to fields in this struct for its information.

typedef struct {
 NetHostInfoType hostInfo;
 Char name[netDNSMaxDomainName+1];
 Char *aliasList[netDNSMaxAliases+1];
 Char aliases[netDNSMaxAliases]
 [netDNSMaxAliases+1];
 NetIPAddr *addressList[netDNSMaxAddresses]
;
 NetIPAddr address[netDNSMaxAddresses];
} NetHostInfoBufType, *NetHostInfoBufPtr;

Field Descriptions

NetHostInfoType
The NetHostInfoType structure maps to the Berkeley UNIX
sockets hostent structure. It is defined as follows:

typedef struct {
 Char *nameP;
 Char **nameAliasesP;
 UInt16 addrType;
 UInt16 addrLen;

hostInfo A NetHostInfoType struct, which maps to the
Berkeley UNIX sockets hostent structure.

name Official host name.

aliasList
aliases

An array of aliases for the host name.

addressList
address

An array of pointers to 32-bit IP addresses in
host byte order.

Net Library
Net Library Data Structures

Palm OS Programmer’s API Reference 1415

 UInt8 **addrListP;
} NetHostInfoType, *NetHostInfoPtr;

Field Descriptions

nameP Official host name.

nameAliasesP An array of aliases for the host name.

addrType The type of the return addresses. See
NetSocketAddrEnum.

addrLen The length in bytes of the return addresses.

addrListP An array of pointers to addresses in host byte
order.

Net Library
Net Library Data Structures

1416 Palm OS Programmer’s API Reference

NetServInfoBufType
The NetServInfoBufType struct contains information about a
service. The NetServInfoType struct, which maps to the
servent struct, points to fields in this struct for much of its
information.

struct {
 NetServInfoType servInfo;
 Char name[netServMaxName+1];
 Char *aliasList[netServMaxAliases+1];
 Char aliases[netServMaxAliases]
[netServMaxName];
 Char protoName[netProtoMaxName+1];
 UInt8 reserved;
} NetServInfoBufType, *NetServInfoBufPtr;

Field Descriptions

NetServInfoType
The NetServInfoType structure maps to the servent structure
in Berkeley UNIX sockets API. It contains information about a
service.

struct {
 Char *nameP;
 Char **nameAliasesP;
 UInt16 port;
 Char *protoP;
} NetServInfoType, *NetServInfoPtr;

servInfo A NetServInfoType struct,
which maps to the Berkeley UNIX
sockets servent structure.

name Official name of the service

aliasList
aliases

Array of aliases for the service
name.

protoName Name of the protocol to use.

reserved Reserved for future use.

Net Library
Net Library Data Structures

Palm OS Programmer’s API Reference 1417

Field Descriptions

NetSocketAddrEnum
The NetSocketAddrEnum enum specifies the address types
supported by the net library.

typedef enum {
 netSocketAddrRaw = 0,
 netSocketAddrINET = 2
} NetSocketAddrEnum

Value Descriptions

NetSocketAddrINType
The NetSocketAddrINType struct holds an internet socket
address, that is, a socket that uses one of the internet protocols. This
structure directly maps to the BSD UNIX sockaddr_in structure.

typedef struct NetSocketAddrINType {
 Int16 family;
 UInt16 port;
 NetIPAddr addr;
} NetSocketAddrINType;

nameP Official name of the service

nameAliasesP Array of aliases for the service
name.

port Port number for the service.

protoP Name of the protocol to use.

netSocketAddrRaw Raw address. Supported in Palm
OS® version 3.0 and higher.

netSocketAddrINET IP address.

Net Library
Net Library Data Structures

1418 Palm OS Programmer’s API Reference

Field Descriptions

NetSocketAddrRawType
The NetSocketAddrRawType structure holds a raw socket
address.

typedef struct NetSocketAddrRawType {
 Int16 family;
 UInt16 ifInstance;
 UInt32 ifCreator;
} NetSocketAddrRawType;

Field Descriptions

Compatibility Raw sockets are supported in Palm OS version 3.0 and higher.

family Address family in host byte order. This is either
netSocketAddrINET or netSocketAddrRaw.

port The port in network byte order.

addr The IP address in network byte order.

family Address family in host byte
order. This is either
netSocketAddrINET or
netSocketAddrRaw.

ifInstance The instance number of the
interface that the socket uses to
send and receive data.

ifCreator The creator of the interface that
the socket uses.

Net Library
Net Library Data Structures

Palm OS Programmer’s API Reference 1419

NetSocketAddrType
The NetSocketAddrType structure holds a generic socket
address. This struct can hold any type of address including Internet
addresses. It directly maps to the BSD UNIX sockaddr structure.

Note that this structure is the same size as NetSocketAddrINType
and NetSocketAddrRawType. This means that one of those two
structures can be used for parameters declared to be
NetSocketAddrType.

typedef struct NetSocketAddrType {
 Int16 family;
 UInt8 data[14];
} NetSocketAddrType;

NetSocketRef
The NetSocketRef defines a socket descriptor. The socket
descriptor is created and returned by NetLibSocketOpen. It is
used in any function that requires access to a socket.

typedef Int16 NetSocketRef

NetSocketTypeEnum
The NetSocketTypeEnum enum specifies the available socket
types.

typedef enum {
 netSocketTypeStream=1,
 netSocketTypeDatagram=2,
 netSocketTypeRaw=3,
 netSocketTypeReliableMsg=4
} NetSocketTypeEnum

Value Descriptions

netSocketTypeStream Streams protocol over wireline.

netSocketTypeDatagram UDP protocol.

netSocketTypeRaw Raw mode.

Net Library
Net Library Constants

1420 Palm OS Programmer’s API Reference

Net Library Constants

New Configuration Aliases
A configuration is a set of specific values for the net library settings.
The net library defines a set of built-in configuration aliases for
common network setups. These aliases point to configurations
instead of holding the actual values themselves. You can specify an
alias anywhere in the API you would specify a configuration.

The constants listed here specify the alias names. Most of the net
library API requires a configuration index rather than a name. Use
NetLibConfigIndexFromName to obtain the alias’s index from
the name.

By default, netCfgNameDefault points to the user’s default
configuration, and all other aliases point to netCfgNameDefault
except for netCfgNameCTPWireless, which points to an private
wireless configuration.

Compatibility

Supported on version 3.2 and later.

netCfgNameDefault The default configuration.

netCfgNameDefWireline The default configuration for
wireline communications.

netCfgNameDefWireless The default configuration for
wireless communications.

netCfgNameCTPWireline The default configuration for
wireline communications through
the Palm Web Clipping Proxy
server.

netCfgNameCTPWireless The default configuration for
wireless communications through
the Palm Web Clipping Proxy
server.

Net Library
Net Library Constants

Palm OS Programmer’s API Reference 1421

I/O Flags
The I/O flags specify special handling instructions to functions that
send and receive data. You can OR these values together to specify
more than one.

Tracing Bits
The tracing bits are used to set the level of event tracing. An
application can get a list of events in the trace buffer using the
NetLibMaster call.

You can set the tracing for each network interface using
NetLibIFSettingSet and for the net library in general with
NetLibSettingSet.

netIOFlagOutOfBand Process out-of-band data. Available for
send calls only.

netIOFlagPeek Peek at incoming message without
dequeuing it.

netIOFlagDontRoute Send without using routing. This
constant is currently ignored.

netTracingErrors Record run-time errors. This is the
default.

netTracingMsgs Record application trace messages.

netTracingPkts Record packet I/O. This bit is obsolete
in versions 3.2 and higher, but is
mapped to netTracingPktIP.

netTracingFuncs Record function flow.

netTracingAppMsgs Record application messages sent
using NetLibTracePrintF and
NetLibTracePutS.

netTracingPktIP Record packet I/O. If this set, the
following five options are enabled.

Net Library
Net Library Functions

1422 Palm OS Programmer’s API Reference

Compatibility

The netTracingPktXXX constants are supported only in version
3.2 devices and higher. In previous versions, specify
netTracingPkts instead; only the size of the packet is recorded.

Net Library Functions

NetHToNL

Purpose Macro that converts a 32-bit value from host to network byte order.

Declared In NetBitUtils.h

Prototype NetHToNL (x)

Parameters -> x 32-bit value to convert.

Result Returns x in network byte order.

netTracingData40 Record the first 40 bytes of each packet
sent or received. This option is
mutually exclusive with
netTracingData.

netTracingData Record the entirety of each packet sent
or received. This option is mutually
exclusive with netTracingData40.

netTracingIFHi Record packets sent or received at the
highest layer of the network interface.
This layer is just below the IP layer.

netTracingIFMid Record packets sent or received at the
layer just below the highest layer of the
network interface.

netTracingIFLow Record packets sent or received at the
lowest layer of the network interface.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1423

Sockets
Equivalent

htonl()

See Also NetNToHS, NetNToHL, NetHToNS

NetHToNS

Purpose Macro that converts a 16-bit value from host to network byte order.

Declared In NetBitUtils.h

Prototype NetHToNS (x)

Parameters -> x 16-bit value to convert.

Result Returns x in network byte order.

Sockets
Equivalent

htons()

See Also NetNToHS, NetNToHL, NetHToNL

NetLibAddrAToIN

Purpose Converts an ASCII string representing a dotted decimal IP address
into a 32-bit IP address in network byte order.

Declared In NetMgr.h

Prototype NetIPAddr NetLibAddrAToIN (UInt16 libRefnum,
const Char *a)

Parameters -> libRefNum Reference number of the net library.

-> a Pointer to ASCII dotted decimal string.

Result Returns a 32-bit network byte order IP address or -1 if a doesn’t
represent a dotted decimal IP address

Net Library
Net Library Functions

1424 Palm OS Programmer’s API Reference

Sockets
Equivalent

UInt32 inet_addr (char *cp)

See Also NetLibAddrINToA

NetLibAddrINToA

Purpose Converts an IP address from 32-bit network byte order into a dotted
decimal ASCII string.

Declared In NetMgr.h

Prototype Char *NetLibAddrINToA (UInt16 libRefnum,
NetIPAddr inet, Char *spaceP)

Parameters -> libRefNum Reference number of the net library.

-> inet 32-bit IP address in network byte order.

<- spaceP Buffer used to hold the return value.

Result Returns in spaceP the dotted decimal ASCII string representation
of the IP address.

Sockets
Equivalent

char *inet_ntoa (struct in_addr in)

See Also NetLibAddrAToIN

NetLibClose

Purpose Closes the net library.

Declared In NetMgr.h

Prototype Err NetLibClose (UInt16 libRefnum,
UInt16 immediate)

Parameters -> libRefnum Reference number of the net library.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1425

-> immediate If true, library will shut down immediately. If
false, library will shut down only if close
timer expires before another NetLibOpen is
issued.

Result Returns one of the following values:

0 Success.

netErrNotOpen Library was not open.

netErrStillOpen
Not really an error; returned if library is still in
use by another application.

Sockets
Equivalent

None.

Comments Applications must call this function when they no longer need the
net library. If the net library open count is greater than 1 before this
call is made, the count is decremented and netErrStillOpen is
returned. If the open count was 1, the library takes the following
action:

• If immediate is true, the library shuts down immediately.
All network interfaces are brought down, the net protocol
stack task is terminated, and all memory used by the net
library is freed.

• If immediate is false, a close timer is created and this call
returns immediately without actually bringing the net library
down. Instead it leaves it up and running but marks it as in
the “close-wait” state. It remains in this state until either the
timer expires or another NetLibOpen is issued. If the timer
expires, the library is shut down. If another NetLibOpen call
is issued before the timer expires (possibly by another
application), the timer is cancelled and the library is marked
as fully open.

In most cases, you should pass false for immediate. This allows
the user to quit one Internet application and launch another within

Net Library
Net Library Functions

1426 Palm OS Programmer’s API Reference

a short period of time without having to wait through the process of
closing down and then re-establishing dial-up network connections.

See Also NetLibOpen, NetLibOpenCount

New NetLibConfigAliasGet

Purpose Return the configuration that an alias points to.

Prototype Err NetLibConfigAliasGet (UInt16 refNum,
UInt16 aliasIndex, UInt16 *indexP,
Boolean *isAnotherAliasP)

Parameters -> refNum Reference number of the net library.

-> aliasIndex Index of the alias.

<- indexP Index of the configuration pointed to by the
alias.

<- isAnotherAliasP
true if indexP is the index of another alias;
false if indexP specifies an actual
configuration.

Result Returns one of the following values:

0 Success.

netErrConfigNotAlias
The configuration at aliasIndex is not an
alias.

netErrOutOfCmdBlocks

netErrParamErr The specified index is out of range or there is no
configuration at the index.

Sockets
Equivalent

None

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1427

Comments Use this routine to find out which configuration a built-in alias
points to. See “Configuration Aliases” for a description of the built-
in aliases.

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also NetLibConfigAliasSet

New NetLibConfigAliasSet

Purpose Set a built-in alias to point to a defined configuration.

Prototype Err NetLibConfigAliasSet (UInt16 refNum,
UInt16 configIndex, UInt16 aliasToIndex)

Parameters -> refNum Reference number of the net library.

-> configIndex Index of the built-in alias to be set.

-> aliasToIndex
Index of the configuration to which the alias
should point. You cannot set an alias to point to
itself.

Result Returns one of the following values:

0 Success.

netErrConfigCantPointToAlias
The configuration at aliasToIndex is an alias
that points to an alias.

netErrConfigNotAlias
The configuration at configIndex isn’t an
alias.

netErrOutOfCmdBlocks

netErrParamErr The specified index is out of range or there’s no
configuration at the index.

Net Library
Net Library Functions

1428 Palm OS Programmer’s API Reference

Sockets
Equivalent

None

Comments This function is used by the Network preferences panel when the
user edits a configuration. Your application can use it to associate
any of the built-in aliases with a defined configuration.

The built-in aliases are typically set up as shown in Table 61.1. In
this example, applications that specify a configuration index of 0
through 3 use a configuration that the user defines. Applications
that use index 4 use a private configuration created by the network
library.

An alias can point to another alias so long as the nesting level is only
one deep. That is, if you point an alias to an alias, you’ll receive an
error if that alias in turn points to another alias. This eliminates the
possibility that an alias never resolves to an actual configuration.

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also NetLibConfigAliasGet

Table 61.1 Example Configuration Table

Index Name Alias To

0 .Default 6

1 .DefWireline 0

2 .DefWireless 0

3 .CTPWireline 0

4 .CTPWireless 5

5 _RAMCTP

6 user-defined

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1429

New NetLibConfigDelete

Purpose Delete a configuration from the net library’s configuration table.

Prototype Err NetLibConfigDelete (UInt16 refNum,
UInt16 index)

Parameters -> refNum Reference number of the net library.

-> index Index of the configuration to delete. You cannot
delete one of the built-in aliases described in
“Configuration Aliases.”

Result Returns one of the following values:

0 Success.

netErrConfigCantDelete
The configuration at index is a built-in alias.

netErrOutOfCmdBlocks

netErrParamErr The specified index is out of range.

Sockets
Equivalent

None

Compatibility Implemented only if 3.2 New Feature Set Set is present.

See Also NetLibConfigSaveAs

Net Library
Net Library Functions

1430 Palm OS Programmer’s API Reference

New NetLibConfigIndexFromName

Purpose Obtain a configuration’s index given its name.

Prototype Err NetLibConfigIndexFromName (UInt16 refNum,
NetConfigNamePtr nameP, UInt16 *indexP)

Parameters -> refNum Reference number of the net library.

-> nameP Pointer to a configuration name. See
NetConfigNameType.

<- indexP The index of the configuration with the name
*nameP.

Result Returns one of the following values:

0 Success.

netErrConfigNotFound
A configuration with the specified name could
not be found.

netErrOutOfCmdBlocks

Sockets
Equivalent

None

Comments This function returns the index of a configuration given its name.
Your application should store the configuration’s index rather than
its name because a configuration’s name can change.

If you pass the name of a built-in alias in nameP, this function
returns the index of the alias’s entry in the configuration table; it
does not return the index that the alias points to. For example, if the
alias netCfgNameCTPWireless is stored at index 4 and points to
index 5, NetLibConfigIndexFromName returns 4. If you want to
obtain the index that an alias points to, use
NetLibConfigAliasGet.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1431

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also NetLibConfigList

New NetLibConfigList

Purpose Return a list of net library configuration names.

Prototype Err NetLibConfigList (UInt16 refNum,
NetConfigNameType nameArray[],
UInt16 *arrayEntriesP)

Parameters -> refNum Reference number of the net library.

<- nameArray The list of defined configurations. See
NetConfigNameType.

<-> arrayEntriesP
On entry, contains the number of elements in
nameArray. On return, contains the number of
elements in nameArray that were actually
used. The Net Library currently returns up to
16 entries. If the array is not large enough to
hold all the configuration names, this function
returns only as many names as the array can
hold.

Result Returns one of the following values:

0 Success.

netErrOutOfCmdBlocks

Sockets
Equivalent

None

Comments Use this function to obtain a list of the names of defined network
configurations and configuration aliases.

Net Library
Net Library Functions

1432 Palm OS Programmer’s API Reference

Users create specific configurations using the Network preferences
panel and associate names with each configuration. This function
returns the list of defined configurations.

In addition to user-defined configurations, this function also returns
built-in configuration aliases and private configurations. The built-
in configuration aliases are described in “Configuration
Aliases.” Their actual names begin with a period (.). Private
configurations have names that begin with an underscore (_).

IMPORTANT: If you present the list returned by this function to
your application’s users, you must first filter out names beginning
with a period or an underscore. These names are for internal use
only.

Your application should refer to a configuration by its index rather
than its name because the name can be changed. To obtain the
configuration’s index from its name, use
NetLibConfigIndexFromName.

Compatibility Implemented only if 3.2 New Feature Set is present.

New NetLibConfigMakeActive

Purpose Makes the specified configuration current without opening the net
library.

Prototype Err NetLibConfigMakeActive (UInt16 refNum,
UInt16 configIndex)

Parameters -> refNum Reference number of the net library.

-> configIndex Index of the configuration to use. An index of 0
refers to the default configuration as defined by
the Network preferences panel.

Result Returns one of the following values:

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1433

0 Success.

netErrBufTooSmall

netErrConfigAliasErr

netErrConfigCantDelete

netErrConfigEmpty

netErrConfigNotFound

netErrOutOfCmdBlocks

netErrParamErr

netErrPrefNotFound

Sockets
Equivalent

None

Comments This function is used mainly by the Network preferences panel
when the user edits and saves network configurations. The
Network preferences panel uses this function to make current the
configuration the user wants to edit, set the settings appropriately,
and then save the configuration using NetLibConfigSaveAs.

Use this routine to make a specific configuration the current
configuration without opening the net library. You should not use it
if the net library is already open.

Unlike NetLibOpenConfig, this routine does not save the current
net library configuration so that it can be restored upon close.

Compatibility Implemented only if 3.2 New Feature Set is present.

Net Library
Net Library Functions

1434 Palm OS Programmer’s API Reference

New NetLibConfigRename

Purpose Rename the specified configuration.

Prototype Err NetLibConfigRename (UInt16 refNum,
UInt16 index, NetConfigNamePtr newNameP)

Parameters -> refNum Reference number of the net library.

-> configIndex Index of the configuration to be renamed.

-> newNameP Pointer to the new name. See
NetConfigNameType. The new name must
not start with a period (.) or an underscore (_).

Result Returns one of the following values:

0 Success.

netErrConfigBadName
The new name begins with a period.

netErrConfigCantDelete
The configuration at the specified index is a
built-in alias or private configuration that
cannot be renamed.

netErrOutOfCmdBlocks

netErrParamErr The specified index is out of range or there is no
configuration at the index.

Sockets
Equivalent

None

Comments You cannot specify a name beginning with a period (.) or an
underscore (_). Names beginning with a period are reserved for the
built-in configuration aliases. Names beginning with an underscore
are hidden configurations used internally by net library.

Compatibility Implemented only if 3.2 New Feature Set is present.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1435

New NetLibConfigSaveAs

Purpose Save the current net library settings as a configuration with the
specified name.

Prototype Err NetLibConfigSaveAs (UInt16 refNum,
NetConfigNamePtr nameP)

Parameters -> refNum Reference number of the net library.

-> nameP Pointer to a name for the configuration. See
NetConfigNameType. The name must not
start with a period (.) or an underscore (_).

Result Returns one of the following values:

0 Success.

netErrConfigBadName
The specified name begins with a period or
underscore.

netErrConfigTooMany
Not enough space to add another
configuration. The Net Library can hold up to
16 configuration.

netErrOutOfCmdBlocks

Sockets
Equivalent

None

Comments If the name you specify already exists, its configuration is replaced
with this configuration.

You cannot specify a name beginning with a period (.) or an
underscore (_). Names beginning with a period are reserved for the
built-in configuration aliases. Names beginning with an underscore
are hidden configurations used internally by net library.

The net library assigns an index to this new configuration. The
configuration’s index remains constant, while its name may change.

Net Library
Net Library Functions

1436 Palm OS Programmer’s API Reference

Use NetLibConfigIndexFromName to obtain the configuration’s
index.

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also NetLibConfigDelete, NetLibConfigRename

NetLibConnectionRefresh

Purpose This routine is a convenience call for applications. It checks the
status of all connections and optionally tries to open any that were
closed.

Declared In NetMgr.h

Prototype Err NetLibConnectionRefresh (UInt16 refNum,
Boolean refresh, UInt8 *allInterfacesUpP,
UInt16 *netIFErrP)

Parameters -> refnum Reference number of the net library.

-> refresh If true, any connections that aren’t currently
open are opened.

<- allInterfacesUpP
Set to true if all connections are open.

<- netIFErrP First error encountered when reopening
connections that were closed. (See
NetLibIFUp for a list of possible values.)

Result Returns one of the following values:

0 Success.

netErrBufTooSmall

netErrOutOfCmdBlocks

netErrNoInterfaces

Sockets
Equivalent

None.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1437

Comments This function determines whether a connection is up based on the
internal status of the TCP/IP stack. To test the presence of a
“physical connection” (phone line, modem, serial cable), a
command should be sent once it’s been determined that the logical
connection is up. If the physical connection is broken, nothing
returns and a timeout error eventually occurs.

NetLibDmReceive

Purpose Receive data from a socket directly into a database record.

Declared In NetMgr.h

Prototype Int16 NetLibDmReceive (UInt16 libRefNum,
NetSocketRef socket, void *recordP,
UInt32 recordOffset, UInt16 rcvLen, UInt16 flags,
void *fromAddrP, UInt16 *fromLenP, Int32 timeout,
Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

<- recordP Pointer to beginning of record to receive data
into. Must be locked for use.

-> recordOffset Offset from beginning of record to read data
into.

-> rcvLen Maximum number of bytes to read.

-> flags One or more netIOFlagxxx flags. See “I/O
Flags.”

<- fromAddrP Pointer to buffer to hold address of sender (a
NetSocketAddrType struct). Pass NULL if
you don’t need sender information.

<-> fromLenP On entry, size of fromAddrP buffer. On exit,
actual size of returned address in fromAddrP.
Pass NULL if you don’t need sender
information.

Net Library
Net Library Functions

1438 Palm OS Programmer’s API Reference

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the number of bytes successfully received. If the return
value is 0, the socket has been shut down by the remote host. If the
return value is -1, an error has occurred and errP contains one of
the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrWouldBlock

netErrUserCancel

netErrOutOfMemory

Comments This call behaves similarly to NetLibReceive but reads the data
directly into a database record, which is normally write-protected.
The caller must pass a pointer to the start of the record and an offset
into the record of where to start the read.

NetLibFinishCloseWait

Purpose Forces the net library to do a complete close if it’s currently in the
close-wait state.

Declared In NetMgr.h

Prototype Err NetLibFinishCloseWait (UInt16 libRefnum)

Parameters -> libRefnum Reference number of the net library.

Result Returns one of the following values:

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1439

0 Success.

netErrTimeout

Sockets
Equivalent

None.

Comments This call checks the current open state of the net library. If it’s in the
close-wait state (see NetLibClose), it forces the library to perform
an immediate, complete close operation.

NetLibGetHostByAddr

Purpose Looks up a host name given its IP address.

Declared In NetMgr.h

Prototype NetHostInfoPtr NetLibGetHostByAddr
(UInt16 libRefNum, UInt8 *addrP, UInt16 len,
UInt16 type, NetHostInfoBufPtr bufP,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> addrP IP address of host to lookup.

-> len Length, in bytes, of *addrP.

-> type Type of addrP. See NetSocketAddrEnum.

<- bufP Pointer to a NetHostInfoBufType struct in
which to store the results of the lookup.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is 0.

Result Returns a pointer to the NetHostInfoType portion of bufP that
contains results of the lookup. If the return value is 0, an error has
occurred, and errP contains one of the following values:

0 No error

Net Library
Net Library Functions

1440 Palm OS Programmer’s API Reference

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrDNSNameTooLong

netErrDNSBadName

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

netErrDNSNoPort

Sockets
Equivalent

struct hostent *gethostbyaddr (char *addr,
int len, int type);

Comments This call queries the domain name server(s) to look up a host name
given its IP address.

See Also NetLibGetHostByName

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1441

NetLibGetHostByName

Purpose Looks up a host IP address given a host name.

Declared In NetMgr.h

Prototype NetHostInfoPtr NetLibGetHostByName
(UInt16 libRefNum, const Char *nameP,
NetHostInfoBufPtr bufP, Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> nameP Name of host to look up.

<- bufP Pointer to a NetHostInfoBufType struct in
which to store the results of the lookup.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is 0.

Result Returns a pointer to the NetHostInfoType portion of bufP, which
contains results of the lookup. If the return value is 0, an error has
occurred and errP contains one of the following values:

0 No error

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrDNSNameTooLong

netErrDNSBadName

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

Net Library
Net Library Functions

1442 Palm OS Programmer’s API Reference

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

netErrDNSNoPort

Sockets
Equivalent

struct hostent *gethostbyname (char *name);

Comments This call first checks the local name -> IP address host table in the
net library preferences. If the entry is not found, it then queries the
domain name server(s).

See Also NetLibGetHostByAddr, NetLibGetMailExchangeByName

NetLibGetMailExchangeByName

Purpose Looks up the name of a host to use for a given mail exchange.

Declared In NetMgr.h

Prototype Int16 NetLibGetMailExchangeByName
(UInt16 libRefNum, Char *mailNameP,
UInt16 maxEntries, Char hostNames[][255+1],
UInt16 priorities[], Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1443

-> mailNameP Name of the mail exchange to look up.

-> maxEntries Maximum number of host names to return.

<- hostNames Array of character strings of length 255+1. The
host name results are stored in this array. This
array must be able to hold at least maxEntries
host names.

<- priorities Array of Words. The priorities of each host
name found are stored in this array. This array
must be at least maxEntries in length.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is less
than 0.

Result Returns the number of entries successfully found. If the return value
is a negative number, an error has occurred, and errP contains one
of the following values:

0 No error

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrDNSNameTooLong

netErrDNSBadName

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

Net Library
Net Library Functions

1444 Palm OS Programmer’s API Reference

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

netErrDNSNoPort

Sockets
Equivalent

None

Comments This call looks up the name(s) of host(s) to use for sending an e-mail.
The caller passes the name of the mail exchange in mailNameP and
gets back a list of host names to which the mail message can be sent.

See Also NetLibGetHostByAddr, NetLibGetHostByName

NetLibGetServByName

Purpose Looks up the port number for a standard TCP/IP service, given the
desired protocol.

Declared In NetMgr.h

Prototype NetServInfoPtr NetLibGetServByName
(UInt16 libRefNum, const Char *servNameP,
const Char *protoNameP, NetServInfoBufPtr bufP,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1445

-> servNameP Name of the service to look up. Possible
services are “echo”, “discard”, “daytime”,
“qotd”, “chargen”, “ftp-data”, “ftp”, “telnet”,
“smtp”, “time”, “name”, “finger”, “pop2”,
“pop3”, “nntp”, “imap2”.

-> protoNameP Desired protocol to use, either “udp” or “tcp”.

<- bufP Pointer to a NetServInfoBufType struct in
which to store the results of the lookup.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is 0.

Result Returns a pointer to the NetServInfoType portion of bufP that
contains results of the lookup. If the return value is 0, and error has
occurred and errP contains one of the following values:

0 No error

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrUnknownProtocol

netErrUnknownService

Sockets
Equivalent

struct servent *getservbyname (char *addr,
char *proto);

Comments This call is a convenience call for looking up a standard port number
given the name of a service and the protocol to use.

See Also NetLibGetHostByName

Net Library
Net Library Functions

1446 Palm OS Programmer’s API Reference

NetLibIFAttach

Purpose Attach a new network interface.

Declared In NetMgr.h

Prototype Err NetLibIFAttach (UInt16 libRefNum,
UInt32 ifCreator, UInt16 ifInstance,
Int32 timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach. The
instance number is one of the values returned
by NetLibIFGet.

-> timeout Timeout in ticks; -1 means infinite timeout.

Result Returns one of the following values:

0 Success.

netErrInterfaceNotFound

netErrTooManyInterfaces

Sockets
Equivalent

None

Comments This call can be used to attach a new network interface to the net
library. Network interfaces are self-contained databases of type
'neti'. The ifCreator parameter to this function is used to
locate the network interface database of the given creator.

If the net library is already open when this call is made, the network
interface’s database will be located and then called to initialize itself
and attach itself to the protocol stack in real time. If the net library is
not open when this call is made, the creator and instance number of
the interface are stored in the active configuration. You need to save
the active configuration using NetLibConfigSaveAs if you want

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1447

the interface to be initialized and attached to the stack the next time
the net library is opened.

See Also NetLibIFGet, NetLibIFDetach

NetLibIFDetach

Purpose Detach a network interface from the protocol stack.

Declared In NetMgr.h

Prototype Err NetLibIFDetach (UInt16 libRefNum,
UInt32 ifCreator, UInt16 ifInstance,
Int32 timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to detach.

-> ifInstance Instance number of interface to detach.

-> timeout Timeout in ticks; -1 means infinite timeout.

Result Returns one of the following values:

0 Success.

netErrInterfaceNotFound

Sockets
Equivalent

None

Comments If the net library is already open when this call is made, the interface
is brought down and detached from the protocol stack in real time.
If the net library is not open when this call is made, the creator and
instance number of the interface are removed from the active
configuration. You need to save the active configuration using
NetLibConfigSaveAs if you don’t want the interface to be
attached the next time the library is opened.

See Also NetLibIFGet, NetLibIFAttach

Net Library
Net Library Functions

1448 Palm OS Programmer’s API Reference

NetLibIFDown

Purpose Bring an interface down and hang up a connection.

Declared In NetMgr.h

Prototype Err NetLibIFDown (UInt16 libRefNum,
UInt32 ifCreator, UInt16 ifInstance,
Int32 timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach.

-> timeout Timeout in ticks; -1 means wait forever.

Result Returns one of the following values:

0 Success.

netErrNotOpen The referenced net library has not been opened
yet.

netErrInterfaceNotFound

Sockets
Equivalent

None

Comments The net library must be open before this call can be made. For dial-
up interfaces, this call terminates a connection and hangs up the
modem if necessary.

NetLibClose automatically brings down any attached interfaces,
so this routine doesn’t normally have to be called.

If the interface is already down, this routine returns immediately
with no error.

See Also NetLibIFGet, NetLibIFAttach, NetLibIFDetach,
NetLibIFUp

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1449

NetLibIFGet

Purpose Get the creator and instance number of an installed interface by
index.

Declared In NetMgr.h

Prototype Err NetLibIFGet (UInt16 libRefNum, UInt16 index,
UInt32 *ifCreatorP, UInt16 *ifInstanceP)

Parameters -> libRefNum Reference number of the net library.

-> index Index of the interface to get. Indices start at 0.

<- ifCreatorP The interface’s creator.

<- ifInstanceP The interface’s instance number.

Result Returns one of the following values:

0 Success.

netErrInvalidInterface
Index too high

netErrPrefNotFound
No current value for setting.

Sockets
Equivalent

None

Comments To get a list of all installed interfaces, call this function with
successively increasing indices starting from 0 until the error
netErrInvalidInterface is returned.

The ifCreator and ifInstance values returned from this call
can then be used with the NetLibSettingGet call to get more
information about that particular interface.

See Also NetLibIFAttach, NetLibIFDetach, “Settings for
Interface Selection” in the Palm OS Programmer’s Companion,
vol. II, Communications

Net Library
Net Library Functions

1450 Palm OS Programmer’s API Reference

NetLibIFSettingGet

Purpose Retrieves a network interface specific setting.

Declared In NetMgr.h

Prototype Err NetLibIFSettingGet (UInt16 libRefNum,
UInt32 ifCreator, UInt16 ifInstance,
UInt16 setting, void *valueP, UInt16 *valueLenP)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of the network interface.

-> ifInstance Instance number of the network interface.

-> setting Setting to retrieve; one of the
NetIFSettingEnum constants.

<- valueP Space for return value of setting.

<-> valueLenP On entry, size of valueP. On exit, actual size of
setting.

Result Returns one of the following values:

0 Success.

netErrUnknownSetting
Invalid setting constant.

netErrPrefNotFound
No current value for setting.

netErrBufTooSmall
valueP was too small to hold entire setting.
Setting value was truncated to fit in valueP.

netErrUnimplemented

netErrInterfaceNotFound

netErrBufWrongSize

Sockets
Equivalent

None

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1451

Comments This call can be used to retrieve the current value of any network
interface setting. The caller must pass a pointer to a buffer to hold
the return value (valueP), the size of the buffer (*valueLenP), and
the setting ID (setting). The setting ID is one of the constants in
the NetIFSettingEnum type.

Some settings, such as the login script, are variable size. For these
types of settings, you can obtain the actual size required for the
buffer by passing 0 for *valueLenP. The required size is returned
in valueLenP.

Table 61.2 lists the network interface settings and the size of each
setting. Some are only applicable to certain types of interfaces.
Settings not applicable to a specific interface can be safely ignored
and not set to any particular value.

Net Library
Net Library Functions

1452 Palm OS Programmer’s API Reference

Table 61.2 Network Interface Settings

netIFSetting... Type Description

ResetAll void Use with NetLibIFSettingSet only. This
clears all other settings for the interface to their
default values.

Up UInt8 Read-only. true if interface is currently up.

Name Char[32] Read-only. Name of this interface.

ReqIPAddr UInt32 IP address of interface.

SubnetMask UInt32 Subnet mask for interface. Doesn’t need to be
specified for PPP or SLIP type connections.

Broadcast UInt32 Broadcast address for interface. Doesn’t need to
be specified for PPP or SLIP type connections.

Username Char[32] User name. Only required if the login script
uses the user name substitution escape
sequence in it. Call NetLibIFSettingSet
with a valueLen of 0 to remove this setting.

Password Char[32] Password. Only required if the login script uses
the password substitution escape sequence in it.
Call NetLibIFSettingSet with a valueLen
of 0 to remove this setting. If the login script
uses password substitution and no password
setting is set, the user will be prompted for a
password at connect time.

AuthUsername Char[32] Authentication user name. Only required if the
authentication protocol uses a different user
name than the what’s in the
netIFSettingUsername setting. If this
setting is empty (valueLen of 0), the Username
setting will be used instead. Call
NetLibIFSettingSet with a valueLen of 0
to remove this setting.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1453

AuthPassword Char[32] Authentication password. If “$” then the user
will be prompted for the authentication
password at connect time. Else, if 0 length, then
the netIFSettingPassword setting or the
result of its prompt will be used instead. Call
NetLibIFSettingSet with a valueLen of 0
to remove this setting.

ServiceName Char[] Service name. Used for display purposes while
showing the connection progress dialog box.
Call NetLibIFSettingSet with a valueLen
of 0 to remove this setting.

LoginScript Char[] Login script. Only required if the particular
service requires a login sequence. Call
NetLibIFSettingSet with a valueLen of 0
to remove this setting. See below for a
description of the login script format.

ConnectLog Char[] Connect log. Generally, this setting is just
retrieved, not set. It contains a log of events
from the most recent login. To clear this setting,
call NetLibIFSettingSet with a valueLen
of 0.

InactivityTimeout UInt16 Maximum number of seconds of inactivity
allowed. Set to 0 to ignore.

EstablishmentTime
out

UInt16 Maximum delay, in seconds, allowed between
each stage of connection establishment or login
script line. Must be non-zero.

DynamicIP UInt8 If non-zero, negotiate for an IP address. If zero,
the IP address specified in the
netIFSettingReqIPAddr setting will be
used. Default is false.

VJCompEnable UInt8 If non-zero, enable VJ header compression.
Default is true for PPP, false for SLIP, and
true for CSLIP.

Table 61.2 Network Interface Settings (continued)

netIFSetting... Type Description

Net Library
Net Library Functions

1454 Palm OS Programmer’s API Reference

VJCompSlots UInt8 Number of slots to use for VJ compression.
Default is 4 for PPP and 16 for SLIP and CSLIP.
More slots require more memory so it is best to
keep this number to a minimum.

MTU UInt16 Maximum transmission unit in octets.
Currently not implemented in SLIP or PPP.

AsyncCtlMap UInt32 Bit mask of characters to escape for PPP.
Default is 0.

PortNum UInt16 Which serial communication port to use. Port 0
is the only port available on the device.

BaudRate UInt32 Serial port baud rate to use in bits per second.

FlowControl UInt8 If bit 0 is 1, use hardware handshaking on the
serial port. Default is no hardware
handshaking.

StopBits UInt8 Number of stop bits. Default is 1.

ParityOn UInt8 true if parity detection enabled. Default is
false.

ParityEven UInt8 true for even parity detection. Default is true.

UseModem UInt8 If true, dial-up through modem. If false, go
direct over serial port

PulseDial UInt8 If true, pulse dial modem. Else, tone dial.
Default is tone dial.

ModemInit Char[] Zero-terminated modem initialization string,
not including the “AT”. If not specified
(valueLen of 0), the modem initialization
string from system preferences are used.

ModemPhone Char[] Zero-terminated modem phone number string.
Only required if netIFSettingUseModem is
true.

Table 61.2 Network Interface Settings (continued)

netIFSetting... Type Description

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1455

RedialCount UInt16 Number of times to re-dial modem when trying
to establish a connection. Only required if
netIFSettingUseModem is true.

DNSQuery UInt8 true if PPP queries for DNS address. The
default is true.

TraceBits UInt32 A bitfield of various trace bits. See “Tracing
Bits.”
An application can get a list of events in the
trace buffer using the NetLibMaster call.
Each interface has its own trace bits setting so
that trace event recording in each interface can
be selectively enabled or disabled.

ActualIPAddr UInt32 Read-only. The actual IP address that the
interface ends up using. The login script
execution engine stores the result of the “g” (get
IP address) command here as does the PPP
negotiation logic.

ServerIPAddr UInt32 Read-only. The IP address of the PPP server
we’re connected to.

BringDownOnPowerD
own

UInt8 true if the interface is brought down when the
Palm OS device is turned off.

RawMode UInt32 Specifies if the interface is in raw mode. The net
library places an interface in raw mode when it
is bound to a raw socket in the raw domain.
Raw sockets are available in Palm OS version
3.0 and higher.

DriverVersion Char[20] Read-only. The version number of the network
interface device driver. This setting is defined
only if 5.1 New Feature Set is present.

FirmwareVersion Char[20] Read-only. The firmware version of the
network interface device, if any. This setting is
defined only if 5.1 New Feature Set is present.

Table 61.2 Network Interface Settings (continued)

netIFSetting... Type Description

Net Library
Net Library Functions

1456 Palm OS Programmer’s API Reference

See Also NetLibIFSettingSet, NetLibSettingGet,
NetLibSettingSet, “Interface Specific Settings” in the Palm OS
Programmer’s Companion, vol. II, Communications

FirmwareDate UInt32 Read-only. Firmware date in seconds since
midnight, January 1, 1904. This setting is
defined only if 5.1 New Feature Set is present.

80211Device UInt8 Read-only. Indicates whether or not the
interface supports IEEE 802.11 wireless
networking. This setting is defined only if 5.1
New Feature Set is present.

80211ESSID Char[32] For IEEE 802.11 interfaces only. The ESS ID of
the radio. This setting is defined only if 5.1 New
Feature Set is present.

80211AccessPointBSSI
D

UInt8[6] Read-only. For IEEE 802.11 interfaces only. The
BSS ID (MAC address) of the access point to
which the radio is connected. This setting is
defined only if 5.1 New Feature Set is present.

80211AssociationStatus UInt8 Read-only. For IEEE 802.11 interfaces only.
true if the radio is associated. This setting is
defined only if 5.1 New Feature Set is present.

80211MKKCallSign Char[15] Read-only. For IEEE 802.11 interfaces with
radios programmed for operation in Japan
only. The MKK call sign. This setting is defined
only if 5.1 New Feature Set is present.

80211CountryText Char[34] Read-only. For IEEE 802.11 interfaces only. The
radio’s country code, which the radio uses to
check if it operates within a particular country’s
regulations. This setting is defined only if 5.1
New Feature Set is present.

Table 61.2 Network Interface Settings (continued)

netIFSetting... Type Description

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1457

NetLibIFSettingSet

Purpose Sets a network interface specific setting.

Declared In NetMgr.h

Prototype Err NetLibIFSettingSet (UInt16 libRefNum,
UInt32 ifCreator, UInt16 ifInstance,
UInt16 setting, void *valueP, UInt16 valueLen)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of the network interface.

-> ifInstance Instance number of the network interface.

-> setting The setting to set, one of the
NetIFSettingEnum constants. See Table 61.2.

-> valueP Space new value of setting.

-> valueLen Size of new setting.

Result Returns one of the following values:

0 Success.

netErrUnknownSetting
Invalid setting constant.

netErrPrefNotFound
No current value for setting.

netErrUnimplemented

netErrInterfaceNotFound

netErrBufWrongSize

netErrReadOnlySetting

Sockets
Equivalent

None

Comments This call can be used to set the current value of any network
interface setting. The caller must pass a pointer to a buffer which

Net Library
Net Library Functions

1458 Palm OS Programmer’s API Reference

holds the new value (valueP), the size of the buffer (valueLen),
and the setting ID (setting).

See NetLibIFSettingGet for an explanation of each of the
settings.

Of particular interest is the netIFSettingResetAll setting,
which, if used, resets all settings for the interface to their default
values. When using this setting, valueP and valueLen are
ignored.

See Also NetLibIFSettingGet, NetLibSettingGet,
NetLibSettingSet, “Interface Specific Settings” in the Palm OS
Programmer’s Companion, vol. II, Communications

NetLibIFUp

Purpose Bring an interface up and establish a connection.

Declared In NetMgr.h

Prototype Err NetLibIFUp (UInt16 libRefNum,
UInt32 ifCreator, UInt16 ifInstance)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach.

Result Returns one of the following values:

0 Success.

netErrNotOpen The referenced net library has not been opened
yet.

netErrInterfaceNotFound

netErrUserCancel

netErrBadScript

netErrPPPTimeout

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1459

netErrAuthFailure

netErrPPPAddressRefused

Sockets
Equivalent

None

Comments The net library must be open before this call can be made. For dial-
up interfaces, this call will dial up the modem if necessary and run
through the connect script to establish the connection.

If the interface is already up, this routine returns immediately with
no error. This call doesn’t take a timeout parameter because it relies
on each interface to have its own established timeout setting.

See Also NetLibIFGet, NetLibIFAttach, NetLibIFDetach,
NetLibIFDown

NetLibMaster

Purpose Retrieves the network statistics, interface statistics, and the contents
of the trace buffer.

Declared In NetMgr.h

Prototype Err NetLibMaster (UInt16 libRefNum, UInt16 cmd,
NetMasterPBPtr pbP, Int32 timeout)

Parameters -> libRefNum Reference number of the net library.

-> cmd Function to perform (NetMasterEnum type).
The following commands are supported:

netMasterInterfaceInfo
netMasterInterfaceStats
netMasterIPStats
netMasterICMPStats
netMasterUDPStats
netMasterTCPStats
netMasterTraceEventGet

<-> pbP Command parameter block.

Net Library
Net Library Functions

1460 Palm OS Programmer’s API Reference

-> timeout Timeout in ticks; -1 means wait forever.

Result Returns one of the following values:

0 No error

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrUnimplemented

Sockets
Equivalent

None

Comments This call allows applications to get detailed information about the
net library. This information is usually helpful in debugging
network configuration problems.

This function takes a command word (cmd) and parameter block
pointer (pbP) as arguments and returns its results in the parameter
block on exit. Which values you must specify in the parameter block
and which values are returned are specific to the command you
specify.

netMasterInterfaceInfo

The pbP->interfaceInfo struct specifies interface information.

-> index Index of interface to fetch info
about.

<- creator Creator of interface.

<- instance Instance of interface.

<- netIFP Private interface info pointer.

<- drvrName Driver type that interface uses
(“PPP”, “SLIP”, etc.).

<- hwName Hardware driver name (“Serial
Library”, etc.).

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1461

netMasterInterfaceStats

The pbP->interfaceStats structure specifies interface statistics.

<- localNetHdrLen Number of bytes in local net
header.

<- localNetTrailerLen Number of bytes in local net trailer.

<- localNetMaxFrame Local net maximum frame size.

<- ifName Interface name with instance
number concatenated.

<- driverUp true if interface driver is up.

<- ifUp true if interface media layer is up.

<- hwAddrLen Length of interface’s hardware
address.

<- hwAddr Interface’s hardware address.

<- mtu Maximum transfer unit of
interface.

<- speed Speed in bits per second.

<- lastStateChange Time in milliseconds of last state
change.

<- ipAddr IP address of interface.

<- subnetMask Subnet mask of local network.

<- broadcast Broadcast address of local network.

-> index Index of interface to fetch info about.

<- inOctets Number of octets received.

<- inUcastPkts Number of packets received.

<- inNUcastPkts Number of broadcast packets received.

<- inDiscards Number of incoming packets that
were discarded.

Net Library
Net Library Functions

1462 Palm OS Programmer’s API Reference

netMasterIPStats

The pbP->ipStats structure contains statistics about the IP
protocol. See NetMgr.h for a complete list of statistics returned.

netMasterICMPStats

The pbP->icmpStats structure contains statistics about the ICMP
protocol. See NetMgr.h for a complete list of statistics returned.

netMasterUDPStats

The pbP->udpStats structure contains statistics about the UDP
protocol. See NetMgr.h for a complete list of statistics returned.

netMasterTCPStats

The pbP->tcpStats structure contains statistics about the TCP
protocol. See NetMgr.h for a complete list of statistics returned.

netMasterTraceEventGet

The pbP->traceEventGet structure contains a trace event.

See Also NetLibSettingSet

<- inErrors Number of packet errors encountered.

<- inUnknownProtos Number of unknown protocols
encountered.

<- outOctets Number octets sent.

<- outUcastPkts Number of packets sent.

<- outNUcastPkts Number of broadcast packets sent.

<- outDiscards Number of packets discarded.

<- outErrors Number of outbound packet errors.

-> index Index of event to fetch.

<- textP Pointer to text string to return event in. Should be at
least 256 bytes long.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1463

NetLibOpen

Purpose Opens and initializes the net library.

Declared In NetMgr.h

Prototype Err NetLibOpen (UInt16 libRefnum,
UInt16 *netIFErrsP)

Parameters -> libRefnum Reference number of the net library.

<- netIFErrsP First error encountered when bringing up
network interfaces. (See NetLibIFUp for a list
of possible values.)

Result Returns one of the following values:

0 No error.

netErrAlreadyOpen
Not really an error; returned if library was
already open and the open count was simply
incremented.

netErrOutOfMemory
Not enough memory available to open the
library.

netErrNoInterfaces
Incorrect setup.

netErrPrefNotFound
Incorrect setup.

Comments Applications must call this function before using the net library. If
the net library was already open, NetLibOpen increments its open
count. Otherwise, it opens the library, initializes it, starts up the net
protocol stack component of the library as a separate task, and
brings up all attached network interfaces.

NetLibOpen uses settings saved in the net library’s preferences
database during initialization. These settings include the interfaces
to attach, the IP addresses, etc. It’s assumed that these settings have

Net Library
Net Library Functions

1464 Palm OS Programmer’s API Reference

been previously set up by a preference panel or equivalent so an
application doesn’t normally have to set them up before calling
NetLibOpen.

If any of the attached interfaces fails to come up, *netIFErrsP will
contain the error number of the first interface that encountered a
problem.

Compatibility NetLibOpen behaves slightly differently in version 3.2 and later
than it does in previous releases. In version 3.2 and later,
NetLibOpen calls NetLibOpenConfig specifying the default
configuration. NetLibOpenConfig reverts all settings to their
saved, default values before opening the net library.

See Also SysLibFind, NetLibClose, NetLibOpenCount

New NetLibOpenConfig

Purpose Opens and initializes the net library with the specified
configuration.

Prototype Err NetLibOpenConfig (UInt16 refNum,
UInt16 configIndex, UInt32 openFlags,
UInt16 *netIFErrP)

Parameters -> refNum Reference number of the net library.

-> configIndex Index of the configuration to use. 0 means use
the default configuration as defined in the
Network preferences panel.

-> openFlags Not used. Pass 0 for this parameter.

<- netIFErrP Pointer to return error code for interfaces.

Result Returns one of the following values:

0 No error.

memErrNotEnoughSpace

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1465

netErrAlreadyOpen
Not really an error; returned if library was
already open and the open count was simply
incremented.

netErrAlreadyOpenWithAnotherConfig
Another application has the net library open
with a configuration that is incompatible with
the one specified.

netErrBufTooSmall

netErrConfigAliasErr
A configuration alias was specified, but the
alias could not be resolved.

netErrConfigCantDelete

netErrConfigEmpty
The configuration is not defined.

netErrConfigNotFound
The specified configuration index is invalid.

netErrInterfaceNotFound

netErrOutOfCmdBlocks

netErrOutOfMemory
Not enough memory available to open the
library.

netErrNoInterfaces
Incorrect setup.

netErrParamErr

netErrPrefNotFound
Incorrect setup.

netErrTimeout

Sockets
Equivalent

None

Comments Use this routine instead of NetLibOpen when you want to open the
net library with a non-default configuration. If the default net
library configuration is not suitable for your application, you may

Net Library
Net Library Functions

1466 Palm OS Programmer’s API Reference

use one of the built-in aliases to specify a configuration that is
suitable (see “Configuration Aliases”).

NetLibOpenConfig tries to open the net library and initialize it
with the specified configuration. If another application has the net
library open with an incompatible configuration, it returns an error.
If the net library is in the close-wait state, this function completely
closes the net library and then reopens it using the new
configuration. If the net library can be opened with the new
configuration, NetLibOpenConfig first saves the current
configuration so that it can be restored when your application closes
the net library.

Typically, applications use the NetLibConfigList function to
obtain the list of available configurations and present this list to the
user. Then they call NetLibConfigIndexFromName with the
user’s selection to get the index of the configuration that the user
selected.

The constant netConfigIndexCurSettings specifies the current
configuration. You can specify netConfigIndexCurSettings as
the configIndex for testing purposes.

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also NetLibOpen, SysLibFind, NetLibClose, NetLibOpenCount

NetLibOpenCount

Purpose Retrieves the open count of the net library.

Declared In NetMgr.h

Prototype Err NetLibOpenCount (UInt16 refNum,
UInt16 *countP)

Parameters -> refNum Reference number of the net library.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1467

<- countP Contains the open count of the net library upon
return.

Result Always returns 0.

Sockets
Equivalent

None.

Comments This call will most likely only be used by the Network preferences
panel. Most applications will simply call NetLibOpen
unconditionally during startup and NetLibClose when they exit.

NetLibReceive

Purpose Receive data from a socket into a single buffer.

Declared In NetMgr.h

Prototype Int16 NetLibReceive (UInt16 libRefNum,
NetSocketRef socket, void *bufP, UInt16 bufLen,
UInt16 flags, void *fromAddrP, UInt16 *fromLenP,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

<- bufP Pointer to buffer to hold received data.

-> bufLen Length of bufP buffer.

-> flags One or more netIOFlagxxx flags. See “I/O
Flags.”

<- fromAddrP Pointer to buffer to hold address of sender (a
NetSocketAddrType).

<-> fromLenP On entry, size of fromAddrP buffer. On exit,
actual size of returned address in fromAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

Net Library
Net Library Functions

1468 Palm OS Programmer’s API Reference

<- errP Contains an error code if the return value is -1.

Result Returns the number of bytes successfully received. If the return
value is 0, the socket has been shut down by the remote host. If the
return value is -1, an error has occurred, and errP contains one of
the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrWouldBlock

netErrUserCancel

Sockets
Equivalent

int recvfrom (int socket, const void *bufP,
int bufLen, int flags, const void *fromAddrP,
int *fromLenP);

int recv (int socket, const void *bufP,
int bufLen, int flags);

int read (int socket, const void *bufP,
int bufLen);

Comments For stream-based sockets, this call reads whatever bytes are
available and returns the number of bytes actually read into the
caller’s buffer. If there is no data available, this call will block until
at least one byte arrives, until the socket is shut down by the remote
host, or until a timeout occurs.

For datagram-based sockets, this call reads a complete datagram
and returns the number of bytes in the datagram. If the caller’s
buffer is not large enough to hold the entire datagram, the end of the
datagram is discarded. If a datagram is not available, this call will
block until one arrives, or until the call times out.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1469

The data is read into a single buffer pointed to by bufP.

See Also NetLibReceive, NetLibDmReceive, NetUReadN, NetLibSend,
NetLibSendPB

NetLibReceivePB

Purpose Receive data from a socket into a multi-buffer gather-read array.

Declared In NetMgr.h

Prototype Int16 NetLibReceivePB (UInt16 libRefNum,
NetSocketRef socket, NetIOParamType *pbP,
UInt16 flags, Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> pbP Pointer to parameter block containing buffer
info.

-> flags One or more netIOFlagxxx flags. See “I/O
Flags.”

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the number of bytes successfully received. Returns 0 if the
socket has been shut down by the remote host. If the return value is
-1, an error has occurred, and errP contains one of the following
values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

Net Library
Net Library Functions

1470 Palm OS Programmer’s API Reference

netErrWouldBlock

Sockets
Equivalent

int recvmsg (int socket, const struct msghdr *pbP,
int flags);

Comments The pbP parameter is a pointer to a NetIOParamType structure.
NetIOParamType is defined as follows:

typedef struct {
 UInt8 *addrP;
 UInt16 addrLen;
 NetIOVecPtr iov;
 UInt16 iovLen;
 UInt8 *accessRights;
 UInt16 accessRightsLen;
} NetIOParamType, *NetIOParamPtr;

You provide the following information in this struct:

For stream-based sockets, this call reads whatever bytes are
available and returns the number of bytes actually read into the
caller’s buffer. If no data is available, this call will block until at least

addrP Address of sender, set by
NetLibReceivePB. Set to 0 if you don’t
require this field.

addrLen Length of *addrP.

iov Array of buffers into which the data should
be received. NetIOVecPtr is a pointer to a
NetIOVecType structure, which has two
fields:

bufP Pointer to a buffer.

bufLen Length of bufP.

iovLen Length of the iov array.

accessRights Access rights. This field currently isn’t used
and should be set to 0.

accessRightsLen Length of the *accessRights. This field
currently isn’t used and should be set to 0.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1471

one byte arrives, until the socket is shut down by the remote host, or
until a timeout occurs.

For datagram-based sockets, this call reads a complete datagram
and returns the number of bytes in the datagram. If the caller’s
buffer is not large enough to hold the entire datagram, the end of the
datagram is discarded. If a datagram is not available, this call will
block until one arrives, or until the call times out.

The data is read into the gather-read array specified by the pbP-
>iov array.

See Also NetLibReceive, NetLibDmReceive, NetLibSend,
NetLibSendPB

NetLibSelect

Purpose Blocks until I/O is ready on one or more descriptors, where a
descriptor can represent socket input, socket output, or a user input
event like a pen tap or key press.

Declared In NetMgr.h

Prototype Int16 NetLibSelect (UInt16 libRefNum,
UInt16 width, NetFDSetType *readFDs,
NetFDSetType *writeFDs, NetFDSetType *exceptFDs,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> width Number of descriptor bits to check in the
readFDs, writeFDs, and exceptFDs
descriptor sets.

<-> readFDs Pointer to 32-bit NetFDSetType containing set
of bits representing descriptors to check for
input.

<-> writeFDs Pointer to 32-bit NetFDSetType containing set
of bits representing descriptors to check for
output.

Net Library
Net Library Functions

1472 Palm OS Programmer’s API Reference

<-> exceptFDs Pointer to 32-bit NetFDSetType containing set
of bits representing descriptors to check for
exception conditions. This parameter is
ignored. Upon return, its bits are always
cleared.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the sum total number of ready file descriptors in *readFDs,
*writeFDs, and *exceptFDs. Returns 0 upon timeout. If the
return value is -1, an error has occurred, and errP contains one of
the following values:

0 No error

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

Sockets
Equivalent

int select (int width, fd_set *readfds,
fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

Comments This call blocks until one or more descriptors are ready for I/O. In
the Palm OS environment, a descriptor is either a NetSocketRef
or the “stdin” descriptor, sysFileDescStdIn. The
sysFileDescStdIn descriptor will be ready for input whenever a
user event is available like a pen tap or key press.

The caller should set which bits in each descriptor set need to be
checked by using the netFDZero and netFDSet macros. After this
call returns, the macro netFDIsSet can be used to determine
which descriptors in each set are actually ready.

On exit, the total number of ready descriptors is returned and each
descriptor set is updated with the appropriate bits set for each ready
descriptor in that set.

The following example illustrates how to use this call to check for
input on a socket or a user event:

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1473

 Err err;
 NetSocketRef socket;
 NetFDSetType readFDs,writeFDs,exceptFDs;
 Int16 numFDs;
 UInt16 width;

 // Create the descriptor sets
 netFDZero(&readFDs);
 netFDZero(&writeFDs);
 netFDZero(&exceptFDs);
 netFDSet(sysFileDescStdIn, &readFDs);
 netFDSet(socket, &readFDs);

 // Calculate the max descriptor number and
 // use that +1 as the max width.
 // Alternatively, we could simply use the
 // constant netFDSetSize as the width which
 // is simpler but makes the NetLibSelect call
 // slightly slower.
 width = sysFileDescStdIn;
 if (socket > width) width = socket;

 // Wait for any one of the descriptors to be
 // ready.
 numFDs = NetLibSelect(AppNetRefnum, width+1,
 &readFDs, &writeFDs, &exceptFDs,
 AppNetTimeout, &err);

Also see the NetSample example application in the Palm OS
Examples folder. The function CmdTelnet in the file
CmdTelnet.c shows how to use the Berkeley sockets select
function and how to interpret the results.

See Also NetLibSocketOptionSet

Net Library
Net Library Functions

1474 Palm OS Programmer’s API Reference

NetLibSend

Purpose Send data to a socket from a single buffer.

Declared In NetMgr.h

Prototype Int16 NetLibSend (UInt16 libRefNum,
NetSocketRef socket, void *bufP, UInt16 bufLen,
UInt16 flags, void *toAddrP, UInt16 toLen,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> bufP Pointer to data to write.

-> bufLen Length of data to write

-> flags One or more netIOFlagxxx flags. See “I/O
Flags.”

-> toAddrP Address to send to (a pointer to a
NetSocketAddrType), or 0.

-> toLen Size of toAddrP buffer.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the number of bytes successfully sent. Returns 0 if the
socket has been shut down by the remote host. If the return value is
-1, an error has occurred, and errP contains one of the following
values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1475

netErrMessageTooBig

netErrSocketNotConnected

netErrSocketClosedByRemote

netErrIPCantFragment

netErrIPNoRoute

netErrIPNoSrc

netErrIPNoDst

netErrIPktOverflow

netErrOutOfCmdBlocks

netErrOutOfPackets

netErrInterfaceNotFound

netErrInterfaceDown

netErrUnreachableDest

netErrNoMultiPktAddr

netErrWouldBlock

Sockets
Equivalent

int sendto (int socket, const void *bufP,
int bufLen, int flags, const void *toAddrP,
int toLen);

int send (int socket, const void *bufP,
int bufLen, int flags);

int write (int socket, const void *bufP,
int bufLen,);

Comments This call attempts to write data to the specified socket and returns
the number of bytes actually sent, which may be less than or equal
to the requested number of bytes. The data is passed in a single
buffer that bufP points to.

For datagram sockets, you must only send a single packet at a time.
If the data is too large to fit in a single UDP packet (1536 bytes), no
data is sent and -1 is returned.

Net Library
Net Library Functions

1476 Palm OS Programmer’s API Reference

The toAddrP field applies only to datagram sockets without an
existing connection. An error is returned if the datagram socket was
previously connected and toAddrP is specified. Stream-based
sockets, by definition, must have a connection established with a
remote host before data can be written. Raw sockets (supported in
Palm OS version 3.0 and higher) must construct the entire IP header,
including the destination address, before data can be sent; thus, the
address is taken from the data to be sent.

If there isn’t enough buffer space to send any data, this call will
block until there is enough buffer space, or until a timeout.

NOTE: For stream-based sockets, this call may write only a
portion of the desired data. It always returns the number of bytes
actually written. Consequently, the caller should be prepared to
call this routine repeatedly until the desired number of bytes have
been written, or until it returns 0 or -1.

See Also NetLibSendPB, NetUWriteN, NetLibReceive,
NetLibReceivePB, NetLibDmReceive

NetLibSendPB

Purpose Send data to a socket from a scatter-write array.

Declared In NetMgr.h

Prototype Int16 NetLibSendPB (UInt16 libRefNum,
NetSocketRef socket, NetIOParamType *pbP,
UInt16 flags, Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> pbP Pointer to parameter block containing buffer
info. See the description in
NetLibReceivePB.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1477

-> flags One or more netIOFlagxxx flags. See “I/O
Flags.”

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the number of bytes successfully sent. Returns 0 if the
socket has been shut down by the remote host. If the return value is
-1, an error has occurred, and errP contains one of the following
values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrMessageTooBig

netErrSocketNotConnected

netErrSocketClosedByRemote

netErrIPCantFragment

netErrIPNoRoute

netErrIPNoSrc

netErrIPNoDst

netErrIPktOverflow

netErrOutOfCmdBlocks

netErrOutOfPackets

netErrInterfaceNotFound

netErrInterfaceDown

netErrUnreachableDest

netErrNoMultiPktAddr

netErrWouldBlock

Net Library
Net Library Functions

1478 Palm OS Programmer’s API Reference

Sockets
Equivalent

int sendmsg (int socket, const struct msghdr *pbP,
int flags);

Comments This call attempts to write data to the given socket and returns the
number of bytes actually sent, which may be less than or equal to
the requested number of bytes. The data is passed in the scatter-
write array specified in the pbP parameter block.

For datagram sockets, you must only send a single packet at a time.
If the data is too large to fit in a single UDP packet, no data is sent
and -1 is returned.

The toAddrP field applies only to datagram sockets without an
existing connection. An error is returned if the datagram socket was
previously connected and toAddrP is specified. Stream-based
sockets, by definition, must have a connection established with a
remote host before data can be written. Raw sockets (supported in
Palm OS version 3.0 and higher) must construct the entire IP header,
including the destination address, before data can be sent; thus, the
address is taken from the data to be sent.

If there isn’t enough buffer space to send any data, this call will
block until there is space, or until a timeout.

NOTE: For stream-based sockets, this call may write only a
portion of the desired data. It always returns the number of bytes
actually written. Consequently, the caller should be prepared to
call this routine repeatedly until the desired number of bytes have
been written, or until it returns 0 or -1.

See Also NetLibSend, NetLibReceive, NetLibReceivePB,
NetLibDmReceive

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1479

NetLibSettingGet

Purpose Retrieves a general setting.

Declared In NetMgr.h

Prototype Err NetLibSettingGet (UInt16 libRefNum,
UInt16 setting, void *valueP, UInt16 *valueLenP)

Parameters -> libRefNum Reference number of the net library.

-> setting Setting to retrieve, one of the
NetSettingEnum constants.

<- valueP Space for return value of setting.

<-> valueLenP On entry, size of valueP. On exit, actual size of
setting.

Result Returns one of the following values:

0 Success.

netErrUnknownSetting
Invalid setting constant

netErrPrefNotFound
No current value for setting

netErrBufTooSmall
valueP was too small to hold entire setting.
Setting value was truncated to fit in valueP.

netErrBufWrongSize

Sockets
Equivalent

None

Comments This call retrieves the current value of any general setting. The caller
must pass a pointer to a buffer to hold the return value (valueP),
the size of the buffer (*valueLenP), and the setting ID (setting).
The setting ID is one of the NetSettingEnum constants in the
netSettingEnum type.

Net Library
Net Library Functions

1480 Palm OS Programmer’s API Reference

Some settings, such as the host table, are variable size. For these
types of settings, you can obtain the actual size required for the
buffer by passing 0 for *valueLenP. The required size is returned
in valueLenP.

Table 61.3 lists the general settings and the type of each setting.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1481

Table 61.3 Net Library General Settings

netSetting... Type Description

ResetAll void Used for NetLibSettingSet only. This will clear all
other settings to their default values.

PrimaryDNS UInt32 IP address of primary DNS server. This setting must be
set to a non-zero IP address in order to support any of
the name lookup calls.

SecondaryDNS UInt32 IP address of secondary DNS server. Set to 0 to have
stack ignore this setting.

DefaultRouter UInt32 IP address of default router. Default value is 0 which is
appropriate for most implementations with only one
attached interface (besides loopback). Packets with
destination IP addresses that don’t lie in the subnet of
an attached interface will be sent to this router through
the default interface specified by the
netSettingDefaultIFCreator/
netSettingDefaultIFInstance pair.

DefaultIFCrea
tor

UInt32 Creator of the default network interface. Default value
is 0, which is appropriate for most implementations.
Packets with destination IP addresses that don’t lie in
the subnet of a directly attached interface are sent
through this interface. If this setting is 0, the stack
automatically makes the first non-loopback interface
the default interface.

DefaultIFInst
ance

UInt16 Instance number of the default network interface.
Packets with destination IP addresses that don’t lie in
the subnet of an attached interface are sent through the
default interface. Default value is 0.

HostName Char[] A zero-terminated character string of 64 bytes or less
containing the host name of this machine. This setting
is not actually used by the stack. It’s present mainly for
informative purposes and to support the
gethostname/sethostname sockets API calls. To
clear the host name, call NetLibIFSettingSet with
a valueLen of 0.

Net Library
Net Library Functions

1482 Palm OS Programmer’s API Reference

See Also NetLibSettingSet, NetLibIFSettingSet,
NetLibIFSettingGet, NetLibMaster

DomainName Char[] A zero-terminated character string of 256 bytes or less
containing the default domain. This default domain
name is appended to all host names before name
lookups are performed. If the name is not found, the
host name is looked up again without appending the
domain name to it. To have the stack not use the
domain name, call NetLibIFSettingSet with a
valueLen of 0.

HostTbl Char[] A null-terminated character string containing the host
table. This table is consulted first before sending a DNS
query to the DNS server(s). To have the stack not use a
host table, call NetLibIFSettingSet with a
valueLen of 0. The format of a host table is a series of
lines separated by ‘\n’ in the following format:

host.company.com A 111.222.333.444

CloseWaitTime UInt32 The close-wait time in milliseconds. This setting must
be specified. See the discussion of the NetLibClose
call for an explanation of the close-wait time.

TraceBits UInt32 A bitfield of various trace bits. See “Tracing Bits.”
Default value is (netTracingErrors |
netTracingAppMsgs). An application can get a list of
events in the trace buffer using the NetLibMaster
call.

TraceSize UInt32 Maximum trace buffer size in bytes. Setting this setting
always clears the existing trace buffer. Default is 2 KB.

TraceRoll UInt8 Boolean value, default is true (non-zero). If true,
trace buffer will roll over when it fills. If false, tracing
will stop as soon as trace buffer fills.

Table 61.3 Net Library General Settings (continued)

netSetting... Type Description

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1483

NetLibSettingSet

Purpose Sets a general setting.

Declared In NetMgr.h

Prototype Err NetLibSettingSet (UInt16 libRefNum,
UInt16 setting, void *valueP, UInt16 valueLen)

Parameters -> libRefNum Reference number of the net library.

-> setting Setting to set; one of the NetSettingEnum
constants. See Table 61.3.

-> valueP New value for the setting.

-> valueLen Size of new setting.

Result Returns one of the following values:

0 Success.

netErrUnknownSetting
Invalid setting constant.

netErrInvalidSettingSize
valueLen was invalid for the given setting.

netErrBufWrongSize

netErrReadOnlySetting

Sockets
Equivalent

None

Comments This call can be used to set the current value of any general setting.
The caller must pass a pointer to a buffer which holds the new value
(valueP), the size of the buffer (valueLen), and the setting ID
(setting). The setting ID is one of the netSettingXXX constants
in the NetSettingEnum type.

If the net library is not open at the time this call is made, the setting
is stored in the active configuration. You need to save the active
configuration using NetLibConfigSaveAs if you want the new

Net Library
Net Library Functions

1484 Palm OS Programmer’s API Reference

value of the setting to be used the next time the net library is
opened.

See NetLibSettingGet for an explanation of each of the settings.

Of particular interest is the netSettingResetAll setting, which,
if used, will reset all general settings to their default values. When
using this setting, valueP and valueLen are ignored.

See Also NetLibSettingGet, NetLibSettingSet,
NetLibIFSettingSet, NetLibMaster

NetLibSocketAccept

Purpose Accept a connection from a stream-based socket.

Declared In NetMgr.h

Prototype Int16 NetLibSocketAccept (UInt16 libRefnum,
NetSocketRef socket,
NetSocketAddrType *sockAddrP, Int16 *addrLenP,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

<- sockAddrP Address of remote host is returned here.

<->addrLenP On entry, length of sockAddrP buffer in bytes.
On exit, length of returned address stored in
*sockAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the NetSocketRef of the new socket. If the return value is
-1, an error has occurred, and errP contains one of the following
values:

0 No error.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1485

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrSocketNotConnected

netErrSocketClosedByRemote

netErrWrongSocketType

netErrSocketNotListening

netErrUnimplemented

Sockets
Equivalent

int accept (int socket, void *sockAddrP,
int *addrLenP);

Comments Accepts the next connection request from a remote client. This call is
only applicable to stream-based sockets. Before calling
NetLibSocketAccept on a socket, a server application needs to:

• Open the socket (NetLibSocketOpen).

• Bind the socket to a local address (NetLibSocketBind).

• Set the maximum pending connection-request queue length
(NetLibSocketListen).

NetLibSocketAccept will block until a successful connection
request is obtained from a remote client. After a successful
connection is made, this call returns with the address of the remote
host in *sockAddrP and the socket descriptor of a new socket as
the return value. You then use the new socket to send and receive
data.

See Also NetLibSocketBind, NetLibSocketListen

Net Library
Net Library Functions

1486 Palm OS Programmer’s API Reference

NetLibSocketAddr

Purpose Returns the local and remote addresses currently associated with a
socket.

Declared In NetMgr.h

Prototype Int16 NetLibSocketAddr (UInt16 libRefnum,
NetSocketRef socketRef,
NetSocketAddrType *locAddrP, Int16 *locAddrLenP,
NetSocketAddrType *remAddrP, Int16 *remAddrLenP,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef Descriptor for the open socket.

<- locAddrP Local address of socket is returned here.

<->locAddrLenP On entry, length of locAddrP buffer in bytes.
On exit, length of returned address stored in
*locAddrP.

<- remAddrP Address of remote host is returned here.

<->remAddrLenP On entry, length of remAddrP buffer in bytes.
On exit, length of returned address stored in
*remAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If the return
value is -1, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1487

netErrSocketNotOpen

netErrSocketClosedByRemote

netErrOutOfCmdBlocks

Sockets
Equivalent

int getpeername (int s, struct sockaddr *name,
int *namelen);

int getsockname (int s, struct sockaddr *name,
int *namelen);

Comments This call is mainly useful for stream-based sockets. It allows the
caller to find out what address was bound to a connected socket and
the address of the remote host that it’s connected to.

In Palm OS version 3.0 and higher, if you pass a raw socket to this
function, it returns the instance number and creator of the interface
to which the socket is bound.

See Also NetLibSocketBind, NetLibSocketConnect,
NetLibSocketAccept

NetLibSocketBind

Purpose Assign a local address to a socket.

Declared In NetMgr.h

Prototype Int16 NetLibSocketBind (UInt16 libRefnum,
NetSocketRef socket,
NetSocketAddrType *sockAddrP, Int16 addrLen,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> sockAddrP Pointer to the address to give to the socket. This
can be a NetSocketAddrINType or a
NetSocketAddrRawType.

-> addrLen Length of address in *sockAddrP.

Net Library
Net Library Functions

1488 Palm OS Programmer’s API Reference

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrSocketAlreadyConnected

netErrSocketClosedByRemote

netErrOutOfCmdBlocks

Sockets
Equivalent

int bind (int socket, const void *sockAddrP,
int addrLen);

Comments Applications that want to wait for an incoming connection request
from a remote host must call this function. After calling
NetLibSocketBind, applications can call
NetLibSocketListen and then NetLibSocketAccept to make
the socket ready to accept connection requests.

Compatibility Raw sockets are only supported in Palm OS version 3.0 and higher.
See NetLibSocketOpen for instructions on how to bind raw
sockets.

See Also NetLibSocketConnect, NetLibSocketListen,
NetLibSocketAccept

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1489

NetLibSocketClose

Purpose Close a socket.

Declared In NetMgr.h

Prototype Int16 NetLibSocketClose (UInt16 libRefnum,
NetSocketRef socket, Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrOutOfCmdBlocks

Sockets
Equivalent

int close (int socket);

Comments Closes down a socket and frees all memory associated with it.

See Also NetLibSocketOpen, NetLibSocketShutdown

Net Library
Net Library Functions

1490 Palm OS Programmer’s API Reference

NetLibSocketConnect

Purpose Assign a destination address to a socket and initiate three-way
handshake if it’s stream based.

Declared In NetMgr.h

Prototype Int16 NetLibSocketConnect (UInt16 libRefnum,
NetSocketRef socket,
NetSocketAddrType *sockAddrP, Int16 addrLen,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> sockAddrP Pointer to address to connect to.

-> addrLen Length of address in *sockAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrSocketBusy

netErrNoInterfaces
Incorrect setup.

netErrPortInUse

netErrQuietTimeNotElapsed

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1491

netErrInternal

netErrSocketAlreadyConnected

netErrSocketClosedByRemote

netErrTooManyTCPConnections

netErrWouldBlock

netErrWrongSocketType

netErrOutOfCmdBlocks

Sockets
Equivalent

int connect (int socket, const void *sockAddrP,
int addrLen);

See Also NetLibSocketBind, NetUTCPOpen

NetLibSocketListen

Purpose Put a stream-based socket into passive listen mode.

Declared In NetMgr.h

Prototype Int16 NetLibSocketListen (UInt16 libRefnum,
NetSocketRef socket, UInt16 queueLen,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> queueLen Maximum number of pending connections
allowed.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

Net Library
Net Library Functions

1492 Palm OS Programmer’s API Reference

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrOutOfResources

netErrSocketNotOpen

netErrSocketBusy

netErrNoInterfaces
Incorrect setup.

netErrPortInUse

netErrInternal

netErrSocketAlreadyConnected

netErrSocketClosedByRemote

netErrWrongSocketType

netErrQuietTimeNotElapsed

netErrOutOfCmdBlocks

Sockets
Equivalent

int listen (int socket, int queueLen);

Comments Sets the maximum allowable length of the queue for pending
connections. This call is only applicable to stream-based (TCP/IP)
sockets.

After a socket is created and bound to a local address using
NetLibSocketBind, a server application can call
NetLibSocketListen and then NetLibSocketAccept to
accept connections from remote clients.

The queueLen is currently quietly limited to 1 (higher values are
ignored).

See Also NetLibSocketBind, NetLibSocketAccept

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1493

NetLibSocketOpen

Purpose Open a new socket.

Declared In NetMgr.h

Prototype NetSocketRef NetLibSocketOpen (UInt16 libRefnum,
NetSocketAddrEnum domain, NetSocketTypeEnum type,
Int16 protocol, Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> domain Address domain. See NetSocketAddrEnum.

-> type Desired type of connection. See
NetSocketTypeEnum.

-> protocol Protocol to use. This parameter is currently
ignored.

For raw sockets in the netSocketAddrINET
domain, specify one of the following:

netSocketProtoIPTCP

netSocketProtoIPUDP

netSocketProtoIPRAW

For all other socket types or for raw sockets in
the raw domain, this parameter is ignored.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the NetSocketRef of the opened socket or -1 if an error
occurred. If an error occurred, errP contains one of the following
values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

Net Library
Net Library Functions

1494 Palm OS Programmer’s API Reference

netErrParamErr

netErrNoMoreSockets

netErrOutOfCmdBlocks

netErrOutOfMemory

Sockets
Equivalent

int socket (int domain, int type, int protocol);

Comments Allocates memory for a new socket and opens it.

Raw sockets are supported in Palm OS version 3.0 and higher. Two
types of raw sockets are supported:

• Raw sockets in the netSocketAddrINET domain

In this case, you must bind the socket to an IP address using
NetLibSocketBind, passing a NetSocketAddrINType
structure for the socket address. The port field is ignored.

For applications that use raw sockets in the INET domain,
the net library checks the destination IP address of all
incoming packets to see if it matches any of those raw
sockets. If it does, the packet is enqueued directly into the
matching socket and is not passed to the protocol stack.

When an application sends data through raw sockets in the
IP domain, the net library packages the data into a packet
and passes it directly to the interface’s send routine. You are
responsible for forming the entire IP header, including any
necessary checksums, source and destination IP address, and
so on.

• Raw sockets in the netSocketAddrRaw domain with no
protocol

In this case, you must bind the socket to an interface using
NetLibSocketBind, passing a NetSocketAddrRawType
structure for the socket address. The instance and creator
specify which interface the caller wants to receive raw
packets from.

When an interface is bound to a raw socket with no protocol,
the net library places that interface into raw mode. In raw

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1495

mode, the interface passes all incoming packets, no matter
what the link layer protocol, to its raw receive function.

When an application sends data through a raw socket with
no protocol, the net library packages the data into a packet
and passes it directly to the interface’s send routine.

The interface remains in raw mode until the raw socket is
closed.

Compatibility Raw sockets supported only in Palm OS version 3.0 and higher.

See Also NetLibSocketClose, NetUTCPOpen

NetLibSocketOptionGet

Purpose Retrieves the current value of a socket option.

Declared In NetMgr.h

Prototype Int16 NetLibSocketOptionGet (UInt16 libRefnum,
NetSocketRef socket, UInt16 level, UInt16 option,
void *optValueP, UInt16 *optValueLenP,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> level Level of the option, one of the
NetSocketOptLevelEnum constants. See
NetLibSocketOptionSet.

-> option One of the NetSocketOptEnum constants. See
NetLibSocketOptionSet.

<- optValueP Pointer to variable holding new value of
option.

<-> optValueLenP
Size of variable pointed to by optValueP on
entry. Actual size of return value on exit.

Net Library
Net Library Functions

1496 Palm OS Programmer’s API Reference

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrUnimplemented

netErrWrongSocketType

netErrInvalidSettingSize

Sockets
Equivalent

int getsockopt (int socket, int level, int option,
const void *optValueP, int *optValueLenP);

Comments Returns the current value of a socket option. The caller passes a
pointer to a variable to hold the returned value (in optValueP) and
the size of this variable (in *optValueLenP). On exit,
*optValueP is updated with the actual size of the return value.

For all of the fixed size options (every option except
netSocketOptIPOptions), *optValueLenP is unmodified on
exit and this call does its best to return the value in the caller’s
desired type size.

For compatibility with existing Internet applications, this call is
quite flexible on the *optValueLenP parameter. If the desired type
for an option is FLAG, this call supports an *optValueLenP of 1, 2,
or 4. If the desired type for an option is int, it supports an
*optValueLenP of 2 or 4.

See NetLibSocketOptionSet for a list of available options.

See Also NetLibSocketOptionSet

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1497

NetLibSocketOptionSet

Purpose Set a socket option.

Declared In NetMgr.h

Prototype Int16 NetLibSocketOptionSet (UInt16 libRefnum,
NetSocketRef socket, UInt16 level, UInt16 option,
void *optValueP, UInt16 optValueLen,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> level Level of the option, one of the
NetSocketOptLevelEnum constants. See the
comments section.

-> option One of the NetSocketOptEnum constants. See
the comments section.

-> optValueP Pointer to the variable holding the new value of
the option.

-> optValueLen Size of variable pointed to by optValueP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrUnimplemented

Net Library
Net Library Functions

1498 Palm OS Programmer’s API Reference

netErrWrongSocketType

netErrInvalidSettingSize

Sockets
Equivalent

int setsockopt (int socketRef, int level,
int option, const void *optValueP,
int optValueLen);

Comments Sets various options associated with a socket. The caller passes a
pointer to the new option value in optValueP and the size of the
option in optValueLen.

Table 61.4 lists the available options.

• The Level column specifies the option level, which is one of
the netSocketOptLevelXXX constants.

• The Option column lists the option, which is one of the
netSocketOptXXX constants.

• The G/S column lists whether this option can be fetched with
the NetLibSocketOptionGet call (G) and/or set (S) with
this call.

• The type column lists the data type of the option.

• The I column specifies whether or not this option is currently
implemented.

Table 61.4 Net Library Socket Options

netSocket
OptLevel... netSocketOpt... G/S Type I Description

IP IPOptions GS UInt8[] N Options in IP Header

TCP TCPNoDelay GS FLAG Y Don’t delay send to
coalesce packets

TCP TCPMaxSeg G int Y Get TCP maximum
segment size

Socket SockDebug GS FLAG N Turn on recording of
debug info

Socket SockAcceptConn G FLAG N Socket has had listen

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1499

Socket SockReuseAddr GS FLAG N Allow local address
reuse

Socket SockKeepAlive GS FLAG Y Keep connections alive

Socket SockDontRoute GS FLAG N Just use interface
addresses

Socket SockBroadcast GS FLAG N Permit sending of
broadcast messages

Socket SockUseLoopback GS FLAG N Bypass hardware when
possible

Socket SockLinger GS NetSocke
tLingerT
ype

Y Linger on close if data
present
NetSocketLingerTy
pe is a structure with
two fields: onOff
(true or false) and
time (linger time in
seconds).

Socket SockOOBInLine GS FLAG N Leave received OOB
data in-line

Socket SockSndBufSize GS int N Send buffer size

Socket SockRcvBufSize GS int N Receive buffer size

Socket SockSndLowWater GS int N Send low-water mark

Socket SockRcvLowWater GS int N Receive low-water mark

Socket SockSndTimeout GS int N Send timeout

Socket SockRcvTimeout GS int N Receive timeout

Socket SockErrorStatus G int Y Get error status and
clear

Socket SockSocketType G int Y Get socket type

Table 61.4 Net Library Socket Options (continued)

netSocket
OptLevel... netSocketOpt... G/S Type I Description

Net Library
Net Library Functions

1500 Palm OS Programmer’s API Reference

For compatibility with existing Internet applications, this call is
quite flexible on the optValueLen parameter. If the desired type
for an option is FLAG, this call accepts an optValueLen of 1, 2, or 4.
If the desired type for an option is int, it accepts an optValueLen
of 2 or 4.

Socket SockNonBlocking GS FLAG Y Set non-blocking mode
on/off

Socket SockRequireErrCle
ar

GS FLAG Y Return the current error
status for all subsequent
socket function calls
until the error is
cleared.

Table 61.4 Net Library Socket Options (continued)

netSocket
OptLevel... netSocketOpt... G/S Type I Description

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1501

Except for the netSocketOptSockNonBlocking option, all
options listed above have equivalents in the sockets API. The
netSocketOptSockNonBlocking option was added to this call
in the net library in order to implement the functionality of the
UNIX fcntl() control call, which can be used to turn nonblocking
mode on and off for sockets.

See Also NetLibSocketOptionGet

NetLibSocketShutdown

Purpose Shut down a socket in one or both directions.

Declared In NetMgr.h

Prototype Int16 NetLibSocketShutdown (UInt16 libRefnum,
NetSocketRef socket, Int16 direction,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> direction Direction to shut down. One of the
NetSocketDirEnum constants. Specifically:

netSocketDirInput
netSocketDirOutput
netSocketDirBoth

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

Net Library
Net Library Functions

1502 Palm OS Programmer’s API Reference

netErrParamErr

netErrSocketNotOpen

netErrNoMultiPktAddr

netErrOutOfCmdBlocks

Sockets
Equivalent

int shutdown (int socket, int direction);

Comments Shuts down communication in one or both directions on a socket.

If direction is netSocketDirInput, the socket is marked as down
in the receive direction and further read operations from it return a
netErrSocketInputShutdown error.

NetLibTracePrintF

Purpose Store debugging information in the net library’s trace buffer.

Declared In NetMgr.h

Prototype Err NetLibTracePrintF (UInt16 libRefNum,
const Char *formatStr, ...)

Parameters -> libRefNum Reference number of the net library.

-> formatStr A printf style format string.

-> ... Arguments to the format string.

Result Returns 0 upon success or netErrNotOpen if the net library has
not been opened.

Sockets
Equivalent

None

Comments This call is a convenient debugging tool for developing Internet
applications. It stores a message into the net library’s trace buffer,
which can later be dumped using the NetLibMaster call. The net
library’s trace buffer is used to store run-time errors that the net

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1503

library encounters as well as errors and messages from network
interfaces and from applications that use this call.

The formatStr parameter is a printf style format string which
supports the following format specifiers:

%d, %i, %u, %x, %s, %c

but it does not support field widths, leading 0’s etc.

Note that the netTracingAppMsgs bit of the
netSettingTraceBits setting must be set using the call
NetLibSettingSet(...netSettingTraceBits...).
Otherwise, this routine will do nothing.

See Also NetLibTracePutS, NetLibMaster, NetLibSettingSet

NetLibTracePutS

Purpose Store debugging information in the net library’s trace buffer.

Declared In NetMgr.h

Prototype Err NetLibTracePutS (UInt16 libRefNum,
Char *strP)

Parameters -> libRefNum Reference number of the net library.

-> strP String to store in the trace buffer.

Result Returns 0 upon success or netErrNotOpen if the net library has
not been opened.

Sockets
Equivalent

None

Comments This call is a convenient debugging tool for developing Internet
applications. It will store a message into the net library’s trace buffer
which can later be dumped using the NetLibMaster call. The net
library’s trace buffer is used to store run-time errors that the net
library encounters as well as errors and messages from network
interfaces and from applications that use this call.

Net Library
Net Library Functions

1504 Palm OS Programmer’s API Reference

Note the netTracingAppMsgs bit of the netSettingTraceBits
setting must be set using the
NetLibSettingSet(...netSettingTraceBits...) call or
this routine will do nothing.

See Also NetLibTracePrintF, NetLibMaster, NetLibSettingSet

NetNToHL

Purpose Macro that converts a 32-bit value from network to host byte order.

Declared In NetBitUtils.h

Prototype NetNToHL (x)

Parameters -> x 32-bit value to convert.

Result Returns x in host byte order.

Errors none

Sockets
Equivalent

ntohl()

See Also NetNToHS, NetHToNL, NetHToNS

NetNToHS

Purpose Macro that converts a 16-bit value from network to host byte order.

Declared In NetBitUtils.h

Prototype NetNToHS (x)

Parameters -> x 16-bit value to convert.

Result Returns x in host byte order.

Net Library
Net Library Functions

Palm OS Programmer’s API Reference 1505

Errors None

Sockets
Equivalent

ntohs()

See Also NetHToNL, NetNToHL, NetHToNS

Net Library
Net Library Functions

1506 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1507

62
Network Utilities
This chapter describes network utilities provided in the module
NetSocket.c. These utilities are convenience functions that you
can use in place of net library functions in applications that use the
net library. You can find NetSocket.c in the folder
Libraries\Net\Src. (On Palm OS® 3.5, NetSocket.c is in the
folder CodeWarrior Libraries\Comms\NetSocket\Src.)

The include file for the functions described in this chapter is
<unix/sys_socket.h>. This header file is not included by any
other Palm™ header file; you must explicitly include it in your code.

For more information on NetSocket.c and sys_socket.h, see
the chapter “Network Communication” in the Palm OS
Programmer’s Companion, vol. II, Communications.

Network Utility Functions

NetUReadN

Purpose Reads a specified number of bytes from a socket.

Declared In unix/sys_socket.h

Prototype Int32 NetUReadN (NetSocketRef fd, UInt8* bufP,
UInt32 numBytes)

Parameters -> fd Descriptor for the open socket.

<- bufP Pointer to buffer to hold received data.

-> numBytes Number of bytes to read.

Result Returns the number of bytes actually read. If the return value is less
than 0, an error occurred.

Network Uti l i t ies
Network Utility Functions

1508 Palm OS Programmer’s API Reference

Comments This function repeatedly calls NetLibReceive until numBytes
have been read or until NetLibReceive returns an error.

See Also NetUWriteN

NetUTCPOpen

Purpose Opens a TCP (streams-based) socket and connects it to a server.

Declared In unix/sys_socket.h

Prototype NetSocketRef NetUTCPOpen (Char* hostName,
Char* serviceName, Int16 port)

Parameters -> hostName Remote host, given either by name or by dotted
decimal address.

-> serviceName The name of a network service. Possible
services are “echo”, “discard”, “daytime”,
“qotd”, “chargen”, “ftp-data”, “ftp”, “telnet”,
“smtp”, “time”, “name”, “finger”, “pop2”,
“pop3”, “nntp”, “imap2”. The value of this
parameter is ignored if the port parameter is
greater than zero.

-> port The number of the port to connect to on the
remote host. Set port to zero to use
serviceName instead.

Result Returns the socket descriptor of the socket that was connected, or -1
if an error occurred.

Comments If serviceName is given and port is less than or equal to zero, this
function looks up the port number for that service on the remote
host and uses it for the connection.

This function is the equivalent of calling NetLibSocketOpen and
NetLibSocketConnect (or socket and connect).

Network Uti l i t ies
Network Utility Functions

Palm OS Programmer’s API Reference 1509

NOTE: This function does not return specific reasons for failure
if there is a failure. This function is not production-quality code. It
is provided as a quick and dirty way of creating a connection and
as sample code that can be used as a reference.

NetUWriteN

Purpose Writes the specified number of bytes to a socket.

Declared In unix/sys_socket.h

Prototype Int32 NetUWriteN (NetSocketRef fd, UInt8* bufP,
UInt32 numBytes)

Parameters -> fd Descriptor for the open socket.

-> bufP Pointer to buffer to write.

-> numBytes Number of bytes to write.

Result Returns the number of bytes actually sent. If the return value is less
than 0, an error occurred.

Comments This function repeatedly calls NetLibSend until numBytes have
been written or until NetLibSend returns an error.

See Also NetUReadN

Network Uti l i t ies
Network Utility Functions

1510 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1511

63
Script Plugin
This chapter describes the login script plugin support. You write a
plugin to add to the list of available login script commands in the
Network preferences panel. This chapter covers:

• Script Plugin Data Types

• Script Plugin Constants

The header file ScriptPlugin.h declares the API described in
this chapter.

For more information on the script plugin, see the section
“Extending the Network Login Script Support” on page 185 in the
“Network Communication” chapter of the Palm OS Programmer’s
Companion, vol. II, Communications.

Script Plugin Data Types

PluginCallbackProcType
The PluginCallbackProcType defines the procP field in
PluginExecCmdType.

typedef struct {
 ScriptPluginSelectorProcPtr selectorProcP;
} PluginCallbackProcType,
*PluginCallbackProcPtr;

Field Descriptions

selectorProcP The address of a selector-based callback
function for accessing the functionality of the
network interface. Each network interface
provides it own
ScriptPluginSelectorProc function. See
ScriptPluginSelectorProc.

Script Plugin
Script Plugin Data Types

1512 Palm OS Programmer’s API Reference

PluginCmdPtr
The PluginCmdPtr type defines a pointer to a PluginCmdType
structure.

typedef PluginCmdType * PluginCmdPtr;

PluginCmdType
The PluginCmdType structure specifies the name of a command.

typedef struct {
 Char commandName[pluginMaxCmdNameLen + 1];
 Boolean hasTxtStringArg;
 UInt8 reserved;
} PluginCmdType;

Field Descriptions

commandName The name of the command. This string
appears in the pull-down list in the
Network preferences panel’s script view.

The pull-down list contains all available
commands from all plugins. Make sure that
your command name is unique and as short
as possible.

hasTxtStringArg true if the command takes an argument. In
this case when the user selects this
command, the Network preferences panel
displays a field next to the command name
where the user should enter the argument.
This argument is passed in the
txtStringArg field in
PluginExecCmdType when the command
is to be executed.

reserved Reserved for future use.

Script Plugin
Script Plugin Data Types

Palm OS Programmer’s API Reference 1513

PluginExecCmdType
The PluginExecCmdType structure defines the parameter block
for the scptLaunchCmdExecuteCmd launch code. This structure
specifies which command is to be executed and provides any
necessary arguments for the command. Your plugin should respond
by executing the command.

typedef struct {
 Char commandName[pluginMaxCmdNameLen + 1];
 Char txtStringArg
 [pluginMaxLenTxtStringArg +
1];
 PluginCallbackProcPtr procP;
 void * handle;
} PluginExecCmdType, *PluginExecCmdPtr;

Field Descriptions

commandName The command’s name. This is the string that
appears in the pull-down list in the script view
of the Network preferences panel.

txtStringArg If the command takes an argument, this field
provides the argument as a string. A NULL value
means either that the user did not provide a
value, or that you didn’t specify that the
command takes an argument.

procP A pointer to a PluginCallbackProcType
structure, which identifies the network interface
function that the plugin can use to execute the
command.

handle Handle to information specific to a particular
connection. You must pass this value when you
call the function pointed to by procP.

Script Plugin
Script Plugin Data Types

1514 Palm OS Programmer’s API Reference

PluginInfoPtr
The PluginInfoPtr type defines a pointer to a PluginInfoType
structure.

typedef PluginInfoType * PluginInfoPtr;

PluginInfoType
The PluginInfoType structure is the parameter block for the
scptLaunchCmdListCmds launch code. When your plugin
receives the launch code, the PluginInfoType structure is empty.
Your plugin should fill in the PluginInfoType and return it. The
system uses the information returned to construct the pull-down list
of available script commands and build a table of which plugin will
execute which script command.

typedef struct {
 Char pluginName[pluginMaxModuleNameLen + 1];
 UInt16 numOfCommands;
 PluginCmdType command[pluginMaxNumOfCmds];
} PluginInfoType;

Field Descriptions

pluginName A name that the system can use to identify
your plugin. This is typically the same name
you give the PRC file.

numOfCommands The number of commands that your plugin
defines. The maximum allowed is
pluginMaxNumOfCmds.

command An array of PluginCmdType structures that
provide information about the commands that
your plugin defines.

Script Plugin
Script Plugin Data Types

Palm OS Programmer’s API Reference 1515

ScriptPluginLaunchCodesEnum
The ScriptPluginLaunchCodesEnum defines the launch codes
for the script plugin. Your script plugin’s PilotMain function
should respond to the launch codes defined in this enum.

typedef enum {
 scptLaunchCmdDoNothing =
 sysAppLaunchCmdCustomBase,
 scptLaunchCmdListCmds,
 scptLaunchCmdExecuteCmd
} ScriptPluginLaunchCodesEnum;

Value Descriptions

scptLaunchCmdDoNothing This launch code is a no-op
supplied only to provide a
beginning value for the script
plugin launch codes. It is not
necessary to respond to this
launch code.

scptLaunchCmdListCmds Provide information about the
commands that your plugin
executes. See PluginInfoType.

scptLaunchCmdExecuteCmd Execute the specified command.

This launch code is received
when the system is executing a
user’s login script during a
network connection attempt.
Your plugin should respond by
executing the command provided
in the PluginExecCmdType
parameter block.

Script Plugin
Script Plugin Constants

1516 Palm OS Programmer’s API Reference

Script Plugin Constants

Command Constants
The following constants identify the available commands that the
network interface can perform for you. These commands are
building blocks that you use to create your own script commands.
To perform one of these tasks, pass the constant value as an
argument to the network interface’s callback function
(ScriptPluginSelectorProc).

Constant Value Description

pluginNetLibDoNothing 0 For debugging purposes.

pluginNetLibReadBytes 1 Read the specified number of
bytes from the open connection.

pluginNetLibWriteBytes 2 Write the specified number of
bytes to the open connection.

pluginNetLibGetUserName 3 Get the user name from the
network service profile.

pluginNetLibGetUserPwd 4 Get the user’s password from the
network service profile.

pluginNetLibCheckCancelStatus 5 Check to see if the user canceled
the connection.

pluginNetLibPromptUser 6 Prompt the user for input.

pluginNetLibConnLog 7 Write a string to the network
service’s connection log.

pluginNetLibCallUIProc 8 Have the network interface call a
function in your plugin that
displays UI.

Script Plugin
Script Plugin Constants

Palm OS Programmer’s API Reference 1517

Size Constants
The following table lists constants that control the size of strings in
your plugin and the size of the plugin itself.

Use this command if you need to
display a more complicated user
interface than the simple user
prompt that the network interface
provides.

pluginNetLibGetSerLibRefNum 9 Obtain the serial library’s
reference number. You need the
reference number to perform any
serial library commands, which
you might need to perform more
complex work with the connection
port.

Constant Value Description

Constant Value Description

pluginMaxCmdNameLen 15 The maximum length for the command’s
name, not including the terminating null
character. This is the string displayed to
the user in the pull-down menu.

pluginMaxModuleNameLen 15 The maximum length for the plugin’s
name (not including the terminating null
character), which is typically the name of
the PRC file as well.

pluginMaxNumOfCmds 10 The maximum number of commands that
your plugin can define.

pluginMaxLenTxtStringArg 63 The maximum length of the argument
that each command can take, not
including the terminating null character.

Script Plugin
Script Plugin Functions

1518 Palm OS Programmer’s API Reference

Script Plugin Functions

ScriptPluginSelectorProc

Purpose A function provided by the network interface for the purpose of
performing script commands.

Declared In ScriptPlugin.h

Prototype Err (*ScriptPluginSelectorProcPtr) (void *handle,
UInt16 command, void *dataBufferP, UInt16 *sizeP,
UInt16 *dataTimeoutP, void *procAddrP);

Parameters -> handle Handle to information specific to a particular
connection.

-> command The command to be executed. See “Command
Constants” for a list of possible values. The rest
of the parameters to this callback function are
interpreted differently based on the value of the
command parameter. See the table in the
“Comments” section for specifics.

<-> dataBufferP A pointer to arguments to pass to the command
or a pointer to data returned by the command.
See the “Comments” section below.

<-> sizeP The size of dataBufferP.

-> dataTimeoutP Number of seconds to wait for the command to
execute. 0 means wait forever. Applies only to
commands that request information from the
network.

Script Plugin
Script Plugin Functions

Palm OS Programmer’s API Reference 1519

-> procAddrP Pointer to a user interface callback function that
the network interface should call to complete
the function. Used only by
pluginNetLibCallUIProc. This function
should take one argument of the same type that
you pass to dataBufferP and should return
void.

Result Returns 0 upon success, or an error condition upon failure. If an
error condition is returned, your plugin should stop processing and
return the error condition from its PilotMain.

Comments When your plugin receives the scptLaunchCmdExecuteCmd
launch code, the parameter block contains the command’s name, its
text string argument (if any), and a pointer to the network
interface’s callback function. You should use this callback function
any time you need to communicate with the network library, the
user, or the host computer during execution of your command.

The callback function takes as arguments the handle to information
about this connection (which is also passed in the launch code’s
parameter block), and the command that the service should execute.
The rest of the parameters are interpreted differently based on what
the value the command argument is. See the table below.

pluginNetLib dataBufferP sizeP dataTimeOutP procAddrP

DoNothing N/A N/A N/A N/A

ReadBytes On return,
contains the bytes
that were read.

On input,
contains the
number of
bytes to read.

Number of
seconds to wait
before timing
out the
operation.

N/A

On return,
contains the
number of
bytes actually
read.

Script Plugin
Script Plugin Functions

1520 Palm OS Programmer’s API Reference

WriteBytes On input, contains
the data to send.

On input,
contains the
number of
bytes to send.

Number of
seconds to wait
for a response
before
canceling.

N/A

On return,
contains the
number of
bytes actually
sent.

UserName On return,
contains the user’s
name

On return,
contains the
size of the
string pointed
to by
dataBufferP.

N/A N/A

UserPwd On return,
contains the user’s
password.

On return,
contains the
size of the
string pointed
to by
dataBufferP.

N/A N/A

CheckCancel
Status

On return, the
Boolean value
true if the user
canceled the
command, false
otherwise.

Size of
Boolean.

N/A N/A

PromptUser On input, the
prompt to display.

On return, the text
that the user
entered.

On input and
on return, the
size of the
string pointed
to by
dataBufferP.

N/A N/A

pluginNetLib dataBufferP sizeP dataTimeOutP procAddrP

Script Plugin
Script Plugin Functions

Palm OS Programmer’s API Reference 1521

ConnLog The string that
should be written
to the log.

N/A N/A N/A

CallUIProc A pointer to a
structure to pass
to your callback
function as a
parameter. This
structure should
contain a handle
to the form to be
displayed, plus
any other
necessary
information.

N/A N/A A pointer to
a function in
your plugin
that displays
the form.

GetSerLib
RefNum

On return,
contains the serial
library’s reference
number.

N/A N/A N/A

pluginNetLib dataBufferP sizeP dataTimeOutP procAddrP

Script Plugin
Script Plugin Functions

1522 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1523

64
Virtual Drivers
This chapter provides reference material for the Serial Manager
virtual device driver API:

• Driver Data Structures

• Driver Constants

• Virtual Driver-Defined Functions

• Serial Manager Queue Functions

The header files SerialVdrv.h and SerialDrvr.h declare the
virtual driver API. For more information on writing device drivers
for the Serial Manager, see section “Writing a Virtual Device Driver”
on page 114 in the “Serial Communication” chapter of Palm OS
Programmer’s Companion, vol. II, Communications.

Driver Data Structures

DrvrInfoType
The DrvrInfoType structure defines information about the serial
hardware. It is passed to and filled in by the
DrvEntryPointProcPtr for a virtual driver.

typedef struct {
 UInt32 drvrID;
 UInt32 drvrVersion;
 UInt32 maxBaudRate;
 UInt32 handshakeThreshold;
 UInt32 portFlags;
 const Char *portDesc;
 DrvrIRQEnum irqType;
 UInt8 multipleEnumerations;
 UInt32 dbCreator;
} DrvrInfoType;

Virtual Drivers
Driver Data Structures

1524 Palm OS Programmer’s API Reference

Value Descriptions

Compatibility The multipleEnumerations and dbCreator fields are only
defined if New Serial Manager Feature Set Version 2 is present.

drvrID 4-character creator type, such as 'u328'.

drvrVersion Version of code that works for this
hardware. See Driver Version
Constants.

maxBaudRate Maximum baud rate supported by this
hardware.

handshakeThreshold Baud rate at which the use of hardware
handshaking is necessary.

portFlags Bit flags denoting features of this
hardware. The flags are described in
Port Feature Constants.

portDesc Pointer to null-terminated string
describing this hardware. This string
appears in the Connection panel to
describe the port to the user (only if the
portCncMgrVisible bit in
portFlags is set). Can be NULL if the
driver contains a resource (of type
'tSTR' and id kPortDescStrID) that
supplies this string.

irqType IRQ line being used for this hardware.
For a virtual driver, specify
drvrIRQNone.

multipleEnumerations The number of entries in the driver
table required for this driver. If 0, the
driver has a single entry.

dbCreator Creator ID of the database containing
this driver.

Virtual Drivers
Driver Data Structures

Palm OS Programmer’s API Reference 1525

DrvrRcvQType
The DrvrRcvQType structure defines the virtual driver receive
buffer and function pointers to functions that access and save data
to the buffer. A pointer to this structure is passed to the
VdrvOpenProcPtr function. The DrvrHWRcvQPtr type defines a
pointer to a DrvrRcvQType structure.

typedef struct DrvrRcvQType {
 void *rcvQ;
 WriteByteProcPtr qWriteByte;
 WriteBlockProcPtr qWriteBlock;
 GetSizeProcPtr qGetSize;
 GetSpaceProcPtr qGetSpace;
 SignalCheckPtr qSignalCheck;
} DrvrRcvQType;

typedef DrvrRcvQType *DrvrHWRcvQPtr;

Value Descriptions

rcvQ Pointer to the receive buffer.

qWriteByte Function pointer to a function that the virtual
driver can use to write one byte to the Serial
Manager’s receive queue. See the
WriteByteProcPtr function.

qWriteBlock Function pointer to a function that the virtual
driver can use to write a block of bytes to the
Serial Manager’s receive queue. See the
WriteBlockProcPtr function.

qGetSize Function pointer to a function that the virtual
driver can use to get the total size of the Serial
Manager’s receive queue. See the
GetSizeProcPtr function.

Virtual Drivers
Driver Data Structures

1526 Palm OS Programmer’s API Reference

Compatibility The qSignalCheck field is only defined if New Serial Manager
Feature Set Version 2 is present.

DrvrStatusEnum
The DrvrStatusEnum enumerated type specifies serial status bit
flags. Return these enumerated types from the
VdrvStatusProcPtr call.

typedef enum DrvrStatusEnum {
 drvrStatusCtsOn = 0x0001,
 drvrStatusRtsOn = 0x0002,
 drvrStatusDsrOn = 0x0004,
 drvrStatusTxFifoFull = 0x0008,
 drvrStatusTxFifoEmpty = 0x0010,
 drvrStatusBreakAsserted = 0x0020,
 drvrStatusDataReady = 0x0040,
 drvrStatusLineErr = 0x0080
} DrvrStatusEnum;

Value Descriptions

qGetSpace Function pointer to a function that the virtual
driver can use to get the available space in the
Serial Manager’s receive queue. See the
GetSpaceProcPtr function.

qSignalCheck Function pointer to a function that the virtual
driver can use to perform a signal check for the
Serial Manager’s receive queue. See the
SignalCheckPtr function.

drvrStatusCtsOn Set if CTS line is active.

drvrStatusRtsOn Set if RTS line is active.

drvrStatusDsrOn Set if DSR is on.

drvrStatusTxFifoFull Set if transmit FIFO is full; cleared
if FIFO has space.

drvrStatusTxFifoEmpty Set if transmit FIFO is empty.

Virtual Drivers
Driver Data Structures

Palm OS Programmer’s API Reference 1527

SrmRcvQType
The SrmRcvQType structure defines the Serial Manager receive
queue. This queue is passed as a parameter to the virtual driver.

typedef struct SrmRcvQType {
 UInt32 qStart;
 UInt32 qEnd;
 UInt32 qSize;
 UInt8 *qData;
 void *qPort;
} SrmRcvQType;

Field Descriptions

Compatibility The SrmRcvQType structure was previously a private structure. It is
declared publicly if New Serial Manager Feature Set Version 2 is
present.

VdrvAPIType
The VdrvAPIType structure defines function pointers to the
required virtual driver functions. When passed a pointer to this
structure in the DrvEntryPointProcPtr function, that function
must fill in the pointers to the virtual driver functions appropriately.

drvrStatusBreakAsserted Set if sending break characters is
enabled.

drvrStatusDataReady Used by debugger only.

drvrStatusLineErr Used by debugger only.

qStart The start of the queue.

qEnd The end of the queue.

qSize The size of the queue.

qData The data currently in the queue.

qPort A pointer to the current foreground port.

Virtual Drivers
Driver Data Structures

1528 Palm OS Programmer’s API Reference

typedef struct {
 VdrvOpenProcPtr drvOpen;
 VdrvCloseProcPtr drvClose;
 VdrvControlProcPtr drvControl;
 VdrvStatusProcPtr drvStatus;
 VdrvReadProcPtr drvRead;
 VdrvWriteProcPtr drvWrite;
 VdrvOpenProcV4Ptr drvOpenV4;
 VdrvControlCustomProcPtr drvControlCustom;
} VdrvAPIType;

Value Descriptions

Compatibility drvOpenV4 and drvControlCustom are declared if both New
Serial Manager Feature Set Version 2 and 4.0 New Feature Set are
present.

VdrvConfigType
The VdrvConfigType structure specifies parameters for opening a
serial port. This structure is passed as a parameter to
VdrvOpenProcV4Ptr.

typedef struct VdrvConfigType {
 UInt32 baud;
 UInt32 drvrId;

drvOpen Pointer to the driver open function.

drvClose Pointer to the driver close function.

drvControl Pointer to the driver control function.

drvStatus Pointer to the driver status function.

drvRead Pointer to the driver read function.

drvWrite Pointer to the driver write function.

drvOpenV4 Pointer to the driver open function for New
Serial Manager Feature Set Version 2.

drvControlCustom Pointer to the driver custom control
function.

Virtual Drivers
Driver Data Structures

Palm OS Programmer’s API Reference 1529

 UInt32 function;
 MemPtr drvrDataP;
 UInt16 drvrDataSize;
 UInt32 sysReserved1;
 UInt32 sysReserved2;
} VdrvConfigType;

Field Descriptions

baud Baud rate at which to open the connection. Serial
drivers that do not require baud rates ignore this
field.

drvrId Creator ID of the application or library that is
using the Serial Manager.

function The reason why the port was opened. Specify the
creator ID of the application that is opening the
port or one of the following values:

serFncUndefined
Undefined function. This is
the default value for this
field.

serFncPPPSession
The connection is to be used
for the PPP interface.

serFncSLIPSession
The connection is to be used
for the SLIP session.

serFncDebugger The connection is to be used
for a debugging session.

serFncHotSync The connection is to be used
for a HotSync operation.

serFncConsole The connection is to the
debugging console.

serFncTelephony
The connection is to the
telephony library.

Virtual Drivers
Driver Data Structures

1530 Palm OS Programmer’s API Reference

Compatibility This structure is only defined if both New Serial Manager Feature
Set Version 2 and 4.0 New Feature Set are present.

VdrvCtlOpCodeEnum
The VdrvCtlOpCodeEnum enumerated type specifies a serial
control operation. You should handle each of these constants when
passed for the controlCode parameter to the
VdrvControlProcPtr call.

typedef enum VdrvCtlOpCodeEnum {
 vdrvOpCodeNoOp = 0,
 vdrvOpCodeSetBaudRate = 0x1000,
 vdrvOpCodeSetSettingsFlags,
 vdrvOpCodeSetCtsTimeout,
 vdrvOpCodeClearErr,
 vdrvOpCodeSetSleepMode,
 vdrvOpCodeSetWakeupMode,
 vdrvOpCodeFIFOCount,
 vdrvOpCodeStartBreak,
 vdrvOpCodeStopBreak,
 vdrvOpCodeStartLoopback,
 vdrvOpCodeStopLoopback,
 vdrvOpCodeFlushTxFIFO,
 vdrvOpCodeFlushRxFIFO,
 vdrvOpCodeSendBufferedData,
 vdrvOpCodeRcvCheckIdle,
 vdrvOpCodeEmuSetBlockingHook,

The function field is used by protocols such as
USB and Bluetooth that perform different setup
tasks based on which type of application is using
them. RS-232 drivers ignore this parameter.

drvrDataP Pointer to a driver-specific data block.

drvrDataSize The size of the data block pointed to by
drvrDataP.

sysReserved1 Reserved for future use.

sysReserved2 Reserved for future use.

Virtual Drivers
Driver Data Structures

Palm OS Programmer’s API Reference 1531

 vdrvOpCodeGetOptTransmitSize,
 vdrvOpCodeGetMaxRcvBlockSize,
 vdrvOpCodeNotifyBytesReadFromQ,
 vdrvOpCodeSetDTRAsserted,
 vdrvOpCodeGetDTRAsserted,
 vdrvOpCodeWaitForConfiguration,
 vdrvOpCodeGetUSBDeviceDescriptor,
 vdrvOpCodeGetUSBConfigDescriptor,
 vdrvOpCodeEnableIRDA,
 vdrvOpCodeDisableIRDA,
 vdrvOpCodeEnableUART,
 vdrvOpCodeDisableUART,
 vdrvOpCodeRxEnable,
 vdrvOpCodeRxDisable,
 vdrvOpCodeLineEnable,
 vdrvOpCodeEnableUARTInterrupts,
 vdrvOpCodeDisableUARTInterrupts,
 vdrvOpCodeSetReceiveQueue,
 vdrvOpCodeSaveState,
 vdrvOpCodeRestoreState,
 vdrvOpCodeSetYieldPortCallback,
 vdrvOpCodesetYieldPortRefCon,
 vdrvOpCodeUserDef = 0x2000,
 vdrvOpCodeSystem = 0x7000,
 vdrvOpCodeCustom = 0x8000
} VdrvCtlOpCodeEnum;

Value Descriptions

vdvrOpCodeSetBaudRate Sets the baud rate.

vdvrOpCodeSetSettingsFlags Sets the data transmission options. The bit
flags are described in Serial Settings
Constants.

vdrvOpCodeSetCtsTimeout Hardware handshake timeout.

vdvrOpCodeClearErr Clears the hardware error state.

vdvrOpCodeSetSleepMode Puts the port in sleep mode (not typically
used for virtual drivers).

Virtual Drivers
Driver Data Structures

1532 Palm OS Programmer’s API Reference

vdvrOpCodeSetWakeupMode Wakes up the port from sleep mode (not
typically used for virtual drivers).

vdvrOpCodeFIFOCount Returns the number of bytes currently in the
FIFO (or best estimate).

vdvrOpCodeStartBreak Sends a break character or enables the
sending of break characters.

vdvrOpCodeStopBreak Stops sending break characters.

vdvrOpCodeStartLoopback Starts loopback mode (not typically used for
virtual drivers).

vdvrOpCodeStopLoopback Stops loopback mode (not typically used for
virtual drivers).

vdrvOpCodeFlushTxFIFO Flushes the contents of the transmit FIFO.

vdrvOpCodeFlushRxFIFO Flushes the contents of the receive FIFO.

vdrvOpCodeSendBufferedData Notifies virtual device to send any buffered
data it has not emptied from its internal
buffers.

vdrvOpCodeRcvCheckIdle Called periodically to allow the virtual
device time to check if there is data to be
received. Because virtual devices execute in
the same thread as applications, they can be
prevented from handling notifications of
received data.

vdrvOpCodeEmuSetBlockingHook Special op code for the Simulator.

vdrvOpCodeGetOptTransmitSize Returns the optimum buffer size for
sending data or returns 0 to specify any
buffer size is acceptable.

vdrvOpCodeGetMaxRcvBlockSize Returns the maximum receive block size
that the Serial Manager should request from
the virtual device. Can be used to
implement flow control.

Virtual Drivers
Driver Data Structures

Palm OS Programmer’s API Reference 1533

vdrvOpCodeNotifyBytesReadFromQ Tells the virtual device that some number of
bytes have been read from the receive
queue by the client application. Can be used
to implement flow control.

vdrvOpCodeSetDTRAsserted Asserts or de-asserts the DTR signal.

vdrvOpCodeGetDTRAsserted Gets the status of the DTR signal.

vdrvOpCodeWaitForConfiguration Waits for USB enumeration to complete.
Called from the send and receive functions
of the Serial Manager. The driver should
have a timeout for how long it waits for
enumeration to complete. The driver should
return with no error if enumeration has
already occurred or has occurred within the
driver’s timeout. If the enumeration has not
occurred within the driver’s timeout, the
driver should return serErrTimeOut.

vdrvOpCodeGetUSBDeviceDescriptor Retrieves the device descriptor of a USB
driver. Used to gather information about
the device’s capabilities. Implementation of
this op code is optional. If the driver
chooses to implement this op code, then the
driver should return a pointer to the device
descriptor. A driver that chooses not to
implement this op code should return
serErrNotSupported.

vdrvOpCodeGetUSBConfigDescriptor Retrieves the configuration descriptor of a
USB driver. Used to gather information
about the device’s capabilities.
Implementation of this op code is optional.
If the driver chooses to implement this op
code, then the driver should return a
pointer to the device descriptor. A driver
that chooses not to implement this op code
should return serErrNotSupported.

vdrvOpCodeEnableIRDA Enable the IrDA mode and power up the IR
line drivers.

Virtual Drivers
Driver Data Structures

1534 Palm OS Programmer’s API Reference

vdrvOpCodeDisableIRDA Disable the IrDA mode and disable the IR
line drivers.

vdrvOpCodeEnableUART Powers up the UART and the line drivers.

vdrvOpCodeDisableUART Powers down the UART and the line
drivers.

vdrvOpCodeRxEnable Enables the receive FIFO, enables UART
interrupts, and does whatever else is
necessary to allow the UART to receive
data.

vdrvOpCodeRxDisable Disables the receive FIFO and UART
interrupts and does whatever is needed to
prevent the UART from receiving data.

vdrvOpCodeLineEnable Enables the main serial line driver for the
UART.

vdrvOpCodeEnableUARTInterrupts Enables the appropriate UART receive
interrupts.

vdrvOpCodeDisableUARTInterrupts Disables all UART interrupts.

vdrvOpCodeSetReceiveQueue This op code is used by the Serial Manager
to set the driver’s receive queue. This
control code is called when a driver that has
previously been opened as a background
port is opened as a fully open bidirectional
port.

vdrvOpCodeSaveState Invoked when this port is yielded. This is a
hook for the driver to save any current state.

vdrvOpCodeRestoreState Invoked when the foreground port is closed
and this port can become the foreground
port.

vdrvOpCodeSetYieldPortCallback Set the function to be called if the Serial
Manager attempts to open another port
when this one is open. This op code is for
system use only.

Virtual Drivers
Driver Constants

Palm OS Programmer’s API Reference 1535

Compatibility The op codes starting at vdrvOpCodeWaitForConfiguration
are defined only if New Serial Manager Feature Set Version 2 is
present. The op codes for yieldable ports and custom operations are
defined only if both 4.0 New Feature Set is present as well.

Driver Constants

Driver Version Constants
The driver version constants specify which version of the driver API
is implemented by this driver. The DrvEntryPointProcPtr
function passes this value back to the Serial Manager in the
drvrVersion field of the DrvrInfoType function.

vdrvOpCodeSetYieldPortRefCon Data to pass to the yield port callback
function. System use only.

vdvrOpCodeUserDef User defined function invoked through
SrmControl.

vdrvOpCodeSystem Reserves op codes between 0x7000 and
0x8000 for system use.

vdrvOpCodeCustom Reserves op codes greater than 0x8000 for
driver-specific use.

Constant Value Description

kDrvrVersion 4 The latest version of the API.

kDrvrVersion3 3 The version of the driver API that
corresponds to New Serial Manager
Feature Set Version 1 (which ships
with roughly Palm OS® 3.3 up to Palm
OS 4.0).

kDrvrVersion4 4 The version of the driver API that
corresponds to New Serial Manager
Feature Set Version 2 (which ships
with roughly Palm OS 4.0 and higher).

Virtual Drivers
Driver Constants

1536 Palm OS Programmer’s API Reference

Virtual Drivers
Driver Constants

Palm OS Programmer’s API Reference 1537

Port Feature Constants
The port feature constants are flags that describe serial hardware
capabilities.

Compatibility USB support is only available if New Serial Manager Feature Set
Version 2 is present.

Constant Value Description

portPhysicalPort 0x00000001 Should be set for a physical port, unset
for a virtual port.

portBkgndModeSupported 0x00000002 Denotes that this port can be used for
background ports. This flag is only
applicable to virtual drivers.
Background mode support is implied
on physical drivers.

portRS232Capable 0x00000004 Set if this hardware has an RS-232
port.

portIRDACapable 0x00000008 Set if this hardware has an IR port and
supports IrDA mode.

portCradlePort 0x00000010 Set if this hardware controls the cradle
port.

portExternalPort 0x00000020 Set if this hardware port is external or
on a memory card.

portModemPort 0x00000040 Set if this hardware communicates
with a modem.

portCncMgrVisible 0x00000080 Set if this serial port’s name is to be
displayed in the Connection panel.

portConsolePort 0x00000100 Denotes this hardware controls the
console port.

portUSBCapable 0x00000200 Set if this hardware has a USB port.

portPrivateUse 0x00001000 Set if this driver is for special software
and not general applications.

Virtual Drivers
Virtual Driver-Defined Functions

1538 Palm OS Programmer’s API Reference

Virtual Driver-Defined Functions
The functions in this section must be defined by your virtual driver.

DrvEntryPointProcPtr

Purpose Entry point for the virtual driver.

Declared In SerialDrvr.h

Prototype Err (*DrvEntryPointProcPtr)
(DrvrEntryOpCodeEnum opCode, void *uartData)

Parameters -> opCode Entry function code.

<-> uartData Pointer to data specific to opCode.

Result errNone No error.

-1 The op code is invalid or the hardware could
not be found.

Comments This function’s purpose is based on the value of the opCode
parameter. The three possible codes are
drvrEntryGetUartFeatures, drvrEntryGetDrvrFuncts,
and drvrEntryGetUartFtrsNEntries.

DrvEntryPoint is called with the
drvrEntryGetUartFeatures code when the Serial Manager is
installed into the system at boot time and is looking for all installed
drivers. When this op code is set, the uartData pointer points to a
DrvrInfoType structure. This function does not allocate the
structure, it just fills in the fields with information.

This function should check to make sure the associated serial device
can operate under the current OS and system settings. If the
hardware cannot be found, the function should leave the
DrvrInfoType struct untouched and return a -1 error.

The driver needs to supply a string that describes the port it
manages. This string is displayed to the user in the Connection
panel and is returned by the SrmGetDeviceInfo function. To set

Virtual Drivers
Virtual Driver-Defined Functions

Palm OS Programmer’s API Reference 1539

this string, copy it into the portDesc field of the DrvrInfoType
structure. Alternatively, you can supply this string in a driver
resource of type 'tSTR' and id kPortDescStrID.

If the DrvrInfoType structure has a positive value in the
multipleEnumerations field upon return, the Serial Manager
defines one port for each entry in the driver table. The
DrvEntryPoint function is called again, this time with the
drvrEntryGetUartFtrsNEntries code. The uartData pointer
points to a new DrvrInfoType structure whose
multipleEnumerations field indicates which port is to be
defined. The function should supply all information specific to this
port.

DrvEntryPoint is called with the drvrEntryGetDrvrFuncts
code when a virtual port is opened. The uartData pointer points to
a VdrvAPIType structure and DrvEntryPoint must fill in the
fields of this structure with appropriate function pointers.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

The drvrEntryGetUartFtrsNEntries is only supported if New
Serial Manager Feature Set Version 2 is present. This function is
fully backwards compatible. Passing 0 for the
multipleEnumerations field defines a single port for the driver.

VdrvCloseProcPtr

Purpose Handles all activities needed to close the virtual device.

Declared In SerialDrvr.h

Prototype Err (*VdrvCloseProcPtr) (VdrvDataPtr drvrData)

Parameters -> drvrData Pointer to the driver’s private global area.

Result errNone No error.

Virtual Drivers
Virtual Driver-Defined Functions

1540 Palm OS Programmer’s API Reference

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

VdrvControlProcPtr

Purpose Extends the SrmControl function to the level of the virtual device.

Declared In SerialDrvr.h

Prototype Err (*VdrvControlProcPtr) (VdrvDataPtr drvrData,
VdrvCtlOpCodeEnum controlCode, void *controlData,
UInt16 *controlDataLen)

Parameters -> drvrData Pointer to the driver’s private global area.

-> controlCode Control function op code. One of the op codes
listed in the VdrvCtlOpCodeEnum type.

<-> controlData Pointer to data for the specified control
function.

<-> controlDataLen
Pointer to length of control data being passed
in or out.

Result errNone No error.

serErrNotSupported
controlCode not supported.

serErrBadParam controlData or controlDataLen is bad.

Comments This function should support the op codes listed in the
VdrvCtlOpCodeEnum type. If this function does not support an op
code, it must return the serErrNotSupported error code for that
op code.

Table 64.1 shows what is passed for the controlData and
controlDataLen parameters for each of the control codes that use
them. Control codes not listed do not use these parameters.

Virtual Drivers
Virtual Driver-Defined Functions

Palm OS Programmer’s API Reference 1541

Table 64.1 VDrvControlProcPtr Parameters

vdvrOpCodeSetBaudRate -> controlData = Pointer to Int32 (baud
rate),
-> controlDataLen = Pointer to
sizeof(Int32).

vdvrOpCodeSetSettingsFlags -> controlData = Pointer to UInt32
(bitfield; see Serial Settings Constants)
-> controlDataLen = Pointer to
sizeof(UInt32)

vdvrOpCodeFIFOCount -> controlData = Pointer to Int16, which
contains the number of bytes in the FIFO.
-> controlDataLen = Pointer to
sizeof(Int16).

vdrvOpCodeGetOptTransmitSize <- controlData = Pointer to Int32 (buffer
size),
<- controlDataLen = Pointer to
sizeof(Int32).
Return the optimum buffer size for sending
data, or 0 to specify any buffer size is
acceptable.

vdrvOpCodeGetMaxRcvBlockSize <- controlData = Pointer to Int32 (block
size),
<- controlDataLen = Pointer to
sizeof(Int32).
Return the maximum block size that the
Serial Manager should request from the
virtual device.

vdrvOpCodeNotifyBytes
ReadFromQ

-> controlData = Pointer to Int32
(number of bytes read),
-> controlDataLen = Pointer to
sizeof(Int32).

vdrvOpCodeSetDTRAsserted -> controlData = Pointer to Boolean
indicating whether to enable or disable DTR.
-> controlDataLen = Pointer to
sizeof(Boolean)

Virtual Drivers
Virtual Driver-Defined Functions

1542 Palm OS Programmer’s API Reference

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

VdrvControlCustomProcPtr

Purpose Extends the SrmCustomControl function to the level of the virtual
device.

Declared In SerialDrvr.h

Prototype Err (*VdrvControlCustomProcPtr)
(VdrvDataPtr drvrData, UInt16 opCode,
UInt32 creator, void *controlData,
void *controlDataLenP)

Parameters -> drvrData Pointer to the driver’s private global area.

-> controlCode Control function op code.

-> creator Creator ID of the driver that defines the op
code. The combination of creator ID and op
code uniquely identifies the operation to be
performed.

<-> controlData Pointer to data for the specified control
function.

vdrvOpCodeGetDTRAsserted <- controlData = Pointer to Boolean
indicating whether DTR is enabled.
<- controlDataLen = Pointer to
sizeof(Boolean)

vdvrOpCodeUserDef <-> controlData = Pointer from
SrmControl (user-defined data),
<-> controlDataLen = Pointer to
sizeof(Int32).

Table 64.1 VDrvControlProcPtr Parameters (continued)

Virtual Drivers
Virtual Driver-Defined Functions

Palm OS Programmer’s API Reference 1543

<-> controlDataLen
Pointer to length of control data being passed
in or out.

Result errNone No error.

serErrNotSupported
controlCode not supported.

serErrBadParam controlData or controlDataLen is bad.

Comments This function is a mechanism for a virtual driver to create control
codes specific to that driver, allowing for the support of new
technologies that have interfaces through the Serial Manager.

Compatibility Implemented only if both New Serial Manager Feature Set Version 2
and 4.0 New Feature Set are present.

VdrvOpenProcPtr

Purpose Initializes the virtual device to begin communication.

Declared In SerialDrvr.h

Prototype Err (*VdrvOpenProcPtr) (VdrvDataPtr *drvrData,
UInt32 baudRate, DrvrHWRcvQPtr rcvQP)

Parameters <-> drvrData Pointer to a pointer to the driver’s private
global area (allocated by this function). A
pointer to this private global area is passed to
the other virtual driver functions.

-> baudRate Initial baud rate setting.

-> rcvQP Pointer to the driver’s receive queue buffer
structure. For details on the fields, see
DrvrRcvQType.

Result errNone No error.

Virtual Drivers
Virtual Driver-Defined Functions

1544 Palm OS Programmer’s API Reference

Comments This function must allocate and initialize any global variables (and
pass back a pointer to a pointer to them in drvrDataP), do any set-
up necessary for communicating with other software, and save the
rcvQP pointer since it will need the functions and pointers to
structures enclosed within to be able to save received data into the
Serial Manager’s receive queue.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

VdrvOpenProcV4Ptr

Purpose Initializes the virtual device to begin communication.

Declared In SerialDrvr.h

Prototype Err (*VdrvOpenProcV4Ptr) (VdrvDataPtr *drvrData,
VdrvConfigPtr configP, DrvrHWRcvQPtr rcvQP)

Parameters <-> drvrData Pointer to a pointer to the driver’s private
global area (allocated by this function). A
pointer to this private global area is passed to
the other virtual driver functions.

-> configP Pointer to the configuration structure
specifying the port’s properties. See
VdrvConfigType.

-> rcvQP Pointer to the driver’s receive queue buffer
structure. For details on the fields, see
DrvrRcvQType.

Result errNone No error.

Comments This function must allocate and initialize any global variables (and
pass back a pointer to a pointer to them in drvrDataP), do any set-
up necessary for communicating with other software, and save the
rcvQP pointer since it will need the functions and pointers to
structures enclosed within to be able to save received data into the
Serial Manager’s receive queue.

Virtual Drivers
Virtual Driver-Defined Functions

Palm OS Programmer’s API Reference 1545

Compatibility Implemented only if both New Serial Manager Feature Set Version 2
and 4.0 New Feature Set are present.

VdrvStatusProcPtr

Purpose Returns virtual device status.

Declared In SerialDrvr.h

Prototype UInt16 (*VDrvStatusProcPtr) (VdrvDataPtr drvrData)

Parameters -> drvrData Pointer to the driver’s private global area.

Result An unsigned long bitfield denoting the status of the virtual device,
but only if the virtual device is emulating hardware. The individual
bit flags are described in the DrvrStatusEnum type.

Comments Generally, status is returned only to the client application using the
virtual device. The Serial Manager does not use status information
from virtual devices.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

VdrvWriteProcPtr

Purpose Writes a block of bytes.

Declared In SerialDrvr.h

Prototype UInt32 (*VdrvWriteProcPtr) (VdrvDataPtr drvrDataP,
void *bufP, UInt32 size, Err *errP)

Parameters -> drvrDataP Pointer to the driver’s private global area.

-> bufP Pointer to buffer containing the data to be
written to the virtual device.

-> size Number of bytes in the buffer bufP.

Virtual Drivers
Serial Manager Queue Functions

1546 Palm OS Programmer’s API Reference

<- errP Pointer to an error code resulting from the
operation. Zero is returned if there is no error.

Result Returns the actual number of bytes written.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

Serial Manager Queue Functions
The functions in this section are supplied by the Serial Manager to
the virtual driver through the DrvrRcvQType passed to the
VdrvOpenProcPtr function.

GetSizeProcPtr

Purpose Returns the total size of the Serial Manager’s receive queue.

Declared In SerialDrvr.h

Prototype typedef UInt32 (*GetSizeProcPtr) (void *theQ)

Parameters -> theQ Pointer to the receive queue.

Result Size in bytes of the Serial Manager’s receive queue.

Comments This function is useful for implementing flow control.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

Virtual Drivers
Serial Manager Queue Functions

Palm OS Programmer’s API Reference 1547

GetSpaceProcPtr

Purpose Returns the available space in the Serial Manager’s receive queue.

Declared In SerialDrvr.h

Prototype typedef UInt32 (*GetSpaceProcPtr) (void *theQ)

Parameters -> theQ Pointer to the receive queue.

Result Size in bytes of the available space in the Serial Manager’s receive
queue.

Comments This function is useful for implementing flow control.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

SignalCheckPtr

Purpose Check the queue to see if the semaphore needs to be signalled.

Declared In SerialDrvr.h

Prototype typedef void (*SignalCheckPtr) (void *theQ,
UInt16 lineErrsP)

Parameters -> theQ Pointer to the receive queue.

-> lineErrsP Any serial line errors received should be
reported here.

Result Returns nothing.

Comments This function signals that there is data to be received without
writing anything to the receive queue. The WriteByteProcPtr
and WriteBlockProcPtr functions also signal that there is data to
be received after they have written the data to the queue.

Virtual Drivers
Serial Manager Queue Functions

1548 Palm OS Programmer’s API Reference

Compatibility Implemented only if New Serial Manager Feature Set Version 2 is
present.

WriteBlockProcPtr

Purpose Writes a block of bytes to the Serial Manager’s receive queue.

Declared In SerialDrvr.h

Prototype typedef Err (*WriteBlockProcPtr) (void *theQ,
UInt8 *bufP, UInt16 size, UInt16 lineErrs)

Parameters -> theQ Pointer to the receive queue.

-> bufP Pointer to the buffer holding bytes to be
written.

-> size Size of bufP.

-> lineErrs Any serial line errors received should be
reported here.

Result errNone No error.

serErrLineErr There was a software overrun line error.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

WriteByteProcPtr

Purpose Writes one byte to the Serial Manager’s receive queue.

Declared In SerialDrvr.h

Prototype typedef Err (*WriteByteProcPtr) (void *theQ,
UInt8 theByte, UInt16 lineErrs)

Parameters -> theQ Pointer to the receive queue.

-> theByte The byte to be written to the queue.

Virtual Drivers
Serial Manager Queue Functions

Palm OS Programmer’s API Reference 1549

-> lineErrs Any serial line errors received should be
reported here.

Result errNone No error.

serErrLineErr There was a software overrun line error.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

Virtual Drivers
Serial Manager Queue Functions

1550 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1551

65
Serial Manager
This chapter provides reference material for the Serial Manager API:

• Serial Manager Data Structures

• Serial Manager Constants

• Serial Manager Functions

• Serial Manager Application-Defined Functions

The header file SerialMgr.h declares the Serial Manager API. The
file SystemResources.h defines some serial port constants. For
more information on the Serial Manager, see the chapter “Serial
Communication” on page 89 of the Palm OS Programmer’s
Companion, vol. II, Communications.

Serial Manager Data Structures

DeviceInfoType
The DeviceInfoType structure defines information about a serial
device. This structure is returned by the SrmGetDeviceInfo
function.

typedef struct DeviceInfoType {
 UInt32 serDevCreator;
 UInt32 serDevFtrInfo;
 UInt32 serDevMaxBaudRate;
 UInt32 serDevHandshakeBaud;
 Char *serDevPortInfoStr;
 UInt8 reserved[8];
} DeviceInfoType;
typedef DeviceInfoType *DeviceInfoPtr;

Serial Manager
Serial Manager Data Structures

1552 Palm OS Programmer’s API Reference

Value Descriptions

SrmCtlEnum
The SrmCtlEnum enumerated type specifies a serial control
operation. Specify one of these enumerated types for the op
parameter to the SrmControl call.

typedef enum SrmCtlEnum {
 srmCtlFirstReserved = 0,
 srmCtlSetBaudRate,
 srmCtlGetBaudRate,
 srmCtlSetFlags,
 srmCtlGetFlags,
 srmCtlSetCtsTimeout,
 srmCtlGetCtsTimeout,
 srmCtlStartBreak,
 srmCtlStopBreak,
 srmCtlStartLocalLoopback,
 srmCtlStopLocalLoopback,
 srmCtlIrDAEnable,
 srmCtlIrDADisable,
 srmCtlRxEnable,
 srmCtlRxDisable,
 srmCtlEmuSetBlockingHook,
 srmCtlUserDef,

serDevCreator Four-character creator ID for serial
driver.

serDevFtrInfo Flags defining features of this serial
hardware. See Serial Capabilities
Constants for a description of these
flags.

serDevMaxBaudRate Maximum baud rate for this device.

serDevHandshakeBaud Hardware handshaking is
recommended for baud rates over this
rate.

serDevPortInfoStr Description of serial hardware device
or virtual device.

Serial Manager
Serial Manager Data Structures

Palm OS Programmer’s API Reference 1553

 srmCtlGetOptimalTransmitSize,
 srmCtlSetDTRAsserted,
 srmCtlGetDTRAsserted,
 srmCtlSetYieldPortCallback,
 srmCtlSetYieldPortRefCon,
 srmCtlSystemReserved = 0x7000
 srmCtlCustom = 0x8000,
 srmCtlLAST
} SrmCtlEnum;

Value Descriptions

srmCtlSetBaudRate Sets the current baud rate for the serial
hardware.

srmCtlGetBaudRate Gets the current baud rate for the serial
hardware.

srmCtlSetFlags Sets the current flag settings for the serial
hardware. Specify flags from the set described
in Serial Settings Constants.

srmCtlGetFlags Gets the current flag settings for the serial
hardware.

srmCtlSetCtsTimeout Sets the current CTS timeout value for
hardware handshaking.

srmCtlGetCtsTimeout Gets the current CTS timeout value for
hardware handshaking.

srmCtlStartBreak Turn RS-232 break signal on. Caller is
responsible for turning this signal on and off
and insuring it is on long enough to generate a
viable break.

srmCtlStopBreak Turn RS-232 break signal off.

srmCtlStartLocalLoopback Start local loopback test.

srmCtlStopLocalLoopback Stop local loopback test.

Serial Manager
Serial Manager Data Structures

1554 Palm OS Programmer’s API Reference

srmCtlIrDAEnable Enable IrDA connection on this serial port.

NOTE: You cannot enable an IrDA
connection on a VZ processor.

srmCtlIrDADisable Disable IrDA connection on this serial port.

srmCtlRxEnable Enable receiver (for IrDA).

srmCtlRxDisable Disable receiver (for IrDA).

srmCtlEmuSetBlockingHook Set a blocking hook routine for emulation mode
only. Not supported on the actual device.

srmCtlUserDef This is a user-defined function that third-party
hardware developers can use to set or retrieve
hardware-specific information from the serial
driver. This op code invokes the driver’s
corresponding control function with its user-
defined op code and the parameters are passed
directly through to the serial driver. A serial
driver that does not handle this function
returns a serErrBadParam error.

The srmCtlUserDef op code is superseded by
defining a custom op code if New Serial
Manager Feature Set Version 2 is present.

srmCtlGetOptimalTransmitSize Ask the port for the most efficient buffer size
for transmitting data packets. This op code
returns an error (buffering not necessary), 0
(buffering requested, but application can
choose buffer size), or a number greater than 0
(recommended buffer size).

srmCtlSetDTRAsserted Enabled or disable the DTR signal. This is not
supported by all hardware.

srmCtlGetDTRAsserted Ask the port whether the DTR signal is enabled
or disabled.

Serial Manager
Serial Manager Data Structures

Palm OS Programmer’s API Reference 1555

Compatibility Custom control op codes are only supported if both New Serial
Manager Feature Set Version 2 and 4.0 New Feature Set are present.

SrmOpenConfigType
The SrmOpenConfigType structure specifies parameters for
opening a serial port. This structure is passed as a parameter to
SrmExtOpen.

typedef struct SrmOpenConfigType {
 UInt32 baud;
 UInt32 function;
 MemPtr drvrDataP;
 UInt16 drvrDataSize;
 UInt32 sysReserved1;
 UInt32 sysReserved2;
} SrmOpenConfigType;

srmCtlSetYieldPortCallback Set the function to be called if the Serial
Manager attempts to open another port when
this one is open. This op code is for system use
only.

srmCtlSetYieldPortRefCon Data to pass to the yield port callback function.
System use only.

srmCtlSystemReserved Reserves op codes between 0x7000 and 0x8000
for system use.

srmCtlCustom Reserves op codes greater than 0x8000 for
driver-specific use.

Serial Manager
Serial Manager Data Structures

1556 Palm OS Programmer’s API Reference

Field Descriptions

baud Baud rate at which to open the connection. Serial
drivers that do not require baud rates ignore this
field.

function The reason why the port was opened. Specify the
creator ID of the application that is opening the
port or one of the following values:

serFncUndefined
Undefined function. This is
the default value for this
field.

serFncPPPSession
The connection is to be used
for the PPP interface.

serFncSLIPSession
The connection is to be used
for the SLIP session.

serFncDebugger The connection is to be used
for a debugging session.

serFncHotSync The connection is to be used
for a HotSync operation.

serFncConsole The connection is to the
debugging console.

serFncTelephony
The connection is to the
telephony library.

The function field is used by protocols such as
USB and Bluetooth that perform different setup
tasks based on which type of application is using
them. RS-232 drivers ignore this parameter.

drvrDataP Pointer to a driver-specific data block.

drvrDataSize The size of the data block pointed to by
drvrDataP.

Serial Manager
Serial Manager Constants

Palm OS Programmer’s API Reference 1557

Compatibility This structure is only defined if both New Serial Manager Feature
Set Version 2 and 4.0 New Feature Set are present.

Serial Manager Constants

Port Constants
When you specify the port to open in the SrmOpen,
SrmOpenBackground, SrmExtOpen, or
SrmExtOpenBackground call, you can use either a logical port
constant, physical port constant, or a virtual port constant, but it is
highly recommended that you use a logical port constant wherever
possible.

Logical Serial Port Constants

These constants specify the logical port names.

sysReserved1 Reserved for future use.

sysReserved2 Reserved for future use.

Constant Value Description

serPortLocalHotSync 0x8000 The physical HotSync port. The Serial
Manager automatically detects whether
this port is USB or RS-232.

serPortCradlePort 0x8000 Cradle port. The Serial Manager
automatically detects whether this port is
USB or RS-232. Most applications should
specify this as the port.

serPortIrPort 0x8001 The IR port. This is a raw IrDA port with
no protocol support.

serPortConsolePort 0x8002 The debug console port, either USB or RS-
232. USB is preferred where both are
available.

Serial Manager
Serial Manager Constants

1558 Palm OS Programmer’s API Reference

Compatibility USB ports are only supported if New Serial Manager Feature Set
Version 2 is present.

Physical Serial Port Constants

The physical port constants specify 4-character constants that
reference the physical hardware of the device. Doing so is not
recommended because the hardware they reference may not exist
on a particular device.

Virtual Serial Port Constants

The virtual port constants specify 4-character constants that identify
virtual ports, simulating a hardware interface. Virtual ports are not
tied to specific hardware.

serPortCradleRS232Port 0x8003 Port for the RS-232 cradle. Specify this port
if you want to ensure that your application
uses RS-232 communications only.

serPortCradleUSBPort 0x8004 Port for the USB cradle. Specify this port if
you want to ensure that your application
uses USB communications only.

Constant Value Description

Physical port Value Description

sysFileCUart328 'u328' Cradle port using the 68328 UART. This port
can be switched between RS232 and IrDA mode
using the SrmControl call.

sysFileCUart328EZ 'u8EZ' Cradle port using the 68328EZ UART. This port
can also be switched between RS232 and IrDA
mode.

sysFileCUart650 'u650' Specifies the IR port on the upgrade card for
Palm Personal or Palm Professional devices.
This gives you a raw IR port like calling
SrmControl does, but it only exists on devices
that have the upgrade card.

Serial Manager
Serial Manager Constants

Palm OS Programmer’s API Reference 1559

Compatibility All virtual port constants other than sysFileCVirtIrComm are
only defined if both New Serial Manager Feature Set Version 2 and
4.0 New Feature Set are present.

Serial Capabilities Constants
The serial capabilities constant flags describe serial hardware
capabilities. These flags are set in the serDevFtrInfo field of the
DeviceInfoType structure.

Physical port Value Description

sysFileCVirtIrComm 'ircm' A virtual serial cable over an
IrDA link using the IRComm
protocol. It can only be used to
talk to another IRComm device.

sysFileCVirtRfComm 'rfcm' RFCOMM (Bluetooth) virtual
port plug-in.

sysFileCBtConnectPanelHelper 'btcp' Bluetooth Connection Panel
helper application.

Constant Value Description

serDevCradlePort 0x00000001 Serial hardware controls RS-
232 serial from cradle connector
of Palm device.

serDevRS232Serial 0x00000002 Serial hardware has RS-232 line
drivers.

serDevIRDACapable 0x00000004 Serial hardware has IR line
drivers and generates IrDA
mode serial signals.

serDevModemPort 0x00000008 Serial hardware drives modem
connection.

serDevCncMgrVisible 0x00000010 Serial device port name string
is to be displayed in the
Connection panel.

Serial Manager
Serial Manager Constants

1560 Palm OS Programmer’s API Reference

Compatibility USB ports are only supported if New Serial Manager Feature Set
Version 2 is present.

Serial Settings Constants
The serial settings constants identify bit flags that correspond to
various serial hardware settings. Use SrmControl with the op code
srmCtlSetFlags to control which settings are used.

serDevConsolePort 0x00000020 Serial device is the default
console port.

serDevUSBCapable 0x00000040 Serial hardware controls USB
serial from cradle connector of
Palm device.

Constant Value Description

Constant Value Description

srmSettingsFlagStopBitsM 0x00000001 Mask for stop bits field

srmSettingsFlagStopBits1 0x00000000 1 stop bit (default)

srmSettingsFlagStopBits2 0x00000001 2 stop bits

srmSettingsFlagParityOnM 0x00000002 Mask for parity on

srmSettingsFlagParityEvenM 0x00000004 Mask for parity even

srmSettingsFlagXonXoffM 0x00000008 Mask for Xon/Xoff flow
control (not implemented)

srmSettingsFlagRTSAutoM 0x00000010 Mask for RTS receive flow
control. This is the default.

srmSettingsFlagCTSAutoM 0x00000020 Mask for CTS transmit flow
control

srmSettingsFlagBitsPerCharM 0x000000C0 Mask for bits per character

srmSettingsFlagBitsPerChar5 0x00000000 5 bits per character

srmSettingsFlagBitsPerChar6 0x00000040 6 bits per character

Serial Manager
Serial Manager Constants

Palm OS Programmer’s API Reference 1561

srmSettingsFlagBitsPerChar7 0x00000080 7 bits per character

srmSettingsFlagBitsPerChar8 0x000000C0 8 bits per character (default)

srmSettingsFlagFlowControlIn 0x00000100 Protect the receive buffer
from software overruns.
When this flag and
srmSettingsFlagRTSAu
toM are set, which is the
default case, it causes the
Serial Manager to assert
RTS to prevent the
transmitting device from
continuing to send data
when the receive buffer is
full. Once the application
receives data from the
buffer, RTS is de-asserted to
allow data reception to
resume.

Note that this feature
effectively prevents
software overrun line errors
but may also cause CTS
timeouts on the
transmitting device if the
RTS line is asserted longer
than the defined CTS
timeout value.

srmSettingsFlagRTSInactive 0x00000200 If this flag is set and
srmSettingsFlagRTSAu
toM is not set, RTS is held in
the inactive (flow off) state
forever.

Constant Value Description

Serial Manager
Serial Manager Constants

1562 Palm OS Programmer’s API Reference

Status Constants
The status constants identify bit flags that correspond to the status
of serial signals. They can be returned by the SrmGetStatus
function.

Line Error Constants
The line error constants identify bit flags that correspond to the line
errors that may occur on the port. They can be returned by the
SrmGetStatus function.

Constant Value Description

srmStatusCtsOn 0x00000001 CTS line is active.

srmStatusRtsOn 0x00000002 RTS line is active.

srmStatusDsrOn 0x00000004 DSR line is active.

srmStatusBreakSigOn 0x00000008 Break signal is active.

Constant Value Description

serLineErrorParity 0x0001 Parity error

serLineErrorHWOverrun 0x0002 Hardware overrun

serLineErrorFraming 0x0004 Framing error

serLineErrorBreak 0x0008 Break signal asserted

serLineErrorHShake 0x0010 Line handshake error

serLineErrorSWOverrun 0x0020 Software overrun

serLineErrorCarrierLost 0x0040 Carrier detect signal dropped

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1563

Serial Manager Functions

SrmClearErr

Purpose Clears the port of any line errors.

Declared In SerialMgr.h

Prototype Err SrmClearErr (UInt16 portId)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

Result This function returns the following error codes:

errNone No error.

serErrNotSupported
The port is not the foreground port.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

SrmClose

Purpose Closes a serial port and makes it available to other applications,
regardless of whether the port is a foreground or background port.

Declared In SerialMgr.h

Prototype Err SrmClose (UInt16 portId)

Parameters -> portId Port ID for port to be closed.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

Serial Manager
Serial Manager Functions

1564 Palm OS Programmer’s API Reference

serErrNotOpen The serial port is not open.

serErrNoDevicesAvail
No serial devices could be found.

Comments If a foreground port is being closed and a background port exists,
the background will have access to the port as long as another
foreground port is not opened.

If a foreground port is being closed and a yielded port exists, the
yielded port will have access to the port as long as it does not yield
to the opening of another foreground port. If there are both a
yielded port and a background port for the foreground port being
closed, the yielded port takes precedence over the background port.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmOpen, SrmOpenBackground

SrmControl

Purpose Performs a serial control function.

Declared In SerialMgr.h

Prototype Err SrmControl (UInt16 portId, UInt16 op,
void *valueP, UInt16 *valueLenP)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

-> op Control operation to perform. Specify one of
the SrmCtlEnum enumerated types.

<-> valueP Pointer to a value to use for the operation. See
Comments for details.

<-> valueLenP Pointer to the size of *valueP. See Comments
for details.

Result This function returns the following error codes:

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1565

errNone No error.

serErrBadParam An invalid op code was specified.

serErrBadPort This port doesn’t exist.

serErrNotOpen The serial port is not open.

serErrNoDevicesAvail
No serial devices could be found.

serErrNotSupported
The specified op code is not supported in the
current configuration.

Comments Table 65.1 shows what to pass for the valueP and valueLenP
parameters for each of the operation codes. Control codes not listed
do not use these parameters. See SrmCtlEnum for a complete list of
control codes.

Table 65.1 SrmControl Parameters

Operation Code Parameters

srmCtlSetBaudRate -> valueP = Pointer to Int32 (baud rate)
-> valueLenP = Pointer to sizeof(Int32)

srmCtlGetBaudRate <- valueP = Pointer to Int32 (baud rate)
<- valueLenP = Pointer to Int16

srmCtlSetFlags -> valueP = Pointer to Uint32 (bitfield; see
Serial Settings Constants)
-> valueLenP = Pointer to sizeof(UInt32)

srmCtlGetFlags <- valueP = Pointer to UInt32 (bitfield)
<- valueLenP = Pointer to Int16

srmCtlSetCtsTimeout -> valueP = Pointer to Int32 (timeout value)
-> valueLenP = Pointer to sizeof(Int32)

srmCtlGetCtsTimeout <- valueP = Pointer to Int32 (timeout value)
<- valueLenP = Pointer to Int16

Serial Manager
Serial Manager Functions

1566 Palm OS Programmer’s API Reference

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmCustomControl

srmCtlUserDef <-> valueP = Pointer passed to the serial or
virtual driver
<-> valueLenP = Pointer to sizeof(Int32)
For a serial driver, these pointers are passed to
the driver’s control function and they contain
that functions return values (if any) upon
return.

srmCtlGetOptimalTransmitSize <- valueP = Pointer to Int32
<- valueLenP = Pointer to sizeof(Int32)
If an error is returned by SrmControl, no
buffering should be done. If valueP points to
zero, buffering is requested, but the
transmitting application cannot determine the
buffer size. If valueP points to a number > 0,
then try to send data in blocks of this number
of bytes, as this is the most efficient block size
for this particular device.

srmCtlSetDTRAsserted -> valueP = Pointer to Boolean indicating
whether to enable or disable DTR.
-> valueLenP = Pointer to
sizeof(Boolean)

srmCtlGetDTRAsserted <- valueP = Pointer to Boolean indicating
whether DTR is enabled.
<- valueLenP = Pointer to Int16

Table 65.1 SrmControl Parameters (continued)

Operation Code Parameters

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1567

SrmCustomControl

Purpose Performs a custom serial control function.

Declared In SerialMgr.h

Prototype Err SrmCustomControl (UInt16 portId,
UInt16 opCode, UInt32 creator, void *valueP,
UInt16 *valueLenP)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

-> opCode Control operation to perform. The op code
must be greater than srmCtlCustom.

-> creator Creator ID of the driver that defines the op
code. The combination of creator ID and op
code uniquely identifies the operation to be
performed.

<-> valueP Pointer to a value to use for the operation.

<-> valueLenP Pointer to the size of *valueP.

Result This function returns the following error codes:

errNone No error.

serErrNotSupported
The port is not the foreground port.

serErrBadPort This port doesn’t exist.

serErrNotOpen The serial port is not open.

serErrNoDevicesAvail
No serial devices could be found.

Comments This function is a mechanism for a virtual driver to create control
codes specific to that driver, allowing for the support of new
technologies that have interfaces through the Serial Manager.

This function simply forwards the opCode and any valueP
parameter to the virtual driver for the port. The virtual driver may

Serial Manager
Serial Manager Functions

1568 Palm OS Programmer’s API Reference

return its own error code if the opCode or the input in valueP is
invalid.

Compatibility Implemented only if both New Serial Manager Feature Set Version 2
and 4.0 New Feature Set are present.

See Also SrmControl

SrmExtOpen

Purpose Opens a foreground port connection with the specified
configuration.

Declared In SerialMgr.h

Prototype Err SrmExtOpen (UInt32 port,
SrmOpenConfigType *configP, UInt16 configSize,
UInt16 *newPortIdP)

Parameters -> port The four-character port name (such as 'ircm' or
'u328') or logical port number to be opened.
(See Port Constants.)

-> configP Pointer to the configuration structure
specifying the serial port’s properties. See
SrmOpenConfigType.

-> configSize The size of the configuration structure pointed
to by configP.

<- newPortIdP Contains the port ID to be passed to other Serial
Manager functions.

Result This function returns the following error codes:

errNone No error.

serErrBadPort The port parameter does not specify a valid
port.

serErrBadParam The configP parameter is NULL.

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1569

serErrAlreadyOpen
The Serial Manager already has a port open.

memErrNotEnoughSpace
There was not enough memory available to
open the port.

Comments Do not keep the port open any longer than necessary. An open serial
port consumes more energy from the device’s batteries.

The values specified in the configP parameter depend on the type
of connection being made. For RS-232 connections, you specify the
baud rate but not a purpose. For USB connections, you specify a
purpose but not a baud rate.

A newly opened port has its line errors cleared, the default CTS
timeout set (specified by the constant srmDefaultCTSTimeout), a
512-byte receive queue allocated, 1 stop bit, 8 bits per character, RTS
enabled, and flow control enabled. To increase the receive queue
size, use SrmSetReceiveBuffer. To change the other serial port
settings, use SrmControl.

Compatibility Implemented only if both New Serial Manager Feature Set Version 2
and 4.0 New Feature Set are present. The SrmExtOpen function
replaces the SrmOpen function.

See Also SrmOpen, SrmExtOpenBackground

Serial Manager
Serial Manager Functions

1570 Palm OS Programmer’s API Reference

SrmExtOpenBackground

Purpose Opens a port with the specified configuration in the background.
Background ports relinquish control when another task opens the
port with the SrmOpen or SrmExtOpen call.

Declared In SerialMgr.h

Prototype Err SrmExtOpenBackground (UInt32 port,
SrmOpenConfigType *configP, UInt16 configSize,
UInt16 *newPortIdP)

Parameters -> port Physical or logical port number to be opened.
See Port Constants for more information.

-> configP Pointer to the configuration structure
specifying the serial port’s properties. See
SrmOpenConfigType.

-> configSize The size of the configuration structure pointed
to by configP.

<- newPortIdP Contains the port ID to be passed to other Serial
Manager functions.

Result This function returns the following error codes:

errNone No error.

serErrAlreadyOpen
This port already has an installed background
owner.

serErrBadPort This port doesn’t exist.

serErrNotSupported
This type of port cannot be opened in the
background.

serErrBadParam The configP parameter is NULL.

memErrNotEnoughSpace
There was not enough memory available to
open the port.

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1571

Comments This function is provided to support tasks that want to use a serial
device to receive data only when no other task is using the port.

If a background port is forced to surrender control of the hardware
as a result of another task opening a foreground connection, all
buffers for the background port are flushed. After this active task
closes the port, active control of the port is returned to the
background task. Only one task can have background ownership of
the port.

Note that background ports have limited functionality: they can
only receive data and notify owning clients of what data has been
received.

The values specified in the configP parameter depend on the type
of connection being made. For RS-232 connections, you specify the
baud rate but not a purpose. For USB connections, you specify a
purpose but not a baud rate.

Compatibility Implemented only if both New Serial Manager Feature Set Version 2
and 4.0 New Feature Set are present. The
SrmExtOpenBackground function replaces the
SrmOpenBackground function.

See Also SrmOpen, SrmExtOpen

SrmGetDeviceCount

Purpose Returns the number of available serial devices.

Declared In SerialMgr.h

Prototype Err SrmGetDeviceCount (UInt16 *numOfDevicesP)

Parameters <- numOfDevicesP
Pointer to address where the number of serial
devices is returned.

Result errNone No error.

Serial Manager
Serial Manager Functions

1572 Palm OS Programmer’s API Reference

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmGetDeviceInfo

SrmGetDeviceInfo

Purpose Returns information about a serial device.

Declared In SerialMgr.h

Prototype Err SrmGetDeviceInfo (UInt32 deviceID,
DeviceInfoType *deviceInfoP)

Parameters -> deviceID ID of serial device to get information for. You
can pass a zero-based index (0, 1, 2, ...), a valid
port ID returned from SrmOpen or
SrmExtOpen, or a 4-character port name (such
as 'u328', 'u650', or 'ircm'). See Port Constants.

<- deviceInfoP Pointer to a DeviceInfoType structure where
information about the device is returned.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNoDevicesAvail
The Serial Manager cannot find any serial
devices.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmGetDeviceCount

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1573

SrmGetStatus

Purpose Returns status information about the serial hardware.

Declared In SerialMgr.h

Prototype Err SrmGetStatus (UInt16 portId,
UInt32 *statusFieldP, UInt16 *lineErrsP)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

<- statusFieldP Pointer to address where hardware status
information for the port is returned. This is a
32-bit field using the flags described in Status
Constants.

<- lineErrsP Pointer to address where the number of line
errors for the port is returned. The line error
flags are described in Line Error Constants.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotSupported
The port is a yielded port.

serErrNoDevicesAvail
No serial devices could be found.

Comments Typically, SrmGetStatus is called to retrieve the line errors for the
port if some of the send and receive functions return a
serErrLineErr error code.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

Serial Manager
Serial Manager Functions

1574 Palm OS Programmer’s API Reference

SrmOpen

Purpose Opens a foreground port connection with the specified port name or
logical port number.

Declared In SerialMgr.h

Prototype Err SrmOpen (UInt32 port, UInt32 baud,
UInt16 *newPortIdP)

Parameters -> port The four-character port name or logical port
number to be opened. See Port Constants for
more information.

-> baud Initial baud rate of port.

<- newPortIdP Contains the port ID to be passed to other Serial
Manager functions.

Result This function returns the following error codes:

errNone No error.

serErrAlreadyOpen
This port already has an installed foreground
owner.

serErrBadPort This port doesn’t exist.

memErrNotEnoughSpace
There was not enough memory available to
open the port.

Comments Only one application or task may have access to a particular serial
port at any time.

Do not keep the port open any longer than necessary. An open serial
port consumes more energy from the device’s batteries.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1575

If New Serial Manager Feature Set Version 2 is present, the
SrmOpen function is replaced by SrmExtOpen. SrmOpen is
supported for backward compatibility.

See Also SrmOpenBackground

SrmOpenBackground

Purpose Allows a task to open, initialize, and use the port, but always
relinquishes control of the port when another task opens the port
with the SrmOpen call.

Declared In SerialMgr.h

Prototype Err SrmOpenBackground (UInt32 port, UInt32 baud,
UInt16 *newPortIdP)

Parameters -> port The four-character port name or logical port
number to be opened. See Port Constants for
more information.

-> baud Initial baud rate of port.

<- newPortIdP Contains the port ID to be passed to other Serial
Manager functions.

Result This function returns the following error codes:

errNone No error.

serErrAlreadyOpen
This port already has an installed background
owner.

serErrBadPort This port doesn’t exist.

memErrNotEnoughSpace
There was not enough memory available to
open the port.

Comments This function is provided to support tasks that want to use a serial
device to receive data only when no other task is using the port.

Serial Manager
Serial Manager Functions

1576 Palm OS Programmer’s API Reference

If a background port is forced to surrender control of the hardware
as a result of another task opening a foreground connection, all
buffers for the background port are flushed. After this active task
closes the port, active control of the port is returned to the
background task. Only one task can have background ownership of
the port.

Note that background ports have limited functionality: they can
only receive data and notify owning clients of what data has been
received.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

If New Serial Manager Feature Set Version 2 is present, the
SrmOpenBackground function is replaced by
SrmExtOpenBackground. SrmOpenBackground is supported for
backward compatibility.

See Also SrmOpen

SrmPrimeWakeupHandler

Purpose Sets the number of received bytes that triggers a call to the wakeup
handler function.

Declared In SerialMgr.h

Prototype Err SrmPrimeWakeupHandler (UInt16 portId,
UInt16 minBytes)

Parameters -> portId Port ID returned from SrmOpen or
SrmExtOpen.

-> minBytes Number of bytes that must be received before
wakeup handler is called. Typically, this is set
to 1.

Result This function returns the following error codes:

errNone No error.

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1577

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrNoDevicesAvail
No serial devices could be found.

Comments This function primes a wakeup handler installed by
SrmSetWakeupHandler.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmSetWakeupHandler, WakeupHandlerProcPtr

SrmReceive

Purpose Receives a specified number of bytes.

Declared In SerialMgr.h

Prototype UInt32 SrmReceive (UInt16 portId, void *rcvBufP,
UInt32 count, Int32 timeout, Err *errP)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

<- rcvBufP Pointer to buffer where received data is to be
returned.

-> count Length of data buffer (in bytes). This specifies
the number of bytes to receive.

-> timeout The amount of time (in ticks) that the Serial
Manager waits to receive the requested block of
data. At the end of the timeout, data received
up to that time is returned.

<- errP Error code.

Result Number of bytes of data actually received.

Serial Manager
Serial Manager Functions

1578 Palm OS Programmer’s API Reference

Comments The following error codes can be returned in errP:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrTimeOut Unable to receive data within the specified
timeout period.

serErrConfigurationFailed
The port needs time to configure, and the
configuration has failed.

serErrNotSupported
The port is not the foreground port.

serErrConfigurationFailed
The port could not configure itself.

serErrLineErr A line error occurred during the receipt of data.
Use SrmGetStatus to obtain the exact line
error.

serErrNoDevicesAvail
No serial devices could be found.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmReceiveCheck, SrmReceiveFlush, SrmReceiveWait

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1579

SrmReceiveCheck

Purpose Checks the receive FIFO and returns the number of bytes in the
serial receive queue.

Declared In SerialMgr.h

Prototype Err SrmReceiveCheck (UInt16 portId,
UInt32 *numBytesP)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

<- numBytesP Number of bytes in the receive queue.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrLineErr A line error has occurred. Use SrmGetStatus
to obtain the exact line error.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmReceive, SrmReceiveFlush, SrmReceiveWait

SrmReceiveFlush

Purpose Flushes the receive FIFOs.

Declared In SerialMgr.h

Prototype Err SrmReceiveFlush (UInt16 portId, Int32 timeout)

Parameters -> portId Port ID returned from SrmOpen or
SrmExtOpen.

Serial Manager
Serial Manager Functions

1580 Palm OS Programmer’s API Reference

-> timeout Timeout value, in ticks.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrNotSupported
The port is not the foreground port.

serErrNoDevicesAvail
No serial devices could be found.

Comments The timeout value forces this function to wait a period of ticks
after flushing the port to see if more data shows up to be flushed. If
more data arrives within the timeout period, the port is flushed
again and the timeout counter is reset and waits again. The function
only exits after no more bytes are received by the port for the full
timeout period since the last flush of the port. To avoid this waiting
behavior, specify 0 for the timeout period.

Any errors on the line are cleared before this function returns.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmReceive, SrmReceiveCheck, SrmReceiveWait

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1581

SrmReceiveWait

Purpose Waits until some number of bytes of data have arrived into the serial
receive queue, then returns.

Declared In SerialMgr.h

Prototype Err SrmReceiveWait (UInt16 portId, UInt32 bytes,
Int32 timeout)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

-> bytes Number of bytes to wait for.

-> timeout Timeout value, in ticks.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrTimeOut Unable to receive data within the specified
timeout period.

serErrNotSupported
The port is not the foreground port.

serErrBadParam The bytes parameter exceeds the size of the
receive queue. Use SrmSetReceiveBuffer to
increase the size of the receive queue.

serErrLineErr A line error occurred during the receipt of data.
Use SrmGetStatus to obtain the exact line
error.

serErrNoDevicesAvail
No serial devices could be found.

Comments If this function returns no error, the application can either check the
number of bytes currently in the receive queue (using

Serial Manager
Serial Manager Functions

1582 Palm OS Programmer’s API Reference

SrmReceiveCheck) or it can just specify a buffer and receive the
data by calling SrmReceive.

Do not call SerReceiveWait from within a wakeup handler. If
you do, the serErrTimeOut error is returned.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmReceive, SrmReceiveCheck, SrmReceiveFlush

SrmReceiveWindowClose

Purpose Closes direct access to the Serial Manager’s receive queue.

Declared In SerialMgr.h

Prototype Err SrmReceiveWindowClose (UInt16 portId,
UInt32 bytesPulled)

Parameters -> portId Port ID returned from SrmOpen or
SrmExtOpen.

-> bytesPulled Number of bytes the application read from the
receive queue.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrNotSupported
The port is not the foreground port.

serErrNoDevicesAvail
No serial devices could be found.

Comments Call this function when the application has read as many bytes as it
needs out of the receive queue or it has read all the available bytes.

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1583

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmReceiveWindowOpen

SrmReceiveWindowOpen

Purpose Provides direct access to the Serial Manager’s receive queue.

Declared In SerialMgr.h

Prototype Err SrmReceiveWindowOpen (UInt16 portId,
UInt8 **bufPP, UInt32 *sizeP)

Parameters -> portId Port ID returned from SrmOpen or
SrmExtOpen.

<- bufPP Pointer to a pointer to the receive buffer.

<- sizeP Available bytes in buffer.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrNotSupported
The port is not the foreground port.

serErrLineErr The data in the queue contains line errors.

serErrNoDevicesAvail
No serial devices could be found.

Comments This function lets applications directly access the Serial Manager’s
receive queue to eliminate buffer copying by the Serial Manager.
This access is a “back door” route to the received data. After
retrieving data from the buffer, the application must call
SrmReceiveWindowClose.

Serial Manager
Serial Manager Functions

1584 Palm OS Programmer’s API Reference

Applications that want to empty the receive buffer entirely should
call the SrmReceiveWindowOpen and
SrmReceiveWindowClose functions repeatedly until the buffer
size returned is 0.

IMPORTANT: Once an application calls
SrmReceiveWindowOpen, it should not attempt to receive data
via the normal method of calling SrmReceive or
SrmReceiveWait, as these functions interfere with direct access
to the receive queue.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmReceiveWindowClose

SrmSend

Purpose Sends a block of data out the specified port.

Declared In SerialMgr.h

Prototype UInt32 SrmSend (UInt16 portId, const void *bufP,
UInt32 count, Err *errP)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

-> bufp Pointer to data to send.

-> count Length of data buffer, in bytes.

<- errP Error code. See the Comments section for
details.

Result Number of bytes of data actually sent.

Comments When SrmSend returns, you should check the value returned in the
errP parameter. If errNone, then the entire data buffer was sent. If

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1585

not errNone, then the result equals the number of bytes sent before
the error occurred. The possible error values are:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrTimeOut Unable to send data within the specified CTS
timeout period.

serErrNoDevicesAvail
No serial devices could be found.

serErrConfigurationFailed
The port configuration has failed.

serErrNotSupported
The specified port is not the foreground port.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmSendCheck, SrmSendFlush, SrmSendWait

SrmSendCheck

Purpose Checks the transmit FIFO and returns the number of bytes left to be
sent.

Declared In SerialMgr.h

Prototype Err SrmSendCheck (UInt16 portId,
UInt32 *numBytesP)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

<- numBytesP Number of bytes left in the FIFO queue.

Result This function returns the following error codes:

errNone No error.

Serial Manager
Serial Manager Functions

1586 Palm OS Programmer’s API Reference

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrNotSupported
This feature not supported by the hardware.

serErrNoDevicesAvail
No serial devices could be found.

Comments Not all serial devices support this feature.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmSend, SrmSendFlush, SrmSendWait

SrmSendFlush

Purpose Flushes the transmit FIFO.

Declared In SerialMgr.h

Prototype Err SrmSendFlush (UInt16 portId)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrNotSupported
The port is not the foreground port.

serErrNoDevicesAvail
No serial devices could be found.

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1587

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmSend, SrmSendCheck, SrmSendWait

SrmSendWait

Purpose Waits until all previous data has been sent from the transmit FIFO,
then returns.

Declared In SerialMgr.h

Prototype Err SrmSendWait (UInt16 portId)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrTimeOut Unable to send data within the CTS timeout
period.

serErrNotSupported
The port is not the foreground port.

serErrNoDevicesAvail
No serial devices could be found.

Comments Consider calling this function if your software needs to detect when
all data has been transmitted by SrmSend. The SrmSend function
blocks until all data has been transmitted or a timeout occurs. A
subsequent call to SrmSendWait blocks until all data queued up
for transmission has been transmitted or until another CTS timeout
occurs (if CTS handshaking is enabled).

Serial Manager
Serial Manager Functions

1588 Palm OS Programmer’s API Reference

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmSend, SrmSendCheck, SrmSendFlush

SrmSetReceiveBuffer

Purpose Installs a new buffer into the Serial Manager’s receive queue.

Declared In SerialMgr.h

Prototype Err SrmSetReceiveBuffer (UInt16 portId,
void *bufP, UInt16 bufSize)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

-> bufP Pointer to new receive buffer. Ignored if
bufSize is NULL.

-> bufSize Size of new receive buffer in bytes. To remove
this buffer and allocate a new default buffer
(512 bytes), specify NULL.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen This port is not open.

memErrNotEnoughSpace
Not enough memory to allocate default buffer.

serErrNoDevicesAvail
No serial devices could be found.

Comments The buffer that you pass to this function must remain allocated
while you have the serial port open. Before you close the serial port,
you must restore the default queue by calling
SrmSetReceiveBuffer with NULL as the bufP and bufSize
arguments.

Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1589

IMPORTANT: Applications must install the default buffer before
closing the port (or disposing of the new receive queue).

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

SrmSetWakeupHandler

Purpose Installs a wakeup handler.

Declared In SerialMgr.h

Prototype Err SrmSetWakeupHandler (UInt16 portId,
WakeupHandlerProcPtr procP, UInt32 refCon)

Parameters -> portID Port ID returned from SrmOpen or
SrmExtOpen.

-> procP Pointer to a WakeupHandlerProcPtr
function. Specify NULL to remove a handler.

-> refCon User-defined data that is passed to the wakeup
handler function. This can be a pointer or not.

Result This function returns the following error codes:

errNone No error.

serErrBadPort This port doesn’t exist.

serErrNotOpen The port is not open.

serErrNoDevicesAvail
No serial devices could be found.

Comments The wakeup handler is a function in your application that you want
to be called whenever there is data ready to be received on the
specified port.

The wakeup handler function will not become active until it is
primed with a number of bytes that is greater than 0, by the

Serial Manager
Serial Manager Application-Defined Functions

1590 Palm OS Programmer’s API Reference

SrmPrimeWakeupHandler function. Every time a wakeup
handler is called, it must be re-primed (using
SrmPrimeWakeupHandler) in order to be called again.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmPrimeWakeupHandler, WakeupHandlerProcPtr

Serial Manager Application-Defined Functions

WakeupHandlerProcPtr

Purpose Called after some number of bytes are received by the Serial
Manager’s interrupt function.

Declared In SerialMgr.h

Prototype void (*WakeupHandlerProcPtr)(UInt32 refCon)

Parameters ->refCon User-defined data passed from the
SrmSetWakeupHandler function.

Result Returns nothing.

Comments This handler function is installed by calling
SrmSetWakeupHandler. The number of bytes after which it is
called is specified by SrmPrimeWakeupHandler.

IMPORTANT: Because wakeup handlers are called during
interrupt time, they cannot call any Palm OS® system functions,
including SrmReceive, that may block the system in any way.
Wakeup handlers should also be very short so as to reduce
interrupt latency.

Two common implementations of wakeup handlers include:

Serial Manager
Serial Manager Application-Defined Functions

Palm OS Programmer’s API Reference 1591

• Calling EvtWakeup, which causes any pending
EvtGetEvent call to return and then sends a nilEvent to
the current application.

• Using SrmReceiveWindowOpen and
SrmReceiveWindowClose to gain direct access to the
receive queue without blocking.

Compatibility Implemented only if New Serial Manager Feature Set Version 1 is
present.

See Also SrmPrimeWakeupHandler, SrmSetWakeupHandler

Serial Manager
Serial Manager Application-Defined Functions

1592 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1593

66
Old Serial Manager
This chapter provides reference material for the serial manager API:

• Serial Manager Data Structures

• Serial Manager Functions

The header file SerialMgrOld.h declares the serial manager API.
For more information on the serial manager, see the chapter “Serial
Communication” in the Palm OS Programmer’s Companion, vol. II,
Communications.

NOTE: The API described in this chapter is obsolete if the New
Serial Manager Feature Set is present. The API is still supported
for backward compatibility; however, the Serial Manager APIs are
preferred.

Serial Manager Data Structures

SerCtlEnum
To perform a control function, applications call SerControl, which
performs one of the control operations specified by SerCtlEnum,
which has the following elements:

Element Description

serCtlFirstReserved = 0 Reserve 0

serCtlStartBreak Turn RS232 break signal on. Applications have to
make sure that the break is set long enough to
generate a value BREAK!
valueP = 0; valueLenP = 0

serCtlStopBreak Turn RS232 break signal off:
valueP = 0; valueLenP = 0

Old Serial Manager
Serial Manager Data Structures

1594 Palm OS Programmer’s API Reference

SerSettingsType
The SerSettingsType structure defines serial port attributes; it is
used by the calls SerGetSettings and SerSetSettings. The
SerSettingsPtr type points to a SerSettingsType structure.

typedef struct SerSettingsType {
 UInt32 baudRate;

serCtlBreakStatus Get RS232 break signal status (on or off):
valueP = ptr to Word for returning status

(0 = off, !0 = on)

*valueLenP = sizeof(Word)

serCtlStartLocalLoopback Start local loopback test;
valueP = 0, valueLenP = 0

serCtlStopLocalLoopback Stop local loopback test
valueP = 0, valueLenP = 0

serCtlMaxBaud valueP = ptr to DWord for returned baud
*valueLenP = sizeof(DWord)

serCtlHandshakeThreshold Retrieve HW handshake threshold; this is the
maximum baud rate that does not require hardware
handshaking
valueP = ptr to DWord for returned baud
*valueLenP = sizeof(DWord)

serCtlEmuSetBlockingHook Set a blocking hook routine.

WARNING! WARNING: For use with the
Simulator on Mac OS only: NOT SUPPORTED ON
THE PALM DEVICE.

valueP = ptr to SerCallbackEntryType
*valueLenP=sizeof(SerCallbackEntryType)
Returns the old settings in the first argument.

serCtlLAST Add new address entries before this one.

Element Description

Old Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1595

 UInt32 flags;
 Int32 ctsTimeout;
 } SerSettingsType;

typedef SerSettingsType* SerSettingsPtr;

Field Descriptions

Serial Manager Functions

SerClearErr

Purpose Reset the serial port’s line error status.

Declared In SerialMgrOld.h

Prototype Err SerClearErr (UInt16 refNum)

Parameters -> refNum The serial library reference number.

Result 0 No error.

Comments Call SerClearErr only after a serial manager function
(SerReceive, SerReceiveCheck, SerSend, etc.) returns with
the error code serErrLineErr.

The reason for this is that SerClearErr resets the serial port. So, if
SerClearErr is called unconditionally while a byte is coming into
the serial port, that byte is guaranteed to become corrupted.

baudRate Baud rate

flags Miscellaneous settings

ctsTimeout Maximum number of ticks to wait for CTS to
become asserted before transmitting; used only
when configured with the
serSettingsFlagCTSAutoM flag.

Old Serial Manager
Serial Manager Functions

1596 Palm OS Programmer’s API Reference

The right strategy is to always check the error code returned by a
serial manager function. If it ‘s serErrLineErr, call
SerClearErr immediately. However, don’t make unsolicited calls
to SerClearErr.

When you get serErrLineErr, consider flushing the receive
queue for a fraction of a second by calling SerReceiveFlush.
SerReceiveFlush calls SerClearErr for you.

SerClose

Purpose Release the serial port previously acquired by SerOpen.

Declared In SerialMgrOld.h

Prototype Err SerClose (UInt16 refNum)

Parameters -> refNum Serial library reference number.

Result 0 No error.

serErrNotOpen Port wasn’t open.

serErrStillOpen
Port still held open by another process.

Comments Releases the serial port and shuts down serial port hardware if the
open count has reached 0. Open serial ports consume more energy
from the device’s batteries; it’s therefore essential to keep a port
open only as long as necessary.

Caveat Don’t call SerClose unless the return value from SerOpen was 0
(zero) or serErrAlreadyOpen.

See Also SerOpen

Old Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1597

SerControl

Purpose Perform a control function.

Declared In SerialMgrOld.h

Prototype Err SerControl (UInt16 refNum, UInt16 op,
void *valueP, UInt16 *valueLenP)

Parameters -> refNum Reference number of library.

-> op Control operation to perform (SerCtlEnum).

<-> valueP Pointer to value for operation.

<-> valueLenP Pointer to size of value.

Result 0 No error.

serErrBadParam Invalid parameter (unknown).

serErrNotOpen Library not open.

Comments This function provides extensible control features for the serial
manager. You can

• Turn on/off the RS232 break signal and check its status.

• Perform a local loopback test.

• Get the maximum supported baud rate.

• Get the hardware handshake threshold baud rate.

Compatibility Implemented only if 2.0 New Feature Set is present.

Old Serial Manager
Serial Manager Functions

1598 Palm OS Programmer’s API Reference

SerGetSettings

Purpose Fill in the SerSettingsType structure with current serial port
attributes.

Declared In SerialMgrOld.h

Prototype Err SerGetSettings (UInt16 refNum,
SerSettingsPtr settingsP)

Parameters -> refNum Serial library reference number.

<-> settingsP Pointer to SerSettingsType structure to be
filled in.

Result 0 No error.

serErrNotOpen The port wasn’t open.

Comments The information returned by this call includes the current baud rate,
CTS timeout, handshaking options, and data format options.

See the SerSettingsType structure for more details.

See Also SerSend

SerGetStatus

Purpose Return the pending line error status for errors that have been
detected since the last time SerClearErr was called.

Declared In SerialMgrOld.h

Prototype UInt16 SerGetStatus (UInt16 refNum,
Boolean *ctsOnP, Boolean *dsrOnP)

Parameters -> refNum Serial library reference number.

-> ctsOnP Pointer to location for storing a Boolean value.

Old Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1599

-> dsrOnP Pointer to location for storing a Boolean value.

Result Returns any combination of the following constants, bitwise OR’ed
together:

serLineErrorParity
Parity error.

serLineErrorHWOverrun
Hardware overrun.

serLineErrorFraming
Framing error.

serLineErrorBreak
Break signal detected.

serLineErrorHShake
Line handshake error.

serLineErrorSWOverrun
Software overrun.

Comments When another serial manager function returns an error code of
serErrLineErr, SerGetStatus can be used to find out the
specific nature of the line error(s).

The values returned via ctsOnP and dsrOnP are not meaningful in
the present version of the software

See Also SerClearErr

SerOpen

Purpose Acquire and open a serial port with given baud rate and default
settings.

Declared In SerialMgrOld.h

Prototype Err SerOpen (UInt16 refNum, UInt16 port,
UInt32 baud)

Parameters -> refNum Serial library reference number.

Old Serial Manager
Serial Manager Functions

1600 Palm OS Programmer’s API Reference

-> port Port number.

-> baud Baud rate.

Result 0 No error.

serErrAlreadyOpen
Port was open. Enables port sharing by
“friendly” clients (not recommended).

serErrBadParam Invalid parameter.

memErrNotEnoughSpace
Insufficient memory.

Comments Acquires the serial port, powers it up, and prepares it for operation.
To obtain the serial library reference number, call SysLibFind with
“Serial Library” as the library name. This reference number must be
passed as a parameter to all serial manager functions. The device
currently contains only one serial port with port number 0 (zero).

The baud rate is an integral baud value (for example - 300, 1200,
2400, 9600, 19200, 38400, 57600, etc.). The Palm OS® device has been
tested at the standard baud rates in the range of 300 - 57600 baud.
Baud rates through 1 Mbit are theoretically possible. Use CTS
handshaking at baud rates above 19200 (see SerSetSettings).

An error code of 0 (zero) or serErrAlreadyOpen indicates that
the port was successfully opened. If the port is already open when
SerOpen is called, the port’s open count is incremented and an
error code of serErrAlreadyOpen is returned. This ability to open
the serial port multiple times allows cooperating tasks to share the
serial port. Other tasks must refrain from using the port if
serErrAlreadyOpen is returned and close it by calling
SerClose.

Old Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1601

SerReceive

Purpose Receives size bytes worth of data or returns with error if a line
error or timeout is encountered.

Declared In SerialMgrOld.h

Prototype UInt32 SerReceive (UInt16 refNum, void *bufP,
UInt32 count, Int32 timeout, Err* errP)

Parameters refNum Serial library reference number.

<-> bufP Buffer for receiving data.

-> count Number of bytes to receive.

-> timeout Interbyte timeout in ticks, 0 for none, -1 forever.

<-> errP For returning error code.

Result Number of bytes received:

*errP = 0 No error.

serErrLineErr RS232 line error.

serErrTimeOut Interbyte timeout.

Compatibility Implemented only if 2.0 New Feature Set is present.

NOTE: The old versions of SerSend and SerReceive are still
available as SerSend10 and SerReceive10 (not V10).

See Also SerReceive10

Old Serial Manager
Serial Manager Functions

1602 Palm OS Programmer’s API Reference

SerReceive10

Purpose Receive a stream of bytes.

Declared In SerialMgrOld.h

Prototype Err SerReceive10 (UInt16 refNum, void *bufP,
UInt32 bytes, Int32 timeout)

Parameters -> refNum The serial library reference number.

-> bufP Pointer to the buffer for receiving data.

-> bytes Number of bytes desired.

-> timeout Interbyte time out in system ticks (-1 = forever).

Result 0 No error. Requested number of bytes was
received.

serErrTimeOut Interbyte time out exceeded while waiting for
the next byte to arrive.

serErrLineErr Line error occurred (see SerClearErr and
SerGetStatus).

Comments SerReceive blocks until all the requested data has been received
or an error occurs. Because this call returns immediately without
any data if line errors are pending, it is important to acknowledge
the detection of line errors by calling SerClearErr. If you just
need to retrieve all or some of the bytes which are already in the
receive queue, call SerReceiveCheck first to get the count of bytes
presently in the receive queue.

Compatibility This function corresponds to the 1.0 version of SerReceive.

Old Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1603

SerReceiveCheck

Purpose Return the count of bytes presently in the receive queue.

Declared In SerialMgrOld.h

Prototype Err SerReceiveCheck (UInt16 refNum,
UInt32 *numBytesP)

Parameters -> refNum Serial library reference number.

<-> numBytesP Pointer to location for returning the byte count.

Result 0 No error.

serErrLineErr Line error pending (see SerClearErr and
SerGetStatus).

Comments Because this call does not return the byte count if line errors are
pending, it is important to acknowledge the detection of line errors
by calling SerClearErr.

See Also SerReceiveWait

SerReceiveFlush

Purpose Discard all data presently in the receive queue and flush bytes
coming into the serial port. Clear the saved error status.

Declared In SerialMgrOld.h

Prototype void SerReceiveFlush (UInt16 refNum,
Int32 timeout)

Parameters -> refNum Serial library reference number.

-> timeout Interbyte time out in system ticks (-1 = forever).

Result Returns nothing.

Old Serial Manager
Serial Manager Functions

1604 Palm OS Programmer’s API Reference

Comments SerReceiveFlush blocks until a timeout occurs while waiting for
the next byte to arrive.

SerReceiveWait

Purpose Wait for at least bytes bytes of data to accumulate in the receive
queue.

Declared In SerialMgrOld.h

Prototype Err SerReceiveWait (UInt16 refNum, UInt32 bytes,
Int32 timeout)

Parameters -> refNum Serial library reference number.

-> bytes Number of bytes desired.

-> timeout Interbyte timeout in system ticks (-1 = forever).

Result 0 No error.

serErrTimeOut Interbyte timeout exceeded while waiting for
next byte to arrive.

serErrLineErr Line error occurred (see SerClearErr and
SerGetStatus).

Comments This is the preferred method of waiting for serial input, since it
blocks the current task and allows switching the processor into a
more energy-efficient state.

SerReceiveWait blocks until the desired number of bytes
accumulate in the receive queue or an error occurs. The desired
number of bytes must be less than the current receive queue size.
The default queue size is 512 bytes. Because this call returns
immediately if line errors are pending, it is important to
acknowledge the detection of line errors by calling SerClearErr.

See Also SerReceiveCheck, SerSetReceiveBuffer

Old Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1605

SerSend

Purpose Send one or more bytes of data over the serial port.

Declared In SerialMgrOld.h

Prototype UInt32 SerSend (UInt16 refNum, void *bufP,
UInt32 count, Err *errP

Parameters -> refNum Serial library reference number.

-> bufP Pointer to data to send.

-> count Number of bytes to send.

<-> errP For returning error code.

Result Returns the number of bytes transferred.

Stores in errP:

0 No error.

serErrTimeOut Handshake timeout.

The old calls worked, but they did not return enough info when
they failed. The new calls (available in Palm OS v2.0 and greater)
add more parameters to solve this problem and make serial
communications programming simpler.

Don’t call the new functions when running on Palm OS 1.0.

Compatibility Implemented only if 2.0 New Feature Set is present.

NOTE: The old versions of SerSend and SerReceive are still
available as SerSend10 and SerReceive10 (not V10).

See Also SerSend10, SerSendWait

Old Serial Manager
Serial Manager Functions

1606 Palm OS Programmer’s API Reference

SerSend10

Purpose Send a stream of bytes to the serial port.

Declared In SerialMgrOld.h

Prototype Err SerSend10 (UInt16 refNum, void *bufP,
UInt32 size)

Parameters -> refNum Serial library reference number.

-> bufP Pointer to the data to send.

-> size Size (in number of bytes) of the data to send.

Result 0 No error.

serErrTimeOut Handshake timeout (such as waiting for CTS to
become asserted).

Comments In the present implementation, SerSend10 blocks until all data is
transferred to the UART or a timeout error (if CTS handshaking is
enabled) occurs. Future implementations may queue up the request
and return immediately, performing transmission in the
background. If your software needs to detect when all data has been
transmitted, see SerSendWait.

This routine observes the current CTS time out setting if CTS
handshaking is enabled (see SerGetSettings and SerSend).

Compatibility This function corresponds to the 1.0 version of SerSend.

See Also SerSend, SerSendWait

Old Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1607

SerSendFlush

Purpose Discard all data presently in the transmit queue.

Declared In SerialMgrOld.h

Prototype Err SerSendFlush (UInt16 refNum)

Parameters -> refNum Serial library reference number.

Result 0 No error.

See Also SerSend, SerSendWait

SerSendWait

Purpose Wait until the serial transmit buffer empties.

Declared In SerialMgrOld.h

Prototype Err SerSendWait (UInt16 refNum, Int32 timeout)

Parameters -> refNum Serial library reference number.

-> timeout Reserved for future enhancements. Set to (-1)
for compatibility.

Result 0 No error.

serErrTimeOut Handshake timeout (such as waiting for CTS to
become asserted).

Comments SerSendWait blocks until all data is transferred or a timeout error
(if CTS handshaking is enabled) occurs. This routine observes the
current CTS timeout setting if CTS handshaking is enabled (see
SerGetSettings and SerSend).

See Also SerSend

Old Serial Manager
Serial Manager Functions

1608 Palm OS Programmer’s API Reference

SerSetReceiveBuffer

Purpose Replace the default receive queue. To restore the original buffer,
pass bufSize = 0.

Declared In SerialMgrOld.h

Prototype Err SerSetReceiveBuffer (UInt16 refNum,
void *bufP, UInt16 bufSize)

Parameters -> refNum Serial library reference number.

-> bufP Pointer to buffer to be used as the new receive
queue.

-> bufSize Size of buffer, or 0 to restore the default receive
queue.

Result Returns 0 if successful.

Comments The specified buffer needs to contain 32 extra bytes for serial
manager overhead (its size should be your application’s
requirement plus 32 bytes). The default receive queue must be
restored before the serial port is closed. To restore the default receive
queue, call SerSetReceiveBuffer passing 0 (zero) for the buffer
size. The serial manager does not free the custom receive queue.

SerSetSettings

Purpose Set the serial port settings; that is, change its attributes.

Declared In SerialMgrOld.h

Prototype Err SerSetSettings (UInt16 refNum,
SerSettingsPtr settingsP)

Parameters -> refNum Serial library reference number.

Old Serial Manager
Serial Manager Functions

Palm OS Programmer’s API Reference 1609

<-> settingsP Pointer to the filled in SerSettingsType
structure.

Result 0 No error.

serErrNotOpen The port wasn’t open.

serErrBadParam Invalid parameter.

Comments The attributes set by this call include the current baud rate, CTS
timeout, handshaking options, and data format options. See the
definition of the SerSettingsType structure for more details.

To do 7E1 transmission, OR together:

serSettingsFlagBitsPerChar7 |
serSettingsFlagParityOnM |
serSettingsFlagParityEvenM |
serSettingsFlagStopBits1

If you’re trying to communicate at speeds greater than 19.2 Kbps,
you need to use hardware handshaking:
serSettingsFlagRTSAutoM | serSettingsFlagCTSAutoM.

See Also SerGetSettings

Old Serial Manager
Serial Manager Functions

1610 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1611

67
Serial Link Manager
This chapter provides reference material for the serial link manager
API. The header file SerialLinkMgr.h declares the serial link
manager API. For more information on the serial link manager, see
the chapter “Serial Communication” in the Palm OS Programmer’s
Companion, vol. II, Communications.

Serial Link Manager Functions

SlkClose

Purpose Close down the serial link manager.

Declared In SerialLinkMgr.h

Prototype Err SlkClose (void)

Parameters None.

Result 0 No error.

slkErrNotOpen The serial link manager was not open.

Comments When the open count reaches zero, this routine frees resources
allocated by serial link manager.

Serial Link Manager
Serial Link Manager Functions

1612 Palm OS Programmer’s API Reference

SlkCloseSocket

Purpose Closes a socket previously opened with SlkOpenSocket.

The caller is responsible for closing the communications library
used by this socket, if necessary.

Declared In SerialLinkMgr.h

Prototype Err SlkCloseSocket (UInt16 socket)

Parameters socket The socket ID to close.

Result 0 No error.

slkErrSocketNotOpen
The socket was not open.

Comments SlkCloseSocket frees system resources the serial link manager
allocated for the socket. It does not free resources allocated and
passed by the client, such as the buffers passed to
SlkSetSocketListener; this is the client’s responsibility. The
caller is also responsible for closing the communications library
used by this socket.

See Also SlkOpenSocket

SlkFlushSocket

Purpose Flush the receive queue of the communications library associated
with the given socket.

Declared In SerialLinkMgr.h

Prototype Err SlkFlushSocket (UInt16 socket, Int32 timeout)

Parameters -> socket Socket ID.

Serial Link Manager
Serial Link Manager Functions

Palm OS Programmer’s API Reference 1613

-> timeout Interbyte timeout in system ticks.

Result 0 No error.

slkErrSocketNotOpen
The socket wasn’t open.

SlkOpen

Purpose Initialize the serial link manager.

Declared In SerialLinkMgr.h

Prototype Err SlkOpen (void)

Parameters None.

Result 0 No error.

slkErrAlreadyOpen
No error.

Comments Initializes the serial link manager, allocating necessary resources.
Return codes of 0 (zero) and slkErrAlreadyOpen both indicate
success. Any other return code indicates failure. The
slkErrAlreadyOpen function informs the client that someone
else is also using the serial link manager. If the serial link manager
was successfully opened by the client, the client needs to call
SlkClose when it finishes using the serial link manager.

Serial Link Manager
Serial Link Manager Functions

1614 Palm OS Programmer’s API Reference

SlkOpenSocket

Purpose Open a serial link socket and associate it with a communications
library. The socket may be a known static socket or a dynamically
assigned socket.

Declared In SerialLinkMgr.h

Prototype Err SlkOpenSocket (UInt16 portID,
UInt16 *socketP, Boolean staticSocket)

Parameters portID Comm library reference number for socket.

socketP Pointer to location for returning the socket ID.

staticSocket If TRUE, *socketP contains the desired static
socket number to open. If FALSE, any free
socket number is assigned dynamically and
opened.

Result 0 No error.

slkErrOutOfSockets
No more sockets can be opened.

Comments The communications library must already be initialized and opened
(see SerOpen). When finished using the socket, the caller must call
SlkCloseSocket to free system resources allocated for the socket.
For information about well-known static socket IDs, see The Serial
Link Protocol.

Serial Link Manager
Serial Link Manager Functions

Palm OS Programmer’s API Reference 1615

SlkReceivePacket

Purpose Receive and validate a packet for a particular socket or for any
socket. Check for format and checksum errors.

Declared In SerialLinkMgr.h

Prototype Err SlkReceivePacket (UInt16 socket,
Boolean andOtherSockets, SlkPktHeaderPtr headerP,
void* bodyP, UInt16 bodySize, Int32 timeout)

Parameters -> socket The socket ID.

-> andOtherSockets
If TRUE, ignore destination in packet header.

<-> headerP Pointer to the packet header buffer (size of
SlkPktHeaderType).

<-> bodyP Pointer to the packet client data buffer.

-> bodySize Size of the client data buffer (maximum client
data size which can be accommodated).

-> timeout Maximum number of system ticks to wait for
beginning of a packet; -1 means wait forever.

Result 0 No error.

slkErrSocketNotOpen
The socket was not open.

slkErrTimeOut Timed out waiting for a packet.

slkErrWrongDestSocket
The packet being received had an unexpected
destination.

slkErrChecksum Invalid header checksum or packet CRC-16.

slkErrBuffer Client data buffer was too small for packet’s
client data.

If andOtherSockets is FALSE, this routine returns with an error
code unless it gets a packet for the specific socket.

Serial Link Manager
Serial Link Manager Functions

1616 Palm OS Programmer’s API Reference

If andOtherSockets is TRUE, this routine returns successfully if it
sees any incoming packet from the communications library used by
socket.

Comments You may request to receive a packet for the passed socket ID only, or
for any open socket which does not have a socket listener. The
parameters also specify buffers for the packet header and client
data, and a timeout. The timeout indicates how long the receiver
should wait for a packet to begin arriving before timing out. If a
packet is received for a socket with a registered socket listener, it
will be dispatched via its socket listener procedure. On success, the
packet header buffer and packet client data buffer is filled in with
the actual size of the packet’s client data in the packet header’s
bodySize field.

SlkSendPacket

Purpose Send a serial link packet via the serial output driver.

Declared In SerialLinkMgr.h

Prototype Err SlkSendPacket (SlkPktHeaderPtr headerP,
SlkWriteDataPtr writeList)

Parameters <-> headerP Pointer to the packet header structure with
client information filled in (see Comments).

-> writeList List of packet client data blocks (see
Comments).

Result 0 No error.

slkErrSocketNotOpen
The socket was not open.

slkErrTimeOut Handshake timeout.

Comments SlkSendPacket stuffs the signature, client data size, and the
checksum fields of the packet header. The caller must fill in all other
packet header fields. If the transaction ID field is set to 0 (zero), the

Serial Link Manager
Serial Link Manager Functions

Palm OS Programmer’s API Reference 1617

serial link manager automatically generates and stuffs a new non-
zero transaction ID. The array of SlkWriteDataType structures
enables the caller to specify the client data part of the packet as a list
of noncontiguous blocks. The end of list is indicated by an array
element with the size field set to 0 (zero). This call blocks until the
entire packet is sent out or until an error occurs.

SlkSetSocketListener

Purpose Register a socket listener for a particular socket.

Declared In SerialLinkMgr.h

Prototype Err SlkSetSocketListener (UInt16 socket,
SlkSocketListenPtr socketP)

Parameters -> socket Socket ID.

-> socketP Pointer to a SlkSocketListenType
structure.

Result 0 No error.

slkErrBadParam Invalid parameter.

slkErrSocketNotOpen
The socket was not open.

Comments Called by applications to set up a socket listener.

Since the serial link manager does not make a copy of the
SlkSocketListenType structure, but instead saves the passed
pointer to it, the structure

• must not be an automatic variable (that is, local variable
allocated on the stack)

• may be a global variable in an application

• may be a locked chunk allocated from the dynamic heap

The SlkSocketListenType structure specifies pointers to the
socket listener procedure and the data buffers for dispatching
packets destined for this socket. Pointers to two buffers must be

Serial Link Manager
Serial Link Manager Functions

1618 Palm OS Programmer’s API Reference

specified: the packet header buffer (size of SlkPktHeaderType),
and the packet body (client data) buffer. The packet body buffer
must be large enough for the largest expected client data size. Both
buffers may be application global variables or locked chunks
allocated from the dynamic heap.

The socket listener procedure is called when a valid packet is
received for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure.

NOTE: The application is responsible for freeing the
SlkSocketListenType structure or the allocated buffers when
the socket is closed. The serial link manager doesn’t do it.

Compatibility If 5.0 New Feature Set is present this function is unimplemented.

SlkSocketPortID

Purpose Get the port ID associated with a particular socket; for use with the
new serial manager.

Declared In SerialLinkMgr.h

Prototype ErrSlkSocketPortID (UInt16 socket,
UInt16 * portIDP)

Parameters -> socket The socket ID.

<-> portIDP Pointer to location for returning the port ID.

Result 0 No error.

slkErrSocketNotOpen
The socket was not open.

Compatibility Implemented only if New Serial Manager Feature Set is present.

Serial Link Manager
Serial Link Manager Functions

Palm OS Programmer’s API Reference 1619

SlkSocketSetTimeout

Purpose Set the interbyte packet receive-timeout for a particular socket.

Declared In SerialLinkMgr.h

Prototype Err SlkSocketSetTimeout (UInt16 socket,
Int32 timeout)

Parameters -> socket Socket ID.

-> timeout Interbyte packet receive-timeout in system
ticks.

Result 0 No error.

slkErrSocketNotOpen
The socket was not open.

Serial Link Manager
Serial Link Manager Functions

1620 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1621

68
Telephony Basic
Services
This chapter provides reference material for the Telephony API,
which you can use to interface with telephone systems and
equipment. This chapter discusses the following topics:

• Telephony Data Structures

• Telephony Constants

• Telephony Functions

• Feature Support Functions

The header file TelephonyMgr.h declares the telephony manager
API. The header file TelephonyMgrType.h declares the data
structures that you use with the telephony manager API.

For more information about using the telephony manager, see
Chapter 10, “Telephony Manager,” in Palm OS Programmer’s
Companion, vol. II, Communications.

Telephony Service Types
The telephony API organizes functions within sets called service
sets. Each service set contains a related set of functions that may or
may not be available on a particular mobile device or network. You
can use the TelIs<ServiceSet>Available function to
determine if a service set is supported in the current environment,
and you can use the TelIs<FunctionName>Supported to
determine if a specific function is supported in the current
environment.

Telephony Basic Services
Telephony Service Types

1622 Palm OS Programmer’s API Reference

The telephony API documentation has been split into several
chapters. Each chapter covers one or more of the service sets, as
shown in Table 68.1
Table 68.1 Telephony service types

Service prefix Functionality Chapter Description

Tel Basic Chapter 68,
“Telephony Basic
Services.”

Basic functions that are always
available.

TelCfg Configuration Chapter 69,
“Telephony
Security and
Configuration.”

Allows configuration of the
phone, including Short
Message Services (SMS)
configuration.

TelDtc Data calls Chapter 71,
“Telephony
Calls.”

Functions for handling data
calls.

TelEmc Emergency
calls

Chapter 71,
“Telephony
Calls.”

Functions for handling
emergency calls.

TelInf Information Chapter 68,
“Telephony Basic
Services.”

Functions for retrieving
information about the phone.

TelNwk Network Chapter 70,
“Telephony
Network.”

Provides network oriented
services, including
authorization, signal level,
search mode, and related
operations.

TelOem OEM Chapter 68,
“Telephony Basic
Services.”

Provides OEMs with the
ability to incorporate custom
functionality.

TelPhb Phone book Chapter 73,
“Telephony
Phone Book.”

Functions for managing the
phone book.

Telephony Basic Services
Telephony Data Structures

Palm OS Programmer’s API Reference 1623

Telephony Data Structures
This section describes the data structures used with the basic
services portion of the telephony API.

TelEventType
The TelGetEvent and TelGetTelephonyEvent functions both
return a TelEventType structure to provide information about a
telephony-related event.

You call the TelGetEvent function to retrieve telephony and other
events.

TelPow Power Chapter 68,
“Telephony Basic
Services.”

Provides access to power
supply level.

TelSms Short Message
Service

Chapter 72,
“Telephony SMS.”

Addresses the SMS, including
functions for reading, sending,
replying to, and deleting short
messages.

TelSnd Sound Chapter 68,
“Telephony Basic
Services.”

Functions for playing key
tones on and muting the
phone.

TelSpc Speech calls Chapter 71,
“Telephony
Calls.”

Function for handling voice
calls, including dual tone
modulated frequency (DTMF)
sounds.

TelSty Security Chapter 69,
“Telephony
Security and
Configuration.”

Supports PIN code
management for access to
phone and Subscriber Identity
Module (SIM) security-related
features.

Table 68.1 Telephony service types (continued)

Service prefix Functionality Chapter Description

Telephony Basic Services
Telephony Data Structures

1624 Palm OS Programmer’s API Reference

You call the TelGetTelephonyEvent function to retrieve only
telephony events. This function does not consume non-telephony
events.

typedef struct _TelEventType
{
 eventsEnum eType;
 Boolean penDown;
 UInt8 tapCount;
 Int16 screenX;
 Int16 screenY;
 UInt16 functionId;
 UInt16 transId;
 MemPtr *paramP;
 Err returnCode;
} TelEventType

Field Descriptions

eType One of the eventsEnum constants.
Specifies the type of the event.

penDown true if the pen was down at the time of
the event, and false if the pen was up.

Note that this field is not filled in for
telephony events.

tapCount The number of taps received at this
location. This value is used mainly by text
fields. When the user taps in a text field,
two taps selects a word, and three taps
selects the entire line.

Note that this field is not filled in for
telephony events.

Telephony Basic Services
Telephony Data Structures

Palm OS Programmer’s API Reference 1625

Note that the first five fields of the TelEventType structure are the
same as the first five fields of the EventType structure, which is
described in Chapter 2, “Palm OS Events.”

TelCallStateType
The TelGetCallState function uses the TelCallState
structure to retrieve information about the current state of the
connected phone.

typedef struct _TelGetCallStateType
{

screenX Window-relative position of the pen in
pixels (number of pixels from the left
bound of the window).

Note that this field is not filled in for
telephony events.

screenY Window-relative position of the pen in
pixels (number of pixels from the top left
of the window).

Note that this field is not filled in for
telephony events.

functionId The ID of the message associated with the
function call, which specifies the telephony
manager function that generated this
event.

transId The transaction ID that was associated
with this asynchronous function call.

paramP A pointer to a parameter structure that was
passed when an asynchronous call was
made.

returnCode The return code of the asynchronously
called function. The value of this field is
errNone if the function succeeded, or an
error code if the function failed.

Telephony Basic Services
Telephony Data Structures

1626 Palm OS Programmer’s API Reference

 UInt8 state;
 UInt8 callType;
 UInt8 callServiceType;
 UInt8 numberSize;
 Char *number;
} TelGetCallStateType

Field Descriptions

<- state Filled in with one of the Telephone Call State
Constants, which indicates the current state of the
telephone call.

<- callType Filled in with one of the Telephone Call Type
Constants, which indicates the call type of the current
telephone call.

<- callServiceType Filled in with one of the Telephone Call Service Type
Constants, which indicates the call service type of the
current telephone call.

Telephony Basic Services
Telephony Data Structures

Palm OS Programmer’s API Reference 1627

TelInfGetformationType
The TelInfGetInformation function uses the
TelInfGetInformationType structure to retrieve information
about the phone with which you are communicating.

typedef struct _TelInfGetInformationType
{
 UInt8 infoType;
 UInt8 size;
 UInt8 *value;
} TelInfGetInformationType

<-> numberSize The size of the number string buffer. When the
structure is used as an input parameter, this is the
allocated size, in bytes, of the buffer.

Upon return, this is the actual size of the string,
including the null terminator character. If the number
buffer is too small to contain the entire retrieved string,
this field is assigned the entire length of the data, and
the function using this structure generates a
telErrBufferSize error.

<- number A buffer into which the telephone number string is
stored.

When the structure describes an incoming telephone
call, this is the incoming telephone number. When the
structure describes an outgoing telephone call, this is
the telephone number that has been called.

Note that if this buffer is too small to contain the entire
retrieved string, the end of the string is truncated (and
ends with the null terminator character) and the
function using this structure generates a
telErrBufferSize error.

Telephony Basic Services
Telephony Data Structures

1628 Palm OS Programmer’s API Reference

Field Descriptions

TelOemCallType
You use the TelOemCallType to specify a TelOemCall function.

typedef struct _TelOemCallType
{
 UInt32 OemID;
 UInt8 funcID;
 void *paramP;
} TelOemCallType

Field Descriptions

TelSendCommandStringType
The TelSendCommandString function uses the
TelSendCommandStringType structure to send a command
string.

-> infoType The type of information to retrieve. This must be one of
the Information Type Constants.

<-> size The size of the value buffer. When the structure is used
as an input parameter, this is the allocated size, in bytes,
of the buffer.

Upon return, this is the actual size of the buffer. If the
value buffer is too small to contain all of the retrieved
information, this field is assigned the entire length of the
data, and the function using this structure generates a
telErrBufferSize error.

<- value A buffer into which the information is stored.

-> OemID The unique ID of the OEM function set.

-> funcID The ID of the function within the OEM function set.

<-> paramP A pointer to a parameter block that is passed to the OEM
function. The OEM function might modify some of the
fields in the parameter block.

Telephony Basic Services
Telephony Data Structures

Palm OS Programmer’s API Reference 1629

typedef struct _TelSendCommandStringType
{
 Char *commandString;
 Char *resultString;
 UInt16 resultSize;
 UInt32 timeOut;
} TelSendCommandStringType

Field Descriptions

TelSndPlayKeyToneType
The TelSndPlayKeyTone function uses the
TelSndPlayKeyToneType structure to specify a key tone.

typedef struct _TelSndPlayKeyToneType
{
 UInt8 keycode;
 UInt8 type;
} TelSndPlayKeyToneType

-> commandString The command string to send.

<- resultString The result string.

<-> resultSize The size of the resultString string buffer. When the
structure is used as an input parameter, this is the
allocated size, in bytes, of the buffer.

Upon return, this is the actual size of the string, including
the null terminator character. If the resultString
buffer is too small to contain the entire retrieved string,
this field is assigned the entire length of the data, and the
function using this structure generates a
telErrBufferSize error.

-> timeOut The number of milliseconds before timing out.

Telephony Basic Services
Telephony Constants

1630 Palm OS Programmer’s API Reference

Field Descriptions

Telephony Constants
This section describes the data structures used with the basic
services portion of the telephony API, which include the following
constant types:

• Battery Status Constants

• Telephone Call State Constants

• Telephone Call Type Constants

• Telephone Call Service Type Constants

• Error Code Constants

• Information Type Constants

• Keycode Constants

• Key Sound Type Constants

• Message Identifier Constants

• Service Set Constants

Battery Status Constants
The battery status constants provide information about the phone’s
battery.

-> keycode The keycode of the key tone to play. This must be one of
the Keycode Constants.

-> type The tone type. This must be one of the Key Sound Type
Constants.

Constant Value Description

kTelPowBatteryPowered 0 The phone is powered by a battery.

kTelPowBatteryNotPowered 1 The phone has a battery connected to
it, but is not using that battery.

Telephony Basic Services
Telephony Constants

Palm OS Programmer’s API Reference 1631

Telephone Call State Constants
The TelCallStateType structure uses the telephone call state
constants to encode the current state of the connected telephone call.

Telephone Call Type Constants
The TelCallStateType structure uses the telephone call type
constants to encode the type of the current telephone call.

kTelPowNobattery 2 The phone does not have a battery
connected to it.

kTelPowBatteryFault 3 The phone has a recognized power
fault; calls are currently inhibited.

Constant Value Description

Constant Value Description

kTelCallIdle 0x00 The connection is idle.

kTelCallConnecting 0x01 A telephone call is currently
connecting.

kTelCallConnected 0x02 A telephone call is currently
connected.

kTelCallRedial 0x03 A telephone call is being re-dialed.

kTelCallIncoming 0x04 A telephone call is currently
incoming.

kTelCallIncomingAck 0x05 An incoming telephone call is
currently being acknowledged.

kTelCallDisconnecting 0x06 A telephone call is being
disconnected.

Constant Value Description

kTelCallTypeOutgoing 0x00 An outgoing telephone call.

kTelCallTypeIncoming 0x01 An incoming telephone call.

Telephony Basic Services
Telephony Constants

1632 Palm OS Programmer’s API Reference

Telephone Call Service Type Constants
The TelCallStateType structure uses the telephone call service
type constants to encode the service type of the current telephone
call.

Error Code Constants
The telephony manager functions return the error code constants
shown in the following table to indicate their status.

Constant Value Description

kTelCallServiceVoice 0x00 A voice telephone call.

kTelCallServiceData 0x01 A data telephone call.

Constant Description

telErrBufferSize One of the buffers used to retrieve data is too
small.

telErrCodingScheme The coding scheme specified for the short
message is not valid.

telErrCommandFailed The specified command could not be
performed by the phone. Check the phone
driver.

telErrEntryNotFound The specified entry was not found.

telErrFeatureNotSupported The specified feature is not supported by the
phone or network.

telErrGenericDrvNotFound The generic driver could not be found.

telErrInvalidAppId The specified application ID is not valid.

telErrInvalidDial The dial string contains an invalid character.

telErrInvalidIndex The index specified for accessing a value in
storage is incorrect.

telErrInvalidParameter A parameter is not valid.

telErrInvalidString The text string contains an invalid character.

Telephony Basic Services
Telephony Constants

Palm OS Programmer’s API Reference 1633

telErrLibStillInUse The shared lib is currently being used by
another application. Do not unload it!

telErrMemAllocation A memory allocation error occurred.

telErrMsgAllocation The telephony messages pool is empty; a
message could not be allocated.

telErrNetworkTimeOut The network did not reply within the standard
time delay amount.

telErrNoNetwork There is no network available.

telErrNoSIMInserted The SIM card is not inserted.

telErrNoSpecificDrv A specific driver was not specified.

telErrNotInstalled The shared library could not be installed.

telErrPassword The password is not correct.

telErrPhoneCodeRequired A phone code is required.

telErrPhoneComm The communication link with the phone is
down.

telErrPhoneMemAllocation The phone’s memory is full.

telErrPhoneMemFailure The phone encountered a memory error.

telErrPhoneNumber One of the following errors has occurred: the
phone number is wrong, the SMS center is not
valid, or the receiver phone number is wrong
for the SMS.

telErrPhoneReply The phone reply syntax is incorrect. Check the
phone driver.

telErrPhoneToSIMPINRequired A phone 2 SIM PIN code is required

telErrPIN2Required A PIN2 code is required.

telErrPINRequired A PIN code is required.

telErrPUK2Required A PUK2 code is required.

Constant Description

Telephony Basic Services
Telephony Constants

1634 Palm OS Programmer’s API Reference

telErrPUKRequired A PUK code is required.

telErrResultBusyResource A resource is busy.

telErrResultTimeOut A time-out was reached.

telErrResultUserCancel The user cancelled the action.

telErrSecurity Access to the phone was not granted.

telErrSettings The telephony settings are not valid; this is
due to 1) the Phone Panel preferences do not
exist, or 2) the Telephony Profile is not
correctly set.

telErrSIMBusy The SIM could not reply.

telErrSIMFailure The SIM is not working properly.

telErrSIMWrong The SIM is not accepted by the phone.

telErrSpcCallError The voice telephone call encountered an error.

telErrSpcLineIsBusy The voice telephone call failed.

telErrSpcLineIsReleased The voice telephone call has been released.

telErrSpecificDrvNotFound The specified driver could not be found.

telErrTooManyApps The applications table is full.

telErrTTaskNotFound The Telephony Task could not be found.

telErrTTaskNotRunning The Telephony Task is not running.

telErrUnavailableValue The requested value can not be retrieved at the
specified time. This is usually due to a
TelSpcGetCallerNumber request when
there is no active line.

telErrUnknown An unknown telephony manager error
occurred.

telErrValidityPeriod The validity period specified for the short
message is not valid.

Constant Description

Telephony Basic Services
Telephony Constants

Palm OS Programmer’s API Reference 1635

Information Type Constants
The TelInfGetformationType structure uses the information
type constants to encode the type of information to retrieve about
the phone.

Keycode Constants
The TelSndPlayKeyToneType structure uses the keycode
constants to specify the key tone to play.

telErrValueStale The information could not be retrieved; a copy
of the most recently retrieved value has been
returned instead.

telErrVersion The shared library version does not match the
version associated with the application.

Constant Description

Constant Value Description

kTelInfPhoneBrand 0 The brand name of the phone.

kTelInfPhoneModel 1 The model number of the phone.

kTelInfPhoneRevision 2 The revision number of the phone.

Constant Value Description

kTel0Key 0x00 The 0 key on the phone keypad.

kTel1Key 0x01 The 1 key on the phone keypad.

kTel2Key 0x02 The 2 key on the phone keypad.

kTel3Key 0x03 The 3 key on the phone keypad.

kTel4Key 0x04 The 4 key on the phone keypad.

kTel5Key 0x05 The 5 key on the phone keypad.

kTel6Key 0x06 The 6 key on the phone keypad.

kTel7Key 0x07 The 7 key on the phone keypad.

Telephony Basic Services
Telephony Constants

1636 Palm OS Programmer’s API Reference

Key Sound Type Constants
The TelSndPlayKeyToneType structure uses the key sound type
constants to specify how the tone is played.

Message Identifier Constants
The message identifier constants are used with asynchronous calls
to identify which telephony function is being or has been called. The
TelMessages enumeration defines a constant for each function
name.

Each message identifier constant has the form:

kfunctionNameMessage

where functionName is replaced by a function name.

kTel8Key 0x08 The 8 key on the phone keypad.

kTel9Key 0x09 The 9 key on the phone keypad.

kTelPoundKey 0x23 The POUND(#) key on the phone
keypad.

kTelStarKey 0x2A The STAR(*) key on the phone
keypad.

kTelSendKey 0x45 The SEND key on the phone keypad.

kTelEndKey 0x46 The END key on the phone keypad.

kTelClrKey 0x47 The CLEAR key on the phone
keypad.

kTelSaveKey 0x48 The SAVE key on the phone keypad.

Constant Value Description

Constant Value Description

kTelSndSingleTone 0x00 Play the key sound as a single tone.

kTelSndMultiTones 0x01 Play the key sound as a multiple
tones.

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1637

The following table shows examples of message identifier constants.
For a complete list, see the TelephonyMgr.h file.

Service Set Constants
The service set constants specify a set of API services.

Telephony Functions
This section describes the functions used with the basic services
portion of the telephony API.

Constant Function

kTelGetCallStateMessage TelGetCallState

kTelNwkSelectNetworkMessage TelNwkSelectNetwork

kTelSmsReadMessageMessage TelSmsReadMessage

Constant Value Description

kTelNwkServiceId 0 The network service set.

kTelStyServiceId 1 The security service set.

kTelPowServiceId 2 The power service set.

kTelCfgServiceId 3 The configuration service set.

kTelSmsServiceId 4 The short message service set.

kTelEmcServiceId 5 The emergency telephone call service
set.

kTelSpcServiceId 6 The speech telephone call service set.

kTelDtcServiceId 7 The data telephone call service set.

kTelPhbServiceId 8 The phone book service set.

kTelOemServiceId 9 The OEM service set.

kTelSndServiceId 10 The sound service set.

kTelInfServiceId 11 The information service set.

Telephony Basic Services
Telephony Functions

1638 Palm OS Programmer’s API Reference

TelCancel

Purpose Cancels an asynchronous function call.

Declared In TelephonyMgr.h

Prototype Err TelCancel(UInt16 iRefnum, TelAppID iAppId,
UInt16 iTransId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iTransId The transaction ID associated with the function
that you are cancelling.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function call was successfully cancelled.
Returns the telErrCommandFailed error code if the function call
could not be cancelled.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

functionId kTelUrqCancelMessage

paramId Points to the unsigned integer value passed to
this function in the iTransId parameter.

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1639

Comments This function cancels a pending asynchronous function call. You can
cancel any asynchronous call except for an asynchronous call to the
TelCancel function.

The function call that is cancelled returns the telErrUserCancel
error code.

Compatibility Implemented only if 4.0 New Feature Set is present.

TelClose

Purpose Close the shared library.

Declared In TelephonyMgr.h

Prototype Err TelClose(UInt16 iRefnum, TelAppID iAppId)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

Result Returns an error code, or error none if the library was successfully
closed. If the library is currently being used by another application,
this function returns the telErrLibStillInUse error code.

Comments Call this function when you are done with the telephony manager.
You can only use this function synchronously.

If no other application is using the telephony manager, this function
stops the Telephony task and releases any resources used by the
telephony manager.

See Also TelOpen

Telephony Basic Services
Telephony Functions

1640 Palm OS Programmer’s API Reference

TelClosePhoneConnection

Purpose Closes down communications with the connected phone.

Declared In TelephonyMgr.h

Prototype Err TelClosePhoneConnection(UInt16 iRefnum,
TelAppID iAppId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments Call this function when you have finished communications with the
phone and are ready to disconnect from it.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelUrqClosePhoneConnectionMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1641

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelOpenPhoneConnection

TelGetCallState

Purpose Retrieves the current telephone call state information.

Declared In TelephonyMgr.h

Prototype Err TelGetCallState(UInt16 iRefnum,
TelAppID iAppId, TelGetCallStateType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelCallStateType structure
that describes the state of the current telephone
call.

On input, the numberSize field of this
structure specifies the allocated size of the
number buffer. Upon return, the numberSize
field specifies the actual size of the telephone
number, even if it was truncated to fit into the
buffer.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Telephony Basic Services
Telephony Functions

1642 Palm OS Programmer’s API Reference

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments This function retrieves information about the current telephone call
state of the connection with the phone, and stores that information
into the supplied TelCallStateType structure.

The current incoming or outgoing telephone call number is stored
into the number field of the TelCallStateType structure
referenced by ioCallStateP. If the number field buffer is too
small to contain the complete telephone number, the string is
truncated (and ends with the null terminator character) and this
function returns the telErrBufferSize error. The numberSize
field of the structure is always updated to contain the actual size of
the complete telephone number.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcAcceptCall, TelSpcCallNumber

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelCallStateType structure
passed to this function in the ioCallState
parameter.

functionId kTelGetCallStateMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1643

TelGetEvent

Purpose Retrieves events for applications that use the telephony manager.

Declared In TelephonyMgr.h

Prototype void TelGetEvent(UInt16 iRefnum, TelAppID iAppId,
EventPtr oEventP, Int32 iTimeOut)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oEventP A pointer to a TelEventType structure. Upon
return, the structure contains the event
information, which you should use as
described in the Comments section.

-> iTimeout Maximum number of ticks to wait before an
event is returned (evtWaitForever means
wait indefinitely).

Result Returns nothing.

Comments This function retrieves both telephony and standard Palm OS®
events. You must call this function to retrieve events in any
application that is running in the UI task and using the telephony
manager.

Upon return from this function, you need to test the type of the
event by examining the oEventP->type field. If the event type is a
telephony event, then you need to cast the pointer as follows to
access the fields:

TelEventType *telEventP =
 (TelEventType *)oEventP;

This function calls both the EvtGetEvent and
TelGetTelephonyEvent functions to retrieve the next event for
your application.

Telephony Basic Services
Telephony Functions

1644 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also EvtGetEvent, TelGetTelephonyEvent

TelGetTelephonyEvent

Purpose Retrieves telephony events only.

Declared In TelephonyMgr.h

Prototype void TelGetTelephonyEvent(UInt16 iRefnum,
TelAppID iAppId, EventPtr oEventP,
Int32 iTimeOut)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oEventP A pointer to a TelEventType structure. Upon
return, the structure contains the event
information.

-> iTimeout Maximum number of ticks to wait before an
event is returned (evtWaitForever means
wait indefinitely).

Result Returns nothing.

Comments Use this function instead of the TelGetEvent function when you
only want to process telephony events.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also EvtGetEvent, TelGetEvent

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1645

TelInfGetInformation

Purpose Retrieve brand, model, and revision information for the phone.

Declared In TelephonyMgr.h

Prototype Err TelInfGetInformation(UInt16 iRefnum,
TelAppID iAppId,
TelInfGetInformationType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelInfGetformationType
structure.

On input, the infoType field of the structure
contains the type of information that you want
retrieved. The size field of this structure
specifies the allocated size of the value buffer.
Upon return, the size field specifies the actual
size of the information that was retrieved, even
if it was truncated to fit into the buffer.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Telephony Basic Services
Telephony Functions

1646 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments Call this function to retrieve information about the currently
connected phone.

The retrieved information is stored into the value field of the
TelInfGetformationType referenced by ioInfoP structure. If
the value field buffer is too small to contain the complete
information, the value is truncated and this function returns the
telErrBufferSize error. The size field of the structure is
always updated to contain the actual size of the retrieved
information.

Before using this function, you should verify that it is available by
calling the TelIsInfServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelInfGetformationType
structure passed to this function in the ioInfoP
parameter.

functionId kTelInfGetInformationMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1647

TelIsCfgServiceAvailable

Purpose A macro that determines if the configuration service set is available
in the current environment.

Declared In TelephonyMgr.h

Prototype TelIsCfgServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments You need to call this macro before calling any function in the
configuration service set, which is the family of functions that begin
with the TelCfg prefix.

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

paramP kTelCfgServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

1648 Palm OS Programmer’s API Reference

The configuration service set functions are documented in Chapter
72, “Telephony SMS.”

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

TelIsDtcServiceAvailable

Purpose A macro that determines if the data calls service set is available in
the current environment.

Declared In TelephonyMgr.h

Prototype TelIsDtcServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1649

Commentsl You need to call this macro before calling any function in the data
calls service set, which is the family of functions that begin with the
TelDtc prefix.

The data calls service set functions are documented in Chapter 71,
“Telephony Calls.”

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

TelIsEmcServiceAvailable

Purpose A macro that determines if the emergency calls service set is
available in the current environment.

Declared In TelephonyMgr.h

Prototype TelIsEmcServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

paramP kTelDtcServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

1650 Palm OS Programmer’s API Reference

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments You need to call this macro before calling any function in the
emergency calls service set, which is the family of functions that
begin with the TelEmc prefix.

The emergency calls service set functions are documented in
Chapter 71, “Telephony Calls.”

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

TelIsInfServiceAvailable

Purpose A macro that determines if the information service set is available in
the current environment.

Declared In TelephonyMgr.h

Prototype TelIsInfServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

paramP kTelEmcServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1651

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments You need to call this macro before calling any function in the
information service set, which is the family of functions that begin
with the TelInf prefix.

The information service set functions are documented in this
chapter.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

paramP kTelInfServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

1652 Palm OS Programmer’s API Reference

TelIsNwkServiceAvailable

Purpose A macro that determines if the network service set is available in the
current environment.

Declared In TelephonyMgr.h

Prototype TelIsNwkServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments You need to call this macro before calling any function in the
network service set, which is the family of functions that begin with
the TelNwk prefix.

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

paramP kTelNwkServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1653

The network service set functions are documented in Chapter 70,
“Telephony Network.”

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

TelIsOemServiceAvailable

Purpose A macro that determines if the OEM service set is available in the
current environment.

Declared In TelephonyMgr.h

Prototype TelIsOemServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

Telephony Basic Services
Telephony Functions

1654 Palm OS Programmer’s API Reference

Comments You need to call this macro before calling any function in the OEM
service set, which is the family of functions that begin with the
TelOem prefix.

The OEM service set functions are documented in this chapter.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

TelIsPhbServiceAvailable

Purpose A macro that determines if the phone book service set is available in
the current environment.

Declared In TelephonyMgr.h

Prototype TelIsPhbServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

paramP kTelOemServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1655

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments You need to call this macro before calling any function in the phone
book service set, which is the family of functions that begin with the
TelPhb prefix.

The phone book service set functions are documented in Chapter 73,
“Telephony Phone Book.”

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

TelIsPhoneConnected

Purpose Determines if a phone is connected.

Declared In TelephonyMgr.h

Prototype Err TelIsPhoneConnected(UInt16 iRefnum,
TelAppID iAppId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

paramP kTelPhbServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

1656 Palm OS Programmer’s API Reference

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments Call this function to determine if there is currently a phone
connected.

Compatibility Implemented only if 4.0 New Feature Set is present.

TelIsPowServiceAvailable

Purpose A macro that determines if the power services set is available in the
current environment.

Declared In TelephonyMgr.h

Prototype TelIsPowServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelUrqIsPhoneConnectedMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1657

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments You need to call this macro before calling any function in the power
service set, which is the family of functions that begin with the
TelPow prefix.

The power service set functions are documented in this chapter.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

paramP kTelPowServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

1658 Palm OS Programmer’s API Reference

TelIsSmsServiceAvailable

Purpose A macro that determines if the Short Message Service (SMS) service
set is available in the current environment.

Declared In TelephonyMgr.h

Prototype TelIsSmsServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments You need to call this macro before calling any function in the SMS
service set, which is the family of functions that begin with the
TelSms prefix.

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

paramP kTelSmsServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1659

The SMS service set functions are documented in Chapter 72,
“Telephony SMS.”

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

TelIsSndServiceAvailable

Purpose A macro that determines if the sound service set is available in the
current environment.

Declared In TelephonyMgr.h

Prototype TelIsSndServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

Telephony Basic Services
Telephony Functions

1660 Palm OS Programmer’s API Reference

Comments You need to call this macro before calling any function in the sound
service set, which is the family of functions that begin with the
TelSnd prefix.

The sound service set functions are documented in this chapter.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

TelIsSpcServiceAvailable

Purpose A macro that determines if the speech telephone call service set is
available in the current environment.

Declared In TelephonyMgr.h

Prototype TelIsSpcServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

paramP kTelSndServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1661

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments You need to call this macro before calling any function in the speech
telephone call service set, which is the family of functions that begin
with the TelSpc prefix.

The speech telephone call service set functions are documented in
Chapter 71, “Telephony Calls.”

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

TelIsStyServiceAvailable

Purpose A macro that determines if the security service set is available in the
current environment.

Declared In TelephonyMgr.h

Prototype TelIsStyServiceAvailable (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

paramP kTelSpcServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

1662 Palm OS Programmer’s API Reference

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available, or an error code if
not.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments You need to call this macro before calling any function in the
security service set, which is the family of functions that begin with
the TelSty prefix.

The security service set functions are documented in Chapter 70,
“Telephony Network.”

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

paramP kTelStyServiceId

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1663

TelMatchPhoneDriver

Purpose Determines if the currently selected driver matches the connected
phone.

Declared In TelephonyMgr.h

Prototype Err TelMatchPhoneDriver(UInt16 iRefnum,
TelAppID iAppId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Compatibility Implemented only if 4.0 New Feature Set is present.

returnCode errNone upon success or an error code upon
failure

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelUrqMatchPhoneDriverMessage

Telephony Basic Services
Telephony Functions

1664 Palm OS Programmer’s API Reference

TelOemCall

Purpose Pass a call to an OEM function.

Declared In TelephonyMgr.h

Prototype Err TelOemCall(UInt16 iRefnum, TelAppID iAppId,
TelOemCallType *ioParamP, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelOemCallType structure that
contains information about the OEM function
call.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transID matches the output value of the ioTransIdP
parameter

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1665

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments Call this function to send a request to an OEM function. The calling
function and the OEM function are responsible for coordinating the
parameter block that is passed in the TelOemCallType structure.

Before using this function, you should verify that it is available by
calling the TelIsOemServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

TelOpen

Purpose Open the telephony manager API to initialize telephony services
and launch the telephony task.

Declared In TelephonyMgr.h

Prototype Err TelOpen(UInt16 iRefnum, UInt32 iVersnum,
TelAppID *oAppIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iVersnum The version number of the shared library for
which your application was developed.

functionId matches the function ID in the TelOemCallType
structure passed to this function in the ioParamP
parameter

paramId points to the TelOemCallType structure passed
to this function in the ioParamP parameter

Telephony Basic Services
Telephony Functions

1666 Palm OS Programmer’s API Reference

<- oAppIdP A pointer to an application ID value. Upon
return, this is the application ID that you
supply as a parameter to the any other
telephony functions that you call.

Result Returns errNone if the function was successful or returns an error
code if not successful. The following errors can occur:

• the telephony task could not be found
(telErrTTaskNotFound)

• the telephony task could not be launched
(telErrTTaskNotRunning)

• the phone driver could not be found

• the shared library version is not valid

Comments You can only call this function synchronously. You must call this
function before calling any other telephony manager functions.

You can specify the current version of the shared library by using
the kTelMgrVersion constant as the value of the iVersnum
parameter.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelClose

TelOpenPhoneConnection

Purpose Open communications with the connected phone.

Declared In TelephonyMgr.h

Prototype Err TelOpenPhoneConnection(UInt16 iRefnum,
TelAppID iAppId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1667

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelClosePhoneConnection

TelPowGetBatteryStatus

Purpose Retrieves the status of the phone’s battery.

Declared In TelephonyMgr.h

Prototype Err TelPowGetBatteryStatus(UInt16 iRefnum,
TelAppID iAppId, UInt8 *oStatusP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelUrqOpenPhoneConnectionMessage

Telephony Basic Services
Telephony Functions

1668 Palm OS Programmer’s API Reference

<- oStatusP A pointer to an unsigned byte value. Upon
return, this is the battery status value, which is
one of the Battery Status Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oStatusP remains in
memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsPowServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPowGetPowerLevel

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the oStatusP parameter.

functionId kTelPowBatteryStatusMessage

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1669

TelPowGetPowerLevel

Purpose Retrieve the current level of the phone battery, as a percentage
value.

Declared In TelephonyMgr.h

Prototype Err TelPowGetPowerLevel(UInt16 iRefnum,
TelAppID iAppId, UInt8 *oPowerP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oPowerP A pointer to an unsigned byte value. Upon
return, this is the battery percentage value.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the oPowerP parameter.

functionId kTelPowGetPowerLevelMessage

Telephony Basic Services
Telephony Functions

1670 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oPowerP remains in memory
until the asynchronous call completes.

Comments The returned percentage value is an integer value between 0 and
100.

Before using this function, you should verify that it is available by
calling the TelIsPowServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPowGetBatteryStatus

TelPowSetPhonePower

Purpose Turns the phone on or off.

Declared In TelephonyMgr.h

Prototype Err TelPowSetPhonePower(UInt16 iRefnum,
TelAppID iAppId, Boolean iPowerOn)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iPowerOn Set to true to turn the phone on, and set to
false to turn the phone off.

Result Returns errNone if the function was successful and an error code if
not.

Comments This function can only be called synchronously.

Before using this function, you should verify that it is available by
calling the TelIsPowServiceAvailable macro.

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1671

This function corresponds to the
kTelPowSetPhonePowerMessage function ID value.

Compatibility Implemented only if 4.0 New Feature Set is present.

TelSendCommandString

Purpose Sends a command string to the phone or to the network.

Declared In TelephonyMgr.h

Prototype Err TelSendCommandString(UInt16 iRefnum,
TelAppID iAppId,
TelSendCommandStringType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a command string structure of type
TelSendCommandStringType.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Telephony Basic Services
Telephony Functions

1672 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Compatibility Implemented only if 4.0 New Feature Set is present.

TelSndMute

Purpose Mute or un-mute an active telephone call.

Declared In TelephonyMgr.h

Prototype Err TelSndMute(UInt16 iRefnum, TelAppID iAppId,
Boolean iMuteOn, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iMuteOn Set to true to mute the telephone call, or set to
false to unmute the telephone call.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSendCommandStringType
structure passed to this function in the ioParam
parameter.

functionId Matches the function ID in the
TelOemCallType referenced by the ioParamP
structure.

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1673

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments Before using this function, you should verify that it is available by
calling the TelIsSndServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSndPlayKeyTone

TelSndPlayKeyTone

Purpose Play a keytone sound on the phone.

Declared In TelephonyMgr.h

Prototype Err TelSndPlayKeyTone(UInt16 iRefnum,
TelAppID iAppId, TelSndPlayKeyToneType *iParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the Boolean value passed to this
function in the iMuteOn parameter.

functionId kTelSndMuteMessage

Telephony Basic Services
Telephony Functions

1674 Palm OS Programmer’s API Reference

-> iAppId The telephone application attachment identifier
for your application.

-> iParamP A pointer to a TelSndPlayKeyToneType
structure that describes the tone to play.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iParamP remains in
memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsSndServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSndStopKeyTone

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSndPlayKeyToneType
structure passed to this function in the
iKeyToneP parameter.

functionId kTelSndPlayKeyTone

Telephony Basic Services
Telephony Functions

Palm OS Programmer’s API Reference 1675

TelSndStopKeyTone

Purpose Stop the playing of a keytone sound on the phone.

Declared In TelephonyMgr.h

Prototype Err TelSndStopKeyTone(UInt16 iRefnum,
TelAppID iAppId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments Before using this function, you should verify that it is available by
calling the TelIsSndServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelSndStopKeyToneMessage

Telephony Basic Services
Feature Support Functions

1676 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSndPlayKeyTone

Feature Support Functions
This section describes the functions that you can call to determine if
a specific feature or function is supported in the current operating
environment.

TelIs<FunctionName>Supported

Purpose Determines if the specified function is supported.

Declared In TelephonyMgr.h

Prototype TelIs<FunctionName>Supported (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the specified function is supported.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Telephony Basic Services
Feature Support Functions

Palm OS Programmer’s API Reference 1677

Comments This is a family of synchronous macros that test if a specific function
is available in the current environment.

To use the macro, substitute a function name for the
<FunctionName> portion of the macro name. You can substitute
any Telephony Manager function name; for a complete list of the
Telephony Manager functions, see “Summary of Telephony
Manager” on page 235 in Palm OS Programmer’s Companion, vol. II,
Communications.

For example, to determine if the TelNwkGetSignalLevel
function is available in the current environment, call the
TelIsNwkGetSignalLevelSupported macro.

NOTE: A service set can be available without all of its functions
being available. Thus, if the TelIs<ServiceSet>Available
macro returns true for a specific service set, you know that the
service set is available, but you need to call
TelIs<FunctionName>Supported to determine if a specific
function is available.

This macro corresponds to the
kTelUrqIsFunctionSupportedMessage function ID value.

returnCode errNone if the specified function is supported,
or an error code if not.

transId The transaction ID of the operation.

paramP The function ID of the function for which you are
testing. For example, if you call
TelIsCgfGetSmsCenterSupported, the
value of this field is
kTelCfgGetSmsCenterMessage.

The function ID value for each function is
described in the documentation for the function.

functionId kTelUrqIsFunctionSupportedMessage

Telephony Basic Services
Feature Support Functions

1678 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<ServiceSet>Available

TelIs<ServiceSet>Available

Purpose Determines if the specified service set is available.

Declared In TelephonyMgr.h

Prototype TelIs<ServiceSet>Available (iRefnum, iAppId,
ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the service set is available.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone if the service set is available, or an error
code if not.

transId The transaction ID of the operation.

Telephony Basic Services
Feature Support Functions

Palm OS Programmer’s API Reference 1679

Comments This is a family of synchronous macros that test if a specific service
set is available. You must call the appropriate set availability
function before calling a function in the set.

NOTE: A service set can be available without all of its functions
being available. You can use this macro to determine the
availability of a specific service set, which you might use to
determine the configuration of your applications’ user interface.
To test if a specific function is supported, use the
TelIs<FunctionName>Supported macro.

You can call these specific macros to determine if the service set is
available:

• TelIsCfgServiceAvailable to determine if the
configuration service set is available.

• TelIsDtcServiceAvailable to determine if the data
calls service set is available.

• TelIsEmcServiceAvailable to determine if the
emergency calls service set is available.

• TelIsInfServiceAvailable to determine if the
information service set is available.

• TelIsNwkServiceAvailable to determine if the network
service set is available.

• TelIsOemServiceAvailable to determine if the OEM
service set is available.

• TelIsPhbServiceAvailable to determine if the phone
book service set is available.

paramP The service ID of the service set for which you are
testing. For example, if you call
TelIsCfgServiceAvailable, the value of
this field is kTelCfgServiceId.

The service IDs are described in Service Set
Constants.

functionId kTelUrqIsServiceAvailableMessage

Telephony Basic Services
Feature Support Functions

1680 Palm OS Programmer’s API Reference

• TelIsPowServiceAvailable to determine if the power
service set is available.

• TelIsSmsServiceAvailable to determine if the SMS
service set is available.

• TelIsSndServiceAvailable to determine if the sound
service set is available.

• TelIsSpcServiceAvailable to determine if the speech
calls service set is available.

• TelIsStyServiceAvailable to determine if the security
service set is available.

Each of these macros corresponds to the
kTelUrqIsServiceSupportedMessage function ID value.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelIs<FunctionName>Supported

Palm OS Programmer’s API Reference 1681

69
Telephony Security
and Configuration
This chapter describes the telephony security and configuration
service sets of the telephony API.

For more information about the telephony manager basic services
and the different service sets, see Chapter 68, “Telephony Basic
Services.”

This chapter describes:

• Telephony Security and Configuration Data Structures

• Telephony Security and Configuration Constants

• Telephony Security and Configuration Functions

For more information about using the telephony manager, see
Chapter 10, “Telephony Manager,” in Palm OS Programmer’s
Companion, vol. II, Communications.

Telephony Security and Configuration Data
Structures

This section describes the data structures used with the telephony
security and configuration service sets portion of the telephony API.

TelCfgGetPhoneNumberType
The TelCfgGetPhoneNumber function uses a
TelCfgGetPhoneNumberType structure to retrieve the connected
phone dial number.

Telephony Security and Configuration
Telephony Security and Configuration Data Structures

1682 Palm OS Programmer’s API Reference

typedef struct _TelCfgGetPhoneNumberType
 UInt8 size;
 Char* value;
} TelCfgGetPhoneNumberType

Field Descriptions

TelCfgGetSmsCenterType
The TelCfgGetSmsCenter function uses a
TelCfgGetSmsCenterType structure to retrieve the SMS service
center dial number.

typedef struct _TelCfgGetSmsCenterType
 UInt8 size;
 Char* value;
} TelCfgGetSmsCenterType

<-> size The size of the value buffer.

When the structure is used as an input parameter, this is
the allocated size, in bytes, of the value buffer.

Upon return, this is the actual size of the string,
including the null terminator character. If the value
buffer is too small to contain the entire retrieved string,
this field is assigned the entire length of the string, and
the function using this structure generates a
telErrBufferSize error.

<- value A buffer into which the dial number is stored.

Note that if this buffer is too small to contain the entire
retrieved string, the end of the string is truncated (and
ends with the null terminator character) and the function
using this structure generates a telErrBufferSize
error.

Telephony Security and Configuration
Telephony Security and Configuration Data Structures

Palm OS Programmer’s API Reference 1683

Field Descriptions

TelStyChangeAuthenticationType
You use the TelStyChangeAuthenticationType to change an
authentication code with the
TelStyChangeAuthenticationCode function.

typedef struct _TelStyChangeAuthenticationType
{
 UInt codeId;
 Char* oldCode;
 Char* newCode;
} TelStyChangeAuthenticationType

Field Descriptions

<-> size The size of the value buffer.

When the structure is used as an input parameter, this is
the allocated size, in bytes, of the value buffer.

Upon return, this is the actual size of the string,
including the null terminator character. If the value
buffer is too small to contain the entire retrieved string,
this field is assigned the entire length of the string, and
the function using this structure generates a
telErrBufferSize error.

<- value A buffer into which the dial number is stored.

Note that if this buffer is too small to contain the entire
retrieved string, the end of the string is truncated (and
ends with the null terminator character) and the function
using this structure generates a telErrBufferSize
error.

-> codeId The ID of the authentication code to change.

-> oldCode The previous value of the code.

-> newCode The new value of the code.

Telephony Security and Configuration
Telephony Security and Configuration Constants

1684 Palm OS Programmer’s API Reference

Telephony Security and Configuration Constants
This section describes the constants used with the telephony
security and configuration service sets of the telephony API.

Authentication State Constants
The authentication state constants describe the current
authentication state of the mobile unit connection.

Telephony Security and Configuration Functions
This section describes the data structures used with the telephony
security and configuration service sets portion of the telephony API.

Constant Value Description

kTelStyReady 0 No additional security information is
expected.

kTelStyPin1CodeId 1 The PIN1 code is expected.

kTelStyPin2CodeId 2 The PIN2 code is expected.

kTelStyPuk1CodeId 3 The PUK1 code is expected.

kTelStyPuk2CodeId 4 The PUK2 code is expected.

kTelStyPhoneToSimCodeId 5 The phone-to-SIM code is expected.

kTelStyFirstOemCodeId 6 An OEM code is expected.

The constant
kTelStyFirstOemCodeId specifies
the first OEM authentication code.
You can specify additional OEM
codes by incrementing this value. For
example, to specify the third OEM
authentication code, use the
following:

kTelStyFirstOemCodeId+2

Telephony Security and Configuration
Telephony Security and Configuration Functions

Palm OS Programmer’s API Reference 1685

TelCfgGetPhoneNumber

Purpose Retrieve the connected telephone number.

Declared In TelephonyMgr.h

Prototype Err TelCfgGetPhoneNumber(UInt16 iRefnum,
TelAppID iAppId,
TelCfgGetPhoneNumberType* ioParamP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelCfgGetPhoneNumberType
structure that is filled in with the dial telephone
number.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

Telephony Security and Configuration
Telephony Security and Configuration Functions

1686 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments The connected dial telephone number is stored into the value field
of the TelCfgGetPhoneNumberType structure referenced by
ioParamP. If the value field buffer is too small to contain the
complete telephone number, the string is truncated (and ends with
the null terminator character) and this function returns the
telErrBufferSize error. The size field of the structure is
always updated to contain the actual size of the complete telephone
number.

Before using this function, you should verify that it is available by
calling the TelIsCfgServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelCfgSetSmsCenter, TelSmsSendMessage

paramP Points to the TelCfgGetPhoneNumberType
structure passed to this function in the ioParamP
parameter.

functionId kTelCfgGetPhoneNumberMessage

Telephony Security and Configuration
Telephony Security and Configuration Functions

Palm OS Programmer’s API Reference 1687

TelCfgGetSmsCenter

Purpose Retrieve the SMS service center dial telephone number.

Declared In TelephonyMgr.h

Prototype Err TelCfgGetSmsCenter(UInt16 iRefnum,
TelAppID iAppId,
TelCfgGetSmsCenterType* ioParamP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelCfgGetSmsCenterType
structure that is filled in with the dial telephone
number.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

Telephony Security and Configuration
Telephony Security and Configuration Functions

1688 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments The service center dial telephone number is stored into the value
field of the TelCfgGetSmsCenterType structure referenced by
ioParamP. If the value field buffer is too small to contain the
complete telephone number, the string is truncated (and ends with
the null terminator character) and this function returns the
telErrBufferSize error. The size field of the structure is
always updated to contain the actual size of the complete telephone
number.

Before using this function, you should verify that it is available by
calling the TelIsCfgServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelCfgSetSmsCenter, TelSmsSendMessage

TelCfgSetSmsCenter

Purpose Set the SMS service center dial telephone number.

Declared In TelephonyMgr.h

Prototype Err TelCfgSetSmsCenter(UInt16 iRefnum,
TelAppID iAppId, const Char* iDialNumberP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

paramP Points to the TelCfgGetSmsCenterType
structure passed to this function in the ioParamP
parameter.

functionId kTelCfgGetSmsCenterMessage

Telephony Security and Configuration
Telephony Security and Configuration Functions

Palm OS Programmer’s API Reference 1689

-> iAppId The telephone application attachment identifier
for your application.

-> iDialNumberP
A pointer to the null-terminated dial telephone
number string for the SMS service center.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the value referenced by iDialNumberP remains in
memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsCfgServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelCfgGetSmsCenter, TelSmsSendMessage

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the string passed to this function in the
iDialNumberP parameter.

functionId kTelCfgSetSmsCenterMessage

Telephony Security and Configuration
Telephony Security and Configuration Functions

1690 Palm OS Programmer’s API Reference

TelStyChangeAuthenticationCode

Purpose Change the value of an authentication code. Note that you can only
use this function with GSM networks.

Declared In TelephonyMgr.h

Prototype Err TelStyChangeAuthenticationCode(UInt16 iRefnum,
TelAppID iAppId,
TelStyChangeAuthenticationType* iParamP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iParamP A pointer to a
TelStyChangeAuthenticationType
structure that contains the old and new
authentication code values.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

Telephony Security and Configuration
Telephony Security and Configuration Functions

Palm OS Programmer’s API Reference 1691

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iParamP remains in
memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsStyServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelStyEnterAuthenticationCode

TelStyEnterAuthenticationCode

Purpose Enter the authentication code for which the phone is currently
waiting. Note that you can only use this function with GSM
networks.

Declared In TelephonyMgr.h

Prototype Err TelStyEnterAuthenticationCode(UInt16 iRefnum,
TelAppID iAppId, const Char* iCodeP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iCodeP A pointer to the null-terminated authentication
code string to send to the phone.

paramP Points to the
TelStyChangeAuthenticationType structure
passed to this function in the iParamP parameter.

functionId kTelStyChangeAuthenticationCodeMessage

Telephony Security and Configuration
Telephony Security and Configuration Functions

1692 Palm OS Programmer’s API Reference

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the string referenced by iCodeP remains in memory
until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsStyServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelStyChangeAuthenticationCode,
TelStyGetAuthenticationState

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the string passed to this function in the
iCodeP parameter.

functionId kTelStyEnterAuthenticationCodeMessage

Telephony Security and Configuration
Telephony Security and Configuration Functions

Palm OS Programmer’s API Reference 1693

TelStyGetAuthenticationState

Purpose Returns the current state of user authentication.

Declared In TelephonyMgr.h

Prototype Err TelStyGetAuthenticationState(UInt16 iRefnum,
TelAppID iAppId, UInt8* oStateP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oStateP A pointer to an unsigned byte value. Upon
return, this is the authentication state, which is
one of the Authentication State Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the oStateP parameter.

functionId kTelStyGetAuthenticationStateMessage

Telephony Security and Configuration
Telephony Security and Configuration Functions

1694 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oStateP remains in memory
until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsStyServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelStyEnterAuthenticationCode

Palm OS Programmer’s API Reference 1695

70
Telephony Network
This chapter describes the telephony network service set of the
telephony API.

For more information about the telephony manager basic services
and the different service sets, see Chapter 68, “Telephony Basic
Services.”

This chapter describes:

• Telephony Network Data Structures

• Telephony Network Constants

• Telephony Network Functions

For more information about using the telephony manager, see
Chapter 10, “Telephony Manager,” in Palm OS Programmer’s
Companion, vol. II, Communications.

Telephony Network Data Structures
This section describes the data structures used with the telephony
network service set portion of the telephony API.

TelNwkGetLocationType
You use the TelNwkGetLocationType structure with the
TelNwkGetLocation function to retrieve information about the
location of the phone.

typedef struct _TelNwkGetLocationType
{
 Char* value;
 UInt16 size;
} TelNwkGetLocationType

Telephony Network
Telephony Network Data Structures

1696 Palm OS Programmer’s API Reference

Field Descriptions

TelNwkGetNetworkNameType
You use the TelNwkGetNetworkNameType structure with the
TelNwkGetNetworkName function to retrieve the name of the
specified, registered network.

typedef struct _TelNwkGetNetworkNameType
{
 UInt32 id;
 Char* value;
 UInt16 size;
} TelNwkGetNetworkNameType

<- value A buffer into which the current location string is stored.
The format of this string is network-dependent.

Note that if this buffer is too small to contain the entire
retrieved string, the end of the string is truncated (and
ends with the null terminator character) and the function
using this structure generates a telErrBufferSize
error.

<-> size The size of the value string. When the structure is used
as an input parameter, this is the allocated size, in bytes,
of the value buffer.

Upon return, this is the actual size of the string, including
the null terminator character. If the value buffer is too
small to contain the entire retrieved string, this field is
assigned the entire length of the string, and the function
using this structure generates a telErrBufferSize
error.

Telephony Network
Telephony Network Data Structures

Palm OS Programmer’s API Reference 1697

Field Descriptions

TelNwkGetNetworksType
You use the TelNwkGetNetworksType structure with the
TelNwkGetNetworks function to retrieve the number of registered
networks.

typedef struct _TelNwkGetNetworksType
{
 UInt32* networkIdP;
 UInt8 size;
} TelNwkGetNetworksType

-> id The network ID.

<- value A null-terminated string buffer into which the network
name is stored.

Note that if this buffer is too small to contain the entire
retrieved string, the end of the string is truncated (and
ends with the null terminator character) and the function
using this structure generates a telErrBufferSize
error.

<-> size The size of the value string. When the structure is used
as an input parameter, this is the allocated length, in
bytes, of the value buffer.

Upon return, this is the actual size of the string, including
the null terminator character. If the value buffer is too
small to contain the entire retrieved string, this field is
assigned the entire length of the string, and the function
using this structure generates a telErrBufferSize
error

Telephony Network
Telephony Network Constants

1698 Palm OS Programmer’s API Reference

Field Descriptions

Telephony Network Constants
This section describes the constants used with the telephony
network service set of the telephony API, which include the
following constant types:

• Network Type Constants

• Network Search Mode Constants

Network Type Constants
The network type constants describe the type of network
connection.

<- networkIdP An array into which the retrieved network IDs are
stored.

Note that if this buffer is too small to contain all of
the available IDs, the data is truncated and the
function using this structure generates a
telErrBufferSize error.

<-> size When the structure is use as an input value, this is
the allocated size, in elements, of the networkIdP
array.

When the structure is used as a return value, this is
the number of network IDs that are available. If the
the networkP buffer is too small to contain all of
the retrieved IDs, this field is assigned the entire
number of available IDs, and the function using this
structure generates a telErrBufferSize error

Constant Value Description

kTelNwkCDMA 0 A CDMA network.

kTelNwkGSM 1 A GSM network.

Telephony Network
Telephony Network Functions

Palm OS Programmer’s API Reference 1699

Network Search Mode Constants
The network search mode constants describe the search mode used
to find a network.

Telephony Network Functions
This section describes the data structures used with the telephony
network service set portion of the telephony API.

TelNwkGetLocation

Purpose Retrieve information about the location of the mobile unit.

Declared In TelephonyMgr.h

Prototype Err TelNwkGetLocation(UInt16 iRefnum,
TelAppID iAppId, TelNwkGetLocationType* ioParamP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelNwkGetLocationType
structure.

kTelNwkTDMA 2 A TDMA network.

kTelNwkPDC 3 A PDC network.

Constant Value Description

Constant Value Description

kTelNwkManualSearch 0 Manual network searching.

kTelNwkAutomaticSearch 1 Automatic network searching.

Telephony Network
Telephony Network Functions

1700 Palm OS Programmer’s API Reference

On input, the size field of this structure
specifies the allocated size of the value buffer.
Upon return, the size field specifies the actual
size of the location string, even if it was
truncated to fit into the buffer.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments The location information string is stored into the value field of the
TelNwkGetLocationType structure referenced by ioParamP. If
the value buffer is too small to contain the complete string, the
string is truncated (and ends with the null terminator character) and
this function returns the telErrBufferSize error. The size field
of the structure is always updated to contain the actual size of the
complete string.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelNwkGetLocationType passed
to this function in the ioParamP parameter.

functionId kTelNwkGetLocationMessage

Telephony Network
Telephony Network Functions

Palm OS Programmer’s API Reference 1701

Before using this function, you should verify that it is available by
calling the TelIsNwkServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

TelNwkGetNetworkName

Purpose Returns the name of a registered network.

Declared In TelephonyMgr.h

Prototype Err TelNwkGetNetworkName(UInt16 iRefnum,
TelAppID iAppId,
TelNwkGetNetworkNameType* ioParamP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelNwkGetNetworkNameType
structure that stores the network name.

On input, the size field of this structure
specifies the allocated size of the value buffer.
Upon return, the size field specifies the actual
size of the name string, even if it was truncated
to fit into the buffer.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Telephony Network
Telephony Network Functions

1702 Palm OS Programmer’s API Reference

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments The network name string is stored into the value field of the
structure. If the value field buffer in the
TelNwkGetNetworkNameType structure is too small to contain the
complete string, the string is truncated (and ends with the null
terminator character) and this function returns the
telErrBufferSize error. The size field is always updated to
contain the actual size of the complete string.

The string that is returned in the value field of the structure
referenced by ioParamP is network dependent.

On a GSM network, the result string is compliant with the AT 07.07
European Telecommunications Standards Institute (ETSI) standard
for COPS and CREG commands. The result string contains the
following elements:

• The network type, as returned by the
TelNwkGetNetworkType function, and followed by a
semicolon (';') character.

• The network operator, using the following syntax:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelNwkGetNetworkNameType
passed to this function in the ioParamP
parameter.

functionId kTelNwkGetNetworkNameMessage

Telephony Network
Telephony Network Functions

Palm OS Programmer’s API Reference 1703

 <area code> ';' <network registration>

The <area code> value is the value retrieved by issuing the
AT+CREG? command.

The <network registration> value is the value
retrieved by issuing the AT+CREG? command.

Before using this function, you should verify that it is available by
calling the TelIsNwkServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelNwkGetNetworks, TelNwkGetSelectedNetwork

TelNwkGetNetworks

Purpose Retrieves information about the registered networks.

Declared In TelephonyMgr.h

Prototype Err TelNwkGetNetworks(UInt16 iRefnum,
TelAppID iAppId, TelNwkGetNetworksType* ioParamP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelNwkGetNetworksType
structure that stores the network IDs. On input,
the size field of this structure contains the
size, in elements, of the networkIdP array
field.

Upon return, the networkIdP array contains
the IDs of the registered networks, and the
size field contains the number of IDs in the
array.

Telephony Network
Telephony Network Functions

1704 Palm OS Programmer’s API Reference

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsNwkServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelNwkGetNetworkName, TelNwkGetNetworks

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelNwkGetNetworksType passed
to this function in the ioParamP parameter.

functionId kTelNwkGetNetworkCountMessage

Telephony Network
Telephony Network Functions

Palm OS Programmer’s API Reference 1705

TelNwkGetNetworkType

Purpose Retrieve the type of the selected network.

Declared In TelephonyMgr.h

Prototype Err TelNwkGetNetworkType(UInt16 iRefnum,
TelAppID iAppId, UInt8* oTypeP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oTypeP A pointer to an unsigned byte value. Upon
return, this is the network type. This is one of
Network Type Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the oTypeP parameter.

functionId kTelNwkGetNetworkTypeMessage

Telephony Network
Telephony Network Functions

1706 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the value you pass for the oTypeP parameter
remains in memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsNwkServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

TelNwkGetSearchMode

Purpose Returns the current network search mode.

Declared In TelephonyMgr.h

Prototype Err TelNwkGetSearchMode(UInt16 iRefnum,
TelAppID iAppId, UInt8* oModeP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oModeP A pointer to an unsigned byte value. Upon
return, this is the type of search mode that is
currently being used. This is one of the
Network Search Mode Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Telephony Network
Telephony Network Functions

Palm OS Programmer’s API Reference 1707

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oModeP remains in memory
until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsNwkServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelNwkSetSearchMode

TelNwkGetSelectedNetwork

Purpose Retrieve the network identifier of the currently selected network.

Declared In TelephonyMgr.h

Prototype Err TelNwkGetSelectedNetwork(UInt16 iRefnum,
TelAppID iAppId, UInt32* oNetworkIdP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the oModeP parameter.

functionId kTelNwkGetSearchModeMessage

Telephony Network
Telephony Network Functions

1708 Palm OS Programmer’s API Reference

-> iAppId The telephone application attachment identifier
for your application.

<- oNetworkIdP A pointer to an unsigned integer value. Upon
return, this is the identifier of the currently
selected network.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oNetworkP remains in
memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsNwkServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the oNetworkIdP parameter.

functionId kTelNwkGetSelectedNetworkMessage

Telephony Network
Telephony Network Functions

Palm OS Programmer’s API Reference 1709

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelNwkGetNetworkName, TelNwkGetNetworks,
TelNwkSelectNetwork

TelNwkGetSignalLevel

Purpose Retrieve the selected network carrier signal level.

Declared In TelephonyMgr.h

Prototype Err TelNwkGetSignalLevel(UInt16 iRefnum,
TelAppID iAppId, UInt8* oSignalP,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oSignalP A pointer to an unsigned byte value. Upon
return, this is an indication of the signal level in
decibels per milliwatt (dBm). The values are
explained in the Comments section.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Telephony Network
Telephony Network Functions

1710 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oSignalP remains in
memory until the asynchronous call completes.

Comments This function sets the value of the variable referenced by oSignalP
to an integer value that indicates the signal strength in dBm.

The following table describes the signal strength values.

Before using this function, you should verify that it is available by
calling the TelIsNwkServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the oSignalP parameter.

functionId kTelNwkGetSignalLevelMessage

Signal level value dBm value

0 ≤ 113 dBm

1 111 dBm

2 to 30 109 dBm to 53 dBm

31 ≥ 51 dBm

99 unknown or undetectable

Telephony Network
Telephony Network Functions

Palm OS Programmer’s API Reference 1711

TelNwkSelectNetwork

Purpose Select a network to use from among the set of registered networks.

Declared In TelephonyMgr.h

Prototype Err TelNwkSelectNetwork(UInt16 iRefnum,
TelAppID iAppId, UInt32 iNetworkId,
UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iNetworkId The identifier of the network to select.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the network unsigned integer value
passed to this function in the iNetworkId
parameter.

functionId kTelNwkSelectNetworkMessage

Telephony Network
Telephony Network Functions

1712 Palm OS Programmer’s API Reference

Comments Before using this function, you should verify that it is available by
calling the TelIsNwkServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelNwkGetNetworkName, TelNwkGetNetworks,
TelNwkGetSelectedNetwork

TelNwkSetSearchMode

Purpose Sets the search mode used to find a network.

Declared In TelephonyMgr.h

Prototype Err TelNwkSetSearchMode(UInt16 iRefnum,
TelAppID iAppId, UInt8 iMode, UInt16* ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iMode The search mode to use. This must be one of the
Network Search Mode Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Telephony Network
Telephony Network Functions

Palm OS Programmer’s API Reference 1713

Comments Before using this function, you should verify that it is available by
calling the TelIsNwkServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelNwkGetSearchMode

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the iMode parameter.

functionId kTelNwkSetSearchModeMessage

Telephony Network
Telephony Network Functions

1714 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1715

71
Telephony Calls
This chapter describes the telephony calls service sets of the
telephony API, which include:

• The data calls service set

• The emergency calls service set

• The speech (voice) calls service set

For more information about the telephony manager basic services
and the different service sets, see Chapter 68, “Telephony Basic
Services.”

This chapter describes:

• Telephony Calls Data Structures

• Telephony Calls Functions

For more information about using the telephony manager, see
Chapter 10, “Telephony Manager,” in Palm OS Programmer’s
Companion, vol. II, Communications.

Telephony Calls Data Structures
This section describes the data structures used with the telephony
calls service sets portion of the telephony manager API.

TelDtcCallNumberType
The TelDtcCallNumber function uses the
TelDataCallNumberType structure to specify information about
the telephone number to call.

typedef struct _TelDtcCallNumberType
{
 char *dialNumberP;
 UInt8 lineId;
} TelDtcCallNumberType

Telephony Calls
Telephony Calls Data Structures

1716 Palm OS Programmer’s API Reference

Field Descriptions

TelDtcReceiveDataType
The TelDtcReceiveData function uses a
TelDtcReceiveDataType structure to receive data from an open
data line.

typedef struct _TelDtcReceiveDataType
{
 UInt8 *data;
 UInt32 size;
 UInt32 timeout;
} TelDtcReceiveDataType

Field Descriptions

-> dialNumberP The telephone number to dial.

<- lineId Upon return from the TelDtcCallNumber function,
this is the ID of the data line that was established for the
telephone call.

<- data A buffer into which the data is stored.

Note that if this buffer is too small to contain all of the
available data, the end of the data is truncated and the
function using this structure generates a
telErrBufferSize error.

<-> size When the structure is used as an input parameter, this is
the allocated size, in bytes, of the data buffer.

Upon return, this is the actual number of bytes of data
that was retrieved. If the data buffer is too small to
contain all of the retrieved data, the function using this
structure generates a telErrBufferSize error.

-> timeout The number of milliseconds to wait before timing out.

Telephony Calls
Telephony Calls Data Structures

Palm OS Programmer’s API Reference 1717

TelDtcSendDataType
The TelDtcReceiveData function uses a TelDtcSendDataType
structure to send data to an open data line.

typedef struct _TelDtcSendDataType
{
 UInt8 *data;
 UInt32 size;
} TelDtcSendDataType

Field Descriptions

TelEmcGetNumberType
The TelEmcGetNumber function uses a TelEmcGetNumberType
structure to retrieve an emergency dial telephone number.

typedef struct _TelEmcGetNumberType
{
 UInt8 index;
 UInt8 size;
 Char *value;
} TelEmcGetNumberType

Field Descriptions

-> data A pointer to the data to send.

-> size The number of bytes of data in the data buffer.

-> index The index of the telephone number. This is a zero-based
index.

Telephony Calls
Telephony Calls Data Structures

1718 Palm OS Programmer’s API Reference

TelEmcSetNumberType
The TelEmcSetNumber function uses a TelEmcNumberType
structure to set an emergency dial telephone number.

typedef struct _TelEmcSetNumberType
{
 UInt8 index;
 Char *value;
} TelEmcSetNumberType

Field Descriptions

TelSpcGetCallerNumberType
The TelSpcGetCallerNumber function uses a
TelSpcGetCallerNumberType structure to retrieve an incoming
telephone number.

<-> size When the structure is used as an input parameter, this
is the allocated size, in bytes, of the value buffer.

Upon return, this is the actual size of the string,
including the null terminator character. If the value
buffer is too small to contain the entire retrieved string,
this field is assigned the entire length of the string, and
the function using this structure generates a
telErrBufferSize error.

<- value A null-terminated string buffer into which the
emergency dial telephone number is stored.

Note that if this buffer is too small to contain all of the
available data, the end of the data is truncated and the
function using this structure generates a
telErrBufferSize error.

-> index The index of the telephone number. This is a zero-based
index.

-> value The string value of the number to store as the indexth
entry.

Telephony Calls
Telephony Calls Data Structures

Palm OS Programmer’s API Reference 1719

typedef struct _TelSpcGetCallerNumberType
{
 Char *value;
 UInt8 size;
} TelSpcGetCallerNumberType

Field Descriptions

TelSpcPlayDTMFType
The TelSpcPlayDTMF function uses a TelSpcPlayDTMFType
structure to specify the qualities of the DTMF (dual-tone, multi-
frequency) sound sent by the phone to the network or remote,
connected equipment.

typedef struct _TelSpcPlayDTMFType
 UInt8 keyTone;
 UInt32 duration;
} TelSpcPlayDTMFType

<- value A null-terminated string buffer into which the caller
telephone number is stored.

Note that if this buffer is too small to contain all of the
available data, the end of the data is truncated and the
function using this structure generates a
telErrBufferSize error.

<-> size When the structure is used as an input parameter, this is
the allocated size, in bytes, of the value buffer.

Upon return, this is the actual size of the caller dial
telephone number, including the null terminator
character. If the value buffer is too small to contain the
entire retrieved string, this field is assigned the entire
length of the string, and the function using this structure
generates a telErrBufferSize error.

Telephony Calls
Telephony Calls Functions

1720 Palm OS Programmer’s API Reference

Field Descriptions

Telephony Calls Functions
This section describes the functions used with the telephony calls
service sets portion of the telephony API.

TelDtcCallNumber

Purpose Initiate a data telephone call.

Declared In TelephonyMgr.h

Prototype Err TelDtcCallNumber(UInt16 iRefnum,
TelAppID iAppId, TelDtcCallNumberType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelDtcCallNumberType
structure that specifies information about the
telephone call.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

-> keyTone The keycode of the key tone to play. This must be one of
the Keycode Constants.

-> duration The duration of the tone, specified as a multiple of ten
milliseconds.

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1721

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioDataCallParamP
remains in memory until the asynchronous call completes.

Comments Call this function to start a data telephone call.

Before using this function, you should verify that it is available by
calling the TelIsDtcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelDtcCloseLine

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelDtcCallNumberType
structure passed to this function in the
ioDataCallParamP parameter.

functionId kTelDtcCallNumberMessage

Telephony Calls
Telephony Calls Functions

1722 Palm OS Programmer’s API Reference

TelDtcCloseLine

Purpose Hang up a data line.

Declared In TelephonyMgr.h

Prototype Err TelDtcCloseLine(UInt16 iRefnum,
TelAppID iAppId, UInt8 iLineId,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iLineId The ID of the line to hang up. This is the ID
returned by a previous call to the
TelDtcCallNumber function.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the iLineId parameter.

functionId kTelDtcCloseLineMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1723

Comments Call this function to end a data telephone call.

Before using this function, you should verify that it is available by
calling the TelIsDtcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelDtcCallNumber

TelDtcReceiveData

Purpose Receive data on an opened data communications line.

Declared In TelephonyMgr.h

Prototype Err TelDtcReceiveData(UInt16 iRefnum,
TelAppID iAppId, TelDtcReceiveDataType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelDtcReceiveDataType
structure.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Telephony Calls
Telephony Calls Functions

1724 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments Call this function to receive data during an active data telephone
call.

Before using this function, you should verify that it is available by
calling the TelIsDtcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelDtcCallNumber, TelDtcCloseLine, TelDtcSendData

TelDtcSendData

Purpose Send data on an opened data line.

Declared In TelephonyMgr.h

Prototype Err TelDtcSendData(UInt16 iRefnum,
TelAppID iAppId, TelDtcSendDataType *iParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelDtcReceiveDataType
structure passed to this function in the
ioRcvDataP parameter.

functionId kTelDtcReceiveDataMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1725

-> iAppId The telephone application attachment identifier
for your application.

-> iParamP A pointer to a TelDtcSendDataType
structure that specifies the data to send.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iParamP remains in
memory until the asynchronous call completes.

Comments Call this function to send data during an active data telephone call.

Before using this function, you should verify that it is available by
calling the TelIsDtcServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelDtcSendDataType structure
passed to this function in the iSendDataP
parameter.

functionId kTelDtcSendDataMessage

Telephony Calls
Telephony Calls Functions

1726 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelDtcCallNumber, TelDtcCloseLine, TelDtcReceiveData

TelEmcCall

Purpose Call the currently selected emergency service.

Declared In TelephonyMgr.h

Prototype Err TelEmcCall(UInt16 iRefnum, TelAppID iAppId,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelEmcCallMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1727

Comments This function calls the telephone number specified in a previous call
to the TelEmcSelectNumber function. In synchronous mode, this
function returns after the dial command has been sent to the phone.

After calling this function, sub-launched applications can receive
notifications when the following telephony events occur. Note that
these notifications can be raised after both synchronous and
asynchronous calls to this function.

Before using this function, you should verify that it is available by
calling the TelIsEmcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelEmcCloseLine,

Event Description

sysTelSpcLaunchCmdCallReleased Warns that the telephone call has been
released.

sysTelSpcLaunchCmdCallBusy Warns that the called equipment is busy.

sysTelSpcLaunchCmdCallConnect Warns that the line is open. The ID of the
open line is stored in the UInt32 value of
the parameter block passed to the
application.

sysTelSpcLaunchCmdCallError Warns that an error occurred while
attempting to complete the telephone call.

Telephony Calls
Telephony Calls Functions

1728 Palm OS Programmer’s API Reference

TelEmcCloseLine

Purpose Close the line that is currently opened for an emergency telephone
call.

Declared In TelephonyMgr.h

Prototype Err TelEmcCloseLine(UInt16 iRefnum,
TelAppID iAppId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments Call this function to end an emergency telephone call.

Before using this function, you should verify that it is available by
calling the TelIsEmcServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelDtcCloseLineMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1729

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelEmcCall

TelEmcGetNumber

Purpose Retrieve an emergency dial telephone number.

Declared In TelephonyMgr.h

Prototype Err TelEmcGetNumber(UInt16 iRefnum,
TelAppID iAppId, TelEmcGetNumberType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelEmcGetNumberType
structure in which you assign the index of the
telephone number that you want to retrieve.

On input, the size field of this structure
specifies the allocated size of the value buffer.
Upon return, the size field specifies the actual
size of the telephone number, even if it was
truncated to fit into the buffer.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Telephony Calls
Telephony Calls Functions

1730 Palm OS Programmer’s API Reference

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments The emergency call telephone number is stored into the value field
of the TelEmcGetNumberType structure referenced by
ioGetNumberP. If the value buffer is too small to contain the
complete string, the string is truncated (and ends with the null
terminator character) and this function returns the
telErrBufferSize error. The size field of the structure is
always updated to contain the actual size of the complete string.

Before using this function, you should verify that it is available by
calling the TelIsEmcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelEmcGetNumberCount, TelEmcSetNumber,
TelEmcSelectNumber

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelEmcGetNumberType structure
passed to this function in the ioGetNumberP
parameter.

functionId kTelEmcGetNumberMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1731

TelEmcGetNumberCount

Purpose Retrieve the count of emergency dial telephone numbers.

Declared In TelephonyMgr.h

Prototype Err TelEmcGetNumberCount(UInt16 iRefnum,
TelAppID iAppId, UInt8 *oCountP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oCountP Upon return, the total number of emergency
call numbers available.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to unsigned integer passed to this function
in the oCountP parameter.

functionId kTelEmcGetNumberMessage

Telephony Calls
Telephony Calls Functions

1732 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oCountP remains in memory
until the asynchronous call completes.

Comments The emergency telephone call number is stored into the value field
of the TelEmcGetNumberType structure referenced by
ioGetNumberP. If the value buffer is too small to contain the
complete string, the string is truncated (and ends with the null
terminator character) and this function returns the
telErrBufferSize error. The size field of the structure is
always updated to contain the actual size of the complete string.

Before using this function, you should verify that it is available by
calling the TelIsEmcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelEmcGetNumber, TelEmcSetNumber, TelEmcSelectNumber

TelEmcSelectNumber

Purpose Select the current emergency telephone number. This is the
telephone number that gets dialed when you call the TelEmcCall
function.

Declared In TelephonyMgr.h

Prototype Err TelEmcSelectNumber(UInt16 iRefnum,
TelAppID iAppId, UInt8 iIndex,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iIndex The zero-based index of the emergency
telephone number that you want selected.

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1733

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments Before using this function, you should verify that it is available by
calling the TelIsEmcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelEmcCall, TelEmcGetNumber, TelEmcGetNumberCount,
TelEmcSetNumber

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the iIndex parameter.

functionId kTelEmcSelectNumberMessage

Telephony Calls
Telephony Calls Functions

1734 Palm OS Programmer’s API Reference

TelEmcSetNumber

Purpose Set the telephone number for the specified emergency dial number.

Declared In TelephonyMgr.h

Prototype Err TelEmcSetNumber(UInt16 iRefnum,
TelAppID iAppId, TelEmcSetNumberType *iParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iParamP A pointer to a TelEmcSetNumberType
structure that specifies the telephone number.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelEmcSetNumberType structure
passed to this function in the iNumberP
parameter.

functionId kTelEmcSetNumberMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1735

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iParamP remains in
memory until the asynchronous call completes.

Comments Call this function to associate a new telephone number with the
emergency dial number that has the specified iIndex.

Before using this function, you should verify that it is available by
calling the TelIsEmcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelEmcGetNumber,

TelSpcAcceptCall

Purpose Accept an incoming voice telephone call.

Declared In TelephonyMgr.h

Prototype Err TelSpcAcceptCall(UInt16 iRefnum,
TelAppID iAppId, UInt8 *oLineIdP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oLineIdP A pointer to an unsigned byte value. Upon
return, this is the ID of the voice line assigned
to the telephone call.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

Telephony Calls
Telephony Calls Functions

1736 Palm OS Programmer’s API Reference

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oLineIdP remains in
memory until the asynchronous call completes.

Comments If another line was active prior to the execution of this function, that
line is put on hold. Note that there can only be one line active at any
given time, and there can only be one line on hold at any given time.

Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcGetCallerNumber, TelSpcRejectCall

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer passed to this
function in the oLineIdP parameter.

functionId kTelSpcAcceptCallMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1737

TelSpcCallNumber

Purpose Initiate a voice telephone call.

Declared In TelephonyMgr.h

Prototype Err TelSpcCallNumber(UInt16 iRefnum,
TelAppID iAppId, const Char *iDialNumberP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iDialNumberP
A pointer to the telephone number to call.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the string passed to this function in the
iDialNumberP parameter.

functionId kTelSpcCallNumberMessage

Telephony Calls
Telephony Calls Functions

1738 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the value referenced by iDialNumberP remains in
memory until the asynchronous call completes.

Comments A successful return from a synchronous call or receipt of a
successful notification from an asynchronous call does not mean
that the telephone call has been connected; instead, it indicates that
the dial command was sent to the phone. Successful connection of
the telephone call is indicated with a sub-launch.

The dial number is formatted according to the following syntax:

DialNumber ::= <Phone_Number> | <Code_String>
 | <Phone_Number> <Code_String>

Phone_Number ::= <IntlPrefix><NatlNumber>
 | <NatlNumber>

IntlPrefix ::= '+' <country code>

NatlNumber ::= {{Pause<Pause>}{<Digit>}}

Code_String ::= <Symbol>{<Symbol>}

Symbol ::= <Digit> | '#' | '*'

Digit ::= '0' | '1' | '2' | '3' | '4'
 | '5' | '6' | '7' | '8' | '9'

Pause ::= ','

After calling this function, sub-launched applications can receive
notifications when the following telephony events occur. Note that
these notifications can be raised after both synchronous and
asynchronous calls to this function.

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1739

Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcCloseLine

TelSpcCloseLine

Purpose Ends a voice telephone call.

Declared In TelephonyMgr.h

Prototype Err TelSpcCloseLine(UInt16 iRefnum,
TelAppID iAppId, UInt8 iLineId,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

Event Description

sysTelSpcLaunchCmdCallReleased This is passed to a sub-launched
application to warn that the telephone call
has been released.

sysTelSpcLaunchCmdCallBusy This is passed to a sub-launched
application to warn that the called
equipment is busy.

sysTelSpcLaunchCmdCallConnect This is passed to a sub-launched
application to warn that the line is open.
The ID of the open line is stored in the
UInt32 value of the parameter block
passed to the application.

sysTelSpcLaunchCmdCallError This is passed to a sub-launched
application to warn that the telephone call
encountered an error.

Telephony Calls
Telephony Calls Functions

1740 Palm OS Programmer’s API Reference

-> iAppId The telephone application attachment identifier
for your application.

-> iLineId The ID of the voice line that you want to close.
This is the ID returned by a previous call to the
TelSpcAcceptCall function.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcCallNumber

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the iLineId parameter.

functionId kTelSpcCloseLineMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1741

TelSpcConference

Purpose Initiate a conference telephone call by merging the active line and
the held line.

Declared In TelephonyMgr.h

Prototype Err TelSpcConference(UInt16 iRefnum,
TelAppID iAppId, UInt8 *oLineIdP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oLineIdP A pointer to an unsigned byte value. Upon
return, this is the ID of the voice line assigned
to the telephone call.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

Telephony Calls
Telephony Calls Functions

1742 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oLineIdP remains in
memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcCallNumber, TelSpcCloseLine, TelSpcHoldLine,
TelSpcRetrieveHeldLine, TelSpcSelectLine

TelSpcGetCallerNumber

Purpose Retrieve the telephone number of the caller on an incoming
telephone call.

Declared In TelephonyMgr.h

Prototype Err TelSpcGetCallerNumber(UInt16 iRefnum,
TelAppID iAppId,
TelSpcGetCallerNumberType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

paramP Points to the unsigned integer value passed to
this function in the oLineIdP parameter.

functionId kTelSpcConferenceMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1743

<-> ioParamP A pointer to a
TelSpcGetCallerNumberType structure
that is used to retrieve the caller’s telephone
number.

On input, the size field of this structure
specifies the allocated size of the value buffer.
Upon return, the size field specifies the actual
size of the telephone number, even if it was
truncated to fit into the buffer.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful. If there is no active incoming telephone call,
this function returns the telErrUnavailableValue error.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSpcGetCallerNumberType
structure passed to this function in the ioParamP
parameter.

functionId kTelSpcGetCallerNumberMessage

Telephony Calls
Telephony Calls Functions

1744 Palm OS Programmer’s API Reference

Comments The emergency telephone call number is stored into the value field
of the TelSpcGetCallerNumberType structure referenced by
ioParamP. If the value buffer is too small to contain the complete
string, the string is truncated (and ends with the null terminator
character) and this function returns the telErrBufferSize error.
The size field of the structure is always updated to contain the
actual size of the complete string.

Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcAcceptCall

TelSpcHoldLine

Purpose Put the currently active voice line on hold.

Declared In TelephonyMgr.h

Prototype Err TelSpcHoldLine(UInt16 iRefnum,
TelAppID iAppId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1745

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments Note that there can only be one line active at any given time, and
there can only be one line on hold at any given time.

Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcRetrieveHeldLine

TelSpcPlayDTMF

Purpose Play a dual-tone multi-frequency sound to the network system for a
specified duration. Note that you can only play a DTMF while a
voice telephone call is active.

Declared In TelephonyMgr.h

Prototype Err TelSpcPlayDTMF(UInt16 iRefnum,
TelAppID iAppId, TelSpcPlayDTMFType *iParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelSpcHoldLineMessage

Telephony Calls
Telephony Calls Functions

1746 Palm OS Programmer’s API Reference

-> iParamP A pointer to a TelSpcPlayDTMFType
structure that specifies the tone to play and its
duration.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iParamP remains in
memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcSendBurstDTMF, TelSpcStartContinuousDTMF,
TelSpcStopContinuousDTMF

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSpcPlayDTMFType structure
passed to this function in the iParamP parameter

functionId kTelSpcPlayDTMFMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1747

TelSpcRejectCall

Purpose Reject an incoming voice telephone call.

Declared In TelephonyMgr.h

Prototype Err TelSpcRejectCall(UInt16 iRefnum,
TelAppID iAppId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelSpcRejectCallMessage

Telephony Calls
Telephony Calls Functions

1748 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcAcceptCall, TelSpcGetCallerNumber

TelSpcRetrieveHeldLine

Purpose Reconnect the voice line that is currently on hold, making it the
active voice line.

Declared In TelephonyMgr.h

Prototype Err TelSpcRetrieveHeldLine(UInt16 iRefnum,
TelAppID iAppId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelSpcRetrieveHeldLineMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1749

Comments Note that there can only be one line active at any given time, and
there can only be one line on hold at any given time.

Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcHoldLine

TelSpcSelectLine

Purpose Select the specified line ID as the newly active voice line.

Declared In TelephonyMgr.h

Prototype Err TelSpcSelectLine(UInt16 iRefnum,
TelAppID iAppId, UInt8 iLineId,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iLineId The ID of the voice line that you want to
activate. This is the ID returned by a previous
call to the TelSpcAcceptCall function.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Telephony Calls
Telephony Calls Functions

1750 Palm OS Programmer’s API Reference

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments If a line was active previous to completion of this function, that line
is put on hold. Note that there can only be one line active at any
given time, and there can only be one line on hold at any given time.

Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcConference

TelSpcSendBurstDTMF

Purpose Send a string of dual-tone, multi-frequency sounds to the network
system. Note that you can only play a DTMF while a voice
telephone call is active.

Declared In TelephonyMgr.h

Prototype Err TelSpcSendBurstDTMF(UInt16 iRefnum,
TelAppID iAppId, const Char *iDTMFStringP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the iLineId parameter.

functionId kTelSpcSelectLineMessage

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1751

-> iDTMFStringP
A null-terminated string of keytone values.
Each byte of the string specifies one of the
Keycode Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iDTMFStringP remains
in memory until the asynchronous call completes.

Comments This function sends a burst string of keytones to the network. Each
key tone is played for the default duration defined by the network.

Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the string passed to this function in the
iDTMFStringP parameter.

functionId kTelSpcSendBurstDTMFMessage

Telephony Calls
Telephony Calls Functions

1752 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcPlayDTMF, TelSpcStartContinuousDTMF,
TelSpcStopContinuousDTMF

TelSpcStartContinuousDTMF

Purpose Send a continuous dual-tone, multi-frequency sound to the network
system. Note that you can only play a DTMF while a voice
telephone call is active.

Declared In TelephonyMgr.h

Prototype Err TelSpcStartContinuousDTMF(UInt16 iRefnum,
TelAppID iAppId, UInt8 iKeyCode,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iKeyCode The keycode to send to the network. This must
be one of the Keycode Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Telephony Calls
Telephony Calls Functions

Palm OS Programmer’s API Reference 1753

Comments This function sends a key tone to the network system that is played
continuously until the TelSpcStopContinuousDTMF function
executes.

Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcPlayDTMF, TelSpcSendBurstDTMF,
TelSpcStopContinuousDTMF

TelSpcStopContinuousDTMF

Purpose Stop the continuous playing of a tone that was started by calling the
TelSpcStartContinuousDTMF function.

Declared In TelephonyMgr.h

Prototype Err TelSpcStopContinuousDTMF(UInt16 iRefnum,
TelAppID iAppId, UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the iKeyCode parameter.

functionId kTelSpcStartContinuousDTMFMessage

Telephony Calls
Telephony Calls Functions

1754 Palm OS Programmer’s API Reference

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments This function stops the continuous playing of the tone that was
previously initiated by calling the TelSpcStartContinuousDTMF
function.

Before using this function, you should verify that it is available by
calling the TelIsSpcServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSpcPlayDTMF, TelSpcSendBurstDTMF,
TelSpcStartContinuousDTMF

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP A NULL pointer.

functionId kTelSpcStopContinuousDTMFMessage

Palm OS Programmer’s API Reference 1755

72
Telephony SMS
This chapter describes the telephony SMS service set of the
telephony API.

For more information about the telephony manager basic services
and the different service sets, see Chapter 68, “Telephony Basic
Services.”

This chapter describes:

• Telephony SMS Data Structures

• Telephony SMS Constants

• Telephony SMS Functions

For more information about using the telephony manager, see
Chapter 10, “Telephony Manager,” in Palm OS Programmer’s
Companion, vol. II, Communications.

Telephony SMS Data Structures
This section describes the data structures used with the SMS service
set of the telephony API.

TelSmsDateTimeType
Several of the other data structures used with the Telephony SMS
functions include an TelSmsDateTimeType structure to store a
date and time value.

typedef _TelSmsDateTimeType
 Boolean absolute;
 UInt32 dateTime;
} TelSmsDateTimeType

Telephony SMS
Telephony SMS Data Structures

1756 Palm OS Programmer’s API Reference

Field Descriptions

TelSmsDeleteMessageType
The TelSmsDeleteMessage function uses a
TelSmsDeleteMessageType structure to specify the message to
be deleted.

typedef struct _TelSmsDeleteMessageType
 UInt8 messageType;
 UInt16 index;
} TelSmsDeleteMessageType

Field Descriptions

-> absolute If true, the dateTime value is a Palm™ absolute time
value, which is the number of seconds since 1/1/1904. If
false, the dateTime value is relative to the current date
and time.

-> dateTime The date and time value.

If the absolute field is true, this is expressed as the
number of seconds elapsed since 12:00 A.M. on January 1,
1904. This is the format returned by the TimGetSeconds
function.

If the absolute field is false, this is expressed as the
number of seconds elapsed from the current time.

-> messageType The message type. This is one of the SMS Message Type
Constants.

-> index The index of the SMS message in the phone’s storage that
is to be deleted. Note that the message is deleted from the
storage area selected by a call to the
TelSmsSelectStorage function.

Note that the index is zero-based.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1757

TelSmsDeliveryAdvancedCDMAType
The TelSmsDeliveryMessageType structure includes a
TelSmsDeliveryAdvancedCDMAType structure for CDMA
messages.

typedef struct _TelSmsDeliveryAdvancedCDMAType
{
 UInt8 messageType;
 TelSmsDateTimeType validityPeriod;
 UInt8 priority;
 UInt8 privacy;
 Boolean alertOnDeliveryRequest;
 Boolean manualAckRequest;
 UInt8 voiceMessageNumber;
 UInt8 callbackNumberSize;
 Char *callbackNumberAddress;
 UInt8 languageIndicator;
} TelSmsDeliveryAdvancedCDMAType

Field Descriptions

messageType The type of the message. This must be one of the
SMS Message Type Constants.

validityPeriod An TelSmsDateTimeType structure that specifies
the amount of time for which the message is valid.

priority The message priority. This must be one of the SMS
Message Urgency Constants.

privacy The privacy type of the message. This must be one
of the SMS Message Privacy Constants.

alertOnDeliveryRequest true if the user is to be alerted upon delivery of
this message, and false if not.

manualAckRequest true if a reply is requested from the user, and
false if not.

voiceMessageNumber

Telephony SMS
Telephony SMS Data Structures

1758 Palm OS Programmer’s API Reference

TelSmsDeliveryAdvancedGSMType
The TelSmsDeliveryMessageType structure includes a
TelSmsDeliveryAdvancedGSMType structure for GSM
messages.

typedef struct _TelSmsDeliveryAdvancedGSMType
{
 UInt16 protocolId;
 Boolean replyPath;
 Char *serviceCenterNumber;
 UInt8 serviceCenterNumberSize;
} TelSmsDeliveryAdvancedGSMType

callbackNumberSize When the structure is used as an input parameter,
this is the allocated size, in bytes, of the
callbackNumberAddress string.

Upon return, this is the actual size of the string,
including the null terminator character. If the buffer
is too small to contain the entire retrieved string,
this field is assigned the entire length of the string,
and the function using this structure generates a
telErrBufferSize error.

callbackNumberAddress A buffer into which the callback number address
string is stored.

Note that if this buffer is too small to contain the
entire retrieved string, the end of the string is
truncated (and ends with the null terminator
character) and the function using this structure
generates a telErrBufferSize error.

languageIndicator

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1759

Field Descriptions

TelSmsDeliveryAdvancedTDMAType
The TelSmsDeliveryMessageType structure includes a
TelSmsDeliveryAdvancedTDMAType structure for TDMA
messages.

typedef struct _TelSmsDeliveryAdvancedTDMAType
{
 UInt8 messageType;
 TelSmsDateTimeType validityPeriod;
 UInt8 priority;

<- protocolId The protocol used for this message. This is one of
the SMS Message Transport Protocol Constants.

<- replyPath If this value is set, then you use the
serviceCenterNumber to reply to this message.

If this value is not set, you use the default service
center provided by your network operator.

<-> serviceCenterNumber A buffer into which the service center number
string is stored.

Note that if this buffer is too small to contain the
entire retrieved string, the end of the string is
truncated (and ends with the null terminator
character) and the function using this structure
generates a telErrBufferSize error.

<-> seviceCenterNumberSize When the structure is used as an input parameter,
this is the allocated size, in bytes, of the
serviceCenterNumber string.

Upon return, this is the actual size of the string,
including the null terminator character. If the buffer
is too small to contain the entire retrieved string,
this field is assigned the entire length of the string,
and the function using this structure generates a
telErrBufferSize error.

Telephony SMS
Telephony SMS Data Structures

1760 Palm OS Programmer’s API Reference

 UInt8 privacy;
 Boolean alertOnDeliveryRequest;
 Boolean manualAckRequest;
 UInt8 voiceMessageNumber;
 UInt8 callbackNumberSize;
 Char *callbackNumberAddress;
 UInt8 languageIndicator;
} TelSmsDeliveryAdvancedTDMAType

Field Descriptions

messageType The type of the message. This must be one of the
SMS Message Type Constants.

validityPeriod An TelSmsDateTimeType structure that specifies
the amount of time for which the message is valid.

priority The message priority. This must be one of the SMS
Message Urgency Constants.

privacy The privacy type of the message. This must be one of
the SMS Message Privacy Constants.

alertOnDeliveryRequest true if the user is to be alerted upon delivery of this
message, and false if not.

manualAckRequest true if a reply is requested from the user, and
false if not.

voiceMessageNumber

callbackNumberSize When the structure is used as an input parameter,
this is the allocated size, in bytes, of the
callbackNumberAddress string.

Upon return, this is the actual size of the string,
including the null terminator character. If the buffer
is too small to contain the entire retrieved string, this
field is assigned the entire length of the string, and
the function using this structure generates a
telErrBufferSize error.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1761

TelSmsDeliveryMessageType
The TelSmsReadMessage function uses a
TelSmsDeliveryMessageType structure to retrieve information
about a delivered message.

typedef struct _TelSmsDeliveryMessageType
{
 UInt16 version;
 UInt16 index;
 UInt32 messageIdentifier;
 TelSmsDateTimeType timeStamp;
 UInt16 dataSize;
 UInt8 *data;
 UInt8 dataCodingScheme;
 UInt8 originatingAddressSize;
 Char *originatingAddress;
 Boolean otherToReceive;
 Boolean reportDeliveryIndicator;
 UInt8 standardType;

 union
 {
 TelSmsDeliveryAdvancedGSMType
 advancedGSM;
 TelSmsDeliveryAdvancedCDMAType
 advancedCDMA;
 TelSmsDeliveryAdvancedTDMAType
 advancedTDMA;
 } advancedParams;

callbackNumberAddress A buffer into which the callback telephone number
address string is stored.

Note that if this buffer is too small to contain the
entire retrieved string, the end of the string is
truncated (and ends with the null terminator
character) and the function using this structure
generates a telErrBufferSize error.

languageIndicator

Telephony SMS
Telephony SMS Data Structures

1762 Palm OS Programmer’s API Reference

 UInt8 extensionsCount;
 TelSmsExtensionType *extensionsP;
} TelSmsDeliveryMessageType

Field Descriptions

-> version The version of the SMS API associated with this
message.

<-> index Upon return, the SMS index of the message on the
phone. This is a 0-based index.

This value is used for input only when calling the
TelSmsReadMessage function to read one SMS at
a time.

<- messageIdentifier The message identifier.

<- timeStamp The message time stamp. This is a
TelSmsDateTimeType structure.

<-> dataSize The size of the data buffer.

When the structure is used as an input parameter,
this is the allocated size of the data buffer.

Upon return, this is the actual size of the message
data. If the buffer is too small to contain the entire
message, this field is assigned the entire length of
the message, and the function using this structure
generates a telErrBufferSize error.

<-> data A buffer into which the retrieved data is stored.

Note that if this buffer is too small to contain the
entire retrieved message, the end of the message is
truncated and the function using this structure
generates a telErrBufferSize error.

<- dataCodingScheme The coding scheme used for the data. This is one of
the SMS Data Coding Scheme Constants.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1763

<-> originatingAddressSize The size of the originatingAddress buffer.

When the structure is used as an input parameter,
this is the allocated size of the
originatingAddress buffer.

Upon return, this is the actual size of the string,
including the null terminator character. If the buffer
is too small to contain the entire retrieved string,
this field is assigned the entire length of the string,
and the function using this structure generates a
telErrBufferSize error.

<-> originatingAddress A buffer into which the originating address string
is stored.

Note that if this buffer is too small to contain the
entire string, the end of the string is truncated (and
ends with the null terminator character) and the
function using this structure generates a
telErrBufferSize error.

<- otherToReceive Indicates whether there are more messages waiting
to be received from the service center to the mobile
device.

<- reportDeliveryIndicator If true, indicates that the originating user has
asked the network to send a delivery report.

<- standardType Indicates which field of the advancedParams
union contains the message information. This is
one of the Network Type Constants described in
Chapter 70, “Telephony Network.”

If this value is kTelNwkCDMA, then the
advancedParams union contains a
TelSmsDeliveryAdvancedCDMAType structure,
and similarly for the other values.

Telephony SMS
Telephony SMS Data Structures

1764 Palm OS Programmer’s API Reference

TelSmsExtensionType
The TelSmsExtensionType structure specifies multipart
information about a message.

typedef struct _TelSmsExtensionType
 UInt8 extensionTypeId;
 union
 {
 TelSmsMultiPartExtensionType mp;
 TelSmsNbsExtensionType nbs;
 TelSmsUserExtensionType user;
 } extension;
} TelSmsExtensionType

advancedParams Advanced message information for GSM, CDMA,
or TDMA messages. This is one of the following
structure types:
TelSmsDeliveryAdvancedGSMType
TelSmsDeliveryAdvancedCDMAType
TelSmsDeliveryAdvancedTDMAType

<-> extensionsCount On input, this is the number of extension structures
allocated for this message. You must allocate at
least one structure to specify the multipart
information.

Upon return, this is the number of extensions in the
SMS header. If the SMS header contains more
extensions than you have allocated, the available
extension structures are filled, and this function
generates a telErrBufferSize error.

<-> extensionsP A pointer to an array of TelSmsExtensionType
structures that you have allocated for this message.
You must allocate this array before using this
structure.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1765

Field Descriptions

TelSmsGetAvailableStorageType
The TelSmsGetAvailableStorage function uses a
TelSmsGetAvailableStorageType structure to retrieve
information about the storage available on the phone.

typedef struct _TelSmsGetAvailableStorageType
 UInt16 count;
 UInt8 *storagesP;
} TelSmsGetAvailableStorageType

<-> extensionTypeId Identifies the type of SMS extension structure found in the
extension union. This is one of the SMS Extension Type
Constants.

If the value of this field is
kTelSmsMultipartExtensionTypeId, then the
extension union contains a
TelSmsMultiPartExtensionType structure.

If the value of this field is
kTelSmsNbsExtensionTypeId or
kTelSmsNbs2ExtensionTypeId, then the union
contains a TelSmsNbsExtensionType structure. The
difference between these two is that
kTelSmsNbs2ExtensionTypeId indicates that the port
value is a long instead of a short.

If this field contains any other value, then the union
contains a TelSmsUserExtensionType structure.

<- extension The extension information, which is one of the following
structure types:
TelSmsMultiPartExtensionType
TelSmsNbsExtensionType
TelSmsUserExtensionType

Telephony SMS
Telephony SMS Data Structures

1766 Palm OS Programmer’s API Reference

Field Descriptions

TelSmsGetMessageCountType
The TelSmsGetMessageCount function uses a
TelSmsGetMessageCountType structure to retrieve information
about messages in the currently selected storage.

typedef struct _TelSmsGetMessageCountType
{
 UInt8 messageType;
 UInt16 slots;
 UInt16 count;
} TelSmsGetMessageCountType

Field Descriptions

<-> count The size of the storagesP buffer.

When the structure is used as an input parameter, this is
the allocated number of values in the buffer. Upon return,
this is the total number of storage areas in the phone.

<- storagesP A buffer into which the retrieved storage IDs are stored.
Each value stored into the buffer is one of the SMS Storage
ID Constants.

-> messageType The type of message for which you want to retrieve the
count. This must be one of the SMS Message Type
Constants.

You must fill this in on input to the
TelSmsGetMessageCount function.

<- slots The total number of message slots available in the
currently selected storage area (for all message types).

<- count The number of filled slots for the specified messageType
in the currently selected storage area.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1767

TelSmsManualAckType
The TelSmsSendManualAcknowledge function uses a
TelSmsManualAckType structure to specify the information used
to send a message acknowledgment.

typedef struct _TelSmsManualAckType
{
 UInt16 version;
 Char *destinationAddress;
 UInt32 messageId;
 UInt16 dataSize;
 UInt8 *data;
 UInt8 dataCodingScheme;
 UInt8 responseCode;
} TelSmsManualAckType

Field Descriptions

version The version of the SMS API used for this acknowledgment.

destinationAddress The destination address. For GSM, the length of this
address is 12 bytes. For CDMA, the length is up to 128
bytes.

messageId Upon return, the ID of the acknowledgment.

dataSize The size of the data buffer.

When the structure is used as an input parameter, this is
the allocated size of the data buffer.

Upon return, this is the actual size of the data. If the buffer
is too small to contain all of the data, this field is assigned
the entire length of the data, and the function using this
structure generates a telErrBufferSize error.

data A buffer into which the retrieved data is stored.

Note that if this buffer is too small to contain the all of the
retrieved data, the data is truncated and the function using
this structure generates a telErrBufferSize error.

Telephony SMS
Telephony SMS Data Structures

1768 Palm OS Programmer’s API Reference

TelSmsMultiPartExtensionType
The TelSmsExtensionType structure uses a
TelSmsMultiPartExtensionType structure to describe
information about a multipart message.

typedef struct _TelSmsMultiPartExtensionType
 UInt16 bytesSent;
 UInt16 partCurrent;
 UInt16 partCount;
 UInt16 partId;
} TelSmsMultiPartExtensionType

Field Descriptions

dataCodingScheme The coding scheme used for the data. This must be one of
the SMS Data Coding Scheme Constants.

responseCode The response code. The value of this field depends on the
network being used.

<-> bytesSent On input, set this value to 0.

Upon return, this is the current count of message bytes
that have been sent.

<-> partCurrent On input, set this value to 0.

Upon return, this is the part number of the current
message part.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1769

TelSmsNbsExtensionType
The TelSmsExtensionType structure uses a
TelSmsNbsExtensionType structure to describe information
about a NBS message.

typedef struct _TelSmsNbsExtensionType
 UInt16 destPort;
 UInt16 srcPort;
} TelSmsNbsExtensionType

Field Descriptions

TelSmsReadMessagesType
The TelSmsReadMessages function uses a
TelSmsReadMessagesType structure to retrieve messages from
the currently selected storage area.

typedef struct _TelSmsReadMessagesType
 UInt16 first;
 UInt16 count;
 TelSmsDeliveryMessageType *messagesP;

<-> partCount On input, set this value to 0.

Upon return, this is the number of message parts required
to send the data.

<-> partId The ID of the current SMS message. This ID is unique and
is the same for all parts of the message. This information is
required to reassemble a multi-part SMS.

On input, set this value to 0.

<-> destPort When the structure is used for input, this is the NBS port
number used to encode the data.

Upon return, this is the NBS port number that was used
for the data.

<-> srcPort This is currently the same as the destPort.

Telephony SMS
Telephony SMS Data Structures

1770 Palm OS Programmer’s API Reference

} TelSmsReadMessagesType

Field Descriptions

TelSmsReadReportsType
The TelSmsReadReports function uses a
TelSmsReadReportsType structure to retrieve reports from the
currently selected storage area.

typedef struct _TelSmsReadReportsType
 UInt16 first;
 UInt16 count;
 TelSmsReportType *reportsP;
} TelSmsReadReportsType

-> first The index of the first message to retrieve. Message indexes
are zero-based.

<-> count The size of the messagesP buffer.

When the structure is used as an input parameter, this is
the allocated number of pointers in the messagesP buffer.

Upon return, this is the number of messages that could be
retrieved. If the messagesP buffer is too small to contain
all of the messages, this field is assigned the entire count,
and the function using this structure generates a
telErrBufferSize error.

<-> messagesP An array of pointers to TelSmsDeliveryMessageType
structures, each of which is filled in with a retrieved
message, if available.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1771

Field Descriptions

TelSmsReadSubmittedMessagesType
The TelSmsReadSubmittedMessages function uses a
TelSmsReadSubmittedMessagesType structure to retrieve
submitted messages from the currently selected storage area.

typedef struct _TelSmsReadMessagesType
 UInt16 first;
 UInt16 count;
 TelSmsDeliveryMessageType *submittedsP;
} TelSmsReadSubmittedMessagesType

-> first The index of the first report to retrieve. Report indexes are
zero-based.

<-> count The size of the reportsP buffer.

When the structure is used as an input parameter, this is
the allocated number of pointers in the reportsP buffer.

Upon return, this is the actual number of reports that
could be read. If the buffer is too small to contain all of the
reports, this field is assigned the entire count, and the
function using this structure generates a
telErrBufferSize error.

<-> reportsP An array of pointers to TelSmsReportType structures,
each of which is filled in with a retrieved message, if
available.

Note that if this buffer is too small to contain all of the
retrieved reports, the function using this structure
generates a telErrBufferSize error.

Telephony SMS
Telephony SMS Data Structures

1772 Palm OS Programmer’s API Reference

Field Descriptions

TelSmsReportType
The TelSmsReadReport function uses a TelSmsReportType
structure to retrieve a report from the report storage area.

typedef struct _TelSmsReportType
{
 UInt16 version;
 UInt16 index;
 UInt8 reportType;
 UInt32 messageId;
 UInt16 dataSize;
 UInt8 *data;
 UInt8 dataCodingScheme;
 Char *originatingAddress;
 UInt8 originatingAddressSize;
 UInt8 report;
 TelSmsDateTimeType timeStamp;
} TelSmsReportType

Field Descriptions

-> first The index of the first message to retrieve. Message
indexes are zero-based.

<-> count The size of the submittedsP buffer.

When the structure is used as an input parameter, this is
the allocated number of pointers in the submittedsP
buffer. Upon return, this is the number of messages that
were actually read.

<-> submittedsP An array of pointers to
TelSmsSubmittedMessageType structures, each of
which is filled in with a retrieved message, if available.

-> version

<- index The index of the report in the phone storage area.

<- reportType The delivery report type.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1773

<- messageId The message ID.

<-> dataSize The size of the data buffer.

When the structure is used as an input parameter,
this is the allocated size of the data buffer.

Upon return, this is the actual size of the data. If
the buffer is too small to contain all of the data, this
field is assigned the entire length of the data, and
the function using this structure generates a
telErrBufferSize error.

<-> data A buffer into which the retrieved data is stored.

Note that if this buffer is too small to contain the all
of the retrieved data, the data is truncated and the
function using this structure generates a
telErrBufferSize error.

<- dataCodingScheme The encoding scheme used for the report data. This
must be one of the SMS Data Coding Scheme
Constants.

<-> originatingAddress A buffer into which the originating address is
stored.

Note that if this buffer is too small to contain the
entire retrieved string, the string is truncated (and
ends with the null terminator character) and the
function using this structure generates a
telErrBuffrSize error.

<-> originatingAddressSize The size of the originatingAddress buffer.

Upon return, this is the actual size of the string,
including the null terminator character. If the
buffer is too small to contain the entire retrieved
string, this field is assigned the entire length of the
string, and the function using this structure
generates a telErrBufferSize error.

Telephony SMS
Telephony SMS Data Structures

1774 Palm OS Programmer’s API Reference

TelSmsSendMessageType
typedef struct _TelSmsSendMessageType
{
 UInt32 messageId;
 TelSmsSubmitMessageType message;
} TelSmsSendMessageType

Field Descriptions

TelSmsSubmitAdvancedCDMAType
The TelSmsSubmitMessageType structure includes a
TelSmsSubmitAdvancedCDMAType structure for CDMA
messages.

typedef struct _TelSmsSubmitAdvancedCDMAType
{
 Boolean manualAckRequest;
 UInt8 messageType;
 TelSmsDateTimeType deferredDate;
 UInt8 priority;
 UInt8 privacy;
 Boolean alertOnDeliveryRequest;
 Char *callbackNumber;
 UInt8 callbackNumberSize;

<- report The ID of the delivery confirmation report
associated with the message.

<- timeStamp An TelSmsDateTimeType structure that stores
the time at which the message corresponding to
the report was received.

<- messageId The SMS ID that was assigned by the telephone to
the outgoing message.

For a multi-part message, each part has its own
message ID.

-> message A structure of type TelSmsSubmitMessageType
that contains the message data and parameters.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1775

} TelSmsSubmitAdvancedCDMAType

Field Descriptions

TelSmsSubmitAdvancedGSMType
The TelSmsSubmitMessageType structure includes a
TelSmsSubmitAdvancedGSMType structure for GSM messages.

manualAckRequest true if a reply is requested from the user, and
false if not.

messageType The type of the message. This must be one of the
SMS Message Type Constants.

deferredDate

priority

privacy The privacy type of the message. This must be one of
the SMS Message Privacy Constants.

alertOnDeliveryRequest true if the user is to be alerted upon delivery of this
message, and false if not.

callbackNumber A buffer into which the retrieved callback telephone
number string is stored.

Note that if this buffer is too small to contain the
entire retrieved string, the string is truncated (and
ends with the null terminator character) and the
function using this structure generates a
telErrBufferSize error.

callbackNumberSize When the structure is used as an input parameter,
this is the allocated size, in bytes, of the
callbackNumber string.

Upon return, this is the actual size of the string,
including the null terminator character. If the buffer
is too small to contain the entire retrieved string, this
field is assigned the entire length of the string, and
the function using this structure generates a
telErrBufferSize error.

Telephony SMS
Telephony SMS Data Structures

1776 Palm OS Programmer’s API Reference

typedef struct _TelSmsSubmitAdvancedGSMType
{
 UInt16 protocolId;
 Boolean rejectDuplicatedRequest;
 Boolean replyPath;
 Char *serviceCenterNumber;
 UInt8 serviceCenterNumberSize;
} TelSmsSubmitAdvancedGSMType

Field Descriptions

-> protocolId Specifies gateway information for routing a
message to another transport.

Some service centers provide a gateway between
SMS and other transports such as mail and FAX.
Service centers may reject messages with
protocolId values that are reserved or
unsupported.

The mobile device does not interpret reserved or
unsupported values, but does store them as
received.

-> rejectDuplicatedRequest A Boolean value that specifies if the service center
should accept a submit message for a submit
message that is still held in the service center
when that message has the same identifier and
destination address as a previously submitted
message from the same originating address.

-> replyPath The path that the service center can use to deliver
a reply to the originating message.

The reply path is requested by the originating
mobile device by setting the replyPath
parameter in the original submit message.

If the service center supports reply path requests
from the mobile device, the service center sets the
replyPath parameter in the response.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1777

TelSmsSubmitAdvancedTDMAType
The TelSmsSubmitMessageType structure includes a
TelSmsSubmitAdvancedTDMAType structure for TDMA
messages.

typedef struct _TelSmsSubmitAdvancedTDMAType
{
 Boolean manualAckRequest;
 UInt8 messageType;
 TelSmsDateTimeType deferredDate;
 UInt8 priority;
 UInt8 privacy;
 Boolean alertOnDeliveryRequest;
 Char *callbackNumber;
 UInt8 callbackNumberSize;
} TelSmsSubmitAdvancedTDMAType

Field Descriptions

-> serviceCenterNumber A buffer containing the service telephone number
string.

-> serviceCenterNumberSize The allocated size, in bytes, of the
serviceCenterNumber string.

manualAckRequest true if a reply is requested from the user, and
false if not.

messageType The type of the message. This must be one of the
SMS Message Type Constants.

deferredDate

priority

privacy The privacy type of the message. This must be one of
the SMS Message Privacy Constants.

alertOnDeliveryRequest true if the user is to be alerted upon delivery of this
message, and false if not.

Telephony SMS
Telephony SMS Data Structures

1778 Palm OS Programmer’s API Reference

TelSmsSubmitMessageType
The TelSmsReadReports and TelSmsSendMessageType
structures use a TelSmsSubmitMessageType structure to stored
reports retrieved from the currently selected storage area.

typedef struct _TelSmsSubmitMessageType
{
 UInt16 version;
 Boolean networkDeliveryRequest;
 Char *destinationAddress;
 UInt8 destinationAddressSize;
 UInt16 dataSize;
 UInt8 *data;
 UInt8 dataCodingScheme;
 TelSmsDateTimeType validityPeriod;
 UInt8 standardType;
 union
 {
 TelSmsSubmitAdvancedGSMType advancedGSM;
 TelSmsSubmitAdvancedCDMAType advancedCDMA;

callbackNumber A buffer into which the retrieved callback telephone
number string is stored.

Note that if this buffer is too small to contain the
entire retrieved string, the string is truncated (and
ends with the null terminator character) and the
function using this structure generates a
telErrBufferSize error.

callbackNumberSize When the structure is used as an input parameter,
this is the allocated size, in bytes, of the
callbackNumber string.

Upon return, this is the actual size of the string,
including the null terminator character. If the buffer
is too small to contain the entire retrieved string, this
field is assigned the entire length of the string, and
the function using this structure generates a
telErrBufferSize error.

Telephony SMS
Telephony SMS Data Structures

Palm OS Programmer’s API Reference 1779

 TelSmsSubmitAdvancedTDMAType advancedTDMA;
 } advancedParams;
 UInt8 extensionsCount;
 TelSmsExtensionType *extensionsP;
} TelSmsSubmitMessageType

Field Descriptions

-> version The version of the SMS API associated with this
message.

-> networkDeliveryRequest If this value is true, the service center accepts the
submit message.

<-> destinationAddress A buffer that contains the phone number of the
message recipient.

<-> destinationAddressSize The size of the destination address string.

<-> dataSize The size of the data buffer.

<-> data A buffer into which the retrieved message data is
stored.

-> dataCodingScheme The coding scheme used for the data. This is one of
the SMS Data Coding Scheme Constants.

-> validityPeriod An TelSmsDateTimeType structure that specifies
the amount of time for which the message is valid.

-> standardType Indicates which field of the advancedParams
union contains the message information. This must
be one of the Network Type Constants described in
Chapter 70, “Telephony Network.”

If this value is kTelNwkCDMA, then the
advancedParams union contains a
TelSmsDeliveryAdvancedCDMAType structure,
and similarly for the other values.

Telephony SMS
Telephony SMS Data Structures

1780 Palm OS Programmer’s API Reference

TelSmsSubmittedMessageType
The TelSmsReadSubmittedMessage function uses a
TelSmsSubmittedMessageType structure to retrieve reports
from the currently selected storage area.

typedef struct _TelSmsSubmittedMessageType
{
 UInt16 index;
 TelSmsSubmitMessageType message;
} TelSmsSubmittedMessageType

Field Descriptions

TelSmsUserExtensionType
The TelSmsExtensionType structure uses a
TelSmsUserExtensionType structure to describe a user-defined
extended message header.

typedef struct _TelSmsUserExtensionType
 UInt8 *extHeader;
 UInt8 extHeaderSize;
} TelSmsUserExtensionType

-> advancedParams Advanced message information for GSM, CDMA,
or TDMA messages. This is a pointer to one of the
following structure types:
TelSmsSubmitAdvancedCDMAType
TelSmsDeliveryAdvancedGSMType
TelSmsDeliveryAdvancedTDMAType

<-> extensionsCount The number of extension structures allocated for
this message. You must allocate at least one
structure to specify the multipart information.

<-> extensionsP A pointer to an array of TelSmsExtensionType
structures that you have allocated for this message.

-> index The index of the message on the phone.

<- message A TelSmsSubmitMessageType structure that
represents the message.

Telephony SMS
Telephony SMS Constants

Palm OS Programmer’s API Reference 1781

Field Descriptions

Telephony SMS Constants
This section describes the constants used with the SMS service set of
the telephony API.

SMS Extension Type Constants
The SMS extension type constants describe the type of extension
used to represent part of a message.

SMS Message Type Constants
The SMS message type constants describe the delivery type of a
message.

<-> extHeader On input, this field must be set to 0.

Upon return, this is a pointer to the user-defined header
content.

<-> extHeaderSize On input, this field must be set to 0.

Upon return, this is the size of the user-defined header
content.

Constant Value Description

kTelSmsMultiPartExtensionTypeId 0x00 A multipart short message.

kTelSmsNbsExtensionTypeId 0x04 An NBS message with short port
number value.

kTelSmsNbs2ExtensionTypeId 0x05 An NBS message with long port
number value.

(any other value) A user-defined extension type.

Telephony SMS
Telephony SMS Constants

1782 Palm OS Programmer’s API Reference

SMS Message Transport Protocol Constants
The SMS message transport protocol constants describe the protocol
used to deliver a message.

Constant Value Description

kTelSmsMessageTypeDelivered 0 A delivered message.

kTelSmsMessageTypeReport 1 A report message.

kTelSmsMessageTypeSubmitted 2 A submitted message.

kTelSmsMessageTypeManualAck 3 A manual acknowledgement
message.

kTelSmsMessageTypeAllTypes 4 All messages.

Constant Value Description

ktelSmsDefaultProtocol 0 The default message transport
protocol.

kTelSmsFaxProtocol 1 A FAX message.

kTelSmsX400Protocol 2 An X.400 message.

kTelSmsPagingProtocol 3 A paged message.

kTelSmsEmailProtocol 4 An email message.

kTelSmsErmesProtocol 5 An Ermes message.

kTelSmsVoiceProtocol 6 A voice message.

Telephony SMS
Telephony SMS Constants

Palm OS Programmer’s API Reference 1783

SMS Storage ID Constants
The SMS storage ID constants describe the storage location of a
message.

SMS Data Coding Scheme Constants
The SMS data coding scheme constants describe the encoding used
for SMS data.

Constant Value Description

kTelSmsStorageSIM 0 Stored in the SIM.

kTelSmsStoragePhone 1 Stored in the phone.

kTelSmsStorageAdaptor 2 Stored in the telephone adaptor.

kTelSmsStorageFirstOem 3 Storage managed by the OEM.

This constant specifies the first OEM
storage area. You can specify
additional OEM storage areas by
incrementing this value. For example,
to specify the third OEM storage area,
use the following:

kTelSmsStorageFirstOem+2

Constant Value Description

kTelSms8BitsEncoding 0 8-bit encoding.

kTelSmsBitsASCIIEncoding 1 ANSI X3.4 encoding.

kTelSmsIA5Encoding 2 CCITT T.50 encoding.

kTelSmsIS91Encoding 3 TIA/EIA/IS-91 section 3.7.1
encoding.

kTelSmsUCS2Encoding 4 UCS2 encoding; used with GSM only.

kTelSmsDefaultGSMEncoding 5 Default encoding for GSM only.

Telephony SMS
Telephony SMS Functions

1784 Palm OS Programmer’s API Reference

SMS Message Urgency Constants
The SMS message urgency constants describe the priority level of a
message in a TelSmsDeliveryAdvancedCDMAType or
TelSmsDeliveryAdvancedTDMAType structure.

SMS Message Privacy Constants
The SMS message privacy constants describe the privacy type of a
message in a CDMA or TDMA advanced parameters.

Telephony SMS Functions
This section describes the functions used with the SMS service set of
the telephony API.

Constant Value Description

kTelSmsUrgencyNormal 0 Normal urgency.

kTelSmsUrgencyUrgent 1 An urgent message.

kTelSmsUrgencyEmergency 2 An emergency message.

Constant Value Description

kTelSmsPrivacyNotRestricted 0 Privacy level 0.

kTelSmsPrivacyRestricted 1 Privacy level 1.

kTelSmsPrivacyConfidential 2 Privacy level 2.

kTelSmsPrivacySecret 3 Privacy level 3.

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1785

TelSmsDeleteMessage

Purpose Delete an SMS report, delivered message, or submitted message.

Declared In TelephonyMgr.h

Prototype Err TelSmsDeleteMessage(UInt16 iRefnum,
TelAppID iAppId,
TelSmsDeleteMessageType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelSmsDeleteMessageType
structure that specifies the index and type of
the message to delete.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

Telephony SMS
Telephony SMS Functions

1786 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments If the deleted message has been delivered, the deletion is performed
in the current storage, which you can set with the
TelSmsSelectStorage function.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage

TelSmsGetAvailableStorage

Purpose Retrieve the list of all available storage on the phone.

Declared In TelephonyMgr.h

Prototype Err TelSmsGetAvailableStorage(UInt16 iRefnum,
TelAppID iAppId,
TelSmsGetAvailableStorageType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

paramP Points to the TelSmsDeleteMessageType
structure passed to this function in the
iDelInfoP parameter.

functionId kTelSmsDeleteMessageMessage

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1787

<-> ioParamP A pointer to a
TelSmsGetAvailableStorageType
structure that is filled in with information about
the storage areas available on the phone.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments The count of storage areas available on the phone is stored into the
count field of the TelSmsGetAvailableStorageType structure
referenced by ioParamP, and the storage ID of each available room
is stored into the buffer referenced by the storagesP field. If the
storagesP buffer is too small to contain all of the storage IDs, the
buffer is truncated and this function returns the

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the
TelSmsGetAvailableStorageType structure
passed to this function in the ioParamP
parameter.

functionId kTelSmsGetAvailableStorageMessage

Telephony SMS
Telephony SMS Functions

1788 Palm OS Programmer’s API Reference

telErrBufferSize error. The count field of the structure is
always updated to contain the total number of available storage
areas on the phone.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage

TelSmsGetDataMaxSize

Purpose Returns the maximum length, in bytes, of a message on the current
network.

Declared In TelephonyMgr.h

Prototype Err TelSmsGetDataMaxSize(UInt16 iRefnum,
TelAppID iAppId, UInt16 *oSizeP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oSizeP A pointer to an unsigned integer value that is
updated witht he maximum length of an SMS
message on the current network.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1789

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oSizeP remains in memory
until the asynchronous call completes.

Comments You can use this function to determine the maximum size you need
to allocate to read a message.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsReadMessage, TelSmsReadMessages

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the oSizeP parameter.

functionId kTelGetDataMaxSizeMessage

Telephony SMS
Telephony SMS Functions

1790 Palm OS Programmer’s API Reference

TelSmsGetMessageCount

Purpose Retrieve the total number of message slots, and the number of filled
slots for the specified message type.

Declared In TelephonyMgr.h

Prototype Err TelSmsGetMessageCount(UInt16 iRefnum,
TelAppID iAppId,
TelSmsGetMessageCountType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a
TelSmsGetMessageCountType structure
that specifies the message type and is filled in
with the count information.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1791

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments The currently selected storage area pertains only to delivered
messages; other message types are stored on the phone, but not in a
specific storage area. If you specify delivered messages, this
function retrieves information about the messages in the currently
selected SMS storage area on the phone. If you specify a different
message type, this function retrieves information about the
messages in the phone.

You specify the message type by assigning one of the SMS Message
Type Constants to the messageType field of the
TelSmsGetMessageCountType structure before calling this
function.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage

paramP Points to the TelSmsGetMessageCountType
structure passed to this function in the ioParamP
parameter.

functionId kTelSmsGetMessageCountMessage

Telephony SMS
Telephony SMS Functions

1792 Palm OS Programmer’s API Reference

TelSmsGetSelectedStorage

Purpose Retrieve the ID of the currently selected storage area on the phone.

Declared In TelephonyMgr.h

Prototype Err TelSmsGetSelectedStorage(UInt16 iRefnum,
TelAppID iAppId, UInt8 *oStorageIdP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oStorageIdP A pointer to an unsigned byte value that is
assigned the ID of the currently selected
storage area on the phone. The assigned ID
value is one of the SMS Storage ID Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1793

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oStorageIdP remains in
memory until the asynchronous call completes.

Comments The currently selected storage area pertains only to delivered
messages; other message types are stored on the phone, but not in a
specific storage area.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage

TelSmsGetUniquePartId

Purpose Return a unique part identifier to assign to the partId field of a
submit message.

Declared In TelephonyMgr.h

Prototype Err TelSmsGetUniquePartId(UInt16 iRefnum,
TelAppID iAppId, UInt16 *oUniqueIdP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oUniqueIdP A pointer to a unsigned integer value. Upon
return, this is the unique part ID value.

paramP Points to the unsigned integer value passed to
this function in the oStorageIdP parameter.

functionId kTelGetSelectedStorageMessage

Telephony SMS
Telephony SMS Functions

1794 Palm OS Programmer’s API Reference

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oUniquePartIdP remains
in memory until the asynchronous call completes.

Comments This function corresponds to the
kTelUrqSmsGetUniquePartIdMessage value.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSendMessage

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the oUniqueIdP parameter.

functionId kTelGetUniquePartIdMessage

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1795

TelSmsReadMessage

Purpose Retrieve a delivered message from the currently selected storage
area.

Declared In TelephonyMgr.h

Prototype Err TelSmsReadMessage(UInt16 iRefnum,
TelAppID iAppId,
TelSmsDeliveryMessageType *ioMessageP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioMessageP A pointer to a
TelSmsDeliveryMessageType structure
that is filled in with the message.

On input, the index field of this structure
contains the index of the message that you
want retrieved. Message indexes are zero-
based.

On input, the extensionsCount field
specifies the number of extensions allocated in
the extensionsP array. You must allocate at
least one multi-part extension, even for a
single-part message.

On input, the dataSize field specifies the
allocated size of the data buffer, and the
originatingAddressSize field specifies the
allocated size of the originatingAddress
string. Upon return, each size field specifies the
complete size of the data that was stored into
the buffer, even if the data had to be truncated
to fit.

Telephony SMS
Telephony SMS Functions

1796 Palm OS Programmer’s API Reference

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioMessageP remains in
memory until the asynchronous call completes.

Comments The message data is stored into the data field of the
TelSmsDeliveryMessageType structure referenced by
ioMessageP. If the complete message data is too large to fit into the
allocated size of the data field, the message data is truncated and
this function returns the telErrBufferSize error. The dataSize
field of the structure is always updated to contain the actual size, in
bytes, of the message data.

The originating address string is stored into the
originatingData field of the TelSmsDeliveryMessageType
structure referenced by ioMessageP. If the complete string is too
large to fit into the allocated size of the originatingData field,

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSmsDeliveryMessageType
structure passed to this function in the
ioMessageP parameter.

functionId kTelSmsReadMessageMessage

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1797

the string is truncated (and ends with the null terminator character)
and this function returns the telErrBufferSize error. The
originatingAddressSize field of the structure is always
updated to contain the actual size of the string.

Before calling this function, you need to allocate a number of fields
and structures in and related to the TelSmsDeliveryMessage
structure:

• Allocate each address field with a size of at least
kTelMaxPhoneNumberLen + 1.

For example, for a GSM message, you must allocate the
originatingAddress and serviceCenterNumber
fields in the TelSmsDeliveryAdvancedGSMType structure
in the TelSmsDeliveryMessage structure.

• Allocate the message field data to have the maximum size of
a message on the current network. You can determine this
value by calling the TelSmsGetDataMaxSize function.

• Allocate at least one TelSmsExtensionType structure in
the TelSmsDeliveryMessage structure. You must have at
least one extension structure, even if your message has only a
single part. If you do not allocate enough extensions for the
message, TelSmsReadMessage returns an error. Palm
recommends allocating between 3 and 5 extensions for a
message.

• You should not allocate a pointer for user extension data. If
you receive user extension data, the user extension pointer
will reference a block in the message data. Do not deallocate
the user extension data when you release the structure.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage

Telephony SMS
Telephony SMS Functions

1798 Palm OS Programmer’s API Reference

TelSmsReadMessages

Purpose Retrieve a range of delivered messages from the currently selected
storage area.

Declared In TelephonyMgr.h

Prototype Err TelSmsReadMessages(UInt16 iRefnum,
TelAppID iAppId,
TelSmsReadMessagesType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelSmsReadMessagesType
structure.

On input, the first field of this structure
specifies the index of the first message to
retrieve. Message indexes are zero-based.

On input the count field of this structure
specifies the allocated size of the messagesP
buffer. Upon return, the count field specifies
the actual number of messages that were
available, even if that many could not fit into
the buffer.

The messagesP buffer must contain pointers
to TelSmsDeliveryMessageType structures
that have been allocated. Each of these
structures must be initialized as described for
the TelSmsReadMessage function.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1799

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP and all of the
structures referenced by it remain in memory until the
asynchronous call completes.

Comments If the message data or originating address string data for any of the
retrieved messages is larger than the allocated size of its
corresponding buffer, the data is truncated into the buffer, and this
function returns the telErrBufferSize error.

For more information about using this function and allocating
structures for its use, see the Comments description for the
TelSmsReadMessage function.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSmsReadMessagesType
structure passed to this function in the ioParamP
parameter.

functionId kTelSmsReadMessagesMessage

Telephony SMS
Telephony SMS Functions

1800 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage

TelSmsReadReport

Purpose Read a report from the currently selected storage area.

Declared In TelephonyMgr.h

Prototype Err TelSmsReadReport(UInt16 iRefnum,
TelAppID iAppId, TelSmsReportType *ioReportP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioReportP A pointer to a TelSmsReportType structure.

On input the index field of this structure
contains the index of the message that you
want retrieved. Message indexes are zero-
based.

On input, the dataSize field specifies the
allocated size of the data buffer, and the
originatingAddressSize field specifies the
allocated size of the originatingAddress
string. Upon return, each size field specifies the
complete size of the data that was stored into
the buffer, even the data had to be truncated to
fit.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1801

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iEntryP remains in
memory until the asynchronous call completes.

Comments The report data is stored into the data field of the
TelSmsReportType structure referenced by ioReportP. If the
complete message data is too large to fit into the allocated size of the
data field, the report data is truncated and this function returns the
telErrBufferSize error. The dataSize field of the structure is
always updated to contain the actual size, in bytes, of the report
data.

The originating address string is stored into the
originatingData field of the TelSmsReportType structure
referenced by ioReportP. If the complete string is too large to fit
into the allocated size of the originatingData field, the string is
truncated (and ends with the null terminator character) and this
function returns the telErrBufferSize error. The
originatingAddressSize field of the structure is always
updated to contain the actual size of the string.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSmsReportType structure
passed to this function in the ioReportP
parameter.

functionId kTelSmsReadReportMessage

Telephony SMS
Telephony SMS Functions

1802 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage, TelSmsSendMessage

TelSmsReadReports

Purpose Retrieve a range of reports from the currently selected storage.

Declared In TelephonyMgr.h

Prototype Err TelSmsReadReports(UInt16 iRefnum,
TelAppID iAppId, TelSmsReadReportsType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelSmsReadReportsType
structure.

On input, the first field of this structure
specifies the index of the first report to retrieve.
Report indexes are zero-based.

On input the count field of this structure
specifies the allocated size of the reportsP
buffer. Upon return, the count field specifies
the actual number of reports that were
available, even if that many could not fit into
the buffer.

The reportsP buffer must contain pointers to
TelSmsReportType structures that have been
allocated. Each of these structures must be
initialized as described for the
TelSmsReadReport function.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1803

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP and all of the
structured referenced by it remain in memory until the
asynchronous call completes.

Comments If the report data or originating address string data for any of the
retrieved messages is larger than the allocated size of its
corresponding buffer, the data is truncated into the buffer, and this
function returns the telErrBufferSize error. For more
information, see the Comments description for the
TelSmsReadReport function.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage, TelSmsSendMessage

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSmsReadReportsType
structure passed to this function in the ioParamP
parameter.

functionId kTelSmsReadReportsMessage

Telephony SMS
Telephony SMS Functions

1804 Palm OS Programmer’s API Reference

TelSmsReadSubmittedMessage

Purpose Read a previously submitted message that was kept on the phone
after being sent.

Declared In TelephonyMgr.h

Prototype Err TelSmsReadSubmittedMessage(UInt16 iRefnum,
TelAppID iAppId,
TelSmsSubmittedMessageType *ioMessageP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioMessageP A pointer to a TelSmsSubmitMessageType
structure that is filled in with the message.

On input, the index field contains the index of
the message that you want retrieved. Message
indexes are zero-based.

Upon return, the message field structure is
filled in with the message information. You
must initialize the buffer size fields of this
structure prior to calling this function,
including the dataSize,
callbackNumberSize,
serviceCenterNumberSize, and
destinationAddressSize fields. Each of
these fields is initialized with the allocated size
of its corresponding buffer.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1805

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iEntryP remains in
memory until the asynchronous call completes.

Comments The message data is stored into the data field of the
TelSmsSubmitMessageType structure referenced by
ioMessageP. If the complete message data is too large to fit into the
allocated size of the data field, the end of the message data is
truncated and this function returns the telErrBufferSize error.
The dataSize field of the structure is always updated to contain
the actual size, in bytes, of the message data.

The same strategy applies to the callbackNumber buffer and
callbackNumberSize fields, the destinationAddress buffer
and destinationAddressSize fields, and the
serviceCenterNumber buffer and
serviceCenterNumberSize fields. If the size of the data for any
of the buffer fields exceeds the allocated length of the buffer, the end
of the data is truncated and this function returns the
telErrBufferSize error. Each of the size fields is always
updated to contain the complete size of the data intended for the
buffer.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSmsSubmitMessageType
structure passed to this function in the
ioMessageP parameter.

functionId kTelSmsSubmittedMessageMessage

Telephony SMS
Telephony SMS Functions

1806 Palm OS Programmer’s API Reference

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage, TelSmsSendMessage

TelSmsReadSubmittedMessages

Purpose Retrieve a range of submitted messages from the currently selected
storage area.

Declared In TelephonyMgr.h

Prototype Err TelSmsReadSubmittedMessages(UInt16 iRefnum,
TelAppID iAppId,
TelSmsReadSubmittedMessagesType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelSmsReadMessagesType
structure.

On input, the first field of this structure
specifies the index of the first message to
retrieve. Message indexes are zero-based.

On input, the count field of this structure
specifies the allocated size of the
submittedsP buffer. Upon return, the count
field specifies the actual number of messages
that were available, even if that many could not
fit into the buffer.

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1807

The submittedsP buffer must contain
pointers to TelSmsSubmittedMessageType
structures that have been allocated. Each of
these structures must be initialized as described
for the TelSmsReadSubmittedMessage
function.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP and all of the
structured referenced by it remain in memory until the
asynchronous call completes.

Comments If the message data or any of the other variable-length data for any
of the retrieved messages is larger than the allocated size of its
corresponding buffer, the end of the data is truncated, and this

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the
TelSmsReadSubmittedMessagesType
structure passed to this function in the ioParamP
parameter.

functionId kTelSmsReadSubmittedMessagesMessage

Telephony SMS
Telephony SMS Functions

1808 Palm OS Programmer’s API Reference

function returns the telErrBufferSize error. For more
information, see the Comments description for the
TelSmsReadSubmittedMessage function.

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage, TelSmsSendMessage

TelSmsSelectStorage

Purpose Select a storage area on the phone as the current storage area.

Declared In TelephonyMgr.h

Prototype Err TelSmsSelectStorage(UInt16 iRefnum,
TelAppID iAppId, UInt8 iStorageId,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> ioStorageId The ID of the storage area. This must be one of
the SMS Storage ID Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1809

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsGetAvailableStorage, TelSmsGetSelectedStorage

TelSmsSendManualAcknowledge

Purpose Send a manual acknowledgment of a previously received message.
Note that this function is not supported on GSM networks.

Declared In TelephonyMgr.h

Prototype Err TelSmsSendManualAcknowledge(UInt16 iRefnum,
TelAppID iAppId, TelSmsManualAckType *ioAckP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioAckP A pointer to a structure of type
TelSmsManualAckType. The fields of this
structure specify information about the
message being acknowledged.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the ioStorageId parameter.

functionId kTelSmsSelectStorageMessage

Telephony SMS
Telephony SMS Functions

1810 Palm OS Programmer’s API Reference

Upon return, the messageId field is filled in
with the ID of the acknowledgment.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iEntryP remains in
memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSmsManualAckType structure
passed to this function in the ioAckP parameter.

functionId kTelSmsSendManualAcknowledgeMessage

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1811

TelSmsSendMessage

Purpose Send an SMS message.

Declared In TelephonyMgr.h

Prototype Err TelSmsSendMessage(UInt16 iRefnum,
TelAppID iAppId,
TelSmsSendMessageType *ioMessageP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioMessageP A pointer to a structure of type
TelSmsSendMessageType.

On input, the message field of this structure
contains a TelSmsSubmitMessageType with
the message to send. You must also allocate and
zero at least one TelSmsExtensionType
structure for the multi-part information.

On output, the messageId field of this
structure is filled in with the ID that was
assigned to the sent message.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Telephony SMS
Telephony SMS Functions

1812 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioMessageP remains in
memory until the asynchronous call completes.

Comments You need to make multiple calls to the TelSmsSendMessage
function to send your message:

• The first call to TelSmsSendMessage does not actually send
the message. It computes the number of parts and fills in the
multi-part extension structures in the
TelSmsSendMessageType structure. Note that you must
allocate at least one extension structure, even for single-part
messages.

• Subsequent calls to TelSmsSendMessage actually send the
data.

• To send an entire message, you need to call
TelSmsSendMessage in a loop. Terminate the loop when
an error occurs, or when the byteSend field of the first
TelSmsExtensionType structure has the same value as the
dataSize field of the TelSmsSendMessageType structure
that represents the message. For example:

while (!TelSmsSendMessage(...) &&
 msg.extensionP[0].extension.mp.byteSend != dataSend);

Before using this function, you should verify that it is available by
calling the TelIsSmsServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelSmsSendMessageType
structure passed to this function in the
ioMessageP parameter.

functionId kTelSmsSendMessageMessage

Telephony SMS
Telephony SMS Functions

Palm OS Programmer’s API Reference 1813

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelSmsSelectStorage, TelCfgSetSmsCenter

Telephony SMS
Telephony SMS Functions

1814 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1815

73
Telephony Phone
Book
This chapter describes the phone book service set of the telephony
API.

For more information about the telephony manager basic services
and the different service sets, see Chapter 68, “Telephony Basic
Services.”

This chapter describes:

• Telephony Phone Book Data Structures

• Telephony Phone Book Constants

• Telephony Phone Book Functions

For more information about using the telephony manager, see
Chapter 10, “Telephony Manager,” in Palm OS Programmer’s
Companion, vol. II, Communications.

Telephony Phone Book Data Structures
This chapter describes the data structures used with the phone book
service set of the telephony API.

TelPhbEntryType
The TelPhbEntryType structure describes a single entry in a
phone book.

typedef struct _TelPhbEntryType
{
 UInt16 phoneIndex;
 Char *fullName;
 UInt8 fullNameSize;
 Char *dialNumber;

Telephony Phone Book
Telephony Phone Book Data Structures

1816 Palm OS Programmer’s API Reference

 UInt8 dialNumberSize;
} TelPhbEntryType

Field Descriptions

-> phoneIndex The index of the entry in the phone’s phone book. This
index is always zero-based.

The telephony manager is responsible for converting this
index into the physical index in the phone, if required.

<- fullName A buffer into which the retrieved full name of the entry is
stored.

This string is stored using the local character set of the
Palm™ handheld device. The telephony manager is
responsible for converting the character set, if required.

Note that if this buffer is too small to contain the entire
retrieved string, the string is truncated and the function
using this structure generates a telErrBufferSize
error.

<-> fullNameSize The size of the fullName string.

When the structure is used as an input parameter, this is
the allocated size, in bytes, of the fullName buffer.

Upon return, this is the actual size of the string, including
the null terminator character. If the fullName buffer is
too small to contain all of the retrieved string, this field is
assigned the entire length of the string, and the function
using this structure generates a telErrBufferSize
error.

Telephony Phone Book
Telephony Phone Book Data Structures

Palm OS Programmer’s API Reference 1817

TelPhbGetAvailablePhonebooksType
The TelPhbGetAvailablePhonebooks functions uses the
TelPhbGetAvailablePhonebooksType structure to return a list
of the phone books available on the phone.

typedef struct
_TelPhbGetAvailablePhonebooksType
{
 UInt16 count;
 UInt8 *phonebooksP;
} TelPhbGetAvailablePhonebooksType

<- dialNumber A buffer into which the retrieved telephone number of
the entry is stored.

Note that if this buffer is too small to contain the entire
retrieved string, the string is truncated, and the function
using this structure generates a telErrBufferSize
error.

<-> dialNumberSize The size of the dialNumber string.

When the structure is used as an input parameter, this is
the allocated size, in bytes, of the dialNumber buffer.

Upon return, this is the actual size of the string, including
the null terminator character. If the dialNumber buffer
is too small to contain all of the retrieved string, this field
is assigned the entire length of the string, and the
function using this structure generates a
telErrBufferSize error.

Telephony Phone Book
Telephony Phone Book Data Structures

1818 Palm OS Programmer’s API Reference

Field Descriptions

TelPhbGetEntriesType
The TelPhbGetEntries function uses the
TelPhbGetEntriesType structure to return a list of phone
entries.

typedef struct _TelPhbGetEntriesType
{
 UInt16 first;
 UInt16 count;
 TelPhbEntryType *entriesP;
} TelPhbGetEntriesType

Field Descriptions

<-> count The number of entries in the array referenced by
phonebooksP.

When the structure is used as an input parameter, this is
the allocated size, in bytes, of the phonebooksP buffer.
Upon return, this is the actual size of the retrieved data.

Upon return, this is the actual number of phone book IDs
that could be retrieved. If the phonebooksP buffer is too
small to contain all of the IDs, this field is assigned the
actual count, and the function using this structure
generates a telErrBufferSize error.

<- phonebooksP An array of retrieved phone book IDs. Each ID is one of
the Phone Book Type Constants.

-> first The index of the first entry in the array referenced by
entriesP.

Telephony Phone Book
Telephony Phone Book Data Structures

Palm OS Programmer’s API Reference 1819

TelPhbGetEntryCountType
The TelPhbGetEntryCount function uses the
TelPhbGetEntryCountType structure to return information
about the entries in the currently selected phone book.

typedef struct _TelPhbGetEntryCountType
{
 UInt16 slots;
 UInt16 count;
} TelPhbGetEntryCountType

Field Descriptions

TelPhbGetEntryMaxSizesType
The TelPhbGetEntryMaxSizes function uses the
TelPhbGetEntryMaxSizesType structure to return size
information about the entries in the currently selected phone book.

typedef struct _TelPhbGetEntryMaxSizeType
{
 UInt8 fullNameMaxSize;
 UInt8 dialNumberMaxSize;
} TelPhbGetEntryMaxSizesType

<-> count When the structure is used as an input parameter, this is
number of entries that you want retrieved.

Upon return, this is the actual number of entries that were
retrieved.

<- entriesP An array of pointers to retrieved TelPhbEntryType
structures.

<- slots The total number of entry slots available in the phone
book.

c count The number of filled slots in the phone book.

Telephony Phone Book
Telephony Phone Book Constants

1820 Palm OS Programmer’s API Reference

Field Descriptions

Telephony Phone Book Constants
This section describes the constants used with the phone book
service set of the telephony API.

Phone Book Type Constants
The phone book type constants specify the type of phone book that
is currently selected.

<- fullNameMaxSize The largest size of any fullName field in the phone book.

<- dialNumberMaxSize The largest size of any dialNumber field in the phone
book.

Constant Value Description

kTelPhbFixedPhonebook 0 The phone book stored on the phone.

kTelPhbSimPhonebook 1 The phone book stored on the SIM
card.

kTelPhbPhonePhonebook 2 The phone book stored on the phone.

kTelPhbLastDialedPhonebook 3 The phone book from which a
telephone number was most recently
dialed.

kTelPhbSimAndPhonePhonebook 4 The combined phone and SIM card
phone books.

Telephony Phone Book
Telephony Phone Book Functions

Palm OS Programmer’s API Reference 1821

Telephony Phone Book Functions
This section describes the functions used with the phone book
service set of the telephony API.

TelPhbAddEntry

Purpose Add or replace an entry in the currently selected phone book.

Declared In TelephonyMgr.h

Prototype Err TelPhbAddEntry(UInt16 iRefnum,
TelAppID iAppId, TelPhbEntryType *iEntryP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iEntryP A pointer to a TelPhbEntryType structure
that contains the new entry information.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

kTelPhbAdaptorPhonebook 5 The phone book stored on the
telephone adaptor.

kTelPhbFirstOemPhonebook 6 The ID of the first OEM phone book.

You can specify additional OEM
phone books by incrementing this
value; for example, the second OEM
phone book is specified as:
 kTelPhbFirstOemPhonebook
+1

Constant Value Description

Telephony Phone Book
Telephony Phone Book Functions

1822 Palm OS Programmer’s API Reference

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iEntryP remains in
memory until the asynchronous call completes.

Comments The phoneIndex field of the TelPhbEntryType structure
referenced by iEntryP specifies the index at which to write the
entry.

Before using this function, you should verify that it is available by
calling the TelIsPhbServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPhbDeleteEntry, TelPhbSelectPhonebook

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelPhbEntryType structure
passed to this function in the iEntryP
parameter.

functionId kTelPhbAddEntryMessage

Telephony Phone Book
Telephony Phone Book Functions

Palm OS Programmer’s API Reference 1823

TelPhbDeleteEntry

Purpose Deletes an entry from the currently selected phone book.

Declared In TelephonyMgr.h

Prototype Err TelPhbDeleteEntry(UInt16 iRefnum,
TelAppID iAppId, UInt16 iEntryIndex,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iEntryIndex The zero-based, logical index of the entry that
you want deleted. The Telephony Manager
computes the physical index.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the iEntryIndex parameter.

functionId kTelPhbDeleteEntryMessage

Telephony Phone Book
Telephony Phone Book Functions

1824 Palm OS Programmer’s API Reference

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by iEntryP remains in
memory until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsPhbServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPhbAddEntry, TelPhbSelectPhonebook

TelPhbGetAvailablePhonebooks

Purpose Retrieve the list of all phone books available on the phone.

Declared In TelephonyMgr.h

Prototype Err TelPhbGetAvailablePhonebooks(UInt16 iRefnum,
TelAppID iAppId,
TelPhbGetAvailablePhonebooksType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a
TelPhbGetAvailablePhonebooksType
structure that lists the available phone books.

On input, the count field of this structure
specifies the allocated size of the phonebookP
buffer. Upon return, the count field specifies
the actual number of entries retrieved, even if
they were truncated to fit into the buffer.

Telephony Phone Book
Telephony Phone Book Functions

Palm OS Programmer’s API Reference 1825

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP remains in
memory until the asynchronous call completes.

Comments The phone book IDs are stored into the phonebookP field of the
TelPhbGetAvailablePhonebooksType structure referenced by
ioParamP. If the phonebookP buffer is too small to contain all of
the IDs, the information is truncated and this function returns the
telErrBufferSize error. The count field of the structure is
always updated to contain the actual number of entries that were
retrieved.

Before using this function, you should verify that it is available by
calling the TelIsPhbServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the
TelPhbGetAvailablePhonebooksType
structure passed to this function in the iEntryP
parameter.

functionId kTelPhbGetAvailablePhonebooksMessage

Telephony Phone Book
Telephony Phone Book Functions

1826 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPhbSelectPhonebook

TelPhbGetEntries

Purpose Retrieve a range of entries from the currently selected phone book.

Declared In TelephonyMgr.h

Prototype Err TelPhbGetEntries(UInt16 iRefnum,
TelAppID iAppId, TelPhbGetEntriesType *ioParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioParamP A pointer to a TelPhbGetEntriesType
structure that is updated with the phone book
entry information. The first entry retrieved is
specified in the first field of this structure,
which is zero-based; the number of entries
retrieved is specified by the count field. Thus,
the last entry retrieved is specified by:

ioParamP->first +
 ioParamP->count-1

Upon return, the count field of the structure is
the number of entries that were actually
retrieved.

The entriesP field of this structure is a buffer
that you allocate to contain the required
number of pointers. Each pointer references a
TelPhbEntryType structure that you must
also preallocate.

Telephony Phone Book
Telephony Phone Book Functions

Palm OS Programmer’s API Reference 1827

On input, the fullNameSize and
dialNumberSize fields of this structure
specify the allocated sizes of the fullName and
dialNumber buffers. Upon return, the
fullNameSize and dialNumberSize fields
specify the actual sizes of the buffers, even if a
string was truncated to fit into the buffer.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by ioParamP and any
structures that it references remain in memory until the
asynchronous call completes.

Comments The phone book information is stored into the TelPhbEntryType
structures that you preallocate and refer to in the entriesP field of

returnCode errNone upon success or an error code upon
failure

transId The transaction ID of the operation.

paramP Points to the TelPhbGetEntriesType
structure passed to this function in the
ioEntriesP parameter.

functionId kTelPhbGetEntriesMessage

Telephony Phone Book
Telephony Phone Book Functions

1828 Palm OS Programmer’s API Reference

the TelPhbGetEntriesType referenced by the ioParamP
parameter.

If any buffer in any of the TelPhbEntryType structures is too
small, the string intended for that buffer is truncated, and this
function returns the telErrBufferSize error. In any case, the
fullNameSize and dialNumberSize fields of each
TelPhbEntryType structure contain the actual size of their
respective strings.

If any entries in the specified range are empty, the entry is not
retrieved, and the count value in the structure is updated.

Before using this function, you should verify that it is available by
calling the TelIsPhbServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPhbGetEntry, TelPhbSelectPhonebook

TelPhbGetEntry

Purpose Retrieve one entry from the currently selected phone book.

Declared In TelephonyMgr.h

Prototype Err TelPhbGetEntry(UInt16 iRefnum,
TelAppID iAppId, TelPhbEntryType *ioEntryP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<-> ioEntryP A pointer to a TelPhbEntryType structure
that is updated with the phone book entry
information.

Telephony Phone Book
Telephony Phone Book Functions

Palm OS Programmer’s API Reference 1829

On input, the fullNameSize and
dialNumberSize fields of this structure
specify the allocated sizes of the fullName and
dialNumber buffers. Upon return, the
fullNameSize and dialNumberSize fields
specify the actual sizes of the buffers, even if a
string was truncated to fit into the buffer.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Comments The phone book information is stored into the TelPhbEntryType
that you preallocate. If either buffer in the structure is too small, the
string intended for that buffer is truncated, and this function returns
the telErrBufferSize error. In any case, the fullNameSize
and dialNumberSize fields of the structure contain the actual size
of their respective strings.

Before using this function, you should verify that it is available by
calling the TelIsPhbServiceAvailable macro.

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelPhbEntryType structure
passed to this function in the ioEntryP
parameter.

functionId kTelPhbGetEntryMessage

Telephony Phone Book
Telephony Phone Book Functions

1830 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPhbGetEntries, TelPhbSelectPhonebook

TelPhbGetEntryCount

Purpose Retrieve the total number of entries, and the number of filled entries
in the currently selected phone book.

Declared In TelephonyMgr.h

Prototype Err TelPhbGetEntryCount(UInt16 iRefnum,
TelAppID iAppId,
TelPhbGetEntryCountType *oParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oParamP A pointer to a TelPhbGetEntryCountType
structure that is updated with information
about the number of entries in the phone book.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

Telephony Phone Book
Telephony Phone Book Functions

Palm OS Programmer’s API Reference 1831

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by oParamP remains in
memory until the asynchronous call completes.

Comments The total number of slots and the number of filled slots in the
currently selected phone book are stored in the
TelPhbGetEntryCountType structure referenced by oParamP.

Before using this function, you should verify that it is available by
calling the TelIsPhbServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPhbSelectPhonebook

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the TelPhbGetEntryCountType
structure passed to this function in the oParamP
parameter.

functionId kTelPhbGetEntryCountMessage

Telephony Phone Book
Telephony Phone Book Functions

1832 Palm OS Programmer’s API Reference

TelPhbGetEntryMaxSizes

Purpose Retrieves the maximum buffer sizes of any entries in the currently
selected phone book.

Declared In TelephonyMgr.h

Prototype Err TelPhbGetEntryMaxSizes(UInt16 iRefnum,
TelAppID iAppId,
TelPhbGetEntryMaxSizesType *oParamP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

<- oParamP A pointer to a
TelPhbGetEntryMaxSizesType structure
that is updated with information about the
maximum buffer sizes of entries in the phone
book.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

Telephony Phone Book
Telephony Phone Book Functions

Palm OS Programmer’s API Reference 1833

WARNING! When using this function asynchronously, you must
ensure that the structure referenced by oParamP remains in
memory until the asynchronous call completes.

Comments The maximum size of any full name entry and the maximum size of
any telephone number entry in the currently selected phone book
are stored in the TelPhbGetEntryMaxSizesType structure
referenced by oParamP.

Before using this function, you should verify that it is available by
calling the TelIsPhbServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPhbGetEntries, TelPhbGetEntry

TelPhbGetSelectedPhonebook

Purpose Retrieve the ID of the currently selected phone book.

Declared In TelephonyMgr.h

Prototype Err TelPhbGetSelectedPhonebook(UInt16 iRefnum,
TelAppID iAppId, UInt8 *oPhbIdP,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

paramP Points to the TelPhbGetEntryMaxSizesType
structure passed to this function in the oParamP
parameter.

functionId kTelPhbGetEntryMaxSizesMessage

Telephony Phone Book
Telephony Phone Book Functions

1834 Palm OS Programmer’s API Reference

<- oPhbIdP A pointer to an unsigned byte value. Upon
return, this is filled in with the identifier of the
currently selected phone book. The identifier is
one of the Phone Book Type Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

WARNING! When using this function asynchronously, you must
ensure that the value referenced by oPhbIdP remains in memory
until the asynchronous call completes.

Comments Before using this function, you should verify that it is available by
calling the TelIsPhbServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPhbSelectPhonebook

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the oPhIdP parameter.

functionId kTelPhbGetSelectedPhonebookMessage

Telephony Phone Book
Telephony Phone Book Functions

Palm OS Programmer’s API Reference 1835

TelPhbSelectPhonebook

Purpose Make the specified phone book the currently selected phone book.

Declared In TelephonyMgr.h

Prototype Err TelPhbSelectPhonebook(UInt16 iRefnum,
TelAppID iAppId, UInt8 iPhbId,
UInt16 *ioTransIdP)

Parameters -> iRefnum The telephony manager library reference
number.

-> iAppId The telephone application attachment identifier
for your application.

-> iPhbId The identifier of the phone book that you want
selected as the current phone book. This must
be one of the Phone Book Type Constants.

<-> ioTransIdP Set the value of this parameter to NULL to cause
the function to execute synchronously.

If this parameter is not NULL, the call executes
asynchronously. Upon return from this
function, this points to the transaction identifier
associated with the asynchronous operation.

Synchronous
Result

Returns errNone if the function was successful or returns an error
code if not successful.

Asynchronous
Result

The following fields are updated in the TelEventType event that
is sent when the operation completes:

returnCode errNone upon success or an error code upon
failure.

transId The transaction ID of the operation.

paramP Points to the unsigned integer value passed to
this function in the iPhbId parameter.

functionId kTelPhbSelectPhonebookMessage

Telephony Phone Book
Telephony Phone Book Functions

1836 Palm OS Programmer’s API Reference

Comments Before using this function, you should verify that it is available by
calling the TelIsPhbServiceAvailable macro.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also TelPhbGetAvailablePhonebooks,
TelPhbGetSelectedPhonebook

Part IV: Libraries

Palm OS Programmer’s API Reference 1839

74
Internet Library
This chapter provides reference material for the Internet library API:

• Internet Library Data Structures

• Internet Library Constants

• Internet Library Functions

The header file INetMgr.h declares the Internet library API. For
more information on the Internet library, see the chapter “Network
Communication” in the Palm OS Programmer’s Companion, vol. II,
Communications.

NOTE: The information in this chapter applies only to version
3.2 or later of the Palm OS® on Palm VII® devices. These features
are implemented only if the Wireless Internet Feature Set is
present.

WARNING! In future OS versions, PalmSource, Inc. does not
intend to support or provide backward compatibility for the
Internet library API documented in this chapter.

Internet Library Data Structures

INetCompressionTypeEnum
The INetCompressionTypeEnum enum indicates the type of
compression used for data exchanged via a socket. One of these
enumerated types is set as the value of the
inetSockSettingCompressionTypeID socket setting (a read-
only setting).

Internet Library
Internet Library Data Structures

1840 Palm OS Programmer’s API Reference

typedef enum {
inetCompressionTypeNone = 0,
inetCompressionTypeBitPacked,
inetCompressionTypeLZ77
} INetCompressionTypeEnum;

Value Descriptions

INetConfigNameType
The INetConfigNameType structure holds the name of an Internet
library network configuration. A configuration is a set of specific
values for the Internet library settings. The Internet library defines a
set of built-in configuration aliases for common network setups.
These aliases point to configurations instead of holding the actual
values themselves. You can use an alias anywhere in the API you
would use a configuration. System-defined configuration aliases are
listed in “Configuration Aliases” on page 1850.

This structure is used in the functions
INetLibConfigIndexFromName, INetLibConfigRename, and
INetLibConfigSaveAs.

#define inetConfigNameSize 32;

typedef struct {
Char name[inetConfigNameSize]; // name of configuration
} INetConfigNameType, *INetConfigNamePtr;

Field Description

inetCompressionTypeNone No compression.

inetCompressionTypeBitPacked Custom 5-bit compression scheme. This is
typically used for data sent from the Palm Web
Clipping Proxy server.

inetCompressionTypeLZ77 Not used; reserved for future use.

name A configuration name (up to 32 characters).

Internet Library
Internet Library Data Structures

Palm OS Programmer’s API Reference 1841

INetContentTypeEnum
The INetContentTypeEnum enum specifies the type of content to
be exchanged via a socket. One of these enumerated types is set as
the value of the inetSockSettingContentTypeID socket setting
(a read-only setting).

typedef enum {
inetContentTypeTextPlain = 0,
inetContentTypeTextHTML,
inetContentTypeImageGIF,
inetContentTypeImageJPEG,
inetContentTypeApplicationCML,
inetContentTypeImagePalmOS,
inetContentTypeOther
} INetContentTypeEnum;

Value Descriptions

INetHTTPAttrEnum
The INetHTTPAttrEnum enum specifies HTTP request and
response attributes that are set by INetLibSockHTTPAttrSet
and returned by INetLibSockHTTPAttrGet.

inetContentTypeTextPlain Not used

inetContentTypeTextHTML Not used

inetContentTypeImageGIF Not used

inetContentTypeImageJPEG Not used

inetContentTypeApplicationCML Compressed HTML content (format used by
the Palm Web Clipping Proxy server and
PQAs)

inetContentTypeImagePalmOS Palm OS® bitmap

inetContentTypeOther Some undefined content type

Internet Library
Internet Library Data Structures

1842 Palm OS Programmer’s API Reference

typedef enum {

//---
// Request only attributes
//---
// The following are ignored unless going through a CTP proxy
inetHTTPAttrWhichPart, // (W) UInt32 (0 -> N)
inetHTTPAttrIncHTTP, // (W) UInt32 (Boolean) only applicable
 // when inetHTTPAttrConvAlgorithm set to ctpConvNone
inetHTTPAttrCheckMailHi, // (W) UInt32
inetHTTPAttrCheckMailLo, // (W) UInt32
inetHTTPAttrReqContentVersion, // (W) UInt32, desired content
 // version. Represented as 2 low bytes. Lowest
byte is
 // minor version, next higher byte is major
version.
//---

// Response only attributes
//---

// Server response info
inetHTTPAttrRspSize, // (R) UInt32, entire HTTP Response size
 // including header and data
inetHTTPAttrResult, // (R) UInt32 (ctpErrXXX when using CTP
Proxy)
inetHTTPAttrErrDetail, // (R) UInt32 (server/proxy err code
when
 // using CTP Proxy)
inetHTTPAttrReason, // (R) Char[]
// Returned entity attributes
inetHTTPAttrContentLength, // (R) UInt32
inetHTTPAttrContentLengthUncompressed, // (R) UInt32 (in
bytes)
inetHTTPAttrContentLengthUntruncated, //(R) UInt32
inetHTTPAttrContentVersion, // (R) UInt32, actual content
version.
 // Represented as 2 low bytes. Lowest byte is minor
 // version, next higher byte is major version.
inetHTTPAttrContentCacheID, // (R) UInt32, cacheID for this
item
inetHTTPAttrReqSize // (R) UInt32 size of request sent
} INetHTTPAttrEnum;

Internet Library
Internet Library Data Structures

Palm OS Programmer’s API Reference 1843

Value Descriptions

inetHTTPAttrWhichPart An index to the part of the response data
desired, if the response data is partitioned
into chunks. Write-only.

inetHTTPAttrIncHTTP A Boolean that, if set, causes HTTP header
data to be included as part of the content
when retrieving raw data. Applicable only
when inetSettingConvAlgorithm is set
to ctpConvNone. Write-only.

inetHTTPAttrCheckMailHi High-order byte of ID for checking mail.
Write-only.

inetHTTPAttrCheckMailLo Low-order byte of ID for checking mail.
Write-only.

inetHTTPAttrReqContentVersion Desired content version. Represented as 2
low bytes. Lowest byte is minor version,
next higher byte is major version. Write-
only.

inetHTTPAttrRspSize Size of entire HTTP (header and data).
Read-only.

inetHTTPAttrResult Transport protocol error code. Read-only.

inetHTTPAttrErrDetail Server/proxy error code when using the
Palm Web Clipping Proxy server. Read-
only.

inetHTTPAttrReason Transport protocol error message. Read-
only.

inetHTTPAttrContentLength Size of response data. Read-only.

inetHTTPAttrContentLengthUncompr
essed

Size of uncompressed response data. Read-
only.

inetHTTPAttrContentLengthUntrunc
ated

Total size of response data (it may have
been truncated to less than this). Read-only.

Internet Library
Internet Library Data Structures

1844 Palm OS Programmer’s API Reference

INetSchemeEnum
The INetSchemeEnum enum specifies a protocol (http, https, etc.)
used by a socket. Specify one of these enumerated types for the
INetSockSettingScheme socket setting and for the scheme
parameter to the INetLibSockOpen call.

typedef enum {
inetSchemeUnknown = -1,
inetSchemeDefault = 0, // not used

inetSchemeHTTP, // http:
inetSchemeHTTPS, // https:
inetSchemeFTP, // ftp:
inetSchemeGopher, // gopher:
inetSchemeFile, // file:
inetSchemeNews, // news:
inetSchemeMailTo, // mailto:
inetSchemePalm, // palm:
inetSchemePalmCall, // palmcall:
inetSchemeMail, // not applicable to URLs, but used
 // for the INetLibSockOpen call when
 // creating a socket for mail IO
inetSchemeMac, // mac: - Mac file system HTML

inetSchemeFirst = inetSchemeHTTP, // first one
inetSchemeLast = inetSchemeMail // last one
} INetSchemeEnum;

Value Descriptions

inetHTTPAttrContentVersion Actual content version. Represented as 2
low bytes. Lowest byte is minor version,
next higher byte is major version. Read-
only.

inetHTTPAttrContentCacheID Cache ID for this item. Read-only.

inetHTTPAttrReqSize Size of request sent. Read-only.

inetSchemeHTTP Use the HTTP protocol.

inetSchemeHTTPS Use the HTTPS protocol (for a secure connection).

Internet Library
Internet Library Data Structures

Palm OS Programmer’s API Reference 1845

INetSettingEnum
The INetSettingEnum enum specifies a setting to be returned or
set by the INetLibSettingGet or INetLibSettingSet calls.

typedef enum {
inetSettingCacheSize, // (RW) UInt32, max size of cache
inetSettingCacheRef, // (R) DmOpenRef, ref of cache DB
inetSettingNetLibConfig, // (RW) UInt32, NetLib config to use
inetSettingRadioID, // (R) UInt32[2], the 64-bit radio ID
inetSettingBaseStationID, // (R) UInt32, the radio base
station Id
inetSettingMaxRspSize, // (W) UInt32 (in bytes)
inetSettingConvAlgorithm, // (W) UInt32 (CTPConvEnum)
inetSettingContentWidth, // (W) UInt32 (in pixels)

inetSchemeFTP Use the FTP protocol. Not implemented.

inetSchemeGopher Use the Gopher protocol. Not implemented.

inetSchemeFile Launch local PQA file

inetSchemeNews Use the News protocol. Not implemented.

inetSchemeMailTo Launch the local messaging application, passing a “to”
address.

inetSchemePalm Launches a local application database. The URL is
expected to be in the form cccc.tttt, where cccc is a four
character creator name and tttt is a four character
database type. This pair of strings is used to identify an
application database to receive the launch message via a
call to SysUIAppSwitch.

inetSchemePalmCall Launches a local application database. The URL is
expected to be in the form cccc.tttt, where cccc is a four
character creator name and tttt is a four character
database type. This pair of strings is used to identify an
application database to receive the launch message via a
call to SysAppLaunch.

inetSchemeMail Creates a socket for mail I/O.

inetSchemeMac Handles opening Mac OS file system HTML URLs. For
use by the Simulator only.

Internet Library
Internet Library Data Structures

1846 Palm OS Programmer’s API Reference

inetSettingContentVersion, // (W) UInt32, content version
(encoder
 // version)
inetSettingNoPersonalInfo, // (RW) UInt32, send no deviceID/
zipcode
inetSettingUserName,
inetSettingLast
} INetSettingEnum;

Value Descriptions

inetSettingCacheSize Maximum size of cache (in bytes).

inetSettingCacheRef DmOpenRef, reference to cache database. Read-
only.

inetSettingNetLibConfig The index of the net library network configuration
to use. This value is saved as part of the
preferences for each Internet library configuration.
A value of 0 means to use the current
configuration.

inetSettingRadioID 64-bit radio ID. Read-only. Used for wireless
connections only.

inetSettingBaseStationID Radio base station ID. Read-only. Used for wireless
connections only.

inetSettingMaxRspSize Maximum response size, in bytes. The default is
1024 bytes. Write-only.

inetSettingConvAlgorithm Content conversion desired. Write-only. Possible
values include:
ctpConvCML (use 5-bit compression scheme),
ctpConvCML8Bit (use 5-bit compression scheme,
but in 8-bit form for debugging),
ctpConvCMLLZ77 (use LZ77 compression
scheme),
ctpConvNone (no conversion; data is returned in
native format)

inetSettingContentWidth Width of the display for content. The default
setting is 160 (pixels). Write-only.

Internet Library
Internet Library Data Structures

Palm OS Programmer’s API Reference 1847

INetSockSettingEnum
The INetSockSettingEnum enum specifies a socket setting to be
returned or set by the INetLibSockSettingGet or
INetLibSockSettingSet calls.

typedef enum {
inetSockSettingScheme, // (R) UInt32, INetSchemeEnum
inetSockSettingSockContext, // (RW) UInt32,
inetSockSettingCompressionType, // (R) Char[]
inetSockSettingCompressionTypeID, // (R) UInt32
 //
(INetCompressionTypeEnum)
inetSockSettingContentType, // (R) Char[]
inetSockSettingContentTypeID, // (R) UInt32
(INetContentTypeEnum)
inetSockSettingData, // (R) UInt32, pointer to data
inetSockSettingDataHandle,// (R) UInt32, handle to data
inetSockSettingDataOffset,// (R) UInt32, offset to data from
handle
inetSockSettingTitle, // (W) Char[]
inetSockSettingURL, // (R) Char[]
inetSockSettingIndexURL, // (RW) Char[]
inetSockSettingFlags, // (RW) UInt16, one or more of
 // inetOpenURLFlagXXX flags
inetSockSettingReadTimeout, // (RW) UInt32, read timeout in
ticks
inetSockSettingContentVersion,// (R) UInt32, content version
number
inetSockSettingLast
} INetSockSettingEnum;

inetSettingContentVersion Content version (encoder version). Write-only.
This setting is used to let the server know what
encoder version it should use to encode content
sent to the Palm client. Normally you don’t need to
set this value as it is initialized by INetLibOpen.
The default encoder version is 0x8001.

inetSettingNoPersonalInfo Send no device ID or zipcode information to the
proxy server. This value is saved as part of the
preferences for each Internet library configuration.

inetSettingUserName Not applicable.

Internet Library
Internet Library Data Structures

1848 Palm OS Programmer’s API Reference

Value Descriptions

inetSockSettingScheme Requested scheme; one of the
INetSchemeEnum values. Read-only.

inetSockSettingSockContext Not used.

inetSockSettingCompressionType Name of requested compression type.
Read-only.

inetSockSettingCompressionTypeID Requested compression type; one of the
INetCompressionTypeEnum values.
Read-only.

inetSockSettingContentType String containing the MIME type of the
content. Used only on received raw data.
Read-only.

inetSockSettingContentTypeID Content type of socket data; one of the
INetContentTypeEnum values. Read-
only.

inetSockSettingData Pointer to socket data. Read-only.

inetSockSettingDataHandle Handle to socket data. Read-only.

inetSockSettingDataOffset Offset to socket data from handle. Read-
only.

inetSockSettingTitle Web page title. This value is written to the
cache (and the Web Clipping Application
Viewer uses it later in a history list of
cache entries). Write-only.

inetSockSettingURL URL of requested data. Read-only.

inetSockSettingIndexURL Index (or master) URL of requested data
(for cache indexing). This is the topmost
web page in a group of hierarchical pages;
it serves to group the pages together and
to filter cache list results. The Web
Clipping Application Viewer sets this to
the URL of the active PQA, for all pages
linked from the PQA.

Internet Library
Internet Library Data Structures

Palm OS Programmer’s API Reference 1849

INetStatusEnum
The INetStatusEnum enum specifies the status of the socket. The
status is returned in the inetSockStatusChangeEvent event
structure and by the call INetLibSockStatus.

typedef enum {
inetStatusNew, // just opened
inetStatusResolvingName, // looking up host address
inetStatusNameResolved, // found host address
inetStatusConnecting, // connecting to host
inetStatusConnected, // connected to host
inetStatusSendingRequest, // sending request
inetStatusWaitingForResponse, // waiting for response
inetStatusReceivingResponse, // receiving response
inetStatusResponseReceived, // response received
inetStatusClosingConnection, // closing connection
inetStatusClosed, // closed
inetStatusAcquiringNetwork, // network temporarily
 // unreachable; socket on
hold
inetStatusPrvInvalid = 30 // internal value, not returned by
 // INetMgr. Should be
last.
} INetStatusEnum;

inetSockSettingFlags URL request flags; one or more of
inetOpenURLFlag... flags (see URL
Open Constants).

inetSockSettingReadTimeout The default timeout value for reads when
the application uses the event mechanism.
The time since last receiving data from a
socket is monitored and a timeout error
status event is returned from
INetLibGetEvent if the timeout is
exceeded.

inetSockSettingContentVersion Content version number. Read-only.

Internet Library
Internet Library Constants

1850 Palm OS Programmer’s API Reference

Value Descriptions

Internet Library Constants

Configuration Aliases
The constants listed here specify Internet library network
configuration alias names. Most of the Internet library API requires
a configuration index rather than a name. Use
INetLibConfigIndexFromName to obtain the alias’s index from
the name. For more information, see INetConfigNameType.

The following aliases are defined for configuration names:

inetStatusNew Just opened

inetStatusResolvingName Looking up host address

inetStatusNameResolved Found host address

inetStatusConnecting Connecting to host

inetStatusConnected Connected to host

inetStatusSendingRequest Sending request

inetStatusWaitingForResponse Waiting for response

inetStatusReceivingResponse Receiving response

inetStatusResponseReceived Response received

inetStatusClosingConnection Closing connection

inetStatusClosed Connection closed

inetStatusAcquiringNetwork Network temporarily unreachable; socket
on hold

inetStatusPrvInvalid Not used

Internet Library
Internet Library Constants

Palm OS Programmer’s API Reference 1851

URL Info Constants
The inetURLInfoFlag... constants convey information about a
URL and are returned by the function INetLibURLGetInfo.

Alias Name string Description

inetCfgNameDefault ".Default" Initially points to a generic
configuration with no proxy. This
uses the configuration set by the
user in the Network preferences
panel.

inetCfgNameDefWireline ".DefWireline" Initially points to a generic
configuration with no proxy. This
uses the configuration set by the
user in the Network preferences
panel.

inetCfgNameDefWireless ".DefWireless" Initially points to a generic
configuration with no proxy. This
uses the configuration set by the
user in the Network preferences
panel.

inetCfgNameCTPDefault ".CTPDefault" Initially points to either
".CTPWireless" (on Palm VII®
units) or ".CTPWireline" (on all
other units). On the Palm VII unit,
the Web Clipping Application
Viewer application uses this
configuration.

inetCfgNameCTPWireline ".CTPWireline" Initially points to a wireline
configuration that uses the Palm
Web Clipping Proxy server.

inetCfgNameCTPWireless ".CTPWireless" Initially points to a wireless
configuration that uses the
Palm.Net™ wireless system and the
Palm Web Clipping Proxy server.

Internet Library
Internet Library Constants

1852 Palm OS Programmer’s API Reference

URL Open Constants
The inetOpenURLFlag... constants control how the
INetLibURLOpen call operates with respect to caching and
encryption. These flags are also used for the
inetSockSettingFlags socket setting.

Constant Value Description

inetURLInfoFlagIsSecure 0x0001 URL was encrypted.

inetURLInfoFlagIsRemote 0x0002 URL was retrieved from the net.

inetURLInfoFlagIsInCache 0x0004 URL is stored in the cache.

Constant Value Description

inetOpenURLFlagLookInCache 0x0001 Read data from the cache, if
available.

inetOpenURLFlagKeepInCache 0x0002 Store the item in the cache,
overwriting any other entries with
an equivalent URL.

inetOpenURLFlagForceEncOn 0x0008 Use encryption even if scheme does
not desire it.

inetOpenURLFlagForceEncOff 0x0010 Do not use encryption even if
scheme desires it.

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1853

Internet Library Functions

INetLibCacheGetObject

Purpose Returns information about an entry in the cache database, including
a handle to the record. Either the URL or the unique ID can be used
to find the cache entry.

Declared In INetMgr.h

Prototype Err INetLibCacheGetObject (UInt16 libRefnum,
MemHandle clientParamH, UInt8 *urlTextP,
UInt32 uniqueID, INetCacheInfoPtr cacheInfoP)

Parameters -> libRefnum Refnum of the Internet library.

-> clientParamH
Inet handle allocated by INetLibOpen.

-> urlTextP Pointer to URL text string to find. If this
parameter is NULL, then uniqueID is used to
find the entry.

-> uniqueID Unique ID of the cache entry to find. This value
can be obtained by calling
INetLibCacheList. This parameter is
ignored if urlTextP is specified.

<- INetCacheInfoPtr
Pointer to a structure where information about
the cache entry is returned. See the Comments
section for details.

Result

0 No error

inetErrParamsInvalid One or more of the parameters
are invalid.

Internet Library
Internet Library Functions

1854 Palm OS Programmer’s API Reference

Comments The INetCacheInfoPtr type returned from this function is
defined as a pointer to an INetCacheInfoType structure, which
has the following definition:

typedef struct {
MemHandle recordH; // handle to the cache
record
INetContentTypeEnum contentType;
INetCompressionTypeEnum encodingType;
UInt32 uncompressedDataSize;
UInt8 flags; // unused
UInt8 reserved;
UInt16 dataOffset; // offset to content
UInt16 dataLength; // size of content
UInt16 urlOffset; // offset to URL
UInt32 viewTime; // time last viewed
UInt32 createTime; // time entry was created
UInt16 murlOffset; // offset to master URL
} INetCacheInfoType, *INetCacheInfoPtr;

Compatibility Implemented only if Wireless Internet Feature Set is present.

INetLibCacheList

Purpose Returns an item from the cache list, based on its URL and index in
the list.

Declared In INetMgr.h

Prototype Err INetLibCacheList (UInt16 libRefnum,
MemHandle inetH, UInt8 *cacheIndexURLP,
UInt16 *indexP, UInt32 *uidP,
INetCacheEntryP cacheP)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1855

-> cacheIndexURLP
Pointer to a master URL string. Cache entries
indexed with this master URL are returned. The
Web Clipping Application Viewer sets the
master URL of a cache page to the URL of the
active PQA, so all pages linked from the PQA
have the same master URL.

<-> indexP Pointer to the index of the entry. Specify an
index to find entries at this index or higher in
the list. Specify NULL to search from the
beginning, the first time you call this function.
The index of the entry following the one found
is returned on exit.

<- uidP Pointer to a long value where the unique ID of
the found cache entry is returned.

<- cacheP Pointer to a structure where information about
the found cache entry is returned. See the
Comments section for details.

Result

Comments This function first sorts the list of cache entries by URL. Then it
returns in uidP the unique ID of the first cache entry with an index
equal to or greater than indexP. The indexP value is updated to
point to the next entry upon return.

To generate a complete list of cache entries having the same master
URL (as for a history list), call this function repeatedly, always
specifying the updated index, until it returns the error
inetErrTypeNotCached.

0 No error

inetErrTypeNotCached Cache entry under requested
index not found

inetErrParamsInvalid The cacheIndexURLP
parameter is NULL

inetErrCacheInvalid The cache database doesn’t exist

Internet Library
Internet Library Functions

1856 Palm OS Programmer’s API Reference

Note that a URL can exist multiple times in the Web Clipping
Application Viewer cache database, thus the need for the uidP
value.

The INetCacheEntryP type returned from this function is defined
as a pointer to an INetCacheEntryType structure, which has the
following definition:

typedef struct {
UInt8 *urlP; // ptr to URL string
UInt16 urlLen; // length of URL string
UInt8 *titleP; // ptr to title string
UInt16 titleLen; // length of title string
UInt32 lastViewed; // time last viewed
 // seconds since 1/1/1904
UInt32 firstViewed; // time first viewed
 // seconds since 1/1/1904
} INetCacheEntryType, *INetCacheEntryP;

Compatibility Implemented only if Wireless Internet Feature Set is present.

INetLibCheckAntennaState

Purpose Checks the antenna state and displays a dialog asking the user to
raise it if it is down.

Declared In INetMgr.h

Prototype Err INetLibCheckAntennaState(UInt16 refNum)

Parameters -> refNum Refnum of the Internet library.

Result

This call can also return data manager errors if it fails internally.

0 The user raised the antenna.

netErrUserCancel The user closed the dialog by
tapping Cancel.

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1857

Comments Applications don’t need to check the antenna state by using this call.
If an application opens the Internet library, the Internet library
checks the antenna state when needed and displays the dialog to
prompt the user to raise the antenna.

Compatibility Implemented only if Wireless Internet Feature Set is present.

INetLibClose

Purpose Closes up and frees an inet handle. Closes or decrements the open
count of the net library.

Declared In INetMgr.h

Prototype Err INetLibClose (UInt16 libRefnum,
MemHandle inetH)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

Result

Comments This call must be made by an application when it's done with the
Internet library. It closes any Internet sockets open by the
application, disposes the memory referenced by the given inet
handle, and calls NetLibClose, if necessary, to close the net
Library or decrement its open count.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibOpen

0 No error

Internet Library
Internet Library Functions

1858 Palm OS Programmer’s API Reference

INetLibConfigAliasGet

Purpose Determines to which configuration a built-in alias points.

Declared In INetMgr.h

Prototype Err INetLibConfigAliasGet (UInt16 refNum,
UInt16 aliasIndex, UInt16 *indexP,
Boolean *isAnotherAliasP)

Parameters -> libRefnum Refnum of the Internet library.

-> aliasIndex Index of alias configuration to query. This is the
index of the configuration in the internal array
of configurations stored by the system. This is
the same as the index of the item in the array
returned by INetLibConfigList, or the
index returned by
INetLibConfigIndexFromName.

<- indexP Pointer where the index of the configuration
pointed to by aliasIndex is returned. 0 is
returned if aliasIndex does not point to
another configuration.

<- isAnotherAliasP
If *indexP is the index of another alias
configuration, this Boolean is set to true.

Result

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigAliasSet

0 No error

inetErrParamsInvalid aliasIndex is not valid

inetErrConfigNotAlias aliasIndex is not an
alias configuration

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1859

INetLibConfigAliasSet

Purpose Points any of the built-in aliases (".DefWireline", ".DefWireless", etc.)
to a given defined configuration.

Declared In INetMgr.h

Prototype Err INetLibConfigAliasSet (UInt16 refNum,
UInt16 configIndex, UInt16 aliasToIndex)

Parameters -> libRefnum Refnum of the Internet library.

-> configIndex Index of configuration to set. This is the index
of the configuration in the internal array of
configurations stored by the system. This is the
same as the index of the item in the array
returned by INetLibConfigList, or the
index returned by
INetLibConfigIndexFromName.

-> aliasToIndex
Index of configuration that the alias identified
by configIndex is to point to. Specify 0 to
remove an existing alias assignment.

Result

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigAliasGet

0 No error

inetErrConfigNotAlias configIndex is not an
alias configuration

inetErrParamsInvalid configIndex or
aliasToIndex is not
valid

inetErrConfigCantPointToAlias Alias doesn't point to a real
entry

Internet Library
Internet Library Functions

1860 Palm OS Programmer’s API Reference

INetLibConfigDelete

Purpose Deletes a configuration.

Declared In INetMgr.h

Prototype Err INetLibConfigDelete (UInt16 refNum,
UInt16 index)

Parameters -> refnum Refnum of the Internet library.

-> index Index of configuration to delete. This is the
index of the configuration in the internal array
of configurations stored by the system. This is
the same as the index of the item in the array
returned by INetLibConfigList, or the
index returned by
INetLibConfigIndexFromName.

Result

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigIndexFromName, INetLibConfigList

0 No error

inetErrParamsInvalid Index not valid

inetErrConfigCantDelete Attempted to delete an alias
configuration

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1861

INetLibConfigIndexFromName

Purpose Returns the index of a configuration given it's name.

Declared In INetMgr.h

Prototype Err INetLibConfigIndexFromName (UInt16 refNum,
INetConfigNamePtr nameP, UInt16 *indexP)

Parameters -> refnum Refnum of the Internet library.

-> nameP Pointer to an INetConfigNameType structure
that names the configuration whose index you
want to get.

<- indexP Pointer where the index of the configuration
identified in nameP is returned.

Result

Comments If you name an alias, this routine returns the index of the alias entry,
not the configuration the alias points to. This way the alias can be
pointed to a different configuration.

Applications should store the index of the configuration they're
using, rather than the name, so that they won't be confused if the
user edits the name of the configuration from the Preferences panel.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigList

0 No error

inetErrConfigNotFound Could not find requested
configuration name

Internet Library
Internet Library Functions

1862 Palm OS Programmer’s API Reference

INetLibConfigList

Purpose Returns an array containing a list of the available Internet library
network configurations.

Declared In INetMgr.h

Prototype Err INetLibConfigList (UInt16 refNum,
INetConfigNameType nameArray[],
UInt16 *arrayEntriesP)

Parameters -> refnum Refnum of the Internet library.

-> nameArray Pointer to an array of INetConfigNameType
structs that is to be filled in by this routine.

<-> arrayEntriesP
On entry, a pointer to the number of entries
available in nameArray; on exit, a pointer to
the total number of entries in the system (which
could exceed the size of the array you pass in).

Result

Comments This routine can be used to obtain a list of available configurations
for selection by the user.

Note that the built-in alias configurations, which start with a period,
should not be displayed to the user as selectable choices. They are
designed for internal use by applications that need a predetermined
type of service (like ".CTPWireless" for PQA applications.) Also, any
configurations that start with an underscore, like "_CTPRAM",
should not be displayed. These typically are configurations created
by the Internet library for internal use and cannot be edited using
the Network preferences panel.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigMakeActive

0 No error

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1863

INetLibConfigMakeActive

Purpose Makes the given configuration active without having to close and
reopen the Internet library by using INetLibOpen.

Declared In INetMgr.h

Prototype Err INetLibConfigMakeActive (UInt16 refNum,
MemHandle inetH, UInt16 configIndex)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> configIndex Index of configuration to activate. This is the
index of the configuration in the internal array
of configurations stored by the system. This is
the same as the index of the item in the array
returned by INetLibConfigList, or the
index returned by
INetLibConfigIndexFromName.

Result

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigSaveAs, INetLibConfigList,
INetLibConfigIndexFromName

0 No error

Internet Library
Internet Library Functions

1864 Palm OS Programmer’s API Reference

INetLibConfigRename

Purpose Renames a configuration.

Declared In INetMgr.h

Prototype Err INetLibConfigRename (UInt16 refNum,
UInt16 index, INetConfigNamePtr newNameP)

Parameters -> libRefnum Refnum of the Internet library.

-> index Index of configuration to rename. This is the
index of the configuration in the internal array
of configurations stored by the system. This is
the same as the index of the item in the array
returned by INetLibConfigList, or the
index returned by
INetLibConfigIndexFromName.

-> newNameP Pointer to an INetConfigNameType structure
holding the new name of the configuration. The
name cannot start with a period or an
underscore.

Result

Comments After renaming, the configuration index stays the same so that
applications that are set up to use that configuration will still work

0 No error

inetErrConfigBadName Trying to save as an alias
(beginning with ".") or as a built-
in configuration (beginning with
"_").

inetErrParamsInvalid Invalid index

inetErrConfigCantDelete Configuration to be renamed is
either an alias or a built-in
configuration

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1865

correctly. Note that built-in configuration aliases (ones that start
with a period) cannot be renamed.

Compatibility Implemented only if Wireless Internet Feature Set is present.

INetLibConfigSaveAs

Purpose Saves the current network configuration settings under the given
name.

Declared In INetMgr.h

Prototype Err INetLibConfigSaveAs (UInt16 refNum,
MemHandle inetH, INetConfigNamePtr nameP)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> nameP Pointer to an INetConfigNameType structure
holding the name of the configuration. The
name cannot start with a period or an
underscore.

Result

Comments If the configuration name specified already exists, it is replaced with
the new settings.

Compatibility Implemented only if Wireless Internet Feature Set is present.

0 No error

inetErrConfigBadName Trying to save as an alias (beginning
with ".") or as a built-in configuration
(beginning with "_").

inetErrConfigTooMany The internal configurations table is
full. No more entries can be stored.

Internet Library
Internet Library Functions

1866 Palm OS Programmer’s API Reference

INetLibGetEvent

Purpose A replacement for EvtGetEvent that informs an application of
status changes to Internet sockets as well as user interface events.

Declared In INetMgr.h

Prototype void INetLibGetEvent (UInt16 libRefnum,
MemHandle inetH, INetEventType *eventP,
Int32 timeout)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen, or
NULL.

<-> eventP The event structure is returned via this pointer.

-> timeout Timeout in ticks. Specify evtWaitForever to
wait forever.

Result

Comments This call is designed to replace EvtGetEvent in applications which
use the Internet library. For convenience, if inetH is NULL,
INetLibGetEvent is equivalent to EvtGetEvent.

INetLibGetEvent returns two additional events besides those
returned by EvtGetEvent: inetSockReadyEvent and
inetSockStatusChangeEvent.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockStatus, INetLibURLOpen, INetLibSockOpen,
INetLibSockRead

0 No error

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1867

INetLibOpen

Purpose Creates a new application inet handle structure. Opens or
increments the open count of the net library.

Declared In INetMgr.h

Prototype Err INetLibOpen (UInt16 libRefnum, UInt16 config,
UInt32 flags, DmOpenRef cacheRef,
UInt32 cacheSize, MemHandle *inetHP)

Parameters -> libRefnum Refnum of the Internet library. Pass the value
"INet.lib" to SysLibFind to return this
refnum.

-> config Indicates the type of network service desired by
the application. Returned by
INetLibConfigIndexFromName.

-> flags Currently unused; set to 0.

-> cacheRef Document cache database reference. Obtain
this by using one of the DmOpenDatabase...
calls. Pass NULL if you don’t want to use a
cache.

-> cacheSize Maximum size of the document cache (in
bytes). This is ignored if you pass NULL for
cacheRef.

<- inetHP Pointer to a handle variable.

Result

0 No error

inetErrTooManyClients Too many clients opened
already

inetErrIncompatibleInterface The net library is already
open with an incompatible
interface

Internet Library
Internet Library Functions

1868 Palm OS Programmer’s API Reference

Comments This call must be made by an application before it can use any other
Internet library calls. This call opens the Internet library and returns
a pointer to an inet handle, which is then passed to subsequent calls
to the Internet library. Every application that opens the Internet
library gets its own unique inet handle.

When an application is done using the Internet library, it must call
INetLibClose, which closes both the Internet library and the net
library, if necessary.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibClose, INetLibConfigIndexFromName

INetLibSettingGet

Purpose Retrieves current settings for an inet handle.

Declared In INetMgr.h

Prototype Err INetLibSettingGet (UInt16 libRefnum,
MemHandle inetH, UInt16 setting, void *bufP,
UInt16 *bufLenP)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> setting The setting to get. Specify one of the
INetSettingEnum enumerated types.

<- bufP Pointer to buffer where the return value is to be
put.

<-> bufLenP Size of bufP on entry. Size of setting value on
exit.

Result

0 No error

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1869

Comments This call can be used to retrieve the current settings of an inet
handle. Some settings have default values that are stored in the
system preferences database; see INetSettingEnum for details.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibOpen, INetLibSettingSet, INetSettingEnum

INetLibSettingSet

Purpose Changes a setting for an inet handle.

Declared In INetMgr.h

Prototype Err INetLibSettingSet (UInt16 libRefnum,
MemHandle inetH, UInt16 setting, void *bufP,
UInt16 bufLen)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> setting The setting to set. Specify one of the
INetSettingEnum enumerated types.

-> bufP Pointer to the new setting value.

-> bufLen Size of the value in bufP.

Result

inetErrParamsInvalid Invalid setting requested

inetErrSettingSizeInvalid *bufLenP is the incorrect
size for the requested
setting

0 No error

Internet Library
Internet Library Functions

1870 Palm OS Programmer’s API Reference

Comments Any changes made to the settings last only as long as the inetH is
around (until INetLibClose is called) and do not affect other
applications that might be using the Internet library.

An important note is that settings made through this call essentially
change the default values for any sockets subsequently created
through INetLibURLOpen or INetLibSockOpen.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSettingGet, INetSettingEnum

INetLibSockClose

Purpose Closes an inet socket handle.

Declared In INetMgr.h

Prototype Err INetLibSockClose (UInt16 libRefnum,
MemHandle socketH)

Parameters -> libRefnum Refnum of the Internet library.

-> socketH Handle of the socket to close.

Result

Comments This call closes down and releases all memory associated with a
socket created by INetLibSockOpen or INetLibURLOpen.

inetErrParamsInvalid Invalid setting specified

inetErrSettingSizeInvalid bufLen is the incorrect
size for the specified
setting

0 No error

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1871

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibOpen, INetLibSockOpen, INetLibURLOpen

INetLibSockConnect

Purpose Establishes a connection with a remote host.

Declared In INetMgr.h

Prototype Err INetLibSockConnect (UInt16 libRefnum,
MemHandle sockH, UInt8 *hostnameP, UInt16 port,
Int32 timeou)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket to connect.

-> hostnameP Pointer to host name string; can be dotted
decimal text string.

-> port Port number, or 0 for default port.

-> timeou Timeout in ticks. Specify evtWaitForever to
wait forever.

Result

Comments This call associates a remote host name and port number with a
socket and, depending on the socket protocol, initiates a connection
with that remote host.

This call may return immediately before actually finishing the
connect. The application can simply go ahead and submit additional
calls such as INetLibSockRead, or it may wait for the connect to
complete by either polling INetLibSockStatus until the socket
status is inetStatusConnected (not recommended), or by
waiting for an inetSockStatusChangeEvent event from
INetLibGetEvent and checking the status then (preferred).

0 No error

Internet Library
Internet Library Functions

1872 Palm OS Programmer’s API Reference

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockOpen, INetLibSockStatus, INetLibGetEvent

INetLibSockHTTPAttrGet

Purpose Queries HTTP request header formed by the local host, or the
response header information returned by a remote host.

Declared In INetMgr.h

Prototype Err INetLibSockHTTPAttrGet (UInt16 libRefnum,
MemHandle sockH, UInt16 attr, UInt16 attrIndex,
void *bufP, UInt32 *bufLenP)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket.

-> attr The attribute to get. Specify one of the
INetHTTPAttrEnum values.

-> attrIndex The attribute index (if any). Currently unused.

<- bufP Pointer to the address where the result is
returned.

<-> bufLenP Pointer to the size of bufP on entry; size of
returned value on exit.

Result

0 No error

inetErrSettingNotImplemented Invalid setting specified

inetErrSettingSizeInvalid bufLen is the incorrect
size for the specified
setting

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1873

Comments This call queries either the request header formed by
INetLibSockHTTPReqCreate and INetLibSockHTTPAttrSet,
or the response header returned by the remote host.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockHTTPReqCreate

INetLibSockHTTPAttrSet

Purpose Adds additional HTTP request headers to an HTTP request in a
socket.

Declared In INetMgr.h

Prototype Err INetLibSockHTTPAttrSet (UInt16 libRefnum,
MemHandle sockH, UInt16 attr, UInt16 attrIndex,
UInt8 *bufP, UInt16 bufLen, UInt16 flags)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket.

-> attr The attribute to set. Specify one of the
INetHTTPAttrEnum values.

-> attrIndex The attribute index (if any). Currently unused.

-> bufP Pointer to additional header text to add.

-> bufLen Length of bufP.

-> flags Flags that control the addition of new headers.
Currently unused.

Result

0 No error

Internet Library
Internet Library Functions

1874 Palm OS Programmer’s API Reference

Comments This call modifies attributes of an HTTP request formed by
INetLibSockHTTPReqCreate. Generally, attributes are set only
before calling INetLibSockHTTPReqSend.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockHTTPReqCreate, INetLibSockHTTPReqSend

INetLibSockHTTPReqCreate

Purpose Forms an HTTP request for the socket.

Declared In INetMgr.h

Prototype Err INetLibSockHTTPReqCreate (UInt16 libRefnum,
MemHandle sockH, UInt8 *verbP, UInt8 *resNameP,
UInt8 *refererP)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket.

-> verbP Reserved for future use.

-> resNameP Pointer to a string holding the name of the
resource to get or put.

-> refererP Pointer to a string holding the name of the
referring URL, or NULL if none.

Result

inetErrSettingNotImplemented Invalid setting specified

inetErrSettingSizeInvalid bufLen is the incorrect
size for the specified
setting

0 No error

inetErrParamsInvalid Not an HTTP socket

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1875

Comments This call forms an HTTP request for the socket. The request is not
actually sent to the remote host until INetLibSockHTTPReqSend
is called. The HTTP verb used in the request is determined by the
value of the writeP parameter passed to
INetLibSockHTTPReqSend: if this parameter is NULL, “GET” is
used. Otherwise, “POST” is used.

After a call to INetLibSockHTTPReqCreate but before a call to
INetLibSockHTTPReqSend, the application can add additional
HTTP request headers using INetLibSockHTTPAttrSet.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockHTTPAttrSet, INetLibSockHTTPReqSend

INetLibSockHTTPReqSend

Purpose Sends an HTTP request to the remote host or looks for data in the
cache.

Declared In INetMgr.h

Prototype Err INetLibSockHTTPReqSend (UInt16 libRefnum,
MemHandle sockH, void *writeP, UInt32 writeLen,
Int32 timeout)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket.

-> writeP Pointer to additional data to send after the
request headers. Usually used for POST and
PUT operations.

-> writeLen Number of bytes in writeP.

Internet Library
Internet Library Functions

1876 Palm OS Programmer’s API Reference

-> timeout Timeout in ticks.

Result

Comments This call sends an HTTP request created by
INetLibSockHTTPReqCreate and INetLibSockHTTPAttrSet
to the remote host. If this is an POST or PUT operation, the data to
write can be specified in writeP.

INetLibSockHTTPReqSend doesn’t always do network I/O. If
the proper socket flag is set, it checks first to see if the requested
data is already in the cache. If it is, then a pointer to the cached data
is stored in the socket and the socket status is updated to show that
data is ready to be read. This will trigger an
inetSockReadyEvent event.

The socket flag (inetOpenURLFlagLookInCache) that causes the
cache to be checked first can be set via the flags parameter to
INetLibURLOpen or by calling INetLibSockSettingSet with
the appropriate setting (inetSockSettingFlags).

After sending the request, the application can wait for the response
to arrive by either polling INetLibSockStatus until the
inputReady boolean is set (not recommended), or by waiting for
an inetSockReadyEvent event from INetLibGetEvent
(preferred).

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockHTTPReqCreate, INetLibSockHTTPAttrSet,
INetLibGetEvent

0 No error

inetErrRequestTooLong Request too big

inetErrEncryptionNotAvail Encryption requested but not
available

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1877

INetLibSockOpen

Purpose Creates and returns a new inet socket handle.

Declared In INetMgr.h

Prototype Err INetLibSockOpen (UInt16 libRefnum,
MemHandle inetH, UInt16 scheme,
MemHandle *sockHP)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> scheme The protocol scheme to use. Specify one of the
INetSchemeEnum types.

<- sockHP Pointer to the address where the socket handle
is returned.

Result

Comments This call creates a new socket for the given scheme. No network I/O
is performed. This is a relatively low level call that can be used in
place of INetLibURLOpen when finer control over the socket
settings is required.

Using INetLibURLOpen, an HTTP request can be handled with the
simple sequence: INetLibURLOpen, INetLibSockRead, and
INetLibSockClose. When using INetLibSockOpen, the same
HTTP request would be handled by replacing the
INetLibURLOpen call with the sequence: INetLibSockOpen,
INetLibSockSettingSet (optional), INetLibSockConnect,
INetLibSockHTTPReqCreate, INetLibSockHTTPAttrSet
(optional), and INetLibSockHTTPReqSend.

0 No error

inetErrTooManySockets Too many sockets open

inetErrSchemeNotSupported Requested URL scheme not
supported

Internet Library
Internet Library Functions

1878 Palm OS Programmer’s API Reference

The use of INetLibSockOpen allows an application finer control
over the socket settings (by calling INetLibSockSettingSet)
and the HTTP request headers (by calling
INetLibSockHTTPAttrSet).

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibOpen, INetLibURLOpen, INetLibSockRead,
INetLibSockClose, INetLibSockSettingSet,
INetLibSockHTTPAttrSet

INetLibSockRead

Purpose Reads data from a socket.

Declared In INetMgr.h

Prototype Err INetLibSockRead (UInt16 libRefnum,
MemHandle sockH, void *bufP, UInt32 reqBytes,
UInt32 *actBytesP, Int32 timeout)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Inet handle allocated by INetLibOpen.

-> bufP Pointer to buffer where the data is placed.

-> reqBytes Requested number of bytes.

<- actBytesP Pointer to the actual number of bytes read.

-> timeout Timeout in ticks. Specify evtWaitForever to
wait forever.

Result

Comments This call attempts to read reqBytes bytes from the given socket. It
returns the actual number of bytes read in *actBytesP. If the
connection with the remote host has been closed, *actBytesP
contains 0 on exit.

0 No error

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1879

Note that it is normal for the actual bytes read to be less than the
requested number of bytes. The application should be prepared to
call this routine repeatedly until the desired number of bytes have
been read or until *actBytesP contains 0, indicating the
connection has been closed, or until an error is returned.

This call returns as much data as possible without blocking,
however, if no data is available to be read, it does block until at least
one byte is available.

Normally, applications will wait for an inetSockReadyEvent
from INetLibGetEvent before calling INetLibSockRead.
Alternatively, the application could call INetLibSockStatus to
determine if the socket has any data ready (not recommended), or
could simply rely on INetLibSockRead to block until at least one
byte is available to read. If no data is available before the timeout
expires, inetErrReadTimeout error is returned.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibURLOpen, INetLibSockOpen, INetLibSockStatus,
INetLibSockClose, INetLibGetEvent

INetLibSockSettingGet

Purpose Retrieves a socket setting.

Declared In INetMgr.h

Prototype Err INetLibSockSettingGet (UInt16 libRefnum,
MemHandle socketH, UInt16 setting, void *bufP,
UInt16 *bufLenP)

Parameters -> libRefnum Refnum of the Internet library.

-> socketH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket to get a
setting from.

-> setting The setting to get. Specify one of the
INetSockSettingEnum values.

Internet Library
Internet Library Functions

1880 Palm OS Programmer’s API Reference

<- bufP Pointer to buffer where the setting value is to be
placed.

<-> bufLenP Size of bufP on entry; size of returned value on
exit.

Result

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockSettingSet

INetLibSockSettingSet

Purpose Changes a setting of a socket.

Declared In INetMgr.h

Prototype Err INetLibSockSettingSet (UInt16 libRefnum,
MemHandle socketH, UInt16 setting, void *bufP,
UInt16 bufLen)

Parameters -> libRefnum Refnum of the Internet library.

-> socketH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket to set.

-> setting The setting to set. Specify one of the
INetSockSettingEnum values.

-> bufP Pointer to buffer containing the new setting
value.

0 No error

inetErrParamsInvalid Invalid setting requested

inetErrSettingSizeInvalid *bufLenP is the incorrect
size for the requested
setting

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1881

-> bufLen Size of new setting in bufP.

Result

Comments This call can be use to override a general setting for a particular
socket.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockSettingGet

INetLibSockStatus

Purpose Retrieves the current status of a socket.

Declared In INetMgr.h

Prototype Err INetLibSockStatus (UInt16 libRefnum,
MemHandle socketH, UInt16 *statusP,
Err *sockErrP, Boolean *inputReadyP,
Boolean *outputReadyP)

Parameters -> libRefnum Refnum of the Internet library.

-> socketH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket to get
status on.

<- statusP Pointer to the address where the status is
returned. The status will be one of the
INetStatusEnum values.

<- sockErrP Currently unused.

0 No error

inetErrSettingNotImplemented Invalid setting specified

inetErrSettingSizeInvalid bufLen is the incorrect
size for the setting

Internet Library
Internet Library Functions

1882 Palm OS Programmer’s API Reference

<- inputReadyP Pointer to a Boolean; true is returned if the
socket has data available to read.

<- outputReadyP
Pointer to a Boolean; true is returned if the
socket can accept data for writing.

Result

Comments Most applications that use INetLibGetEvent will rarely need to
use this call since socket status changes are returned in the event
structure.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibURLOpen, INetLibSockOpen, INetLibSockRead,
INetLibGetEvent

INetLibURLCrack

Purpose Cracks a URL text string into its components.

Declared In INetMgr.h

Prototype Err INetLibURLCrack (UInt16 libRefnum,
UInt8 *urlTextP, INetURLType *urlP)

Parameters -> libRefnum Refnum of the Internet library.

-> urlTextP Pointer to URL text string.

0 No error

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1883

<-> urlP Pointer to address where the URL information
block is to be returned.

Result

Comments If a pointer member of urlP is set to NULL on entry, then on exit it
will point to the start of that component within the original
urlTextP string; the associated member length is set to the length
of that URL component. If a pointer member of urlP is not NULL on
entry, then it must point to a buffer of sufficient size to hold the
member data, and on exit the component string will be copied into
this buffer and the associated member length will be updated with
the actual size. Note that the returned strings are not null-
terminated, so the length values are important.

It’s easiest to initialize the InetURLType block to zeros and let this
function fill in all the information about the URL components.

The InetURLType block returned from this function has the
following structure:

typedef struct {
UInt16 version; // 0, for future compatibility
UInt8 *schemeP; // ptr to scheme portion
UInt16 schemeLen; // size of scheme portion
UInt16 schemeEnum; // INetSchemeEnum; the
scheme
UInt8 *usernameP; // ptr to username portion
UInt16 usernameLen; // size of username
UInt8 *passwordP; // ptr to password portion
UInt16 passwordLen; // size of password
UInt8 *hostnameP; // ptr to host name portion
UInt16 hostnameLen; // size of host name
UInt16 port; // port number
UInt8 *pathP; // ptr to path portion
UInt16 pathLen; // size of path

0 No error

inetErrParamsInvalid urlTextP is NULL or empty, or
urlP is NULL

inetErrURLVersionInvalid urlP is wrong version

Internet Library
Internet Library Functions

1884 Palm OS Programmer’s API Reference

UInt8 *paramP; // ptr to param (;param)
UInt16 paramLen; // size of param
UInt8 *queryP; // ptr to query (?query)
UInt16 queryLen; // size of query
UInt8 *fragP; // ptr to fragment (#frag)
UInt16 fragLen; // size of fragment
} INetURLType

Compatibility Implemented only if Wireless Internet Feature Set is present.

INetLibURLGetInfo

Purpose Returns information about a URL.

Declared In INetMgr.h

Prototype Err INetLibURLGetInfo (UInt16 libRefnum,
MemHandle inetH, UInt8 *urlTextP,
INetURLInfoType *urlInfoP)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> urlTextP Pointer to URL text string.

<-> urlInfoP Pointer to address where the URL information
structure is to be returned.

Result

Comments The InetURLInfo block returned from this function has the
following structure:

typedef struct {
UInt16 version; // 0, for future compatibility
UInt16 flags; // flags word

0 No error

inetErrParamsInvalid urlInfoP is NULL or incorrect
version

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1885

UInt32 undefined; // reserved for future use
} INetURLInfo

The flags word can consist of some combination of these values:

inetURLInfoFlagIsSecure // URL was encrypted
inetURLInfoFlagIsRemote // URL was retrieved
from the net
inetURLInfoFlagIsInCache // URL is stored in
the cache

Compatibility Implemented only if Wireless Internet Feature Set is present.

INetLibURLOpen

Purpose Accesses a URL on the Internet or in the cache.

Declared In INetMgr.h

Prototype Err INetLibURLOpen (UInt16 libRefnum,
MemHandle inetH, UInt8 *urlP,
UInt8 *cacheIndexURLP, MemHandle *sockHP,
Int32 timeout, UInt16 flags)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> urlP Pointer to string containing the URL to access.

-> cacheIndexURLP
Pointer to URL string under which the
requested URL should be indexed in the cache.
Specify NULL if you don’t need to index the
cache. If you are using the Web Clipping
Application Viewer cache (not recommended),
you must follow the Viewer convention, which
is to pass the URL of the active PQA.

<- sockHP Pointer to address where the socket handle is
returned.

Internet Library
Internet Library Functions

1886 Palm OS Programmer’s API Reference

-> timeout Timeout in ticks. Specify evtWaitForever to
wait forever.

-> flags Flags indicating caching and encryption
options desired. Specify zero, one, or more of
the URL open flags (see URL Open Constants).

Result

Comments This call sets up a connection to a resource on the Internet addressed
by urlP and returns a socket handle. Note that if you specify that
the cache should be searched first, and if the data is found in the
cache, no network I/O occurs. The application can then read that
socket resource through the INetLibSockRead call.

This call is a convenience routine that internally makes the
following calls for http URLs: INetLibSockOpen,
INetLibSockConnect, INetLibSockHTTPReqCreate, and
INetLibSockHTTPReqSend.

This routine returns immediately before performing any required
network I/O. It is then up to the caller to either block on
INetLibSockRead, or to use INetLibGetEvent to model
asynchronous operation. Using INetLibGetEvent is the preferred
way of performing network I/O since it maximizes battery life and
user-interface responsiveness.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockOpen, INetLibSockConnect,
INetLibSockRead, INetLibSockClose

INetLibURLsAdd

Purpose Concatenates two URLs, resulting in one absolute URL.

Declared In INetMgr.h

0 No error

inetErrParamsInvalid urlP is NULL

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1887

Prototype Err INetLibURLsAdd (UInt16 libRefnum,
Char *baseURLStr, Char *embeddedURLStr,
Char *resultURLStr, UInt16 *resultLenP)

Parameters -> libRefnum Refnum of the Internet library.

-> baseURLStr Pointer to base URL string.

-> embeddedURLStr
Pointer to URL text string to append.

<-> resultURLStr
Pointer to resulting URL string.

<-> resultLenP Pointer to size of resultURLStr buffer on
entry. On exit, pointer to resulting URL length
(including null terminator).

Result

Comments Used to append a URL fragment to a base URL, resulting in an
absolute URL string that can be passed to INetLibURLOpen or
other functions. This routine ensures that the resulting string
conforms to the URL format.

Compatibility Implemented only if Wireless Internet Feature Set is present.

0 No error

Internet Library
Internet Library Functions

1888 Palm OS Programmer’s API Reference

INetLibWiCmd

Purpose Invokes a command that operates on the wireless indicator.

Declared In INetMgr.h

Prototype Boolean INetLibWiCmd (UInt16 refNum, UInt16 cmd,
int enableOrX, int y)

Parameters -> refNum Refnum of the Internet library.

-> cmd The command to invoke. Specify one of the
WiCmdEnum values (see Comments section).

-> enableOrX If cmd is wiCmdSetEnabled, specify 1 to
enable the wireless indicator or 0 to disable it. If
cmd is wiCmdSetLocation, this specifies the x
coordinate of the location.

-> y The y coordinate of the location. Used only if
cmd is wiCmdSetLocation.

Result If cmd is wiCmdEnabled, this function returns true if the wireless
indicator is enabled or false if it is not. For other command types,
the return value is undefined.

Comments The wireless indicator is a 19x13 pixel image on the screen to
indicate the current wireless signal strength. This shows as 0 - 5
bars. If the application is in a non-modal window with a title bar, the
preferred location for the indicator is at (140,1).

It automatically updates itself as long as you are calling
INetLibGetEvent. It should be shown on screen while a wireless
transaction is in progress. It may also be shown when the user has
nothing useful to do next but initiate a wireless transaction, and
there isn't much other useful information being displayed.

The WiCmdEnum enum specifies a command that operates on the
wireless indicator in the user interface. The definition of this type is
found in WirelessIndicator.h and is as follows:

typedef enum {
wiCmdInit =0,

Internet Library
Internet Library Functions

Palm OS Programmer’s API Reference 1889

wiCmdClear,
wiCmdSetEnabled,
wiCmdDraw,
wiCmdEnabled,
wiCmdSetLocation,
wiCmdErase
} WiCmdEnum;

Value Descriptions

Compatibility Implemented only if Wireless Internet Feature Set is present.

wiCmdInit Initializes the wireless indicator. You must invoke this
command first, before using any of the others.

wiCmdClear Applications shouldn’t use this command. To erase the
indicator, disable it by using wiCmdSetEnabled and
passing 0 for enableOrX.

wiCmdSetEnabled Enables or disables the wireless indicator.

wiCmdDraw Redraws the wireless indicator using the latest data.
Applications don’t need to use this command since the
indicator is redrawn automatically by INetLibGetEvent.

wiCmdEnabled Returns a Boolean indicating if the wireless indicator is
enabled.

wiCmdSetLocation Sets the location for the wireless indicator on the screen.

wiCmdErase Erases the wireless indicator. Applications shouldn’t use this
command. To erase the indicator, disable it by using
wiCmdSetEnabled and passing 0 for enableOrX.

Internet Library
Internet Library Functions

1890 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1891

75
PalmOSGlue Library
This chapter describes the API provided in the link library
PalmOSGlue (PalmOSGlue.lib or libPalmOSGlue.a).

You use PalmOSGlue if you want to use the international and text
manager features described in the chapter “Localized Applications”
on page 363 in the Palm OS Programmer’s Companion, vol. I and you
want to maintain backward compatibility with earlier releases of
Palm OS®. If you link with PalmOSGlue, include the headers in the
folder Incs\Libraries\PalmOSGlue, and make calls as they are
listed in this chapter, then your code will run regardless of whether
the device’s version of the operating system implements
international support. The code in PalmOSGlue either uses the text
manager or international manager on the ROM or, if the managers
don’t exist, executes a simple Latin equivalent of the function.

NOTE: PalmOSGlue is a link library, not a shared library.
Linking with this library increases your application’s code size.
The amount by which your code size increases varies depending
on the number of library functions you call. Use PalmOSGlue only
on versions 2.0 and later of Palm OS.

In addition to covering the text and international manager API,
PalmOSGlue adds some functions that are not included in any
version of the Palm OS. This chapter describes the functions that are
unique to PalmOSGlue and provides a mapping of PalmOSGlue
calls to calls that exist in later versions of Palm OS.

PalmOSGlue Library
PalmOSGlue Functions

1892 Palm OS Programmer’s API Reference

PalmOSGlue Functions
The following table shows the mapping between the functions
declared in the glue headers and the international functions and
macros. To learn more about a glue function, click the link in the
right column.

This table lists only those functions that map to a function that exists
in newer versions of the OS. The functions that are exclusive to
PalmOSGlue are not listed. They are described following this table.

Table 75.1 PalmOSGlue function mappings

This PalmOSGlue function... ...is identical to...

BmpGlueGetBitDepth BmpGetBitDepth

BmpGlueGetDimensions BmpGetDimensions

BmpGlueGetNextBitmap BmpGetNextBitmap

DateGlueTemplateToAscii DateTemplateToAscii

DateGlueToDOWDMFormat DateToDOWDMFormat

FntGlueWCharWidth FntWCharWidth

FntGlueWidthToOffset FntWidthToOffset

LmGlueGetLocaleSetting LmGetLocaleSetting

LmGlueGetNumLocales LmGetNumLocales

LmGlueLocaleToIndex LmLocaleToIndex

LstGlueGetTopItem LstGetTopItem

OmGlueGetCurrentLocale OmGetCurrentLocale

OmGlueGetSystemLocale OmGetSystemLocale

ResGlueLoadConstant ResLoadConstant

SysGlueGetTrapAddress SysGetTrapAddress

TsmGlueGetFepMode TsmGetFepMode

TsmGlueSetFepMode TsmSetFepMode

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1893

TblGlueGetNumberOf
Columns

TblGetNumberOfColumns

TblGlueGetTopRow TblGetTopRow

TblGlueSetSelection TblSetSelection

TxtGlueByteAttr TxtByteAttr

TxtGlueCaselessCompare TxtCaselessCompare

TxtGlueCharAttr TxtCharAttr

TxtGlueCharBounds TxtCharBounds

TxtGlueCharEncoding TxtCharEncoding

TxtGlueCharIsAlNum TxtCharIsAlNum

TxtGlueCharIsAlpha TxtCharIsAlpha

TxtGlueCharIsCntrl TxtCharIsCntrl

TxtGlueCharIsDelim TxtCharIsDelim

TxtGlueCharIsDigit TxtCharIsDigit

TxtGlueCharIsGraph TxtCharIsGraph

TxtGlueCharIsHex TxtCharIsHex

TxtGlueCharIsLower TxtCharIsLower

TxtGlueCharIsPrint TxtCharIsPrint

TxtGlueCharIsPunct TxtCharIsPunct

TxtGlueCharIsSpace TxtCharIsSpace

TxtGlueCharIsUpper TxtCharIsUpper

TxtGlueCharIsValid TxtCharIsValid

TxtGlueCharSize TxtCharSize

TxtGlueCharWidth FntWCharWidth

Table 75.1 PalmOSGlue function mappings (continued)

This PalmOSGlue function... ...is identical to...

PalmOSGlue Library
PalmOSGlue Functions

1894 Palm OS Programmer’s API Reference

TxtGlueCharXAttr TxtCharXAttr

TxtGlueCompare TxtCompare

TxtGlueEncodingName TxtEncodingName

TxtGlueGetChar TxtGetChar

TxtGlueGetNextChar TxtGetNextChar

TxtGlueGetPreviousChar TxtGetPreviousChar

TxtGlueGetTruncation
Offset

TxtGetTruncationOffset

TxtGlueMaxEncoding TxtMaxEncoding

TxtGlueNextCharSize TxtNextCharSize

TxtGlueParamString TxtParamString

TxtGluePreviousCharSize TxtPreviousCharSize

TxtGlueReplaceStr TxtReplaceStr

TxtGlueSetNextChar TxtSetNextChar

TxtGlueStrEncoding TxtStrEncoding

TxtGlueTransliterate TxtTransliterate

TxtGlueWordBounds TxtWordBounds

WinGlueDrawChar WinDrawChar

WinGlueDrawTruncChars WinDrawTruncChars

Table 75.1 PalmOSGlue function mappings (continued)

This PalmOSGlue function... ...is identical to...

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1895

BmpGlueGetCompressionType

Purpose Returns the compression type used for a specified bitmap.

Declared In BmpGlue.h

Prototype BitmapCompressionType BmpGlueGetCompressionType
(const BitmapType *bitmapP)

Parameters -> bitmapP Pointer to the bitmap.

Result Returns a BitmapCompressionType enum value. If bitmapP is
NULL, or the specified bitmap is not compressed, this function
returns BitmapCompressionTypeNone. If the specified bitmap’s
encoding version is less than 2, this function returns
BitmapCompressionTypeScanLine.

See Also BmpCompress

BmpGlueGetTransparentValue

Purpose Indicates if a specified bitmap has transparency—if, when the
bitmap is drawn, pixels of a certain value won’t be drawn.

Declared In BmpGlue.h

Prototype Boolean BmpGlueGetTransparentValue
(const BitmapType *bitmapP,
UInt32 *transparentValueP)

Parameters -> bitmapP Pointer to the bitmap.

PalmOSGlue Library
PalmOSGlue Functions

1896 Palm OS Programmer’s API Reference

<- transparentValueP
The pixel value that isn’t drawn, if the bitmap
has transparency. If the value returned by
BmpGlueGetTransparentValue is false,
*transparentValueP is left unchanged.

Result Returns true if, when drawing the specified bitmap, Palm OS
doesn’t draw pixels that have a value equal to that returned in
transparentValueP. Returns false if all pixels are drawn.

Comments You can specify the transparent color when you create the bitmap
using Constructor.

See Also BmpGlueSetTransparentValue

BmpGlueSetTransparentValue

Purpose Causes pixels of a specified color not to be drawn when the bitmap
is drawn.

Declared In BmpGlue.h

Prototype void BmpGlueSetTransparentValue
(BitmapType *bitmapP, UInt32 transparentValue)

Parameters -> bitmapP Pointer to the bitmap.

-> transparentValueP
The pixel value that isn’t drawn.

Result Returns nothing.

Comments Does nothing if bitmapP is NULL, if bitmapP is an off-screen
bitmap, or if transparentValue is invalid given the bitmap’s bit
depth.

If the specified bitmap’s encoding version is less than 2, this
function updates it to 2.

See Also BmpGlueGetTransparentValue

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1897

CtlGlueGetControlStyle

Purpose Return the type of the control, such as button, slider, and so on.

Declared In CtlGlue.h

Prototype ControlStyleType CtlGlueGetControlStyle
(const ControlType *ctlP)

Parameters -> ctlP A pointer to a ControlType structure.

Result Returns one of the ControlStyleType constants.

Compatibility Implemented only in the PalmOSGlue library.

CtlGlueGetFont

Purpose Gets the font used when drawing a specified control’s label.

Declared In CtlGlue.h

Prototype FontID CtlGlueGetFont (const ControlType *ctlP)

Parameters -> ctlP Pointer to the control object.

Result Returns the ID of the font used to draw the control’s label.

See Also CtlGlueSetFont

PalmOSGlue Library
PalmOSGlue Functions

1898 Palm OS Programmer’s API Reference

CtlGlueGetGraphics

Purpose Gets the bitmaps displayed in place of a specified control’s label.

Declared In CtlGlue.h

Prototype void CtlGlueGetGraphics (const ControlType *ctlP,
DmResID *bitmapID, DmResID *selectedBitmapID)

Parameters -> ctlP Pointer to the control.

<- bitmapID Resource ID of the bitmap to display when the
graphical control is not selected.

<- selectedBitmapID
Resource ID of the bitmap to display when the
graphical control is selected, if, when selected,
the graphical control should show a different
bitmap.

Result Returns nothing.

Comments If the specified control is not a graphical control—one that displays
a bitmap in place of the text label—*bitmapID and
*selectedBitmapID are set to zero.

This function works with any graphical control, including sliders.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also CtlGlueGetFont, CtlSetGraphics

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1899

CtlGlueNewSliderControl

Purpose Create a new slider or feedback slider dynamically and install it in
the specified form. The newly-created control is marked as a
graphical control.

Declared In CtlGlue.h

Prototype SliderControlType *CtlGlueNewSliderControl
(void **formPP, UInt16 ID,
ControlStyleType style, DmResID thumbID,
DmResID backgroundID, Coord x, Coord y,
Coord width, Coord height, UInt16 minValue,
UInt16 maxValue, UInt16 pageSize, UInt16 value)

Parameters <-> formPP Pointer to the pointer to the form in which the
new control is installed. This value is not a
handle; that is, the formPP value may change if
the object moves in memory. In subsequent
calls, always use the new formPP value
returned by this function.

-> ID Symbolic ID of the slider.

-> style Either sliderCtl or feedbackSliderCtl.
See ControlStyleType.

-> thumbID Resource ID of the bitmap to display as the
slider thumb. The slider thumb is the knob that
the user can drag to change the slider’s value.
To use the default thumb bitmap, pass NULL for
this parameter.

-> backgroundID
Resource ID of the bitmap to display as the
slider background. To use the default
background bitmap, pass NULL for this
parameter.

-> x Horizontal coordinate of the upper-left corner
of the slider’s boundaries, relative to the
window in which it appears.

PalmOSGlue Library
PalmOSGlue Functions

1900 Palm OS Programmer’s API Reference

-> y Vertical coordinate of the upper-left corner of
the slider’s boundaries, relative to the window
in which it appears.

-> width Width of the slider, expressed in pixels. Valid
values are 1–160.

-> height Height of the slider, expressed in pixels. Valid
values are 1–160.

-> minValue Value of the slider when its thumb is all the
way to the left.

-> maxValue Value of the slider when its thumb is all the
way to the right.

-> pageSize Amount by which to increase or decrease the
slider’s value when the user clicks to the right
or left of the thumb.

-> value The initial value to display in the slider.

Result Returns a pointer to the new slider control. See
SliderControlType.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also CtlNewSliderControl, CtlNewGraphicControl,
CtlNewControl, CtlValidatePointer, FrmRemoveObject

CtlGlueSetFont

Purpose Sets the font to use when drawing the control’s label.

Declared In CtlGlue.h

Prototype void CtlGlueSetFont (ControlType *ctlP,
FontID fontID)

Parameters -> ctlP Pointer to the control object.

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1901

-> fontID The ID of the font to use when drawing the
control’s label.

Result Returns nothing.

See Also CtlGlueGetFont

CtlGlueSetLeftAnchor

Purpose Causes a control’s left bound to be fixed or to float.

Declared In CtlGlue.h

Prototype void CtlGlueSetLeftAnchor (ControlType *ctlP,
Boolean leftAnchor)

Parameters -> ctlP Pointer to the control.

-> leftAnchor A value of true causes the left bound of the
control to be fixed.

Result Returns nothing.

Comments Used by controls that expand and shrink their width when the label
is changed.

FldGlueGetLineInfo

Purpose Retrieve the word-wrapping information for a visible line within a
field.

Declared In FldGlue.h

Prototype Boolean FldGlueGetLineInfo
(const FieldType *fldP, UInt16 lineNum,
UInt16 *startP, UInt16 *lengthP)

Parameters -> fldP A pointer to a FieldType structure.

PalmOSGlue Library
PalmOSGlue Functions

1902 Palm OS Programmer’s API Reference

-> lineNum The number of the visible line in the field about
which you want to retrieve information. Lines
are numbered starting at 0.

<- startP The byte offset into the FieldType’s text
field of the first character displayed by this line.
If the line is blank, start is equal to the length
of the field’s text string.

<- lengthP The length in bytes of the portion of the string
displayed on this line. If the line is blank, the
length is 0.

Result Returns true if startP and endP contain valid values, or false if
the field is a single-line field or does not contain a line numbered
lineNum.

Compatibility Implemented only in the PalmOSGlue library.

FntGlueGetDefaultFontID

Purpose Return the font ID of a default font.

Declared In FntGlue.h

Prototype FontID FntGlueGetDefaultFontID (
FontDefaultType inFontType)

Parameters -> inFontType A FontDefaultType constant specifying one
of the system default fonts. This value can be
one of the following:

defaultSystemFont
The default font for the system.

defaultLargeFont
The default large font.

defaultSmallFont
The default small font.

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1903

defaultBoldFont
The default bold font.

Result Returns the ID of inFontType.

Comments Use this function whenever you need to obtain a font ID for one of
the system default fonts. The default fonts (and thus, the IDs for the
default fonts) vary depending on the system’s locale. For example,
Japanese systems have a different set of default fonts than systems
using the Latin character encoding.

Use this function in place of the constants that specify the IDs of
default fonts, as shown in the following table.

Note that defaultSystemFont and defaultSmallFont might
return the same font ID or different font IDs, depending on the
system locale.

Compatibility Implemented only in the PalmOSGlue library.

See Also FontSelect, FntGetFont, FntSetFont

In place of this... ...use FntGlueGetDefaultFontID with this
constant...

stdFont defaultSystemFont (best for displaying
text) or:
defaultSmallFont (if you want a smaller
font)

largeFont defaultLargeFont

largeBoldFont defaultLargeFont

boldFont defaultBoldFont

PalmOSGlue Library
PalmOSGlue Functions

1904 Palm OS Programmer’s API Reference

FrmGlueGetActiveField

Purpose Return the active field for a form.

Declared In FrmGlue.h

Prototype extern FieldType *FrmGlueGetActiveField
(const FormType *formP)

Parameters -> formP Pointer to the form, or NULL to use the active
form.

Result Returns a pointer to the active field. Returns NULL if there is no
active form or field.

FrmGlueGetDefaultButtonID

Purpose Gets the resource ID of the object on the form defined as the default
button.

Declared In FrmGlue.h

Prototype UInt16 FrmGlueGetDefaultButtonID
(const FormType *formP)

Parameters -> formP Pointer to the form.

Result Returns the resource ID of the object defined as the default button.

See Also FrmDoDialog, FrmGlueSetDefaultButtonID

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1905

FrmGlueGetHelpID

Purpose Gets the resource ID number of the form’s help resource.

Declared In FrmGlue.h

Prototype UInt16 FrmGlueGetHelpID (const FormType *formP)

Parameters -> formP Pointer to the form.

Result Returns the resource ID number of the form’s help resource. The
help resource is a String resource (type 'tSTR').

See Also FrmGlueSetHelpID

FrmGlueGetLabelFont

Purpose Gets the font used for a particular label that appears on a form.

Declared In FrmGlue.h

Prototype FontID FrmGlueGetLabelFont
(const FormType *formP, UInt16 labelID)

Parameters -> formP Pointer to the form.

-> labelID ID of a label object in the form (the object’s type
must be frmLabelObj).

Result Returns a FontID value of 0 if either labelID is invalid or if the
object indicated by labelID has a type other than frmLabelObj.
Otherwise, this function returns the ID of the font used for the label.

See Also FrmGetObjectType, FrmGlueSetLabelFont

PalmOSGlue Library
PalmOSGlue Functions

1906 Palm OS Programmer’s API Reference

FrmGlueGetMenuBarID

Purpose Gets the ID number of the form’s menu bar.

Declared In FrmGlue.h

Prototype UInt16 FrmGlueGetMenuBarID
(const FormType *formP)

Parameters -> formP Pointer to the form.

Result Returns the ID number of the form’s menu bar, or zero if the form
doesn’t have a menu bar.

See Also FrmSetMenu

FrmGlueGetObjectUsable

Purpose Returns whether an object in a form has been hidden.

Declared In FrmGlue.h

Prototype Boolean
FrmGlueGetObjectUsable (const FormType *formP,
UInt16 objIndex)

Parameters -> formP A pointer to a FormType structure.

-> objIndex The index of the object on the form.

Result Returns true if the object is usable, meaning that it is considered
part of the user interface. Returns false if the object is not usable.
Objects that are not usable never appear on the screen. The function
FrmHideObject clears an object’s usable bit to hide that the object.

Comments Implemented only in the PalmOSGlue library.

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1907

FrmGlueSetDefaultButtonID

Purpose Designates the object on the form that is to act as the default button.

Declared In FrmGlue.h

Prototype void FrmGlueSetDefaultButtonID (FormType *formP,
UInt16 defaultButton)

Parameters -> formP Pointer to the form.

-> defaultButton
The resource ID of the object on the form that is
to be the default button.

Result Returns nothing.

See Also FrmDoDialog, FrmGlueGetDefaultButtonID

FrmGlueSetHelpID

Purpose Designates the String resource that is to act as the form’s help
resource.

Declared In FrmGlue.h

Prototype void FrmGlueSetHelpID (FormType *formP,
UInt16 helpRscID)

Parameters -> formP Pointer to the form.

-> helpRscID The resource ID of the String resource that is to
be the form’s help resource.

Result Returns nothing.

See Also FrmGlueGetHelpID

PalmOSGlue Library
PalmOSGlue Functions

1908 Palm OS Programmer’s API Reference

FrmGlueSetLabelFont

Purpose Sets the font used for a particular label that appears on a form.

Declared In FrmGlue.h

Prototype void FrmGlueSetLabelFont (FormType *formP,
UInt16 labelID, FontID fontID)

Parameters -> formP Pointer to the form.

-> labelID ID of a label object in the form (the object’s type
must be frmLabelObj).

-> fontID ID of the font to be used for the label.

Result Returns nothing.

Comments This function does nothing if either labelID is invalid or if the
object indicated by labelID has a type other than frmLabelObj.

See Also FrmGetObjectType, FrmGlueGetLabelFont

IntlGlueGetRoutineAddress

Purpose Return the address of a Text Manager function or of its PalmOSGlue
equivalent.

Declared In IntlGlue.h

Prototype void *IntlGlueGetRoutineAddress
(IntlSelector selector, const void *latinSymbol)

Parameters -> selector One of the routine selectors defined in
IntlMgr.h.

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1909

-> latinSymbol The corresponding TxtLatinfunc symbol
defined in IntlGlue.h.

Result Returns the address of the native Palm OS function if it is defined. If
the function is not defined, it returns the address of the
corresponding PalmOSGlue function.

Comments Use IntlGlueGetRoutineAddress for performance reasons.
You can use the address that it returns to call the function at that
address without having to go through the International Manager’s
trap dispatch table. IntlGlueGetRoutineAddress is mostly
useful for optimizing the performance of Text Manager functions
that are called in a tight loop.

To call IntlGlueGetRoutineAddress, you must pass both the
international trap for the function and the corresponding symbol.
For example, to obtain the address of the TxtGetNextChar
function or of its PalmOSGlue equivalent, you would make this call:

myTxtGetNextChar =
 IntlGlueGetRoutineAddress(intlTxtGetNextChar,
 TxtLatinGetNextChar);

The returned address is only valid while your application stays
locked in memory. For this reason, you should only use the returned
address up to the point where your application terminates. When
the application starts up again, you should call
IntlGlueGetRoutineAddress again.

Compatibility Implemented only in the PalmOSGlue library.

See Also IntlGetRoutineAddress

PalmOSGlue Library
PalmOSGlue Functions

1910 Palm OS Programmer’s API Reference

LstGlueGetFont

Purpose Get the font used to draw a list’s text strings.

Declared In LstGlue.h

Prototype FontID LstGlueGetFont (const ListType *listP)

Parameters -> listP Pointer to the list.

Result Returns the ID of the font used to draw all list text strings.

See Also LstGlueSetFont

LstGlueGetItemsText

Purpose Get the text strings that represent the items in a list.

Declared In LstGlue.h

Prototype Char **LstGlueGetItemsText
(const ListType *listP)

Parameters -> listP Pointer to the list.

Result Returns a pointer to an array of pointers to the text of the list
choices.

See Also LstGetSelectionText, LstSetListChoices

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1911

LstGlueSetFont

Purpose Specify the font to be used to draw a list’s text strings.

Declared In LstGlue.h

Prototype void LstGlueSetFont (ListType *listP,
FontID fontID)

Parameters -> listP Pointer to the list.

-> fontID ID of the font to be used to draw all list text
strings.

Result Returns nothing.

See Also LstGlueGetFont

LstGlueSetIncrementalSearch

Purpose Enables or disables incremental search for a sorted popup list.

Declared In LstGlue.h

Prototype void LstGlueSetIncrementalSearch
(ListType *listP, Boolean incrementalSearch)

Parameters -> listP Pointer to the list.

-> incrementalSearch
Set to true to enable incremental search,
false to disable it.

Result Returns nothing.

Comments If incremental search is enabled, when the list is displayed the user
can navigate the list by entering up to five characters. The list will
scroll to present the first list item that matches the entered
characters. This feature only works for popup lists, and only works

PalmOSGlue Library
PalmOSGlue Functions

1912 Palm OS Programmer’s API Reference

if the list is sorted and the list items are available to the List Manager
(that is, you don’t pass NULL to LstSetListChoices).

SysGlueTrapExists

Purpose Macro that indicates if a given trap exists on the current system.

Declared In SysGlue.h

Prototype SysGlueTrapExists (trapNum)

Parameters -> trapNum One of the system trap constants.

Result Returns true if the current operating system defines the system
trap trapNum, or false if the trap does not exist on that version of
the operating system.

Compatibility Implemented only in the PalmOSGlue library.

TblGlueGetColumnMasked

Purpose Determines whether a particular table column is masked.

Declared In TblGlue.h

Prototype Boolean TblGlueGetColumnMasked
(const TableType *tableP, Int16 column)

Parameters -> tableP Pointer to the table.

-> column Column number (zero-based).

Result Returns true if the column is masked, false otherwise.

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1913

Comments If a table cell’s column is masked and the cell’s row is also masked,
the table cell is drawn on the screen but is shaded to obscure the
information that it contains.

See Also TblSetColumnMasked

TxtGlueCharIsVirtual

Purpose Return whether a character is a virtual character or not.

Declared In TxtGlue.h

Prototype Boolean TxtGlueCharIsVirtual(UInt16 inModifiers,
WChar inChar)

Parameters -> inModifiers The value passed in the modifiers field of the
keyDownEvent.

-> inChar A character.

Result Returns true if the character inChar is a virtual character, false
otherwise.

Comments Virtual characters are nondisplayable characters that trigger special
events in the operating system, such as displaying low battery
warnings or displaying the keyboard dialog. Virtual characters
should never occur in any data and should never appear on the
screen.

Starting in Palm OS 3.1, the command modifier bit is always set in
the keyDownEvent for a virtual character because the range for
virtual characters overlaps the range for “real” characters that
should appear on the screen. Earlier releases of the operating system
did not always set the command modifier for virtual characters.

You can use this function to test whether a character is virtual or
not. Pass the chr and modifiers fields exactly as you received
them in the keyDownEvent, and this function performs the
appropriate check based on the operating system version.

PalmOSGlue Library
PalmOSGlue Functions

1914 Palm OS Programmer’s API Reference

Compatibility Implemented only in the PalmOSGlue library.

TxtGlueFindString

Purpose Perform a case-insensitive search for a string in another string.

Declared In TextMgr.h

Prototype Boolean TxtGlueFindString
(const Char *inSourceStr,
const Char *inTargetStr, UInt32 *outPos,
UInt16 *outLength)

Parameters -> inSourceStr Pointer to the string to be searched.

-> inTargetStr Prepared version of the string to be found. This
string should either be passed directly from the
strToFind field in the
sysAppLaunchCmdFind launch code’s
parameter block or it should be prepared using
TxtGluePrepFindString.

<- outPos Pointer to the offset of the match in
inSourceStr.

<- outLength Pointer to the length in bytes of the matching
text.

Result Returns true if the function finds inTargetStr within
inSourceStr; false otherwise.

If found, the values pointed to by the outPos and outLength
parameters are set to the starting offset and the length of the
matching text. Unlike TxtFindString, if the target string is not
found, the values pointed to by outPos and outLength are not
necessarily set to 0.

The search that TxtGlueFindString performs is locale-
dependent. On most ROMs with Latin-based encodings,
TxtGlueFindString returns true only if the string is at the
beginning of a word. On Shift-JIS encoded ROMs,

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1915

TxtGlueFindString returns true if the string is located
anywhere in the word.

Comments Use this function instead of FindStrInStr to support the global
system find facility. This function contains an extra parameter,
outLength, to specify the length of the text that matched. Pass this
value to FindSaveMatch in the appCustom parameter. Then
when your application receives sysAppLaunchCmdGoTo, the
matchCustom field contains the length of the matching text. You
use the length of matching text to highlight the match within the
selected record.

You must make sure that the parameters inSourceStr and
inTargetStr point to the start of a valid character. That is, they
must point to the first byte of a multi-byte character, or they must
point to a single-byte character; if they don’t, results are
unpredictable.

Compatibility Implemented only in the PalmOSGlue library.

See Also TxtFindString, TxtCaselessCompare

TxtGlueGetHorizEllipsisChar

Purpose Return the horizontal ellipsis character.

Declared In TxtGlue.h

Prototype WChar TxtGlueGetHorizEllipsisChar (void)

Parameters None.

Result Returns the character code for horizontal ellipsis.

Comments Versions 3.1 and higher of the Palm OS use different character codes
for the horizontal ellipsis character and the numeric space character
than earlier versions did. Use TxtGlueGetHorizEllipsisChar
to return the appropriate code for horizontal ellipsis regardless of
which version of Palm OS your application is run on.

PalmOSGlue Library
PalmOSGlue Functions

1916 Palm OS Programmer’s API Reference

Compatibility Implemented only in the PalmOSGlue library.

See Also ChrHorizEllipsis, TxtGlueGetNumericSpaceChar

TxtGlueGetNumericSpaceChar

Purpose Return the numeric space character.

Declared In TxtGlue.h

Prototype WChar TxtGlueGetNumericSpaceChar (void)

Parameters None.

Result Returns the character code for numeric space.

Comments Versions 3.1 and higher of the Palm OS use different character codes
for the horizontal ellipsis character and the numeric space character
than earlier versions did. Use TxtGlueGetNumericSpaceChar to
return the appropriate code for numeric space regardless of which
version of Palm OS your application is run on.

Compatibility Implemented only in the PalmOSGlue library.

See Also ChrNumericSpace, TxtGlueGetHorizEllipsisChar

TxtGlueLowerChar

Purpose Convert a character to lowercase.

Declared In TxtGlue.h

Prototype WChar TxtGlueLowerChar (WChar inChar)

Parameters -> inChar A character.

Result Returns the character as a lowercase letter.

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1917

Comments This function does not handle the case in which the lowercase
version of a character is represented by two or more characters. If
you need to handle this situation, call the TxtGlueLowerStr
function instead of this one.

Compatibility Implemented only in the PalmOSGlue library.

See Also TxtGlueUpperChar, TxtGlueLowerStr, TxtGlueUpperStr,
TxtGlueTransliterate, TxtTransliterate, StrToLower

TxtGlueLowerStr

Purpose Convert a string to all lowercase letters.

Declared In TxtGlue.h

Prototype void TxtGlueLowerStr (Char* ioString,
UInt16 inMaxLength)

Parameters <-> ioString The string to be converted.

-> inMaxLength The size of the buffer that contains the string,
excluding the terminating null character.

Result Returns in ioString the input string with its letters converted to
lowercase.

Comments Converting a string from uppercase to lowercase letters or vice
versa may change the size of the string. For this reason, you should
always check the size of the ioString after this call returns.

You must make sure that the parameter ioString points to the
start of a a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

This function can only handle characters in the ISO Latin 1 character
encoding unless the International Feature Set is present.

PalmOSGlue Library
PalmOSGlue Functions

1918 Palm OS Programmer’s API Reference

Compatibility Implemented only in the PalmOSGlue library.

See Also TxtGlueUpperStr, TxtGlueLowerChar, TxtGlueUpperChar,
StrToLower TxtGlueTransliterate, TxtTransliterate

TxtGluePrepFindString

Purpose Set up for TxtFindString or FindStrInStr.

Declared In TxtGlue.h

Prototype void TxtGluePrepFindString (const Char* inSource,
CharPtr outDest, UInt16 inDstSize)

Parameters -> inSource Pointer to the text to be searched for. Must not
be NULL.

<- outDest The same text as in inSource but converted to
a suitable format for searching. outDest must
not be the same address as inSource.

-> inDstSize The length in bytes of the area pointed to by
outDest.

Result Returns in outDest an appropriately converted string.

Comments Use this function to normalize the string to search for before using
TxtGlueFindString, TxtFindString, or FindStrInStr to
perform a search that is internal to your application. If you use any
of these three search routines in response to the
sysAppLaunchCmdFind launch code, the string that the launch
code passes in is already properly normalized for the search.

This function normalizes the string to be searched for. The method
by which a search string is normalized varies depending on the
version of Palm OS and the character encoding supported by the
device.

Only inDstSize bytes of inSource are written to outDest. If
necessary to prevent overflow of the destination buffer, not all of
inSource is converted.

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1919

You must make sure that the parameter inSource points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only in the PalmOSGlue library.

TxtGlueStripSpaces

Purpose Strip trailing and/or leading spaces from a string.

Declared In TxtGlue.h

Prototype Char* TxtGlueStripSpaces (Char* ioStr,
Boolean leading, Boolean trailing)

Parameters <-> ioStr Any string.

-> leading If true, strip the leading spaces from the
string.

-> trailing If true, strip the trailing spaces from the string.

Result Returns ioStr with the specified spaces stripped from it. Note that
this function both changes the ioStr buffer parameter and returns
a pointer to it.

Comments You must make sure that the parameter ioStr points to the start of
a a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only in the PalmOSGlue library.

PalmOSGlue Library
PalmOSGlue Functions

1920 Palm OS Programmer’s API Reference

TxtGlueTruncateString

Purpose Determine if a string can be displayed in a given number of pixels. If
not, truncate the string.

Declared In TxtGlue.h

Prototype Boolean TxtGlueTruncateString (Char *ioStringP,
UInt16 inMaxWidth)

Parameters <-> ioStringP A null-terminated string. Upon return, the
string is truncated if necessary so that it can be
displayed in inMaxWidth pixels.

-> inMaxWidth The maximum width in pixels.

Result Returns true if the string was truncated, or false if the string can
fit without truncation.

Comments This function determines whether ioStringP can be displayed in
the specified width without being truncated. If it can,
TxtGlueTruncateString returns false. If the string must be
truncated, this function truncates the string to one less than the
number of characters that can fit in inMaxWidth and then appends
an ellipsis (...) character. (If the boundary characters are narrower
than the ellipsis, more than one character may be dropped to make
room). If inMaxWidth is narrower than the width of an ellipsis, the
string is set to the empty string.

Compatibility Implemented only in the PalmOSGlue library.

See Also FntWidthToOffset, WinDrawTruncChars,
TxtGetTruncationOffset

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1921

TxtGlueUpperChar

Purpose Convert a character to uppercase.

Declared In TxtGlue.h

Prototype WChar TxtGlueUpperChar (WChar inChar)

Parameters -> inChar Any character.

Result Returns the character as an uppercase letter.

Comments This function does not handle the case in which the uppercase
version of a character is represented by two or more characters. If
you need to handle this situation, call the TxtGlueUpperStr
function instead of this one.

Compatibility Implemented only in the PalmOSGlue library.

See Also TxtGlueLowerChar, TxtGlueUpperStr TxtGlueLowerStr,
TxtGlueTransliterate, TxtTransliterate StrToLower

PalmOSGlue Library
PalmOSGlue Functions

1922 Palm OS Programmer’s API Reference

TxtGlueUpperStr

Purpose Convert a string to all uppercase letters.

Declared In TxtGlue.h

Prototype void TxtGlueUpperStr (Char* ioString,
UInt16 inMaxLength)

Parameters <-> ioString The string to be converted.

-> inMaxLength The size of the buffer that contains the string,
excluding the terminating null character.

Result Returns in ioString the input string with its letters converted to
uppercase.

Comments Converting a string from uppercase to lowercase letters or vice
versa may change the size of the string. For this reason, you should
always check the size of the ioString after this call returns.

You must make sure that the parameter ioString points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

This function can only handle characters in the ISO Latin 1 character
encoding unless the International Feature Set is present.

Compatibility Implemented only in the PalmOSGlue library.

See Also TxtGlueLowerStr, TxtGlueUpperChar, TxtGlueLowerChar,
TxtGlueTransliterate, TxtTransliterate StrToLower

PalmOSGlue Library
PalmOSGlue Functions

Palm OS Programmer’s API Reference 1923

WinGlueGetFrameType

Purpose Gets the frame type for a specified window.

Declared In WinGlue.h

Prototype FrameType WinGlueGetFrameType
(const WinHandle winH)

Parameters -> winH The window’s handle.

Result Returns a FrameType value indicating the window’s frame style.

See Also WinGlueSetFrameType

WinGlueSetFrameType

Purpose Sets the type of frame to be used for a specified window.

Declared In WinGlue.h

Prototype void WinGlueSetFrameType (WinHandle winH,
FrameType frame)

Parameters -> winH The window‘s handle.

-> frame The style of frame to be used.

Result Returns nothing.

See Also WinGlueGetFrameType

PalmOSGlue Library
PalmOSGlue Functions

1924 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1925

76
Bluetooth Library:
General Functions
The Bluetooth library is a shared library that provides a direct
interface to the Bluetooth communication capability of the Palm OS.
This chapter presents reference material for the security and utility
functions of the Bluetooth library API:

Security Functions Describes security functions that allow the
application to manage a database of trusted
devices. Trusted devices don’t need to undergo
authentication when they reconnect with the
local device.

Utility Functions Describes utility functions and macros that are
useful when working with the Bluetooth
library. They perform such tasks as converting
between host and network byte ordering, and
converting between device addresses and
strings.

The header file BtLib.h declares the Bluetooth library functions
and macros. The header file BtLibTypes.h declares the data
structures that you use with those functions and macros. For more
information about using the Bluetooth library, see the Palm OS
Programmer’s Companion Supplement: Bluetooth.

Security Functions
The Bluetooth security functions allow the application to manage a
database of devices that have been bonded or paired. To understand
this database, it is important to understand the difference between
pairing and bonding.

Typically, devices must authenticate with each other every time they
connect to each other. This process is called pairing. However, the

Bluetooth Library: General Functions
Security Functions

1926 Palm OS Programmer’s API Reference

devices can bond instead. Bonding is similar to pairing except that
both devices remember the link key for the connection. If the two
devices ever want to connect to each other again, they don’t need to
repeat the pairing process.

Information about paired and bonded devices is stored in a device
database on the local device. If a remote device has bonded with the
local device, its record remains in the database until it is explicitly
deleted. If the remote device has paired with the local device but not
bonded with it, the record is removed when the connection to the
remote device terminates.

Remote devices that have bonded with the local device are also
called trusted devices.

New BtLibSecurityFindTrustedDeviceRecord

Purpose Search the device database for the device with the specified
Bluetooth address. Return the index of the corresponding device
record in the database.

Declared In BtLib.h

Prototype Err BtLibSecurityFindTrustedDeviceRecord
(UInt16 btLibRefNum,
BtLibDeviceAddressTypePtr addrP, UInt16 *index)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> addrP Bluetooth address of remote device.

<- index Index of the record.

Result Returns btLibErrNoError if successful. Returns
btLibErrNotFound if a record with the specified remote device
address could not be found.

See Also BtLibSecurityRemoveTrustedDevice Record,
BtLibSecurityGetTrustedDeviceRecordInfo

Bluetooth Library: General Functions
Security Functions

Palm OS Programmer’s API Reference 1927

New BtLibSecurityGetTrustedDeviceRecordInfo

Purpose Get information from a device record in the device database.

Declared In BtLib.h

Prototype Err BtLibSecurityGetTrustedDeviceRecordInfo
(UInt16 btLibRefNum, UInt16 index,
BtLibDeviceAddressTypePtr addrP,
Char *nameBuffer, UInt8 *nameBufferSize,
BtLibClassOfDeviceType *cod, Boolean *persistent)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> index Index of the record.

<- addrP Bluetooth address of remote device.

<- nameBuffer Pointer to buffer to store user-friendly name of
remote device. You must allocate this buffer.
Provide a NULL pointer if the user-friendly
name is not needed.

<-> nameBufferSize
Size of the nameBuffer buffer on entry. On
exit, the size of the name.

<- cod Pointer to a BtLibClassOfDeviceType
representing the class of the device. You must
allocate this structure. Provide a NULL pointer
if the device class is not needed.

<- lastConnected
The date since the device last connected. This
date is measured in seconds since midnight
January 1, 1904. Provide a NULL pointer if the
date of last connection is not needed.

Bluetooth Library: General Functions
Security Functions

1928 Palm OS Programmer’s API Reference

<- persistent If true, the device is bonded and can connect
to the local device without authentication. If
false, the device is paired but not bonded—it
will need to reauthenticate if it connects again.
Provide a NULL pointer if this information is
not needed.

Result Returns btLibErrNoError if successful. Returns
dmErrIndexOutOfRange if a record with the specified index
could not be found.

See Also BtLibSecurityFindTrustedDeviceRecord

New BtLibSecurityNumTrustedDeviceRecords

Purpose Return the number of bonded devices in the device database or
return the total number of devices in the device database.

Declared In BtLib.h

Prototype UInt16 BtLibSecurityNumTrustedDeviceRecords
(UInt16 btLibRefNum, Boolean persistentOnly)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> persistentOnly
true to obtain the total number of bonded
devices in the database. These are the same
devices that appear in the trusted devices list.
false to obtain the total number of devices in
the device database. This includes the devices
that are bonded and the devices that are paired
but not bonded.

Result Returns the requested number of device records.

See Also BtLibSecurityFindTrustedDeviceRecord,
BtLibSecurityGetTrustedDeviceRecordInfo

Bluetooth Library: General Functions
Utility Functions

Palm OS Programmer’s API Reference 1929

New BtLibSecurityRemoveTrustedDevice
Record

Purpose Remove a device record from the device database.

Declared In BtLib.h

Prototype Err BtLibSecurityRemoveTrustedDeviceRecord
(UInt16 btLibRefNum, UInt16 index)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> index Index of the record to remove.

Result Returns btLibErrNoError if successful. Returns
dmErrIndexOutOfRange if a record with the specified index
could not be found.

See Also BtLibSecurityFindTrustedDeviceRecord

Utility Functions
This section describes functions and macros that are useful when
working with the Bluetooth library.

Bluetooth Library: General Functions
Utility Functions

1930 Palm OS Programmer’s API Reference

New BtLibAddrAToBtd

Purpose Convert an ASCII string a Bluetooth device address in colon-
separated form to a 48-bit BtLibDeviceAddressType.

Declared In BtLib.h

Prototype Err BtLibAddrAToBtd (UInt16 btLibRefNum,
const Char *addressString,
BtLibDeviceAddressType *btDevP)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> addressString
String containing ASCII colon-separated
Bluetooth device address.

<- btDevP Pointer to a BtLibDeviceAddressType to
store the converted device address.

Result Returns btLibErrNoError to indicate that the conversion was
successful.

See Also BtLibAddrBtdToA

Bluetooth Library: General Functions
Utility Functions

Palm OS Programmer’s API Reference 1931

New BtLibAddrBtdToA

Purpose Convert 48-bit BtLibDeviceAddressType to an ASCII string in
colon-separated form.

Declared In BtLib.h

Prototype Err BtLibAddrBtdToA (UInt16 btLibRefNum,
BtLibDeviceAddressType *btDevP, Char *spaceP,
UInt16 spaceSize)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> btDevP Address of a Bluetooth device. This parameter
must not be NULL.

<- spaceP Pointer to a buffer to store the ASCII formatted
Bluetooth devices address upon return. This
parameter must not be NULL.

-> spaceSize Size of the spaceP buffer, in bytes. Must be at
least 18.

Result Returns btLibErrNoError if successful. Returns
btLibErrParamErr if

• btDevP is NULL

• spaceP is NULL

• spaceSize is less than 18, the number of bytes required to
store the ASCII formatted address

See Also BtLibAddrAToBtd

Bluetooth Library: General Functions
Utility Functions

1932 Palm OS Programmer’s API Reference

New BtLibL2CapHToNL

Purpose Macro that converts a 32-bit value from host to L2CAP byte order.
L2CAP byte order is little endian.

Declared In BtLib.h

Prototype BtLibL2CapHToNL (value)

Parameters -> value 32-bit value to convert.

Result Returns value in L2CAP byte order.

See Also BtLibL2CapHToNS, BtLibL2CapNToHL, BtLibL2CapNToHS

New BtLibL2CapHToNS

Purpose Macro that converts a 16-bit value from host to L2CAP byte order.
L2CAP byte order is little endian.

Declared In BtLib.h

Prototype BtLibL2CapHToNS (value)

Parameters -> value 16-bit value to convert.

Result Returns value in L2CAP byte order.

See Also BtLibL2CapHToNL, BtLibL2CapNToHS, BtLibSdpNToHL

Bluetooth Library: General Functions
Utility Functions

Palm OS Programmer’s API Reference 1933

New BtLibL2CapNToHL

Purpose Macro that converts a 32-bit value from L2CAP to host byte order.
L2CAP byte order is little endian.

Declared In BtLib.h

Prototype BtLibL2CapNToHL (value)

Parameters -> value 32-bit value to convert.

Result Returns value in host byte order.

See Also BtLibL2CapNToHS, BtLibL2CapHToNL, BtLibL2CapHToNS

New BtLibL2CapNToHS

Purpose Macro that converts a 16-bit value from L2CAP to host byte order.
L2CAP byte order is little endian.

Declared In BtLib.h

Prototype BtLibL2CapNToHS (value)

Parameters -> value 16-bit value to convert.

Result Returns value in host byte order.

See Also BtLibL2CapNToHL, BtLibL2CapHToNS, BtLibL2CapHToNL

Bluetooth Library: General Functions
Utility Functions

1934 Palm OS Programmer’s API Reference

New BtLibRfCommHToNL

Purpose Macro that converts a 32-bit value from host to RFCOMM byte
order. RFCOMM byte order is big endian.

Declared In BtLib.h

Prototype BtLibRfCommHToNL (value)

Parameters ->value 32-bit value to convertx

Result Returns value in RFCOMM byte order.

See Also BtLibRfCommHToNS, BtLibRfCommNToHL, BtLibRfCommNToHS

New BtLibRfCommHToNS

Purpose Macro that converts a 16-bit value from host to RFCOMM byte
order. RFCOMM byte order is big endian.

Declared In BtLib.h

Prototype BtLibRfCommHToNS (value)

Parameters ->value 16-bit value to convertx

Result Returns value in RFCOMM byte order.

See Also BtLibRfCommHToNL, BtLibRfCommHToNS, BtLibRfCommNToHL

Bluetooth Library: General Functions
Utility Functions

Palm OS Programmer’s API Reference 1935

New BtLibRfCommNToHL

Purpose Macro that converts a 32-bit value from RFCOMM to host byte
order. RFCOMM byte order is big endian.

Declared In BtLib.h

Prototype BtLibRfCommNToHL (value)

Parameters ->value 32-bit value to convertx

Result Returns value in host byte order.

See Also BtLibRfCommNToHS, BtLibRfCommHToNL, BtLibRfCommHToNS

New BtLibRfCommNToHS

Purpose Macro that converts a 16-bit value from RFCOMM to host byte
order. RFCOMM byte order is big endian.

Declared In BtLib.h

Prototype BtLibRfCommNToHS (value)

Parameters ->value 16-bit value to convertx

Result Returns value in host byte order.

See Also BtLibRfCommNToHL, BtLibRfCommHToNS, BtLibRfCommHToNL

Bluetooth Library: General Functions
Utility Functions

1936 Palm OS Programmer’s API Reference

New BtLibSdpHToNL

Purpose Macro that converts a 32-bit value from host to Service Discovery
Protocol (SDP) byte order. SDP byte order is big endian.

Declared In BtLib.h

Prototype BtLibSdpHToNL (value)

Parameters ->value 32-bit value to convertx

Result Returns value in SDP byte order.

See Also BtLibSdpHToNS, BtLibSdpNToHL, BtLibSdpNToHS

New BtLibSdpHToNS

Purpose Macro that converts a 16-bit value from host to Service Discovery
Protocol (SDP) byte order. SDP byte order is big endian.

Declared In BtLib.h

Prototype BtLibSdpHToNS (value)

Parameters ->value 16-bit value to convertx

Result Returns value in SDP byte order.

See Also BtLibSdpHToNL, BtLibSdpNToHS, BtLibSdpNToHL

Bluetooth Library: General Functions
Utility Functions

Palm OS Programmer’s API Reference 1937

New BtLibSdpNToHL

Purpose Macro that converts a 32-bit value from Service Discovery Protocol
(SDP) to host byte order. SDP byte order is big endian.

Declared In BtLib.h

Prototype BtLibSdpNToHL (value)

Parameters -> value 32-bit value to convertx

Result Returns value in host byte order.

See Also BtLibSdpNToHS, BtLibSdpHToNL, BtLibSdpHToNS

New BtLibSdpNToHS

Purpose Macro that converts a 16-bit value from Service Discovery Protocol
(SDP) to host byte order. SDP byte order is big endian.

Declared In BtLib.h

Prototype BtLibSdpNToHS (value)

Parameters ->value 16-bit value to convertx

Result Returns value in host byte order.

See Also BtLibSdpNToHL, BtLibSdpHToNS, BtLibSdpHToNL

Bluetooth Library: General Functions
Utility Functions

1938 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 1939

77
Bluetooth Library:
Management
The management API of the Bluetooth library supports the lower
levels of the Bluetooth specification, specifically the radio,
baseband, and Link Manager Protocol specifications. This chapter
presents reference material for the management API:

Bluetooth Management Data Structures
This section lists some of the more important
types used by the Bluetooth library
management functions.

Management Callback Events
This section lists the management callback
events. Most of the management functions are
asynchronous. In other words, they start
operations and return before the operations
complete. To signal the application that
management operations have completed, the
Bluetooth library generates management callback
events by calling a callback function.

Management Event Status Codes
When a management event is generated, the
status field of the associated
BtLibManagementEventType provides
information about why the event occurred.
This section explains what these codes mean.

Library Management Functions
This section describes the functions that open
and close the shared library.

Bluetooth Library: Management
Bluetooth Management Data Structures

1940 Palm OS Programmer’s API Reference

Management Functions
The management functions handle the lower
levels of the Bluetooth specification, specifically
the radio, baseband, and Link Manager
Protocol specifications. These functions
perform tasks that include discovering devices,
working with Asynchronous Connectionless
(ACL) links and piconets, and maintaining
global settings for the Bluetooth library.

Application-Defined Functions
This section describes the callback functions
that handle management events.

The header file BtLib.h declares the Bluetooth library functions
and macros. The header file BtLibTypes.h declares the data
structures that you use with those functions and macros. For more
information about using the Bluetooth library, see the Palm OS
Programmer’s Companion Supplement: Bluetooth.

Bluetooth Management Data Structures
This section lists some of the more important types used by the
Bluetooth library management functions.

New BtLibAccessibleModeEnum
The BtLibAccessibleModeEnum enum specifies a device’s
accessibility modes. See the “Generic Access Profile” chapter of the
Specification of the Bluetooth System for more information about
accessibility.

typedef enum {
btLibNotAccessible = 0x00,
btLibConnectableOnly = 0x02,
btLibDiscoverableAndConnectable = 0x03

} BtLibAccessibleModeEnum;

Bluetooth Library: Management
Bluetooth Management Data Structures

Palm OS Programmer’s API Reference 1941

Value Descriptions

btLibConnectableOnly
The device responds to a page but not an
inquiry.

btLibDiscoverableAndConnectable
The device responds to both a page and an
inquiry.

btLibNotAccessible
The device does not respond to a page or an
inquiry.

New BtLibClassOfDeviceType
The BtLibClassOfDeviceType type represents the class of the
device and the services it supports.

typedef UInt32 BtLibClassOfDeviceType;

A device can support multiple services but only belongs to a single
class. The class is specified in two parts: the major class, which
broadly classifies the type of device, and the minor class, which
together with the major class specifies the type of device in more
detail.

An example is a simple cellular telephone. It provides Telephony
services. Its major device class is Phone, and its minor device class is
Cellular.

The Bluetooth Assigned Numbers specification defines a device class
as having three bit fields. One field specifies the major service
classes supported by the device. Another field specifies the major
device class. The third field specifies the minor device class.

The constants provided here allow you to construct a device class
that conforms to the Bluetooth specification. You simply perform a
logical OR of the constants representing the service classes the
device supports, the constant representing the device’s major class,
and the constant representing the device’s minor class.

For example, device class of the simple cellular telephone can be
computed as follows:

Bluetooth Library: Management
Bluetooth Management Data Structures

1942 Palm OS Programmer’s API Reference

cellPhoneCOD = btLibCOD_Telephony |
btLibCOD_Major_Phone |
BtLibCOD_Minor_Phone_Cellular;

Constants are also provided to mask the individual bit fields in a
device class.

Major Service Classes

These constants define the Bluetooth major service classes. The
service classes are described in the Specification of the Bluetooth
System.

btLibCOD_LimitedDiscoverableMode
btLibCOD_Networking
btLibCOD_Rendering
btLibCOD_Capturing
btLibCOD_ObjectTransfer
btLibCOD_Audio
btLibCOD_Telephony
btLibCOD_Information

Major Device Classes

These constants define the Bluetooth major device classes. The
major device classes are described in the Specification of the Bluetooth
System.

btLibCOD_Major_Misc
btLibCOD_Major_Computer
btLibCOD_Major_Phone
btLibCOD_Major_Lan_Access_Point
btLibCOD_Major_Audio
btLibCOD_Major_Peripheral
btLibCOD_Major_Unclassified

Computer Minor Device Classes

These constants define the minor device classes associated with the
computer major class. They are described in the Bluetooth Assigned
Numbers specification.

btLibCOD_Minor_Comp_Unclassified
btLibCOD_Minor_Comp_Desktop
btLibCOD_Minor_Comp_Server

Bluetooth Library: Management
Bluetooth Management Data Structures

Palm OS Programmer’s API Reference 1943

btLibCOD_Minor_Comp_Laptop
btLibCOD_Minor_Comp_Handheld
btLibCOD_Minor_Comp_Palm

Phone Minor Device Classes

These constants define the minor device classes are associated with
the computer major class. They are described in the Bluetooth
Assigned Numbers specification.

btLibCOD_Minor_Phone_Unclassified
btLibCOD_Minor_Phone_Cellular
btLibCOD_Minor_Phone_Cordless
btLibCOD_Minor_Phone_Smart
btLibCOD_Minor_Phone_Modem

LAN Access Point Minor Device Classes

These constants define load factors for the LAN access point major
device class. LAN access point load factors are described in more
detail in the Bluetooth Assigned Numbers specification.

btLibCOD_Minor_Lan_0
Fully available

btLibCOD_Minor_Lan_17
1-17% utilized

btLibCOD_Minor_Lan_33
17-33% utilized

btLibCOD_Minor_Lan_50
33-50% utilized

btLibCOD_Minor_Lan_67
50-67% utilized

btLibCOD_Minor_Lan_83
67-83% utilized

btLibCOD_Minor_Lan_99
83-99% utilized

btLibCOD_Minor_Lan_NoService
Fully utilized

Bluetooth Library: Management
Bluetooth Management Data Structures

1944 Palm OS Programmer’s API Reference

Audio Minor Device Classes

These constants define the minor classes associated with the audio
major class. They are described in more detail in the Bluetooth
Assigned Numbers specification.

btLibCOD_Minor_Audio_Unclassified
btLibCOD_Minor_Audio_Headset

Masks

These constants define bit masks to isolate certain fields of the
device class.

btLibCOD_Service_Mask
A mask to isolate the major service class field
from the other fields of the device class.

btLibCOD_Major_Mask
A mask to isolate the major device class field
from the other fields of the device class.

btLibCOD_Minor_Mask
A mask to isolate the minor device class field
from the other fields of the device class.

btLibCOD_ServiceAny
Used as a device filter for the
BtLibDiscoverMultipleDevices and
BtLibDiscoverSingleDevice functions.
With this filter, devices providing any service
appear in the device list. Same as
btLibCOD_Service_Mask.

btLibCOD_Major_Any
Used as a device filter for the
BtLibDiscoverMultipleDevices and
BtLibDiscoverSingleDevice functions.
With this filter, devices in any major device
class appear in the device list. Same as
btLibCOD_Major_Mask.

Bluetooth Library: Management
Bluetooth Management Data Structures

Palm OS Programmer’s API Reference 1945

btLibCOD_Minor_Any
Used as a device filter for the
BtLibDiscoverMultipleDevices and
BtLibDiscoverSingleDevice functions.
With this filter, devices in any minor device
class appear in the device list. Same as
btLibCOD_Minor_Mask.

btLibCOD_Minor_Comp_Any
Used as a device filter for the
BtLibDiscoverMultipleDevices and
BtLibDiscoverSingleDevice functions.
When this filter is used in conjunction with
btLibCOD_Major_Computer, all devices
broadcasting themselves as computers appear
in the device list. Same as
btLibCOD_Minor_Any.

btLibCOD_Minor_Phone_Any
Used as a device filter for the
BtLibDiscoverMultipleDevices and
BtLibDiscoverSingleDevice functions.
When this filter is used in conjunction with
btLibCOD_Major_Phone, all devices
broadcasting themselves as phones appear in
the device list. Same as
btLibCOD_Minor_Any.

btLibCOD_Minor_LAN_Any
Used as a device filter for the
BtLibDiscoverMultipleDevices and
BtLibDiscoverSingleDevice functions.
When this filter is used in conjunction with
btLibCOD_Major_Lan_Access_Point, all
devices broadcasting themselves as LAN access
points appear in the device list. Same as
btLibCOD_Minor_Any.

Bluetooth Library: Management
Bluetooth Management Data Structures

1946 Palm OS Programmer’s API Reference

btLibCOD_Minor_Audio_Any
Used as a device filter for the
BtLibDiscoverMultipleDevices and
BtLibDiscoverSingleDevice functions.
When this filter is used in conjunction with
btLibCOD_Major_Audio, all devices
broadcasting themselves as audio devices
appear in the device list. Same as
btLibCOD_Minor_Any.

New BtLibConnectionRoleEnum
The BtLibConnectionRoleEnum enum specifies all the
connection roles a device can have. A device can either be a master
or a slave.

typedef enum {
btLibMasterRole,
btLibSlaveRole

} BtLibConnectionRoleEnum;

Value Descriptions

btLibMasterRole
The device is a master.

btLibSlaveRole The device is a slave.

New BtLibDeviceAddressType
The BtLibDeviceAddressType structure represents a 48-bit
Bluetooth device address.

#define btLibDeviceAddressSize 6

typedef struct BtLibDeviceAddressType {
 UInt8 address[btLibDeviceAddressSize];
} BtLibDeviceAddressType;

Bluetooth Library: Management
Bluetooth Management Data Structures

Palm OS Programmer’s API Reference 1947

New BtLibFriendlyNameType
The BtLibFriendlyNameType structure contains the user-
friendly name of a device.

typedef struct BtLibFriendlyNameType {
UInt8 *name;
UInt8 nameLength;

} BtLibFriendlyNameType,
*BtLibFriendlyNameTypePtr;

Field Descriptions

name Array of characters, encoded according to the
UTF-8 standard, containing the user-friendly
name of the device. This array is not null-
terminated.

nameLength The number of characters in the user-friendly
name. The maximum size is 249 characters.

New BtLibManagementEventType
The BtLibManagementEventType structure contains detailed
information regarding a management callback event. All
management events have some common data. Most management
events have data specific to those events. The specific data uses a
union that is part of the BtLibManagementEvent data structure.

typedef struct _BtLibManagementEventType {
BtLibManagementEventEnum event;
Err status;
union {
...

} eventData;
} BtLibManagementEventType;

Bluetooth Library: Management
Management Callback Events

1948 Palm OS Programmer’s API Reference

Field Descriptions

event A BtLibManagementEventEnum enum
member that indicates which management
event has occurred. See Management Callback
Events.

status Status of the event. The Management Callback
Events section gives more details about how to
interpret this field for specific events.

eventData Data associated with the event. The member of
this union that is valid depends on the event.
See Management Callback Events for more
information.

A BtLibManagementEventType object is passed as the first
argument of the BtLibManagementCallback callback function.

Management Callback Events
The management functions of the Bluetooth library support the
lower levels of the Bluetooth specification, specifically the radio,
baseband, and Link Manager Protocol specifications. Most of the
management functions are asynchronous. In other words, they start
operations and return before the operations complete. To signal the
application that management operations have completed, the
Bluetooth library generates management callback events by calling a
callback function.

You specify the callback function using the
BtLibRegisterManagementNotification function. When an
event occurs, the callback function is called with two parameters: a
pointer to a BtLibManagementEventType structure and a pointer
to a user-defined structure.

The BtLibManagementEventType structure contains an event
field, which indicates the reason the callback is called, a status
field, which contains status information associated with the event,
and a union of several structures. The member of the union that is
valid depends on the event. The meaning of the events is described
in the following sections.

Bluetooth Library: Management
Management Callback Events

Palm OS Programmer’s API Reference 1949

For more information about the status field, see Management
Event Status Codes.

btLibManagementEventAccessibilityChange
The accessibility mode of the local device has changed.

For this event, the eventData field contains the following field:

BtLibAccessibleModeEnum accessible;

This BtLibAccessibleModeEnum represents the new accessibility
mode of the local device.

This event can result from calling BtLibOpen,
BtLibPiconetCreate, or BtLibSetGeneralPreference.

btLibManagementEventAclConnectInbound
A remote device has established an ACL link to the local device.

For this event, the eventData field contains the following field:

BtLibDeviceAddressType bdAddr;

This BtLibDeviceAddressType contains the address of the
remote device.

btLibManagementEventAclConnectOutbound
An ACL link has been established with a remote device.

If the status field contains btLibErrNoError, the ACL link is
connected, and the remote device address can be found in the
eventData field. Otherwise the connection failed and the status
field indicates the reason for the failure. See Management Event
Status Codes for more information.

For this event, the eventData field contains the following field:

BtLibDeviceAddressType bdAddr;

This BtLibDeviceAddressType contains the address of the
remote device.

This event can result from calling BtLibLinkConnect.

Bluetooth Library: Management
Management Callback Events

1950 Palm OS Programmer’s API Reference

btLibManagementEventAclDisconnect
An ACL link has been disconnected. The status field indicates the
reason the link was disconnected. See Management Event Status
Codes.

For this event, the eventData field contains the following field:

BtLibDeviceAddressType bdAddr;

This BtLibDeviceAddressType contain the address of the
disconnected device.

This event can result from calling BtLibLinkDisconnect or
BtLibPiconetDestroy.

btLibManagementEventAuthentication
Complete
The authentication of a remote device has completed.

For this event, the eventData field contains the following field:

BtLibDeviceAddressType bdAddr;

This BtLibDeviceAddressType contains the address of the
remote device.

If the authentication is successful, the status field contains
btLibErrNoError. If the user cancels the passkey request, the
status field contains btLibErrCanceled. Otherwise, the
status field indicates the reason the authentication failed. See
Management Event Status Codes.

This event can result from calling BtLibLinkSetState.

btLibManagementEventEncryptionChange
Encryption for a link has been enabled or disabled.

For this event, the eventData field contains the following
structure:

struct {
BtLibDeviceAddressType bdAddr;
Boolean enabled;

} encryptionChange;

Bluetooth Library: Management
Management Callback Events

Palm OS Programmer’s API Reference 1951

Field Descriptions

bdAddr A BtLibDeviceAddressType containing the
address of the remote device.

enabled true when encryption for the link has been
enabled; false otherwise.

This event can result from calling BtLibLinkSetState.

btLibManagementEventInquiryCanceled
The device inquiry has been canceled because the application called
BtLibCancelInquiry.

btLibManagementEventInquiryComplete
The device inquiry started with the BtLibStartInquiry function
has completed.

btLibManagementEventInquiryResult
A remote device has responded to an inquiry that was started with
the BtLibStartInquiry function.

For this event, the eventData field contains the following
structure:

struct {
BtLibDeviceAddressType bdAddr;
BtLibClassOfDeviceType classOfDevice;

} inquiryResult;

Field Descriptions

bdAddr A BtLibDeviceAddressType containing the
address of the remote device.

classOfDevice A BtLibClassOfDeviceType representing
the class of the remote device.

btLibManagementEventLocalNameChange
The user-friendly name of the local device has changed.

Bluetooth Library: Management
Management Callback Events

1952 Palm OS Programmer’s API Reference

For this event, the eventData field contains the following
structure:

struct {
BtLibDeviceAddressType bdAddr;
BtLibFriendlyNameType name;

} nameResult;

Field Descriptions

bdAddr A BtLibDeviceAddressType containing the
address of the local device.

name A BtLibFriendlyNameType containing the
new name.

This event can result from calling BtLibOpen.

btLibManagementEventModeChange
A slave has changed its mode. A slave can be in active, sniff, hold, or
park mode.

For this event, the eventData field contains the following
structure:

struct {
BtLibDeviceAddressType bdAddr;
BtLibLinkModeEnum curMode;
UInt16 interval;

} modeChange;

Field Descriptions

bdAddr A BtLibDeviceAddressType containing the
address of the remote device.

curMode A BtLibLinkModeEnum indicating the new
mode of remote device

interval The time in units of 0.625 ms the remote device
will stay in the new mode, if applicable. The
time period is a standard time period in the
Bluetooth specification.

Bluetooth Library: Management
Management Callback Events

Palm OS Programmer’s API Reference 1953

BtLibLinkModeEnum

The BtLibLinkModeEnum enum specifies the modes a slave can
have. According to the Specification of the Bluetooth System, a slave
can be in active, sniff, hold, or park mode. However, the Bluetooth
library only supports the hold and active modes.

typedef enum {
btLibSniffMode,
btLibHoldMode,
btLibParkMode,
btLibActiveMode

} BtLibLinkModeEnum;

Value Descriptions

btLibActiveMode
The slave is active.

btLibHoldMode The slave is in hold mode.

btLibParkMode The slave is in park mode. This mode is not
currently supported.

btLibSniffMode The slave is in sniff mode. This mode is not
currently supported.

btLibManagementEventNameResult
A remote device name request has completed. If the status field is
btLibErrNoError, the name is available. Otherwise, the name
request failed, and the status field indicates the reason for the
failure. See Management Event Status Codes.

For this event, the eventData field contains the following
structure:

struct {
BtLibDeviceAddressType bdAddr;
BtLibFriendlyNameType name;

} nameResult;

Field Descriptions

bdAddr A BtLibDeviceAddressType containing the
address of the remote device.

Bluetooth Library: Management
Management Callback Events

1954 Palm OS Programmer’s API Reference

name A BtLibFriendlyNameType containing the
name of the remote device.

The BtLibGetRemoteDeviceName function is used to start a
remote device name request.

btLibManagementEventPasskeyRequest
A remote device has requested a passkey. Your application does not
have to respond to this request—the Bluetooth library automatically
handles it.

For this event, the eventData field contains the following field:

BtLibDeviceAddressType bdAddr;

This BtLibDeviceAddressType contains the address of the
remote device.

Because a passkey can be requested during or after a link is
established, consider disabling any failure timers while the passkey
dialog is up. The btLibManagementEventPasskeyRequestComplete
event signals the completion of the passkey entry.

btLibManagementEventPasskeyRequestCompl
ete
A passkey request has been processed. The status code for this event
is set to btLibErrNoError if the passkey was entered or
btLibErrCanceled if passkey entry was cancelled. Note that this
event does not tell you that the authentication completed.

btLibManagementEventPiconetCreated
The piconet has been created. This event can result from calling
BtLibPiconetCreate.

btLibManagementEventPiconetDestroyed
The piconet has been destroyed. This event can result from calling
BtLibPiconetDestroy.

Bluetooth Library: Management
Management Callback Events

Palm OS Programmer’s API Reference 1955

btLibManagementEventRadioState
This event is generated when the Bluetooth radio changes state. The
radio changes state when the radio is disconnected, the power is
turned on or off, the radio resets, or the radio fails to initialize. The
status code for this event explains why the event gets generated.

Status Codes

btLibErrRadioInitialized
The Bluetooth radio has initialized successfully.
You can now call management functions.

btLibErrRadioInitFailed
The Bluetooth radio failed to initialize. The
application can assume all pending Bluetooth
operations have failed. However, some
pending operations will still generate events
and modify memory supplied by the
application.

To try to initialize the radio again, you need to
close the library and reopen it.

Bluetooth Library: Management
Management Callback Events

1956 Palm OS Programmer’s API Reference

btLibErrRadioFatal
A fatal radio error occurred. This usually
signifies that the host has lost contact with the
radio, for example, when the user disconnects
the radio, or the device turns off. The
application can assume that all pending
operations have failed. However, some
pending operations will still generate events
and modify memory supplied by the
application.

When a fatal radio error occurs, the Bluetooth
stack resets the radio and tries once to
reinitialize it, which generates another
btLibManagementEventRadioState event
with a status code of
btLibErrRadioInitialized, or
btLibErrRadioInitFailed depending on
whether or not the initialization succeeded.

btLibErrRadioSleepWake
The radio was reset because the device went to
sleep. The application can assume all pending
operations have failed. However, some
pending operations will still generate events
and modify memory supplied by the
application.

The Bluetooth stack resets the radio and tries
once to reinitialize it, which generates another
btLibManagementEventRadioState event
with a status code of
btLibErrRadioInitialized, or
btLibErrRadioInitFailed depending on
whether or not the initialization succeeded.

This event can result from calling BtLibOpen.

btLibManagementEventRoleChange
The master and slave devices for a link have switched roles.

Bluetooth Library: Management
Management Event Status Codes

Palm OS Programmer’s API Reference 1957

For this event, the eventData field contains the following
structure:

struct {
BtLibDeviceAddressType bdAddr;
BtLibConnectionRoleEnum newRole;

} roleChange;

Field Descriptions

bdAddr A BtLibDeviceAddressType containing the
address of the remote device.

newRole A BtLibConnectionRoleEnum representing
the new role of the local device.

Management Event Status Codes
When a management event is generated, the status field of the
associated BtLibManagementEventType provides information
about why the event occurred. The following status codes can occur
with a management event.

btLibErrNoError
Success.

btLibMeStatusAuthenticateFailure
Authentication failure

btLibMeStatusCommandDisallowed
Command disallowed

btLibMeStatusConnnectionTimeout
Connection timeout

btLibMeStatusHardwareFailure
Hardware Failure

btLibMeStatusHostTimeout
Host timeout

btLibMeStatusInvalidHciParam
Invalid HCI command parameters

btLibMeStatusInvalidLmpParam
Invalid LMP Parameters

Bluetooth Library: Management
Management Event Status Codes

1958 Palm OS Programmer’s API Reference

btLibMeStatusLimitedResources
Host rejected due to limited resources

btLibMeStatusLmpResponseTimeout

btLibMeStatusLmpTransdCollision

btLibMeStatusLmpPduNotAllowed

btLibMeStatusLocalTerminated
Terminated by local host

btLibMeStatusLowResources
Other end terminated due to low resources

btLibMeStatusMaxAclConnections
Max number of ACL connections to a device

btLibMeStatusMaxConnections
Max number of connections

btLibMeStatusMaxScoConnections
Max number of SCO connections to a device

btLibMeStatusMemoryFull
Memory full

btLibMeStatusMissingKey
Missing key

btLibMeStatusNoConnection
No connection

btLibMeStatusPageTimeout
Page timeout

btLibMeStatusPairingNotAllowed
Pairing not allowed

btLibMeStatusPersonalDevice
Host rejected (remote is personal device)

btLibMeStatusPowerOff
Other end terminated (about to power off)

Bluetooth Library: Management
Library Management Functions

Palm OS Programmer’s API Reference 1959

btLibMeStatusRepeatedAttempts
Repeated attempts

btLibMeStatusRoleChangeNotAllowed
Change not allowed

btLibMeStatusScoAirModeRejected
SCO Air Mode Rejected

btLibMeStatusScoIntervalRejected
SCO Interval Rejected

btLibMeStatusScoOffsetRejected
SCO Offset Rejected

btLibMeStatusSecurityError
Host rejected due to security reasons

btLibMeStatusUnknownHciCommand
Unknown HCI Command

btLibMeStatusUnknownLmpPDU
Unknown LMP PDU

btLibMeStatusUnspecifiedError
Unspecified Error

btLibMeStatusUnsupportedFeature
Unsupported feature or parameter value

btLibMeStatusUnsupportedLmpParam
Unsupported LMP Parameter Value

btLibMeStatusUnsupportedRemote
Unsupported Remote Feature

btLibMeStatusUserTerminated
Other end terminated (user)

Library Management Functions
This section describes the general Bluetooth library management
functions.

Bluetooth Library: Management
Library Management Functions

1960 Palm OS Programmer’s API Reference

New BtLibClose

Purpose Close the Bluetooth library.

Declared In BtLib.h

Prototype Err BtLibClose (UInt16 btLibRefNum)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

Result Returns btLibErrNoError if the library successfully closes.
Returns btLibErrNotOpen if the referenced Bluetooth library was
not open.

Comments Applications must call this function when they no longer need the
Bluetooth library. If the Bluetooth library open count is one, this
function closes existing connections, saves the current accessibility
mode, sets the accessible mode according to the preferences panel,
and shuts down the library. If the Bluetooth library open count is
greater than one, this function decrements the open count.

See Also BtLibOpen

New BtLibOpen

Purpose Open and initialize the Bluetooth library.

Declared In BtLib.h

Prototype Err BtLibOpen (UInt16 btLibRefNum,
Boolean allowStackToFail)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

Bluetooth Library: Management
Library Management Functions

Palm OS Programmer’s API Reference 1961

-> allowStackToFail
If true, opens the library even if the stack or
radio fails to initialize. Otherwise, does not
open the library if the stack or radio fails to
initialize.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrAlreadyOpen
This status code is not really an error. It is
returned if the library was already open. In this
case, the open count is incremented.

btLibErrInUseByService
The library is currently in use by a Bluetooth
service.

btLibErrOutOfMemory
Not enough memory available to open the
library.

btLibErrRadioInitFailed
The Bluetooth stack or radio could not be
initialized. If allowStackToFail is true, the
library still opens after this error occurs.

Applications must call this function before using the Bluetooth
library. If the Bluetooth library is not already open, BtLibOpen
opens the library, initializes it, and starts up the protocol stack
component of the library. Otherwise it increments its open count.

The allowStackToFail parameter allows the library to be
opened even if the Bluetooth stack or radio fails to initialize. It is
useful for applications that only want to use the Bluetooth library’s
utility functions but not the radio. However, any application that
needs to communicate with the radio must set
allowStackToFail to false.

This function generates three events: a
btLibManagementEventRadioState event with a status of
btLibErrRadioInitialized, a
btLibManagementEventLocalNameChange event indicating the

Bluetooth Library: Management
Management Functions

1962 Palm OS Programmer’s API Reference

local name of the device, and a
btLibManagementEventAccessibilityChange event
indicating the accessibility of the device.

See Also BtLibClose

Management Functions
The management functions handle the lower levels of the Bluetooth
specification, specifically the radio, baseband, and Link Manager
Protocol specifications. These functions perform tasks that include
discovering devices, working with Asynchronous Connectionless
(ACL) links and piconets, and maintaining global settings for the
Bluetooth library.

New BtLibCancelInquiry

Purpose Cancel a Bluetooth inquiry in process.

Declared In BtLib.h

Prototype Err BtLibCancelInquiry (UInt16 btLibRefNum)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

Result Returns one of the following values:

btLibErrNoError
The inquiry process was canceled before it
started.

btLibErrPending
The cancellation is pending. When it succeeds,
notification will be provided through a
management callback event.

btLibErrInProgress
The inquiry is already being canceled.

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1963

btLibErrNotInProgress
No inquiry is in progress to be canceled.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments The function cancels inquiries initiated by BtLibStartInquiry.
The btLibManagementEventInquiryCanceled
callback event indicates that the cancellation has completed.

A Bluetooth discovery initiated using either
BtLibDiscoverSingleDevice or
BtLibDiscoverMultipleDevices cannot be canceled with this
function. Only the user can cancel these inquiries by tapping the
Cancel button.

See Also BtLibStartInquiry

New BtLibDiscoverMultipleDevices

Purpose Discover all available devices, present them in the user interface,
and allow the user to select one or more of these devices.

Declared In BtLib.h

Prototype Err BtLibDiscoverMultipleDevices
(UInt16 btLibRefNum, Char *instructionTxt,
Char *buttonTxt,
BtLibClassOfDeviceType *deviceFilterList,
UInt8 deviceFilterListLen,
UInt8 *numDevicesSelected, Boolean addressAsName,
Boolean showLastList)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

Bluetooth Library: Management
Management Functions

1964 Palm OS Programmer’s API Reference

-> instructionTxt
Text displayed at the top of the selection box.
Pass NULL to display the default text. The
default text is “Select one or more devices:”

-> buttonTxt Text for the OK button. Pass NULL to display
the default text. The default button text is “OK”

-> deviceFilterList
Array of BtLibClassOfDeviceTypes. This
function presents to the user only the remote
devices whose class matches a class in this list.
If deviceFilterList is NULL, this function
presents to the user all discovered devices.

->deviceFilterListLen
Number of elements in deviceFilterList.

<- numDevicesSelected
Number of selected devices. To obtain the
actual device list, use the
BtLibGetSelectedDevices function.

-> addressAsName
If true, display the Bluetooth addresses of the
remote devices instead of their names. This
option is available for debugging purposes.

-> showLastList
If true, causes all other parameters to be
ignored and displays the same list as the
previous call to
BtLibDiscoverMultipleDevices.

Result Returns one of the following values:

btLibErrNoError
Success

btLibErrCanceled
User canceled discovery.

btLibErrNotOpen
The referenced Bluetooth library is not open.

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1965

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments This blocking call performs a full discovery for an application,
including name and feature retrieval and testing. This function
takes over the UI and presents a choice box to the user, allowing the
user to select multiple devices from the list of devices that were
discovered. This function does not return until the user chooses one
or more devices, or cancels.

Setting the showLastList parameter to true allows you to
present to the user the list of devices displayed in the previous call
to BtLibDiscoverMultipleDevices or
BtLibDiscoverSingleDevice. This feature can be useful
because a full discovery process takes approximately ten seconds.
The cached device list remains valid even after you close the library,
allowing other Bluetooth applications to use it.

Note that BtLibStartInquiry overwrites the cached device list.
If you are using the showLastList feature, you should avoid
calling BtLibStartInquiry between calls to
BtLibDiscoverMultipleDevices or
BtLibDiscoverSingleDevice.

Use BtLibGetSelectedDevices to retrieve the list of devices
that the user selected.

See Also BtLibGetSelectedDevices, BtLibDiscoverSingleDevice

Bluetooth Library: Management
Management Functions

1966 Palm OS Programmer’s API Reference

New BtLibDiscoverSingleDevice

Purpose Discover all available devices, present them in the user interface,
and allow the user to select one of these devices.

Declared In BtLib.h

Prototype Err BtLibDiscoverSingleDevice
(UInt16 btLibRefNum, Char *instructionTxt,
BtLibClassOfDeviceType *deviceFilterList,
UInt8 deviceFilterListLen,
BtLibDeviceAddressType *selectedDeviceP,
Boolean addressAsName, Boolean showLastList)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> instructionTxt
Text displayed at the top of the selection box.
Pass NULL to display the default text. The
default text is “Select a device:”

-> deviceFilterList
Array of BtLibClassOfDeviceTypes. This
function displays only the remote devices
whose class matches a class in this list. If
deviceFilterList is NULL, this function
displays all discovered devices.

-> deviceFilterListLen
Number of elements in deviceFilterList.

<- selectedDeviceP
Pointer to a BtLibDeviceAddressType
where this function stores the address of the
device the user selects. You need to allocate this
space before calling this function.

-> addressAsName
If true, display the Bluetooth addresses of the
remote devices instead of their names. This
option is available for debugging purposes.

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1967

-> showLastList
If true, causes all other parameters to be
ignored and displays the same list as the
previous call to
BtLibDiscoverSingleDevice.

Result Returns one of the following values:

btLibErrNoError
Success

btLibErrCanceled
User canceled the discovery.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments This blocking call performs a full discovery for an application,
including name and feature retrieval and testing. This function
takes over the UI and presents a choice box to the user, allowing the
user to select a device from the list of devices that were discovered.
This function does not return until the user chooses a device or
cancels.

Setting the showLastList parameter to true allows you to
present to the user the list of devices displayed in the previous call
to BtLibDiscoverSingleDevice or
BtLibDiscoverMultipleDevices. This feature can be useful
because a full discovery process takes approximately ten seconds.
The cached device list remains valid even after you close the library,
allowing other Bluetooth applications to use it.

Note that BtLibStartInquiry overwrites the cached device list.
If you are using the showLastList feature, you should avoid
calling BtLibStartInquiry between calls to
BtLibDiscoverSingleDevice or
BtLibDiscoverMultipleDevices.

See Also BtLibDiscoverMultipleDevices

Bluetooth Library: Management
Management Functions

1968 Palm OS Programmer’s API Reference

New BtLibGetGeneralPreference

Purpose Get one of the general management preferences.

Declared In BtLib.h

Prototype Err BtLibGetGeneralPreference
(UInt16 btLibRefNum, BtLibGeneralPrefEnum pref,
void *prefValue, UInt16 prefValueSize)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> pref General preference to get.

<- prefValue Pointer to a buffer to hold the value of the
preference. You must allocate this buffer. This
parameter must not be NULL.

-> prefValueSize
Size, in bytes, of the prefValue buffer. You
must set this size so it matches the size of the
retrieved preference.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
One or more parameters is invalid. Be sure that
the prefValueSize parameter matches the
size of the preference value.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1969

Comments Specify the preference with a member of the
BtLibGeneralPreferenceEnum.

BtLibGeneralPreferenceEnum

The BtLibGeneralPreferenceEnum enum specifies the general
preferences that can be accessed using the
BtLibSetGeneralPreference and
BtLibGetGeneralPreference functions.

typedef enum {
btLibPref_Name,
btLibPref_UnconnectedAccessible,
btLibPref_CurrentAccessible,
btLibPref_LocalClassOfDevice,
btLibPref_LocalDeviceAddress

} BtLibGeneralPrefEnum;

Value Descriptions

btLibPref_CurrentAccessible
This preference is a
BtLibAccessibleModeEnum indicating the
current accessibility mode of the local device.

btLibPref_LocalClassOfDevice
This preference is a
BtLibClassOfDeviceType indicating the
class of the local device. You should never set
this preference.

btLibPref_Name
This preference is a
BtLibFriendlyNameType containing the
user-friendly name of the local device. If you
retrieve this preference, you also need to
allocate a buffer and set the
BtLibFriendlyNameType’s name and
nameLength fields to the buffer pointer and
buffer length, respectively.

You should never set this preference.

Bluetooth Library: Management
Management Functions

1970 Palm OS Programmer’s API Reference

btLibPref_UnconnectedAccessible
This preference is a
BtLibAccessibleModeEnum indicating the
accessibility mode of the local device when it is
unconnected. You should never set this
preference.

See Also BtLibSetGeneralPreference

New BtLibGetRemoteDeviceName

Purpose Get the name of the remote device with the specified address.

Declared In BtLib.h

Prototype Err BtLibGetRemoteDeviceName (UInt16 btLibRefNum,
BtLibDeviceAddressTypePtr remoteDeviceP,
BtLibFriendlyNameType *nameP,
BtLibGetNameEnum retrievalMethod)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> remoteDeviceP
Pointer to a BtLibDeviceAddressType
containing the address of the device whose
name is desired.

<-> nameP Pointer to a BtLibFriendlyNameType
structure in which to store the results of the
lookup. You must allocate this structure and the
name buffer it points to. You also must specify
the size of the buffer in the nameLength field
of the structure. When the function returns, the
nameLength field contains the actual length of
the name. This parameter must not be NULL.

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1971

-> retrievalMethod
Method used to retrieve the user-friendly
remote device name. See BtLibGetNameEnum.

Result Returns one of the following values:

btLibErrNoError
The name structure was successfully retrieved
from the cache. No notification event will be
generated.

btLibErrBusy There is already a name request pending.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrPending
The results will be returned through a
notification.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments The Bluetooth library maintains a cache of 50 device names. If the
retrievalMethod parameter is btLibCachedThenRemote, this
function first checks the cache for a name. If the name is in the
cache, the value is returned immediately in the nameP parameter. If
the name is not in the cache, the function queries the remote device
for its name, forming a temporary ACL connection if one is not
already in place. In this case, the function returns
btLibErrPending and generates a
btLibManagementEventNameResult event when the name is
available.

Other values of the retrievalMethod parameter can instruct this
function to look for the name only in the cache or only on the remote
device. See BtLibGetNameEnum for more information.

BtLibGetNameEnum

The BtLibGetNameEnum enum specifies whether to retrieve a
device name from the cache, the remote device, or both.

Bluetooth Library: Management
Management Functions

1972 Palm OS Programmer’s API Reference

typedef enum {
btLibCachedThenRemote,
btLibCachedOnly,
btLibRemoteOnly

} BtLibGetNameEnum;

Value Descriptions

btLibCachedOnly
Look for a name in the cache. If the name is not
in the cache, fail.

btLibCachedThenRemote
Look for a name in the cache. If the name is not
in the cache, ask the remote device.

btLibRemoteOnly
Ignore any cached names and ask the remote
device for its name.

New BtLibGetSelectedDevices

Purpose Get the list of devices selected during the last call to
BtLibDiscoverMultipleDevices.

Declared In BtLib.h

Prototype Err BtLibGetSelectedDevices (UInt16 btLibRefNum,
BtLibDeviceAddressType *selectedDeviceArray,
UInt8 arraySize, UInt8 *numDevicesReturned)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

<->selectedDeviceArray
Array into which the results of the
BtLibDiscoverMultipleDevices function
should be placed. You must allocate this array
of BtLibDeviceAddressTypes.

-> arraySize Number of elements in the
selectedDeviceArray you allocated.

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1973

<- numDevicesReturned
Number of results placed in
selectedDeviceArray.

Result Returns btLibErrNoError if the query is successful. Returns
btLibErrNotOpen if the referenced Bluetooth library is not open
or btLibErrStackNotOpen if the Bluetooth stack failed to
initialize when the library was opened.

Comments No callback events.

See Also BtLibDiscoverMultipleDevices

New BtLibLinkConnect

Purpose Create a Bluetooth Asynchronous Connectionless (ACL) link.

Declared In BtLib.h

Prototype Err BtLibLinkConnect (UInt16 btLibRefNum,
BtLibDeviceAddressTypePtr remoteDeviceP)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> remoteDeviceP
Pointer to the a BtLibDeviceAddressType
containing the address of the remote device.

Result Returns one of the following values:

btLibErrPending
The results will be returned through a callback
event.

btLibErrAlreadyConnected
The device is already in a pre-existing
connection and cannot create a new connection.

Bluetooth Library: Management
Management Functions

1974 Palm OS Programmer’s API Reference

btLibErrBluetoothOff
The Bluetooth radio is off. The user can turn the
radio on and off with a setting in the
preferences panel.

btLibErrBusy A piconet is currently being created or
destroyed.

btlibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

btLibErrTooMany
Cannot create another ACL link because the
maximum allowed number has already been
reached.

Comments An ACL link is a packet-switched physical level connection between
two devices that is needed before the devices can form a RFCOMM
or L2CAP connection.

When the connection is established or if it fails to be established, the
btLibManagementEventAclConnectOutbound event is
generated.

See Also BtLibLinkDisconnect

New BtLibLinkDisconnect

Purpose Disconnect an existing ACL Link.

Declared In BtLib.h

Prototype Err BtLibLinkDisconnect (UInt16 btLibRefNum,
BtLibDeviceAddressTypePtr remoteDeviceP)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1975

-> remoteDeviceP
Pointer to a BtLibDeviceAddressType
containing the address of the remote device.

Result Returns one of the following values:

btLibErrNoError
The connection attempt was canceled before it
started. No event is generated.

btLibErrPending
When the link actually disconnects, a
btLibManagementEventAclDisconnect
callback event is generated.

btLibErrBusy Can’t disconnect the link because the piconet is
being destroyed.

btLibErrNoConnection
No link to the specified device exists.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments When the link disconnects, a
btLibManagementEventAclDisconnect event is generated.

See Also BtLibLinkConnect

Bluetooth Library: Management
Management Functions

1976 Palm OS Programmer’s API Reference

New BtLibLinkGetState

Purpose Get the state of an ACL link.

Declared In BtLib.h

Prototype Err BtLibLinkGetState(UInt16 btLibRefNum,
BtLibDeviceAddressTypePtr remoteDeviceP,
BtLibLinkPrefsEnum pref, void *linkState,
UInt16 linkStateSize)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> remoteDeviceP
Pointer to a BtLibDeviceAddressType
containing the address of the remote device.
This address identifies the ACL link.

-> pref Link preference to retrieve. See
BtLibLinkPrefsEnum.

<- linkState Pointer to a buffer to store the value of the
preference. You must allocate this buffer. This
parameter must not be NULL. See
BtLibLinkPrefsEnum for more information.

-> linkStateSize
Size, in bytes, of linkState buffer. This size
must match the size of the retrieved preference.

Result Returns one of the following values:

btLibErrNoError
Success. The linkState variable has been
filled in.

btLibErrNoAclLink
No link to the specified remote device exists.

btLibErrNotOpen
The referenced Bluetooth library is not open.

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1977

btLibErrParamError
The linkStateSize parameter is not same as
the size of the preference value.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments See the BtLibLinkSetState function description for a list of the
link states preferences.

See Also BtLibLinkSetState

New BtLibLinkSetState

Purpose Set the state of an ACL link

Declared In BtLib.h

Prototype Err BtLibLinkSetState (UInt16 btLibRefNum,
BtLibDeviceAddressTypePtr remoteDeviceP,
BtLibLinkPrefsEnum pref, void *linkState,
UInt16 linkStateSize)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> remoteDeviceP
The address of the remote device. This address
identifies the ACL link.

-> pref Link preference to set. See
BtLibLinkPrefsEnum.

-> linkState Pointer to the value of the preference. This
parameter must not be NULL. See
BtLibLinkPrefsEnum.

Bluetooth Library: Management
Management Functions

1978 Palm OS Programmer’s API Reference

-> linkStateSize
Size, in bytes, of the linkState value.

Result Returns one of the following values:

btLibErrPending
The results will be returned through a callback
event.

btLibErrFailed An attempt was made to encrypt a link before
authenticating it.

btLibErrNoAclLink
No link to the specified remote device exists.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
The preference cannot be set or
linkStateSize is invalid.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments Applications use this function to set the state of an ACL link. This
function may generate events depending on the preference you
change. The btLibManagementEventAuthentication
Complete event indicates the link authentication has completed.
The btLibManagementEventEncryptionChange indicates that
the encryption has been enabled or disabled.

BtLibLinkPrefsEnum

The BtLibLinkPrefsEnum enum specifies the link state
preferences that can be accessed with the BtLibLinkSetState
and BtLibLinkGetState functions.

typedef enum {
btLibLinkPref_Authenticated,
btLibLinkPref_Encrypted,
btLibLinkPref_LinkRole

} BtLibLinkPrefsEnum;

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1979

Value Descriptions

btLibLinkPref_Authenticated
This preference is a Boolean and indicates
whether the link has been authenticated or not.

btLibLinkPref_Encrypted
This preference is a Boolean and indicates
whether the link is encrypted or not.

btLibLinkPref_LinkRole
This preference is a
BtLibConnectionRoleEnum and indicates
whether the remote device is a master or a
slave. You cannot set this preference but you
can get its value.

See Also BtLibLinkGetState

New BtLibPiconetCreate

Purpose Create a piconet or reconfigure an existing piconet so the local
device is the master.

Declared In BtLib.h

Prototype Err BtLibPiconetCreate (UInt16 btLibRefNum,
Boolean unlockInbound, Boolean discoverable)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> unlockInbound
If true, the piconet accepts inbound
connections. Otherwise, the piconet only allows
outbound connections.

Bluetooth Library: Management
Management Functions

1980 Palm OS Programmer’s API Reference

-> discoverable
If true, configures the radio to be discoverable.
In other words, the radio responds to inquiries.
If false, configures the radio to be only
connectable. In other words, only devices that
know the radio’s Bluetooth device address can
connect to it. This parameter is ignored if
unlockInbound is false.

Result Returns one of the following values:

btLibErrNoError
Successfully created the piconet with the local
device as the master. No callback event is
generated.

btLibErrPending
An existing ACL link needs to switch roles
before this operation can complete.

btLibErrFailed A piconet already exists.

btLibErrInProgress
Another piconet is currently being created.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments If the accessibility of the radio changes due to this operation, a
btLibManagementEventAccessibilityChange event is
generated. When the piconet is created, or if the piconet fails to be
created, a btLibManagementEventPiconetCreated event is
generated. The status field of the BtLibManagementEventType
structure accompanying the event indicates whether the piconet
was created or not.

See Also BtLibPiconetDestroy, BtLibPiconetUnlockInbound,
BtLibPiconetLockInbound

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1981

New BtLibPiconetDestroy

Purpose Destroy the piconet by disconnecting links to all devices and
removing all restrictions on whether the local device is a master or a
slave.

Declared In BtLib.h

Prototype Err BtLibPiconetDestroy (UInt16 btLibRefNum)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

Result Returns one of the following values:

btLibErrNoError
Successfully destroyed the piconet. A
btLibManagementEventPiconetDestroy
ed event is not generated.

btLibErrPending
The piconet is being destroyed, and a
btLibManagementEventPiconetDestroy
ed event will be generated when the operation
succeeds or fails.

btLibErrBusy The piconet is already in the process of being
destroyed.

btLibErrNoPiconet
No piconet exists to be destroyed.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments A btLibManagementEventAclDisconnect event is generated
for each ACL link that is disconnected. When the piconet is
successfully destroyed or fails to be destroyed, a

Bluetooth Library: Management
Management Functions

1982 Palm OS Programmer’s API Reference

btLibManagementEventPiconetDestroyed is generated. The
status field of the BtLibManagementEventType structure
accompanying the event indicates whether the piconet was
destroyed or not.

See Also BtLibPiconetCreate

New BtLibPiconetLockInbound

Purpose Prevent remote devices from creating ACL links into the piconet.

Declared In BtLib.h

Prototype Err BtLibPiconetLockInbound (UInt16 btLibRefNum)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrBusy The piconet is in the process of being
destroyed.

btLibErrNoPiconet
No piconet exists.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments After locking inbound connections, outbound connections are still
allowed. Locking inbound connections maximizes the bandwidth
for members of the piconet to transmit data to each other.

See Also BtLibPiconetUnlockInbound

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1983

New BtLibPiconetUnlockInbound

Purpose Allow remote devices to create ACL links into the piconet.

Declared In BtLib.h

Prototype Err BtLibPiconetUnlockInbound
(UInt16 btLibRefNum, Boolean discoverable)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> discoverable
If true, configures the radio to be discoverable.
In other words, the radio responds to inquiries.
If false, configures the radio to be only
connectable. In other words, only devices that
know the radio’s Bluetooth device address can
connect to it.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrBusy The piconet is in the process of being
destroyed.

btLibErrNoPiconet
No piconet exists.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Bluetooth Library: Management
Management Functions

1984 Palm OS Programmer’s API Reference

Comments Allowing inbound connections lowers the bandwidth available to
transmit data between members of the piconet because the radio
must periodically scan for incoming links.

See Also BtLibPiconetLockInbound

New BtLibRegisterManagementNotification

Purpose Register a callback function to process events generated by
management functions.

Declared In BtLib.h

Prototype Err BtLibRegisterManagementNotification
(UInt16 btLibRefNum,
BtLibManagementProcPtr callbackP, UInt32 refCon)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> callbackP Pointer to a callback procedure to register. This
pointer must not be NULL. See
BtLibManagementCallback for more
information.

-> refCon Application-defined data to pass to the event
handler.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrAlreadyRegistered
The callback has already been registered with
the management entity.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
One or more parameters is invalid.

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1985

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

btLibErrTooMany
There is no space available to store the callback.
The management entity allows a maximum of
16 callbacks to be registered at a time.

Comments The management functions are asynchronous. That is, they return
immediately and generate events when the task actually completes
at a later time. To handle these events, you need to define a callback
function with the same prototype as
BtLibManagementCallback. Then you need to register your
callback function using
BtLibRegisterManagementNotification. For examples of
the callback events your callback function needs to handle, see the
Management Callback Events section.

Applications should unregister their management callbacks before
closing the Bluetooth library to prevent the callback table from
overflowing. The callback table holds a maximum of 16 entries.

See Also BtLibUnregisterManagementNotification

New BtLibSetGeneralPreference

Purpose Set one of the general management preferences.

Declared In BtLib.h

Prototype Err BtLibSetGeneralPreference
(UInt16 btLibRefNum, BtLibGeneralPrefEnum pref,
void *prefValue, UInt16 prefValueSize)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> pref General preference to set. See
BtLibGeneralPreferenceEnum.

Bluetooth Library: Management
Management Functions

1986 Palm OS Programmer’s API Reference

-> prefValue Pointer to the value of the preference. This
parameter must not be NULL. See
BtLibGeneralPreferenceEnum.

-> prefValueSize
Size, in bytes, of prefValue.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The results will be returned through a
notification.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
One or more parameters is invalid. Be sure that
prefValueSize matches the size of the
preference value.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments See the BtLibGetGeneralPreference function description for a
list of the preferences.

This function may generate events depending on the preference you
change. The btLibManagementEventAccessibilityChange
event indicates that the accessibility of the local device has changed.

See Also BtLibGetGeneralPreference

Bluetooth Library: Management
Management Functions

Palm OS Programmer’s API Reference 1987

New BtLibStartInquiry

Purpose Start a Bluetooth inquiry.

Declared In BtLib.h

Prototype Err BtLibStartInquiry (UInt16 btLibRefNum,
UInt8 timeout, UInt8 maxResp)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> timeout Time, in seconds, this inquiry is allowed to
take. If the inquiry does not complete within
this time, it is canceled. The actual time is
rounded to the nearest multiple of 1.28 seconds.
If you specify a timeout period larger than 60
seconds, this function acts as if you specified a
timeout period of 60 seconds. If this parameter
is 0, the timeout period defaults to 10.24
seconds as specified in the Generic Access
Profile.

-> maxResp Maximum number of responses the inquiry
accepts. Responses are not guaranteed to be
unique.

Result Returns one of the following values:

btLibErrPending
The results will be returned through callback
events.

btLibErrBluetoothOff
The Bluetooth radio is off. The user can turn the
radio on and off with a setting in the
preferences panel.

btLibErrInProgress
Another inquiry is already in progress.

Bluetooth Library: Management
Management Functions

1988 Palm OS Programmer’s API Reference

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments The function performs a low-level Bluetooth inquiry, as opposed to
a full device discovery. Specifically, inquiries started with this
function only return the Bluetooth address and the class of the
discovered device. This function does not have a user interface.

Every time a device is discovered, a
btLibManagementEventInquiryResult callback event is
generated. When the inquiry is complete, a
btLibManagementEventInquiryComplete callback event is
generated. If the application calls BtLibCancelInquiry, a
btLibManagementEventInquiryCanceled callback event is
generated.

See Also BtLibCancelInquiry

New BtLibUnregisterManagementNotification

Purpose Unregister a previously registered management callback.

Declared In BtLib.h

Prototype Err BtLibUnregisterManagementNotification
(UInt16 btLibRefNum,
BtLibManagementProcPtr callbackP)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> callbackP Pointer to the callback procedure to unregister.
This pointer must not be NULL.

Result Returns one of the following values:

Bluetooth Library: Management
Application-Defined Functions

Palm OS Programmer’s API Reference 1989

btLibErrNoError
Success.

btLibErrError The callback referenced by callbackP has not
been registered.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
One or more parameters are invalid.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments Applications should unregister their management callbacks before
closing the library to prevent the callback table from overflowing.
The callback table holds a maximum of 16 entries.

See Also BtLibRegisterManagementNotification

Application-Defined Functions
This section describes the callback functions that handle
management events. These functions are supplied by the developer
and can be named anything.

Bluetooth Library: Management
Application-Defined Functions

1990 Palm OS Programmer’s API Reference

New BtLibManagementCallback

Purpose Signal the result of a Bluetooth management event. When the event
takes place, this callback function is called.

Declared In BtLibTypes.h

Prototype void (*BtLibManagementProcPtr)
(BtLibManagementEventType *mEvent, UInt32 refCon)

Parameters -> mEvent BtLibManagementEventType structure
containing the event parameters.

-> refCon General purpose integer which you can use to
hold application-specific information. When
you register the callback with the
BtLibRegisterManagementNotificatio
n function, you can specify a value to pass to
this parameter.

Result Returns nothing.

Comments The event and status of the event are in the mEvent structure. See
Management Callback Events for more information.

You must register this function using the
BtLibRegisterManagementNotification function before it
starts receiving events.

Palm OS Programmer’s API Reference 1991

78
Bluetooth Library:
Sockets and Service
Discovery
The Bluetooth library uses sockets to represent L2CAP, RFCOMM,
and SDP connections. This chapter presents reference material for
the socket and SDP support provided by the Bluetooth library API:

Socket-Related Data Structures
This section lists some of the more important
types used by the Bluetooth library.

Socket Callback Events
The Bluetooth library socket API supports
L2CAP, RFCOMM, and SDP, the upper
protocols of the Bluetooth specification. As
with the management functions, the socket
functions are mostly asynchronous. To signal to
the application that socket operations have
completed, the Bluetooth library generates
socket callback events by calling a callback
function.

Socket Disconnection Error Codes
In addition to the standard error codes that can
accompany socket events, the status codes
accompanying the disconnection and
connection events can have the additional
values enumerated in this section.

Socket Functions The functions in this section perform general
socket tasks and tasks related to L2CAP and
RFCOMM sockets. The functions specific to
SDP sockets are in the next section.

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

1992 Palm OS Programmer’s API Reference

Service Discovery Protocol Functions
This section describes functions and macros
specific to the Bluetooth Service Discovery
Protocol (SDP).

Application-Defined Functions
This section describes the callback functions
that handle socket events.

The header file BtLib.h declares the Bluetooth library functions
and macros. The header file BtLibTypes.h declares the data
structures that you use with those functions and macros. For more
information about using the Bluetooth library, see the Palm OS
Programmer’s Companion Supplement: Bluetooth.

Socket-Related Data Structures
This section lists some of the more important types used by the
Bluetooth library.

New BtLibL2CapPsmType
The BtLibL2CapPsmType type represents a Protocol and Server
Multiplexer (PSM) value. See the “Logical Link and Adaptation
Protocol Specification” chapter of the Specification of the Bluetooth
System for more information about PSM values. The Bluetooth
library only supports two-byte PSM values.

typedef UInt16 BtLibL2CapPsmType;

New BtLibLanguageBaseTripletType
The BtLibLanguageBaseTripletType structure represents a
language base attribute identifier list attribute. See the “Service
Discovery Protocol” chapter of the Specification of the Bluetooth
System for more information.

typedef struct BtLibLanguageBaseTripletType {
UInt16 naturalLanguageIdentifier;

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

Palm OS Programmer’s API Reference 1993

UInt16 characterEncoding;
UInt16 baseAttributeID;

} BtLibLanguageBaseTripletType;

Field Descriptions

naturalLanguageIdentifier
A UInt16 representing a natural language. See
Language Constants for a set of constants that
can be used in this field.

characterEncoding
A UInt16 representing a character set
encoding. See Character Encoding Constants
for a set of constants that can be used in this
field.

baseAttributeID
Base attribute identifiers for attributes
represented in this language. See Attribute
Identifier Offsets for offsets that are added to
this value to get the attribute identifiers for
specific attributes represented in this language.

Language Constants

These constants are used in the naturalLanguageIdentifier
field of the BtLibLanguageBaseTripletType and are defined in
the ISO 639:1988 specification.

btLibLangAfar
btLibLangAbkihazian
btLibLangAfrikaans
btLibLangAmharic
btLibLangArabic
btLibLangAssamese
btLibLangAymara
btLibLangAzerbaijani
btLibLangBashkir
btLibLangByelorussian
btLibLangBulgarian
btLibLangBihari
btLibLangBislama

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

1994 Palm OS Programmer’s API Reference

btLibLangBengali
btLibLangTibetan
btLibLangBreton
btLibLangCatalan
btLibLangCorsican
btLibLangCzech
btLibLangWelsh
btLibLangDanish
btLibLangGerman
btLibLangBhutani
btLibLangGreek
btLibLangEnglish
btLibLangEsperanto
btLibLangSpanish
btLibLangEstonian
btLibLangBasque
btLibLangPersian
btLibLangFinnish
btLibLangFiji
btLibLangFaroese
btLibLangFrench
btLibLangFrisian
btLibLangIrish
btLibLangScotsGaelic
btLibLangGalician
btLibLangGuarani
btLibLangGujarati
btLibLangHausa
btLibLangHindi
btLibLangCroation
btLibLangHungarian
btLibLangArmenian
btLibLangInterlingua
btLibLangInterlingue
btLibLangInupiak
btLibLangIndonesian
btLibLangIcelandic
btLibLangItalian
btLibLangHebrew
btLibLangJapanese

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

Palm OS Programmer’s API Reference 1995

btLibLangYiddish
btLibLangJavanese
btLibLangGeorgian
btLibLangKazakh
btLibLangGreenlandic
btLibLangCambodian
btLibLangKannada
btLibLangKorean
btLibLangKashmiri
btLibLangKurdish
btLibLangKirghiz
btLibLangLatin
btLibLangLingala
btLibLangLaothian
btLibLangLithuanian
btLibLangLatvian
btLibLangMalagasy
btLibLangMaori
btLibLangMacedonian
btLibLangMalayalam
btLibLangMongolian
btLibLangMoldavian
btLibLangMarathi
btLibLangMalay
btLibLangMaltese
btLibLangBurmese
btLibLangNaura
btLibLangNepali
btLibLangDutch
btLibLangNorwegian
btLibLangOccitan
btLibLangOromo
btLibLangOriya
btLibLangPunjabi
btLibLangPolish
btLibLangPashto
btLibLangPortuguese
btLibLangQuechua
btLibLangRhaeto_Romance
btLibLangKirundi

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

1996 Palm OS Programmer’s API Reference

btLibLangRomanian
btLibLangRussian
btLibLangKinyarwanda
btLibLangSanskrit
btLibLangSindhi
btLibLangSangho
btLibLangSerbo_Croation
btLibLangSinghalese
btLibLangSlovak
btLibLangSlovenian
btLibLangSamoan
btLibLangShona
btLibLangSomali
btLibLangAlbanian
btLibLangSerbian
btLibLangSiswati
btLibLangSesotho
btLibLangSundanese
btLibLangSwedish
btLibLangSwahili
btLibLangTamil
btLibLangTelugu
btLibLangTajik
btLibLangThai
btLibLangTigrinya
btLibLangTurkmen
btLibLangTagalog
btLibLangSetswanna
btLibLangTonga
btLibLangTurkish
btLibLangTsonga
btLibLangTatar
btLibLangTwi
btLibLangUkranian
btLibLangUrdu
btLibLangUzbek
btLibLangVietnamese
btLibLangVolapuk
btLibLangWolof
btLibLangXhosa

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

Palm OS Programmer’s API Reference 1997

btLibLangYoruba
btLibLangChinese
btLibLangZulu

Character Encoding Constants

These constants are used to specify the character encoding used for
SDP attributes. More information about these character sets can be
found at http://www.iana.org/assignments/character-
sets.

btLibCharSet_US_ASCII
btLibCharSet_Adobe_Standard_Encoding
btLibCharSet_Adobe_Symbol_Encoding
btLibCharSet_ANSI_X3_110_1983
btLibCharSet_ASMO_449
btLibCharSet_Big5
btLibCharSet_Big5_HKSCS
btLibCharSet_BS_4730
btLibCharSet_BS_viewdata
btLibCharSet_CSA_Z243_4_1985_1
btLibCharSet_CSA_Z243_4_1985_2
btLibCharSet_CSA_Z243_4_1985_gr
btLibCharSet_CSN_369103
btLibCharSet_DEC_MCS
btLibCharSet_DIN_66003
btLibCharSet_dk_us
btLibCharSet_DS_2089
btLibCharSet_EBCDIC_AT_DE
btLibCharSet_EBCDIC_AT_DE_A
btLibCharSet_EBCDIC_CA_FR
btLibCharSet_EBCDIC_DK_NO
btLibCharSet_EBCDIC_DK_NO_A
btLibCharSet_EBCDIC_ES
btLibCharSet_EBCDIC_ES_A
btLibCharSet_EBCDIC_ES_S
btLibCharSet_EBCDIC_FI_SE
btLibCharSet_EBCDIC_FI_SE_A
btLibCharSet_EBCDIC_FR
btLibCharSet_EBCDIC_IT
btLibCharSet_EBCDIC_PT

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

1998 Palm OS Programmer’s API Reference

btLibCharSet_EBCDIC_UK
btLibCharSet_EBCDIC_US
btLibCharSet_ECMA_cyrillic
btLibCharSet_ES 23
btLibCharSet_ES2
btLibCharSet_EUC_JP
btLibCharSet_EUC_KR
btLibCharSet_Extended_UNIX_Code_Fixed_Width_for
_Japanese
btLibCharSet_GB2312
btLibCharSet_GB_1988_80
btLibCharSet_GB_2312_80
btLibCharSet_GOST_19768_74
btLibCharSet_greek7
btLibCharSet_greek7_old
btLibCharSet_greek_ccitt
btLibCharSet_HP_DeskTop
btLibCharSet_HP_Legal
btLibCharSet_HP_Math8
btLibCharSet_HP_Pi_font
btLibCharSet_hp_roman8
btLibCharSet_HZ_GB_2312
btLibCharSet_IBM037
btLibCharSet_IBM038
btLibCharSet_IBM273
btLibCharSet_IBM274
btLibCharSet_IBM275
btLibCharSet_IBM277
btLibCharSet_IBM278
btLibCharSet_IBM280
btLibCharSet_IBM281
btLibCharSet_IBM284
btLibCharSet_IBM285
btLibCharSet_IBM290
btLibCharSet_IBM297
btLibCharSet_IBM420
btLibCharSet_IBM423
btLibCharSet_IBM424
btLibCharSet_IBM437
btLibCharSet_IBM500

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

Palm OS Programmer’s API Reference 1999

btLibCharSet_IBM775
btLibCharSet_IBM850
btLibCharSet_IBM851
btLibCharSet_IBM852
btLibCharSet_IBM855
btLibCharSet_IBM857
btLibCharSet_IBM860
btLibCharSet_IBM861
btLibCharSet_IBM862
btLibCharSet_IBM863
btLibCharSet_IBM864
btLibCharSet_IBM865
btLibCharSet_IBM866
btLibCharSet_IBM868
btLibCharSet_IBM869
btLibCharSet_IBM870
btLibCharSet_IBM871
btLibCharSet_IBM880
btLibCharSet_IBM891
btLibCharSet_IBM903
btLibCharSet_IBM904
btLibCharSet_IBM905
btLibCharSet_IBM918
btLibCharSet_IBM1026
btLibCharSet_IBM00858
btLibCharSet_IBM00924
btLibCharSet_IBM01140
btLibCharSet_IBM01141
btLibCharSet_IBM01142
btLibCharSet_IBM01143
btLibCharSet_IBM01144
btLibCharSet_IBM01145
btLibCharSet_IBM01146
btLibCharSet_IBM01147
btLibCharSet_IBM01148
btLibCharSet_IBM01149
btLibCharSet_IBM_Symbols
btLibCharSet_IBM_Thai
btLibCharSet_IEC_P27_1
btLibCharSet_INIS

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

2000 Palm OS Programmer’s API Reference

btLibCharSet_INIS_8
btLibCharSet_INIS_cyrillic
btLibCharSet_INVARIANT
btLibCharSet_ISO_646_basic_1983
btLibCharSet_ISO_646_irv_1983
btLibCharSet_ISO_2022_CN
btLibCharSet_ISO_2022_CN_EXT
btLibCharSet_ISO_2022_JP
btLibCharSet_ISO_2022_JP_2
btLibCharSet_ISO_2022_KR
btLibCharSet_ISO_2033_1983
btLibCharSet_ISO_5427
btLibCharSet_ISO_5427_1981
btLibCharSet_ISO_5428_1980
btLibCharSet_ISO_6937_2_25
btLibCharSet_ISO_6937_2_add
btLibCharSet_ISO_8859_1
btLibCharSet_ISO_8859_10
btLibCharSet_iso_8859_13
btLibCharSet_iso_8859_14
btLibCharSet_ISO_8859_15
btLibCharSet_ISO_8859_1_Windows_3_0_Latin_1
btLibCharSet_ISO_8859_1_Windows_3_1_Latin_1
btLibCharSet_ISO_8859_2
btLibCharSet_ISO_8859_2_Windows_Latin_2
btLibCharSet_ISO_8859_3
btLibCharSet_ISO_8859_4
btLibCharSet_ISO_8859_5
btLibCharSet_ISO_8859_6
btLibCharSet_ISO_8859_6_E
btLibCharSet_ISO_8859_6_I
btLibCharSet_ISO_8859_7
btLibCharSet_ISO_8859_8
btLibCharSet_ISO_8859_8_E
btLibCharSet_ISO_8859_8_I
btLibCharSet_ISO_8859_9
btLibCharSet_ISO_8859_9_Windows_Latin_5
btLibCharSet_ISO_8859_supp
btLibCharSet_ISO_10367_box
btLibCharSet_ISO_10646_UCS_2

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

Palm OS Programmer’s API Reference 2001

btLibCharSet_ISO_10646_UCS_4
btLibCharSet_ISO_10646_UCS_Basic
btLibCharSet_ISO_10646_Unicode_Latin1
btLibCharSet_ISO_10646_UTF_1
btLibCharSet_iso_ir_90
btLibCharSet_ISO_Unicode_IBM_1261
btLibCharSet_ISO_Unicode_IBM_1264
btLibCharSet_ISO_Unicode_IBM_1265
btLibCharSet_ISO_Unicode_IBM_1268
btLibCharSet_ISO_Unicode_IBM_1276
btLibCharSet_IT
btLibCharSet_JIS_C6220_1969_jp
btLibCharSet_JIS_C6220_1969_ro
btLibCharSet_JIS_C6226_1978
btLibCharSet_JIS_C6226_1983
btLibCharSet_JIS_C6229_1984_a
btLibCharSet_JIS_C6229_1984_b
btLibCharSet_JIS_C6229_1984_b_add
btLibCharSet_JIS_C6229_1984_hand
btLibCharSet_JIS_C6229_1984_hand_add
btLibCharSet_JIS_C6229_1984_kana
btLibCharSet_JIS_Encoding
btLibCharSet_JIS_X0201
btLibCharSet_JIS_X0212_1990
btLibCharSet_JUS_I_B1_002
btLibCharSet_JUS_I_B1_003_mac
btLibCharSet_JUS_I_B1_003_serb
btLibCharSet_KOI8_R
btLibCharSet_KOI8_U
btLibCharSet_KSC5636
btLibCharSet_KS_C_5601_1987
btLibCharSet_latin_greek
btLibCharSet_Latin_greek_1
btLibCharSet_latin_lap
btLibCharSet_macintosh
btLibCharSet_Microsoft_Publishing
btLibCharSet_MNEM
btLibCharSet_MNEMONIC
btLibCharSet_MSZ_7795_3
btLibCharSet_NATS_DANO

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

2002 Palm OS Programmer’s API Reference

btLibCharSet_NATS_DANO_ADD
btLibCharSet_NATS_SEFI
btLibCharSet_NATS_SEFI_ADD
btLibCharSet_NC_NC00_10_81
btLibCharSet_NF_Z_62_010
btLibCharSet_NF_Z_62_010__1973_
btLibCharSet_NS_4551_1
btLibCharSet_NS_4551_2
btLibCharSet_PC8_Danish_Norwegian
btLibCharSet_PC8_Turkish
btLibCharSet_PT
btLibCharSet_PT2
btLibCharSet_SCSU
btLibCharSet_SEN_850200_B
btLibCharSet_SEN_850200_C
btLibCharSet_Shift_JIS
btLibCharSet_TIS_620
btLibCharSet_T_101_G2
btLibCharSet_T_61_7bit
btLibCharSet_T_61_8bit
btLibCharSet_UNICODE_1_1
btLibCharSet_UNICODE_1_1_UTF_7
btLibCharSet_UNKNOWN_8BIT
btLibCharSet_us_dk
btLibCharSet_UTF_16
btLibCharSet_UTF_16BE
btLibCharSet_UTF_16LE
btLibCharSet_UTF_7
btLibCharSet_UTF_8
btLibCharSet_Ventura_International
btLibCharSet_Ventura_Math
btLibCharSet_Ventura_US
btLibCharSet_videotex_suppl
btLibCharSet_VIQR
btLibCharSet_VISCII
btLibCharSet_Windows_31J
btLibCharSet_windows_1250
btLibCharSet_windows_1251
btLibCharSet_windows_1252
btLibCharSet_windows_1253

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

Palm OS Programmer’s API Reference 2003

btLibCharSet_windows_1254
btLibCharSet_windows_1255
btLibCharSet_windows_1256
btLibCharSet_windows_1257
btLibCharSet_windows_1258

Attribute Identifier Offsets

btLibServiceNameOffset
The offset from the baseAttributeID to get
the attribute identifier of the service name.

btLibServiceDescriptionOffset
The offset from the baseAttributeID to get
the attribute identifier of the service
description.

btLibProviderNameOffset
The offset from the baseAttributeID to get
the attribute identifier of the provider name.

New BtLibProfileDescriptorListEntryType
The BtLibProfileDescriptorListEntryType structure
represents an entry in a profile descriptor list attribute. See the
“Service Discovery Protocol” chapter of the Specification of the
Bluetooth System for more information about profile descriptor list
attributes.

typedef struct
BtLibProfileDescriptorListEntryType {

BtLibSdpUuidType profUUID;
UInt16 version;

} BtLibProfileDescriptorListEntryType;

Field Descriptions

profUUID The UUID of the profile.

version The version of the profile.

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

2004 Palm OS Programmer’s API Reference

New BtLibProtocolDescriptorListEntryType
The BtLibProtocolDescriptorListEntryType structure
represents an entry in a protocol descriptor list attribute. See the
“Service Discovery Protocol” chapter of the Specification of the
Bluetooth System for more information.

typedef struct
BtLibProtocolDescriptorListEntryType {

BtLibSdpUuidType protoUUID;
union {
BtLibL2CapPsmType psm;
BtLibRfCommServerIdType channel;

} param;
} BtLibProtocolDescriptorListEntryType;

Field Descriptions

protoUUID The UUID of the protocol.

param A union containing two members: psm and
channel. psm is applicable for a L2CAP
protocol descriptor and specifies the Protocol
and Service Multiplexor. channel is applicable
to a RFCOMM protocol descriptor and specifies
the server channel.

New BtLibRfCommServerIdType
The BtLibRfCommServerIdType type represents a RFCOMM
server channel. See the “RFCOMM with TS 07.10” chapter of the
Specification of the Bluetooth System for more information about
server channels.

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

Palm OS Programmer’s API Reference 2005

typedef UInt8 BtLibRfCommServerIdType;

New BtLibSdpAttributeDataType
The BtLibSdpAttributeDataType union is used to encapsulate
an SDP attribute or a list entry in an SDP attribute. The
BtLibSdpServiceRecordGetAttribute function gets an
attribute or a list entry and return its contents in a
BtLibSdpAttributeDataType. The
BtLibSdpServiceRecordSetAttribute function sets an
attribute or list entry according to the contents of a
BtLibSdpAttributeDataType. This type supports the universal
attributes defined in the Specification of the Bluetooth System.

typedef union BtLibSdpAttributeDataType {
BtLibSdpUuidType serviceClassUuid;
UInt32 serviceRecordState;
BtLibSdpUuidType serviceIdUuid;
BtLibProtocolDescriptorListEntryType
protocolDescriptorListEntry;

BtLibSdpUuidType browseGroupUuid;
BtLibLanguageBaseTripletType
languageBaseTripletListEntry;

UInt32 timeToLive;
UInt8 availability;
BtLibProfileDescriptorListEntryType
profileDescriptorListEntry;

BtLibUrlType documentationUrl;
BtLibUrlType clientExecutableUrl;
BtLibUrlType iconUrl;
BtLibStringType serviceName;
BtLibStringType providerName;

} BtLibSdpAttributeDataType;

Note that if you’re retrieving a string or a URL using the
BtLibSdpServiceRecordGetAttribute function, you first
need to allocate a buffer in addition to this union. This buffer must
be large enough to contain the anticipated size of the string or URL.
You must also initialize the string pointer and string length fields of
the appropriate BtLibAttributeDataType union member. For

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

2006 Palm OS Programmer’s API Reference

example, if you’re retrieving an icon URL, you need to set
iconURL.url to point to the buffer. You also need to set
iconURL.urllen to the length of the buffer.

See Also BtLibSdpUuidType,
BtLibProtocolDescriptorListEntryType,
BtLibProfileDescriptorListEntryType,
BtLibLanguageBaseTripletType, BtLibUrlType,
BtLibStringType

New BtLibSdpAttributeIdType
The BtLibSdpAttributeIdType type represents a SDP attribute
identifier.

typedef UInt16 BtLibSdpAttributeIdType;

The following constants are defined by the Bluetooth library. They
represent the universal attributes in the Specification of the Bluetooth
System.

Universal Attribute IDs

btLibServiceClassIdList
btLibServiceRecordState
btLibServiceId
btLibProtocolDescriptorList
btLibBrowseGroupList
btLibLanguageBaseAttributeIdList
btLibTimeToLive
btLibAvailability
btLibProfileDescriptorList
btLibDocumentationUrl
btLibClientExecutableUrl
btLibIconUrl

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

Palm OS Programmer’s API Reference 2007

New BtLibSdpRecordHandle
The BtLibSdpRecordHandle type, also called an SDP memory
handle, provides a memory handle to an SDP memory record.

typedef MemHandle BtLibSdpRecordHandle;

A SDP memory record can have two roles: it can contain a local SDP
service record or it can refer to an SDP service record on a remote
device. In the latter role, the SDP memory record is said to be
mapped to a service record on the remote device. The
BtLibSdpServiceRecordMapRemote function performs this
mapping.

New BtLibSdpRemoteServiceRecordHandle
The BtLibSdpRemoteServiceRecordHandle type represents a
SDP service record handle on a remote device as defined in the
“Service Discovery Protocol” chapter of the Specification of the
Bluetooth System. The documentation refers to this type as a remote
service record handle.

typedef UInt32
BtLibSdpRemoteServiceRecordHandle;

Note that this type is different from the BtLibSdpRecordHandle
type, which refers to a memory chunk containing an SDP service
record.

New BtLibSdpUuidSizeEnum
The BtLibSdpUuidSizeEnum enum specifies the sizes that a
UUID can have. See BtLibSdpUuidType for more information.

typedef enum {
btLibUuidSize16 = 2,
btLibUuidSize32 = 4,
btLibUuidSize128 = 16

} BtLibSdpUuidSizeEnum;

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

2008 Palm OS Programmer’s API Reference

Value Descriptions

btLibUuidSize16
16-bit UUID

btLibUuidSize32
32-bit UUID

btLibUuidSize128
Full size 128-bit UUID

New BtLibSdpUuidType
The BtLibSdpUuidType structure represents a Universally
Unique Identifier (UUID). A UUID is a 128-bit value that is
generated in a manner that guarantees that it is different from every
other UUID.

The “Service Discovery Protocol” chapter of the Specification of the
Bluetooth System reserves a set of UUIDs for common Bluetooth
services and protocols. You can specify these with 32 bits—the
remaining 96 bits have a fixed value. A subset of these can be
specified with 16 bits zero-extended to 32 bits. Therefore you can
specify a UUID using 16, 32, or 128 bits.

You generally don’t set this type directly. Instead, you use the
BtLibSdpUuidInitialize macro.

typedef struct BtLibSdpUuidType {
BtLibSdpUuidSizeEnum size;
UInt8 UUID[16];

} BtLibSdpUuidType;

Field Descriptions

size The number of bits used to specify the UUID.
See BtLibSdpUuidSizeEnum.

UUID The value of the UUID. If you’re setting the
value of this field, use the
BtLibSdpUuidInitialize macro.

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

Palm OS Programmer’s API Reference 2009

Predefined UUIDs

btLibSdpUUID_SC_SERVICE_DISCOVERY_SERVER
btLibSdpUUID_SC_BROWSE_GROUP_DESC
btLibSdpUUID_SC_PUBLIC_BROWSE_GROUP
btLibSdpUUID_SC_SERIAL_PORT
btLibSdpUUID_SC_LAN_ACCESS_PPP
btLibSdpUUID_SC_DIALUP_NETWORKING
btLibSdpUUID_SC_IRMC_SYNC
btLibSdpUUID_SC_OBEX_OBJECT_PUSH
btLibSdpUUID_SC_OBEX_FILE_TRANSFER
btLibSdpUUID_SC_IRMC_SYNC_COMMAND
btLibSdpUUID_SC_HEADSET
btLibSdpUUID_SC_CORDLESS_TELEPHONY
btLibSdpUUID_SC_INTERCOM
btLibSdpUUID_SC_FAX
btLibSdpUUID_SC_HEADSET_AUDIO_GATEWAY
btLibSdpUUID_SC_WAP
btLibSdpUUID_SC_WAP_CLIENT
btLibSdpUUID_SC_PNP_INFO
btLibSdpUUID_SC_GENERIC_NETWORKING
btLibSdpUUID_SC_GENERIC_FILE_TRANSFER
btLibSdpUUID_SC_GENERIC_AUDIO
btLibSdpUUID_SC_GENERIC_TELEPHONY

btLibSdpUUID_PROT_SDP
btLibSdpUUID_PROT_RFCOMM
btLibSdpUUID_PROT_TCS_BIN
btLibSdpUUID_PROT_L2CAP
btLibSdpUUID_PROT_IP
btLibSdpUUID_PROT_UDP
btLibSdpUUID_PROT_TCP
btLibSdpUUID_PROT_TCS_AT
btLibSdpUUID_PROT_OBEX
btLibSdpUUID_PROT_FTP
btLibSdpUUID_PROT_HTTP
btLibSdpUUID_PROT_WSP

Bluetooth Library: Sockets and Service Discovery
Socket-Related Data Structures

2010 Palm OS Programmer’s API Reference

New BtLibSocketEventType
The BtLibSocketEventType structure contains detailed
information regarding a socket callback event. All socket events
have some common data. Most socket events have additional data
specific to those events. The specific data is stored in a union that is
part of the BtLibSocketEvent data structure.

typedef struct _BtLibSocketEventType {
BtLibSocketEventEnum event;
BtLibSocketRef socket;
Err status;
union
{
...

} eventData;
} BtLibSocketEventType,

*BtLibSocketEventTypePtr;

Field Descriptions

event BtLibSocketEventEnum enum member that
indicates which socket event has occurred. See
Socket Callback Events.

socket Socket associated with the event.

status Status of the event. The Socket Callback Events
section gives more details about how to
interpret this field for specific events.

eventData Data associated with the event. The member of
this union that is valid depends on the event.
See Socket Callback Events for more
information.

New BtLibSocketRef
The BtLibSocketRef type identifies a socket.

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

Palm OS Programmer’s API Reference 2011

typedef Int16 BtLibSocketRef;

New BtLibStringType
The BtLibStringType structure represents a string in an SDP
attribute.

typedef struct BtLibStringType {
Char *str;
UInt16 strLen;

} BtLibStringType;

Field Descriptions

str An array of characters representing the string.
This array is not null-terminated.

strLen The length of the string.

New BtLibUrlType
The BtLibUrlType structure represents a uniform resource locator
in an SDP attribute.

typedef struct BtLibUrlType {
Char *url;
UInt16 urlLen;

} BtLibUrlType;

Field Descriptions

url An array of characters representing the URL.
This array is not null-terminated.

urlLen The length of the string.

Socket Callback Events
The Bluetooth library socket API supports L2CAP, RFCOMM, and
SDP, the upper protocols of the Bluetooth specification. As with the

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

2012 Palm OS Programmer’s API Reference

management functions, the socket functions are mostly
asynchronous. To signal to the application that socket operations
have completed, the Bluetooth library generates a socket callback
events by calling a callback function.

You specify the callback function when you create a socket. When
an event occurs, the callback function is called with two parameters:
a pointer to a BtLibSocketEventType structure and a pointer to
a user-defined structure.

The BtLibSocketEventType structure contains an event field,
which indicates the reason the callback is called, a status field,
which indicates status information associated with the event, a
socket field, which indicates the socket associated with the event,
and a union of several structures. The member of the union that is
valid depends on the event. The meaning of the events is described
in the following sections.

btLibSocketEventConnectedInbound
A remote connection has been accepted because the application has
called BtLibSocketRespondToConnection.

For this event, the eventData field contains the following field:

BtLibSocketRef newSocket;

This BtLibSocketRef contains the reference to the new socket.

If the remote device requests a L2CAP connection, this event is sent
to the L2CAP listener socket with a PSM that matches the PSM of
the requested connection. The Bluetooth library creates a new socket
that exchanges data with the remote device.

If the remote device requests an RFCOMM connection, this event is
sent to the RFCOMM listener socket with a server channel that
matches the server channel of the requested connection. The
Bluetooth library converts the listener socket into socket that
exchanges data with the remote device.

btLibSocketEventConnectedOutbound
An outbound connection initiated by a call to
BtLibSocketConnect has completed. The status field is

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

Palm OS Programmer’s API Reference 2013

btLibErrNoError if the connection has completed successfully.
Otherwise, the status field indicates why the connection failed.

btLibSocketEventConnectRequest
A remote device has requested a connection.

You must respond to this event with a call to
BtLibSocketRespondToConnection.

For this event, the eventData field contains the following field:

BtLibDeviceAddressType requestingDevice;

This BtLibDeviceAddressType contains the address of the
remote device requesting the connection.

If the remote device requests a L2CAP connection, this event is sent
to the L2CAP listener socket with a PSM that matches the PSM of
the request.

If the remote device requests an RFCOMM connection, this event is
sent to the RFCOMM listener socket with a server channel that
matches the server channel of the request.

To convert a socket into a listener socket use the
BtLibSocketListen function.

btLibSocketEventData
Data has been received on a socket.

For this event, the eventData field contains the following
structure:

struct {
UInt16 dataLen;
UInt8 *data;

} data;

Value Descriptions

dataLen The size, in bytes, of the received data.

data A pointer to the received data.

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

2014 Palm OS Programmer’s API Reference

btLibSocketEventDisconnected
The connection has been lost or one of the devices has disconnected.
The socket is now invalid. The status field indicates the reason for
the disconnection.

btLibSocketEventSdpServiceRecordHandle
A request for remote service records matching a list of service
classes has completed. The application initiated this request by
calling the BtLibSdpServiceRecordsGetByServiceClass
function.

If the status field is btLibErrNoError, the SDP operation
completed successfully, and the eventData field contains valid
information. Otherwise the SDP operation failed, and the status
field indicates the reason for the failure.

For this event, the eventData field contains the following
structure:

struct {
UInt16 numSrvRec;
BtLibSdpRemoteServiceRecordHandle
*serviceRecordList;

} sdpServiceRecordHandles;

Value Descriptions

numSrvRec Number of remote service record handles in the
returned array.

serviceRecordList
An array of
BtLibSdpRemoteServiceRecordHandles
for the service records matching the service
class list.

btLibSocketEventSdpGetAttribute
An attribute request has completed. The application initiated this
request by calling the BtLibSdpServiceRecordGetAttribute
function.

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

Palm OS Programmer’s API Reference 2015

If the status field is btLibErrNoError, the operation completed
successfully, and the eventData field contains valid data.
Otherwise the operation failed, and the status field indicates the
reason for the failure.

For this event, the eventData field contains the following
structure:

struct {
BtLibSdpAttributeIdType attributeID;
BtLibSdpRecordHandle recordH;
union {
...

} info;
} sdpAttribute;

Value Descriptions

attributeID The attribute identifier of the attribute.

recordH A handle identifying the SDP memory record
from which the attribute is retrieved.

info A union containing information specific to the
event. See The info Field.

The info Field

For this event, the info field contains the following structure:

struct {
BtLibSdpAttributeDataType *attributeValues;
UInt16 listNumber;
UInt16 listEntry;

} data;

Value Descriptions

attributeValues
A BtLibSdpAttributeDataType containing
the value of the attribute or list entry.

listNumber
The index of the list in which this list entry
appears or 0 if the attribute is not a protocol
descriptor list. The index of the first list is 0.

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

2016 Palm OS Programmer’s API Reference

listEntry
The index of the list entry within the list or 0 if
the attribute is not a list. The index of the first
entry is 0.

btLibSocketEventSdpGetStringLen
A string or URL length request has completed. The application
initiated this request by calling
BtLibSdpServiceRecordGetStringOrUrlLength.

If the status field is btLibErrNoError, the operation completed
successfully, and length can be found in the eventData field.
Otherwise the operation failed, and the status field indicates the
reason for the failure.

For this event, the eventData field contains the following
structure:

struct {
BtLibSdpAttributeIdType attributeID;
BtLibSdpRecordHandle recordH;
union {
...

} info;
} sdpAttribute;

Value Descriptions

attributeID The attribute identifier of the attribute.

recordH A handle identifying the SDP memory record
from which the string length is retrieved.

info A union containing information specific to the
event. See The info Field.

The info Field

For this event, the info field contains the following field:

UInt16 strLength;

This field contains the length of the string or URL represented by
the attribute. Bluetooth strings and URLs are not null-terminated.

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

Palm OS Programmer’s API Reference 2017

btLibSocketEventSdpGetNumListEntries
A number of list entries request has completed. The application
initiated this request by calling
BtLibSdpServiceRecordGetNumListEntries.

If the status field is btLibErrNoError, the operation completed
successfully, and the number of list entries can be found in the
eventData field. Otherwise the operation failed, and the status
field indicates the reason for the failure.

For this event, the eventData field contains the following
structure:

struct {
BtLibSdpAttributeIdType attributeID;
BtLibSdpRecordHandle recordH;
union {
...

} info;
} sdpAttribute;

Value Descriptions

attributeID The attribute identifier of the attribute.

recordH A handle identifying the SDP memory record
from which the number of list entries is
retrieved.

info A union containing information specific to the
event. See The info Field.

The info Field

For this event, the info field contains the following field:

UInt16 numItems;

This field contains the number of entries in the list attribute.

btLibSocketEventSdpGetNumLists
A number of lists request has completed. The application initiated
this request by calling BtLibSdpServiceRecordGetNumLists.

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

2018 Palm OS Programmer’s API Reference

If the status field is btLibErrNoError, the operation completed
successfully, and the number of lists can be found in the
eventData field. Otherwise the operation failed, and the status
field indicates the reason for the failure.

For this event, the eventData field contains the following
structure:

struct {
BtLibSdpAttributeIdType attributeID;
BtLibSdpRecordHandle recordH;
union {
...

} info;
} sdpAttribute;

Value Descriptions

attributeID The attribute identifier of the attribute.

recordH A handle identifying the SDP memory record
from which the number of lists is retrieved.

info A union containing information specific to the
event. See The info Field.

The info Field

For this event, the info field contains the following field:

UInt16 numItems;

This field contains the number of lists in the protocol list descriptor
attribute.

btLibSocketEventSdpGetRawAttribute
A get raw attribute request has completed. The application initiated
the request by calling
BtLibSdpServiceRecordGetRawAttribute.

If the status field is btLibErrNoError, the operation completed
successfully, and the raw attribute can be found in the eventData
field. Otherwise the operation failed, and the status field indicates
the reason for the failure.

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

Palm OS Programmer’s API Reference 2019

For this event, the eventData field contains the following
structure:

struct {
BtLibSdpAttributeIdType attributeID;
BtLibSdpRecordHandle recordH;
union {
...

} info;
} sdpAttribute;

Value Descriptions

attributeID The attribute identifier of the attribute.

recordH A handle identifying the SDP memory record
from which the raw attribute is retrieved.

info A union containing information specific to the
event. See The info Field.

The info Field

For this event, the info field contains the following structure:

struct {
UInt16 valSize;
UInt8 *value;

} rawData;

Value Descriptions

valSize Number of size, in bytes, of the raw attribute
value.

value Byte array containing the raw attribute value.

btLibSocketEventSdpGetRawAttributeSize
A get raw attribute size request has completed. The application
initiated this request by calling
BtLibSdpServiceRecordGetSizeOfRaw Attribute.

If the status field is btLibErrNoError, the operation completed
successfully, and the size of the attribute can be found in the

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

2020 Palm OS Programmer’s API Reference

eventData field. Otherwise the operation failed, and the status
field indicates the reason for the failure.

For this event, the eventData field contains the following
structure:

struct {
BtLibSdpAttributeIdType attributeID;
BtLibSdpRecordHandle recordH;
union {
...

} info;
} sdpAttribute;

Value Descriptions

attributeID The attribute identifier of the attribute.

recordH A handle identifying the SDP memory record
from which the size of the raw attribute is
retrieved.

info A union containing information specific to the
event. See The info Field.

The info Field

For this event, the info field contains the following field:

UInt16 valSize;

This field contains the size, in bytes, of the raw attribute value.

btLibSocketEventSdpGetServerChannelBy
Uuid
A get server channel request has completed. The application
initiated this request by calling
BtLibSdpGetServerChannelByUuid.

If the status field is btLibErrNoError, the operation completed
successfully, and the server channel can be found in the eventData
field. Otherwise, the operation failed, and the status field
indicates the reason for the failure.

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

Palm OS Programmer’s API Reference 2021

For this event, the eventData field contains the following
structure:

struct {
BtLibSdpRemoteServiceRecordHandle
remoteHandle;

union {
...

} param;
} sdpByUuid;

Value Descriptions

remoteHandle The handle for the remote SDP service record.

param A union containing information that depends
on the event. See The param Field.

The param Field

For this event, the param field contains the following field:

BtLibRfCommServerIdType channel;

This BtLibRfCommServerIdType contains the RFCOMM server
channel represented by the SDP service record.

btLibSocketEventSdpGetPsmByUuid
A get PSM request has completed. The application initiated this
request by calling BtLibSdpGetPSMByUuid.

If the status field is btLibErrNoError, the operation completed
successfully, and the server channel can be found in the eventData
field. Otherwise, the operation failed, and the status field
indicates the reason for the failure.

For this event, the eventData field contains the following
structure:

struct {
BtLibSdpRemoteServiceRecordHandle
remoteHandle;

union {
...

} param;

Bluetooth Library: Sockets and Service Discovery
Socket Callback Events

2022 Palm OS Programmer’s API Reference

} sdpByUuid;

Value Descriptions

remoteHandle The handle for the remote SDP service record.

param A union containing information that depends
on the event. See The param Field.

The param Field

For this event, the param field contains the following field:

BtLibL2CapPsmType psm;

This BtLibL2CapPsmType contains the PSM value of the L2CAP
channel represented by the SDP service record.

btLibSocketEventSendComplete
A send request has completed. The application initiated this request
by calling BtLibSocketSend.

For this event, the eventData field contains the following
structure:

struct {
UInt16 dataLen;
UInt8 *data;

} data;

Value Descriptions

dataLen The number of bytes of data that were actually
sent.

data Not used. This variable does not contain any
valid information.

Error Conditions

btLibErrNoError
Success.

btLibErrNoAclLink
No ACL Link.

Bluetooth Library: Sockets and Service Discovery
Socket Disconnection Error Codes

Palm OS Programmer’s API Reference 2023

Socket Disconnection Error Codes
In addition to the standard error codes that can accompany socket
events, the status codes accompanying the
btLibSocketEventConnectedInbound,
btLibSocketEventConnectedOutbound, and
btLibSocketEventDisconnected events can have the following
additional values:

btLibL2DiscConfigOptions
Configuration failed due to an unrecognized
configuration option.

btLibL2DiscConfigReject
Configuration was rejected (unknown reason).

btLibL2DiscConfigUnacceptable
Configuration failed due to unacceptable
parameters.

btLibL2DiscConnNoResources
The remote device is out of resources.

btLibL2DiscConnPsmUnsupported
The remote device does not support the
requested protocol service (PSM).

btLibL2DiscConnSecurityBlock
The remote device's security system denied the
connection.

btLibL2DiscLinkDisc
The underlying ACL Link was disconnected.

btLibL2DiscQosViolation
The connection was terminated due to a
Quality of Service (QOS) violation.

btLibL2DiscReasonUnknown
Disconnection occurred for an unknown
reason.

btLibL2DiscRequestTimeout
An L2CAP request timed out.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

2024 Palm OS Programmer’s API Reference

btLibL2DiscSecurityBlock
The local security manager refused the
connection attempt.

btLibL2DiscUserRequest
Disconnection was requested by either the local
or remote device.

Socket Functions
The Bluetooth library uses sockets to represent L2CAP, RFCOMM,
and SDP connections. The functions in this section perform general
socket tasks and tasks related to L2CAP and RFCOMM sockets. The
functions specific to SDP sockets are in the Service Discovery
Protocol Functions section.

New BtLibSocketAdvanceCredit

Purpose Advance credit to a given RFCOMM connection socket.

Declared In BtLib.h

Prototype Err BtLibSocketAdvanceCredit (UInt16 btLibRefNum,
BtLibSocketRef socket, UInt8 credit)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket RFCOMM socket reference number.

-> credit Number credits to add to the total number of
credits for this socket. The total number of
credits represents the number of packets the
remote device can send before data flow stops.

Result Returns one of the following values:

btLibErrNoError
Success

btLibErrFailed Too many credits advanced.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

Palm OS Programmer’s API Reference 2025

btLibErrSocket The specified socket is invalid.

btLibErrSocketProtocol
The specified socket is not an RFCOMM socket.

btLibErrSocketRole
The specified socket is not connected.

Comments RFCOMM uses a credit based flow control mechanism. For each
credit the connection has, one packet of data can be sent. When the
credits are spent, data flow stops until you advance more credits
using this function.

Multiple calls to this function have a cumulative effect.

New BtLibSocketClose

Purpose Close a socket, free associated resources, and kill all associated
socket connections.

Declared In BtLib.h

Prototype Err BtLibSocketClose (UInt16 btLibRefNum,
BtLibSocketRef socket)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number of socket to close.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrSocket
The specified socket is invalid.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

2026 Palm OS Programmer’s API Reference

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments No callback events are generated when closing a socket.

See Also BtLibSocketCreate, BtLibSocketListen,
BtLibSocketConnect, BtLibSocketRespondToConnection

New BtLibSocketConnect

Purpose Create an outbound L2CAP or RFCOMM connection.

Declared In BtLib.h

Prototype Err BtLibSocketConnect (UInt16 btLibRefNum,
BtLibSocketRef socket,
BtLibSocketConnectInfoType *connectInfo)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number of socket to connect.

-> connectInfo BtLibSocketConnectInfoType containing
Bluetooth device address and protocol-specific
connection information.

Result Returns one of the following values:

btLibErrPending
The results will be returned through a callback
event.

btLibErrNoAclLink
An ACL link for the remote device does not
exist

btLibErrNotOpen
The referenced Bluetooth library is not open.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

Palm OS Programmer’s API Reference 2027

btLibErrSocket The specified socket is invalid.

btLibErrSocketProtocol
The protocol of the specified socket is not
supported. This function only supports the
L2CAP and RFCOMM protocols.

btLibErrSocketRole
The specified socket is already connected or
listening.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments If the connection succeeds, the
btLibSocketEventConnectedOutbound event is generated and
its status field is set to btLibErrNoError. If connection fails, the
same event is generated with a non-zero status field, or a
btLibSocketEventDisconnected is generated. In both cases,
the status field indicates the reason for the failure.

If the connection succeeds, the btLibSocketEventData event is
generated whenever data is received from the remote device. When
the channel disconnects, a btLibSocketEventDisconnected
event is generated.

BtLibSocketConnectInfoType

The BtLibSocketConnectInfoType structure allows you to
specify the address of the remote device and data specific to the
protocol of the socket. The protocol-specific data is stored as a
union; the member of the union that is valid depends on the
protocol.

typedef struct BtLibSocketConnectInfoType {
BtLibDeviceAddressTypePtr remoteDeviceP;
union {
...

} data;
} BtLibSocketConnectInfoType;

Bluetooth Library: Sockets and Service Discovery
Socket Functions

2028 Palm OS Programmer’s API Reference

Field Description

remoteDeviceP A pointer to a BtLibDeviceAddressType
that contains the address of the remote device.

data A union containing protocol-specific
information. This union has two members:
L2Cap, and RfComm.

L2Cap

Use the L2Cap union member if you’re setting up a L2CAP socket.
This member contains the following structure:

struct {
BtLibL2CapPsmType remotePsm;
UInt16 minRemoteMtu;
UInt16 localMtu;

} L2Cap;

Field Descriptions

remotePsm A BtLibL2CapPsmType representing the
protocol and service multiplexer (PSM)
identifier of the protocol to which this socket
should connect. This identifier is obtained
using the Service Discovery Protocol (SDP).

minRemoteMtu The minimum MTU, or packet size, that your
application can support.

localMtu The MTU, or packet size, of the local device.

RfComm

Use the RfComm union member if you’re setting up a RFCOMM
socket. This member contains the following structure:

struct {
BtLibRfCommServerIdType remoteService;
UInt16 maxFrameSize;
UInt8 advancedCredit;

} RfComm;

Field Descriptions

Bluetooth Library: Sockets and Service Discovery
Socket Functions

Palm OS Programmer’s API Reference 2029

remoteService A BtLibRfCommServerIdType representing
the RFCOMM service channel on the remote
device to which this socket should connect.
This identifier is obtained using the Service
Discovery Protocol (SDP).

maxFrameSize The maximum frame size your application can
handle. This value must be between
BT_RF_MINFRAMESIZE and
BT_RF_MAXFRAMESIZE. If your application
can handle any frame size, set this value to
BT_RF_DEFAULT_FRAMESIZE.

advancedCredit An amount of credit the socket advances to the
remote device when it successfully connects.
Additional credit can be advanced using the
BtLibSocketAdvanceCredit function once
the connection has been established.

See Also BtLibSocketSend, BtLibSocketClose

New BtLibSocketCreate

Purpose Create a socket with foreground notification. The Bluetooth library
supports a maximum of 16 socket connections.

Declared In BtLib.h

Prototype Err BtLibSocketCreate (UInt16 btLibRefNum,
BtLibSocketRef *socketRefP,
BtLibSocketProcPtr callbackP, UInt32 refCon,
BtLibProtocolEnum socketProtocol)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

<- socketRefP Pointer to an allocated BtLibSocketRef that
contains the socket value upon return. This
pointer must not be NULL.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

2030 Palm OS Programmer’s API Reference

-> callbackP Callback procedure used to respond to socket
events. This value must not be NULL.

-> refCon Caller-defined data to pass to the callback
procedure.

-> socketProtocol
Protocol (L2CAP, RFCOMM, or SDP) to use
with this socket.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
Either socketRefP or callbackP is NULL.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

btLibErrTooMany
The maximum number of sockets allocated for
the system has already been reached. The
Bluetooth library supports a maximum of 16
socket connections.

Comments No callback events are generated when creating a socket.

Before terminating, applications should close all of the sockets that
they have created.

See Also BtLibSocketConnect, BtLibSocketListen,
BtLibSocketClose

Bluetooth Library: Sockets and Service Discovery
Socket Functions

Palm OS Programmer’s API Reference 2031

New BtLibSocketGetInfo

Purpose Retrieve information for a currently open socket.

Declared In BtLib.h

Prototype Err BtLibSocketGetInfo (UInt16 btLibRefNum,
BtLibSocketRef socket,
BtLibSocketInfoEnum infoType, void *valueP,
UInt32 valueSize)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number for the socket to query.

-> infoType Type of information to retrieve. See
BtLibSocketInfoEnum.

<- valueP Buffer into which this function stores the result.
You must allocate this buffer.

-> valueSize Size, in bytes, of the valueP buffer. This size
must match the size of the retrieved
information.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
One or more parameters is invalid. Be sure that
the valueSize parameter matches the size of
the information you’re retrieving.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

2032 Palm OS Programmer’s API Reference

btLibErrSdpNotMapped
The SDP socket has not been mapped to a
remote SDP service record. This error occurs
when you try to obtain the SDP service record
handle before you map socket to a remote
service record using
BtLibSdpServiceRecordMapRemote.

btLibErrSocket The specified socket is invalid or not in use.

btLibErrSocketRole
The specified socket is not connected or has the
wrong role for the request.

btlibErrSocketProtocol
The specified socket has the wrong protocol for
the request.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments BtLibSocketInfoEnum

The BtLibSocketInfoEnum enum allows you to specify which
information you want to retrieve using the BtLibSocketGetInfo
function.

typedef enum {
btLibSocketInfo_Protocol = 0,
btLibSocketInfo_RemoteDeviceAddress,
btLibSocketInfo_SendPending = 100,
btLibSocketInfo_MaxTxSize,
btLibSocketInfo_MaxRxSize,
btLibSocketInfo_L2CapPsm = 200,
btLibSocketInfo_L2CapChannel,
btLibSocketInfo_RfCommServerId = 300,
btLibSocketInfo_RfCommOutstandingCredits,
btLibSocketInfo_SdpServiceRecordHandle = 400

} BtLibSocketInfoEnum;

Bluetooth Library: Sockets and Service Discovery
Socket Functions

Palm OS Programmer’s API Reference 2033

Value Descriptions

btLibSocketInfo_L2CapChannel
BtLibSocketGetInfo returns a
BtLibL2CapChannelIDType that represents
the channel identifier for this socket. A
BtLibL2CapChannelIDType is actually a
UInt16. This information is valid for L2CAP
sockets only. See the “Logical Link Control and
Adaptation Protocol Specification” chapter of
the Specification of the Bluetooth System for more
information about channel identifiers.

btLibSocketInfo_L2CapPsm
BtLibSocketGetInfo returns a
BtLibL2CapPsmType that represents the
Protocol and Service Multiplexer (PSM) this
socket is using to route packets. This
information is only valid for L2CAP sockets.

btLibSocketInfo_MaxRxSize
BtLibSocketGetInfo returns a UInt32
representing the maximum packet size the local
device can receive.

btLibSocketInfo_MaxTxSize
BtLibSocketGetInfo returns a UInt32
representing the maximum packet size the local
device can transmit.

btLibSocketInfo_Protocol
BtLibSocketGetInfo returns a
BtLibProtocolEnum representing the
socket’s protocol. The members of this enum
are btLibL2CapProtocol,
btLibRfCommProtocol, and
btLibSdpProtocol.

btLibSocketInfo_RemoteDeviceAddress
BtLibSocketGetInfo returns a
BtLibDeviceAddressType representing the
address of the device at the other end of this
socket.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

2034 Palm OS Programmer’s API Reference

btLibSocketInfo_RfCommServerId
BtLibSocketGetInfo returns a
BtLibRfCommServerIdType that represents
the socket’s RFCOMM server channel. This
information is valid for RFCOMM sockets only.

btLibSocketInfo_RfCommOutstandingCredits
BtLibSocketGetInfo returns a UInt16
containing the number of remaining credits on
this socket. This information is valid for
RFCOMM sockets only.

btLibSocketInfo_SdpServiceRecordHandle
BtLibSocketGetInfo returns the
BtLibSdpRemoteServiceRecordHandle
for the service record associated with this
socket. This information is valid for SDP
sockets only.

btLibSocketInfo_SendPending
BtLibSocketGetInfo returns a Boolean
indicating whether a send is currently in
progress.

New BtLibSocketListen

Purpose Set up an L2CAP or RFCOMM socket as a listener.

Declared In BtLib.h

Prototype Err BtLibSocketListen (UInt16 btLibRefNum,
BtLibSocketRef socket,
BtLibSocketListenInfoType *listenInfo)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number of the socket.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

Palm OS Programmer’s API Reference 2035

<-> listenInfo Protocol-specific listening information. For
more information see
BtLibSocketListenInfoType. This
parameter must not be NULL.

Result Returns one of the following values:

btLibErrNoError
Success. The socket is listening for incoming
connections.

btLibErrBusy The given PSM is in use (L2CAP only)

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
listenInfo is NULL.

btLibErrSocket The specified socket is invalid.

btLibErrSocketProtocol
The protocol of the specified socket is not
supported. This function only supports the
L2CAP and RFCOMM protocols.

btLibErrSocketRole
The specified socket is already listening or
connected.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

btLibErrTooMany
There are no resources to create a listener socket
of this type.

Comments A listener socket waits for a remote device to initiate a connection to
the local device and then generates a
btLibSocketEventConnectRequest event to notify the
application that it needs to handle the connection attempt.

You need to respond to this event with a call to
BtLibSocketRespondToConnection on the listener socket to
accept or reject the connection.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

2036 Palm OS Programmer’s API Reference

Under certain circumstances, the listenInfo parameter acts as an
output as well as an input. See the documentation for
BtLibSocketListenInfoType that follows.

BtLibSocketListenInfoType

The BtLibSocketListenInfoType structure allows you to
specify data specific to the protocol of the listening socket.

typedef struct BtLibSocketListenInfoType {
union {
...

} data;
} BtLibSocketListenInfoType;

This data is stored in the data field, which is a union consisting of
two members: L2Cap, and RfComm. The member of the union that is
valid depends on the protocol of the listening socket.

L2Cap

Use the L2Cap union member if you’re setting up a L2CAP socket
as a listener. This member contains the following structure:

struct {
BtLibL2CapPsmType localPsm;
UInt16 localMtu;
UInt16 minRemoteMtu;

} L2Cap;

Field Descriptions

localPsm A BtLibL2CapPsmType representing the
protocol and service multiplexer (PSM)
identifier of the protocol to be used with this
socket. You can identify your own protocol
provided that its PSM value is odd, is within
the range of 0x1001 to 0xFFFF, and has the 9th
bit (0x0100) set to zero. These limitations are
specified by the Specification of the Bluetooth
System. If you set this field to
BT_L2CAP_RANDOM_PSM, the
BtLibSocketListen function automatically
creates a suitable PSM for the channel and
returns it in this structure.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

Palm OS Programmer’s API Reference 2037

localMtu The maximum transmission unit (MTU), or
packet size, of the local device.

minRemoteMtu The minimum packet size that your application
can support.

RfComm

Use the RfComm union member if you’re setting up a RFCOMM
socket as a listener. This member contains the following structure:

struct {
BtLibRfCommServerIdType serviceID;
UInt16 maxFrameSize;
UInt8 advancedCredit;

} RfComm;

Field Descriptions

serviceID A BtLibRfCommServerIdType representing
the socket’s RFCOMM service channel. It is
assigned by RFCOMM and returned in this
field when you call BtLibSocketListen.

maxFrameSize The maximum frame size your application can
handle. This value must be between
BT_RF_MINFRAMESIZE and
BT_RF_MAXFRAMESIZE. If your application
can handle any frame size, set this value to
BT_RF_DEFAULT_FRAMESIZE.

advancedCredit An amount of credit the socket advances to the
remote device when it successfully connects.
Additional credit can be advanced using the
BtLibSocketAdvanceCredit function once
the connection has been established.

See Also BtLibSocketClose

Bluetooth Library: Sockets and Service Discovery
Socket Functions

2038 Palm OS Programmer’s API Reference

New BtLibSocketRespondToConnection

Purpose Accept or reject an in-bound connection on a given listener socket.

Declared In BtLib.h

Prototype Err BtLibSocketRespondToConnection
(UInt16 btLibRefNum, BtLibSocketRef socket,
Boolean accept)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number of the listener socket.

-> accept true to accept the connection; false to reject
the connection.

Result Returns one of the following values:

btLibErrNoError
Success. This status is returned when accept
is false.

btLibErrFailed One or more parameters is invalid.

btLibErrPending
The results will be returned through a callback
event.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrSocket The specified socket is invalid or not in use.

btLibErrSocketProtocol
The protocol of the specified socket is not
supported. This function only supports the
L2CAP and RFCOMM protocols.

btLibErrSocketRole
The specified socket is not a listener socket.

Bluetooth Library: Sockets and Service Discovery
Socket Functions

Palm OS Programmer’s API Reference 2039

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments You should call this function when you respond to a
btLibSocketEventConnectRequest event delivered to a
listener socket.

If the connection succeeds, the
btLibSocketEventConnectedInbound event is generated and
its status field is set to btLibErrNoError. If connection fails, the
same event is generated with a non-zero status field, or a
btLibSocketEventDisconnected is generated. In both cases,
the status field indicates the reason for the failure.

Once the connection succeeds, a btLibSocketEventData
callback event is generated whenever data received from the remote
device. If the channel disconnects, a
btLibSocketEventDisconnected is generated.

RFCOMM listener sockets and L2CAP listener sockets behave
differently when you call this function. When you respond to an
inbound L2CAP connection, a new L2CAP socket is created to
exchange data with the remote device, and the L2CAP listener
socket continues to listen for more connections. In other words, a
single L2CAP listener socket can “spawn” several L2CAP sockets.
This mechanism allows you to create a piconet.

On the other hand, when you respond to an RFCOMM connection,
the RFCOMM listener socket becomes a connection socket through
which you can exchange data with the remote device. If you want to
create another RFCOMM connection, you need to create another
listener socket.

See Also BtLibSocketListen, BtLibSocketSend, BtLibSocketClose

Bluetooth Library: Sockets and Service Discovery
Socket Functions

2040 Palm OS Programmer’s API Reference

New BtLibSocketSend

Purpose Send data over a connected L2CAP or RFCOMM socket.

Declared In BtLib.h

Prototype Err BtLibSocketSend (UInt16 btLibRefNum,
BtLibSocketRef socket, UInt8 *data,
UInt32 dataLen)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number of the transmitting socket.

-> data Pointer to data to send. If the send returns
btLibErrPending, the data buffer contents
must remain intact until the
btLibSocketEventSendComplete event
occurs.

-> dataLen Length of data to send. This value must be less
than the Maximum Transmission Unit (MTU)
for the socket. The MTU indicates the size of
the largest packet that the remote device can
receive and is determined when the socket is
connected.

Result Returns one of the following values:

btLibErrPending
The results will be returned through a callback
event.

btLibErrBusy A send is already in process.

btLibErrNoAclLink
An ACL link for the remote device does not
exist

btlibErrNotOpen
The referenced Bluetooth library is not open.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2041

btLibErrSocket The specified socket is invalid.

btLibErrSocketProtocol
The protocol of the specified socket is not
supported by this function. You can only send
using the L2CAP and RFCOMM protocols.

btLibErrSocketRole
The specified socket is not connected.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments When the data has been sent successfully, a
btLibSocketEventSendComplete callback event is generated
and its status field is set to btLibErrNoError. If the data is not
sent successfully, the same callback event is generated with a non-
zero status field.

Note that there can be only one send in progress at a time per
socket. You must wait for the btLibSocketEventSendComplete
event before sending another packet.

See Also BtLibSocketClose

Service Discovery Protocol Functions
This section describes functions and macros related to the Bluetooth
Service Discovery Protocol (SDP).

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2042 Palm OS Programmer’s API Reference

New BtLibSdpCompareUuids

Purpose Compare two UUIDs.

Declared In BtLib.h

Prototype Err BtLibSdpCompareUuids (UInt16 btLibRefNum,
BtLibSdpUuidType *uuid1, BtLibSdpUuidType *uuid2)

Parameters -> btLibRefNum Reference number for the Bluetooth Library.

-> uuid1 UUID to compare.

-> uuid2 UUID to compare.

Result Returns one of the following values:

btLibErrNoError
UUIDs are the same

btLibErrError UUIDs are different.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
One or both UUIDs are invalid.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2043

New BtLibSdpGetPSMByUuid

Purpose Get an available L2CAP PSM using SDP.

Declared In BtLib.h

Prototype Err BtLibSdpGetPsmByUuid (UInt16 btLibRefNum,
BtLibSocketRef socket,
BtLibDeviceAddressType *remoteDeviceP,
BtLibSdpUuidType *serviceUuidList,
UInt8 uuidListLen)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number for an SDP socket.

-> remoteDeviceP
Device address of a remote device to query.
This parameter must not be NULL.

-> serviceUuidList
Array of UUIDs that must match those of the
service record. This parameter must not be
NULL.

-> uuidListLen Length of serviceUuidList. A maximum of
12 entries is allowed.

Result Returns one of the following values:

btLibErrPending
The PSM value will be returned through a
callback event.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to complete request

btLibErrParamError
One or more parameters is invalid.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2044 Palm OS Programmer’s API Reference

btLibErrSocket The specified socket is invalid or not in use.

btLibErrSocketRole
The specified socket is not connected.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments This function returns the L2CAP PSM of the first SDP record on the
remote device that contains all the specified UUIDs.

This function generates a btLibSocketEventSdpGetPsmByUuid
event when the query completes or fails.

See Also BtLibSdpGetServerChannelByUuid

New BtLibSdpGetRawDataElementSize

Purpose Macro that returns a constant representing the data element’s size.

Declared In BtLib.h

Prototype BtLibSdpGetRawDataElementSize (header)

Parameters -> header First byte of a data element

Result A constant representing the size of the data element.

Comments The first byte of a SDP data element contains the type and size of the
data element.

The result of this macro is one of the following constants:

Data Element Sizes

btLibDESD_1BYTE
A 1-byte element. However, if the data
element’s type is btLibDETD_NIL then the
size is 0 bytes.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2045

btLibDESD_2BYTES
A 2-byte element.

btLibDESD_4BYTES
A 4-byte element.

btLibDESD_8BYTES
An 8-byte element.

btLibDESD_16BYTES
A 16-byte element.

btLibDESD_ADD_8BITS
The element's actual data size, in bytes, is
contained in the next 8 bits.

btLibDESD_ADD_16BITS
The element's actual data size, in bytes, is
contained in the next 16 bits.

btLibDESD_ADD_32BITS
The element's actual data size, in bytes, is
contained in the next 32 bits.

These size constants are discussed in greater detail in the “Service
Discovery Protocol” chapter of the Specification of the Bluetooth
System.

See Also BtLibSdpGetRawDataElementType,
BtLibSdpParseRawDataElement,
BtLibSdpVerifyRawDataElement

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2046 Palm OS Programmer’s API Reference

New BtLibSdpGetRawDataElementType

Purpose Macro that returns an SDP data element's type.

Declared In BtLib.h

Prototype BtLibSdpGetRawDataElementType (header)

-> header The first byte of a data element

Result The type of the data element.

Comments The first byte of a SDP data element contains the type and size of the
data element.

The result of this macro is one of the following constants:

Data Element Types

btLibDETD_NIL Nil, the null type

btLibDETD_UINT Unsigned Integer.

btLibDETD_SINT Signed Integer

btLibDETD_UUID UUID, a universally unique identifier

btLibDETD_TEXT Text string

btLibDETD_BOOL Boolean

btLibDETD_SEQ Data element sequence

btLibDETD_ALT Data element alternative

btLibDETD_URL URL, a uniform resource locator

These types are discussed in greater detail in the “Service Discovery
Protocol” chapter of the Specification of the Bluetooth System.

See Also BtLibSdpGetRawDataElementSize,
BtLibSdpParseRawDataElement,
BtLibSdpVerifyRawDataElement

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2047

New BtLibSdpGetServerChannelByUuid

Purpose Get an available RFCOMM server channel using SDP.

Declared In BtLib.h

Prototype Err BtLibSdpGetServerChannelByUuid
(UInt16 btLibRefNum, BtLibSocketRef socket,
BtLibDeviceAddressType *remoteDeviceP,
BtLibSdpUuidType *serviceUuidList,
UInt8 uuidListLen)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number for an SDP socket.

-> remoteDeviceP
Device address of a remote device to query.
This parameter must not be NULL.

-> serviceUuidList
Array of UUIDs that must match those of the
service record. This parameter must not be
NULL.

-> uuidListLen Length of serviceUuidList. A maximum of
12 entries is allowed.

Result Returns one of the following values:

btLibErrPending
The server channel will be returned through a
callback event.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to complete request

btLibErrParamError
One or more parameters is invalid.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2048 Palm OS Programmer’s API Reference

btLibErrSocket The specified socket is invalid or not in use.

btLibErrSocketRole
The specified socket is not connected.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments This function returns the RFCOMM server channel number of the
first SDP record on the remote device that contains all the specified
UUIDs.

This function generates a
btLibSocketEventSdpGetServerChannelBy Uuid event
when the query completes or fails.

See Also BtLibSdpGetPSMByUuid

New BtLibSdpParseRawDataElement

Purpose Parse a raw SDP data element to determine where the data field
begins and the size of the data field.

Declared In BtLib.h

Prototype Err BtLibSdpParseRawDataElement
(UInt16 btLibRefNum, const UInt8 *dataElementP,
UInt16 *offset, UInt32 *length)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> dataElementP
Pointer to a raw SDP data element.

<- offset Offset, in bytes, between dataElementP and
the start of the data field.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2049

<- lengthP Length, in bytes, of the data field.

Result Returns one of the following values:

btLibErrNoError
Successfully parsed the attribute.

btLibErrNotOpen
The reference Bluetooth library is not open.

btLibErrParamError
dataElementP, offset, or length is NULL.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments A data element has three fields. The first field, called the header field,
identifies the type of value stored in the data element and the size of
the element. The second field, called the size field, contains more
information about the size of the data if it’s not completely specified
by the header. Otherwise the size field is omitted. The third field,
called the data field, contains the data element’s actual value.

The offset this function returns is the offset between the start of the
data element and the data field. The size this function returns is the
the size of the data field. Note that the sum of the offset and the size
is the size of the data element.

This function is especially useful for iterating through entries in a
list attribute.

The Specification of the Bluetooth System has more information about
the structure of a data element.

See Also BtLibSdpVerifyRawDataElement,
BtLibSdpGetRawDataElementType,
BtLibSdpGetRawDataElementSize

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2050 Palm OS Programmer’s API Reference

New BtLibSdpServiceRecordCreate

Purpose Allocate a memory chunk that represents an SDP service record.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordCreate
(UInt16 btLibRefNum,
BtLibSdpRecordHandle *recordH)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

<- recordH SDP memory handle for the new SDP memory
record.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to allocate the memory
chunk.

btLibErrParamError
recordH is NULL.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

See Also BtLibSdpServiceRecordDestroy,
BtLibSdpServiceRecordStartAdvertising,
BtLibSdpServiceRecordStopAdvertising

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2051

New BtLibSdpServiceRecordDestroy

Purpose Free the memory associated with a SDP memory record.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordDestroy
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH SDP memory handle associated with the
memory chunk to be freed.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
recordH does not refer to an valid SDP
memory record.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments This function stops advertising the record before it frees it.

See Also BtLibSdpServiceRecordCreate,
BtLibSdpServiceRecordStartAdvertising,
BtLibSdpServiceRecordStopAdvertising

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2052 Palm OS Programmer’s API Reference

New BtLibSdpServiceRecordGetAttribute

Purpose Retrieve the value of a specific attribute in a SDP memory record. If
the attribute is a list or a protocol descriptor list (a list of lists), this
function retrieves the value of a specific list entry.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordGetAttribute
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
BtLibSdpAttributeDataType *attributeValues,
UInt16 listNumber, UInt16 listEntry)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH Handle identifying the SDP memory record.

-> attributeID Attribute identifier of the attribute to retrieve.

<- attributeValues
Buffer into which this function stores the
attribute’s value. You must allocate this buffer.
This pointer must not be NULL.

-> listNumber List to query if the attribute is a protocol
descriptor list. Otherwise this parameter is
ignored.

-> listEntry Item to get in the list if the attribute is a list
attribute. Otherwise this parameter is ignored.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The specified SDP memory record refers to a
service record on a remote device. The result
will be returned through a callback event.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2053

btLibErrBusy
The connection is parked. This error can occur
only if the SDP memory record refers to a
service record on a remote device.

btLibErrInProgress
A query is already pending on this socket. This
error can occur only if the SDP memory record
refers to a service record on a remote device.

btLibErrNoAclLink
An ACL link to the remote device does not
exist.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to perform the query.

btLibErrParamError
recordH is an invalid handle or
attributeValues is NULL.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the
specified service record.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments If the specified SDP memory record refers to a service record on a
remote device, this function generates a
btLibSocketEventSdpGetAttribute event when the result is
available or the query fails. In this case, the buffer to which
attributeValues points must not be freed before the event
occurs; making the buffer global ensures that it remains over the
duration of the SDP query.

If you are retrieving a string or a URL, you need to allocate
additional space. See the documentation for
BtLibSdpAttributeDataType for more information.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2054 Palm OS Programmer’s API Reference

This function supports the universal attributes defined in “Service
Discovery Protocol” chapter of the Specification of the Bluetooth
System.

See Also BtLibSdpServiceRecordSetAttribute,
BtLibSdpServiceRecordMapRemote,
BtLibSdpServiceRecordGetNumListEntries,
BtLibSdpServiceRecordGetNumLists,
BtLibSdpServiceRecordGetStringOrUrlLength

New BtLibSdpServiceRecordGetNumListEntrie
s

Purpose Get the number of entries in a list attribute.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordGetNumListEntries
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
UInt16 listNumber, UInt16 *numEntries)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH Handle identifying the SDP memory record.

-> attributeID Attribute identifier of the attribute whose
number of list entries is retrieved.

-> listNumber List to query if the attribute is a
ProfileDescriptorListEntry. Otherwise this
parameter is ignored.

<- numEntries Number of entries in the list.

Result Returns one of the following values:

btLibErrNoError
Success

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2055

btLibErrPending
The specified SDP memory record refers to a
service record on a remote device. The result
will be returned through a callback event.

btLibErrBusy
The connection is parked. This error can occur
only if the SDP memory record refers to a
service record on a remote device.

btLibErrInProgress
Another query is pending on this socket. This
error can occur only if the SDP memory record
refers to a service record on a remote device.

btLibErrNoAclLink
An ACL link to the remote device does not
exist.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to perform this query.

btLibErrParamError
recordH is an invalid handle or numEntries
is NULL.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the
specified service record.

btLibErrStackNotOpen
The Bluetooth stack failed to open when the
library was opened.

Comments This function supports the universal attributes defined in “Service
Discovery Protocol” chapter of the Specification of the Bluetooth
System. Specifically, this function gives valid results for
ServiceClassIdList, ProtocolDescriptorList, BrowseGroupList,
LanguageBaseAttributeIDList, and ProfileDescriptorList attributes.

If the specified SDP memory record refers to a service record on a
remote device, this function generates a

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2056 Palm OS Programmer’s API Reference

btLibSocketEventSdpGetNumListEntries event when the
result is available or the query fails.

See Also BtLibSdpServiceRecordGetNumLists,
BtLibSdpServiceRecordGetAttribute,
BtLibSdpServiceRecordGetStringOrUrlLength,
BtLibSdpServiceRecordMapRemote

New BtLibSdpServiceRecordGetNumLists

Purpose Get the number of lists in a protocol descriptor list SDP attribute.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordGetNumLists
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
UInt16 *numLists)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH Handle identifying the SDP memory record.

-> attributeID Attribute identifier of the attribute whose
number of lists is retrieved.

<- numLists Number of lists.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The specified SDP memory record refers to a
service record on a remote device. The result
will be returned through a callback event.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2057

btLibErrBusy
The connection is parked. This error can occur
only if the SDP memory record refers to a
service record on a remote device.

btLibErrInProgress
Another query is pending on this socket. This
error can occur only if the SDP memory record
refers to a service record on a remote device.

btLibErrNoAclLink
An ACL link to the remote device does not
exist.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to perform this query.

btLibErrParamError
recordH is an invalid handle or numLists is
NULL.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the
specified service record.

btLibErrStackNotOpen
The Bluetooth stack failed to open when the
library was opened.

Comments If the specified SDP memory record refers to a service record on a
remote device, this function generates a
btLibSocketEventSdpGetNumLists event when the result is
available or the query fails.

See Also BtLibSdpServiceRecordGetNumListEntries,
BtLibSdpServiceRecordGetAttribute,
BtLibSdpServiceRecordGetStringOrUrlLength,
BtLibSdpServiceRecordMapRemote

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2058 Palm OS Programmer’s API Reference

New BtLibSdpServiceRecordGetRawAttribute

Purpose Retrieve the value of an attribute of an SDP memory record. The
retrieved attribute is in the format defined in the “Service Discovery
Protocol” chapter of the Specification of the Bluetooth System.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordGetRawAttribute
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
UInt8 *value, UInt16 *valSize)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH Handle identifying the SDP memory record.

-> attributeID Attribute identifier of the attribute to retrieve.

<- value Buffer into which this function stores the
retrieved SDP attribute data. You must allocate
this buffer. This pointer must not be NULL.

<-> valSize Size of the value buffer upon entry. This
parameter must not be zero. Upon return,
contains the number of bytes retrieved.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The specified SDP memory record refers to a
service record on a remote device. The result
will be returned through a callback event.

btLibErrBusy
The connection is parked. This error can occur
only if the SDP memory record refers to a
service record on a remote device.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2059

btLibErrInProgress
A query is already pending on this socket. This
error can occur only if the SDP memory record
refers to a service record on a remote device.

btLibErrNoAclLink
An ACL link to the remote device does not
exist.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to perform the query.

btLibErrParamError
recordH is an invalid handle, value is NULL,
valSize is 0, or the size of the attribute value
is larger than valSize.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the
specified service record.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments If the specified SDP memory record refers to a service record on a
remote device, this function generates a
btLibSocketEventSdpGetRawAttribute event when the
result is available or the query fails.

See Also BtLibSdpServiceRecordSetRawAttribute,
BtLibSdpServiceRecordGetSizeOfRaw Attribute,
BtLibSdpServiceRecordMapRemote

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2060 Palm OS Programmer’s API Reference

New BtLibSdpServiceRecordGetSizeOfRaw
Attribute

Purpose Return the size, in bytes, of any attribute of an SDP memory record.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordGetSizeOfRawAttribute
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
UInt16 *size)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH Handle identifying the SDP memory record.

-> attributeID Attribute identifier of the attribute whose size
is retrieved.

<- size Pointer to a UInt16 to store the size of the
attribute. This parameter must not be NULL.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The specified SDP memory record refers to a
service record on a remote device. The result
will be returned through a callback event.

btLibErrBusy
The connection is parked. This error can occur
only if the SDP memory record refers to a
service record on a remote device.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2061

btLibErrInProgress
A query is already pending on this socket. This
error can occur only if the SDP memory record
refers to a service record on a remote device.

btLibErrNoAclLink
An ACL link to the remote device does not
exist.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to perform the query.

btLibErrParamError
recordH is an invalid handle or size is NULL.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the
specified service record.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments If the specified SDP memory record refers to a service record on a
remote device, this function generates a
btLibSocketEventSdpGetRawAttributeSize event when the
result is available or the query fails.

See Also BtLibSdpServiceRecordGetRawAttribute,
BtLibSdpServiceRecordMapRemote,
BtLibSdpServiceRecordSetRawAttribute

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2062 Palm OS Programmer’s API Reference

New BtLibSdpServiceRecordGetStringOrUrlLen
gth

Purpose Get the length of a string or URL attribute in a SDP memory record.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordGetStringOrUrlLength
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
UInt16 *length)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH Handle identifying the SDP memory record.

-> attributeID Attribute identifier of the attribute whose
length is retrieved.

<- length Pointer to a UInt16 where the length of the
attribute is stored. This parameter cannot be
NULL.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The specified SDP memory record refers to a
service record on a remote device. The result
will be returned through a callback event.

btLibErrBusy
The connection is parked. This error can occur
only if the SDP memory record refers to a
service record on a remote device.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2063

btLibErrInProgress
A query is already pending on this socket. This
error can occur only if the SDP memory record
refers to a service record on a remote device.

btLibErrNoAclLink
An ACL link to the remote device does not
exist.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to perform the query.

btLibErrParamError
The recordH does not refer to a valid handle,
length is NULL, or the attribute is not a string
or a URL.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the
specified SDP record.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments Bluetooth strings do not include a null terminator.

If the SDP memory record refers to a service record on a remote
device, this function generates a
btLibSocketEventSdpGetStringLen event when the result is
available or the query fails.

See Also BtLibSdpServiceRecordGetAttribute,
BtLibSdpServiceRecordGetNumListEntries,
BtLibSdpServiceRecordGetNumLists,
BtLibSdpServiceRecordMapRemote

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2064 Palm OS Programmer’s API Reference

New BtLibSdpServiceRecordMapRemote

Purpose Configure an SDP memory record so it refers to a service record on a
remote device.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordMapRemote
(UInt16 btLibRefNum, BtLibSocketRef socket,
BtLibDeviceAddressType *remoteDeviceP,
BtLibSdpRemoteServiceRecordHandle remoteHandle,
BtLibSdpRecordHandle recordH)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number of an SDP socket.

-> remoteDeviceP
Device to query.

-> remoteHandle
Remote service record handle.

-> recordH SDP memory handle of an empty SDP record.

Result Returns one of the following values:

btLibErrNoError
The mapping was successful.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to perform mapping.

btLibErrParamError
recordH is invalid or refers to an invalid
memory chunk.

btLibErrSdpMapped
The SDP memory record is already mapped to
a remote service record.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2065

btLibErrSocket The specified socket is invalid or not in use.

btLibErrSocketProtocol
The specified socket is not an SDP socket.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments You must create an SDP memory record using
BtLibSdpServiceRecordCreate before using this function.

Note that this function does not copy the contents of the remote
service record to the SDP memory record in local memory.

New BtLibSdpServiceRecordSetAttribute

Purpose Set the value of an attribute in an SDP memory record. If the
attribute is a list or a protocol descriptor list (a list of lists), this
function sets the value of a specific list entry. The SDP memory
record must represent a local unadvertised service record.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordSetAttribute
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
BtLibSdpAttributeDataType *attributeValue,
UInt16 listNumber, UInt16 listEntry)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH Handle of the service record to modify.

-> attributeID Attribute identifier of the attribute to set.

-> attributeValue
Pointer to the new value for the attribute. This
pointer must not be NULL.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2066 Palm OS Programmer’s API Reference

-> listNumber List to modify if the attribute is a protocol
descriptor list. Otherwise this parameter is
ignored.

-> listEntry Item to set in the list if the attribute is a list
attribute. Otherwise this parameter is ignored.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrAdvertised
An advertised record was passed in recordH.
The record must not be advertised.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to set the attribute.

btLibErrParamError
recordH is invalid or attributeValue is
NULL.

btLibErrRemoteRecord
A remote record was passed in recordH. The
record must be local.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments This function only works on SDP memory records that are local and
not advertised. You can advertise the record after you finish
modifying it.

This function supports the universal attributes defined in the
Specification of the Bluetooth System.

See Also BtLibSdpServiceRecordGetAttribute,
BtLibSdpServiceRecordStartAdvertising,
BtLibSdpServiceRecordStopAdvertising

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2067

New BtLibSdpServiceRecordSetAttributesForS
ocket

Purpose Initialize an SDP memory record so it can represent an existing
L2CAP or RFCOMM listener socket as a service.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordSetAttributesForSocket
(UInt16 btLibRefNum, BtLibSocketRef socket,
BtLibSdpUuidType *serviceUUIDList,
UInt8 uuidListLen, const Char *serviceName,
UInt16 serviceNameLen,
BtLibSdpRecordHandle recordH)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number for an RFCOMM or L2CAP
socket in listening mode.

-> serviceUUIDList
List of UUIDs for the service record.

-> uuidListLen Number of entries in serviceUUIDList. A
maximum of 12 entries is allowed.

-> serviceName User-friendly name for the service in English.

-> serviceNameLen
Size, in bytes, of serviceName.

-> recordH Handle of the service record to be initialized.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrAdvertised
The record specified by recordH is being
advertised. You must stop advertising the
record before you can change it.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2068 Palm OS Programmer’s API Reference

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to store the contents of the
SDP record.

btLibErrParamError
recordH is not a valid record handle.

btLibErrRemoteRecord
A remote record was passed in recordH.
Because the service is local, the record must be
local.

btLibErrSocket The specified socket is invalid or not in use.

btLibErrSocketRole
The specified socket is not a listener socket.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments You must first create an SDP record using
BtLibSdpServiceRecordCreate. However, the record must not
be advertised. In other words, don’t call
BtLibSdpServiceRecordStartAdvertising until after calling
this function.

See Also BtLibSdpServiceRecordCreate, BtLibSocketListen

New BtLibSdpServiceRecordSetRawAttribute

Purpose Set the value for an attribute of a SDP memory record. This function
allows you to specify the attribute as an array of bytes in the format
defined in the “Service Discovery Protocol” chapter of the

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2069

Specification of the Bluetooth System. The SDP memory record must
represent a local unadvertised service record.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordSetRawAttribute
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
const UInt8 *value, UInt16 valSize)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH Handle identifying the SDP memory record.

-> attributeID Attribute identifier of the attribute to set.

-> value Array of bytes containing SDP attribute data in
the format defined in the SDP protocol. This
parameter must not be NULL.

-> valSize Size, in bytes, of value. This parameter must
not be 0.

Result Returns one of the following values:

btLibErrNoError
Success.

btLibErrAdvertised
recordH is being advertised. The record must
not be advertised.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to set the attribute.

btLibErrParamError
recordH is invalid, value is NULL, or
valSize is 0.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2070 Palm OS Programmer’s API Reference

btLibErrRemoteRecord
recordH refers to a service record on a remote
device. The service record must be local.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments If the service record is being advertised, you must stop advertising
it before you modify it.

See Also BtLibSdpServiceRecordGetRawAttribute,
BtLibSdpServiceRecordSetAttribute,
BtLibSdpServiceRecordStopAdvertising,
BtLibSdpServiceRecordStartAdvertising

New BtLibSdpServiceRecordsGetByServiceCla
ss

Purpose Get the service record handles corresponding to the service classes
advertised on a remote device.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordsGetByServiceClass
(UInt16 btLibRefNum, BtLibSocketRef socket,
BtLibDeviceAddressType *remoteDeviceP,
BtLibSdpUuidType *uuidList, UInt16 uuidListLen,
BtLibSdpRemoteServiceRecordHandle *srvRecList,
UInt16 *numSrvRec)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> socket Reference number of an SDP socket.

-> remoteDevice
Remote device to query.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2071

-> uuidList Array of UUIDs identifying the service classes.
This parameter must not be NULL.

-> uuidListLen Number of elements in the uuidList. You can
specify a maximum of 12 UUIDs.

<- srvRecList Array of service record handles into which this
function stores the results of the SDP query.
You must allocate this array. This pointer must
not be NULL.

<-> numSrvRec Number of service records allocated in
srvRecList. This value is sent to the SDP
server so it can limit the number of responses.
On return, the actual number of records
retrieved.

Result Returns one of the following values:

btLibErrPending
The results will be returned through a callback
event.

btLibErrBusy The connection to the remote device is parked.

btLibErrInProgress
A SDP query is already in progress on this
socket.

btLibErrNoAclLink
An ACL link to the remote device does not
exist.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrOutOfMemory
Not enough memory to perform the query.

btLibErrParamError
One or more parameters are invalid.

btLibErrSocket The specified socket is invalid or not in use.

btLibErrSocketProtocol
The specified socket is not an SDP socket.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2072 Palm OS Programmer’s API Reference

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments You need to allocate srvRecList, an array of
BtLibSdpRemoteServiceRecordHandles large enough to
accommodate all of the service record handles corresponding to the
specified service classes. Specify the size of the array using the
numSrvRec parameter.

This function generates a
btLibSocketEventSdpServiceRecordHandle event when the
matching service records are available or the query fails.

New BtLibSdpServiceRecordStartAdvertising

Purpose Make visible an SDP memory record representing a local SDP
service record. Remote devices can access visible service records
through SDP.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordStartAdvertising
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH Handle of the service record to make available
to remote devices.

Result Returns one of the following values:

btLibErrNoError
Success

btLibErrNotOpen
The referenced Bluetooth library is not open.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2073

btLibErrParamError
recordH is not a valid record handle.

btLibErrRemoteRecord
recordH refers to a remote record. The record
must be local.

btLibErrSdpAdvertised
The service record is already accessible by
remote devices.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments You cannot modify an SDP memory record while it is available to
remote devices.

See Also BtLibSdpServiceRecordStopAdvertising

New BtLibSdpServiceRecordStopAdvertising

Purpose Hide an SDP memory record representing a local SDP service
record. Remote devices cannot access hidden service records
through SDP.

Declared In BtLib.h

Prototype Err BtLibSdpServiceRecordStopAdvertising
(UInt16 btLibRefNum,
BtLibSdpRecordHandle recordH)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> recordH Handle of the service record to hide.

Result Returns one of the following values:

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

2074 Palm OS Programmer’s API Reference

btLibErrNoError
Success. The SDP record is no longer available
to remote devices.

btLibErrNotOpen
The referenced Bluetooth library is not open.

btLibErrParamError
recordH is not a valid record handle.

btLibErrRemoteRecord
recordH refers to a remote record. The record
must be local.

btLibErrSdpNotAdvertised
The service record is already hidden from
remote devices.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

See Also BtLibSdpServiceRecordStartAdvertising

New BtLibSdpUuidInitialize

Purpose Macro that sets the value of a UUID.

Declared In BtLib.h

Prototype BtLibSdpUuidInitialize (uuid, value, valSize)

Parameters uuid BtLibSdpUuidType to initialize.

value Array of bytes representing the UUID. The size
of this array depends on valSize.

valSize BtLibSdpUuidSizeEnum member specifying
the size of the value array.

Result None.

Bluetooth Library: Sockets and Service Discovery
Service Discovery Protocol Functions

Palm OS Programmer’s API Reference 2075

New BtLibSdpVerifyRawDataElement

Purpose Verify that a raw SDP data element is properly formed.

Declared In BtLib.h

Prototype Err BtLibSdpVerifyRawDataElement
(UInt16 btLibRefNum, const UInt8 *value,
UInt16 valSize, UInt8 maxLevel)

Parameters -> btLibRefNum Reference number for the Bluetooth library.

-> value Raw SDP attribute data.

-> valSize Size of value, in bytes. The size of the data
element must be less than or equal to this
parameter, otherwise this function fails.

-> maxLevel Maximum level of recursion over which this
function verifies the data element. Must be at
least one.

Result Returns one of the following values:

btLibErrNoError
SDP data element is properly formatted.

btLibErrError SDP data element is not properly formatted.

btLibErrNotOpen
The reference Bluetooth library is not open.

btLibErrParamError
value is NULL.

btLibErrStackNotOpen
The Bluetooth stack failed to initialize when the
library was opened.

Comments This function checks all size descriptors in the element to ensure
that the data element fits into the indicated length. In the case of

Bluetooth Library: Sockets and Service Discovery
Application-Defined Functions

2076 Palm OS Programmer’s API Reference

data element sequences or alternates, this function calls itself
recursively.

The maxLevel parameter specifies the maximum number of times
this function calls itself. Limiting the recursion level prevents an
infinite loop if the data is bad. maxLevel must be large enough to
handle the complete data element. For example, to verify a simple
data element such as an unsigned integer, maxLevel must be at
least 1. To verify a data element sequence of UUIDs, maxlevel
must be at least 2.

See Also BtLibSdpParseRawDataElement,
BtLibSdpGetRawDataElementType,
BtLibSdpGetRawDataElementSize

Application-Defined Functions
This section describes the callback functions that handle socket
events. These functions are supplied by the developer and can be
named anything.

New BtLibSocketCallback

Purpose Signal the result of a Bluetooth socket event. When the event takes
place, this callback function is called.

Declared In BtLibTypes.h

Prototype void (*BtLibSocketProcPtr)
(BtLibSocketEventType *sEvent, UInt32 refCon)

Parameters -> sEvent BtLibSocketEventType structure
containing the event parameters.

Bluetooth Library: Sockets and Service Discovery
Application-Defined Functions

Palm OS Programmer’s API Reference 2077

-> refCon General purpose integer which you can use to
hold application-specific information. When
you call BtLibSocketCreate to create the
socket, you can specify a value to pass to this
parameter.

Result Returns nothing.

Comments The event and status of the event are in the sEvent structure. See
Socket Callback Events for more information.

You must specify this callback function when you create a socket.
You do this by calling BtLibSocketCreate.

Bluetooth Library: Sockets and Service Discovery
Application-Defined Functions

2078 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 2079

79
Cryptography
Provider Manager
The Cryptography Provider Manager (CPM) is a shared library that
acts as a framework for cryptographic services. These services are
divided into two levels:

• At the application level, the CPM provides an API that any
application can use to perform cryptographic operations.

• The operations themselves are not part of the CPM; instead,
they’re provided by an algorithm provider (or AP). To
export its functionality to the CPM, an algorithm provider
implements a set of callback functions. Third party
developers can create and distribute their own APs. The
Palm OS provides a default algorithm provider that’s used in
the absence of alternatives.

The CPM provides the glue between an application and an AP. In
general, this glue is invisible: You don’t need to know anything
about the APs that are available to use their cryptographic services.
This makes it possible for an application to use common
cryptographic operations without having to be overly concerned
with the exact implementation of these operations. It also relieves
the algorithm providers from the duty of providing their own
invocation API.

NOTE: In Palm OS 5, only the application level API is offered;
the ability to create and install your own algorithm provider will be
supported in a later release.

The Default Provider
In Palm OS 5, there is only one algorithm provider. Implemented by
RSA, it provides three cryptographic services:

Cryptography Provider Manager
Fundamental CPM Functions

2080 Palm OS Programmer’s API Reference

• Data encryption and decryption using an RC4 symmetric key
stream cipher

• Message digest creation (hashing) using the SHA-1
algorithm.

• Message verification through a combination of the two other
operations.

All of the Palm OS 5 cryptography operations are provided by RSA.

One of the features of the CPM library is that the developer doesn’t
need to know anything about cryptography. The functions are
designed such that the default settings will yield satisfying results.

Fundamental CPM Functions
The fundamental cryptography functions are:

• CPMLibEncrypt performs a data encryption operation.

• CPMLibDecrypt performs a data decryption operation.

• CPMLibHash creates a message digest.

• CPMLibVerify verifies a message that has a signature and
certificate.

These functions operate on blocks of data. For example,
CPMLibEncrypt takes a block of data (and a key), encrypts it, and
hands back the encrypted data all in one go.

The CPM also provides sets of functions that let you perform these
operations sequentially, allowing you to (for example) initialize an
encryption “stream,” iteratively feed data to the encryption
algorithm, and then “finalize” the stream and get the encrypted
data back. These functions are (for encryption)
CPMLibEncryptInit, CPMLibEncryptUpdate, and
CPMLibEncryptFinal.

Using the Crypto-Info Structures
The cryptography operations that are currently supported by the
CPM library rely on four “crypto-info” data structures:

• The APKeyInfoStruct describes a symmetric key,

Cryptography Provider Manager
Using the Export Functions

Palm OS Programmer’s API Reference 2081

• APCipherInfoStruct describes an encryption/decryption
operation.

• APHashInfoStruct describes message digest creation.

• APVerifyInfoStruct describes a message verification
operation.

When you perform a cryptographic operation, you’ll be asked for
one or more of these structures. In most cases you can pass in an
“empty” structure and the function will populate it for you.
However, it’s important that you zero the structure first.

For example, the CPMLibHash function takes a
APHashInfoStruct as an argument. To use the default hashing
operations, simply allocate the structure, zero it, and pass it in:

APHashInfoType hashinfo;
MemSet ((void *)&hashinfo, sizeof (APHashInfoType), 0);
CPMLibHash(..., &hashInfo, ...);

When you’re done with a crypto-info structure, you must “release”
it:

CPMLibReleaseHashInfo(..., &hashInfo);

Using the Export Functions
The cryptography structures (key, hash, cipher, verification) can be
“exported,” or encoded into a form that can be cached. These
operations are provided by the CPMLibExportObjectInfo
functions. Purposeful details of exporting (and importing, its
functional complement) are given in the individual function
descriptions, below. This little section touches on a wrinkle of usage.

When you use an export function, you’re asked to supply a buffer
that can accommodate the encoded data. This means that you have
to know how big the encoded data will be; the export function itself
tells you the size through its final (reference) argument. Thus, you
have to call the export function twice: Once to get the buffer size,
and then again to actually get the encoded data. This is
demonstrated below:

Cryptography Provider Manager
CPM and AP Constants

2082 Palm OS Programmer’s API Reference

UInt32 length=0;
UInt8 *data=NULL;
Err error;

/* For demo purposes, we’re only interested in the last two
 * arguments (the buffer and the buffer length). First, we
 * set the buffer to NULL, and retrieve the length.
 */
error = CPMLibExport... (... NULL, &length);

/* At this pass, we expect the function to tell us that
 * the buffer is too small. Any other return is treated
 * as an error. Note that the <length> argument is reset to
 * to the required allocation length despite the error
 * return.
 */
if (error != cpmErrBufTooSmall)

return ...; // or whatever

/* Allocate the buffer (for brevity, the example omits
 * the error check).
 */
data = MemPtrNew(length);

/* Call the export function again to retrieve the

 * encoded data.
 */
error = CPMLibExport... (... data, &length);

/* This time we want a ‘clean’ return. */
if (error != errNone) {

// handle the error
}

CPM and AP Constants

New AP Capability Constants
The AP capability values are bitfield constants that represent the
capabilities that an AP supports. The capability constants are OR’d
into the flags field of the APProviderInfoStruct structure.

Cryptography Provider Manager
CPM and AP Constants

Palm OS Programmer’s API Reference 2083

Declared in CPMLibCommon.h, the constants are:

APF_MP Streaming operations
(initialize/update/finalize) are
supported (“MP” stands for
“multiple part”). See
“Fundamental CPM Functions”
for details. Note that all APs are
expected to support block
operations.

APF_HW The AP’s algorithms are
implemented in hardware
(such as a SmartCard).

APF_KEYGEN Symmetric key operations
(including key info import and
export) are supported.

APF_KEYPAIRGEN Asymmetric key operations
(including key info import and
export) are supported.

APF_KEYDERIVE Key derivation is supported.

APF_HASH Hashing operations (including
hash info import and export)
are supported.

APF_CIPHER Message encryption and
decryption operations
(including cipher info import
and export) are supported.

APF_SIGN Message signing operations
(including sign info import and
export) are supported.

APF_VERIFY Message verification operations
(including verify info import
and export) are supported.

Cryptography Provider Manager
CPM and AP Constants

2084 Palm OS Programmer’s API Reference

New Block Encryption Mode Constants
The constants listed below represent the various block encryption
modes that may be supported by an AP. You can request a particular
mode by setting the APCipherInfoStruct.mode field before
passing the structure to the CPMLibEncrypt or CPMLibDecrypt
function. If you don’t specify a mode, the AP will choose one for
you, and reset the mode field to the chosen mode.

The APModeEnum data type is used to type the encryption mode
constants.

typedef UInt32 APModeEnum;

Note that encryption modes apply to block operations only.
Specifying a mode for a stream encryption (through
CPMLibEncryptInit et al.) has no effect.

The constants (and the type) are declared in CPMLibConstants.h.
The constants are:

apModeTypeUnspecified = 0 The mode isn’t specified; the
AP uses its default mode.

apModeTypeNone The encryption mode
doesn’t apply.

apModeTypeECB Electronic codebook mode.

apModeTypeCBC Cipher block chaining mode.

apModeTypeCBC_CTS Cipher block chaining with

cipher text stealing.

apModeTypeCFB Cipher feedback mode.

apModeTypeOFB Output feedback mode.

apModeCounter Counter mode

Cryptography Provider Manager
CPM and AP Constants

Palm OS Programmer’s API Reference 2085

New Cipher Algorithm Constants
These constants represent the different cipher algorithms that an AP
may support. The algorithm type is encoded in the type field of the
APKeyInfoStruct structure. You can request a specific algorithm
by setting the value of the type field before passing the structure to
CPMLibGenerateKey. If you don’t care, leave the field zero’d
(apAlgorithmTypeUnspecified); the function will set the field
to tell you which algorithm was used.

In the APKeyInfoStruct structure, the constants are typed as
APAlgorithmEnum:

typedef UInt32 APAlgorithmEnum

The constants (and the type) are defined in CPMLibCommon.h.
There we see the usual “unspecified” constant:

The rest of the constants are divided into groups, below, and listed
with very little additional explanation: The constants’ names are
reasonably self-documenting.

Block Cipher Algorithms

apSymmetricTypeDES
apSymmetricTypeRC2
apSymmetricTypeRC4
apSymmetricTypeRC5
apSymmetricTypeRC6,
apSymmetricTypeDESX_XDX3 (“Strong” DES)
apSymmetricType3DES_EDE2
apSymmetricType3DES_EDE3
apSymmetricTypeIDEA
apSymmetricTypeDiamond2
apSymmetricTypeBlowfish
apSymmetricTypeTEA (Tiny Encryption Algorithm),
apSymmetricTypeSAFER (Safe and Fast Encryption Routine),

apAlgorithmTypeUnspecified = 0 No algorithm
specified; the AP
will use its default.

Cryptography Provider Manager
CPM and AP Constants

2086 Palm OS Programmer’s API Reference

apSymmetricType3WAY
apSymmetricTypeGOST (USSR Government Standard),
apSymmetricTypeSHARK
apSymmetricTypeCAST128, apSymmetricTypeSquare,
apSymmetricTypeSkipjack

Stream Ciphers

apSymmetricTypePanama, apSymmetricTypeARC4,
apSymmetricTypeSEAL, apSymmetricTypeWAKE,
apSymmetricTypeSapphire, apSymmetricTypeBBS

AES Block Ciphers

apSymmetricTypeRijndael, apSymmetricTypeCAST256,
apSymmetricTypeTwofish, apSymmetricTypeMARS,
apSymmetricTypeSerpent

Asymmetric Key Ciphers

apAsymmetricTypeRSA, apAsymmetricTypeDSA,
apAsymmetricTypeElgamal,
apAsymmetricTypeNR (Nyberg-Rueppel),
apAsymmetricTypeBlumGoldwasser,
apAsymmetricTypeRabin,
apAsymmetricTypeRW (Rabin-Williams),
apAsymmetricTypeLUC, apAsymmetricTypeLUCELG,
apAsymmetricTypeECDSA, apAsymmetricTypeECNR,
apAsymmetricTypeECIES, apAsymmetricTypeECDHC,
apAsymmetricTypeECMQVC

Key Agreement Ciphers

apKeyAgreementTypeDH (Diffie-Hellman),
apKeyAgreementTypeDH2 (Unified Diffie-Hellman),
apKeyAgreementTypeMQV (Menezes-Qu-Vanstone),
apKeyAgreementTypeLUCDIF, apKeyAgreementTypeXTRDH

Cryptography Provider Manager
CPM and AP Constants

Palm OS Programmer’s API Reference 2087

New Export Encoding Constants
Constants that represent different data encoding schemes that are
used to convert the crypto-info structs (APKeyInfoStruct,
APHashInfoStruct, et al.) into a form that can be cached.

The encoding formats are used by the import and export functions,
CPMLibImportKeyInfo, CPMLibExportKeyInfo,
CPMLibImportHashInfo, CPMLibExportHashInfo,
CPMLibImportVerifyInfo, CPMLibExportVerifyInfo,
CPMLibImportCipherInfo, and CPMLibExportCipherInfo.

Declared in CPMLibCommon.h, the constants are:

New Hashing Algorithm Constants
The hashing constants represent various hashing algorithms. If you
want to tell the AP to use a specific algorithm in a hashing
operation, you would pass one of these constants as an argument to
CPMLibHash or CPMLibHashInit. If you want the default, use
apHashTypeUnspecified, The algorithm that’s actually used is
returned through a APHashInfoStruct structure.

IMPORT_EXPORT_TYPE_RAW The default encoding, as
defined by the AP.

IMPORT_EXPORT_TYPE_DER ASN.1 DER encoding.

IMPORT_EXPORT_TYPE_XML Standardized XML encoding.

Cryptography Provider Manager
CPM and AP Constants

2088 Palm OS Programmer’s API Reference

Declared in CPMLibCommon.h, the constants are:

New Key Class Constants
A key’s “class” specifies whether the key is symmetric or
asymmetric and, if the latter, whether it’s public or private. The key
class constants represent these qualities. Key class is encoded in the
keyclass field of the APKeyInfoStruct structure.

In the struct, the constants are typed as APKeyClassEnum:

apHashTypeUnspecified =
0

Unspecified hash algorithm;
when generating a message
digest, the AP decides which
algorithm to use.

apHashTypeNone Don’t hash. Use this constant if
you want the AP to suppress
hashing in an operation, such
as verification, that normally
performs it

apHashTypeMD2 Rivest Message Digest 2 (MD2)

apHashTypeMD5 Rivest Message Digest 5 (MD5)

apHashTypeSHA1 Secure Hash Algorithm-160
(SHA-1)

apHashTypeSHA256 SHA 256-bit algorithm

apHashTypeSHA384 SHA 384-bit algorithm

apHashTypeSHA512 SHA 512-bit algorithm

apHashTypeHAVAL HAVAL one-way algorithm

apHashTypeRIPEMD160 RIPEMD 160-bit

apHashTypeTiger Tiger algorithm

apHashTypePanama PANAMA algorithm

Cryptography Provider Manager
CPM and AP Constants

Palm OS Programmer’s API Reference 2089

typedef UInt32 APKeyClassEnum;

The constants (and the type) are defined in CPMLibCommon.h. The
constants are:

New Key Usage Constants

NOTE: The key usage constants are currently unused.

The key usage constants describe the different ways that an
encryption key can be used. How a key is used is encoded in the
usage field of the key’s APKeyInfoStruct structure.

Note that the key usage values are mutually exclusive; you can’t OR
a set of key usage constants to create a “selectively talented” key.
The apKeyUsageAll constant is the only “multi-purpose” value
currently provided.

The APKeyUsageEnum data type is used to type the key usage
constants:

typedef UInt32 APKeyUsageEnum;

The constants (and the type) are defined in CPMLibConstants.h.
The constants are

apKeyClassUnspecified = 0 The key’s class is
unspecified.

apKeyClassSymmetric This is a symmetric key.

apKeyClassPublic This is the public part of an
asymmetric key.

apKeyClassPrivate This is the private part of an
asymmetric key.

apKeyUsageUnspecified = 0 The key’s usage is
unspecified.

apKeyUsageAll The key can be used
in any operation.

Cryptography Provider Manager
CPM and AP Constants

2090 Palm OS Programmer’s API Reference

New Plaintext Padding Constants
The plaintext padding constants describe the different ways that
plaintext is padded before it’s encrypted. The padding type is
encoded in the padding field of an APCipherInfoStruct
structure.

The APPaddingEnum data type is used to type the padding
constants:

apKeyUsageCertificateSigning The key is intended
for certificate
signing.

apKeyUsageSigning The key is intended
for message signing
operations.

apKeyUsageEncryption The key is intended
for key or data
encryption
operations.

apKeyUsageKeyEncrypting The key is intended
for key encryption
operations

apKeyUsageDataEncrypting The key is intended
for data encryption
operations.

apKeyUsageMessageIntegrity The key is intended
for message
verification
operations.

Cryptography Provider Manager
CPM and AP Structures and Data Types

Palm OS Programmer’s API Reference 2091

typedef UInt32 APPaddingEnum;

The constants (and the type) are declared in CPMLibCommon.h. The
constants are:

CPM and AP Structures and Data Types

New APCipherInfoStruct
The APCipherInfoStruct encapsulates information about an
instance of a data encryption or decryption operation. The structure
is populated and returned by the data encryption and decryption
functions (CPMLibEncrypt, CPMLibDecrypt,
CPMLibEncryptInit, and CPMLibDecryptInit). You can set
some of the fields’ values yourself (before calling an encryption/
decryption function) to fine-tune the impending operation.

apPaddingTypeUnspecified = 0 The padding is
unspecified; the AP will
use the default

apPaddingTypeNone Specifically request that
padding not be applied.

apPaddingTypePKCS1Type1 Public Key
Cryptography Standard
1, type 1

apPaddingTypePKCS1Type2 Public Key
Cryptography Standard
1, type 2

apPaddingTypePKCS5 Public Key
Cryptography Standard
5

apPaddingTypeOAEP Optimal Asymmetric
Encryption Padding

apPaddingTypeSSLv23 Secure Sockets Layer
version 23

Cryptography Provider Manager
CPM and AP Structures and Data Types

2092 Palm OS Programmer’s API Reference

You’re responsible for allocating and freeing the
APCipherInfoStructs that you need—the CPM never allocates
them for you. The APCipherInfoStructs that you create (and
actually use) must be released through
CPMLibReleaseCipherInfo before they’re freed.

For more information (including examples) on how to use a crypto-
info structure, see “Using the Crypto-Info Structures.”

Declared in CPMLibCommon.h, the structure looks like this:

struct APCipherInfoStruct {
 APProviderContextType providerContext;
 APAlgorithmEnum type;
 APPaddingEnum padding;
 UInt8 *iv;
 UInt32 ivLength;
 void *algorithmParams;
};

The fields are:

providerContext Information about the AP that
performed (or is requested to perform)
the operation. See
APProviderContextStruct.

type Constant that represents the cipher
algorithm that was used or that’s
requested. See Cipher Algorithm
Constants

padding Constant that represents the plaintext
padding scheme used by the algorithm.
See Plaintext Padding Constants.

iv Initialization vector.

ivLength The length of the initialization vector, in
bytes.

algorithmParams Additional data that’s fed to the
algorithm, as specified by the AP.

Cryptography Provider Manager
CPM and AP Structures and Data Types

Palm OS Programmer’s API Reference 2093

New APHashInfoStruct
The APHashInfoStruct contains information about an instance of a
message digest operation. You allocate the structure yourself, zero
its contents, set the fields that you’re interested in (if any), and then
pass it as an argument to the message digest functions
(CPMLibHash, CPMLibHashInit, CPMLibExportHashInfo, and
so on). When you’re finished with the struct, you pass it to
CPMLibReleaseHashInfo.

For more information (including examples) on how to use the
structure, see “Using the Crypto-Info Structures.”

Declared in CPMLibCommon.h, the structure looks like this:

struct APHashInfoStruct {
 APProviderContextType providerContext;
 APHashEnum type;
 UInt32 length;
};

The fields are:

The APHashInfoStruct is one of the crypto-info structures; it’s used
as an input/output argument to the message digest functions
(CPMLibHash, CPMLibHashInit, CPMLibExportHashInfo, and
so on). You allocate the structure yourself; before passing the struct
to a function, you must zero its contents. When you’re finished with
the struct, you pass it to CPMLibReleaseHashInfo. For more

providerContext Information about the AP that
performed (or is requested to
perform) the operation. See
APProviderContextStruct
.

type The hashing algorithm that was
used to create (or is requested
to create) the message digest.

length The length of the digest.

Cryptography Provider Manager
CPM and AP Structures and Data Types

2094 Palm OS Programmer’s API Reference

information on how to use a crypto-info structure, see “Using the
Crypto-Info Structures.”

New APKeyInfoStruct
The APKeyInfoStruct holds information about an encrytion key.

struct APKeyInfoStruct {
 APProviderContextType providerContext;
 APAlgorithmEnum type;
 APKeyUsageEnum usage;
 APKeyClassEnum keyclass;
 UInt32 length;
 UInt32 actualLength;
 UInt16 exportable;
 UInt16 ephemeral;
};

providerID Algorithm provider ID number.

type A code that identifies the type of algorithm, one
of the Cipher Algorithm Constants values.

usage A code that identifies how the algorithm is
used, one of the Key Usage Constants values.

keyLength Length of the key data, in bytes and padded to
the next largest word. (Default is 8.)

keyActualLengt
h

The actual, unpadded length of the key data.
(Default is 7).

exportable Can this key be used in a CPMExportKey()
call?. 1 if it can, 0 if it can’t.

ephemeral Is this a “one-shot” key? 1 if it is, 0 if it’s
permanent..

Cryptography Provider Manager
CPM and AP Structures and Data Types

Palm OS Programmer’s API Reference 2095

New APProviderContextStruct
The APProviderContextStruct contains information about an
instance of a cryptographic operation. The structure is contained (as
an APProviderContextType value) in the four crypto-info
structs, APKeyInfoStruct, APHashInfoStruct,
APCipherInfoStruct, and APVerifyInfoStruct.

Declared in CPMLibCommon.h, the structure looks like this:

struct APProviderContextStruct {
 UInt32 providerID;
 void *localContext;
};

The fields are

New APProviderInfoStruct
The APProviderInfoStruct contains information about a
specific algorithm provider. The structure is returned (as an
APProviderInfoType) by CPMLibGetProviderInfo.

Declared in CPMLibCommon.h, the structure looks like this:

struct APProviderInfoStruct {
 char name[32];
 char other[64];
 UInt32 flags;
 UInt8 numAlgorithms;
 Boolean bHardware;
};

providerID Integer that uniquely identifies
the provider that’s being used
in the operation.

localContext Provider-specific information
about the operation.

Cryptography Provider Manager
CPM and AP Structures and Data Types

2096 Palm OS Programmer’s API Reference

The fields are

New APVerifyInfoStruct
The APVerifyInfoStruct is used by the verification functions
(CPMLibVerify, et al.) to verify a message. It contains (primarily)
the hash operation and cipher operation information that will be
used during verification. It’s the caller’s responsibility to allocate
and embed the structure’s APHashInfoStruct and
APCipherInfoStruct fields before passing the
APVerifyInfoStruct to a verification function.

Any APVerifyInfoStructs that you actually use must be
released through CPMLibReleaseVerifyInfo before it’s freed.
The embedded structures must also be released through
CPMLibReleaseCipherInfo and CPMLibReleaseHashInfo.

For more information (including examples) on how to use a crypto-
info structure, see “Using the Crypto-Info Structures.”

Declared in CPMLibCommon.h, the structure looks like this:

struct APVerifyInfoStruct {
 APProviderContextType providerContext;

name The human-readable name of
the provider.

other Additional textual information.

flags A bitfield that publishes the
functionality that this provider
supports. See AP Capability
Constants for a list of values
that this field can combine.

numAlgorithms A count of the algorithms this
provider supplies.

bHardware true if the provider’s
algorithms are implemented in
hardware; false if in
software.

Cryptography Provider Manager
CPM and AP Structures and Data Types

Palm OS Programmer’s API Reference 2097

 APHashInfoType *hashInfoP;
 APCipherInfoType *cipherInfoP;
}

The fields are:

New CPMInfoStruct
Structure that provides information about the CPM library. It’s used
by the CPMLibGetInfo function.

typedef struct CPMInfoStruct {
 UInt8 numInstances;
 UInt8 numProviders;
 Boolean defaultProviderPresent;
};

The fields are:

providerContext Information about the AP that
performed (or is requested to perform)
the operation. See
APProviderContextStruct.

hashInfoP APHashInfoStruct that contains the
certificate’s hash information.

cipherInfoP APCipherInfoStruct that contains
the certificate’s cipher information.

numInstances The number of clients
(applications) that are talking
to this library.

numProviders The number of algorithm
providers that this library
knows about.

defaultProviderPresent Does the library contain a
default provider? true if it
does, otherwise false.

Cryptography Provider Manager
CPM Functions

2098 Palm OS Programmer’s API Reference

CPM Functions

New CPMLibDecrypt

Purpose Decrypts a block of encrypted data.

Declared In CPMLib68kInterface.h, CPMLibARMInterface.h

Prototype Err CPMLibDecrypt (UInt16 libRef,
APKeyInfoType *keyInfo,
APCipherInfoType *cipherInfo, UInt8 *inBuffer,
UInt32 inBufferLength, UInt8 *outBuffer,
UInt32 *outBufferLength)

Parameters -> libRef (68k only) CPM Library reference number.

-> keyInfo APKeyInfoStruct that contains the key that
was used to encrypt the data. You obtain the
structure by importing the APKeyInfoStruct
that was exported by the data encryptor.

<-> cipherInfo
A pointer to an APCipherInfoStruct that
describes the parameters that will be used in
the decryption operation. You typically retrieve
the structure by importing the
APCipherInfoStruct that was exported by
the data encryptor. If you’re using the
decryption defaults provided by the CPM
library, you can pass in a freshly allocated (and
zero’d) APCipherInfoStruct; in this case,
the structure will be populated by this function
to reflect the actual decryption parameters.

-> inBuffer A pointer to the (encrypted) data that you want
to decrypt.

-> inBufferLength
Length, in bytes, of inBuffer.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2099

<- outBuffer A pointer to the buffer into which the
decrypted data will be copied. The buffer must
be allocated by the caller, and must be big
enough to accommodate all of the decrypted
data.

<-> outBufferLength
You pass in the (allocated) length of
outBuffer, in bytes. The function resets the
argument to the amount of data that was
actually copied into outBuffer. If the function
returns cpmErrBufTooSmall,
outBufferLength is set to the minimum
buffer size that’s needed to accommodate the
decrypted data..

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This functions peforms block decryption. For stream decryption, see
CPMLibDecryptInit.

The keyInfo and cipherInfo must agree on the algorithm type,
as specified in their respective APAlgorithmEnum fields.

If outBuffer isn’t big enough, the function will fail and
outBufferLength will return the “correct” output buffer size (i.e.
large enough to accommodate the encrypted data) . When this
happens, simply reallocate the output buffer and call
CPMLibDecrypt again.

Cryptography Provider Manager
CPM Functions

2100 Palm OS Programmer’s API Reference

New CPMLibDecryptFinal

Purpose Finalizes a stream decryption operation.

Declared In CPMLib68kInterface.h, CPMLibARMInterface.h

Prototype Err CPMLibDecryptFinal (UInt16 libRef,
APKeyInfoType *keyInfo,
APCipherInfoType *cipherInfo, UInt8 *inBuffer,
UInt32 inBufferLength, UInt8 *outBuffer,
UInt32 *outBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo Key used to decrypt the data, as returned by
CPMLibGenerateKey or
CPMLibImportKeyInfo.

-> cipherInfo
A pointer to the APCipherInfoStruct that
was returned by the stream-initializing
CPMLibDecryptInit call.

-> inBuffer A pointer to the data that you want to encrypt.
If you already supplied all the data through
previous CPMLibDecryptUpdate calls, pass
NULL.

-> inBufferLength
The length of inBuffer, in bytes. If inBuffer
is NULL, pass 0.

<- outBuffer A pointer to the buffer where the decrypted
inBuffer data will be copied. The buffer must
be allocated by the caller, and must be big
enough to accommodate all of the decrypted
data.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2101

<-> outBufferLength
You pass in the (allocated) length of
outBuffer, in bytes. The function resets the
argument to the amount of data that was
actually copied into outBuffer. If the function
returns cpmErrBufTooSmall,
outBufferLength is set to the minimum
buffer size that’s needed to accommodate the
decrypted inBuffer data..

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function (optionally) decrypts a final buffer of data and then
closes the decryption stream that was initialized by
CPMLibDecryptInit.

Note that outBuffer contains the decrypted inBuffer data
only—it doesn’t contain all the data that was decrypted by this
stream. It’s the callers responsibility to accumulate the data that was
decrypted by previous, successive CPMLibDecryptUpdate calls.

New CPMLibDecryptInit

Purpose Initializes a stream decryption session.

Declared In CPMLib68kInterface.h, CPMLibARMInterface.h

Prototype Err CPMLibDecryptInit (UInt16 libRef,
APKeyInfoType *keyInfo,
APCipherInfoType *cipherInfo)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo APKeyInfoStruct that contains the key that
was used to encrypt the data. You obtain the
structure by importing the APKeyInfoStruct
that was exported by the data encryptor.

Cryptography Provider Manager
CPM Functions

2102 Palm OS Programmer’s API Reference

<-> cipherInfo
A pointer to an APCipherInfoStruct that
describes the parameters that will be used in
the decryption operation. You typically retrieve
the structure by importing the
APCipherInfoStruct that was exported by
the data encryptor. If you’re using the
decryption defaults provided by the CPM
library, you can pass in a freshly allocated (and
zero’d) APCipherInfoStruct; in this case,
the structure will be populated by this function
to reflect the actual decryption parameters.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function initializes a stream decryption operation. To feed data
to the operation, you call CPMLibDecryptUpdate followed by
CPMLibDecryptFinal. The “update” function is optional; the
“final” function is mandatory. For block encryption, see
CPMLibDecrypt.

The keyInfo and cipherInfo must agree on the algorithm type,
as specified in their respective APAlgorithmEnum fields.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2103

New CPMLibDecryptUpdate
Feeds data to a stream decryption operation.

Declared In CPMLib68kInterface.h, CPMLibARMInterface.h

Prototype Err CPMLibDecryptUpdate (UInt16 libRef,
APKeyInfoType *keyInfo,
APCipherInfoType *cipherInfo, UInt8 *inBuffer,
UInt32 inBufferLength, UInt8 *outBuffer,
UInt32 *outBufferLength)

Parameters see CPMLibEncryptFinal

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function feeds data into the stream decryption session that was
started by CPMLibDecryptInit. You can make any number of
CPMLibDecryptUpdate calls while the stream is open. When
you’ve finished feeding data into the stream, you call
CPMLibDecryptFinal.

This function’s arguments, return values, and behavior are nearly
identical to CPMLibDecryptFinal (which see for details). The
only difference between them is that this function leaves the stream
open, and CPMLibDecryptFinal closes it.

Cryptography Provider Manager
CPM Functions

2104 Palm OS Programmer’s API Reference

New CPMLibEncrypt

Purpose Encrypts a block of data.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibEncrypt (UInt16 libRef,
APKeyInfoType *keyInfo,
APCipherInfoType *cipherInfo, UInt8 *inBuffer,
UInt32 inBufferLength, UInt8 *outBuffer,
UInt32 *outBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo A pointer to an APKeyInfoStruct that
represents the key that will be used to encrypt
the data. The allocate the structure, zero it, and
then populate it by calling
CPMLibGenerateKey or
CPMLibImportKeyInfo.

-> cipherInfo
A pointer to an APCipherInfoStruct that
you can use to set the parameters of the
encryption operation. If the CPM can’t satisfy
the requirements you specify in the structure,
the operation will fail. If you want to use the
default cipher settings, pass in a zero’d
structure. When the function returns, the
structure will be filled with information
describing the operation.

-> inBuffer A pointer to the data that you want to encrypt.

-> inBufferLength
The length of inBuffer, in bytes.

<- outBuffer A pointer to the buffer where the encrypted
data will be copied. The buffer must be
allocated by the caller, and must be big enough
to accommodate all of the encrypted data.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2105

<-> outBufferLength
You pass in the (allocated) length of
outBuffer, in bytes. The function resets the
argument to the amount of data that was
actually copied into outBuffer. If the function
returns cpmErrBufTooSmall,
outBufferLength is set to the minimum
buffer size that’s needed to accommodate the
encrypted data.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This functions peforms block encryption. For stream encryption, see
CPMLibEncryptInit.

The keyInfo and cipherInfo must agree on the algorithm type,
as specified in their respective APAlgorithmEnum fields.

If outBuffer isn’t big enough, the function will fail and
outBufferLength will return the “correct” output buffer size (i.e.
large enough to accommodate the encrypted data) . When this
happens, simply reallocate the output buffer and call
CPMLibEncrypt again.

After you’ve encrypted the data, you must export the keyInfo and
cipherInfo structures (see CPMLibExportKeyInfo and
CPMLibExportCipherInfo) so they can be imported, later, by the
data decryptor. Secure storage and transmission of the encryption
key is th caller’s responsibility.

To decrypt encrypted data, you call CPMLibDecrypt or
CPMLibDecryptInit.

Cryptography Provider Manager
CPM Functions

2106 Palm OS Programmer’s API Reference

New CPMLibEncryptFinal

Purpose Finalizes a stream encryption operation.

Declared In CPMLib68kInterface.h, CPMLibARMInterface.h

Prototype Err CPMLibEncryptFinal (UInt16 libRef,
APKeyInfoType *keyInfo,
APCipherInfoType *cipherInfo, UInt8 *inBuffer,
UInt32 inBufferLength, UInt8 *outBuffer,
UInt32 *outBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo Key used to encrypt the data, as returned by
CPMLibGenerateKey or
CPMLibImportKeyInfo.

-> cipherInfo
A pointer to the APCipherInfoStruct that
was returned in the stream-initializing
CPMLibEncryptInit call.

-> inBuffer A pointer to the data that you want to encrypt.
If you already supplied all the data through
previous CPMLibEncryptUpdate calls, pass
NULL.

-> inBufferLength
The length of inBuffer, in bytes. If inBuffer
is NULL, pass 0.

<- outBuffer A pointer to the buffer where the encrypted
inBuffer data will be copied. The buffer must
be allocated by the caller, and must be big
enough to accommodate the encrypted
inBuffer data.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2107

<-> outBufferLength
You pass in the (allocated) length of
outBuffer, in bytes. The function resets the
argument to the amount of data that was
actually copied into outBuffer. If the function
returns cpmErrBufTooSmall,
outBufferLength is set to the minimum
buffer size that’s needed to accommodate the
encrypted data.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function (optionally) encrypts a final buffer of data and then
closes the encryption stream that was initialized by
CPMLibEncryptInit.

After you’ve encrypted the data, you should export the keyInfo
and cipherInfo structures (see CPMLibExportKeyInfo and
CPMLibExportCipherInfo) so they can be imported, later, by the
data decryptor. Secure storage and transmission of the encryption
key is the caller’s responsibility.

Note that outBuffer contains the encrypted inBuffer data
only—it doesn’t contain all the data that was encrypted by this
stream. It’s the callers responsibility to accumulate the data that was
encrypted by previous, successive CPMLibEncryptUpdate calls.

To decrypt encrypted data, you call CPMLibDecrypt or
CPMLibDecryptInit.

Cryptography Provider Manager
CPM Functions

2108 Palm OS Programmer’s API Reference

New CPMLibEncryptInit

Purpose Initializes a stream encryption session.

Declared In CPMLib68kInterface.h, CPMLibARMInterface.h

Prototype Err CPMLibEncryptInit (UInt16 libRef,
APKeyInfoType *keyInfo,
APCipherInfoType *cipherInfo)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo Key used to encrypt the data, as returned by
CPMLibGenerateKey or
CPMLibImportKeyInfo.

-> cipherInfo
A pointer to an APCipherInfoStruct that
you can use to set the parameters of the
encryption operation. If the CPM can’t satisfy
the requirements you specify in the structure,
the operation will fail. If you want to use the
default cipher settings, pass in a zero’d
structure. When the function returns, the
structure will be filled with information
describing the operation. The structure is used
as a cookie in the subsequent
CPMLibEncryptUpdate and/or
CPMLibEncryptFinal functions.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function initializes a stream encryption operation. To feed data
to the operation, you call CPMLibEncryptUpdate followed by
CPMLibEncryptFinal. The “update” function is optional; the
“final” function is mandatory. For block encryption, see
CPMLibEncrypt.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2109

The keyInfo and cipherInfo must agree on the algorithm type,
as specified in their respective APAlgorithmEnum fields.

To decrypt encrypted data, you call CPMLibDecrypt or
CPMLibDecryptInit.

New CPMLibEncryptUpdate

Purpose Feeds data to a stream encryption operation.

Declared In CPMLib68kInterface.h, CPMLibARMInterface.h

Prototype Err CPMLibEncryptUpdate (UInt16 libRef,
APKeyInfoType *keyInfo,
APCipherInfoType *cipherInfo, UInt8 *inBuffer,
UInt32 inBufferLength, UInt8 *outBuffer,
UInt32 *outBufferLength)

Parameters see CPMLibEncryptFinal

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function feeds data into the stream encryption session that was
started by CPMLibEncryptInit. You can make any number of
CPMLibEncryptUpdate calls while the encryption stream is open.
When you’ve finished feeding data into the stream, you call
CPMLibEncryptFinal.

This function’s arguments, return values, and behavior are nearly
identical to CPMLibEncryptFinal (which see for details). The
only difference between them is that this function leaves the stream
open, and CPMLibEncryptFinal closes it.

Cryptography Provider Manager
CPM Functions

2110 Palm OS Programmer’s API Reference

New CPMLibExportCipherInfo

Purpose Encodes a cipher into a form that can be cached. To reconstitute an
exported cipher, pass it to CPMLibImportCipherInfo.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibExportCipherInfo (UInt16 libRef,
APCipherInfoType *cipherInfo, UInt8 encoding,
UInt8 *exportBuffer, UInt32 exportBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

-> cipherInfo Structure that represents the cipher that you
want to export, as created and returned by
CPMLibGenerateKey, or as imported through
CPMLibImportKeyInfo.

-> encoding Constant that specifies the type of encoding.
One of IMPORT_EXPORT_RAW,
IMPORT_EXPORT_DER, or
IMPORT_EXPORT_XML. See Export
Encoding Constants for details about these
formats.

<-> exportBuffer
Buffer into which the function copies the
encoded data. The buffer must be allocated by
the caller. Point this argument to NULL if
you’re using the function to retrieve the size of
the encoded data.

<-> exportBufferLength
You pass in the size of exportBuffer in bytes.
The function returns (through this argument)
the size that’s required to accommodate the
encoded data.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2111

Comments You call this function twice: Once to get the size of the required
exportBuffer, and then again (after allocating the buffer) to get the
encoded buffer. See “Using the Export Functions” for more
information and a free sample.

New CPMLibExportHashInfo

Purpose Encodes an APHashInfoStruct into a form that can be cached. To
reconstitute an exported hash info, pass it to
CPMLibImportHashInfo.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibExportKeyInfo (UInt16 libRef,
APHashInfoType *hashInfo, UInt8 encoding,
UInt8 *exportBuffer, UInt32 exportBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

-> hashInfo Structure that you want to export.

-> encoding Constant that specifies the type of encoding.
One of IMPORT_EXPORT_RAW,
IMPORT_EXPORT_DER, or
IMPORT_EXPORT_XML. See Export
Encoding Constants for details about these
formats.

<-> exportBuffer
Buffer into which the function copies the
encoded data. The buffer must be allocated by
the caller. Point this argument to NULL if you’re
using the function to retrieve the size of the
encoded data (see below

Cryptography Provider Manager
CPM Functions

2112 Palm OS Programmer’s API Reference

<-> exportBufferLength
You pass in the size of exportBuffer in bytes;
the function returns (through this argument)
the size that’s required to accommodate the
encoded data.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments You call this function twice: Once to get the size of the export buffer,
and then again (after allocating the buffer) to retrieve the encoded
data. See “Using the Export Functions” for more information and a
free sample.

New CPMLibExportKeyInfo

Purpose Encodes a APKeyInfoStruct into a form that can be cached. To
reconstitute an exported key, pass it to CPMLibImportKeyInfo.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibExportKeyInfo (UInt16 libRef,
APKeyInfoType *keyInfo, UInt8 encoding,
UInt8 *exportBuffer, UInt32 exportBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo Structure that you want to export.

-> encoding Constant that specifies the type of encoding.
One of IMPORT_EXPORT_RAW,
IMPORT_EXPORT_DER, or
IMPORT_EXPORT_XML. See Export
Encoding Constants for details about these
formats.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2113

<-> exportBuffer
Buffer into which the function copies the
encoded data. The buffer must be allocated by
the caller. Point this argument to NULL if you’re
using the function to retrieve the size of the
encoded data (see below

<-> exportBufferLength
You pass in the size of exportBuffer in bytes;
the function returns (through this argument)
the size that’s required to accommodate the
encoded data.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments You call this function twice: Once to get the size of the export buffer,
and then again (after allocating the buffer) to retrieve the encoded
data. See “Using the Export Functions” for more information and a
free sample.

New CPMLibExportVerifyInfo

Purpose Encodes a APVerifyInfoStruct into a form that can be cached.
To reconstitute an exported key, pass it to
CPMLibImportVerifyInfo.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibExportKeyInfo (UInt16 libRef,
APVerifyInfoType *verifyInfo, UInt8 encoding,
UInt8 *exportBuffer, UInt32 exportBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo Structure that you want to export.

Cryptography Provider Manager
CPM Functions

2114 Palm OS Programmer’s API Reference

-> encoding Constant that specifies the type of encoding.
One of IMPORT_EXPORT_RAW,
IMPORT_EXPORT_DER, or
IMPORT_EXPORT_XML. See Export
Encoding Constants for details about these
formats.

<-> exportBuffer
Buffer into which the function copies the
encoded data. The buffer must be allocated by
the caller. Point this argument to NULL if you’re
using the function to retrieve the size of the
encoded data (see below

<-> exportBufferLength
You pass in the size of exportBuffer in bytes;
the function returns (through this argument)
the size that’s required to accommodate the
encoded data.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments You call this function twice: Once to get the size of the export buffer,
and then again (after allocating the buffer) to retrieve the encoded
data. See “Using the Export Functions” for more information and a
free sample.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2115

New CPMLibGenerateKey

Purpose Generates a new symmetric key.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibGenerateKey (UInt16 libRef,
UInt8 *seedData, UInt32 seedLength,
APKeyInfoType *keyInfo)

Parameters -> libRef CPM Library reference number (68k only).

-> seedData Optional data that’s used to seed the key
generator. Because PalmOS 5 doesn’t currently
support key “derivation” (identical key
generation based on identical seeds) the seed
data is, in essence, a no-op, and can be a pointer
to 0. However, you may want to supply (and
cache) unique seed data today in anticipation of
tomorrow’s derivation functionality.

-> seedLength Length of seedData, in bytes. (Pass 0 if
*seedData is 0.)

<-> keyInfo A pointer to a APKeyInfoStruct that will
contain the generated key. The keyInfo
structure is allocated and owned by the caller.
You can specify the desired provider, key-
generation scheme, and so on, by setting the
APKeyInfoType fields. Or, to retrieve a
default key, zero the structure before you pass it
in.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments The APKeyInfoStruct that’s populated by this function can be
used in subsequent encryption, decryption, and verification
operations.

Cryptography Provider Manager
CPM Functions

2116 Palm OS Programmer’s API Reference

When you’re finished using the APKeyInfoStruct, you must
release it through CPMLibReleaseKeyInfo.

New CPMLibGetInfo

Purpose Retrieves information about the CPM library.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibLibGetInfo (UInt16 libRef,
CPMInfoType *info)

Parameters -> libRef CPM Library reference number (68k only).

-> info Pointer to a CPMInfoStruct that returns the
information about the library. See
CPMInfoStruct for a description.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

New CPMLibGetProviderInfo

Purpose Retrieves information about a specific provider.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibGetProviderInfo (UInt16 libRef,
UInt32 providerID,
APProviderInfoType *providerInfo)

Parameters -> libRef CPM Library reference number (68k only).

-> providerID ID number that identifies the provider.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2117

<- providerInfo
Structure into which the function places
provider information. The structure is allocated
and freed by the caller. The function doesn’t
clear inapplicable fields on the way out.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

New CPMLibHash

Purpose Hashes a block of data.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibHash (UInt16 libRef, APHashEnum type,
APHashInfoType *hashInfo, UInt8 *inBuffer,
UInt32 inBufferLength, UInt8 *outBuffer,
UInt32 *outBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

-> type A constant that represents the hashing
algorithm that will be used to create the
message digest. See Hashing Algorithm
Constants for a list of constants. If you want the
default algorithm, use
apHashTypeUnspecified.

-> hashInfo A pointer to an APHashInfoStruct that you
can use to set the parameters of the hashing
operation. If the CPM can’t satisfy the
requirements you specify in the structure, the
operation will fail. If you want to use the
default settings, pass in a zero’d structure.
When the function returns, the structure will be
filled with information describing the
operation.

Cryptography Provider Manager
CPM Functions

2118 Palm OS Programmer’s API Reference

-> inBuffer A pointer to the data that you want to hash.

-> inBufferLength
The length of inBuffer, in bytes. If inBuffer
is NULL, pass 0.

<- outBuffer A pointer to the buffer where the hashed
inBuffer data will be copied. The buffer must
be allocated by the caller, and must be big
enough to accommodate all of the hashed data.

<-> outBufferLength
You pass in the (allocated) length of
outBuffer, in bytes. The function resets the
argument to the amount of data that was
actually copied into outBuffer. If the
function returns cpmErrBufTooSmall,
outBufferLength is set to the minimum
buffer size that’s needed to accommodate the
hashed data..

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function performs a block hash operation. For stream hashing,
use CPMLibHashInit.

New CPMLibHashFinal

Purpose Finalizes a hash session and returns the hashed data.

Declared In CPMLib.h

Prototype Err CPMLibHashFinal (UInt16 libRef,
APHashInfoType *hashInfo, UInt8 *inBuffer,
UInt32 inBufferLength, UInt8 *outBuffer,
UInt32 *outBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2119

-> hashInfo A pointer to the APHashInfoStruct that was
returned by CPMLibHashInit.

-> inBuffer A pointer to the data that you want to hash. If
you already supplied all the data through
previous CPMLibHashUpdate calls, pass
NULL.

-> inBufferLength
The length of inBuffer, in bytes. If inBuffer
is NULL, pass 0.

<- outBuffer A pointer to the buffer where all the data that
has been hashed by this stream will be copied.
The buffer must be allocated by the caller, and
must be big enough to accommodate all of the
hashed data.

<-> outBufferLength
You pass in the (allocated) length of
outBuffer, in bytes. The function resets the
argument to the amount of data that was
actually copied into outBuffer. If the function
returns cpmErrBufTooSmall,
outBufferLength is set to the minimum
buffer size that’s needed to accommodate the
hashed data.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function returns all the data that was hashed by the hash
stream, and then closes the stream. It follows an initial call to
CPMLibHashInit and some number of calls to
CPMLibHashUpdate.

New CPMLibHashInit

Purpose Initiates a streaming hash operation.

Cryptography Provider Manager
CPM Functions

2120 Palm OS Programmer’s API Reference

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibHash (UInt16 libRef,
APHashInfoType *hashInfo)

Parameters -> libRef CPM Library reference number (68k only).

-> hashInfo A pointer to an APHashInfoStruct that you
can use to set the parameters of the hash
operation. If the CPM can’t satisfy the
requirements you specify in the structure, the
operation will fail. If you want to use the
default settings, pass in a zero’d structure.
When the function returns, the structure will be
filled with information describing the
operation.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function initializes a streaming hash operation. To feed data to
the stream, you call CPMLibHashUpdate followed by
CPMLibHashFinal. The “update” function is optional; the “final”
function is mandatory. For a block hash, see CPMLibHash.

New CPMLibHashUpdate

Purpose Sends data to streaming hash operation.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibHashUpdate (UInt16 libRef,
APHashInfoType *hashInfo, UInt8 *inBuffer,
UInt32 inBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2121

-> hashInfo A pointer to the APHashInfoStruct that was
returned by CPMLibHashInit.

-> inBuffer A pointer to the data that you want to hash.

-> inBufferLength
The length of inBuffer, in bytes.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function feeds data into the streaming hash session that was
started by CPMLibHashInit. You can make any number of
CPMLibHashUpdate calls while the hash stream is open. When
you’ve finished feeding data into the stream, you call
CPMLibHashFinal.

Note that this function doesn’t return any hashed data. All the data
that’s hashed by the stream is returned through the
CPMLibHashFinal call.

New CPMLibImportCipherInfo

Purpose Imports a previously-exported cipher info structure so that it can be
used in subsequent operations.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibImportCipherInfo (UInt16 libRef,
UInt8 encoding, UInt8 *importData,
UInt32 importDataLength,
APCipherInfoType *cipherInfo)

Parameters -> libRef CPM Library reference number (68k only).

Cryptography Provider Manager
CPM Functions

2122 Palm OS Programmer’s API Reference

-> encoding Constant that specifies the encoding type that
was used to export the key. One of
IMPORT_EXPORT_RAW,
IMPORT_EXPORT_DER, or
IMPORT_EXPORT_XML. See Export
Encoding Constants for details about these
formats.

-> importData The encoded data.

-> importDataLength
The length of importData, in bytes.

<- cipherInfo APCipherInfoStruct that returns the
imported key. The structure must be allocated
before it’s passed in.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

New CPMLibImportHashInfo

Purpose Imports a previously-exported hash info structure so that it can be
used in subsequent operations.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibImportHashInfo (UInt16 libRef,
UInt8 encoding, UInt8 *importData,
UInt32 importDataLength,
APHashInfoType *keyInfo)

Parameters -> libRef CPM Library reference number (68k only).

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2123

-> encoding Constant that specifies the encoding type that
was used to export the key. One of
IMPORT_EXPORT_RAW,
IMPORT_EXPORT_DER, or
IMPORT_EXPORT_XML. See Export
Encoding Constants for details about these
formats.

-> importData The encoded data.

-> importDataLength
The length of importData, in bytes.

<- hashInfo APHashInfoStruct that returns the imported
hash info. The structure must be allocated
before it’s passed in.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

New CPMLibImportKeyInfo

Purpose Imports a previously-exported key so that it (the key) can be used in
subsequent operations.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibImportKeyInfo (UInt16 libRef,
UInt8 encoding, UInt8 *importData,
UInt32 importDataLength, APKeyInfoType *keyInfo)

Parameters -> libRef CPM Library reference number (68k only).

-> encoding Constant that specifies the encoding type that
was used to export the key. One of
IMPORT_EXPORT_RAW,
IMPORT_EXPORT_DER, or
IMPORT_EXPORT_XML. See Export
Encoding Constants for details about these
formats.

Cryptography Provider Manager
CPM Functions

2124 Palm OS Programmer’s API Reference

-> importData The encoded data.

-> importDataLength
The length of importData, in bytes.

<- keyInfo APKeyInfoStruct that returns the imported
key. The structure must be allocated before it’s
passed in.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

New CPMLibImportVerifyInfo

Purpose Imports a previously-exported verify info structure so that it can be
used in subsequent operations.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibImportVerifyInfo (UInt16 libRef,
UInt8 encoding, UInt8 *importData,
UInt32 importDataLength,
APVerifyInfoType *keyInfo)

Parameters -> libRef CPM Library reference number (68k only).

-> encoding Constant that specifies the encoding type that
was used to export the key. One of
IMPORT_EXPORT_RAW,
IMPORT_EXPORT_DER, or
IMPORT_EXPORT_XML. See Export
Encoding Constants for details about these
formats.

-> importData The encoded data.

-> importDataLength
The length of importData, in bytes.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2125

<- verifyInfo APVerifyInfoStruct that returns the
imported verify info. The structure must be
allocated before it’s passed in.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

New CPMLibReleaseCipherInfo

Purpose Releases a APCipherInfoStruct, allowing you to free it.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibReleaseCipherInfo (UInt16 libRef,
APCipherInfoType *cipherInfo)

Parameters -> libRef CPM Library reference number (68k only).

-> cipherInfo A pointer to a APCipherInfoStruct that you
want to release.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

New CPMLibReleaseHashInfo

Purpose Releases a APKeyInfoStruct, allowing you to free it.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibReleaseHashInfo (UInt16 libRef,
APHashInfoType *hashInfo)

Parameters -> libRef CPM Library reference number (68k only).

Cryptography Provider Manager
CPM Functions

2126 Palm OS Programmer’s API Reference

-> hashInfo A pointer to a APHashInfoStruct that you
want to release.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

New CPMLibReleaseKeyInfo

Purpose Releases a APKeyInfoStruct, allowing you to free it.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibReleaseKeyInfo (UInt16 libRef,
APKeyInfoType *keyInfo)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo A pointer to the APKeyInfoStruct that you
want to release.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

New CPMLibReleaseVerifyInfo

Purpose Releases a APVerifyInfoStruct, allowing you to free it.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibReleaseVerifyInfo (UInt16 libRef,
APVerifyInfoType *verifyInfo)

Parameters -> libRef CPM Library reference number (68k only).

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2127

-> verifyInfo A pointer to a APVerifyInfoStruct that you
want to release.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

New CPMLibVerify

Purpose Verifies a message.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibVerify (UInt16 libRef,
APKeyInfoType *keyInfo,
APVerifyInfoType *verifyInfo, UInt8 *inBuffer,
UInt32 inBufferLength, UInt8 *outBuffer,
UInt32 *outBufferLength, UInt8 *signature,
UInt32 signatureLength,
VerifyResultType *verifyResult)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo An APKeyInfoStruct that represents the
certificate’s encryption key. Extracting the key
data from the certificate and constructing the
APKeyInfoStruct (through
CPMLibImportKeyInfo) is the caller’s
responsibility.

Cryptography Provider Manager
CPM Functions

2128 Palm OS Programmer’s API Reference

-> verifyInfo A pointer to an APVerifyInfoStruct that
specifies the hash and cipher operations that
should be performed during verification. This
information is embedded as
APHashInfoStruct and
APCipherInfoStruct structures. If you want
to use the default operations, allocate and zero
the embedded structures. When the function
returns, the structures will be populated with
information describing the operations that
were used.

-> inBuffer A pointer to the message data.

-> inBufferLength
The length of inBuffer, in bytes.

<- outBuffer A pointer to the buffer where the decrypted
signature will be copied. The buffer must be
allocated by the caller, and must be big enough
to accommodate all of the decrypted data. If
you don’t care about the signature, pass NULL.

<-> outBufferLength
If outBuffer is NULL, set this to 0. Otherwise,
you pass in the (allocated) length of
outBuffer, in bytes. The function resets the
argument to the amount of data that was
actually copied into outBuffer. If the
function returns cpmErrBufTooSmall,
outBufferLength is set to the minimum
buffer size that’s needed to accommodate the
verified data.

-> signature A pointer to the message’s signature. Extracting
the signature from the message is the caller’s
responsibility

-> signatureLength
The length of the signature, in bytes.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2129

<- verifyResult
An integer point that returns, by reference, the
result of the verification. 0 means the message
was verified; non-zero means is wasn’t. The
meaning of a non-zero return is defined by the
algorithm provider.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function performs a block verifcation operation. For stream
verification, use CPMLibVerifyInit.

Keep in mind that a direct return of errNone doesn’t mean that the
message has been verified. The verification status is returned by
reference in verifyResult.

New CPMLibVerifyFinal

Purpose Finalizes a verify session.

Declared In CPMLib.h

Prototype Err CPMLibVerifyFinal (UInt16 libRef,
APKeyInfoType *keyInfo,
APVerifyInfoType *verifyInfo, UInt8 *inBuffer,
UInt32 inBufferLength, UInt8 *outBuffer,
UInt32 *outBufferLength, UInt8 *signature,
UInt32 signatureLength,
VerifyResultType *verifyResult)

Parameters -> libRef CPM Library reference number (68k only).

-> verifyInfo A pointer to the APVerifyInfoStruct that
was returned by CPMLibVerifyInit.

-> inBuffer A pointer to the final buffer of message data, or
NULL if there’s no more data..

Cryptography Provider Manager
CPM Functions

2130 Palm OS Programmer’s API Reference

-> inBufferLength
The length of inBuffer, in bytes.

<- outBuffer A pointer to the buffer where the decrypted
signature will be copied. The buffer must be
allocated by the caller, and must be big enough
to accommodate all of the decrypted data. If
you don’t care about the signature, pass NULL.

<-> outBufferLength
If outBuffer is NULL, set this to 0. Otherwise,
you pass in the (allocated) length of
outBuffer, in bytes. The function resets the
argument to the amount of data that was
actually copied into outBuffer. If the
function returns cpmErrBufTooSmall,
outBufferLength is set to the minimum
buffer size that’s needed to accommodate the
verified data.

-> signature A pointer to the message’s signature. Extracting
the signature from the message is the caller’s
responsibility

-> signatureLength
The length of the signature, in bytes.

<- verifyResult
An integer point that returns, by reference, the
result of the verification. 0 means the message
was verified; non-zero means is wasn’t. The
meaning of a non-zero return is defined by the
algorithm provider.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function feeds a final (optional) buffer of message into a verify
stream that was previously initialized by CPMLibVerifyInit and
augmented through successive calls to CPMLibVerifyUpdate.
The entire message is then verified, the results of the verification are
returned in verifyResult, and the stream is closed.

Cryptography Provider Manager
CPM Functions

Palm OS Programmer’s API Reference 2131

New CPMLibVerifyInit

Purpose Initiates a streaming verify operation.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibVerify (UInt16 libRef,
APKeyInfoType *keyInfo,
APVerifyInfoType *verifyInfo)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo An APKeyInfoStruct that represents the
certificate’s encryption key. Extracting the key
data from the certificate and constructing the
APKeyInfoStruct (through
CPMLibImportKeyInfo) is the caller’s
responsibility.

-> verifyInfo A pointer to an APVerifyInfoStruct that
specifies the hash and cipher operations that
should be performed during verification. This
information is embedded as
APHashInfoStruct and
APCipherInfoStruct structures. If you want
to use the default operations, allocate and zero
the embedded structures. When the function
returns, the structures will be populated with
information describing the operations that
were used.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function initializes a streaming hash operation. To feed data to
the stream, you call CPMLibVerifyUpdate followed by
CPMLibVerifyFinal. The “update” function is optional; the
“final” function is mandatory. For a block hash, see
CPMLibVerify.

Cryptography Provider Manager
CPM Error Codes

2132 Palm OS Programmer’s API Reference

New CPMLibVerifyUpdate

Purpose Sends message data to a streaming verify operation.

Declared In CPMLib68KInterface.h, CPMLibArmInterface.h

Prototype Err CPMLibVerifyUpdate (UInt16 libRef,
APKeyInfoType *keyInfo,
APVerifyInfoType *verifyInfo)
UInt8 *inBuffer, UInt32 inBufferLength)

Parameters -> libRef CPM Library reference number (68k only).

-> keyInfo The APKeyInfoStruct that was used in the
CPMLibVerifyInit call.

-> verifyInfo A pointer to the APVerifyInfoStruct that
was returned by CPMLibVerifyInit.

-> inBuffer A pointer to the message data.

-> inBufferLength
The length of inBuffer, in bytes.

Result The function returns errNone upon success. For other error codes,
see CPM Error Codes.

Comments This function feeds message data into the verify stream that was
intialized by CPMLibVerifyInit. When you’re finished feeding
data into the stream, call CPMLibVerifyFinal to close the stream
and return the verification results.

CPM Error Codes
The table below lists and explains the error codes that are returned
by the CPM functions.

Cryptography Provider Manager
CPM Error Codes

Palm OS Programmer’s API Reference 2133

cpmErrAlreadyOpen Returned by CPMLibOpen() to indicate that the
CPM library has already been opened by your
application. The open library remains open.

cpmErrNotOpen All CPM functions (except CPMLibOpen()) expect
the CPM library to be open. This code is returned if
the library isn’t open. To open the library, call
CPMLibOpen().

cpmErrStillOpen Returned by CPMLibClose() if the function was
unable to close the library.

cpmErrNoProviders Returned by CPMLibOpen() if the function was
uable to locate (or load) any crytography providers.
Without a cryptography provider, none of the other
CPM functions will work.

cpmErrNoBaseProvider Returned by CPMLibOpen() if the function was
uable to locate (or load) the default cryptography
provider. (Note that this means that at least one
non-default provider was found. If no providers
were found, the function would have returned
cpmErrNoProviders).

cpmErrProviderNotFound Returned by CPMLibGenerateKey(),
CPMLibEncryt(), CPMLibDecrypt() and other
algorithm-dependent functions if the requested
provider couldn’t be found.

cpmErrParamErr Returned by a number of CPM functions when an
argument is invalid (a pointer that points to an
unallocated structure; a structure field that isn’t
properly set, and so on).

cpmErrOutOfMemory Returned by CPMLibOpen() if the memory for a
new library handle (and the structures it
represents) couldn’t be allocated

Cryptography Provider Manager
CPM Error Codes

2134 Palm OS Programmer’s API Reference

cpmErrBufTooSmall Returned by CPMLibExportKey() and
CPMLibExportContext() functions if the storage
buffer (allocated by the caller) isn’t big enough to
accommodate the key or context.

cpmErrBadData Returned by algorithm functions
(CPMLibEncrypt...(), CPMLibDecrypt...(), etc.)
when the key or other required data is invalid.

cpmErrUnimplemented Returned by functions that aren’t curently
implemented.

cpmErrUnsupported Returned by functions that aren’t currently
supported.

cpmErrNoGlobals Returned by functions that access global CPM
data—functions such as
CPMLibEnumerateProviders() and
CPMLibGetProviderInfo()—when that data doesn’t
exist.

cpmErrKeyExists Returned by CPMLibImportKey() when the key
you’re trying to import already exists.

cpmErrKeyNotFound Returned by CPMLibExportKey() when the key
you’re trying to export doesn’t exists.

Palm OS Programmer’s API Reference 2135

80
SSL Functions
This chapter describes the functions that are defined in the SSL
library. These functions let you create and configure an SSL context,
apply the SSL protocol to an existing socket, and send SSL data to
and receive data over the socket.

But before you do any of that, you have to load and open the SSL
library; something like this:

Err error;
UInt16 libRef;

if (SyLibFind(kSslDBName, &libRef) != 0)
{

error = SysLibLoad(kSslLibType, kSslLibCreator, &libRef);
}
/* error checking goes here. */

error = SslLibOpen(libRef);
...

After that, you typically...

1. ...create an SslLib through SslLibCreate,
2. spawn an SslContext through SslContextCreate,
3. set the context’s socket (see the SslContextSet_Socket

macro),
4. “open” the context through SslOpen (this enables the SSL

protocol),
5. send and receive data through SslRead and SslWrite,
6. and then close everything down (SslClose,

SslContextDestroy, SslLibDestroy, and
SslLibClose, in that order).

You can also use the more detailed SslSend and SslReceive
functions to send and receive data. If you want to perform
“streaming” reads—in which partial SSL records are read as the

SSL Functions
SSL Attribute Functions and Macros

2136 Palm OS Programmer’s API Reference

data arrives—use SslPeek and SslConsume. (For more on
streaming, see the ReadStreaming attribute).

All functions described below are defined in SslLib.h.

SSL Attribute Functions and Macros
An SSL context is defined, primarily, by the values of its SSL
attributes. These attributes are set and retrieved through attribute-
specific macros. For example, the SslLibSet_InfoCallback
macro sets an SslLib’s InfoCallback attribute.

The attribute macros are defined in terms of a set of eight functions
listed in this chapter. These functions—SslLibSetLong,
SslContextSetLong, SslLibSetPtr, SslContextSetPtr,
and so on—can be called directly, but it’s suggested that you stick
with the macros. If you want to call an attribute function directly,
you have to identify the attribute by passing in one of the attribute
constants.

The attribute macros and constants are described in Chapter 82,
“SSL Attributes and Macros,” on page 2181.

A Note on the Function Names
All of the SSL library functions have “Ssl” as a prefix. Furthermore,
the expected Palm library functions (SslLibOpen, SslLibClose)
have an equally expected “SslLib” prefix. Unfortunately, another
set of functions also uses “SslLib” as a prefix. These functions,
SslLibCreate, SslLibDestroy, and so on, operate on instances
of the SslLib data type, which type represents a generic SSL
context.

Admittedly, “SslLib” is bad choice for the name of this data type. As
pointed out in Chapter 81, “SSL Structures and Data Types,” when
you see the SslLib data type, you should think “generic SSL
context,” not “SSL library.”

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2137

SSL Library Functions

New SslClose

Purpose Shuts down an SSL session.

Prototype Err SslClose (UInt16 libRef, SslContext *context,
UInt16 flags, UInt32 timeout)

Parameters -> libRef (68k only) SSL library reference number.

-> context The context that you want to close.

-> flags Options that set the session’s “shutdown”
attributes.

-> timeout Amount of time to wait for the final handshake
messages from the server, in milliseconds.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments By default, an SSL shutdown involves an exchange of messages
with the server. As with SslOpen, if this function times out, simply
call it repeatedly until you get confirmation that the session has
actually been closed (i.e. until the function returns errNone).
Unlike with SslClose, you needn’t clear the flags when you re-call
this function.

SSL Functions
SSL Library Functions

2138 Palm OS Programmer’s API Reference

The flags set the SSL attributes that are used during the shutdown:

New SslConsume

Purpose Removes data from a context’s in-coming data buffer. Use after an
SslPeek only.

Prototype void SslConsume (UInt16 libRef,
SslContext *context, Int32 availableBytes)

Parameters -> libRef (68k only) SSL library reference number.

-> context Context you want to look at.

-> availableBytes
The number of bytes to remove. This should
always be the value that’s returned to you by
SslPeek’s availableBytes argument.

Comments You call this function after calling SslPeek to remove the peeked at
data.

Flag Meaning

sslCloseUseDefaultTimeout If this flag is set, the current value of the
IoTimeout attribute is used as the
function’s timeout, overriding the
timeout argument. If it isn’t set,
IoTimeout is set to timeout and is
used as the timeout for this function.

sslCloseDontSendShutdown Sets the DontSendShutdown attribute to
1. This suppresses the shutdown
messages.

sslCloseDontWaitForShutdown Sets the DontWaitForShutdown
attribute to 1. This tells the function to
return after it sends a shutdown message
to the server, thus ignoring the server’s
response.

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2139

New SslContextCreate

Purpose Creates a new SSL context. The object is used to open, read, write,
and close an SSL session.

Prototype Err SslContextCreate (UInt16 libRef,
SslLib *contextTemplate, SslContext **context)

Parameters -> libRef (68k only) SSL library reference number.

-> contextTemplate
Pointer to an SslLib object that will be used as
the template for this context.

<- context You pass in the address of an SslContext
pointer. The function allocates a new
SslContext object and points your pointer at
it.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments The attributes that have been set in contextTemplate are copied
into context. These attributes don’t include a network socket;
setting the socket is typically the first thing you do with your
context object. For instructions, see Socket in Chapter 82, “SSL
Attributes and Macros,” on page 2181.

After you set its socket, the context object can be used to open an
SSL session; see SslOpen.

When you’re finished using your context object, you close the
session (SslClose) and the destroy the object by passing it to
SslContextDestroy.

SSL Functions
SSL Library Functions

2140 Palm OS Programmer’s API Reference

New SslContextDestroy

Purpose Destroys an SSL context. You should close the object’s SSL session
(see SslClose) before destroying it.

Prototype Err SslContextDestroy (UInt16 libRef,
SslContext *context)

Parameters -> libRef (68k only) SSL library reference number.

-> context The context you wish to demolish.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

See Also SslContextCreate

New SslContextGetLong

Purpose Returns the value of an integer-valued SSL attribute retrieved from
a context.

Prototype Int32 SslLibGetLong (UInt16 libRef,
SslContext *context, SslAttribute attribute)

Parameters -> libRef (68k only) SSL library reference number.

-> context The context that contains the attribute.

-> attribute Constant that represents the attribute that you
want the value of. See “SSL Attribute
Constants” in Chapter 82, “SSL Attributes and
Macros,” on page 2181 for a list of attribute
constants.

Result The attribute’s value is returned directly.

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2141

Comments You should rarely need to invoke this function directly. Instead, use
the attribute macros, as described in “SSL Attribute Functions and
Macros” near the beginning of this chapter.

See Also Chapter 82, “SSL Attributes and Macros,” on page 2181,
SslContextSetLong, SslContextSetPtr,
SslContextGetPtr

New SslContextGetPtr

Purpose Returns a pointer to an attribute that’s owned by a context template.

Prototype Err SslLibGetPtr (UInt16 libRef,
SslContext *context, SslAttribute attribute,
void **value)

Parameters -> libRef (68k only) SSL library reference number.

-> context The context that contains the attribute.

-> attribute Constant that represents the attribute that you
want the value of. “SSL Attribute Constants” in
Chapter 82, “SSL Attributes and Macros,” on
page 2181 for a list of attribute constants.

-> value You pass in the address of a pointer; the
function will point your pointer to the
attribute’s data. The data’s type depends on the
attribute. You mustn’t free or modify the
pointed to data.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

SSL Functions
SSL Library Functions

2142 Palm OS Programmer’s API Reference

New SslContextSetLong

Purpose Modifies a context by changing the value of one of its integer-
valued SSL attributes.

Prototype Err SslLibSetLong (UInt16 libRef,
SslContext *context, SslAttribute attribute,
Int32 value)

Parameters -> libRef (68k only) SSL library reference number.

-> context
The context template you want to modify.

-> attribute Constant that represents the attribute that you
want to change. See “SSL Attribute Constants”
in Chapter 82, “SSL Attributes and Macros,” on
page 2181 for a list of attribute constants.

-> value The attribute’s new (desired) value.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments You should rarely need to invoke this function directly. Instead, use
the attribute macros, as described in “SSL Attribute Functions and
Macros” near the beginning of this chapter.

See Also Chapter 82, “SSL Attributes and Macros,” on page 2181,
SslContextSetPtr, SslContextGetLong,
SslContextGetPtr

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2143

New SslContextSetPtr

Purpose Modifies a context template by changing the value of one of its
pointer-valued SSL attributes.

Prototype Err SslLibSetPtr (UInt16 libRef,
SslContext *context, SslAttribute attribute,
void *value)

Parameters -> libRef (68k only) SSL library reference number.

-> context The context you want to modify.

-> attribute Constant that represents the attribute that you
want to change. See “SSL Attribute Constants”
in Chapter 82, “SSL Attributes and Macros,” on
page 2181 for a list of attribute constants.

-> value A pointer to the attribute’s new (desired) value.
The type of data that the pointer should point
to is defined by the attribute.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments You should rarely need to invoke this function directly. Instead, use
the attribute macros, as described in “SSL Attribute Functions and
Macros” near the beginning of this chapter.

See Also Chapter 82, “SSL Attributes and Macros,” on page 2181,
SslContextSetLong, SslContextGetLong,
SslContextGetPtr

SSL Functions
SSL Library Functions

2144 Palm OS Programmer’s API Reference

New SslFlush

Purpose Flushes a context’s out-going data buffer, sending the data to the
network.

Prototype Err SslFlush (Int16 libRef, SslContext *context,
Int32 *outstanding)

Parameters -> libRef (68k only) SSL library reference number.

-> context Context you want to flush.

<- outstanding
The number of bytes of data left in the buffer.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments If the context is in autoflush mode (the AutoFlush attribute is 0),
SslWrite and SslSend calls will write their data into the context’s
out-going data buffer, but the data won’t actually be sent to the
network. To “flush” this data, you have to explicitly call SslFlush.

By not autoflushing, you can make multiple, small SslWrite/
SslSend followed by an SslFlush and thereby improve network
efficiency. Although the out-going buffer size is set to the value of
the WbufSize attribute, the actual number of bytes that can be
written by your application is somewhat smaller due to SSL
overhead. After performing a write, you should check the value of
the WriteBufPending attribute; if it’s approaching the WbufSize
value, you should call SslFlush.

When the function returns, the outstanding value tells how many
bytes of data are left in the buffer. If this value is non-zero, the next
SslWrite, SslSend, or SslFlush call will attempt to write those
bytes to the network.

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2145

New SslLibClose

Purpose Closes a reference to the SSL library.

Prototype Err SslLibClose (UInt16 refNum)

Parameters -> refNum SSL library reference number (68k only).

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments You can only a library that you’ve already opened. To open the SSL
library, call SslLibOpen.

New SslLibCreate

Purpose Allocates and returns new SslLib object. The object is a template
that describes a generic SSL context, and is used to create “real”
context objects (SslContext).

Declared In SslLib.h

Prototype Err SslLibCreate (UInt16 libRef,
SslLib **contextTemplate)

Parameters -> libRef (68k only) SSL library reference number.

<- contextTemplate
You pass in the address of an SslLib pointer.
The function allocates an SslLib object for
you, and points your pointer at it.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

SSL Functions
SSL Library Functions

2146 Palm OS Programmer’s API Reference

Comments You modify the context template (i.e the SslLib object) by calling
the SSL attribute macros described in Chapter 82, “SSL Attributes
and Macros.” You then use it as a template with which you create
SslContext objects (see SslContextCreate). The latter objects
are needed for actual SSL data transaction operations.

The contextTemplate that’s returned by this function should
ultimately be destroyed through SslLibDestroy.

For more on SslLib, SslContext, and the relationship between them,
see their descriptions in Chapter 81, “SSL Structures and Data
Types,” on page 2163.

New SslLibDestroy

Purpose Destroys an SslLib object and frees all the memory it allocated.

Prototype void SslLibDestroy (UInt16 libRef,
SslLib *contextTemplate)

Parameters -> libRef (68k only) SSL library reference number.

-> contextTemplate
The SslLib you want to destroy, as previously
returned by SslLibCreate.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments The SslContext objects that were spawned by this SslLib
maintain a reference to their spawner. Because of this, you shouldn’t
destroy an SslLib until you’ve destroyed all of its contexts.

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2147

New SslLibOpen

Purpose Opens a reference to the SSL library.

Prototype Err SslLibOpen (UInt16 libRef)

Parameters -> libRef (68k only) SSL library reference number.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments When you’re done using the SSL library, you must close it through
SslLibClose

New SslLibGetLong

Purpose Returns the value of an integer-valued SSL attribute retrieved from
a context template.

Prototype Int32 SslLibGetLong (UInt16 libRef,
SslLib *contextTemplate, SslAttribute attribute)

Parameters -> libRef (68k only) SSL library reference number.

-> contextTemplate
The context template that contains the attribute.

-> attribute Constant that represents the attribute that you
want the value of. See “SSL Attribute
Constants” in Chapter 82, “SSL Attributes and
Macros,” on page 2181 for a list of attribute
constants.

Result The attribute’s value is returned directly.

SSL Functions
SSL Library Functions

2148 Palm OS Programmer’s API Reference

Comments You should rarely need to invoke this function directly. Instead, use
the attribute macros, as described in “SSL Attribute Functions and
Macros” near the beginning of this chapter.

See Also Chapter 82, “SSL Attributes and Macros,” on page 2181,
SslLibSetLong, SslLibSetPtr, SslLibGetPtr

New SslLibGetPtr

Purpose Returns a pointer to an attribute that’s owned by a context template.

Prototype Err SslLibGetPtr (UInt16 libRef,
SslLib *contextTemplate, SslAttribute attribute,
void **value)

Parameters -> libRef (68k only) SSL library reference number.

-> contextTemplate
The context template that contains the attribute.

-> attribute Constant that represents the attribute that you
want the value of. “SSL Attribute Constants” in
Chapter 82, “SSL Attributes and Macros,” on
page 2181 for a list of attribute constants.

-> value You pass in the address of a pointer; the
function will point your pointer to the
attribute’s data. The data’s type depends on the
attribute. You mustn’t free or modify the
pointed to data.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2149

Comments You should rarely need to invoke this function directly. Instead, use
the attribute macros, as described in “SSL Attribute Functions and
Macros” near the beginning of this chapter.

See Also Chapter 82, “SSL Attributes and Macros,” on page 2181,
SslLibSetLong, SslLibGetLong, SslLibSetPtr

New SslLibSetLong

Purpose Modifies a context template by changing the value of one of its
integer-valued SSL attributes.

Prototype Err SslLibSetLong (UInt16 libRef,
SslLib *contextTemplate, SslAttribute attribute,
Int32 value)

Parameters -> libRef (68k only) SSL library reference number.

-> contextTemplate
The context template you want to modify.

-> attribute Constant that represents the attribute that you
want to change. See “SSL Attribute Constants”
in Chapter 82, “SSL Attributes and Macros,” on
page 2181 for a list of attribute constants.

-> value The attribute’s new (desired) value.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments You should rarely need to invoke this function directly. Instead, use
the attribute macros, as described in “SSL Attribute Functions and
Macros” near the beginning of this chapter.

See Also Chapter 82, “SSL Attributes and Macros,” on page 2181,
SslLibSetPtr, SslLibGetLong, SslLibGetPtr

SSL Functions
SSL Library Functions

2150 Palm OS Programmer’s API Reference

New SslLibSetPtr

Purpose Modifies a context template by changing the value of one of its
pointer-valued SSL attributes.

Prototype Err SslLibSetPtr (UInt16 libRef,
SslLib *contextTemplate, SslAttribute attribute,
void *value)

Parameters -> libRef (68k only) SSL library reference number.

-> contextTemplate
The context template you want to modify.

-> attribute Constant that represents the attribute that you
want to change. See “SSL Attribute Constants”
in Chapter 82, “SSL Attributes and Macros,” on
page 2181 for a list of attribute constants.

-> value A pointer to the attribute’s new (desired) value.
The type of data that the pointer should point
to is defined by the attribute.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments You should rarely need to invoke this function directly. Instead, use
the attribute macros, as described in “SSL Attribute Functions and
Macros” near the beginning of this chapter.

See Also Chapter 82, “SSL Attributes and Macros,” on page 2181,
SslLibSetLong, SslLibGetLong, SslLibGetPtr

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2151

Comments You should rarely need to invoke this function directly. Instead, use
the attribute macros, as described in “SSL Attribute Functions and
Macros” near the beginning of this chapter.

See Also Chapter 82, “SSL Attributes and Macros,” on page 2181,
SslContextGetLong, SslContextSetLong,
SslContextSetPtr

New SslOpen

Purpose Opens an SSL session, possibly as a continuation of a previous
session.

Prototype Err SslOpen (UInt16 libRef, SslContext *context,
UInt16 flags, UInt32 timeout)

Parameters -> libRef (68k only) SSL library reference number.

-> context The context object that will configure and own
the session.

-> flags Options that set various SSL attributes. The
most important flags are sslOpenModeSsl
and sslOpenModeClear. These mutually
exclusive flags tell the session to use SSL or
cleartext, respectively.

-> timeout Amount of time to wait for the handshake
confirmation before giving up, in milliseconds.

Result errNone means success; for other codes, see Chapter 83, “SSL Error
Codes.”

Comments Calling SslOpen is essentially the same as setting the attributes that
correspond to the function’s flags:

SSL Functions
SSL Library Functions

2152 Palm OS Programmer’s API Reference

If the function times out, you should simply call it again—timing
out isn’t a fatal error. Each time you call SslOpen (after a timeout),
the handshake continues from where it timed out. However, it’s
important that when you re-call SslOpen, that you clear the flags
argument. The attributes that they affect will already have been set;
setting them a second time could cause the context to be reset,
which will cause the handshake to start from the beginning.

Flag Meaning

sslOpenModeClear Sets the context’s Mode attribute to
sslModeClear (cleartext).

sslOpenModeSsl Sets the context’s Mode attribute to
sslModeSslClient (SSL is enabled). This
overrides sslOpenModeClear.

sslOpenNoAutoFlush Sets the AutoFlush attribute to 0. This suppresses
auto-flushing so that SslWrite/SslSend data is
cached until you call SslFlush.

sslOpenNewConnection Sets the context’s SslSession attribute to NULL.
This will force a full SSL handshake. If you don’t
set this flag, the previous SslSession will be
used (if possible), and the handshake is truncated.

sslOpenBufferedReuse Sets the BufferedReuse attribute to 1. This
provides an even greater savings during a
(truncated) handshake.

sslOpenUseDefaultTimeout If this flag is set, the current value of the
IoTimeout attribute is used as the function’s
timeout, overriding the timeout argument. If it
isn’t set, IoTimeout is set to timeout and is
used as the timeout for this function.

sslOpenDelayHandshake Instead of sending the final handshake message,
cache it until the write buffer is flushed (through
an autoflush, or through an SslFlush call). There
is no attribute that corresponds to this flag.

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2153

New SslPeek

Purpose Lets you look at in-coming data without actually “consuming” it.

Prototype Err SslPeek (UInt16 libRef, SslContext *context,
void **data, Int32 *availableBytes,
Int32 maxAvailable)

Parameters -> libRef (68k only) SSL library reference number.

-> context Context you want to look at.

<- data Pass in the address of a pointer; the function
sets your pointer to point to the context’s in-
coming data buffer.

<- availableBytes
The function returns the smaller of a) the
number of bytes of data that are waiting to be
read or b) the value of maxAvailable.

-> maxAvailable
Sets a limit on the availableBytes value.

Result Always returns 0.

Comments This function is similar to SslRead, but rather than copy data into
your buffer, it gives you direct access to the context’s in-coming data
buffer. If the buffer is empty, data is read from the network until
there are bytes available. After each successful SslPeek call, you
should call SslConsume to clear the “peeked at” data. If you don’t
consume after a peek, the next SslPeek will return a pointer to the
same data.

SslPeek is meant to be used in contexts that have the
ReadStreaming attribute set.

SSL Functions
SSL Library Functions

2154 Palm OS Programmer’s API Reference

New SslRead

Purpose Copies a buffer of in-coming data.

Prototype Int16 SslRead (UInt16 libRef,
SslContext *context, void *buffer,
UInt16 bufferLength, Err *error)

Parameters -> libRef (68k only) SSL library reference number.

-> context Context that owns the session.

<- buffer This is where the retrieved data will be copied.
The buffer must be allocated by the caller.

-> bufferLength
The length of buffer, in bytes.

<- error Error code as listed in see Chapter 83, “SSL
Error Codes.”

Result Returns the number of bytes that were actually read. A return of 0
means the socket was shut down by the server. If the return is -1,
look in error for the precise error code.

Comments This is a convenient cover for SslReceive. It ignores the address
of the sender, doesn’t set any socket flags, and uses the context’s
current timeout setting (the IoTimeout attribute).

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2155

New SslReceive

Purpose Copies a buffer of in-coming data.

Prototype Int16 SslReceive (UInt16 libRef,
SslContext *context, void *buffer,
UInt16 bufferLength, UInt16 flags,
void *fromAddress, UInt16 *fromAddressLength,
Int32 timeout, Err *error)

Parameters -> libRef (68k only) SSL library reference number.

-> context Context that owns the session.

<- buffer This is where the retrieved data will be placed.

-> bufferLength
The length of buffer, in bytes.

-> flags Options that are applied to (and stored by) the
socket. See I/O Flags in Chapter 61, “Net
Library,” on page 1413 for a description of these
options.

<- fromAddress
Optionally returns the address of the sender.
The fromAddress buffer must be allocated by
the caller. If you don’t want to retrieve the
address, pass a NULL pointer.

<-> fromAddressLength
On input, you set *fromAddressLength to
the size of the fromAddress buffer, in bytes.
Upon return, *fromAddressLength is set to
the actual size of the buffer. If you don’t want to
retrieve the address, pass a NULL pointer.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

SSL Functions
SSL Library Functions

2156 Palm OS Programmer’s API Reference

<- error Error code as listed in see Chapter 83, “SSL
Error Codes.”

Result Returns the number of bytes that were actually read. A return of 0
means the socket was shut down by the server. If the return is -1,
look in error for the precise error code.

Comments Unlike in SslSend, the address that you supply (fromAddress)
doesn’t overwrite the socket’s address. This is a cover for the
Network library’s NetLibDmReceive function.

For a shorthand version of this function, see SslRead.

New SslSend

Purpose Writes a buffer of data to the network, or buffers it for a later send.

Prototype Int16 SslSend (UInt16 libRef,
SslContext *context, void *buffer,
UInt16 bufferLength, UInt16 flags,
void *toAddress, UInt16 toAddressLength,
Int32 timeout, Err *error)

Parameters -> libRef (68k only) SSL library reference number.

-> context Context that owns the SSL session.

-> buffer A pointer to the data that you want to write.

-> bufferLength
The amount of data you want to write, in bytes.

-> flags Options that are applied to (and stored by) the
socket. See I/O Flags in Chapter 61, “Net
Library,” on page 1413 for a description of these
options.

-> toAddress Address of the recipient. If this is a
NetSocketAddrType, the socket’s address is
set to this value. If it’s 0, the socket’s current
address is used.

SSL Functions
SSL Library Functions

Palm OS Programmer’s API Reference 2157

-> toAddressLength
Size of *toAddress, in bytes.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- error Error code as listed in see Chapter 83, “SSL
Error Codes.”

Result Returns the number of bytes that were actually sent. A return of 0
means the socket was shut down by the server. If the return is -1,
look in error for the precise error code.

Comments If the context has the AutoFlush attribute enabled, the data is
immediately written to the network; otherwise, it’s cached until
SslFlush is called. This function is a cover for the Network
library’s NetLibSend function.

For a shorthand version of this function, see SslWrite.

New SslWrite

Purpose Writes a buffer of data to the network, or caches it in anticipation of
a flush.

Prototype Int16 SslWrite (UInt16 libRef,
SslContext *context, void *buffer,
UInt16 bufferLength, Err *error)

Parameters -> libRef (68k only) SSL library reference number.

-> context Context that owns the session.

-> buffer A pointer to the data that you want to write.

-> bufferLength
The amount of data you want to write, in bytes.

SSL Functions
Application-Defined Functions

2158 Palm OS Programmer’s API Reference

<- error Error code as listed in see Chapter 83, “SSL
Error Codes.”

Result Returns the number of bytes that were actually sent. A return of 0
means the socket was shut down by the server. If the return is -1,
look in error for the precise error code.

Comments This is a convenient cover for SslSend. It doesn’t set any socket
flags, uses the socket’s current address, and uses the context’s
current timeout setting (the IoTimeout attribute).

Application-Defined Functions

New SslCallbackFunc

Purpose Prototype for SSL information and verification callback functions.

Prototype typedef Int32
(*SslCallbackFunc)(SslCallback *callbackStruct,
Int32 command, Int32 flavor, void *info);

Parameters -> callbackStruct
A structure that contains information about this
callback function, including application-
defined data that can be used in the function’s
implementation. See SslCallback in Chapter
81, “SSL Structures and Data Types,” on
page 2163.

-> command A constant that represents the general reason
for the function’s invocation.

-> flavor A constant that refines the command value.

SSL Functions
Application-Defined Functions

Palm OS Programmer’s API Reference 2159

-> info Additional data that may be needed by the
callback. The type of data that’s passed
depends on the command/flavor values.

Result The function should return errNone (0) upon success, otherwise, it
should return one of the error codes described in Chapter 83, “SSL
Error Codes.” A non-zero return value here is returned to the SSL
function that caused the callback to be invoked.

Comments For every context, you can install two callback functions: An “info”
callback and a “verify” callback:

• The info callback is typically used for debugging, displaying
data, tracking progress, and so on. It’s invoked at well-
defined junctures as the context is working.

• The verify callback is called when a certificate is being
verified. It’s expected to handle error situations.

To install a callback, you create an SslCallback structure,
populate the necessary fields, and then use it to set the value of the
InfoCallback or VerifyCallback attribute. When you set the
info callback, you also have to set the InfoInterest attribute to
register for specific events (which will show up in the flavor
argument when your callback is invoked). The verify callback
doesn’t require similar event registration.

Setting the info callback in an SslContext looks a little bit like this:

/* Create an SslCallback structure, and point its
 * ‘callback’ field to your function (‘MyInfoCallbackFunc’).
 */
SslCallback infoCallback;
infoCallback.callback = MyInfoCallbackFunc;

/* Set the InfoCallback attribute. */
SslContextSet_InfoCallback(sslContext, &infoCallback);

/* Set the events you’re interested in hearing about. */
SslContextSet_InfoInterest(sslContext,
 sslFlgInfoAlert | sslFlgInfoHandshake | sslFlgInfoIo);

When you set the InfoCallback or VerifyCallback attribute,
the SslCallback structure is copied into the object. Furthermore,

SSL Functions
Application-Defined Functions

2160 Palm OS Programmer’s API Reference

when you spawn an SslContext from an SslLib, the callback
structures are copied into the new object.

Commands and Flavors

Taken together, the command and flavor arguments tell a callback
why it’s being called. There are three command groups:

• The common command values (sslCmdNew, sslResetNew,
and sslCmdFree) apply to both info and verify callbacks.
These commands don’t use flavor arguments.

• sslCmdInfo is used for info callbacks only. The flavor
argument indicates the reason for the callback.

• Similarly, sslCmdVerify is used for verify callbacks only
(and flavor refines the command’s meaning).

Common Commands

The common commands are:

When a callback function is invoked with one of these common
commands, the flavor argument is 0 (i.e. undefined) and info is
NULL.

Command Meaning

sslCmdNew The callback function was just copied
into an object. (More accurately, the
SslCallback that contains the function
was copied.) This happens when you set
the InfoCallback or
VerifyCallback attribute, or when
you spawn an SslContext.

sslCmdReset The context that contains this callback
was just reset (SslContext only; see the
Mode attribute for a brief explanation of
the SSL reset).

sslCmdFree The SslCallback structure is about to
be freed. This usually means that the
SslLib or SslContext that owns the
structure is being destroyed.

SSL Functions
Application-Defined Functions

Palm OS Programmer’s API Reference 2161

sslCmdInfo Flavors

As mentioned above, the sslCmdInfo command argument is only
sent to the info callback (keep in mind, however, that the info
callback may also receive any of the common commands).

The flavor values that are associated with the sslCmdInfo
command are:

sslCmdVerify Flavors

The verify callback function is called with the sslCmdVerify
command when an error occurs during certificate verification, and

Flavor Meaning

sslArgInfoHandshake Notification of an SSL state change. Read the
HsState attribute to determine the new state.

The callback’s info parameter is set to NULL.

sslArgInfoAlert Notification of an SSL alert. Your callback can read
the LastAlert attribute to determine which alert
was received.

The callback’s info parameter is set to NULL.

sslArgInfoReadBefore
sslArgInfoReadAfter
sslArgInfoWriteBefore
sslArgInfoWriteAfter

Notifications that are sent just before and just after
data is read from or written to the network.

The info argument is an SslIoBuf structure that
contains the data.

sslArgCert Notification that the server’s certificate chain has
been verified.

The info argument is an SslExtendedItems
structure that contains the server’s certificate.

SSL Functions
Application-Defined Functions

2162 Palm OS Programmer’s API Reference

when the certificate is successfully verified. The associated flavor
values are:

Note that these constants are also used as error codes. If your verify
function can’t fix the problem, it should return the command
argument as an error.

In all cases, the info argument is an SslVerify structure that
contains information about the certificate that’s being verified.

Flavor Meaning

sslErrVerifyBadSignature The certificate’s signature is
invalid

sslErrVerifyNoTrustedRoot A trusted certificate store
(necessary for certificate
verification) couldn’t be found

sslErrVerifyNotAfter The certificate has expired.

sslErrVerifyNotBefore The certificate is too early (the
timestamp window is in the
future).

sslErrVerifyConstraintViolation The certificate violates an X509
extension

sslErrVerifyUnknownCriticalExtension An X509 extension (that’s marked
as “critical”) isn’t understood by
the certificate verification
routines.y

sslErrOk The certificate was successfully
verified.

Palm OS Programmer’s API Reference 2163

81
SSL Structures and
Data Types
This chapter describes the structures and data types that are used by
SSL.

All elements described below are defined in SslLib.h.

SSL Data Types

New SslAttribute
The SslAttribute data type is used to cast the SSL attribute
constants that are passed to the attribute-setting functions.

typedef UInt32 SslAttribute;

In general, you should use the attribute-setting macros rather than
the functions. The attribute upon which a macro operates is
embedded in its name, so you rarely have to deal with
SslAttribute types.

For more information on the relationship between the attribute-
setting functions and macros, see Chapter 80, “SSL Functions,” on
page 2135. For a list of the macros themselves, go to Chapter 82,
“SSL Attributes and Macros,” on page 2181.

New SslContext
SslContext is the data type for a private structure that holds all
the information, or context, associated with the SSL protocol that
will be used in an SSL session. It contains flags that govern how the

SSL Structures and Data Types
SSL Data Types

2164 Palm OS Programmer’s API Reference

SSL protocol will operate, read and write buffers where SSL packets
are assembled and disassembled, various structures that are created
as part of the SSL handshake, and so on.

The data type is declared in SslLib.h as:

typedef struct SslContext_st SslContext;

The lifetime of an SslContext follows this pattern:

1. Creation. You never allocate your own SslContext objects;
instead, you first create an SslLib (which see) and pass it to
the SslContextCreate function. The SslLib acts as a
template that’s used by the function to create and configure a
new SslContext. This “configuration” consists of copying
the SslLib’s SSL attributes into the new SslContext.

2. Configuration. After you get your hands on the new
SslContext, you can refine its SSL attributes by calling the
SSL attribute macros.

3. Socket specification. The one essential attribute that you
must set is the context’s socket. The template doesn’t contain
a reference to a socket, so if you want to actually use the
SslContext object’s that you create, you have to explicitly set
its socket. See Socket in Chapter 82, “SSL Attributes and
Macros.”

4. SSL sessions. You then pass the SslContext to SslOpen,
which creates a new SSL session. The SslContext is used as
a cookie in session operations such as SslRead and
SslClose. When you’re done with the session, you call
SslClose. The same SslContext can be reused in
successive sessions, but only one at a time.

5. Destruction. When you’re done using the SSL context, you
hand the object back to the system through
SslContextDestroy.

New SslLib
SslLib is the data type for a private structure that describes a
generic SSL context. It’s declared in SslLib.h as:

SSL Structures and Data Types
SSL Data Types

Palm OS Programmer’s API Reference 2165

typedef struct SslLib_st SslLib;

NOTE: SslLib is a misleading name for this data type. The
type doesn’t represent the SSL library, nor does it serve any
explicit library-related function. Where you see “SslLib” you
should think “generic SSL context.”

After you create and modify an SslLib object, you use it as a
template to create “real” SSL context objects (type SslContext).
When you’re done with the SslLib, you ask the SSL library to
destroy it.

Functionally, the lifetime of an SslLib follows this pattern:

1. Creation. You create the object through SslLibCreate.
2. Modification. Since the structure that the SslLib represents

is private, you can’t touch its fields directly. Instead, you use
a set of macros (defined in SslLibMac.h) to fine-tune the
object. These macros set the values of the SSL attributes that
the SslLib contains. The SSL attributes and the macros that
you use to set and get their values are described in Chapter
82, “SSL Attributes and Macros,” on page 2181.

3. Context creation. When you’re satisfied with your SslLib’s
attribute configuration, you use it to create new
SslContext objects through the SslContextCreate
function. The SslLib’s attributes are copied into the new
SslContext. Subsequent changes to the SslLib won’t
affect the SslContext objects that you’ve already created.

4. Destruction. When you’re done with your SslLib and all of
its SslContexts you should destroy it by passing it to
SslLibDestroy. Note that each SslContext object keeps
a reference to the SslLib that calved it, so you mustn’t
destroy an SslLib until after its SslContext objects have
been freed.

You can create as many SslLib objects as you want, but you
typically only create one per application.

SSL Structures and Data Types
SSL Structures

2166 Palm OS Programmer’s API Reference

SSL Structures

New SslCallback
The SslCallback structure contains information about a callback
function that’s invoked during SSL operations.

typedef struct {
 void *reserved;
 SslLibCallbackFunc callback;
 void *data;
 SslContext *ssl;
} SslCallback

The fields are:

There are two types of callback functions: info and verify. The info
callback is called as data is being read, when the server sends an
alert, and so on. The verify callback is called when a certificate is
being verified.

To register a callback function, you create an SslLibCallback
structure, fill out the callback and data fields, and then use the
structure to set the value of the InfoCallback or

callback A pointer to a callback
function.

data A pointer to data that’s passed
to the callback function when
it’s invoked.

ssl The SSL context to which the
callback applies, or NULL if it’s
not specific to a context. You
never set this field; it’s set for
you when the callback is copied
into an SslContext object.

reserved Reserved for future use.

SSL Structures and Data Types
SSL Structures

Palm OS Programmer’s API Reference 2167

VerifyCallback attribute. To set the attribute you call one of
these macros:

• SslLibSet_InfoCallback sets the InfoCallback
attribute of an SslLib object.

• SslLibSet_VerifyCallback sets the VerifyCallback
attribute of an SslLib object.

• SslContextSet_InfoCallback sets the InfoCallback
attribute of an SslContext object.

• SslContextSet_VerifyCallback sets the
VerifyCallback attribute of an SslContext object.

When you register an info callback you must also set the
InfoInterest attribute by calling SslLibSet_InfoInterest
or SslContextSet_InfoInterest macro. The InfoInterest
attribute contains a list of the events that your info callback is
interested in.

As with (nearly) all SSL attributes, the callbacks that you set in an
SslLib are copied into the SslContext objects that it spawns.

You can use the same SslLibCallback structure to set more than
one callback function. After you’ve called a callback-registering
macro, you can free the original SslLibCallback structure.

The protocol for the callback functions is described in
SslCallbackFunc, in Chapter 80, “SSL Functions.”

New SslCipherSuiteInfo
Structure that contains information about the cipher suite that’s
being used. The structure is stored in the CipherSuiteInfo
attribute.

ttypedef struct SslCipherSuiteInfo_st {
 UInt8 cipherSuite[2];
 UInt16 cipher;
 UInt16 digest;
 UInt16 keyExchange;
 UInt16 authentication;
 UInt16 version;

SSL Structures and Data Types
SSL Structures

2168 Palm OS Programmer’s API Reference

 UInt16 cipherBitLength;
 UInt16 cipherKeyLength;
 UInt16 keyExchangeLength;
 UInt16 authenticationLength;
 UInt16 export;
} SslCipherSuiteInfo;

The fields are:

cipherSuite A two-byte value that represents the current cipher
suite. The possible values, encoded as constants, are:

0: No cipher suite is being used.

sslCs_RSA_RC4_56_SHA1: Secure Hash
Algorithm-1, 56-bit

sslCs_RSA_RC4_128_SHA1: Secure Hash
Algorithm-1, 128-bit.

sslCs_RSA_RC4_40_MD5: Rivest Message Digest
5, 40-bit.

sslCs_RSA_RC4_128_MD5: Rivest Message Digest
5, 128-bit.

cipher A constant that represents the cipher that’s being used
for this connection:

sslCsiCipherNull: No cipher currently set.

sslCsiCipherRc4: RSA RC4.

digest A constant that represents the message digest format.:

sslCsiDigestNull: No message digest.

sslCsiDigestMd2: Rivest Message Digest 2.

sslCsiDigestMd5: Rivest Message Divest 5.

sslCsiDigestSha1: Secure Hash Algorithm-1.

keyExchange A constant that represents the key exchange type that’s
being used:

sslCsiKeyExchNull: No key exchange.

sslCsiKeyExchRsa: RSA.

SSL Structures and Data Types
SSL Structures

Palm OS Programmer’s API Reference 2169

The list of possible cipher suites can be retrieved from the
CipherSuites attribute. The suite that’s currently being used is
given by the CipherSuite attribute.

New SslExtendedItem
Structure that’s used to describe a single certificate-related item.
Every SslExtendedItem has a distinct (pre-defined) “extended
item type.” The location of the item’s data is indicated by the
structure—the data isn’t stored in the structure.

You never create SslExtendedItem structures yourself. The
objects that relate to a particular certificate are collected into an

authentication A constant that represents the authentication type
that’s being used:

sslCsiAuthNull: No key exchange.

sslCsiAuthRsa: RSA.

version The SSL version number.

cipherBitLength The length of the material used for encryption key
generation, in bits. For export ciphers this will be either
40 or 56 bits.

cipherKeyLength The length of the encryption key that’s generated, in
bits. For an export RC4 cipher, the cipherKeyLength
is 128.

keyExchangeLength The length of the public key used to establish a shared
secret, in bits.

authenticationLength The length of the public key used to ensure that the key
exchange wasn’t tampered with, in bits. For export
ciphers, the keyExchangeLength is often shorter
than the authenticationLength.

export A boolean value: 1 if an export cipher is being used; 0
otherwise.

SSL Structures and Data Types
SSL Structures

2170 Palm OS Programmer’s API Reference

SslExtendedItems structure and returned to you (principally) by
your verify callback function.

typedef struct SslExtendedItem_st {
 UInt16 type;
 UInt16 field;
 UInt16 dataType;
 UInt16 len;
 UInt32 offset;
} SslExtendedItem;

The fields are:

type The extended item type, one of:

sslExItemTypeX509: X.509 Certificate

sslExItemTypeRSA: RSA public key

sslExItemTypeRDN: An X.509 Relative
Distinguished Name (RDN). This is the
certificate’s name. Each certificate
contains two names, the Subject of the
certificate and the Issuer of the
certificate. Both are encoded as RDNs
that contain multiple fields.

sslExItemTypeX509Ex: X.509 certificates
can contain multiple “extensions.” This
type is used to specify that the item is a
certificate extension.

field Type-specific value.

dataType The encoding for the item’s data. For the SSL
library, the value is one of the ASN.1 encoding
types, as listed in SslLibAsn1.h. The
encoding is relevant if you’re trying to display
the data bytes.

SSL Structures and Data Types
SSL Structures

Palm OS Programmer’s API Reference 2171

New SslExtendedItems
Structure that contains a set of related data items that pertain to an
SSL certificate or other cryptographic entity. The
SslExtendedItems structure is used as part of the SslVerify
structure, and is used as the type of the PeerCert attribute.

The SslExtendedItems structure is used by the SSL library to
return information to your application; you never create and
populate an SslExtendedItems structure yourself.

typedef struct SslExtendedItems_st
{
 UInt32 length;
 UInt32 num;
 SslExtendedItem eitem[1];
} SslExtendedItems;

The fields are:

The items in the eitem array needn’t all be the same “extended item
type” (as defined in SslExtendedItem). For example, the
SslExtendedItems structure for a certificate typically contains an
sslExItemTypeX509 item, an sslExItemTypeRSA, and an
sslExItemType (for the subject name).

len Number of data bytes.

offset Location of the data itself, as an offset in bytes
from the beginning of the
SslExtendedItems structure that contains
this SslExtendedItem.

length Total length of the structure, in bytes.

num Number of elements in the eitem array.

eitem Individual data items (these are the “related
data items” mentioned above). The array
contains num elements.

SSL Structures and Data Types
SSL Structures

2172 Palm OS Programmer’s API Reference

New SslIoBuf
Structure that represents a data I/O operation. It’s passed to your
info callback function as data is being read or written.

typedef struct {
 SslContext *ssl;
 UInt8 *ptr;
 UInt32 outNum;
 UInt32 inNum;
 UInt32 max;
 UInt32 err;
 UInt32 flags;
} SslIoBuf;

You can ask for the info callback function to be invoked just before
data is read, just after it’s read, just before it’s written, and just after
it’s written. You set the InfoInterest attribute to register for
these four events.

Most of the SslIoBuf fields depend on which of these four events is
being described:

Fields

ctx The SSl context that performed the operation.

ptr A pointer to the data that was just read, or that’s
about to be written. For “before read” and “after
write” events, the buffer should be empty.

outNum The number of bytes that were just read or
written. For the “before” events, this field is set
to 0.

inNum The number of bytes that are about to be read or
written. For the “before read” case, this is the
minimum number of bytes that the context
wants to read—the actual number of bytes read
may be larger.

SSL Structures and Data Types
SSL Structures

Palm OS Programmer’s API Reference 2173

The information in this structure is provided for debugging and
informational purposes only. You could use it, for example, to
display the progress of an I/O operation.

New SslLibCallback

Purpose Structure that represents a secure socket.

Declared In SslLib.h

Prototype typedef struct {
 void *reserved;
 SslLibCallbackFunc callback;
 void *data;
 SslContext *ssl;
} SslLibCallback

Fields callback
A pointer to a callback function.

data
A pointer to data that’s passed to the function when it’s invoked.

ssl
The SSL context to which the callback applies, or NULL if the
structure is owned by an SslLib object.

reserved
Reserved for future use.

max This is valid for the “before read” event only. It’s
set to the maximum number of bytes that can be
read during the current operation.

error This is set to the error code that was returned by
a read operation. It’s only valid for the “after”
events.

flags Currently ignored.

SSL Structures and Data Types
SSL Structures

2174 Palm OS Programmer’s API Reference

Comments To register a callback function, create a SslLibCallback structure,
fill out the callback and data fields and pass the structure to one
of the SslCallbackFunc functions. The structure is copied into
the context, and the ssl field is properly set (in the copy).

It’s the caller’s responsibility to free the original SslLibCallback
structure. The same SslLibCallback structure can be used to set
more than one callback function.

For more information, see SslCallbackFunc in Chapter 80, “SSL
Functions.”

New SslSession
Structure that represents the current SSL session.

typedef struct SslSession_st
{
 UInt32 length;
 UInt16 version;
 unsigned char cipherSuite[2];
 unsigned char compression;
 unsigned char sessionId[33];
 unsigned char masterSecret[48];
 unsigned char time[8];
 unsigned char timeout[4];
 UInt16 certificateOffset;
 UInt16 extraData;
} SslSession;

A context’s SslSession is populated when you call SslOpen. You
can retrieve a context’s SslSession structure and modify it
directly—particularly if you want to set the fields that are reserved
for application use. To retrieve the SslSession, call the
SslContextGet_SslSession macro. Keep in mind that this
gives you a pointer to the context’s internal SslSession attribute.
If you want to store the SslSession, you must copy the attribute’s
data.

The fields are:

SSL Structures and Data Types
SSL Structures

Palm OS Programmer’s API Reference 2175

length The total size of the structure, in bytes.

version Version number of the SSL protocol that’s being used; 0 if
the session is using cleartext.

cipherSuite Cipher suite that’s being used. See the CipherSuite
attribute.

compression The name of the compression scheme that’s being used.

sessionId Session identification number. The ID value can be as
many as 32 bytes long; the first byte gives the number of
valid bytes.

masterSecret The value of the “master secret” that was established
during the SSL handshake.

time Used to record the time that the session started, using a
local time representation. The format can be anything that
fits in eight bytes. Unused by the SSL library, an
application can use this field as it wishes.

timeout The number of seconds that the session should remain
valid. The timeout field is also unused by the SSL library.
Use it as you wish.

certificateOffset Offset, in bytes, from the start of the structure to an
SslExtendedItems structure that contains the server’s
certificate. The field is provided for the application’s
convenience. The SSL library doesn’t actually copy the
certificate: If you want to cache the server’s certificate, you
have to retrieve the data through the PeerCert attribute,
extend the size of the SslSession structure, copy the
certificate data, and then set the certificateOffset
yourself.

extraData Offset, in bytes, from the start of the structure to some
extra data that the application keeps for itself. This is
similar to the certificateOffset field: You have to
allocate, copy, and mark the data yourself.

SSL Structures and Data Types
SSL Structures

2176 Palm OS Programmer’s API Reference

New SslSocket
The SslSocket structure contains information about the socket
that’s being used in the network connection. The structure is
defined as:

typedef struct {
 NetSocketRef socket;
 Int16 flags;
 UInt16 addrLen;
 Err err;
 Int32 timeout;
 NetSocketAddrType addr;
} SslSocket;

You can create your own SslSocket structure and add it’s data to
a context through the SslContextSet_IoStruct macro. When
you do this, the data in your structure is copied into a structure
that’s held by the context. Note, however, that the socket field isn’t
copied. To set the socket, use SslContextSet_Socket.

The argument values that you pass to SslSend and SslReceive
are used to modify the context’s SslSocket structure. If, for
example, you create an SslSocket with a particular timeout
value, set it in a context, and then call SslSend with a different
timeout value (passed as an argument), the latter timeout is
recorded in the context’s SslSocket structure, overriding your
original setting.

To retrieve a pointer to the context’s SslSocket, call
SslContextGet_IoStruct.

SSL Structures and Data Types
SSL Structures

Palm OS Programmer’s API Reference 2177

The fields are:

New SslVerify
Structure that’s passed to a verify callback function to provide
information about a certificate that’s being verified. This happens
when the verification process hits a snag, giving your app a chance
to the handle the problem. The callback is also invoked when the
process has successfully completed.

socket Socket identifier, as created and
returned by
NetLibSocketOpen. The SSL
library doesn’t open or connect
the socket for you; all socket
operations other than reading
and writing data must be done
through net library calls.

You never set the socket field
directly; use the
SslContextSet_Socket
macro, instead.

flags Options that control a socket’s
I/O operations. See I/O
Flags in Chapter 61, “Net
Library,” on page 1413 for a
description of these options.

addr The most recent address that
the socket read from or wrote
to.

addrLen The length, in bytes, of the
addr field.

err The most recent socket error.

timeout The socket’s I/O operation
timeout value, in system ticks.

SSL Structures and Data Types
SSL Structures

2178 Palm OS Programmer’s API Reference

typedef struct SslVerify_st
 {
 SslExtendedItems *certificate;
 SslExtendedItems *fieldItems;
 UInt32 field;
 SslExtendedItems *ex;
 UInt32 depth;
 UInt32 state;
} SslVerify;

The fields are:

The list of SslExtendedItem elements that the
SslExtendedItems object located at fieldItems[field]
contains depends on the error flavor:

certificate Points to the certificate that’s being
verified.

fieldItems
field

fieldItems is an array of extended
items; field is an index into
fieldItems. The SslExtendedItems
that’s located at fieldItems[field]
contains the set of items that’s causing the
problem. (See below.)

ex If this is an extension error, the ex field
contains the data element of the X509
extension that failed.

depth This is the level of the certificate being
processed, where 0 is the server’s
certificate, and higher numbers are
certificates along the “certificate chain”
that leads to a trusted root certificate.

SSL Structures and Data Types
SSL Structures

Palm OS Programmer’s API Reference 2179

The asn1ExItemTypeX509Ex item needs to be decoded in order
to be used. The item contains the “object identifier” part of a
certificate extension. The item in the next field (i.e.
fieldItems[field+1]) depends on the item’s dataType field:
If it’s asn1Boolean, than the “+1” item contains the extension’s
optional Boolean “this is a critical extension” field, otherwise it
contains the extension data itself. If “+1” contains the Boolean,
than “+2” is the data.

The SSL library attempts to interpret only critical extensions, so the
critical field should always be present. If a critical extension isn’t
understood, the certificate should be rejected.

Flavor Contents

sslErrVerifyBadSignature The server’s certificate, which
contains the public key entries.

sslErrVerifyNoTrustedRoot NULL

sslErrVerifyNotAfter sslExItemTypeX509,
asn1FldX509NotAfter

sslErrVerifyNotBefore sslExItemTypeX509,
asn1FldX509NotBefore.

sslErrVerifyConstraintViolation asn1ExItemTypeX509Ex (but
see below)

sslErrVerifyUnknownCriticalExtension asn1ExItemTypeX509Ex (but
see below)

sslErrOk NULL

SSL Structures and Data Types
SSL Structures

2180 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 2181

82
SSL Attributes and
Macros
As described in Chapter 81, “SSL Structures and Data Types,” the
SslLib and SslContext objects list and describe the properties,
or attributes, of an SSL context.

There are a number of SSL attributes: Some provide general-
purpose information that any SSL session needs, some are used only
for specific protocols, some are provided for debugging purposes,
and so on.

Associated with each attribute is a set of macros that get and set the
attribute’s value.

This chapter lists and describes the SSL attributes, how they’re used,
the values that they take (including defaults), and the macros that
access them:

• “SSL Macro Names” explains how the macro names are
formed, and how they correspond to the SSL attributes.

• “SSL Attribute Data Types” talks about the types of data an
attribute can represent.

• “SSL Macro Pseudo-Protocol” provides a pseudo-protocol
for the macros.

• “SSL Attributes” lists the attributes in alphabetical order.

• “SSL Attribute Constants” is a list of constants that represent
the attributes in the attribute-setting functions (which you
can use instead of the macros, although it isn’t
recommended; the functions are explained below).

SSL Macro Names
An SSL attribute is accessed through a set of (as many as) four
macros: There’s a macro that lets you set an attribute’s value in an

SSL Attributes and Macros
SSL Attribute Data Types

2182 Palm OS Programmer’s API Reference

SslLib, another that sets the attribute’s value in an SslContext,
and two others that retrieve attribute values from these objects.

The names of the four macros for a given attribute follow this
pattern:

• SslLibSet_Attribute sets the attribute in an SslLib.

• SslLibGet_Attribute gets the attribute from an SslLib.

• SslContextSet_Attribute sets the attribute in an
SslContext.

• SslContextGet_Attribute gets the attribute from an
SslContext.

For example, the four macros that set and get the Mode attribute are:

• SslLibSet_Mode

• SslLibGet_Mode

• SslContextSet_Mode

• SslContextGet_Mode

Note that not all attributes require all four macros: Some attributes
are read-only, while others apply only to SslContext objects.

The macros are covers for the eight attribute-setting functions
described in Chapter 80, “SSL Functions,” on page 2135. It’s
recommended that you use the macros rather than the functions,
but you should be aware of the functions’ existence.

SSL Attribute Data Types
An SSL attribute is either an integer or a pointer. For pointer
attributes, the type of the pointed-to data depends on the attribute.
The descriptions below explicitly state these data types. (The macro
declarations in the SslLibMac.h file don’t include the data types.)

When setting a pointer attribute, the pointed-to data is (almost
always) copied into the SslLib or SslContext. The original data
needn’t be preserved—the caller is free to destroy the original data
when the pointer-setting macro returns. The exceptions to this rule
are pointed out in the macro descriptions, below.

SSL Attributes and Macros
SSL Macro Pseudo-Protocol

Palm OS Programmer’s API Reference 2183

To retrieve a pointer attribute, you pass in the address of a pointer;
the macro will reset the pointer to data that belongs to the SslLib
or SslContext. You mustn’t free or otherwise modify this data.

The macros that set and get integer attributes are defined in terms of
the SslLibSetLong, SslLibGetLong, SslContextSetLong,
and SslContextGetLong functions, described in Chapter 80,
“SSL Functions,” on page 2135. The pointer-accessing macros are
covers for an analogous set of functions (SslLibSetPtr, et al.).
You should rarely need to call these functions directly—they’re
meant to be called by the attribute macros.

SSL Macro Pseudo-Protocol
This section provides pseudo-protocol for the attribute macros.

New SslContextGet_Attribute (integer
version)

Purpose Returns the value of an integer-valued attribute that’s stored in an
SslContext object. This is a cover for the SslContextGetLong
function.

Prototype Int32 SslContextSet_Attribute (UInt16 libRef,
SslContext *context)

Parameters -> libRef (68k only) SSL library reference number.

-> context The SslContext that owns the attribute.

Result Returns the attribute’s value, or a negative-valued error code as
described in SslContextGetLong.

SSL Attributes and Macros
SSL Macro Pseudo-Protocol

2184 Palm OS Programmer’s API Reference

New SslContextGet_Attribute (pointer
version)

Purpose Gets a pointer-valued attribute from an SslContext object. This is
a cover for the SslContextGetPtr function.

Prototype Int32 SslContextGet_Attribute (UInt16 libRef,
SslContext *context, void **data)

Parameters -> libRef (68k only) SSL library reference number.

-> context The SslContext that owns the attribute.

-> data The macro resets *data so it points to the
attribute’s data. Unless otherwise noted, the
pointed-to data belongs to the SslContext
and shouldn’t be freed.

Result Returns 0 upon success; see SslContextGetPtr for error return
values.

New SslLibSet_Attribute (integer version)

Purpose Sets an integer-valued attribute in an SslContext object. This is a
cover for the SslLibSetLong function.

Prototype Err SslLibSet_Attribute (UInt16 libRef,
SslContext *context, Int32 value)

Parameters -> libRef (68k only) SSL library reference number.

-> context The SslContext that owns the attribute.

-> value The value you want to set the attribute to.

Result Returns 0 upon success; see SslLibSetLong for error return
values.

SSL Attributes and Macros
SSL Macro Pseudo-Protocol

Palm OS Programmer’s API Reference 2185

New SslContextSet_Attribute (pointer
version)

Purpose Sets a pointer-valued attribute in an SslContext object. This is a
cover for the SslContextSetPtr function.

Prototype Err SslContextSet_Attribute (UInt16 libRef,
SslContext *context, void *data)

Parameters -> libRef (68k only) SSL library reference number.

-> context The SslContext that owns the attribute.

-> data A pointer to the data that you want to set.

Result Returns 0 upon success; see SslContextSetPtr for error return
values.

Comments The data from data is copied into the SslContext. You can free the
original data after the macro returns.

New SslLibGet_Attribute (integer version)

Purpose Returns the value of an integer-valued attribute that’s stored in an
SslLib object. This is a cover for the SslLibGetLong function.

Prototype Int32 SslLibSet_Attribute (UInt16 libRef,
SslLib *lib)

Parameters -> libRef (68k only) SSL library reference number.

-> lib The SslLib that owns the attribute.

Result Returns the attribute’s value, or a negative-valued error code

SSL Attributes and Macros
SSL Macro Pseudo-Protocol

2186 Palm OS Programmer’s API Reference

New SslLibGet_Attribute (pointer version)

Purpose Gets a pointer-valued attribute from an SslLib object. This is a
cover for the SslLibGetPtr function.

Prototype Int32 SslLibGet_Attribute (UInt16 libRef,
SslLib *lib, void **data)

Parameters -> libRef (68k only) SSL library reference number.

-> lib The SslLib that owns the attribute.

-> data The macro resets *data so it points to the
attribute’s data. Unless otherwise noted, the
pointed-to data belongs to the SslLib and
shouldn’t be freed.

Result Returns 0 upon success; see SslLibGetPtr for error return values.

New SslLibSet_Attribute (integer version)

Purpose Sets an integer-valued attribute in an SslLib object. This is a cover
for the SslLibSetLong function.

Prototype Err SslLibSet_Attribute (UInt16 libRef,
SslLib *lib, Int32 value)

Parameters -> libRef (68k only) SSL library reference number.

-> lib The SslLib that owns the attribute.

-> value The value you want to set the attribute to.

Result Returns 0 upon success; see SslLibSetLong for error return
values.

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2187

New SslLibSet_Attribute (pointer version)

Purpose Sets a pointer-valued attribute in an SslLib object. This is a cover
for the SslLibSetPtr function.

Prototype Err SslLibSet_Attribute (UInt16 libRef,
SslLib *lib, void *data)

Parameters -> libRef (68k only) SSL library reference number.

-> lib The SslLib that owns the attribute.

-> data A pointer to the data that you want to set.

Result Returns 0 upon success; see SslLibSetPtr for error return values.

Comments The data from data is copied into the SslLib. You can free the
original data after the macro returns.

SSL Attributes

New AppInt32
Convenient Int32 datum that the application can use for whatever
purpose it wants—as an object ID, for example. Note that the value
is not copied from an SslLib into the SslContexts that it spawns.
type: Int32

macros: SslLibSet_AppInt32
SslLibGet_AppInt32
SslContextSet_AppInt32
SslContextGet_AppInt32

SSL Attributes and Macros
SSL Attributes

2188 Palm OS Programmer’s API Reference

New AppPtr
Convenient pointer that the application can use for whatever
purpose it wants.

New AutoFlush
Enables/disables automatic flushing of data after an SslSend or
SslWrite.

When enabled, SslFlush is automatically called after every call to
SslSend and SslWrite. If you have autoflush disabled, you have
to call the SslFlush function yourself. You don’t have to call it
after every SslSend or SslWrite, but you do have to call it before
the SslContext’s write buffer fills up.

The write buffer’s size is given by WbufSize; the amount of data
that’s currently in the buffer is given by WriteBufPending

type: (void *)
The application retains ownership of the pointed-to
data. The data is not copied into the SslLib or
SslContext.

macros: SslLibSet_AppPtr
SslLibGet_AppPtr
SslContextSet_AppPtr
SslContextGet_AppPtr

type: Int32

values: 0: Autoflush is turned off.

1: Autoflush is turned on.

default: 1 (autoflush on)

macros: SslLibSet_AutoFlush
SslLibGet_AutoFlush
SslContextSet_AutoFlush
SslContextGet_AutoFlush

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2189

New BufferedReuse
Allows the last message in an SSL handshake to be buffered. This
only applies if SessionReused is true (non-zero).

As described in SessionReused, the handshake involved in re-
establishing a previous session can be a truncated version of a
normal handshake. At the end of the truncated handshake, the SSL
library sends a message to the server. The BufferReuse attribute,
if enabled, will buffer the last message of the reused handshake
instead of sending it over the network. The message will be sent
when the application sends its first “real” data.

If you have BufferReuse enabled, you must make sure that the
final handshake message actually gets sent before reading any in-
coming data.

There are security implications, here, in that a man-in-the-middle
attack could only be detected once the first data bytes are read from
the server. In other words, an attacker could have read all the bytes
in the first “real data” message sent to the server. For this reason this
attribute should not normally be used.

type: Int32

values: 0: Don’t buffer the last handshake message.

non-zero: Buffer the last handshake message.

macros: SslContextGet_BufferedReuse

SSL Attributes and Macros
SSL Attributes

2190 Palm OS Programmer’s API Reference

New CipherSuite
Represents the cipher suite that’s currently in use in this context.
SslContext only, read only.

See Also CipherSuites

New CipherSuiteInfo
Returns information about the cipher suite or certificate that’s
currently being used. SslContext only, read only.

type: (UInt8 *)

values: Each suite is represented by a two-byte value.

0: No cipher suite is being used.

sslCs_RSA_RC4_56_SHA1: Secure Hash Algorithm-
1, 56-bit

sslCs_RSA_RC4_128_SHA1: Secure Hash
Algorithm-1, 128-bit.

sslCs_RSA_RC4_40_MD5: Rivest Message Digest 5,
40-bit.

sslCs_RSA_RC4_128_MD5: Rivest Message Digest 5,
128-bit.

macros: SslContextGet_CipherSuite

type: (SslCipherSuiteInfo *)
The SslCipherSuiteInfo structure must be
allocated before it’s passed in. The caller retains
ownership of the structure.

values: The structure is populated by the context. For
information on what the structure contains, see
SslCipherSuiteInfo.

macros: SslContextGet_CipherSuiteInfo

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2191

To return just the cipher suite (without the surrounding
information), get the CipherSuite attribute.

New CipherSuites
Contains a list of cipher suites that the client supports, in order of
preference.

As an example, the following code creates a list of the strong
encryption suites (only) and sets it into an SslLib:

static UInt8 cipherSuites[]={
0x00,0x04,
sslCs_RSA_RC4_128_MD5,
sslCs_RSA_RC4_128_SHA1

};

SslLibSet_CipherSuites(lib,cipherSuites);

type: (UInt8 *)

values: Each element in the list takes two bytes. The first two
byte element give the sizes of the rest of the list, in bytes
(i.e. the “size bytes” themselves aren’t counted in the
measurement). The rest of the list is made up of the
following (two-byte) constants:

sslCs_RSA_RC4_128_MD5
sslCs_RSA_RC4_128_SHA1
sslCs_RSA_RC4_56_SHA1
sslCs_RSA_RC4_40_MD5

The data in the list is given in network byte order.

default: The default list contains {0x00, 0x08} followed by the
suites listed above, in order. To restore the default list,
pass a NULL pointer.

macros: SslLibSet_CipherSuites
SslLibGet_CipherSuites
SslContextSet_CipherSuites
SslContextGet_CipherSuites

SSL Attributes and Macros
SSL Attributes

2192 Palm OS Programmer’s API Reference

The cipher suites list is used when the client and server negotiate for
an acceptable suite. The suite that’s chosen is represented by the
CipherSuite attribute.

New Compat
Allows compatibility with malformed or incorrect SSL messages
sent from the server
type: Int32

values: 0: No incompatibility allowed.

If non-zero, the value should be a combination of the
following flags.

sslCompatReuseCipherBug: Allows servers to
change cipher suites on session-reuse.

sslCompatNetscapeCaDnBug: Supports old
versions of Netscape servers that encode
“Distinguished Names” certificates incorrectly.
(Note that this isn’t currently an issue since the
SSL library doesn’t support client certificates.)

sslCompat1RecordPerMessage: Ensures that
SSL messages aren’t broken across records.
(Some servers don’t like to receive SSL messages
separated into multiple SSL records.)

sslCompatBigRecords: Supports records larger
than 16k bytes. (In SSLv3, record size is normally
limited to 16k.)

sslCompatAll: Enables all the foregoing.

default: 0

macros: SslLibSet_Compat
SslLibGet_Compat
SslContextSet_Compat
SslContextGet_Compat

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2193

New DontSendShutdown
Avoid sending a shutdown message.

When SslClose is called, the two SSL endpoints swap shutdown
messages. You can suppress transmission of the local message by
setting this attribute.

To ignore the remote shutdown message, set the
DontWaitForShutdown attribute.

New DontWaitForShutdown
Avoid waiting for reception of the server’s shutdown message.

See DontSendShutdown for details.

type: Int32

values: 0: Send the shutdown message.

non-zero: Don’t send the shutdown message.

default: 0

macros: SslLibSet_DontSendShutdown
SslLibGet_DontSendShutdown
SslContextSet_DontSendShutdown
SslContextGet_DontSendShutdown

type: Int32

values: 0: Wait for the shutdown message.

non-zero: Don’t wait the shutdown message.

default: 0

macros: SslLibSet_DontWaitForShutdown
SslLibGet_DontWaitForShutdown
SslContextSet_DontWaitForShutdown
SslContextGet_DontWaitForShutdown

SSL Attributes and Macros
SSL Attributes

2194 Palm OS Programmer’s API Reference

New Error
Stores the most recent fatal error code. SslContext only.

After you read an Error value, you should set the attribute’s value
back to 0. The value is reset during an SSL Reset, but it otherwise
holds the latest fatal error code.

New HsState
Current SSL state. SslContext only, read only. Used primarily for
debugging.

New InfoCallback
Identifies the callback function that’s called at particular moments
in an SSL transaction.

type: Int32

values: 0: No error

non-zero: An error occurred somewhere up to here.
Note that SslErrIo errors are exempt (they’re not
considered to be fatal).

default: 0

macros: SslContextSet_Error
SslContextGet_Error

type: Int32

values: Defined by the SSL protocol.

macros: SslContextGet_HsState

type: (SslCallback *)

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2195

If you set the InfoCallback attribute, you must also set the
InfoInterest attribute to register for the notifications that you
want.

See the SslCallbackFunc description in Chapter 80, “SSL
Functions,” on page 2135 for more information about the callback
functions.

default: none

macros: SslLibSet_InfoCallback
SslLibGet_InfoCallback
SslContextSet_InfoCallback
SslContextGet_InfoCallback

SSL Attributes and Macros
SSL Attributes

2196 Palm OS Programmer’s API Reference

New InfoInterest
Specifies the events for which the callback function identified by the
InfoCallback attribute will be called.

For these to be effective, you must set an info callback function (see
InfoCallback.

For more information on how the callback functions work, and for
detailed specifications of the command values referred to above, see
the SslCallbackFunc description in Chapter 80, “SSL Functions,”
on page 2135.

type: Int32

values: The value is formed as a combination of the following
(or 0 if you don’t want your callback to be called):

sslFlgInfoAlert: The callback wants to know
about alert notifications. In an alert, the function
receives sslArgInfoAlert as its command
argument.

sslFlgInfoHandshake: The callback wants to
know about handshake notifications
(sslArgInfoHandshake).

sslFlgInfoIO: The callback wants to be called
before and after each SslCallback operation
(sslArgInfoReadBefore,
sslArgInfoReadAfter,
sslArgInfoWriteBefore,
sslArgInfoWriteAfter).

sslFlgInfoCert: The callback wants to know
about certificate notifications
(sslAgInfoCert).

default: 0

macros: SslLibSet_InfoInterest
SslLibGet_InfoInterest
SslContextSet_InfoInterest
SslContextGet_InfoInterest

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2197

New IoTimeout
Amount of time that an I/O operation should wait for a response
from the other side of then network connection before it gives up
and returns an error. The timeout is measured in ticks.

Individual SSL library functions can specify their own timeout
values. In the absence of a timeout specification, the IoTimeout
value is used.

New IoFlags
Socket I/O flags that are used by the data read and write functions.
SslContext only.

type: Int32

values: [0, 0xefffffff].

default: 10 seconds

macros: SslContextSet_IoTimeout
SslContextGet_IoTimeout

type: Int32

values: See the “I/O Flags” on page 1421 for a list of these flags.
netIOFlagOutOfBand and netIOFlagPeek don’t
apply; they’re twiddled out of the value you supply.

default: none

macros: SslContextSet_IoFlags
SslContextGet_IoFlags

SSL Attributes and Macros
SSL Attributes

2198 Palm OS Programmer’s API Reference

New IoStruct
SslSocket structure that holds arguments that are passed to the
underlying net library functions. SslContext only.

When you call SslContextSet_IoStruct, the socket field of
the SslSocket that you pass in is ignored. Use the Socket
attribute to set the socket.

The structure’s other fields correspond to the arguments to the
SslSend and SslReceive functions (which see for details). When
you call one of these functions, the arguments that you pass are
copied into the context’s SslSocket structure. Thus, the
SslSocket configuration that you set through
SslContextSet_IoStruct may be updated when you call an I/
O function.

New LastAlert
Most recent fatal error code. SslContext only, read only.

An alert is an error or status code that’s sent by the server. Alerts can
be fatal or non-fatal. Fatal alerts are in the form 0x02xx; non-fatal
alerts are 0x01xx, as shown below:

type: (SslSocket *)

values: See SslSocket.

default: (SslSocket *)NULL

macros: SslContextSet_IoStruct
SslContextGet_IoStruct

type: Int32

values: See the sslAlertType constants in SslLibMac.h.

default: 0

macros: SslContextGet_LastAlert

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2199

Int32 alert;

SslContextGet_LastAlert(context, &alert);

if (alert != 0) {
if (alert & 0x0f00 == 0x0200)

/* fatal */
else if (alert & 0x0f00 == 0x0100)

/* non-fatal */
else

/* undefined */
}

New LastApi
Represents the most recently called SSL library function.
SslContext only, read only.
type: Int32

values: sslLastApiNone: No SSL library function call in
this context since the last SSL reset.

sslLastApiRead: The previous function was
SslOpen.

sslLastApiRead: The previous function was
SslRead, SslPeek, or SslReceive.

sslLastApiWrite: The previous function was
SslWrite or SslSend.

sslLastApiFlush: The previous function was
SslFlush.

sslLastApiShutdown: The previous function was
SslClose.

macros: SslContextGet_LastApi

SSL Attributes and Macros
SSL Attributes

2200 Palm OS Programmer’s API Reference

New LastIO
Represents the nature of the previous I/O operation. SslContext
only, read only.

This attribute can be useful when you’re determining the reason for
an error.

New Mode
Turns SSL on and off.

type: Int32

values: sslLastIoNone: There is yet to be an I/O
operation in this context since the last SSL reset.

sslLastIoRead: The previous I/O operation was a
read.

sslLastIoWrite: The previous I/O operation was
a write.

default: sslLastIoNone

macros: SslContextGet_LastIO

type: Int32

values: sslModeClear: SSL is turned off.

sslModeSsl: SSL is turned on

sslModeSslClient: SSL is turned on, and this
endpoint is a client.

sslModeFlush: Data-clearing flag. If present, the
context’s internal data buffers are cleared (the
data is lost). This flag is applicable to
SslContexts only.

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2201

sslModeSsl and sslModeSslClient are essentially the same;
the only difference is that the latter explicitly declares the object to
represent the client side of the connection. In Palm OS 5, SSL
endpoints are always clients.

When set to sslModeClear, SSL is bypassed. This lets you write
your application with the SSL library API and still perform normal
(non-SSL) data transfers. Your application will still get the
advantage of the data buffering provided by the SSL I/O functions
(SslRead, SslWrite, et al.).

You can use sslModeSsl as a mask to determine if SSL is on:

If (SslContextGet_Mode(ssl) & sslModeSsl)
/* SSL protocol enabled */

else
/* Using cleartext */

The Mode Attribute in SslContexts

Setting an SslContext’s Mode (even if you set it to the status quo)
causes an “SSL reset.” This sets most of the other SSL attributes back
to their default values, and puts the SslContext in the proper
state to open a new SSL session. Note that an SSL reset doesn’t clear
SSL session information, thus allowing the previous session to be
used in a new session with the same server. See ReadStreaming
for details.

To force an SSL reset, do this:

SslContextSet_Mode(context,SslContextGet_Mode(context));

Switching from SSL-off to SSL-on initiates a new SSL handshake.

sslModeFlush is a flag that, when present, clears the internal read
and write buffers. Any data in the buffers is lost. You would
normally use this flag when you’re reusing an SSL session.

default: sslModeSslClient

macros: SslLibSet_Mode
SslLibGet_Mode
SslContextSet_Mode
SslContextGet_Mode

SSL Attributes and Macros
SSL Attributes

2202 Palm OS Programmer’s API Reference

New PeerCert
Structure that represents the certificate that was supplied by the
server. SslContext only, read only.

New PeerCommonName
Structure that contains information that you use to retrieve the
server’s common name from a previously retrieved certificate.
SslContext only, read only.

To use this attribute, you must also retrieve the server’s certificate
through SslContextGet_PeerCert. You then perform some
pointer juggling that’s best explained through an example:.

SslExtendedItems *cert;
SslExtendedItem *commonName;

/* The length of the common name */
Int16 length;

/* A pointer to the beginning of the common name. */
Int8 *bytes;

SslContextGet_PeerCert(ssl, &cert);

type: (SslExtendedItems *)

values: If a certificate is available, the context passes back a
pointer to a structure. See SslExtendedItems for
details.

default: (SslExtendedItems *)NULL

macros: SslContextGet_PeerCert

type: (SslExtendedItem *)

values: See the example, below.

default: (SslExtendedItem *)NULL

macros: SslContextGet_PeerCommonName

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2203

if (cert != NULL) {
SslContextGet_PeerCommonName(ssl, &commonName);

/* Get the common name length from the SslExtendedItem
 * struct.
 */
length = commonName->len;

/* The name itself is in the peer certificate, located
 * at an offset (into the SslExtendedItems struct) as
 * indicated by the offset field of the SslExtendedItem
 * struct.
 */
bytes = ((Int8 *)cert) + commonName->offset;

/* Now that we have a pointer to the name and the
 * length of the name, we can compare it to the
 * expected value.
 */
StrNCompare (bytes, expectedValue, length);

}

If you’re using SSL in an https context, for example, the client
application should ensure that the common name contained in the
server’s certificate matches the requested URL.

New ProtocolVersion
The SSL protocol that’s being used
type: Int32

values: sslVersionSSLv3 only; if you set the protocol to
some other value, SSL won’t work.

macros: SslLibSet_ProtocolVersion
SslLibGet_ProtocolVersion
SslContextSet_ProtocolVersion
SslContextGet_ProtocolVersion

SSL Attributes and Macros
SSL Attributes

2204 Palm OS Programmer’s API Reference

New RbufSize
The size of the internal read buffer, in bytes.

The actual size of the read buffer may be different from that which
you request: The buffer is automatically increased in size if the SSL
protocol and/or decryption algorithm demand it. For example, if
decryption can only operate on an entire record, and if it’s passed a
record that’s longer than the read buffer size, the buffer will grow to
accommodate the record.

The ReadStreaming attribute describes an advanced use of the
read buffer that decreases data reading latency.

New ReadBufPending
Returns the number of bytes that are waiting to be read from the
context’s read buffer. The measurement includes in-coming SSL
encryption data. SslContext only; read only.

This attribute is provided for debugging purposes.

type: Int32

values: [0, 16384]

default: 2048

macros: SslLibSet_RbufSize
SslLibGet_RbufSize
SslContextSet_RbufSize
SslContextGet_RbufSize

type: Int32

values: [0, 16k]

macros: SslContextGet_ReadBufPending

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2205

New ReadOutstanding
Returns the number of bytes that remain to be read from the current
SSL record. SslContext only; read only.

See ReadStreaming for a justification of this attribute.

New ReadRecPending
Returns the number of “real” bytes of data in the context’s read
buffer. The measurement doesn’t include SSL encryption data.
SslContext only; read only.

If this attribute is 0, the next SslRead or SslReceive will cause a
NetLibReceive invocation.

New ReadStreaming
Allows partial record data to be read.

type: Int32

values: [0, 16k]

0 means the entire record has been read and verified.

macros: SslContextGet_ReadOutstanding

type: Int32

values: [0, 16k]

macros: SslContextGet_ReadRecPending

type: Int32

values: 0: Always wait for an entire record before reading.

non-zero: Don’t wait for an entire record.

SSL Attributes and Macros
SSL Attributes

2206 Palm OS Programmer’s API Reference

If the network is running at a very low rate (such as a 300 baud
modem), you may want to allow in-coming data to be returned to
the application before a full record has been downloaded. Notice,
however, that “stream reading” has an implication on security:
Since you can’t verify the record until it has been fully read, you
must be careful what you do with stream read data. You should
never respond to in-coming data until an entire record has been
read and verified. The ReadOutstanding attribute can be used to
determine if a record has been fully read and verified.

The SSL library may reject stream reading requests. See the
Streaming attribute for details.

To retrieve streaming data, use the SslPeek and SslConsume
functions (rather than SslRead or SslReceive).

New SessionReused
Indicates whether the context is reusing a previous session.
SslContext only, read only.

SSL can re-establish a previously formed session if both ends of the
network connection have a common notion of the session’s
parameters (as represented by the SslSession attribute). Reusing
a session lets the SSL protocol use a truncated (faster) handshake.

default: 0

macros: SslLibSet_ReadStreaming
SslLibGet_ReadStreaming
SslContextSet_ReadStreaming
SslContextGet_ReadStreaming

type: Int32

values: 0: No, this is a new session.

non-zero: Yes, this session is a continuation of a
previous session.

default: 0

macros: SslContextGet_SessionReused

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2207

New Socket
Specifies the net library socket that an SslContext will use in I/O
operations. SslContext only.

An SSL context can’t perform any network operations until it’s
supplied with a valid, open, connected NetSocketRef. The SSL
library doesn’t perform any Net library operations Creation,
initialization, and destruction of the socket that the NetSocketRef
represents is the application’s responsibility.

This call is used to specify the net library socket that the
SslContext should use to perform it's network I/O operations. A
SslContext is unable to perform any network operation until the
application creates and supplies a suitable NetSocketRef.

IMPORTANT: The SslLib library uses the NetSocketRef to
send data and receive data only—it doesn’t call any other net
library functions except for NetLibSend and NetLibReceive.
All socket creation, configuration, and shutdown operations
must be performed by the application.

New SslSession
Structure that represents the current or impending SSL session.
SslContext only.

type: NetSocketRef (Int16)

default: none

macros: SslContextSet_Socket
SslContextGet_Socket

type: (SslSession *)

SSL Attributes and Macros
SSL Attributes

2208 Palm OS Programmer’s API Reference

You can fine-tune an impending session by creating and populating
an SslSession that you pass in through
SslContextSet_SslSession. As with most pointer attributes,
the structure is copied into the context. The next time you call
SslOpen, the embedded SslSession information is used to
configure the session. The structure is then modified, if necessary, to
reflect the actual state of the session.

Session information isn’t cleared in an SSL reset. Maintaining the
session info allows a session to be reused, as discussed in
SessionReused.

New SslVerify
Structure that’s used during certificate verification. SslContext
only, read only.

If certification runs into a problem that can’t be resolved by the
verify callback function (see VerifyCallback), or if you haven’t
registered a verify callback function, an error will be returned to
your application, which can retrieve the SslVerify structure in an
attempt to solve the conflict itself.

If your application determines that the error isn’t fatal, it should
clear the error (through SslContextSet_Error) and reinvoke the
function that returned the error.

values: When a session is opened, the context populates the
structure with information. See SslSession for
details.

macros: SslContextSet_SslSession
SslContextGet_SslSession

type: (SslVerify *)

values: See the example, below.

default: (SslVerify *)NULL

macros: SslContextGet_SslVerify

SSL Attributes and Macros
SSL Attributes

Palm OS Programmer’s API Reference 2209

New Streaming
Tells you if the context is stream reading. SslContext only; read
only.

In some cases, the SSL library may decide that it doesn’t want to do
stream reading, regardless of the value of the ReadStreaming
attribute. The value of this attribute tells you the truth.

New VerifyCallback
Identifies the callback function that’s used during certificate
verification.

For more information, see the SslCallbackFunc description in
Chapter 80, “SSL Functions.”

type: Int32

values: 0: The context isn’t stream reading.

non-zero: The context is stream reading.

macros: SslContextGet_Streaming

type: (SslCallback *)

default: none

macros: SslLibSet_VerifyCallback
SslLibGet_VerifyCallback
SslContextSet_VerifyCallback
SslContextGet_VerifyCallback

SSL Attributes and Macros
SSL Attribute Constants

2210 Palm OS Programmer’s API Reference

New WbufSize
The size of the internal write buffer, in bytes. Note that SSL protocol
overhead takes about 30 bytes, so the “writable” portion of the write
buffer will be slightly smaller than the value of WbufSize.

New WriteBufPending
Returns the number of bytes of data in the context’s write buffer (i.e.
waiting to be sent to the remote endpoint). SslContext only; read
only.

This attribute should be zero unless AutoFlush is disabled. You
must explicitly flush (through SslFlush) before the value of
WriteBufPending reaches the value of WbufSize (the maximum
size of the write buffer).

SSL Attribute Constants
As explained earlier, each of the attribute macros is a cover for one
of the eight attribute-setting or -getting functions. (The functions are
described in Chapter 80, “SSL Functions,” on page 2135.) Instead of

type: Int32

values: [0, 16384]

default: 1024

macros: SslLibSet_WbufSize
SslLibGet_WbufSize
SslContextSet_WbufSize
SslContextGet_WbufSize

type: Int32

values: [0, 16k]

macros: SslContextGet_WriteBufPending

SSL Attributes and Macros
SSL Attribute Constants

Palm OS Programmer’s API Reference 2211

invoking the attribute macros, you can call the attribute functions,
instead.

Unlike the macros, the functions don’t correspond to specific
attributes. To tell the function which attribute you want it to access,
you pass in one of the attribute constants. These constants usually
take the form

sslAttrLibAttribute

or

sslAttrAttribute

where the former represents the attribute in an SslLib object, and
the latter is the SslContext version (note the lack of a qualifying
“Context” in the names of the SslContext macro constants). As
examples:

• sslAttrLibMode represents the Mode attribute in an
SslLib object.

• SslAttrMode is the Mode attribute in an SslContext.

• sslAttrLibAutoFlush and sslAttrAutoFlush signify
the AutoFlush attribute in the SslLib and SslContext.

Note that there are a few exceptions to this formula.

Alphabetical lists of the attribute constants are given below, one list
for SslLib attributes, and a second for SslContext. The constant
names that don’t conform to the formula, above, are noted.

SslLib Attribute Constants
sslAttrLibAppInt
sslAttrLibAppPtr
sslAttrLibAutoFlush
sslAttrLibBufferedReuse
sslAttrLibCompat
sslAttrLibDontSendShutdown
sslAttrLibDontWaitForShutdown
sslAttrLibInfoCallback
sslAttrLibInfoInterest
sslAttrLibMode
sslAttrLibProtocolVersion
sslAttrLibRbufSize
sslAttrLibReadStreaming
sslAttrLibSessionCallback
sslAttrLibVerifyCallback

SSL Attributes and Macros
SSL Attribute Constants

2212 Palm OS Programmer’s API Reference

sslAttrLibWbufSize

SslContext Attribute Constants
sslAttrAppInt
sslAttrAppPtr
sslAttrAutoFlush
sslAttrBufferedReuse
sslAttrCertPeerCert -> PeerCert
sslAttrCertPeerCommonName -> PeerCommonName
sslAttrCertSslVerify -> SslVerify
sslAttrCompat
sslAttrCspCipherSuiteInfo -> CipherSuiteInfo
sslAttrCspCipherSuites -> CipherSuites
sslAttrCspCipherSuites -> CipherSuite
sslAttrCspSslSession -> SslSession
sslAttrDontSendShutdown
sslAttrDontWaitForShutdown
sslAttrError
sslAttrHsState
sslAttrInfoCallback
sslAttrInfoInterest
sslAttrIoFlags
sslAttrIoSocket -> Socket
sslAttrIoStruct
sslAttrIoTimeout
sslAttrLastAlert
sslAttrLastApi
sslAttrLastIo
sslAttrMode
sslAttrProtocolVersion
sslAttrRbufSize
sslAttrReadBufPending
sslAttrReadOutstanding
sslAttrReadRecPending
sslAttrReadStreaming
sslAttrSessionReused
sslAttrStreaming
sslAttrVerifyCallback
sslAttrWbufSize
sslAttrWriteBufPending

Palm OS Programmer’s API Reference 2213

83
SSL Error Codes
The SSL functions described in Chapter 80, “SSL Functions,” return
errNone if successful, and non-zero otherwise. The table below
lists and explains these “non-zero” values.

In addition to the errors listed below, the SSL functions also pass
back errors that are returned by the underlying network library
(NetLib) functions.

WARNING! The sslErrOk error code, declared in SslLib.h
is does not indicate success. The error-returning SSL functions
return errNone for success.

The errors are grouped under topical headers, and listed
alphabetically therein. The groups are:

• SSL Function Protocol Errors indicate a malformed function
call, or other non-SSL dilemma.

• SSL Alerts are errors that your application may need to
explore to find out what really happened.

• SSL Handshake Errors are returned while SSL handshake
messages are being passed between the client and the server.

• SSL Cryptography Errors indicate that a cryptographic
operation has failed.

• SSL Illegal Message Errors are returned when SSL receives
an unexpected message type.

• SSL Certificate Errors describe the different failures during
certificate verification.

SSL Function Protocol Errors
sslErrBadArgumentA function argument was (generally)

invalid.

SSL Error Codes
SSL Alerts

2214 Palm OS Programmer’s API Reference

sslErrBadLength
A buffer length argument to a data-reading or -
writing function was invalid.

sslErrBadOptionThis means the same as sslErrBadArgument.

sslErrBufferTooSmall
A buffer supplied to this function wasn’t big
enough for the data that the functions wanted
to stuff into it.

sslErrEof You attempted to read or write a socket that
isn’t open.

sslErrFailed General, unspecified error.

sslErrNullArg You passed in a NULL argument. This is
returned, for example, if you pass in a NULL
pointer where a valid SslLib or SslContext
is expected.

sslErrOutOfMemory
Not enough memory to allocate the resources
that are needed by this function.

SSL Alerts
sslErrCbAbort Returned by a callback function to indicate that

the caller should exit. See SslCallbackFunc
in Chapter 80, “SSL Functions.”

sslErrIo Indicates that an underlying NetLib function
has returned a non-fatal error, such as a
timeout. When you get this error, you should
try to determine what the exact error is—you
usually start by looking at the context’s
Compat attribute. After you clear the error, you
can try to call the function again.

sslErrFatalAlert
An SSL fatal alert was received. To handle the
alert, see the LastAlert attribute in Chapter
82, “SSL Attributes and Macros.”

SSL Error Codes
SSL Handshake Errors

Palm OS Programmer’s API Reference 2215

SSL Handshake Errors
sslErrBadPeerFinished

The final check of the SSL handshake failed.
This means that there was a problem
establishing a shared secret value. It could be
caused by the server using a certificate that
does not match its private key.

sslErrExtraHandshakeData
An SSL handshake message contained data that
shouldn’t have been there.

sslErrHandshakeEncoding
An error occurred while an SSL handshake
message (from the server) was being decoded.

sslErrHandshakeProtocol
An error occurred while processing a decoded
SSL handshake message.

sslErrReadAppData
A handshake message was expected, but
application data was read.

SSL Cryptography Errors
sslErrCsp General cryptography error.

sslErrDivByZero
Math error. This can happen if a certificate has
an invalid public key.

sslErrNoModInverse
Another math error. See above.

sslErrNoRandom There was a problem with the random number
source.

SSL Error Codes
SSL Illegal Message Errors

2216 Palm OS Programmer’s API Reference

SSL Illegal Message Errors
sslErrBadSignature

An invalid signature was found on an
ephemeral Cipher Suite message.

sslErrWrongMessage
An invalid or inappropriate SSL message was
received.

sslErrUnexpectedRecord
The wrong type of record was received.

sslErrRecordError
An invalid record was received by the
SslContext.

SSL Certificate Errors
sslErrBadDecode

Something went wrong while decoding values
during certificate verification.

sslErrCert General certificate error.

sslErrCertDecodeError
The server’s certificate could not be decoded.

sslErrUnsupportedCertType
The server sent a certificate that isn’t supported
(it contains a public key that can’t be decoded).

sslErrUnsupportedSignatureType
The server sent a certificate that has an
unrecognized signature type.

sslErrVerifyBadSignature
The certificate’s signature is invalid

sslErrVerifyConstraintViolation
The certificate violates an X509 extension.

sslErrVerifyNotAfter
The certificate has expired.

SSL Error Codes
SSL Certificate Errors

Palm OS Programmer’s API Reference 2217

sslErrVerifyNotBefore
The certificate is too early (the timestamp
window is in the future).

sslErrVerifyNoTrustedRoot
A trusted certificate store (necessary for
certificate verification) couldn’t be found.

sslErrVerifyUnknownCriticalExtension
An X509 extension (that’s marked as “critical”)
isn’t understood by the certificate verification
routines.

SSL Error Codes
SSL Certificate Errors

2218 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 2219

84
SMS Exchange
Library
This chapter describes the SMS Exchange Library API declared in
the header file SmsLib.h. It discusses the following topics:

• SMS Exchange Library Data Structures

• SMS Exchange Library Constants

You interact with the SMS Exchange Library using the Exchange
Manager APIs described in Chapter 57, “Exchange Manager,” on
page 1297 of this book. For further information on using Exchange
Manager, see “Object Exchange” on page 1 of the of the Palm OS
Programmer’s Companion, vol. II, Communications.

SMS Exchange Library Data Structures

SmsParamsType
The SmsParamsType structure identifies information specific to the
SMS Exchange Library. The socketRef field of the
ExgSocketType structure is set to this structure when you send or
receive data using the SMS Exchange Library. You only need to
create this structure and assign it to the socketRef field if you
have an SMS message to send and want to use non-default values
for some of the fields; otherwise, the SMS Exchange Library creates
this structure for you and provides default values.

typedef struct SmsParamsTag
{
 UInt32 creator;
 UInt16 smsID;
 Char *extension;
 Char *mimeTypes;
 UInt32 appCreator;

SMS Exchange Library
SMS Exchange Library Data Structures

2220 Palm OS Programmer’s API Reference

 UInt8 dataCodingScheme;
 UInt8 networkType;
 UInt8 dataType;
 UInt16 nbsDestPort;
 UInt16 nbsSrcPort;
 union
 {
 SmsSendParamsType send;
 SmsReceiveParamsType receive;
 SmsReportParamsType report;

 } data;

} SmsParamsType, *SmsParamsPtr;

Field Descriptions

creator Creator ID of the SMS Exchange Library.
Always set this to sysFileCSmsLib.

smsID The ID of the message that was sent. Do not
set this field directly; the SMS Exchange
Library should set it.

extension If the SMS message has an attachment, this
field specifies the attachment name. Do not
set this field directly; the SMS Exchange
Library sets it if necessary. See the
appCreator field description for details.

mimeTypes If the SMS message has an attachment, this
field specifies the MIME type of the
attachment. Do not set this field directly; the
SMS Exchange Library sets it if necessary.
See the appCreator field description for
details.

SMS Exchange Library
SMS Exchange Library Data Structures

Palm OS Programmer’s API Reference 2221

appCreator The creator ID of the target application for
the attachment to the SMS message. Do not
set this field directly; the SMS Exchange
Library sets it if necessary.

When the SMS Exchange Library receives a
message with an attachment, it unwraps the
message and attempts to deliver the
attachment directly to an application that is
registered to receive it. If no application is
registered to receive unwrapped
attachments of that type, the SMS Exchange
Library sends the entire SMS message, and
it sets the extension, mimeTypes, and
appCreator fields in this structure. The
SMS application can use this information to
have the Exchange Manager deliver the
attachment to the appropriate application
using the Local Exchange Library.

dataCodingScheme The data encoding scheme that the message
uses. See SMS Data Coding Scheme
Constants.

networkType Indicates the type of advanced parameters.
See SMS Network Type Constants.

dataType Identifies the type of message being
received, such as multipart or return
receipt. See SMS Message Type Constants.

nbsDestPort The Narrow Band Socket (NBS) port on
which you want the data sent. The SMS
Exchange Library sets this for you if you
leave it blank. When data is being received,
this field is set to the NBS port on which the
data was received.

SMS Exchange Library
SMS Exchange Library Data Structures

2222 Palm OS Programmer’s API Reference

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SmsPrefType
The SmsPrefType structure defines the SMS Exchange Library
preferences for sending and receiving SMS messages. Applications
can use the ExgControl function to get, set, or display these
preferences to the user.

typedef struct SmsPrefTag
{
 UInt32 validity;
 UInt16 warnOver;
 Boolean leave;
 Boolean report;
 Boolean autoSMSC;
 Char smscNumber[kSmsMaxPhoneSize];
} SmsPrefType, *SmsPrefPtr;

nbsSrcPort The NBS port on which you want the data
sent. You should set this field to the same
value as nbsDestPort. If you leave it
blank, the SMS Exchange Library provides a
value for you.

data The data being sent or received. See
SmsReceiveParamsType,
SmsReportParamsType, and
SMSSendParamsType.

SMS Exchange Library
SMS Exchange Library Data Structures

Palm OS Programmer’s API Reference 2223

Field Descriptions

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SmsReceiveCDMAParamsType
The SmsReceiveParamsType includes an
SmsReceiveCDMAParamsType structure for CDMA messages.

typedef struct SmsReceiveCDMAParamsTag
{
 UInt8 messageType;
 TelSmsDateTimeType validityPeriod;
 UInt8 priority;
 UInt8 privacy;

validity The number of seconds before the message expires.
If the message cannot be delivered to the recipient,
the service center repeatedly attempts to deliver
the message until it expires. The default is one
hour.

warnOver The number of parts a user can send without
confirmation. If the user attempts to send a
message with more than this number of parts, an
alert is displayed, and the user can choose to send
the message anyway. The default is 3 parts. (If the
user attempts to send a message with more than 3
parts, an alert is displayed.)

leave If true, any incoming messages retrieved from a
phone remain on the phone as well. If false, the
messages are deleted from the phone’s inbox.

report If true, the user receives confirmation that an SMS
message was delivered.

autoSMSC If true, don’t use the value stored in the
smscNumber field.

smscNumber The message center to be used. If NULL or the
empty string, the SMS message center set by the
phone is used.

SMS Exchange Library
SMS Exchange Library Data Structures

2224 Palm OS Programmer’s API Reference

 Boolean alertOnDeliveryRequest;
 Boolean manualAckRequest;
 UInt8 voiceMessageNumber;
 UInt8 languageIndicator;
 Char * callbackNumberAddress;
} SmsReceiveCDMAParamsType,
*SmsReceiveCDMAParamsPtr;

Field Descriptions

messageType The type of the message. This is one
of the SMS Message Type Constants
constants defined in
TelephonyMgr.h.

validityPeriod The amount of time for which the
message is valid. See
TelSmsDateTimeType. The default
is set according to the SMS
preferences.

priority The message priority. This must be
one of the SMS Message Urgency
Constants defined in
TelephonyMgr.h.

privacy The privacy type of the message. This
must be one of the SMS Message
Privacy Constants defined in
TelephonyMgr.h.

alertOnDeliveryRequest true if the user is to be alerted upon
delivery of this message, and false
if not.

manualAckRequest true if a confirmation is requested
from the recipient, and false if not.

voiceMessageNumber The number of new messages in your
voice mail.

SMS Exchange Library
SMS Exchange Library Data Structures

Palm OS Programmer’s API Reference 2225

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SmsReceiveGSMParamsType
The SmsReceiveParamsType includes an
SmsReceiveGSMParamsType structure for GSM messages.

typedef struct SmsReceiveGSMParamsTag
{
 UInt16 protocolId;
 Char *serviceCenterNumber;
 Boolean replyPath;
} SmsReceiveGSMParamsType,
*SmsReceiveGSMParamsPtr;

Field Descriptions

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SmsReceiveParamsType
The SmsReceiveParamsType structure is used as the data field
for the SmsParamsType structure when the SMS Exchange Library

languageIndicator Reserved for future use.

callbackNumberAddress The callback number to which
confirmations are to be sent.

protocolId Reserved for future use.

serviceCenterNumber The SMS service center that must be
used to send a reply. If NULL, the
service center specified in the
preferences is used.

replyPath If true, replies must be made through
the SMS service center specified by
serviceCenterNumber.

SMS Exchange Library
SMS Exchange Library Data Structures

2226 Palm OS Programmer’s API Reference

has received data. The SMS Exchange Library always supplies the
values for these fields.

typedef struct SmsReceiveParamsTag
{
 UInt32 timeStamp;
 Char *originatingAddress;
 UInt8 leaveOnPhone:1;
 UInt8 forceSlotMode:1;
 UInt8 reserved:6;
 UInt16 index;
 Boolean otherToReceive;
 Boolean reportDeliveryIndicator;
 union
 {
 SmsReceiveGSMParamsType gsm;
 SmsReceiveCDMAParamsType cdma;
 SmsReceiveTDMAParamsType tdma;
 } protocol;
} SmsReceiveParamsType, *SmsReceiveParamsPtr;

Field Descriptions

timeStamp The time at which the message was
delivered, given as the number of
seconds since January 1, 1904.

originatingAddress The number from which the
message was received.

leaveOnPhone If true, messages received on the
phone are not deleted from the
phone’s inbox. If not specified, this
is set according to the system
preferences.

forceSlotMode If true, use slot mode parsing. If
false, use block mode parsing.
The default is block mode.

reserved Reserved for future use.

SMS Exchange Library
SMS Exchange Library Data Structures

Palm OS Programmer’s API Reference 2227

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SmsReceiveTDMAParamsType
The SmsReceiveParamsType includes an
SmsReceiveTDMAParamsType structure for TDMA messages.
This structure is currently the same as the
SmsReceiveCDMAParamsType structure.

typedef SmsReceiveCDMAParamsType
 SmsReceiveTDMAParamsType,
 *SmsReceiveTDMAParamsPtr;

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SmsReportParamsType
The SMSReportParamsType structure is used as the data field for
the SmsParamsType structure when the SMS Exchange Library has
received a delivery confirmation. The SMS Exchange Library always
sets the values for these fields.

typedef struct SmsReportParamsTag
{
 UInt32 timeStamp;

index Location where the message is
stored on the mobile phone.

otherToReceive If true, there are more messages
to be received from the service
center.

reportDeliveryIndicator If true, the sender has requested
confirmation. The recipient of the
message does not send the
confirmation; the SMS service
center does.

protocol Values specific to the protocol used
to send the message. Currently,
only GSM is supported.

SMS Exchange Library
SMS Exchange Library Data Structures

2228 Palm OS Programmer’s API Reference

 UInt16 index;
 UInt8 reportType;
 UInt8 report;
 Char* originatingAddress;
} SmsReportParamsType, *SmsReportParamsPtr;

Field Descriptions

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SmsSendCDMAParamsType
The SMSSendParamsType includes an
SmsSendCDMAParamsType structure for CDMA messages.

typedef struct SmsSendCDMAParamsTag
{
 UInt8 messageType;
 TelSmsDateTimeType deferredDate;
 UInt8 priority;
 UInt8 privacy;
 UInt8 alertOnDelivery:1;
 UInt8 manualAckRequest:1;
 UInt8 reserved:6;
 Char* callbackNumber;
} SmsSendCDMAParamsType, *SmsSendCDMAParamsPtr;

timeStamp The date and time at which the message
was delivered, given as the number of
seconds since January 1, 1904.

index Location where the message is stored on
the mobile phone.

reportType One of the Delivery Report Type constants
defined in TelephonyMgr.h.

report One of the Delivery Status Report
constants defined in TelephonyMgr.h.

originatingAddress Phone number to which the message was
sent.

SMS Exchange Library
SMS Exchange Library Data Structures

Palm OS Programmer’s API Reference 2229

Field Descriptions

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SmsSendGSMParamsType
The SMSSendParamsType includes an SmsSendGSMParamsType
structure for GSM messages.

typedef struct SmsSendGSMParamsTag
{
 UInt16 protocolId;
 Char *serviceCenterNumber;
 Boolean rejectDuplicated;
 Boolean replyPath;
} SmsSendGSMParamsType, *SmsSendGSMParamsPtr;

messageType The type of the message. This is
one of the SMS Message Type
Constants constants defined in
TelephonyMgr.h.

deferredDate Not used.

priority The message priority. This must
be one of the SMS Message
Urgency Constants.

privacy The privacy type of the message.
This must be one of the SMS
Message Privacy Constants.

alertOnDelivery true if the user is to be alerted
upon delivery of this message,
and false if not.

manualAckRequest true if a confirmation is
requested from the recipient, and
false if not.

reserved Reserved for future use.

callbackNumber Number to which the
confirmation should be sent.

SMS Exchange Library
SMS Exchange Library Data Structures

2230 Palm OS Programmer’s API Reference

Field Descriptions

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SMSSendParamsType
The SMSSendParamsType structure is used as the data field for
the SmsParamsType structure when the SMS Exchange Library is
sending data.

typedef struct SmsSendParamsTag
{
 TelSmsDateTimeType validityPeriod;
 Char *destinationAddress;
 UInt8 networkDeliveryRequested:1;
 UInt8 ignoreDefaultValue:1;
 UInt8 reserved:6;
 UInt16 partCount;
 UInt16 lastPart;
 UInt8 converter;
 union
 {
 SmsSendGSMParamsType gsm;
 SmsSendCDMAParamsType cdma;

protocolId Reserved for future use.

serviceCenterNumber The message center to be used. If not
specified, the service center is set
according to the system preferences.

rejectDuplicated If true, the service center rejects
messages that have the same message ID,
destination address, and originating
address as a previously submitted
message.

replyPath If true, the service center that delivers
the message is requested to provide
information about itself to the recipient
so that replies are made through the
same service center.

SMS Exchange Library
SMS Exchange Library Data Structures

Palm OS Programmer’s API Reference 2231

 SmsSendTDMAParamsType tdma;
 } protocol;
} SmsSendParamsType, *SmsSendParamsPtr;

Field Descriptions

validityPeriod The amount of time for which the
message is valid. See
TelSmsDateTimeType. The
default is set according to the
SMS preferences.

destinationAddress A buffer that contains the phone
number of the message recipient.
If no phone number is supplied,
the user is prompted for the
phone number.

networkDeliveryRequested If true, the SMS service center
sends a delivery confirmation.
The default is set according to the
SMS preferences. The SMS
Exchange Library disables this
field for multipart messages.

ignoreDefaultValue If false, the validity period,
network delivery requested, and
SMS center specified in the
preferences are used regardless of
the values supplied in this
structure. If true, the values
supplied in this structure are
used.

reserved Reserved for future use.

partCount The number of parts in the
message. 0 means that the
message is not a multipart
message. If NBS is used to send
the message, it determines the
number of parts.

SMS Exchange Library
SMS Exchange Library Constants

2232 Palm OS Programmer’s API Reference

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SmsSendTDMAParamsType
The SMSSendParamsType includes an
SmsSendTDMAParamsType structure for TDMA messages. This
structure is currently the same as the SmsSendCDMAParamsType
structure.

typedef SmsSendCDMAParamsType
 SmsSendTDMAParamsType,
 *SmsSendTDMAParamsPtr;

Compatibility This structure is only defined if 4.0 New Feature Set is present.

SMS Exchange Library Constants

SMS Control Constants
The SMS control constants are passed as the operation parameter to
the ExgControl function. The ExgControl function is a way to
communicate directly with the SMS Exchange Library. The
following table lists the operation constant, the type of data that
should be passed as the valueP parameter to ExgControl, and
what the SMS Exchange Library does in response.

lastPart The last part of a multipart
message that was successfully
sent.

converter The header added to the data to
specify how it is converted.

protocol Data specific to the protocol used
to send the message. Currently,
only GSM is supported.

SMS Exchange Library
SMS Exchange Library Constants

Palm OS Programmer’s API Reference 2233

Compatibility These constants are only defined if 4.0 New Feature Set is present.

Table 84.1 ExgControl operations for SMS library

Operation value Data Type Description

exgLibSmsPrefGetOp SmsPrefType Returns a pointer to the SMS
Exchange Libraries
preferences in valueP,
creating the preferences and
setting them to the default
values if they do not exist.

exgLibSmsPrefGet
DefaultOp

SmsPrefType Returns the default values for
the SMS Exchange Library
preferences.

exgLibSmsPrefSetOp SmsPrefType Sets the SMS Exchange
Library preferences to the
values passed in valueP.

exgLibSmsPref
DisplayOp

kSmsNetworkAuto or
kSmsNetworkGSM.
Input only.

Display a form that allows the
user to set the SMS
preferences.

exgLibSms
IncompleteGetCountOp

UInt16. Output only. Get the number of incomplete
messages currently stored in
the SMS Exchange Library.
The library stores message
parts as it receives them.
When it has received all of the
parts, it reassembles the
message and delivers it. This
operation tells how many
messages are currently under
assembly.

exgLibSms
IncompleteDeleteOp

UInt16. Input only. Delete the incomplete
message with the ID passed
in valueP. Pass -1 to delete
all incomplete messages.

SMS Exchange Library
SMS Exchange Library Constants

2234 Palm OS Programmer’s API Reference

SMS Data Coding Scheme Constants
The SMS data coding scheme constants describe the coding scheme
used for SMS data. These values are used as the
dataCodingScheme parameter of the SmsParamsType structure.

Compatibility These constants are only defined if 4.0 New Feature Set is present.

SMS Network Type Constants
The SMS network type constants identify the type of network being
used for SMS messages. Currently, only the GSM network is
supported.

Compatibility These constants are only defined if 4.0 New Feature Set is present.

SMS Message Type Constants
The SMS message type constants identify the type of message being
sent. They are used as the dataType field of the SmsParamsType
structure.

Constant Value Description

kSmsRowDataEncoding 0 8-bit encoding scheme. This is the default.

kSmsTextEncoding 1 7-bit encoding scheme.

Constant Value Description

kSmsNetworkAuto -1 The network is set by the phone. This is the
default.

kSmsNetworkCDMA kTelNwkCDMA A CDMA network. Currently not supported.

kSmsNetworkGSM kTelNwkGSM A GSM network.

kSmsNetworkTDMA kTelNwkTDMA A TDMA network. Currently not supported.

kSmsNetworkPDC kTelNwkPDC A PDC network. Currently not supported.

SMS Exchange Library
SMS Exchange Library Constants

Palm OS Programmer’s API Reference 2235

Compatibility These constants are only defined if 4.0 New Feature Set is present.

SMS Converter Constants
The SMS converter constants identify the header information added
to an SMS message.

Compatibility These constants are only defined if 4.0 New Feature Set is present.

Constant Value Description

kSmsMessageType 0 Standard SMS message of no more than 160 bytes.
This is the default.

kSmsIncompleteType 1 A part of a multipart SMS message.

kSmsReportType 2 A confirmation, indicating that an SMS message
was successfully sent.

Constant Value Description

kSmsNBSConverter 0 An NBS header is added to the message. This is
the default.

kSmsNoConverter 1 No header is added to the message.

SMS Exchange Library
SMS Exchange Library Constants

2236 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 2237

85
Personal Data
Interchange Library
This chapter provides reference material for the Personal Data
Interchange (PDI) library, which provides tools for reading and
writing vObjects, including vCards and vCals. This chapter
discusses the following topics:

• PDI Library Data Structures

• PDI Library Constants

• PDI Library Functions

The header file PdiLib.h declares the Personal Data Interchange
library API. The header file PdiConst.h declares the constants that
you use with the PDI library.

For information about how to use the functions and constants
described in this chapter, see Chapter 3, “Personal Data
Interchange,” in Palm OS Programmer’s Companion, vol. II,
Communications.

PDI Library Data Structures
This section describes the data structures used with the PDI library
functions.

PdiDictionary
The PdiDictionary type is a simple typedef that represents an
internal, binary object.

Personal Data Interchange Library
PDI Library Data Structures

2238 Palm OS Programmer’s API Reference

typedef UInt8 PdiDictionary;

PdiReaderType
The PdiReaderType data structure represents a PDI reader object,
which you use to read data from an input stream.

typedef struct _PdiReader {
 Err error;
 UInt8 encoding;
 CharEncodingType charset;
 UInt16 written;
 UInt8 fieldNum;
 UInt16 property;
 UInt16 propertyValueType;
 UInt16 parameter;
 UInt32 parameterPairs[kPDI_ENTRIES_NUMBER];
 UInt16 customFieldNumber;
 void *appData;
 UInt16 pdiRefNum;
 UInt16 events;
 Char *groupName;
 Char *propertyName;
 Char *parameterName;
 Char *parameterValue;
 Char *propertyValue;
 PdiDictionary *dictionary[2];
} PdiReaderType

Field Descriptions

error The most recent error.

encoding The type of encoding for the property
value.

charset The character set of the property value.

written The number of characters that have
currently been written to the buffer.

fieldNum The current field number.

Personal Data Interchange Library
PDI Library Data Structures

Palm OS Programmer’s API Reference 2239

property The ID of the current property.

propertyValueType The value type of the current property
value.

parameter The ID of the most recently parsed
parameter name.

parameterPairs An integer array with bits set for each
parameter value that has been parsed for
the current property value.

NOTE: You must use the
PdiParameterPairTest macro to
access this field.

customFieldNumber The number of the custom field parsed by
the reader for the current property.
Custom fields are used in the Palm™
Address Book.

appData Application-dependent data field.

pdiRefNum The library reference number associated
with this reader.

events The mask of events handled by the reader
in its most recent operation. This is a
combination of some number of the event
constants described in Reader Event
Constants.

groupName The group name for the current property.

propertyName The name of the current property.

parameterName The name of the current parameter.

parameterValue The value of the current parameter.

Personal Data Interchange Library
PDI Library Data Structures

2240 Palm OS Programmer’s API Reference

PdiWriterType
The PdiWriterType data structure represents a PDI writer object,
which you use to write data to an output stream.

typedef struct _PdiWriter {
 void *appData;
 UInt16 pdiRefNum;
 UInt16 encoding;
 CharEncodingType charset;
 Err error;
 PdiDictionary *dictionary[2];
} PdiWriterType

Field Descriptions

propertyValue The current property value string.

dictionary An array of two dictionary pointers. The
dictionary[0] entry is the main
dictionary built into the PDI library, and
the dictionary[1] entry is an optional,
custom dictionary associated with the
reader object with a call to
PdiDefineReaderDictionary.

appData Application-dependent data field.

pdiRefNum The library reference number associated
with this reader.

encoding The type of encoding for the property
value.

charset The character set of the property value.

Personal Data Interchange Library
PDI Library Constants

Palm OS Programmer’s API Reference 2241

PDI Library Constants
This section describes the constants used in the PDI library, which
include the following constant types:

• Buffer Management Constants

• Encoding Type Constants

• Error Code Constants

• Parameter Name Constants

• Parameter Value Constants

• Property Name Constants

• Property Type Constants

• Property Value Field Constants

• Property Value Format Constants

• Reader and Writer Options Constants

• Reader Event Constants

• Value Type Constants

Buffer Management Constants
You use the buffer management constants to determine how buffers
are managed in the PDI reader.

error The most recent error.

dictionary An array of two dictionary pointers. The
dictionary[0] entry is the main
dictionary built into the PDI library, and
the dictionary[1] entry is an optional,
custom dictionary associated with the
reader object with a call to
PdiDefineReaderDictionary.

Personal Data Interchange Library
PDI Library Constants

2242 Palm OS Programmer’s API Reference

Encoding Type Constants
You use the encoding type constants to specify the type of encoding
used in a vObject reader or writer.

Constant Value Description

kPdiResizableBuffer 0xFFFF Indicates that the buffer can be
automatically resized by the PDI
library.

kPdiDefaultBufferMaxSize 0x3FFF The default maximum buffer size, in
bytes. You can change the maximum
size of a reader’s buffer by calling the
PdiDefineResizing function.

kPdiDefaultBufferDeltaSize 0x0010 The default number of bytes by
which the input buffer is grown when
the PDI library performs automatic
resizing. You can change the delta
amount of a reader’s buffer by calling
PdiDefineResizing function.

Constant Value Description

kPdiASCIIEncoding 0 The vObject is not encoded.

kPdiQPEncoding kPdiPAV_ENCODING_
QUOTED_PRINTABLE

The vObject uses the quoted
printable encoding.

kPdiB64Encoding kPdiPAV_ENCODING_
BASE64

The vObject uses Base 64
encoding. The writer outputs
"ENCODING=BASE64."

kPdiBEncoding kPdiPAV_ENCODING_B The vObject uses Base 64
encoding. This is the same as
the kPdiB64Encoding value,
except that the PDI writer
outputs "ENCODING=B."

This encoding is used with the
vCard 3.0 standard.

Personal Data Interchange Library
PDI Library Constants

Palm OS Programmer’s API Reference 2243

Error Code Constants
The PDI library functions return the error code constants shown in
the following table to indicate their status.

kPdiEscapeEncoding 0x8000 The vObject uses escapes for
special characters.

kPdiNoEncoding 0x8001 The PDI writer does not
encode the vObject value.

Constant Value Description

Constant Description

pdiErrRead An error occurred while
reading from the input stream.

pdiErrWrite An error occurred while writing
to the output stream.

pdiErrNoPropertyName An attempt was made to write a
property value before the
property name was written.

pdiErrNoPropertyValue The application did not write
the last property value.

pdiErrMoreChars The buffer is full. Superfluous
characters have been discarded.

pdiErrNoMoreFields There are no more property
fields to read.

pdiErrOpenFailed The PDI library could not be
opened.

pdiErrCloseFailed The PDI library could not be
closed. This can occur if another
application is using the library.

Personal Data Interchange Library
PDI Library Constants

2244 Palm OS Programmer’s API Reference

Parameter Name Constants
The PdiConst.h file defines several parameter name constants
that you can use to specify the name of a parameter in functions that
use parameter names. The parameter name constants have the
following format:

kPdiPAN_parameterName

where parameterValue is replaced by a parameter name.

The following table shows examples of parameter name constants.
For a complete list, see the PdiConst.h file.

Parameter Value Constants
The PdiConst.h file defines several parameter value constants
that you can use to specify the name and value of a parameter in
functions that use name and value pairs. The parameter value
constants have the following format:

kPdiPAV_parameterName_parameterValue

where parameterName is replaced by a parameter name and
parameterValue is replaced by a parameter value.

The following table shows examples of parameter value constants.
For a complete list, see the PdiConst.h file.

Constant Description

kPdiPAN_TYPE The TYPE parameter.

kPdiPAN_ENCODING The ENCODING parameter.

kPdiPAN_STATUS The STATUS parameter.

Constant Description

kPdiPAV_TYPE_TEL The parameter name is TYPE
and the parameter value is TEL.

kPdiPAV_ENCODING_BASE64 The parameter name is
ENCODING and parameter value
is BASE64.

Personal Data Interchange Library
PDI Library Constants

Palm OS Programmer’s API Reference 2245

Property Name Constants
The PdiConst.h file defines several property name constants that
you can use to specify the name of a PDI property in functions that
use property names. The property name constants have the
following format:

kPdiPRN_propertyName

where propertyName is replaced by a property name.

The following table shows examples of property name constants.
For a complete list, see the PdiConst.h file.

Property Type Constants
You use the property type constants to specify the data type of a
property.

kPdiPAV_ENCODING_8BIT The parameter name is
ENCODING and the parameter
value is 8BIT.

kPdiPAV_STATUS_ACCEPTED The parameter name is STATUS
and the parameter value is
ACCEPTED.

Constant Description

Constant Description

kPdiPRN_ADR The ADR property.

kPdiPRN_BDAY The BDAY property.

kPdiPRN_BEGIN The BEGIN property.

kPdiPRN_BEGIN_VCARD The BEGIN:VCARD property.

Constant Value Description

kPdiType_URI 0 The data is a uniform resource identifier.

kPdiType_UTC_OFFSET 1 The data is an offset from UTC to local time.

Personal Data Interchange Library
PDI Library Constants

2246 Palm OS Programmer’s API Reference

Property Value Field Constants
The PdiConst.h file defines several property value field constants
that you can use to specify the position of a PDI property value field
in functions that use fields. The property value field constants have
the following format:

kPdiPVF_propertyValueField

where propertyValueField is replaced by a property value field name.

The following table shows examples of property name constants.
For a complete list, see the PdiConst.h file.

kPdiType_RECUR 2 The data is a specification of a recurrence
rule.

kPdiType_PERIOD 3 The data is a precise period of time.

kPdiType_CAL_ADDRESS 4 Calendar user data.

kPdiType_BINARY 5 Binary data.

kPdiType_TEXT 6 Text data.

kPdiType_FLOAT 7 Floating-point data.

kPdiType_DURATION 8 Time duration data.

kPdiType_DATE_TIME 9 Calendar date and time data.

kPdiType_DATE 10 Date data.

kPdiType_INTEGER 11 Signed integer data.

kPdiType_TIME 12 Time-of-day data.

Constant Value Description

Personal Data Interchange Library
PDI Library Constants

Palm OS Programmer’s API Reference 2247

Property Value Format Constants
Some properties have structured values, which are values that
contain multiple fields. These fields are typically separated by
commas or semicolons in the vObject input or output stream. You
use the property value format constants with the
PdiReadPropertyField and PdiWritePropertyStr functions
to specify how to handle fields in a structured value.

Constant Description

kPdiPVF_ADR_POST_OFFICE The property value field that
stores the post office portion of
the address.

kPdiPVF_ADR_EXTENDED The property value field that
stores the extended portion of
the address.

kPdiPAN_ADR_COUNTRY The property value field that
stores the country portion of
the address.

Constant Value Description

kPdiNoFields 0 There are no fields in the property
value; PdiReadPropertyField
reads the entire value, or
PdiWritePropertyStr specifies that
the entire value should be written.

kPdiCommaFields 1 Fields are separated with comma (“,“)
characters; PdiReadPropertyField
reads one field, or
PdiWritePropertyStr specifies that
one field should be written.

Personal Data Interchange Library
PDI Library Constants

2248 Palm OS Programmer’s API Reference

Reader and Writer Options Constants
You use the reader and writer option constants to control how the
PDI reader (parser) reads values from the input stream or to control
how the PDI writer (generator) writes values to the output stream.

kPdiSemicolonFields 2 Fields are separated with semicolon
(“;“) characters;
PdiReadPropertyField reads one
field, or PdiWritePropertyStr
specifies that one field should be
written.

kPdiDefaultFields 4 The parser decides the property value
format, based on the property name.

kPdiConvertComma 8 Fields are separated with comma
characters; PdiReadPropertyField
reads the entire value and converts
each comma into a newline (“\n“)
character.

kPdiConvertSemicolon 16 Fields are separated with semicolon
characters; PdiReadPropertyField
reads the entire value and converts
each semicolon into a newline (“\n“)
character.

Constant Value Description

Personal Data Interchange Library
PDI Library Constants

Palm OS Programmer’s API Reference 2249

Constant Value Description

kPdiEnableFolding 1 Enables folding of properties in the
output stream.

Folding is a mechanism for breaking
long lines to allow them to be
transmitted without change. If you
specify this flag, the PDI library folds
long lines.

Note that folding is not compatible
with earlier versions of the Palm OS®.

Also note that other encoding formats,
including quoted-printable and Base
64, define their own mechanisms for
splitting long lines.

kPdiEnableQuotedPrintable 2 Enables quoted-printable encoding in
the output stream and makes it the
default encoding.

This is an encoding format for non-
ASCII values. You must have this
enabled for compatibility with earlier
versions of the Palm OS.

If you do not specify this option, the
default encoding is Base 64.

Personal Data Interchange Library
PDI Library Constants

2250 Palm OS Programmer’s API Reference

kPdiEscapeMultiFieldValues 4 For compatibility with earlier versions
of the Palm OS.

You must enable this for compatibility
with earlier versions of the Palm OS.
However, some non-Palm PDI software
does not support this format.

For more information about
compatibility with earlier versions of
the Palm OS, see Format Compatibility
in the Palm OS Programmer’s Companion,
vol. II, Communications.

kPdiPalmCompatibility 6 This is a combination of
kPdiEnableQuotedPrintable |
kPdiEscapeMultiFieldValues.

It forces the PDI writer to generate
output that is compatible with earlier
versions of the Palm OS.

kPdiEnableB 8 Enables base 64 encoding in the output
stream, and tells the PDI writer to
output "ENCODING=B" instead of
"ENCODING=BASE64" when encoding a
value with Base 64.

Note: the vCard 3.0 standard has
replaced the earlier
ENCODING=BASE64 with
ENCODING=B. The meaning is the
same.

kPdiOpenParser 8 Specifies that the PDI reader is open to
all formats, including Palm and others.

Constant Value Description

Personal Data Interchange Library
PDI Library Constants

Palm OS Programmer’s API Reference 2251

Reader Event Constants
The PDI reader event constants specify the events that the reader
has handled during the current read operation. The event values are
combined together and stored in the events field of the PDI reader
object. You can use them to test whether the reader handled a
certain event.

Constant Value Description

kPdiEOFEventMask 1 End of file was reached.

kPdiGroupNameEventMask 2 A group name was found.

kPdiPropertyNameEventMask 4 A property name was
found.

kPdiParameterNameEventMask 8 A parameter name was
found.

kPdiParameterValueEventMask 16 A parameter value was
found.

kPdiPropertyDefinedEventMask 32 A property definition was
found; this implies that the
“:” separator character was
found.

kPdiPropertyValueEventMask 64 An entire property value
was found

kPdiPropertyValueFieldEventMask 128 A value field was found;
this implies that the “;”
separator character was
found.

kPdiPropertyValueItemEventMask 256 A value item was found;
this implies that the “,”
separator character was
found.

Personal Data Interchange Library
PDI Library Constants

2252 Palm OS Programmer’s API Reference

Value Type Constants
You can use the following constants to specify data typing
information for the PdiWritePropertyBinaryValue,
PdiWritePropertyFields, and PdiWritePropertyValue
functions.

kPdiPropertyValueMoreCharsEventMask 512 The buffer that you
provided was not large
enough. The superfluous
characters have been
discarded.

kPdiBeginObjectEventMask 1024 The object begin indicator
BEGIN was reached.

kPdiEndObjectEventMask 2048 The object end indicator
END was reached.

Constant Value Description

Constant Value Description

kPdiWriteData 0 The value is data. The PDI writer does not
compute a character set. You can use this for
binary data or pure ASCII data.

kPdiWriteText 8 The value is text data. The PDI writer parses
the data character by character to compute the
correct charset and character encoding for the
data.

kPdiWriteMultiline 16 Explicitly specifies that the value contains
special characters, such as newlines, and must
be encoded. If this flag is not specified, the
encoding is determined by the applied
character set.

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2253

PDI Library Functions

PdiDefineReaderDictionary

Purpose Installs a new custom dictionary for use with a PDI reader object.

Declared In PdiLib.h

Prototype PdiDictionary *PdiDefineReaderDictionary
(UInt16 libRefnum, PdiReaderType *ioReader,
PdiDictionary *dictionary,
Boolean disableMainDictionary)

Parameters -> libRefnum The PDI library reference number.

-> ioReader The PDI reader object with which to associate
the dictionary. This object must have
previously been created by a call to the
PdiReaderNew function.

-> dictionary A pointer to a dictionary object that was
created by the . The dictionary object is an array
of binary data.

-> disableMainDictionary
If true, the main reader dictionary is disabled,
and only this new dictionary is searched for
terms; if false, the new dictionary
supplements the main dictionary.

Result Returns a pointer to the previously installed custom dictionary, or
NULL if there was not a previously installed custom dictionary.

Comments This function installs a dictionary for use with the ioReader object.
The dictionary contains the syntax for extensions or replacements of
the PDI properties about which the PDI reader knows. The reader
knows about properties specified in one of the vObject standards,
including the vCard or vCal standards.

You can uninstall the current custom dictionary by specifying NULL
as the value of the dictionary parameter,

Personal Data Interchange Library
PDI Library Functions

2254 Palm OS Programmer’s API Reference

Note that the dictionary must have previously been compiled by the
dictionary tool. For more information, review the PDI sample code,
which you can find on the Palm Developer’s Knowledge Base at
http://www.palmos.com/dev/tech/kb.

PdiDefineResizing

Purpose Defines the sizing information to use when automatically resizing a
buffer. PDI reader objects read information from the input stream
into a buffer and automatically adjust the buffer size as required.

Declared In PdiLib.h

Prototype Err PdiDefineResizing(UInt16 libRefnum,
PdiReaderType *ioReader, UInt16 deltaSize,
UInt16 maxSize)

Parameters -> libRefnum The PDI library reference number.

-> ioReader The PDI reader object, which was created by a
previous call to the PdiReaderNew function.

-> deltaSize The number of bytes by which to grow the
buffer when it needs resizing.

-> maxSize The maximum allowable size for the buffer.

Result Returns errNone if successful, and an error code if not successful.

Comments This function redefines the values to use when resizing a buffer. It
does not perform any other actions.

The resizing values are used if your reader runs out of buffer space
when storing input data during the processing of a property value.
If possible, the reader resizes its internal buffer, using the values that
you supply in this function.

The default resizing values apply if you do not call this function.
The default values are:

kPdiDefaultBufferDeltaSize 0x0010
kPdiDefaultBufferMaxSize 0x3FFF

http://www.palmos.com/dev/tech/kb/

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2255

Compatibility Implemented only if 4.0 New Feature Set is present.

PdiDefineWriterDictionary

Purpose Installs a new custom dictionary for use with a PDI writer object.

Declared In PdiLib.h

Prototype PdiDictionary *PdiDefineWriterDictionary
(UInt16 libRefnum, PdiWriterType *ioWriter,
PdiDictionary *dictionary,
Boolean disableMainDictionary)

Parameters -> libRefnum The PDI library reference number.

-> ioWriter The PDI writer object with which to associate
the dictionary. This object must have
previously been created by a call to the
PdiWriterNew function.

-> dictionary A pointer to a dictionary object that was
created by the . The dictionary object is an array
of binary data.

-> disableMainDictionary
If true, the main dictionary is disabled, and
only this new dictionary is searched for terms;
if false, the new dictionary supplements the
main dictionary.

Result Returns a pointer to the previously installed custom dictionary, or
NULL if there was not a previously installed custom dictionary.

Comments This function installs a dictionary for use with the ioWriter object.
The dictionary contains the syntax for extensions or replacements of
the PDI properties about which the PDI writer knows. The writer
knows about properties specified in one of the vObject standards,
including the vCard or vCal standards.

You can uninstall the current custom dictionary by specifying NULL
as the value of the dictionary parameter,

Personal Data Interchange Library
PDI Library Functions

2256 Palm OS Programmer’s API Reference

Note that the dictionary must have previously been compiled by the
dictionary tool. For more information, review the PDI sample code,
which you can find on the Palm Developer’s Knowledge Base at
http://www.palmos.com/dev/tech/kb/.

PdiEnterObject

Purpose Tells the PDI library to enter into a recursively-defined object.

Declared In PdiLib.h

Prototype Err PdiEnterObject(UInt16 libRefnum,
PdiReaderType *ioReader)

Parameters -> libRefnum The PDI library reference number.

-> ioReader The PDI reader object, which was created by a
previous call to the PdiReaderNew function.

Result Returns errNone if successful, and an error code if not successful.

Comments Some vObjects recursively define other vObjects. Your application
can choose whether or not to enter and parse the recursively defined
objects.

If you want to parse the nested object definition, you need to call
this function; otherwise, all of the properties of the nested object are
skipped when the next call is made to the PdiReadProperty or
PdiReadPropertyName functions.

Call this function after a BEGIN_VObject statement of the nested
object has been parsed.

Compatibility Implemented only if 4.0 New Feature Set is present.

http://www.palmos.com/dev/tech/kb/

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2257

PdiLibClose

Purpose Close the PDI library after your application has finished with it.

Declared In PdiLib.h

Prototype Err PdiLibClose(UInt16 libRefnum)

Parameters -> libRefnum The PDI library reference number.

Result Returns 0 if no other application uses the library. You may need to
call SysLibRemove to remove the PDI library from the system
library table.

Returns pdiErrCloseFailed if the library could not be closed.

Comments You should call this function after your application has finished
with the PDI library, to allow the resources to be recovered.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiLibOpen

PdiLibOpen

Purpose Opens the PDI library for use by your application.

Declared In PdiLib.h

Prototype Err PdiLibOpen(UInt16 libRefnum)

Parameters -> libRefnum The PDI library reference number.

Result Returns errNone if successful, and an error code if not successful.

Comments You must call this function before calling any of the other PDI
functions.

Personal Data Interchange Library
PDI Library Functions

2258 Palm OS Programmer’s API Reference

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiLibClose

PdiParameterPairTest

Purpose A macro that determines if the reader has already parsed the
specified parameter value or name-value pair.

Declared In PdiLib.h

Prototype PdiParameterPairTest (reader, pair)

Parameters -> reader The PDI reader object, which was created by a
previous call to the PdiReaderNew function.

-> pair The ID of the parameter. This must be one of
the Parameter Value Constants.

Result Returns true if the specified parameter name-value pair has been
parsed for the current property, and false if not.

Comments Some vObject generators do not specify the parameter name if the
name is considered evident from the context. This means that both
of the following constructs are considered proper:

Name=Value
Value

The PdiParameterPairTest macro returns true if the value has
been parsed in either format. For example,

PdiParameterPairTest(reader, kPdiPAV_TYPE_WORK)

returns true for either of the following:

Type=WORK
WORK

Compatibility Implemented only if 4.0 New Feature Set is present.

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2259

PdiReaderDelete

Purpose Delete a PDI reader object that is associated with the specified
library number.

Declared In PdiLib.h

Prototype void PdiReaderDelete(UInt16 libRefnum,
PdiReaderType **ioReader)

Parameters -> libRefnum The PDI library reference number.

<-> ioReader A pointer to the PDI reader object, which was
created by a previous call to the
PdiReaderNew function.

Result Returns nothing.

Comments This function deletes the UDAReader object associated with the
reader object and frees the memory that was allocated for the reader
object. The ioReader parameter is set to NULL.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiReaderNew

PdiReaderNew

Purpose Create and initialize a new PDI reader object for use with the
specified PDI library number.

Declared In PdiLib.h

Prototype PdiReaderType *PdiReaderNew(UInt16 libRefnum,
UDAReaderType *input, UInt16 version)

Parameters -> libRefnum The PDI library reference number.

Personal Data Interchange Library
PDI Library Functions

2260 Palm OS Programmer’s API Reference

-> input The Unified Data Access (UDA) input object
associated with the reader.

-> version Options to control the parsing behavior of the
reader. You can use a combination of the Reader
and Writer Options Constants.

Result Returns a pointer to the new PDI reader object. Returns NULL if the
reader cannot be created.

Comments The current implementation of the PdiReaderNew function does
not make use of the optionFlags settings because the reader
knows how to adapt itself to all of the supported formats. The
options will be used in future versions.

The input value is a UDA object for reading data from an input
stream that can be connected to various data sources. For example,
you can use a UDAExchangeReader to read data from the
Exchange Manager, and you can use a UDAStringReader to read
data from a string. For more information about the UDA Manager,
see Chapter 86, “Unified Data Access Manager.”

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiReaderDelete, PdiWriterNew

PdiReadParameter

Purpose Read a single parameter name and its value from an input stream.

Declared In PdiLib.h

Prototype Err PdiReadParameter(UInt16 libRefnum,
PdiReaderType *ioReader)

Parameters -> libRefnum The PDI library reference number.

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2261

-> ioReader The PDI reader object, which was created by a
previous call to the PdiReaderNew function.

Result 0 The parameter and its value were read
successfully.

kPdiReadError The parameter and its value could not be
successfully read from the input stream.

This function initializes the parameterName and parameter
fields of the ioReader object.

This function sets the appropriate bits in the reader’s
parameterValues field if the parameter name is recognized.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiReaderNew, PdiReadPropertyField,
PdiReadPropertyName

PdiReadProperty

Purpose Read the next property and its parameters from the input stream.

Declared In PdiLib.h

Prototype Err PdiReadProperty(UInt16 libRefnum,
PdiReaderType *ioReader)

Parameters -> libRefnum The PDI library reference number.

-> ioReader The PDI reader object, which was created by a
previous call to the PdiReaderNew function.

Result Returns errNone if successful. Returns kPdiReadError if an error
occurs.

Comments The PdiReadProperty function reads a property name and its
parameters, by reading until it encounters the PDI “:“ separator
character.

Personal Data Interchange Library
PDI Library Functions

2262 Palm OS Programmer’s API Reference

This function looks each name up in the properties dictionary, and
sets the appropriate bit in the ioReader object structure to indicate
that property-parameter pair has been read. The properties
dictionary stores information about properties that are considered
well known, as described in The PDI Library Properties Dictionary
in Chapter 3, “Personal Data Interchange,” in Palm OS Programmer’s
Companion, vol. II, Communications.

To read a property, you call PdiReadProperty, followed by a call
or calls to the PdiReadPropertyField function to read the
property value. For more information, see Reading Properties in
Chapter 3, “Personal Data Interchange,” in Palm OS Programmer’s
Companion, vol. II, Communications.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiReaderNew, PdiReadPropertyField,
PdiReadPropertyName, PdiReadParameter

PdiReadPropertyField

Purpose Read one field of a property value. The property value can be
structured to contain multiple fields that are separated by commas
or semicolons.

Declared In PdiLib.h

Prototype Err PdiReadPropertyField(UInt16 libRefnum,
PdiReaderType *ioReader, Char **bufferPP,
UInt16 bufferSize, UInt16 readMode)

Parameters -> libRefnum The PDI library reference number.

-> ioReader The PDI reader object, which was created by a
previous call to the PdiReaderNew function.

<-> bufferPP A pointer to a pointer to the buffer into which
the field characters are stored. Set this value to
NULL to allow the PDI library to manage it.

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2263

Note that the PDI library may need to resize the
buffer; thus, the value of this parameter might
change.

-> bufferSize The size, in bytes, of the input buffer for
reading the field.

You can use the PdiResizableBuffer
constant to specify that the PDI Library can
automatically resize the buffer as required.

If you do not specify the
PdiResizableBuffer value, then the PDI
library assumes that buffer cannot be moved,
and that its size is fixed.

-> readMode The format of the fields in the property value.
Use one of the Property Value Format
Constants.

Result 0 The field was read successfully.

kPdiNoMoreFieldsError
There are no more fields to read because the
entire value has already been read.

kPdiMoreCharsError
The buffer is not large enough to store the
entire field.

Comments The value returned in the buffer is terminated with the “\0”
character.

If the field is an empty string, the buffer is erased from memory, and
the value of buffer is set to NULL.

If you specify kPdiResizableBuffer for the value of the
bufferSize parameter, and the buffer needs more space,
PdiReadPropertyField resizes the buffer for you, which may
cause the value of buffer to be modified.

This function initializes the propertyValue and fieldNum fields
of the ioReader object.

To read a property, you usually call the PdiReadProperty
function, followed by a call or calls to PdiReadPropertyField to

Personal Data Interchange Library
PDI Library Functions

2264 Palm OS Programmer’s API Reference

read the property value. For more information, see Reading
Properties in Chapter 3, “Personal Data Interchange,” in Palm OS
Programmer’s Companion, vol. II, Communications.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiReaderNew, PdiReadProperty, PdiReadPropertyName,
PdiReadParameter

PdiReadPropertyName

Purpose Read a property name from an input stream. Use this function when
you want to parse and process each parameter individually.

Declared In PdiLib.h

Prototype Err PdiReadPropertyName(UInt16 libRefnum,
PdiReaderType *ioReader)

Parameters -> libRefnum The PDI library reference number.

-> ioReader The PDI reader object, which was created by a
previous call to the PdiReaderNew function.

Result Returns errNone if successful, and an error code if not successful.

Comments The PdiReadProperty function reads a property name only,
reading until it encounters the PDI “:“ separator character, or until
it encounters the first parameter “,” separator character.

This function initializes the property and propertyName fields
of the ioReader object.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiReaderNew, PdiReadPropertyField, PdiReadProperty,
PdiReadParameter

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2265

PdiSetCharset

Purpose Force the character set of the next property value that is written by
the specified PDI writer.

Declared In PdiLib.h

Prototype Err PdiSetCharset(UInt16 libRefnum,
PdiWriterType *ioWriter,
CharEncodingType charset)

Parameters -> libRefnum The PDI library reference number.

-> ioWriter The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> charset The character set to use for the property value.
This must be one of the following
CharEncodingType values:

charEncodingAscii

charEncodingISO8859_1

charEncodingShiftJIS

charEncodingISO2022Jp

Result Returns errNone if successful, and an error code if not successful.

Comments This function tells ioWriter to use the specified charSet for the
next property value that it writes, rather than computing a character
set for that value.

You can determine the current character setting by examining the
charset field of your PDI writer object.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiSetEncoding

Personal Data Interchange Library
PDI Library Functions

2266 Palm OS Programmer’s API Reference

PdiSetEncoding

Purpose Force the encoding of the current property value.

Declared In PdiLib.h

Prototype Err PdiSetEncoding(UInt16 libRefnum,
PdiWriterType *ioWriter, UInt16 encoding)

Parameters -> libRefnum The PDI library reference number.

-> ioReader The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> encoding The encoding to apply to the property value.
This must be one of the Encoding Type
Constants.

Result Returns errNone if successful, and an error code if not successful.

Comments This function changes the encoding for the property value to the
specified encoding value

You can determine the current encoding setting by examining the
encoding field of your PDI writer object.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiSetCharset

PdiWriteBeginObject

Purpose Writes a vObject begin tag to an output stream.

Declared In PdiLib.h

Prototype Err PdiWriteBeginObject(UInt16 libRefnum,
PdiWriterType *ioWriter, UInt16 objectNameID)

Parameters -> libRefnum The PDI library reference number.

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2267

-> ioWriter The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> objectNameID
The object name ID. This must be one of the
Property Name Constants that begins an object,
including the following:

kPdiPRN_BEGIN_VCAL

kPdiPRN_BEGIN_VCAL

kPdiPRN_BEGIN_VCARD

kPdiPRN_BEGIN_VEVENT

kPdiPRN_BEGIN_VFREEBUSY

kPdiPRN_BEGIN_VJOURNAL

kPdiPRN_BEGIN_VTIMEZONE

kPdiPRN_BEGIN_VTODO

Result Returns errNone if successful, and an error code if not successful.

Comments Call this function to begin writing a vObject to the output stream. It
writes a begin tag such as “BEGIN:VCARD” to the output stream.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWriteEndObject, PdiWriteProperty

PdiWriteEndObject

Purpose Writes a vObject end tag to an output stream.

Declared In PdiLib.h

Prototype Err PdiWriteEndObject(UInt16 libRefnum,
PdiWriterType *ioWriter, UInt16 objectNameID)

Parameters -> libRefnum The PDI library reference number.

Personal Data Interchange Library
PDI Library Functions

2268 Palm OS Programmer’s API Reference

-> ioWriter The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> objectNameID
The object name ID. This must be one of the
Property Name Constants that ends an object,
including the following:

kPdiPRN_END_VCAL

kPdiPRN_END_VCAL

kPdiPRN_END_VCARD

kPdiPRN_END_VEVENT

kPdiPRN_END_VFREEBUSY

kPdiPRN_END_VJOURNAL

kPdiPRN_END_VTIMEZONE

kPdiPRN_END_VTODO

Result Returns errNone if successful, and an error code if not successful.

Comments Call this function to finish writing a vObject to the output stream. It
writes a end tag such as “END:VCARD” to the output stream.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWriteBeginObject, PdiWriteProperty

PdiWriteParameter

Purpose Write a parameter, and optionally its name, to an output stream.

Declared In PdiLib.h

Prototype Err PdiWriteParameter(UInt16 libRefnum,
PdiWriterType *ioWriter, UInt16 parameter,
Boolean parameterName)

Parameters -> libRefnum The PDI library reference number.

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2269

-> ioWriter The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> parameter The ID of the parameter. This must be one of
the Parameter Value Constants.

-> parameterName
If this is true, the parameter name, followed
by the “=” symbol, followed by the parameter
value is written to the output stream.

If this is false, only the parameter value is
written to the output stream.

Result Returns errNone if successful, and an error code if not successful.

Comments Use this function to write a parameter to the output stream. To write
a property, you usually call the PdiWriteProperty function,
followed by calls to PdiWriteParameter to write any parameters,
followed by a call to the PdiWritePropertyValue function to
write the property value. For more information, see Writing
Properties in Chapter 3, “Personal Data Interchange,” in Palm OS
Programmer’s Companion, vol. II, Communications.

You can use the parameterName argument to specify that you
want the parameter name written as well as the parameter value.
For example, the following table shows what is written if the value
of parameter is kPdiPAV_TYPE_HOME.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWriteProperty, PdiWritePropertyValue,
PdiWritePropertyFields, PdiWritePropertyStr,
PdiWriteParameterStr

Value of parameterName Data written to output stream

true TYPE=HOME

false HOME

Personal Data Interchange Library
PDI Library Functions

2270 Palm OS Programmer’s API Reference

PdiWriteParameterStr

Purpose Write a parameter name and the parameter value to an output
stream.

Declared In PdiLib.h

Prototype Err PdiWriteParameterStr(UInt16 libRefnum,
PdiWriterType *ioWriter,
const Char *parameterName,
const Char *parameterValue)

Parameters -> libRefnum The PDI library reference number.

-> ioWriter The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> parameterName
The name of the parameter. If the value of this
is the empty string or NULL, only the parameter
value is written.

-> parameterValue
The parameter value string.

Result Returns errNone if successful, and an error code if not successful.

Comments This function writes the parameter name, followed by the “=”
symbol, followed by the parameter value, to the output stream. If
parameterName is NULL, or if its value is the empty string, just the
parameter value is written.

This function is similar to the PdiWriteParameter function. The
difference is that PdiWriteParameterStr takes the name and
value of the parameter as strings, while PdiWriteParameter
takes them as ID constants.

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2271

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWriteProperty, PdiWritePropertyValue,
PdiWritePropertyFields, PdiWritePropertyStr,
PdiWriteParameter

PdiWriteProperty

Purpose Writes a property name to an output stream.

Declared In PdiLib.h

Prototype Err PdiWriteProperty(UInt16 libRefnum,
PdiWriterType *ioWriter, UInt16 propertyNameID)

Parameters -> libRefnum The PDI library reference number.

-> ioWriter The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> propertyNameID
The property name to write. This must be one
of the Property Name Constants.

Result Returns errNone if successful, and an error code if not successful.

Comments To write a property, you usually call PdiWriteProperty, followed
by calls to the PdiWriteParameter function to write any
parameters, followed by a call to the PdiWritePropertyValue
function to write the property value. For more information, see
Writing Properties in Chapter 3, “Personal Data Interchange,” in
Palm OS Programmer’s Companion, vol. II, Communications.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWritePropertyValue, PdiWritePropertyFields,
PdiWritePropertyStr, PdiWriteParameter

Personal Data Interchange Library
PDI Library Functions

2272 Palm OS Programmer’s API Reference

PdiWritePropertyBinaryValue

Purpose Write a binary property value to an output stream.

Declared In PdiLib.h

Prototype Err PdiWritePropertyBinaryValue(UInt16 libRefnum,
PdiWriterType *ioWriter, const Char *buffer,
UInt16 size, UInt16 options)

Parameters -> libRefnum The PDI library reference number.

-> ioWriter The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> buffer A buffer that contains the binary data.

-> size The number of bytes of data to write from the
buffer.

-> options The data type. This must be a combination of
one or more of the Value Type Constants.

Result Returns errNone if successful, and an error code if not successful.

Comments Use this function to write a binary data property value, such as a
sound or an image.

This function encodes the data when it is written. The character set
that gets applied to the data is not computed by this function;
however, you can call the PdiSetCharset function to set the
character set.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWriteProperty, PdiWritePropertyFields,
PdiWritePropertyValue

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2273

PdiWritePropertyFields

Purpose Write a structured property value with multiple fields to an output
stream.

Declared In PdiLib.h

Prototype Err PdiWritePropertyFields(UInt16 libRefnum,
PdiWriterType *ioWriter, Char *fields[],
UInt16 fieldNumber, UInt16 options)

Parameters -> libRefnum The PDI library reference number.

-> ioWriter The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> fields An array of strings, each of which is a field of
the property value. Individual fields can be
NULL.

-> fieldNumber
The number of fields in the Fields array.

-> options The data type. This must be a combination of
one or more of the Value Type Constants.

Result Returns errNone if successful, and an error code if not successful.

Comments Use this function to write a property value that contains multiple
fields.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWritePropertyValue, PdiWritePropertyBinaryValue,
PdiReadPropertyField

Personal Data Interchange Library
PDI Library Functions

2274 Palm OS Programmer’s API Reference

PdiWritePropertyStr

Purpose Writes the name of a property to the output stream, and specifies the
property value’s structure for subsequent write operations.

Declared In PdiLib.h

Prototype Err PdiWritePropertyStr(UInt16 libRefnum,
PdiWriterType *ioWriter,
const Char *propertyName, UInt8 writeMode,
UInt8 requiredFields)

Parameters -> libRefnum The PDI library reference number.

-> ioWriter The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> propertyName
The name of the property to write.

-> writeMode The format of the fields in the property value.
Use one of the following Property Value Format
Constants:

kPdiNoFields

kPdiCommaFields

kPdiSemicolonFields

-> requiredFields
The number of required fields for the value.
This is usually set to 1.

Result Returns errNone if successful, and an error code if not successful.

Comments Use this function when you are writing a property that is not in the
dictionary, or when you are writing a property that uses value
formatting that differs from the standard formatting stored in the
dictionary for the property name.

This function writes the property name to the output stream, and
then establishes the structure of the property’s value, including the
number of required fields and the separator character for those

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2275

fields. After calling this function, the next call to the
PdiWritePropertyValue or PdiWritePropertyFields
functions correctly writes the property value.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWriteProperty, PdiWritePropertyValue,
PdiWritePropertyFields, PdiWriteParameter

PdiWritePropertyValue

Purpose Write a string to the output stream as the entire value of a property.

Declared In PdiLib.h

Prototype Err PdiWritePropertyValue(UInt16 libRefnum,
PdiWriterType *ioWriter, Char *buffer,
UInt16 options)

Parameters -> libRefnum The PDI library reference number.

-> ioWriter The PDI writer object, which was created by a
previous call to the PdiWriterNew function.

-> buffer The input buffer that contains the string to be
written.

-> options The data type. This must be a combination of
one or more of the Value Type Constants.

Result Returns errNone if successful, and an error code if not successful.

Comments Use this function to write a property value that contains a single
field.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWriteProperty, PdiWritePropertyFields,
PdiWriteParameter, PdiWritePropertyBinaryValue

Personal Data Interchange Library
PDI Library Functions

2276 Palm OS Programmer’s API Reference

PdiWriterDelete

Purpose Delete a PDI output stream object.

Declared In PdiLib.h

Prototype void PdiWriterDelete(UInt16 libRefnum,
PdiWriterType **ioWriter)

Parameters -> libRefnum The PDI library reference number.

<-> ioWriter A pointer to the PDI writer object, which was
created by a previous call to the
PdiWriterNew function.

Result Returns nothing.

Comments This function frees the memory that was allocated for the writer
object. The ioWriter parameter is set to NULL.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWriterNew

PdiWriterNew

Purpose Initializes a new PDI writer object for use with the specified library
number.

Declared In PdiLib.h

Prototype PdiWriterType *PdiWriterNew(UInt16 libRefnum,
UDAWriterType *output, UInt16 version)

Parameters -> libRefnum The PDI library reference number.

-> output The Unified Data Access (UDA) output object
associated with the writer.

Personal Data Interchange Library
PDI Library Functions

Palm OS Programmer’s API Reference 2277

-> version Options to control the behavior of the writer.
You can use a combination of the Reader and
Writer Options Constants.

Result Returns a pointer to the new PDI writer object. Returns NULL if the
reader cannot be created.

Comments The media pointer is copied into a field in the writer object; thus,
you do not need to retain your copy.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also PdiWriterDelete, PdiReaderNew

Personal Data Interchange Library
PDI Library Functions

2278 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 2279

86
Unified Data Access
Manager
This chapter provides reference material for the Unified Data Access
(UDA) Manager, which provides a mechanism for abstracting read
and write access to different kinds of source and destination media,
including memory and the Exchange Manager.

The Personal Data Interchange (PDI) reader and writer objects use
UDA objects, and you must create UDA objects to use the PDI
functions.

This chapter discusses the following topics:

• UDA Manager Data Structures

• UDA Manager Constants

• UDA Manager Functions

• UDA Object Creation Functions

The header file UDAMgr.h declares the Unified Data Access
Manager API.

You use the UDA Manager in conjunction with the PDI library. For
more information about the PDI library, see Chapter 85, “Personal
Data Interchange Library.”

Chapter 3, “Personal Data Interchange,” in the Palm OS
Programmer’s Companion, vol. II, Communications, provides examples
of using the UDA functions with the PDI library.

UDA Manager Data Structures

UDABufferSize
The UDABufferSize type is a simple typedef that defines the size
of buffers used with UDA read functions.

Unified Data Access Manager
UDA Manager Data Structures

2280 Palm OS Programmer’s API Reference

typedef UInt16 UDABufferSize

UDAObjectType
The UDAObjectType is the base class for all UDA objects, and
defines the common properties of all of the objects.

typedef struct UDAObjectTag {
 UInt16 optionFlags;
 UDADeleteFunction deleteF;
 UDAControlFunction controlF;
} UDAObjectType

Field Descriptions

UDAFilterType
The UDAFilterType represents UDA Filters, which take input
from a UDA Reader or UDA Filter, perform some encoding or
decoding operation, and output the data to a memory buffer.

typedef struct UDAFilterTag {
 UInt16 optionFlags;
 UDADeleteFunction deleteF;
 UDAControlFunction controlF;
 UDAReadFunction readF;
 UDAReaderType* upperReader;
} UDAFilterType

optionFlags Options for the object. This is a
combination of values described in Object
Option Flags.

deleteF The delete function associated with this
UDA object.

controlF The control function associated with this
UDA object.

Unified Data Access Manager
UDA Manager Data Structures

Palm OS Programmer’s API Reference 2281

Field Descriptions

UDAReaderType
The UDAReaderType represents UDA Readers, which read input
from a medium.

typedef struct UDAReaderTag {
 UInt16 optionFlags;
 UDADeleteFunction deleteF;
 UDAControlFunction controlF;
 UDAReadFunction readF;
} UDAReaderType

Field Descriptions

optionFlags Options for the object. This is a
combination of values described in Object
Option Flags.

deleteF The delete function associated with this
UDA object.

controlF The control function associated with this
UDA object.

readF The read function associated with this
UDA object.

upperReader The UDAReaderType or UDAFilterType
object that reads the data that this object
outputs.

optionFlags Options for the object. This is a
combination of values described in Object
Option Flags.

deleteF The delete function associated with this
UDA object.

Unified Data Access Manager
UDA Manager Data Structures

2282 Palm OS Programmer’s API Reference

UDAWriterType
The UDAWriterType represents UDA Writers, which take data
from a UDA Reader or UDA Filter and write the data to an output
medium.

typedef struct UDAWriterTag {
 UInt16 optionFlags;
 UDADeleteFunction deleteF;
 UDAControlFunction controlF;
 UDAWriteFunction initiateWriteF;
 UDAFlushFunction flushF;
 UDAReaderType* upperReader;
} UDAWriterType

Field Descriptions

controlF The control function associated with this
UDA object.

readF The read function associated with this
UDA object.

optionFlags Options for the object. This is a
combination of values described in Object
Option Flags.

deleteF The delete function associated with this
UDA object.

controlF The control function associated with this
UDA object.

initiateWriteF The write function associated with this
UDA object.

flushF The flush function associated with this
UDA object.

upperReader The UDAReaderType object that reads the
data that this object writes.

Unified Data Access Manager
UDA Manager Constants

Palm OS Programmer’s API Reference 2283

UDA Manager Constants
This section describes the constants used with the UDA Manager,
which include the following constant types:

• Control Flags

• Error Constants

• Object Option Flags

• Miscellaneous Constants

Control Flags
Use the control flag constants to control UDA objects with the
UDAControl macro.

Error Constants
At the time of this writing, there is only one error constant
associated with the UDA object API.

Object Option Flags
You use the object option flag constants to determine information
about the internal state of UDA objects. Note that the
UDAEndOfReader and UDAMoreData macros provide you with a
convenient means of accessing this same information.

Constant Value Description

kUDAReinitialize 1 Used with the UDAControl macro to
reinitialize the UDA object.

Constant Description

udaErrControl Returned by the UDAControl macro when
the control parameter is not valid for the
UDA object.

Unified Data Access Manager
UDA Manager Functions

2284 Palm OS Programmer’s API Reference

Miscellaneous Constants

UDA Manager Functions

UDAControl

Purpose Applies controls to a UDA object.

Declared In UDAMgr.h

Prototype Err UDAControl (UDAObjectType* ioObjectP,
UInt16 parameter, va_args)

Parameters -> ioObjectP A pointer to the UDAObjectType object that
you want to control. This can be a
UDAReaderType, a UDAFilterType, or a
UDAWriterType object.

-> parameter The control action that you want applied to the
object.

Constant Value Description

kUDAEndOfReader 1 Indicates that the UDA reader has
reached the end of its data.

kUDAMoreData 2 Indicates that the UDA reader needs
more space in the read buffer to do its
work.

Constant Value Description

kUDAZeroTerminatedBuffer 0xFFFF Indicates that the buffer is a null-
terminated string. Use this value
when creating or reinitializing a
UDAMemoryReader object.

Unified Data Access Manager
UDA Manager Functions

Palm OS Programmer’s API Reference 2285

-> va_args Additional parameters, as required for the
control and object type.

Result Returns errNone if no error, or udaErrorClass if the control
parameter is not valid for the ioObjectP.

Comments The UDAControl function applies a control action to a UDA object.
You may need to supply additional parameters, depending on the
object type and control parameter values.

The only control action defined in Palm OS 4.0 is
kUDAReinitialize. You can use it as shown in Table 86.1.

L

Compatibility Implemented only if 4.0 New Feature Set is present.

Table 86.1 UDAControl actions

Object Type Usage Action

UDAExchangeReaderType UDAControl(myExgRdr,
kUDAReinitialize)

Does nothing

UDAExchangeWriterType UDAControl(myExgWtr,
kUDAReinitialize)

Does nothing

UDAMemoryReaderType UDAControl(myMemRdr,
kUDAReinitialize,
bufferP, bufferSize)

Reinstalls a new buffer
for the memory reader.
See
UDAMemoryReaderNe
w for more information
about the parameters.

Unified Data Access Manager
UDA Manager Functions

2286 Palm OS Programmer’s API Reference

UDADelete

Purpose Macro that deletes a UDA object.

Declared In UDAMgr.h

Prototype UDADelete (ioObjectP)

Parameters -> ioObjectP A pointer to the UDAObjectType object that
you want to delete. This can be a
UDAReaderType, a UDAFilterType, or a
UDAWriterType object.

Result Returns nothing.

Comments The ioObjectP pointer is not valid after this macro completes.

Compatibility Implemented only if 4.0 New Feature Set is present.

UDAEndOfReader

Purpose Macro that tests if the end of the reader has been reached.

Declared In UDAMgr.h

Prototype UDAEndOfReader (ioReaderP)

Parameters -> ioReaderP A pointer to a UDAReaderType object.

Result Returns true if the end of the reader referenced by ioReaderP has
been reached, and false if not.

Comments The end of the reader has been reached.

Compatibility Implemented only if 4.0 New Feature Set is present.

Unified Data Access Manager
UDA Manager Functions

Palm OS Programmer’s API Reference 2287

UDAFilterJoin

Purpose Macro that joins a filter with a reader.

Declared In UDAMgr.h

Prototype UDAFilterJoin (ioFilterP, newReaderP)

Parameters --> ioFilterP A pointer to a UDAFilterType object.

--> newReaderP A pointer to the UDAReaderType object with
which you want the filter joined.

Result Returns nothing.

Comments Each UDAFilterType object receives its data from the
UDAReaderType object to which it is joined; this relationship is
established when you create the filter object. You can use this macro
to change the reader with which the filter is joined. Upon
completion, the filter referenced by ioFilterP is joined with the
reader referenced by newReaderP.

Compatibility Implemented only if 4.0 New Feature Set is present.

UDAInitiateWrite

Purpose Macro that causes the UDAWriterType object to read data and then
write that data to output.

Declared In UDAMgr.h

Prototype UDAInitiateWrite (ioWriterP)

Parameters -> ioWriterP A pointer to a UDAWriterType object.

Result Returns errNone if successful, and an error code if not.

Unified Data Access Manager
UDA Manager Functions

2288 Palm OS Programmer’s API Reference

Comments When you use this macro, the ioWriterP reads data from the
reader to which it is joined. It reads data until the reader is empty,
and then writes the data to the output medium.

Compatibility Implemented only if 4.0 New Feature Set is present.

UDAMoreData

Purpose Macro that tests if there is more data available to read, but not
enough room in the buffer to read it in.

Declared In UDAMgr.h

Prototype UDAMoreData (ioReaderP)

Parameters -> ioReaderP A pointer to a UDAReaderType object.

Result Returns true if there is more data available for the reader and
false if there is no more data available.

Comments You can use this macro with UDAReaderType objects to determine
if there is more data waiting to read. This can happen when the
reader’s buffer is full.

Compatibility Implemented only if 4.0 New Feature Set is present.

UDARead

Purpose Macro that uses the specified UDAReaderType object to read data
from the input source and place that data into the specified buffer.

Declared In UDAMgr.h

Prototype UDARead (ioReaderP, bufferToFillP, bufferSize,
errorP)

Parameters -> ioReaderP A pointer to a UDAReaderType object that
performs the read.

Unified Data Access Manager
UDA Manager Functions

Palm OS Programmer’s API Reference 2289

-> bufferToFillP
A pointer to the buffer into which data is
placed.

-> bufferSize The size of the buffer, in bytes.

-> errorP A pointer to an Err value that represents the
result of the read operation; if the operation is
successful, the value is set to errNone.

Result Returns the number of bytes that were actually read. This value can
be less than or equal to the value of bufferSize.

Comments The reader reads from the input source associated with the reader
object and places the data into the specified buffer, reading no more
than bufferSize bytes of data.

Compatibility Implemented only if 4.0 New Feature Set is present.

UDAWriterFlush

Purpose Macro that flushes the buffer used by the UDAWriterType object.

Declared In UDAMgr.h

Prototype UDAWriterFlush (ioWriterP)

Parameters -> ioWriterP A pointer to a _UDAWriterType object.

Result Returns errNone if successful, and an error code if not.

Comments You can use this macro to flush any data remaining in the buffer of
the writer object referenced by ioWriterP. This causes any data in
the buffer to be sent to the output medium.

Compatibility Implemented only if 4.0 New Feature Set is present.

Unified Data Access Manager
UDA Manager Functions

2290 Palm OS Programmer’s API Reference

UDAWriterJoin

Purpose Macro that joins a writer object to a different reader object.

Declared In UDAMgr.h

Prototype UDAWriterJoin (ioWriterP, newReaderP)

Parameters -> ioWriterP A pointer to a UDAWriterType object.

-> newReaderP A pointer to the UDAReaderType object with
which you want the writer joined.

Result Returns nothing.

Comments Each UDAWriterType object receives its data from the
UDAReaderType object to which it is joined; this relationship is
established when you create the writer object. You can use this
macro to change the reader with which the writer is joined. Upon
completion, the writer referenced by ioWriterP is joined with the
reader referenced by newReaderP.

Compatibility Implemented only if 4.0 Feature Set is present.

Unified Data Access Manager
UDA Object Creation Functions

Palm OS Programmer’s API Reference 2291

UDA Object Creation Functions

UDAExchangeReaderNew

Purpose Creates a new UDAReaderType object that you can use to read data
from an Exchange Manager socket.

Declared In UDAMgr.h

Prototype UDAReaderType* UDAExchangeReaderNew
(ExgSocketPtr socket)

Parameters -> socket A pointer to an ExgSocketType structure that
describes the connection.

Result Returns a pointer to the newly created UDAReaderType object, or
NULL if the reader could not be created.

Comments Use this function to create a UDA Reader object that takes input
from an Exchange Manager socket.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgSocketType

UDAExchangeWriterNew

Purpose Creates a new UDAWriterType object that you can use to write
data to an Exchange Manager socket.

Declared In UDAMgr.h

Prototype UDAWriterType* UDAExchangeWriterNew
(ExgSocketPtr socket, UDABufferSize bufferSize)

Parameters -> socket A pointer to an ExgSocketType structure that
describes the connection.

Unified Data Access Manager
UDA Object Creation Functions

2292 Palm OS Programmer’s API Reference

-> bufferSize The size, in bytes, of the buffer for the new
writer object.

Result Returns a pointer to the newly created UDA Writer, or NULL if the
writer could not be created.

Comments Use this function to create a UDA Writer object that sends output to
an Exchange Manager socket.

Compatibility Implemented only if 4.0 New Feature Set is present.

See Also ExgSocketType

UDAMemoryReaderNew

Purpose Creates a new UDAReaderType object that you can use to read data
from a memory buffer.

Declared In UDAMgr.h

Prototype UDAReaderType* UDAMemoryReaderNew
(const UInt8* bufferP,
UDABufferSize bufferSizeInBytes)

Parameters -> bufferP A pointer to a buffer in memory from which
data is read.

-> bufferSize The size of the buffer, in bytes. If this value is
equal to kUDAZeroTerminatedBuffer,
bufferP must point to a null-terminated
string buffer.

Result Returns a pointer to the newly created UDAReaderType object, or
NULL if the reader could not be created.

Comments Use this function to create a reader that takes input from memory.

Unified Data Access Manager
UDA Object Creation Functions

Palm OS Programmer’s API Reference 2293

Compatibility Implemented only if 4.0 New Feature Set is present.

Unified Data Access Manager
UDA Object Creation Functions

2294 Palm OS Programmer’s API Reference

Part V: Appendixes

Palm OS Programmer’s API Reference 2297

A
System Use Only
Functions
This appendix lists functions that are purposely undocumented
because they are for system use only.

WARNING! System Use Only.

AbtShowAbout
AlmAlarmCallback
AlmCancelAll
AlmDisplayAlarm
AlmEnableNotification
AlmInit
AlmTimeChange
BtLibHandleEvent
BtLibHandleTransportEvent
BtLibMutex
BtLibOpenBackground
BtLibServiceClose
BtLibServiceIndicateSessionStart
BtLibServiceOpen
BtLibServicePlaySound
BtLibSleep
BtLibUnload
BtLibWake
Crc16CalcBigBlock
DmInit
DmResetRecordStates
ErrAlertCustom
EvtDequeueKeyEvent
EvtEnqueuePenPoint
EvtGetSysEvent
EvtInitialize

System Use Only Functions

2298 Palm OS Programmer’s API Reference

EvtSetKeyQueuePtr
EvtSetPenQueuePtr
EvtSysInit
ExgInit
ExgNotifyReceiveV35
ExpCardInserted
ExpCardRemoved
ExpInit
ExpSlotRegister
ExpSlotUnregister
FileReadLow
Find
FrmActiveState
FrmAddSpaceForObject
FrmGetUserModifiedState
FrmSetNotUserModified
FtrInit
GrfFieldChange
GrfFree
GrfInit
HostControl
INetLibSleep
INetLibSockMailAttrGet
INetLibSockMailAttrSet
INetLibSockMailQueryProgress
INetLibSockMailReqAdd
INetLibSockMailReqCreate
INetLibSockMailReqSend
INetLibWake
InsPtCheckBlink
InsPtInitialize
IntlInit
IrHandleEvent
IrWaitForEvent
KeyboardStatusNew
KeyboardStatusFree
KbdSetLayout
KbdGetLayout
KbdSetPosition
KbdGetPosiiton

System Use Only Functions

Palm OS Programmer’s API Reference 2299

KbdSetShiftState
KbdGetShiftState
KbdDraw
KbdErase
KbdHandleEvent
MemCardFormat
MemChunkFree
MemChunkNew
MemHandleFlags
MemHandleLockCount
MemHandleOwner
MemHandleResetLock
MemHeapFreeByOwnerID
MemHeapInit
MemInit
MemInitHeapTable
MemKernelInit
MemPtrFlags
MemPtrOwner
MemPtrResetLock
MemSemaphoreRelease
MemSemaphoreReserve
MemStoreSetInfo
NetLibConfigAliasGet
NetLibConfigAliasSet
NetLibConfigDelete
NetLibConfigIndexFromName
NetLibConfigList
NetLibConfigMakeActive
NetLibConfigRename
NetLibConfigSaveAs
NetLibHandlePowerOff
NetLibOpenConfig
NetLibOpenIfCloseWait
NetLibSleep
NetLibWake
PenClose
PenGetRawPen
PenOpen
PenRawToScreen

System Use Only Functions

2300 Palm OS Programmer’s API Reference

PenScreenToRaw
PenSleep
PenWake
ResLoadString
ScrCompressScanLine
ScrCopyRectangle
ScrDeCompressScanLine
ScrDrawChars
ScrDrawNotify
ScrInit
ScrLineRoutine
ScrRectangleRoutine
ScrScreenInfo
ScrSendUpdateArea
SerDbgAssureOpen
SerialMgrInstall
SerReceiveISP
SerReceiveWindowClose
SerReceiveWindowOpen
SerSetMapPort
SerSetWakeupHandler
SerSleep
SerWake
SlkProcessRPC
SlkSysPktDefaultResponse
SndInit
SndSetDefaultVolume
SrmSelectorErrPrv
SrmSleep
SrmWake
SysAppStartup
SysAppExit
SysBatteryDialog
SysCardImageDeleted
SysCardImageInfo
SysColdBoot
SysDisableInts
SysDoze
SysEvGroupCreate
SysEvGroupRead

System Use Only Functions

Palm OS Programmer’s API Reference 2301

SysEvGroupSignal
SysEvGroupWait
SysInit
SysKernelInfo
SysLaunchConsole
SysLCDBrightness
SysLCDContrast
SysLibClose
SysLibInstall
SysLibOpen
SysLibSleep
SysLibTblEntry
SysLibWake
SysMailboxCreate
SysMailboxDelete
SysMailboxFlush
SysMailboxSend
SysMailboxWait
SysNewOwnerID
SysPowerOn
SysResSemaphoreCreate
SysResSemaphoreDelete
SysResSemaphoreRelease
SysResSemaphoreReserve
SysRestoreStatus
SysSemaphoreCreate
SysSemaphoreDelete
SysSemaphoreSet
SysSemaphoreSignal
SysSemaphoreWait
SysSetA5
SysSetPerformance
SysSleep
SysTaskCreate
SysTaskDelete
SysTaskID
SysTaskResume
SysTaskSetTermProc
SysTaskSuspend
SysTaskSwitching

System Use Only Functions

2302 Palm OS Programmer’s API Reference

SysTaskTrigger
SysTaskWait
SysTaskWaitClr
SysTaskWake
SysTimerCreate
SysTimerDelete
SysTimerRead
SysTimerWrite
SysTranslateKernelErr
SysUIBusy
SysUILaunch
SysUnimplemented
SysWantEvent
TimInit
TxtPrepFindString
UIColorPopTable
UIColorPushTable
UIInitialize
UIReset
UIPopTable
UIPushTable
VFSInit
WinAddWindow
WinDrawWindowFrame
WinDisableWindow
WinEnableWindow
WinGetWindowPointer
WinInitializeWindow
WinMoveWindowAddr
WinRemoveWindow
WinScreenInit
WinSetColors

Palm OS Programmer’s API Reference 2303

B
Compatibility Guide
This appendix lists groups of functions and other features (such as
events and launch codes) that have been added to the Palm OS®
after version 1.0.

Before you use any new functions or features in an application, you
must check to ensure that they are implemented in the OS version
your application is running on. Checking the OS version number is
not a reliable indicator that a specific feature is present, since some
later OS versions do not include features present in earlier versions.
In order to ensure that your code is supported, you must check for
the presence of individual features.

To make this check easier, this appendix lists new functions and
features in groups such that all functions and features in a group are
always implemented together in the ROM of a Palm™ device. This
means that you can check for a single feature in that group and be
assured that if that feature is present than all functions and features
in that group are implemented.

Each group includes a recommended test to check if it is
implemented. The following groups are described:

• 2.0 New Feature Set

• 3.0 New Feature Set

• 3.1 New Feature Set

• 3.2 New Feature Set

• International Feature Set

• Japanese Feature Set

• Wireless Internet Feature Set

• New Serial Manager Feature Set

• Connection Manager Feature Set

• 3.5 New Feature Set

• Notification Feature Set

Compatibi l i ty Guide
2.0 New Feature Set

2304 Palm OS Programmer’s API Reference

• 4.0 New Feature Set

• Expansion Manager Feature Set

• VFS Manager Feature Set

• Bluetooth Library Feature Set

• High-Density Display Feature Set

• Sound Stream Feature Set

• 5.0 New Feature Set

• 5.1 New Feature Set

2.0 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 2.0 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romversion);

The romversion parameter should be 0x02003000 or greater.

Launch Codes
This feature set adds the following launch codes:

Functions
This feature set adds the following functions:

sysAppLaunchCmdLookup
sysAppLaunchCmdPanelCalledFromApp
sysAppLaunchCmdReturnFromPanel
sysAppLaunchCmdSystemLock

CategoryInitialize CategorySetName

DmDeleteCategory DmDatabaseProtect

EvtAddUniqueEventToQueue
EvtSysEventAvail

EvtEventAvail

Compatibi l i ty Guide
2.0 New Feature Set

Palm OS Programmer’s API Reference 2305

Existing Functions that Changed
Several functions that existed in 1.0 were changed in 2.0:

FldGetNumberOfBlankLines
FldSetInsertionPoint

FldGetScrollValues

FntGetScrollValues
FntWordWrapReverseNLines

FntWordWrap

FrmPointInTitle
FrmSetObjectBounds

FrmSetMenu

KeySetMask LocGetNumberSeparator
s

LstScrollList LstGetVisibleItems

MemCmp MenuSetActiveMenuRscI
D

PhoneNumberLookup

PrefSetPreference PrefGetPreference

SclDrawScrollBar
SclHandleEvent

SclGetScrollBar
SclSetScrollBar

SerControl

StrDelocalizeNumber
StrNCaselessCompare
StrNCompare
StrPrintF

StrLocalizeNumber
StrNCat
StrNCopy
StrVPrintF

SysBinarySearch
SysCreatePanelList
SysGraffitiReferenceDialog
SysStringByIndex

SysCreateDataBaseList
SysErrString
SysLibLoad
SysTicksPerSecond

TblHasScrollBar
TblSetColumnEditIndicator

TblSetBounds
TblSetRowStaticHeight

WinSetWindowBounds

Compatibi l i ty Guide
2.0 New Feature Set

2306 Palm OS Programmer’s API Reference

Other Changes
As a rule, all Palm OS applications developed with the 1.0 SDK
should run error-free on the latest device. There are two possible
pitfalls for 1.0 applications:

• fldChangedEvent Change—The operating system now
correctly sends a fldChangedEvent whenever a field object
is changed. Previously, the event was at times not sent,
especially when a FldSetText operation was performed. If
your application doesn’t catch the events that are now sent, it
may have problems.

• Non-standard tools—If your application was not developed
with Metrowerks Code Warrior for the Palm OS, it may run

CategoryCreateList (old function renamed
CategoryCreateListV10)

CategoryEdit (old function renamed CategoryEditV10)

CategoryFreeList (old function renamed
CategoryFreeListV10)

CategorySelect (old function renamed CategorySelectV10)

SelectDay (old function renamed SelectDayV10)

DmFindSortPosition (old function renamed
DmFindSortPositionV10)

PrefGetAppPreferences (old function renamed
PrefGetAppPreferencesV10)

PrefOpenPreferenceDB (old function renamed
PrefOpenPreferenceDBV10)

PrefSetAppPreferences (old function renamed
PrefSetAppPreferencesV10)

SerReceive (old function renamed SerReceive10)

SerSend (old function renamed SerSend10)

SysKeyboardDialog (old function renamed
SysKeyboardDialogV10)

Compatibi l i ty Guide
2.0 New Feature Set

Palm OS Programmer’s API Reference 2307

into problems. One known problem can occur if the
application:

– was compiled with optimization turned on

– uses system preferences

Compatibi l i ty Guide
3.0 New Feature Set

2308 Palm OS Programmer’s API Reference

3.0 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 3.0 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romVersion);

The romVersion parameter should be greater than or equal to
0x03003000, which can be constructed using the
sysMakeROMVersion macro:

sysMakeROMVersion(3,0,0,sysROMStageRelease,0)

Launch Codes
This feature set adds the following launch codes:

In addition, the launch code sysAppLaunchCmdGoto is now also
sent by the exchange manager, in addition to its use by the global
find operation.

Font
This feature set adds the following font:

largeBoldFont

Functions
This feature set adds the following functions:

Dynamic User Interface Functions

sysAppLaunchCmdExgAskUser
sysAppLaunchCmdExgReceiveData

CtlNewControl
CtlValidatePointer
FldNewField
FrmNewBitmap
FrmNewForm
FrmNewGadget

FrmNewLabel
FrmRemoveObject
FrmValidatePtr
LstNewList
WinValidateHandle

Compatibi l i ty Guide
3.0 New Feature Set

Palm OS Programmer’s API Reference 2309

For more information on creating and using dynamic user interface
elements, see the section “Dynamic UI” on page 142 of the Palm OS
Programmer’s Companion, vol. I.

Font Functions

For more information on these functions and the support for custom
fonts, see “Fonts” on page 268 of the Palm OS Programmer’s
Companion, vol. I.

Progress Manager Functions

For more information, see the section “Progress Dialogs” on page 86
of the Palm OS Programmer’s Companion, vol. I.

File Streaming Functions

For more information, see the section “File Streaming Application
Program Interface” on page 202 of the Palm OS Programmer’s
Companion, vol. I.

Sound Functions

FontSelect
FntDefineFont

PrgHandleEvent
PrgStartDialog
PrgStopDialog

PrgUpdateDialog
PrgUserCancel

FileClearerr
FileClose
FileControl
FileDelete
FileDmRead
FileEOF
FileError
FileFlush
FileGetLastError

FileOpen
FileRead
FileReadLow (system use only)
FileRewind
FileSeek
FileTell
FileTruncate
FileWrite

SndCreateMidiList
SndPlaySmf
SndDoCmd (enhanced in 3.0)

Compatibi l i ty Guide
3.0 New Feature Set

2310 Palm OS Programmer’s API Reference

Exchange Manager Functions

For more information, see the chapter Beaming (Infrared
Communication) in the Palm OS Programmer’s Companion, vol. II,
Communications.

IR Library Functions

For more information, see the chapter Beaming (Infrared
Communication) in the Palm OS Programmer’s Companion, vol. II,
Communications.

ExgAccept
ExgDBRead
ExgDBWrite
ExgDisconnect

ExgPut
ExgReceive
ExgRegisterData
ExgSend

IrAdvanceCredit
IrBind
IrClose
IrConnectIrLap
IrConnectReq
IrConnectRsp
IrDataReq
IrDisconnectIrLap
IrDiscoverReq
IrIAS_Add
IrIAS_GetInteger
IrIAS_GetIntLsap
IrIAS_GetObjectID
IrIAS_GetOctetString
IrIAS_GetOctetStringLen
IrIAS_GetType
IrIAS_GetUserString
IrIAS_GetUserStringCharSet

IrIAS_GetUserStringLen
IrIAS_Next
IrIAS_Query
IrIAS_SetDeviceName
IrIAS_StartResult
IrIsIrLapConnected
IrIsMediaBusy
IrIsNoProgress
IrIsRemoteBusy
IrLocalBusy
IrMaxRxSize
IrMaxTxSize
IrOpen
IrSetConTypeLMP
IrSetConTypeTTP
IrSetDeviceInfo
IrTestReq
IrUnbind

Compatibi l i ty Guide
3.0 New Feature Set

Palm OS Programmer’s API Reference 2311

Miscellaneous Functions

Existing Functions that Changed
Two functions that existed in 2.0 were changed in 3.0:

Other Changes
• The dynamic heap has been increased in size to 96 KB.

• Storage RAM is no longer subdivided into multiple storage
heaps of 64 KB each. All storage RAM on a memory card is
configured as a single storage heap.

• Each flash ROM-based Palm device holds a serial number
that identifies it uniquely and can be retrieved via
SysGetROMToken. For more information, see “Retrieving
the ROM Serial Number” on page 353 of the Palm OS
Programmer’s Companion, vol. I.

• The Application Launcher (accessed via the silkscreen
“Applications” button) is now an application, rather than a
popup. The SysAppLauncherDialog function, which
provides the API to the old popup launcher, is still present in
Palm OS 3.0 for compatibility purposes, but has not been
updated and generally should not be used. For more
information, see “Application Launcher” on page 153 of the
Palm OS Programmer’s Companion, vol. I.

• The sound manager supports MIDI sound files, adding new
sounds, asynchronous playback, and other features. There
are also new selectors for setting the volume preferences. For
more information, see the section “System Boot and Reset”
on page 337 of the Palm OS Programmer’s Companion, vol. I.

FrmRestoreActiveState
FrmSaveActiveState
ScrDisplayMode
SysGetAppInfo (system use only)
SysGetOSVersionString

SysGetROMToken
SysGetStackInfo
SysGremlins
TblGetItemFont
TblSetItemFont

CategoryEdit (old function renamed CategoryEditV20)

SysBatteryInfo (old function renamed SysBatteryInfoV20)

Compatibi l i ty Guide
3.1 New Feature Set

2312 Palm OS Programmer’s API Reference

The following functions existed in the system previously, but were
not documented:

The following event type existed in the system previously, but was
not previously documented:

frmGotoEvent

3.1 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 3.1 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romVersion);

The romVersion parameter should be greater than or equal to
0x03103000, which can be constructed using the
sysMakeROMVersion macro:

sysMakeROMVersion(3,1,0,sysROMStageRelease,0)

Functions
This feature set adds the following functions:

RctCopyRectangle
RctGetIntersection
RctInsetRectangle

RctOffsetRectangle
RctPtInRectangle
RctSetRectangle

ChrHorizEllipsis
ChrNumericSpace
ContrastAdjust
FntWidthToOffset
FtrPtrNew
FtrPtrFree
FtrPtrResize
SelectOneTime
WinDrawChar
WinDrawTruncChars

Compatibi l i ty Guide
3.1 New Feature Set

Palm OS Programmer’s API Reference 2313

NOTE: The PalmOSGlue.lib provides compatibility functions
and macros for ChrHorizEllipsis, ChrNumericSpace,
WinDrawChar, and WinDrawTruncChars. If you want to use
these functions on systems that don’t have the 3.1 feature set,
you can link your application with PalmOSGlue.lib. See the
chapter “PalmOSGlue Library” on page 1891 for more
information.

Changes to the Character Encoding
Starting in Palm OS 3.1, the character encoding used on most
systems is Microsoft Windows code page 1252. Versions prior to 3.1
used an encoding that was very similar to code page 1252 but did
not follow it exactly. The following changes to the character set are
introduced in Palm OS 3.1:

• Some of the special Palm OS glyphs in the high ASCII range
(such as the shortcut stroke and the command stroke) have
been moved down into the control code range, and other
characters (such as the numeric space and horizontal ellipsis)
have been copied into the control range so that they’re
guaranteed to exist in every encoding. For the numeric space
and horizontal ellipsis, you can use the macros
ChrNumericSpace and ChrHorizEllipsis to return the
appropriate character regardless of the character map. In
PalmOSGlue.lib, these two macros are named
TxtGlueGetNumericSpaceChar and
TxtGlueGetHorizEllipsisChar, respectively.

• The four playing-card characters have been moved from the
high ASCII range in the standard four fonts to the 9-point
Symbol font.

Other Changes in 3.1
• Palm OS 3.1 supports a new processor: the EZ Dragonball

processor. This processor is compatible with the existing
Dragonball processor, so your application should run

Compatibi l i ty Guide
3.1 New Feature Set

2314 Palm OS Programmer’s API Reference

without changes as long as it doesn’t access registers or
system globals directly.

If your application needs to know if it is running on an EZ
Dragonball, it can check using the following code:

DWord id, chip;
Word revision;
Err err;
err = FtrGet(sysFtrCreator,
 sysFtrNumProcessorID, &id);
if (!err) {
 chip = id & sysFtrNumProcessorMask;
 revision = id & 0x0ffff;
 if (chip==sysFtrNumProcessor328)
 // traditional Dragonball
 else if (chip==sysFtrNumProcessorEZ)
 // Dragonball EZ
}

• The constant preferenceDataVersion was removed and
replaced with preferenceDataVerLatest.

• Character variables are now two bytes long. The type WChar
defines a character variable.

• The keyDownEvent structure’s chr field (which contains
the input character) has been changed from a Word to a
WChar.

• The string manager functions StrChr and StrStr now treat
buffers as characters, not arbitrary byte arrays. If you
previously used these functions to search data buffers, your
code may no longer work.

• The string manager function StrToLower can now handle
any type of characters, including accented characters.

• The underline attribute of FieldAttrType now has
support for the value 2. Previously, the only underline modes
available were no underline (0) and gray underline (1). In
Palm OS 3.1 and higher, the value 2 is interpreted as solid
underline. The UnderlineModeType enum defined in
Window.h defines the possible values for the underline
attribute.

Compatibi l i ty Guide
3.2 New Feature Set

Palm OS Programmer’s API Reference 2315

• The use of the DmGetNextDatabaseByTypeCreator
onlyLatestVers parameter changed in 3.1. If
onlyLatestVers is true, you only receive one matching
database for each type/creator pair. In version 3.0 and
earlier, you could receive multiple matching databases if
onlyLatestVers was true. See that function’s description
for a more detailed description.

3.2 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 3.2 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romVersion);

The romVersion parameter should be greater than or equal to
0x03203000, which can be constructed using the
sysMakeROMVersion macro:

sysMakeROMVersion(3,2,0,sysROMStageRelease,0)

Functions
This feature set adds the following functions:

Note that the NetLib... functions, although present in the 3.2
New Feature Set, are first declared in the Palm OS 5 SDK.

AlmGetProcAlarm NetLibConfigIndexFromNam
e

AlmSetProcAlarm NetLibConfigList

ClipboardAppendItem NetLibConfigMakeActive

DmGetDatabaseLockState NetLibConfigRename

ErrAlert NetLibConfigSaveAs

NetLibConfigAliasGet NetLibOpenConfig

NetLibConfigAliasSet SndPlaySmfResource

NetLibConfigDelete

Compatibi l i ty Guide
International Feature Set

2316 Palm OS Programmer’s API Reference

Existing Functions that Changed
Two functions that existed in 3.0 were changed in 3.2:

Other Changes in 3.2
• The prototype for the system use only function
AlmDisplayAlarm changed from no return value to a
Boolean return value. This change may affect system patches
and extensions that intercept AlmDisplayAlarm calls.

International Feature Set
You can check that this feature set is implemented by checking for
the existence of the international manager. You can check by calling
FtrGet as follows:

err = FtrGet(sysFtrCreator, sysFtrNumIntlMgr,
&value);

If the international manager is installed, the value parameter will
be non-zero and the returned error should also be zero (for no
error).

You can learn more about the international manager by reading the
chapter “Localized Applications” on page 363 in the Palm OS
Programmer’s Companion, vol. I.

NOTE: If you want to use international functions on systems that
don’t have the international feature, you can link your application
with PalmOSGlue.lib. The functions in this library are the same
as those listed below except that they use the prefix “TxtGlue”
instead of “Txt.” For more information, see the chapter
“PalmOSGlue Library” on page 1891.

SysGremlins was removed and replaced with a SysGremlins
macro that maps it to the function HostGremlinIsRunning. The
prototype is slightly different, but you can still call SysGremlins
in the same way you did before.

PrgStartDialog (old function renamed PrgStartDialogV31)

Compatibi l i ty Guide
International Feature Set

Palm OS Programmer’s API Reference 2317

Functions
This feature set adds the following functions:

Text Manager Functions

Other Functions

IntlGetRoutineAddress

Removed Functions and Macros

If the international feature set exists, then the following functions
and macros are no longer available:

TxtByteAttr
TxtCaselessCompare
TxtCharAttr
TxtCharBounds
TxtCharEncoding
TxtCharIsAlNum
TxtCharIsAlpha
TxtCharIsCntrl
TxtCharIsDigit
TxtCharIsGraph
TxtCharIsHardKey
TxtCharIsHex
TxtCharIsLower
TxtCharIsPrint
TxtCharIsPunct
TxtCharIsSpace
TxtCharIsUpper
TxtCharSize

TxtCharXAttr
TxtCompare
TxtEncodingName
TxtFindString
TxtGetChar
TxtGetNextChar
TxtGetPreviousChar
TxtCharIsValid
TxtMaxEncoding
TxtNextCharSize
TxtPreviousCharSize
TxtReplaceStr
TxtSetNextChar
TxtStrEncoding
TxtTransliterate
TxtGetTruncationOffset
TxtWordBounds

Compatibi l i ty Guide
Japanese Feature Set

2318 Palm OS Programmer’s API Reference

Japanese Feature Set
You can check that the Japanese feature set is implemented by
checking if the unit is Japanese. You can check by calling FtrGet as
follows:

err = FtrGet(sysFtrCreator, sysFtrNumEncoding,
&value);

The unit has the Japanese OS if the value parameter is
charEncodingCP932.

For further information about the Japanese implementation, see the
section “Notes on the Japanese Implementation” in the Palm OS
Programmer’s Companion, vol. I.

Wireless Internet Feature Set
You can check that this feature set is implemented by checking for
the existence of the Web Clipping Application Viewer (Viewer) and
iMessenger™ applications. Here’s an example of how to check for
Viewer:

GetCharAttr
GetCharCaselessValue
GetCharSortValue
IsAscii
IsAlNum
IsAlpha
IsCntrl
IsDigit
IsGraph
IsLower
IsPrint
IsPunct
IsSpace
IsUpper
IsHex
IsDelim

Compatibi l i ty Guide
Wireless Internet Feature Set

Palm OS Programmer’s API Reference 2319

DmSearchStateType searchState;
UInt16 cardNo;
LocalID dbID;
err = DmGetNextDatabaseByTypeCreator(true,
&searchState, sysFileTApplication,
sysFileCClipper, true, &cardNo, &dbID);

If Viewer is not present, the
DmGetNextDatabaseByTypeCreator routine returns an error.
To check for iMessenger, you can use the creator type
sysFileCMessaging.

NOTE: The Viewer was formerly described as the Clipper.

You can learn more about the Palm.Net™ system for wireless
Internet access and the programmatic interfaces to the Viewer and
iMessenger applications by reading the chapter “Internet and
Messaging Applications” in the Palm OS Programmer’s Companion,
vol. II, Communications. For a more complete description, see the
Web Clipping Developer’s Guide.

Launch Codes
This feature set adds the following launch codes:

Events
This feature set adds the following events:

This feature set also adds the following keyDownEvent key codes:

sysAppLaunchCmdAddRecord (for iMessenger
application; existed for Mail in 3.0)
sysAppLaunchCmdGoToURL
sysAppLaunchCmdOpenDB
sysAppLaunchCmdURLParams

inetSockReadyEvent
inetSockStatusChangeEvent

Compatibi l i ty Guide
New Serial Manager Feature Set

2320 Palm OS Programmer’s API Reference

These key codes are described in the section Wireless
keyDownEvent Key Codes.

Functions
This feature set adds the following functions.

Internet Library Functions

For more information, see the chapter “Network Communication”
in the Palm OS Programmer’s Companion, vol. II, Communications.

New Serial Manager Feature Set
The New Serial Manager feature set has two different versions.

vchrHardAntenna
vchrRadioCoverageOK
vchrRadioCoverageFail

INetLibCacheGetObject
INetLibCacheList
INetLibCheckAntennaState
INetLibClose
INetLibConfigAliasGet
INetLibConfigAliasSet
INetLibConfigDelete
INetLibConfigIndexFromName
INetLibConfigList
INetLibConfigMakeActive
INetLibConfigRename
INetLibConfigSaveAs
INetLibGetEvent
INetLibOpen
INetLibSettingGet
INetLibSettingSet

INetLibSockClose
INetLibSockConnect
INetLibSockHTTPAttrGet
INetLibSockHTTPAttrSet
INetLibSockHTTPReqCreat
e
INetLibSockHTTPReqSend
INetLibSockOpen
INetLibSockRead
INetLibSockSettingGet
INetLibSockSettingSet
INetLibSockStatus
INetLibURLCrack
INetLibURLGetInfo
INetLibURLOpen
INetLibURLsAdd
INetLibWiCmd

Compatibi l i ty Guide
New Serial Manager Feature Set

Palm OS Programmer’s API Reference 2321

New Serial Manager Feature Set Version 1
You can check that this feature set is implemented by checking for
the existence of the new Serial Manager. You can check by calling
FtrGet as follows:

err = FtrGet(sysFileCSerialMgr,
sysFtrNewSerialPresent, &value);

If the new Serial Manager is installed, the value parameter will be
non-zero and the returned error should also be zero (for no error).

You can learn more about the new Serial Manager and Connection
Manager by reading the sections “The Serial Manager” on page 92
and “The Connection Manager” on page 116 in the Palm OS
Programmer’s Companion, vol. II, Communications.

This feature set adds the following functions.

Serial Manager Functions

Virtual Driver Functions

SrmClearErr
SrmClose
SrmControl
SrmGetDeviceCount
SrmGetDeviceInfo
SrmGetStatus
SrmOpen
SrmOpenBackground
SrmPrimeWakeupHandler
SrmReceive
SrmReceiveCheck

SrmReceiveFlush
SrmReceiveWait
SrmReceiveWindowClose
SrmReceiveWindowOpen
SrmSend
SrmSendCheck
SrmSendFlush
SrmSendWait
SrmSetReceiveBuffer
SrmSetWakeupHandler
WakeupHandlerProcPtr

DrvEntryPointProcPtr
GetSizeProcPtr
GetSpaceProcPtr
VdrvControlProcPtr
VdrvOpenProcPtr

VdrvStatusProcPtr
VdrvWriteProcPtr
WriteBlockProcPtr
WriteByteProcPtr

Compatibi l i ty Guide
New Serial Manager Feature Set

2322 Palm OS Programmer’s API Reference

Connection Manager Functions

Serial Link Manager Function

SlkSocketPortID

New Serial Manager Feature Set Version 2
You can check that version 2 of the new Serial Manager feature set is
implemented by checking the Serial Manager version number and
the Palm OS version number. You can check by calling FtrGet as
follows:

err = FtrGet(sysFileCSerialMgr,
 sysFtrNewSerialVersion, &value);
err = FtrGet(sysFtrCreator,
 sysFtrNumROMVersion, &romVersion);

The new Serial Manager is present if:

• Both calls to FtrGet return zero (for no error).

• The value parameter is 2.

• The romVersion parameter is 0x04003000, which can be
constructed using the sysMakeROMVersion macro:

sysMakeROMVersion(4,0,0,sysROMStageRelease,0)

This feature set adds the following functions.

Serial Manager Functions

Virtual Driver Functions

CncAddProfile
CncDeleteProfile

CncGetProfileInfo
CncGetProfileList

SrmCustomControl
SrmExtOpenBackground

SrmExtOpen

VdrvControlCustomProcPtr
SignalCheckPtr

VdrvOpenProcV4Ptr

Compatibi l i ty Guide
Connection Manager Feature Set

Palm OS Programmer’s API Reference 2323

IMPORTANT: Some Handspring devices ship with Palm OS
version 3.5 but have new Serial Manager feature set version 2.
These devices support the SignalCheckPtr virtual driver
function and have expanded functionality for USB support, but
they do not support the other function calls in this feature set.

You can learn more about the new Serial Manager by reading the
chapter “Serial Communication” on page 89 of Palm OS
Programmer’s Companion, vol. II, Communications.

Connection Manager Feature Set
You can check that the Connection Manager feature set is
implemented by checking the value of the Connection Manager
feature. You can check by calling FtrGet as follows:

err = FtrGet(kCncFtrCncMgrCreator,
kCncFtrCncMgrVersion, &version);

The version parameter should be greater than or equal to
0x00040001. In the 4.0 Palm OS SDK, this value is represented by
the kCncMgrVersion constant.

NOTE: An earlier version of the Connection Manager is
available if New Serial Manager Feature Set Version 1 is present.

Functions
This feature set adds the following functions:

CncProfileCloseDB
CncProfileCount
CncProfileCreate
CncProfileDelete
CncProfileGetCurrent
CncProfileGetIDFromIndex

CncProfileGetIDFromName
CncProfileGetIndex
CncProfileOpenDB
CncProfileSetCurrent
CncProfileSettingGet
CncProfileSettingSet

Compatibi l i ty Guide
3.5 New Feature Set

2324 Palm OS Programmer’s API Reference

3.5 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 3.5 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romVersion);

The romVersion parameter should be greater than or equal to
0x03503000, which can be constructed using the
sysMakeROMVersion macro:

sysMakeROMVersion(3,5,0,sysROMStageRelease,0)

Launch Codes
This feature set adds the following launch codes:

Events
This feature set adds the following events:

Functions
This feature set adds the following functions.

Bitmaps

For more information on creating and using bitmaps, see the section
“Bitmaps” on page 123 of the Palm OS Programmer’s Companion, vol.
I.

sysAppLaunchCmdNotify

frmGadgetEnterEvent
frmGadgetMiscEvent
menuCmdBarOpenEvent
menuOpenEvent

BmpBitsSize
BmpColortableSize
BmpCompress
BmpCreate
BmpDelete

BmpGetBits
BmpGetColortable
BmpSize
ColorTableEntries

Compatibi l i ty Guide
3.5 New Feature Set

Palm OS Programmer’s API Reference 2325

Controls

These functions add support for graphical buttons and slider
controls. For more information, see the section “Offscreen
Windows” on page 91 of the Palm OS Programmer’s Companion, vol.
I.

Forms

Among the changes to form functions is extended gadget support.
For more information on gadgets and extended gadgets, see the
section “Custom UI Objects (Gadgets)” on page 140 of the Palm OS
Programmer’s Companion, vol. I.

Menus

For more information on using menu functions, see the section
“Menus” on page 105 of the Palm OS Programmer’s Companion, vol. I.

Overlay Manager

For more information on using the overlay manager, see the section
“Using Overlays to Localize Resources” on page 365 of the Palm OS
Programmer’s Companion, vol. I.

Private Records

CtlGetSliderValues
CtlNewGraphicControl
CtlNewSliderControl

CtlSetGraphics
CtlSetSliderValues

FrmCustomResponseAlert
FrmNewGsi

FrmSetGadgetHandler

MenuAddItem
MenuCmdBarDisplay
MenuHideItem

MenuCmdBarAddButton
MenuCmdBarGetButtonData
MenuShowItem

OmGetCurrentLocale
OmGetIndexedLocale
OmGetRoutineAddress
OmGetSystemLocale

OmLocaleToOverlayDBName
OmOverlayDBNameToLocale
OmSetSystemLocale

SecSelectViewStatus SecVerifyPW

Compatibi l i ty Guide
3.5 New Feature Set

2326 Palm OS Programmer’s API Reference

Tables

UI Colors

For more information on using the UI Colors API, see the section
“Color and Grayscale Support” on page 144 of the Palm OS
Programmer’s Companion, vol. I.

UI Controls

Windows

For more information on using the window functions, see the
section “Drawing on the Palm Powered Handheld” on page 72 of
the Palm OS Programmer’s Companion, vol. I.

TblGetItemPtr
TblRowMasked

TblSetColumnMasked
TblSetRowMasked

UIColorGetTableEntryIndex
UIColorGetTableEntryRGB

UIColorSetTableEntry

UIBrightnessAdjust UIPickColor

WinCreateBitmapWindow
WinDrawPixel
WinErasePixel
WinGetBitmap
WinGetPatternType
WinGetPixel
WinIndexToRGB
WinInvertPixel
WinPaintBitmap
WinPaintChar
WinPaintChars
WinPaintLine
WinPaintLines
WinPaintPixel
WinPaintPixels

WinPaintRectangle
WinPaintRectangleFrame
WinPalette
WinPopDrawState
WinPushDrawState
WinRGBToIndex
WinScreenLock
WinScreenMode
WinScreenUnlock
WinSetBackColor
WinSetDrawMode
WinSetForeColor
WinSetPatternType
WinSetTextColor

Compatibi l i ty Guide
3.5 New Feature Set

Palm OS Programmer’s API Reference 2327

Miscellaneous New Functions

Existing Functions that Changed
The following functions that existed prior to 3.5 have changed in
release 3.5:

New Data Types
The data types Byte, Word, DWord and so on are now deprecated. It
is recommend that you use the corresponding new data types. For
example, use Int16 instead of SWord and UInt32 instead of
DWord. In particular, the unfortunate distinction between Handle/
VoidHand has been fixed; use MemHandle instead.

To learn in general how the type names changed, see the header file
PalmOSCompatibility.h. This file provides a mapping from the
old type name to the new type name. If you need to move forward
without modifying your code, you can include this file in your
project to provide declarations for the old type names.

Changes to Events
• The tapCount field has been added to the EventType

structure. The tapCount field specifies the number of times
the user tapped the pen at the current location; in fields, two
taps selects a word, and three taps selects a line.

DmOpenDBNoOverlay
ExgDoDialog
DateToAscii

ResLoadConstant
TxtParamString

ScrDisplayMode was changed to WinScreenMode.

ContrastAdjust was changed to UIContrastAdjust.

SelectTime (old function renamed SelectTimeV33)

Compatibi l i ty Guide
3.5 New Feature Set

2328 Palm OS Programmer’s API Reference

IMPORTANT: Because the tapCount field has been added to
the EventType structure, it has become more critical that you
clear the event structure before using it to add a new event to the
queue. Otherwise, the tapCount will be incorrect for the new
event.

• The structures for ctlRepeatEvent and ctlSelectEvent
have a value field added to them. This new field is used
only for sliders; it holds the current value of the slider.

• Form objects now handle the frmTitleSelectEvent by
adding a keyDownEvent with the vchrMenu character to
the event queue (which causes the form’s menu to display).

• Some of the structure definitions for system-level events
have moved from Event.h to SysEvent.h.

• The winEnterEvent is now not generated until
FrmDrawForm is called. Make sure to draw your form in
response to frmOpenEvent, not winEnterEvent.

• EvtSetNullEventTick is now a function. In previous
releases it was a macro.

Other Changes
• FrmDrawForm

On release 3.5, FrmDrawForm erases the window's rectangle
before it draws, so you must perform custom drawing after
the call to FrmDrawForm, not before. If you have drawn
before the call to FrmDrawForm, your changes are lost. On
debug ROMs, the window handle is invalid until
FrmDrawForm is called so that draws before FrmDrawForm
result in a bus error.

• Resource Manager

The resource manager functions have been updated to work
with overlay databases. See “Using Overlays to Localize
Resources” on page 365 of the Palm OS Programmer’s
Companion, vol. I.

Compatibi l i ty Guide
3.5 New Feature Set

Palm OS Programmer’s API Reference 2329

• DmGetDatabase

The order in which this call returns databases has changed.
Previously all of the databases from ROM were returned
first, then all from RAM. Now they are intermingled.
Developers should not rely on the order in which databases
are returned from this call.

• StrToLower

This function is different in 3.5 Latin ROMs. Previously it
only changed A through Z. Now it also changes high ASCII
characters.

• Time Manager

If you are using a debug ROM, the string buffer is filled with
dateStringLength or longStrLength debugging bytes,
depending on the dateFormat parameter. For the routines
that return the day-of-week name in addition to the date, the
size of the buffers has been expanded, so developers need to
check the max lengths defined in DateTime.h.

• The format of the storage heap header has changed, thus any
existing saved Simulator card images are invalid and should
be tossed.

• Category Data Structures

The data structure AppInfoType has been documented.

CategoryCreateList now has a “hide” function with two
new constants; categoryHideEditCategory, and
categoryDefaultEditCategoryString.

• FtrPtrNew

FtrPtrNew now allows allocating chunks larger than 64KB.

• Dynamic heap

The dynamic heap is now sized based on the amount of
memory available to the system.

Compatibi l i ty Guide
Notification Feature Set

2330 Palm OS Programmer’s API Reference

Notification Feature Set
You can check that this feature set is implemented by checking for
the existence of the notification manager. You can check by calling
FtrGet as follows:

err = FtrGet(sysFtrCreator,
sysFtrNumNotifyMgrVersion, &value);

If the notification manager is part of the system, the value
parameter will be non-zero and the returned error should also be
zero (for no error).

Notification Manager

To learn more about the notification manager, see the section
“Notifications” on page 30 of the Palm OS Programmer’s Companion,
vol. I.

4.0 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 4.0 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romVersion);

The romVersion parameter should be greater than or equal to
0x04003000, which can be constructed using the
sysMakeROMVersion macro:

Table B.1 Dynamic heap size

Device RAM Size Heap Size

x < 2MB 64KB

2MB ≤ x < 4MB 128KB

x ≥ 4MB 256KB

SysNotifyBroadcast
SysNotifyBroadcastDeferred

SysNotifyRegister
SysNotifyUnregister

Compatibi l i ty Guide
4.0 New Feature Set

Palm OS Programmer’s API Reference 2331

sysMakeROMVersion(4,0,0,sysROMStageRelease,0)

Launch Codes
This feature set adds the following launch codes:

Notifications
This feature set adds the following notifications:

Functions
This feature set adds the following functions:

Attention Manager

sysAppLaunchCmdAttention
sysAppLaunchCmdExgGetData
sysAppLaunchCmdExgPreview

cncNotifyProfileEvent
sysExternalConnectorAttachEvent
sysExternalConnectorDetachEvent
sysNotifyCardInsertedEvent
sysNotifyCardRemovedEvent
sysNotifyDBDeletedEvent
sysNotifyDeleteProtectedEvent
sysNotifyDeviceUnlocked
sysNotifyGotUsersAttention
sysNotifyHelperEvent
sysNotifyLocaleChangedEvent
sysNotifyNetLibIFMediaEvent
sysNotifyRetryEnqueueKey
sysNotifyVolumeMountedEvent
sysNotifyVolumeUnmountedEvent

AttnDoSpecialEffects
AttnForgetIt
AttnGetAttention
AttnGetCounts

AttnIndicatorEnable
AttnIndicatorEnabled
AttnIterate
AttnListOpen
AttnUpdate

Compatibi l i ty Guide
4.0 New Feature Set

2332 Palm OS Programmer’s API Reference

Date and Time Manager

Exchange Manager

For more information on the Exchange Manager, see the chapter
Chapter 1, “Object Exchange,” on page 1 of the Palm OS
Programmer’s Companion, vol. II, Communications.

Exchange Library

For more information on the Exchange Library API, see Chapter 58,
“Exchange Library,” on page 1357 of the Palm OS Programmer’s
Companion, vol. II, Communications.

Locale Manager

Miscellaneous UI

TimeZoneToAscii
TimTimeZoneToUTC
TimUTCToTimeZone

ExgGetTargetApplication
ExgGetDefaultApplication
ExgGetRegisteredApplications
ExgSetDefaultApplication

ExgControl
ExgNotifyGoto
ExgNotifyPreview
ExgRequest
ExgGetRegisteredTypes

ExgLibAccept
ExgLibClose
ExgLibConnect
ExgLibControl
ExgLibDisconnect
ExgLibGet
ExgLibHandleEvent

ExgLibOpen
ExgLibPut
ExgLibReceive
ExgLibRequest
ExgLibSend
ExgLibSleep
ExgLibWake

LmGetLocaleSetting
LmLocaleToIndex

LmGetNumLocales

PhoneNumberLookupCustom

Compatibi l i ty Guide
4.0 New Feature Set

Palm OS Programmer’s API Reference 2333

Notification Manager

PDI Library Functions

For more information, see the chapter Chapter 3, “Personal Data
Interchange,” in Palm OS Programmer’s Companion, vol. II,
Communications.

Sound Manager Functions

For more information, see the chapter Chapter 10, “Palm System
Support,” in Palm OS Programmer’s Companion, vol. I.

SysNotifyBroadcastFromInterrupt

PdiDefineReaderDiction
ary
PdiDefineResizing
PdiEnterObject
PdiLibClose
PdiLibOpen
PdiParameterPairTest
PdiReaderDelete
PdiReaderNew
PdiReadParameter
PdiReadProperty
PdiReadPropertyField
PdiReadPropertyName

PdiSetEncoding
PdiWriteBeginObject
PdiWriteEndObject
PdiWriteParameter
PdiWriteParameterStr
PdiWriteProperty
PdiWritePropertyBinaryValue
PdiWritePropertyFields
PdiWritePropertyStr
PdiWritePropertyValue
PdiWriterDelete
PdiWriterNew

SndInterruptSmfIrregardless
SndPlaySmfResourceIrregardles
s

SndPlaySmfIrregardless

Compatibi l i ty Guide
4.0 New Feature Set

2334 Palm OS Programmer’s API Reference

Telephony Manager Functions

TelCancel
TelCfgGetPhoneNumber
TelCfgGetSmsCenter
TelCfgGetSmsCenter
TelClose
TelClosePhoneConnection
TelDtcCallNumber
TelDtcCloseLine
TelDtcReceiveData
TelDtcSendData
TelEmcCall
TelEmcCloseLine
TelEmcGetNumber
TelEmcGetNumberCount
TelEmcSelectNumber
TelEmcSetNumber
TelGetCallState
TelGetEvent
TelGetTelephonyEvent

TelInfGetInformation
TelIs<FunctionName>Support
ed
TelIs<ServiceSet>Available
TelIsCfgServiceAvailable
TelIsDtcServiceAvailable
TelIsEmcServiceAvailable
TelIsInfServiceAvailable
TelIsNwkServiceAvailable
TelIsOemServiceAvailable
TelIsPhbServiceAvailable
TelIsPhoneConnected
TelIsPowServiceAvailable
TelIsSmsServiceAvailable
TelIsSndServiceAvailable
TelIsSpcServiceAvailable
TelIsStyServiceAvailable
TelMatchPhoneDriver

TelNwkGetLocation
TelNwkGetNetworkName
TelNwkGetNetworks
TelNwkGetNetworkType
TelNwkGetSearchMode
TelNwkGetSelectedNetwork
TelNwkGetSignalLevel
TelNwkSelectNetwork
TelNwkSetSearchMode
TelOemCall
TelOpen
TelOpenPhoneConnection

TelPhbAddEntry
TelPhbDeleteEntry
TelPhbGetAvailablePhoneboo
ks
TelPhbGetEntries
TelPhbGetEntry
TelPhbGetEntryCount
TelPhbGetEntryMaxSizes
TelPhbGetSelectedPhonebook
TelPhbSelectPhonebook
TelPowGetBatteryStatus
TelPowGetPowerLevel
TelPowSetPhonePower
TelSendCommandString

Compatibi l i ty Guide
4.0 New Feature Set

Palm OS Programmer’s API Reference 2335

For more information about the Telephony Manager, see Chapter 10,
“Telephony Manager,” in Palm OS Programmer’s Companion, vol. II,
Communications.

Windows Manager

Internationalization Functions

The following functions have been added to aid with creating
localized applications:

TelSmsDeleteMessage
TelSmsGetAvailableStorag
e
TelSmsGetDataMaxSize
TelSmsGetMessageCount
TelSmsGetSelectedStorage
TelSmsGetUniquePartId
TelSmsReadMessage
TelSmsReadMessages
TelSmsReadReport
TelSmsReadReports
TelSmsReadSubmittedMessa
ge
TelSmsReadSubmittedMessa
ges
TelSmsSelectStorage
TelSmsSendManualAcknowle
dge
TelSmsSendMessage
TelSndMute

TelSndPlayKeyTone
TelSndStopKeyTone
TelSpcAcceptCall
TelSpcCallNumber
TelSpcCloseLine
TelSpcConference
TelSpcGetCallerNumber
TelSpcHoldLine
TelSpcPlayDTMF
TelSpcRejectCall
TelSpcRetrieveHeldLine
TelSpcSelectLine
TelSpcSendBurstDTMF
TelSpcStartContinuousDTMF
TelSpcStopContinuousDTMF
TelStyChangeAuthenticatio
nCode
TelStyEnterAuthentication
Code
TelStyGetAuthenticationSt
ate

WinGetPixelRGB
WinSetForeColorRGB

WinSetBackColorRGB
WinSetTextColorRGB

FntWCharWidth
StrCompareAscii
TxtGetWordWrapOffset
IntlSetRoutineAddress

OmGetNextSystemLocale
TxtConvertEncoding
TxtNameToEncoding

Compatibi l i ty Guide
Expansion Manager Feature Set

2336 Palm OS Programmer’s API Reference

Existing Functions that Changed
The following functions that existed prior to 4.0 have changed in
release 4.0:

Expansion Manager Feature Set
Because not every system has (or needs) Expansion Manager
services, applications wishing to use these services should check to
make sure they are present before calling them. This is
accomplished by checking for the Expansion Manager’s system
feature with a call to FtrGet, supplying sysFileCExpansionMgr
for the feature creator and expFtrIDVersion for the feature
number.

The following code shows how to check for the presence and proper
version of the Expansion Manger. Note that
expectedExpMgrVersionNum should be replaced by the actual
version number you expect.

ExgRegisterData has been deprecated. The preferred function is
now ExgRegisterDatatype.

ExgGet was previously unimplemented. It has been implemented
in release 4.0

ExgNotifyReceive was previously a private function. It is now a
public function, intended to be used by exchange libraries.

FldRecalculateField now updates the word-wrapping
information whenever FldRecalculateField is called,
regardless of the value of the redraw parameter. Prior to Palm OS
4.0 it updated the word-wrapping information only if the redraw
parameter was set to true.

StrNCaselessCompare now requires both of its string
parameters to be null-terminated.

StrNCompare now requires both of its string parameters to be null-
terminated.

Compatibi l i ty Guide
VFS Manager Feature Set

Palm OS Programmer’s API Reference 2337

UInt32 expMgrVersion;
Err err;

err = FtrGet(sysFileCExpansionMgr,
 expFtrIDVersion, &expMgrVersion);
if(err){
 // Expansion Manager not installed
} else {
 // check version number of Expansion Manager,
 // if necessary
 if(expMgrVersion == expectedExpMgrVersionNum)
 // everything is OK
}

You can learn more about the expansion manager by reading
Chapter 29, “Expansion Manager,” on page 653.

Functions
This feature set adds the following functions.

Expansion Manager Functions

VFS Manager Feature Set
Because not every system has (or needs) Virtual File System (VFS)
Manager services, applications wishing to use these services should
check to make sure they are present before calling them. This is
accomplished by checking for the VFS Manager’s system feature
with a call to FtrGet, supplying sysFileCVFSMgr for the feature
creator and vfsFtrIDVersion for the feature number.

The following code shows how to check for the presence and proper
version of the VFS Manger. Note that
expectedVFSMgrVersionNum should be replaced by the actual
version number you expect.

ExpCardGetSerialPort
ExpCardInfo
ExpCardPresent
ExpSlotDriverInstall

ExpSlotDriverRemove
ExpSlotEnumerate
ExpSlotLibFind

Compatibi l i ty Guide
VFS Manager Feature Set

2338 Palm OS Programmer’s API Reference

UInt32 vfsMgrVersion;
Err err;

err = FtrGet(sysFileCVFSMgr,
 vfsFtrIDVersion, &vfsMgrVersion);
if(err){
 // VFS Manager not installed
} else {
 // check version number of VFS Manager,
 // if necessary
 if(vfsMgrVersion == expectedVFSMgrVersionNum)
 // everything is OK
}

You can learn more about the VFS manager by reading Chapter 53,
“Virtual File System Manager,” on page 1075.

Functions
This feature set adds the following functions.

VFS Manager Functions

VFSCustomControl VFSFileSize

VFSCustomControl VFSFileTell

VFSDirEntryEnumerate VFSFileWrite

VFSExportDatabaseToFile VFSGetDefaultDirectory

VFSExportDatabaseToFileC
ustom

VFSImportDatabaseFromFil
e

VFSFileClose VFSImportDatabaseFromFil
eCustom

VFSFileCreate VFSInstallFSLib

VFSFileDBGetRecord VFSRegisterDefaultDirect
ory

VFSFileDBGetResource VFSRemoveFSLib

Compatibi l i ty Guide
Bluetooth Library Feature Set

Palm OS Programmer’s API Reference 2339

Bluetooth Library Feature Set
Because not every system has (or needs) Bluetooth Library services,
applications wishing to use these services should check to make
sure they are present before calling them. This is accomplished by
checking for the Bluetooth Library’s system feature with a call to
FtrGet, supplying btLibFeatureCreator for the feature creator and
btLibFeatureVersion for the feature number.

The following code shows how to check for the presence of the
Bluetooth Library.

UInt32 btVersion;

// Make sure Bluetooth components are installed
// This check also ensures Palm OS 4.0 or greater
if (FtrGet(btLibFeatureCreator, btLibFeatureVersion,
 &btVersion) != errNone) {
 // Alert the user if it's the active application

VFSFileDBInfo VFSUnregisterDefaultDire
ctory

VFSFileDelete VFSVolumeEnumerate

VFSFileEOF VFSVolumeFormat

VFSFileGetAttributes VFSVolumeGetLabel

VFSFileGetDate VFSVolumeInfo

VFSFileOpen VFSVolumeMount

VFSFileRead VFSVolumeSetLabel

VFSFileReadData VFSVolumeSize

VFSFileRename VFSVolumeUnmount

VFSFileResize

VFSFileSetAttributes

VFSFileSetDate

VFSFileSeek

Compatibi l i ty Guide
Bluetooth Library Feature Set

2340 Palm OS Programmer’s API Reference

 if ((launchFlags & sysAppLaunchFlagNewGlobals) &&
 (launchFlags & sysAppLaunchFlagUIApp))
 FrmAlert (MissingBtComponentsAlert);
 return sysErrRomIncompatible;
}

You can learn more about the Bluetooth Library by reading Chapter
6, “Bluetooth,” on page 131 of the Palm OS Programmer’s Companion,
vol. II, Communications.

Functions
This feature set adds the following functions.

Bluetooth Library Security Functions

Bluetooth Library Utility Functions and Macros

Bluetooth Library Management Functions

BtLibSecurityFindTrusted
DeviceRecord

BtLibSecurityNumTrustedD
eviceRecords

BtLibSecurityGetTrustedD
eviceRecordInfo

BtLibSecurityRemoveTrust
edDevice Record

BtLibAddrAToBtd BtLibRfCommHToNS

BtLibAddrBtdToA BtLibRfCommNToHL

BtLibL2CapHToNL BtLibRfCommNToHS

BtLibL2CapHToNS BtLibSdpHToNL

BtLibL2CapNToHL BtLibSdpHToNS

BtLibL2CapNToHS BtLibSdpNToHL

BtLibRfCommHToNL BtLibSdpNToHS

BtLibClose BtLibLinkSetState

BtLibOpen BtLibPiconetCreate

BtLibCancelInquiry BtLibPiconetDestroy

Compatibi l i ty Guide
Bluetooth Library Feature Set

Palm OS Programmer’s API Reference 2341

Bluetooth Library Socket Functions

Bluetooth Library Service Discovery Protocol Functions

BtLibDiscoverMultipleDev
ices

BtLibPiconetLockInbound

BtLibDiscoverSingleDevic
e

BtLibPiconetUnlockInboun
d

BtLibGetGeneralPreferenc
e

BtLibRegisterManagementN
otification

BtLibGetRemoteDeviceName BtLibSetGeneralPreferenc
e

BtLibGetSelectedDevices BtLibStartInquiry

BtLibLinkConnect BtLibUnregisterManagemen
tNotification

BtLibLinkDisconnect BtLibManagementCallback

BtLibLinkGetState

BtLibSocketAdvanceCredit BtLibSocketGetInfo

BtLibSocketClose BtLibSocketListen

BtLibSocketConnect BtLibSocketRespondToConn
ection

BtLibSocketCreate BtLibSocketSend

BtLibSdpCompareUuids BtLibSdpServiceRecordGet
SizeOfRaw Attribute

BtLibSdpGetPSMByUuid BtLibSdpServiceRecordGet
StringOrUrlLength

BtLibSdpGetRawDataElemen
tSize

BtLibSdpServiceRecordMap
Remote

BtLibSdpGetRawDataElemen
tType

BtLibSdpServiceRecordSet
Attribute

Compatibi l i ty Guide
High-Density Display Feature Set

2342 Palm OS Programmer’s API Reference

High-Density Display Feature Set
You can verify that this feature set is implemented by checking the
version of the Window Manager. If the Window Manager version is
4 or greater, the High-Density Display feature set is supported. To
check the version of the Window Manager, use this call:

err = FtrGet(sysFtrCreator,
sysFtrNumWinVersion, &version);

Upon return, if version has a value of 4 or greater, the High-
Density Display feature set is present. Note that just because the
High-Density Display feature set is present, it isn’t necessarily being
used. You may want to check the density of the screen, as follows:

WinScreenGetAttribute(winScreenDensity, &attr);
if (attr == kDensityDouble) {

//the screen is high density
}

BtLibSdpGetServerChannel
ByUuid

BtLibSdpServiceRecordSet
AttributesForSocket

BtLibSdpParseRawDataElem
ent

BtLibSdpServiceRecordSet
RawAttribute

BtLibSdpServiceRecordCre
ate

BtLibSdpServiceRecordsGe
tByServiceClass

BtLibSdpServiceRecordDes
troy

BtLibSdpServiceRecordSta
rtAdvertising

BtLibSdpServiceRecordGet
Attribute

BtLibSdpServiceRecordSto
pAdvertising

BtLibSdpServiceRecordGet
NumListEntries

BtLibSdpUuidInitialize

BtLibSdpServiceRecordGet
NumLists

BtLibSdpVerifyRawDataEle
ment

BtLibSdpServiceRecordGet
RawAttribute

BtLibSocketCallback

Compatibi l i ty Guide
High-Density Display Feature Set

Palm OS Programmer’s API Reference 2343

The 5.0 New Feature Set incorporates all of the functionality present
in the High-Density Display Feature Set, so if your application is
running on Palm OS 5 you can assume that the High-Density
Display Feature Set is present as well.

New Data Types
This feature set adds the following new data types.

Bitmap Data Types

In addition, the definition of BitmapType changed.

Font Data Types

In addition, this feature set defines a new Extended Font Resource.

Window Constants

This feature set adds a new set of Window Coordinate System
Constants.

Functions
This feature set adds the following functions.

Bitmap Functions

BitmapTypeV0 BitmapTypeV1

BitmapTypeV2 BitmapTypeV3

DensityType PixelFormatType

FontDensityType FontTypeV2

BmpCreateBitmapV3 BmpGetCompressionType

BmpGetDensity BmpGetNextBitmapAnyDensity

BmpGetTransparentValue BmpGetVersion

BmpSetDensity BmpSetTransparentValue

Compatibi l i ty Guide
Sound Stream Feature Set

2344 Palm OS Programmer’s API Reference

System Event Manager Functions

Window Functions

Sound Stream Feature Set
The Sound Stream feature set adds a number of “stream” functions
and constants to the Sound Manager. You can verify that this feature
set is supported by checking for the Sound Manager’s version
number. If the Sound Manager’s version feature is defined, the
Sound Stream feature set is supported.

The following code shows how to check for the presence and proper
version of the Sound Manger. Note that
expectedSndMgrVersionNum should be replaced by the actual
version number you expect (typically, sndMgrVersionNum).

UInt32 version;
Err err;

err = FtrGet(sysFileCSoundMgr, sndFtrIDVersion, &version);
if(err){
 // Sound Stream Feature Set not present
} else {
 // The Sound Stream Feature Set is present.
 // Check version number of Sound Manager,
 // if necessary
 if(version == expectedSndMgrVersionNum)
 // everything is OK
}

EvtGetPenNative

WinGetCoordinateSystem WinGetSupportedDensity

WinPaintRoundedRectangle
Frame

WinPaintTiledBitmap

WinScaleCoord WinScalePoint

WinScaleRectangle WinScreenGetAttribute

WinSetCoordinateSystem WinUnscaleCoord

WinUnscalePoint WinUnscaleRectangle

Compatibi l i ty Guide
Sound Stream Feature Set

Palm OS Programmer’s API Reference 2345

Sound Stream Data Structures and Types
This feature set adds the following data structures:

Sound Stream Enums and Constants
This feature set adds the following enums and constants:

Sound Stream Enums and Constants

Sound Stream Functions
This feature set adds the following functions.

Sound Stream Functions

In additiion, the Sound Stream Feature Set defines the following
callback function:

SndStreamBufferCallback

SndPtr SndStreamRef

SndSampleType SndStreamWidth

SndStreamMode

SndSampleTypeTag Stereo Pan Constants

SndStreamModeTag Volume Constants

SndStreamWidthTag Sound Resource Playback Flags

SndPlayResource SndStreamPause

SndStreamCreate SndStreamSetPan

SndStreamDelete SndStreamSetVolume

SndStreamGetPan SndStreamStart

SndStreamGetVolume SndStreamStop

Compatibi l i ty Guide
5.0 New Feature Set

2346 Palm OS Programmer’s API Reference

5.0 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 5.0 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romVersion);

The romVersion parameter should be greater than or equal to
0x05003000, which can be constructed using the
sysMakeROMVersion macro:

sysMakeROMVersion(5,0,0,sysROMStageRelease,0)

This feature set corresponds to version 5.0 of Palm OS 5.

The Palm OS Application Compatibility Environment (PACE) has
its own version associated with it. You can obtain this version
number with:

err = FtrGet('pace', 0, &paceVersion);

Notifications
This feature set adds the following database-related notifications:

It also broadcasts the following notifications:

Functions
This feature set adds the following functions.

sysNotifyDBCreatedEvent
sysNotifyDBChangedEvent

sysNotifyDBDirtyEvent

sysNotifyAppLaunchingEvent
sysNotifyAppQuittingEvent
sysNotifyEventDequeuedEvent
sysNotifyIdleTimeEvent
sysNotifyInsPtEnableEvent
sysNotifyKeyboardDialogEvent
sysNotifyProcessPenStrokeEvent
sysNotifyVirtualCharHandlingEvent

Compatibi l i ty Guide
5.0 New Feature Set

Palm OS Programmer’s API Reference 2347

ARM-Native Functions

Functions and Traps not Supported by PACE
For various reasons a number of functions and traps are not
supported by PACE. The following sections list those functions,
grouped according to the reason that they are not implemented.

Unimplemented “System Use Only” Functions

The following functions, which are documented as “System Use
Only,” are not supported by the Palm OS Application Compatibility
Environment (PACE).

PceNativeCall

Compatibi l i ty Guide
5.0 New Feature Set

2348 Palm OS Programmer’s API Reference

As a rule, functions and traps that are not documented should be
treated as if they are unimplemented and should not be used by
applications.

AlmAlarmCallback
AlmCancelAll
AlmDisplayAlarm
AlmInit
AlmTimeChange
DmInit
EvtDequeueKeyEvent
EvtGetSysEvent1

EvtInitialize
EvtSetKeyQueuePtr
EvtSetPenQueuePtr
EvtSysInit
ExgInit
FrmAddSpaceForObject
FtrInit
GrfFree
GrfInit
InsPtCheckBlink
InsPtInitialize
IntlInit
MemCardFormat
MemHandleFlags
MemHandleOwner
MemHandleResetLock1

MemHeapFreeByOwnerID
MemHeapInit
MemInit
MemInitHeapTable
MemKernelInit
MemPtrFlags
MemPtrOwner

1. Implemented on release ROMs but flagged as illegal on debug ROMs.

MemPtrResetLock
MemStoreSetInfo
PenClose
PenGetRawPen
PenOpen
ScrCompressScanLine
ScrCopyRectangle
ScrDeCompressScanLine
ScrDrawChars
ScrDrawNotify
ScrLineRoutine
ScrRectangleRoutine
ScrScreenInfo
ScrSendUpdateArea
SlkProcessRPC
SlkSysPktDefaultResponse
SndInit
SysBatteryDialog
SysColdBoot
SysDoze
SysInit
SysNewOwnerID
SysSemaphoreSet
SysUILaunch
SysWantEvent
TimInit
UIInitialize
UIReset
WinAddWindow
WinRemoveWindow

Compatibi l i ty Guide
5.0 New Feature Set

Palm OS Programmer’s API Reference 2349

Implemented “System Use Only” Functions and Traps

Although marked “System Use Only,” a number of functions and
traps are required by applications in the ROM, by Palm Debugger,
by test applications, by scripting, or by some popular applications.
Because of this, the following System Use Only functions and traps
are supported by PACE. Because they are intended only for system
use, however, applications should do what they can to avoid using
them.

Obsolete Functions and Traps

The following functions are not supported by PACE because they
are obsolete.

AlmEnableNotification
AttnAllowClose
AttnEnableNotification
AttnIndicatorAllow
AttnIndicatorAllowed
AttnIndicatorGetBlinkPat
tern
AttnIndicatorSetBlinkPat
tern
AttnReopen
DmResetRecordStates
EvtEnqueuePenPoint
EvtGetSilkscreenAreaList
FileReadLow
Find
FrmActiveState
FrmHandleEvent
HwrDelay

HwrDockStatus
HwrLEDAttributes
HwrMemReadable
HwrMemWritable
HwrVibrateAttributes
MemChunkNew
MemHeapPtr
PenRawToScreen
PenScreenToRaw
SysGetAppInfo
SysLaunchConsole
SndSetDefaultVolume
SysLCDContrast
SysSetA5
SysSetPerformance
SysSleep
SysUIBusy
WinDrawWindowFrame

FplAdd1

FplAToF1

FplBase10Info1

FplDiv1

FplFloatToLong1

FplFloatToULong1

1. Implemented on release ROMs but flagged as illegal on debug ROMs.

FplFToA1

FplLongToFloat1

FplMul1

FplSub1

WiCmdV32

Compatibi l i ty Guide
5.0 New Feature Set

2350 Palm OS Programmer’s API Reference

‘NOP’ Functions and Traps

These functions and traps should not be called by applications
(many are documented as “System Use Only”). Because some third-
party applications do call them, for backward compatibility they act
as NOPs.

Unimplemented Rare Functions and Traps

These functions and traps are only used internally by Palm OS, by
serial drivers, by OEM extensions, and the like. They are not
implemented by PACE.

FplFree
FplInit
HwrEnableDataWrites
HwrDisableDataWrites
HwrTimerSleep
HwrTimerWake
KeyResetDoubleTap
KeySleep
KeyWake
PenSleep
PenWake

SerReceiveISP
SrmSleep
SrmWake
SysDisableInts
SysRestoreStatus
TimHandleInterrupt
TimSleep
TimWake
WinDisableWindow
WinEnableWindow
WinInitializeWindow

ConGetS
ConPutS
DayDrawDays
DayDrawDaySelector
DbgCommSettings
DbgGetMessage
DlkDispatchRequest
DlkStartServer
DmMoveOpenDBContext
DmOpenDBWithLocale
FlashCompress

FlashErase
FlashProgram
IntlSetRoutineAddress
MemGetRomNVParams
MemNVParams
OEMDispatch1

ResLoadForm
SlkSetSocketListener
SysNotifyDatabaseAdded
SysNotifyDatabaseRemoved
SysSetTrapAddress

1. Supported if the OEM supports the trap.

Compatibi l i ty Guide
5.1 New Feature Set

Palm OS Programmer’s API Reference 2351

5.1 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 5.1 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romVersion);

The romVersion parameter should be greater than or equal to
0x05103000, which can be constructed using the
sysMakeROMVersion macro:

sysMakeROMVersion(5,1,0,sysROMStageRelease,0)

This feature set corresponds to version 5.1 of Palm OS 5.

Net Library Interface Settings
This feature set adds the following Net Library Interface Settings:

See NetLibIFSettingGet for a description of each of the above
settings.

CPM Library
This feature set includes the Cryptographic Provider Manager
(CPM) shared library. The CPM library isn’t automatically loaded
upon system boot: before making use of the CPM library you must
first load it, using SysLibFind and SysLibLoad.

The CPM library defines a number of constants:

• AP Capability Constants

• Block Encryption Mode Constants

• Cipher Algorithm Constants

• Export Encoding Constants

• Hashing Algorithm Constants

DriverVersion
FirmwareVersion
FirmwareDate
80211Device
80211ESSID

80211AccessPointBSSID
80211AssociationStatus
80211MKKCallSign
80211CountryTest

Compatibi l i ty Guide
5.1 New Feature Set

2352 Palm OS Programmer’s API Reference

• Key Class Constants

• Key Usage Constants

• Plaintext Padding Constants

The following structures are defined as part of the CPM library:

Finally, the CPM library contains the following functions:

SSL Library
The 5.1 New Feature Set includes the Secure Sockets Layer (SSL)
shared library. The SSL library isn’t automatically loaded upon
system boot: before making use of the SSL library you must first
load it and open it, using code similar to the following:

Err error;
UInt16 libRef;

if (SyLibFind(kSslDBName, &libRef) != 0)
{

error = SysLibLoad(kSslLibType, kSslLibCreator, &libRef);
}

APCipherInfoStruct
APHashInfoStruct
APKeyInfoStruct
APProviderContextStruct

APProviderInfoStruct
APVerifyInfoStruct
CPMInfoStruct

CPMLibDecrypt
CPMLibDecryptFinal
CPMLibDecryptInit
CPMLibDecryptUpdate
CPMLibEncrypt
CPMLibEncryptFinal
CPMLibEncryptInit
CPMLibEncryptUpdate
CPMLibExportCipherInfo
CPMLibExportHashInfo
CPMLibExportKeyInfo
CPMLibExportVerifyInfo
CPMLibGenerateKey
CPMLibGetInfo
CPMLibGetProviderInfo

CPMLibHash
CPMLibHashFinal
CPMLibHashInit
CPMLibImportCipherInfo
CPMLibImportHashInfo
CPMLibImportKeyInfo
CPMLibImportVerifyInfo
CPMLibReleaseCipherInfo
CPMLibReleaseHashInfo
CPMLibReleaseKeyInfo
CPMLibReleaseVerifyInfo
CPMLibVerify
CPMLibVerifyFinal
CPMLibVerifyInit
CPMLibVerifyUpdate

Compatibi l i ty Guide
5.1 New Feature Set

Palm OS Programmer’s API Reference 2353

/* error checking goes here. */

error = SslLibOpen(libRef);
...

SSL Library Structures and Data Types

The SSL library defines a number of structures and data types:

SSL Library Functions

In addtion, the SSL library defines one callback function:

• SslCallbackFunc

SSL Library Attributes and Macros

You interact with SSL attributes using the following macros:

• SslContextGet_Attribute (integer version)

• SslContextGet_Attribute (pointer version)

• SslLibSet_Attribute (integer version)

• SslContextSet_Attribute (pointer version)

SslAttribute
SslContext
SslLib
SslCallback
SslCipherSuiteInfo
SslExtendedItem

SslExtendedItems
SslIoBuf
SslLibCallback
SslSession
SslSocket
SslVerify

SslClose
SslConsume
SslContextCreate
SslContextDestroy
SslContextGetLong
SslContextGetPtr
SslContextSetLong
SslContextSetPtr
SslFlush
SslLibClose
SslLibCreate
SslLibDestroy

SslLibOpen
SslLibGetLong
SslLibGetPtr
SslLibSetLong
SslLibSetPtr
SslOpen
SslPeek
SslRead
SslReceive
SslSend
SslWrite

Compatibi l i ty Guide
5.1 New Feature Set

2354 Palm OS Programmer’s API Reference

• SslLibGet_Attribute (integer version)

• SslLibGet_Attribute (pointer version)

• SslLibSet_Attribute (integer version)

• SslLibSet_Attribute (pointer version)

The attributes that you can manipulate with the above macros are:

AppInt32
AppPtr
AutoFlush
BufferedReuse
CipherSuite
CipherSuiteInfo
CipherSuites
Compat
DontSendShutdown
DontWaitForShutdown
Error
HsState
InfoCallback
InfoInterest
IoTimeout
IoFlags
IoStruct
LastAlert
LastApi

LastIO
Mode
PeerCert
PeerCommonName
ProtocolVersion
RbufSize
ReadBufPending
ReadOutstanding
ReadRecPending
ReadStreaming
SessionReused
Socket
SslSession
SslVerify
Streaming
VerifyCallback
WbufSize
WriteBufPending

Palm OS Programmer’s API Reference 2355

C
1.0 Float Manager
This section provides reference material for the Palm OS 1.0 float
manager. In Palm OS 1.0, the float manager API is declared in the
header file FloatMgr.h. In Palm OS 2.0, this file was renamed to
FloatMgrOld.h. In Palm OS 3.5, this file was made private.

NOTE: New applications should no longer use the 1.0 Float
Manager. See Chapter 32, “Float Manager,” on page 695 for the
functions now provided by the Float Manager.

Float Manager Functions

FplAdd

Purpose Add two floating-point numbers (returns a + b).

Prototype FloatType FplAdd (FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

Result Returns the normalized floating-point result of the addition.

Comments Under Palm OS® 2.0 and later, most applications will want to use the
arithmetic symbols instead. See the “Floating-Point” section in the
Palm OS Programmer’s Companion, vol. I.

Compatibility This function is not supported by PACE (5.0 New Feature Set).

1.0 Float Manager
Float Manager Functions

2356 Palm OS Programmer’s API Reference

FplAToF

Purpose Convert a zero-terminated ASCII string to a floating-point number.
The string must be in the format: [-]x[.]yyyyyyyy[e[-]zz]

Prototype FloatType FplAToF (char* s)

Parameters s Pointer to the ASCII string.

Result Returns the floating-point number.

Comments The mantissa of the number is limited to 32 bits.

Compatibility This function is not supported by PACE (5.0 New Feature Set).

See Also FplFToA , FplFree, FplInit

FplBase10Info

Purpose Extract detailed information on the base 10 form of a floating-point
number: the base 10 mantissa, exponent, and sign.

Prototype Err FplBase10Info (FloatType a, ULong* mantissaP,
Int* exponentP, Int* signP)

Parameters a The floating-point number.

mantissaP The base 10 mantissa (return value).

exponentP The base 10 exponent (return value).

signP The sign, 1 or -1 (return value).

Result Returns an error code, or 0 if no error.

Comments The mantissa is normalized so it contains at least
kMaxSignificantDigits significant digits when printed as an
integer value.

1.0 Float Manager
Float Manager Functions

Palm OS Programmer’s API Reference 2357

FlpBase10Info reports that zero is "negative"; that is, it returns a
one for xSign. If this is a problem, a simple workaround is:

 if (xMantissa == 0) {
 xSign = 0;

Compatibility This function is not supported by PACE (5.0 New Feature Set).

FplDiv

Purpose Divide two floating-point numbers (result = dividend/divisor).

Prototype FloatType FplDiv (FloatType dividend,
FloatType divisor)

Parameters dividend Floating-point dividend.

divisor Floating-point divisor.

Result Returns the normalized floating-point result of the division.

Under Palm OS 2.0 and later, most applications will want to use the
arithmetic symbols instead. See the “Floating-Point” section in the
Palm OS Programmer’s Companion, vol. I.

Compatibility This function is not supported by PACE (5.0 New Feature Set).

FplFloatToLong

Purpose Convert a floating-point number to a long integer.

Prototype Long FplFloatToLong (FloatType f)

Parameters f Floating-point number to be converted.

Result Returns the long integer.

1.0 Float Manager
Float Manager Functions

2358 Palm OS Programmer’s API Reference

Compatibility This function is not supported by PACE (5.0 New Feature Set).

See Also FplLongToFloat, FplFloatToULong

FplFloatToULong

Purpose Convert a floating-point number to an unsigned long integer.

Prototype ULong FplFloatToULong (FloatType f)

Parameters f Floating-point number to be converted.

Result Returns an unsigned long integer.

Compatibility This function is not supported by PACE (5.0 New Feature Set).

See Also FplLongToFloat, FplFloatToLong

FplFree

Purpose Release all memory allocated by the floating-point initialization.

Prototype void FplFree()

Parameters None.

Result Returns nothing.

Comments Applications must call this routine after they’ve called other
functions that are part of the float manager.

Compatibility If 5.0 New Feature Set is present, this function acts as a NOP.

See Also FplInit

1.0 Float Manager
Float Manager Functions

Palm OS Programmer’s API Reference 2359

FplFToA

Purpose Convert a floating-point number to a zero-terminated ASCII string
in exponential format: [-]x.yyyyyyye[-]zz

Prototype Err FplFToA (FloatType a, char* s)

Parameters a Floating-point number.

s Pointer to buffer to contain the ASCII string.

Result Returns an error code, or 0 if no error.

Compatibility This function is not supported by PACE (5.0 New Feature Set).

See Also FplAToF, FplFree, FplInit

FplInit

Purpose Initialize the floating-point conversion routines.

Allocate space in the system heap for floating-point globals.

Initialize the tenPowers array in the globals area to the powers of
10 from -99 to +99 in floating-point format.

Prototype Err FplInit()

Parameters None.

Result Returns an error code, or 0 if no error.

Comments Applications must call this routine before calling any other Fpl
function.

Compatibility If 5.0 New Feature Set is present, this function acts as a NOP.

See Also FplFree

1.0 Float Manager
Float Manager Functions

2360 Palm OS Programmer’s API Reference

FplLongToFloat

Purpose Convert a long integer to a floating-point number.

Prototype FloatType FplLongToFloat (Long x)

Parameters x A long integer.

Result Returns the floating-point number.

Compatibility This function is not supported by PACE (5.0 New Feature Set).

FplMul

Purpose Multiply two floating-point numbers.

Prototype FloatType FplMul (FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

Result Returns the normalized floating-point result of the multiplication.

Comments Under Palm OS 2.0 and later, most applications will want to use the
arithmetic symbols instead. See the “Floating-Point” section in the
Palm OS Programmer’s Companion, vol. I.

Compatibility This function is not supported by PACE (5.0 New Feature Set).

FplSub

Purpose Subtract two floating-point numbers (returns a - b).

Prototype FloatType FplSub (FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

Result Returns the normalized floating-point result of the subtraction.

1.0 Float Manager
Float Manager Functions

Palm OS Programmer’s API Reference 2361

Comments Under Palm OS 2.0 and later, most applications will want to use the
arithmetic symbols instead. See the “Floating-Point” section in the
Palm OS Programmer’s Companion, vol. I.

Compatibility This function is not supported by PACE (5.0 New Feature Set).

1.0 Float Manager
Float Manager Functions

2362 Palm OS Programmer’s API Reference

Palm OS Programmer’s API Reference 2363

Index

Symbols
_searchF 967

Numerics
2.0 feature set 2304
3.0 feature set 2308
3.1 feature set 2312
3.2 feature set 2315
3.5 feature set 2324, 2330, 2342, 2346, 2351

A
accented characters and StrToLower 936
active form 284, 285
active window 68, 1170, 1230
adding event to event queue 942
AddrLookupParamsType 494
AlarmMgr.h 505
alarms 505–509

and launch codes 17
canceling 507
procedure alarms 508
setting 507
sysAppLaunchCmdTimeChange 35

alerts 275
custom alert 278, 279
SysFatalAlert 418

allocating chunks on dynamic heap 794
AlmAlarmProcPtr 509
almErrFull 507, 508
almErrMemory 507, 508
AlmGetAlarm 505
AlmGetProcAlarm 506
almProcCmdCustom 510
AlmProcCmdEnum 509
almProcCmdReschedule 510
almProcCmdTriggered 510
AlmSetAlarm 507
AlmSetProcAlarm 508
alphaGraffitiSilkscreenArea 954
APAlgorithmEnum 2085
APKeyClassEnum 2089
APKeyUsageEnum 2089
APModeEnum 2084

APPaddingEnum 2090
appErrorClass 645
appEvtHookKeyMask 57
AppInfoPtr 133
appInfoStringsRsc 146
AppInt32 SSL Attribute 2187
AppLaunchCmd.h 493
application preferences 842
applications

Security 34
AppPtr SSL Attribute 2188
APProviderContextStruct 2095
APProviderInfoStruct 2095
APProviderInfoType 2095
appStopEvent 43
archiving

marking record as archived 571
ARM-native code

calling 1258
atoi function substitute (StrAToI) 919
Attention Manager 91, 105
AttnCallbackProc 130
AttnCommandArgsType 107
AttnCommandType 105
AttnDoSpecialEffects 119
attnErrMemory 116
AttnFlagsType 111
AttnForgetIt 120
AttnGetAttention 121
AttnGetCounts 124
AttnIndicatorEnable 125
AttnIndicatorEnabled 126
AttnIterate 126
AttnLaunchCodeArgsType 113
AttnLevelType 114
AttnListOpen 127
AttnNotifyDetailsType 91
AttnUpdate 128
AutoFlush SSL Attribute 2188
auto-off

setting 990
timer 957

autoRepeatKeyMask 57

2364 Palm OS Programmer’s API Reference

B
badDrawWindowValue 1236
BarBeamBitmap 375
BarCopyBitmap 374
BarCutBitmap 374
BarDeleteBitmap 374
BarInfoBitmap 375
BarPasteBitmap 374
BarSecureBitmap 374
BarUndoBitmap 374
base 10 form of floating-point number 698, 2356
battery timeout 963, 965
battery voltage warning threshold 963, 965
Bitmap.h 513
BitmapCompressionType 513
BitmapDirectInfoType 514
BitmapFlagsType 515
BitmapPtr 518
bitmapRsc 535
bitmaps

drawing 1172
BitmapType 518
BitmapTypeV0 521
BitmapTypeV1 522
BitmapTypeV2 524
BitmapTypeV3 527
BitmapVersionOne 535
BitmapVersionTwo 535
BitmapVersionZero 535
blank lines in field 213
BmpBitsSize 536
BmpColortableSize 537
BmpCompress 537
BmpCreate 538
BmpCreateBitmapV3 541
BmpDelete 542
BmpGetBits 543
BmpGetColortable 544
BmpGetCompressionType 544
BmpGetDensity 545
BmpGetNextBitmapAnyDensity 548
BmpGetTransparentValue 550
BmpGetVersion 551

BmpGlueGetBitDepth 544, 1892
BmpGlueGetCompressionType 1895
BmpGlueGetDimensions 546, 1892
BmpGlueGetNextBitmap 547, 1892
BmpGlueGetTransparentValue 1895
BmpGlueSetTransparentValue 1896
BmpSetDensity 551
BmpSetTransparentValue 552
BmpSize 553
boldFont 711, 736, 1903
boot, and heap compacting 784
bound of next line for global find 250
BtLibAccessibleModeEnum 1940
btLibActiveMode 1953
BtLibAddrAToBtd 1930
BtLibAddrBtdToA 1931
btLibCachedOnly 1972
btLibCachedThenRemote 1972
BtLibCancelInquiry 1962
BtLibClassOfDeviceType 1941
BtLibClose 1960
btLibConnectableOnly 1941
BtLibConnectionRoleEnum 1946
BtLibDeviceAddressType 1946
btLibDiscoverableAndConnectable 1941
BtLibDiscoverMultipleDevices 1963
BtLibDiscoverSingleDevice 1966
BtLibFriendlyNameType 1947
BtLibGeneralPreferenceEnum 1969
BtLibGetGeneralPreference 1968
BtLibGetNameEnum 1971
BtLibGetRemoteDeviceName 1970
BtLibGetSelectedDevices 1972
BtLibHandleEvent 2297
BtLibHandleTransportEvent 2297
btLibHoldMode 1953
BtLibL2CapHToNL 1932
BtLibL2CapHToNS 1932
BtLibL2CapNToHL 1933
BtLibL2CapNToHS 1933
BtLibL2CapPsmType 1992
BtLibLanguageBaseTripletType 1992
BtLibLinkConnect 1973

Palm OS Programmer’s API Reference 2365

BtLibLinkDisconnect 1974
BtLibLinkGetState 1976
BtLibLinkModeEnum 1953
btLibLinkPref_Authenticated 1979
btLibLinkPref_Encrypted 1979
btLibLinkPref_LinkRole 1979
BtLibLinkPrefsEnum 1978
BtLibLinkSetState 1977
BtLibManagementCallback 1990
btLibManagementEventAccessibilityChange 1949
btLibManagementEventAclConnectInbound 1949
btLibManagementEventAclConnectOutbound 19

49
btLibManagementEventAclDisconnect 1950
btLibManagementEventAuthentication

Complete 1950
btLibManagementEventEncryptionChange 1950
btLibManagementEventInquiryCanceled 1951
btLibManagementEventInquiryComplete 1951
btLibManagementEventInquiryResult 1951
btLibManagementEventLocalNameChange 1951
btLibManagementEventModeChange 1952
btLibManagementEventNameResult 1953
btLibManagementEventPasskeyRequested 1954
btLibManagementEventPiconetCreated 1954
btLibManagementEventPiconetDestroyed 1954
btLibManagementEventRadioState 1955
btLibManagementEventRoleChange 1956
BtLibManagementEventType 1947
btLibMasterRole 1946
BtLibMutex 2297
btLibNotAccessible 1941
BtLibOpen 1960
BtLibOpenBackground 2297
btLibParkMode 1953
BtLibPiconetCreate 1979
BtLibPiconetDestroy 1981
BtLibPiconetLockInbound 1982
BtLibPiconetUnlockInbound 1983
btLibPref_CurrentAccessible 1969
btLibPref_LocalClassOfDevice 1969
btLibPref_Name 1969
btLibPref_UnconnectedAccessible 1970
BtLibProfileDescriptorListEntryType 2003

BtLibProtocolDescriptorListEntryType 2004
BtLibRegisterManagementNotification 1984
btLibRemoteOnly 1972
BtLibRfCommHToNL 1934
BtLibRfCommHToNS 1934
BtLibRfCommNToHL 1935
BtLibRfCommNToHS 1935
BtLibRfCommServerIdType 2004
BtLibSdpAttributeDataType 2005
BtLibSdpAttributeIdType 2006
BtLibSdpCompareUuids 2042
BtLibSdpGetPSMByUuid 2043
BtLibSdpGetRawDataElementSize 2044
BtLibSdpGetRawDataElementType 2046
BtLibSdpGetServerChannelByUuid 2047
BtLibSdpHToNL 1936
BtLibSdpHToNS 1936
BtLibSdpNToHL 1937
BtLibSdpNToHS 1937
BtLibSdpParseRawDataElement 2048
BtLibSdpRecordHandle 2007
BtLibSdpRemoteServiceRecordHandle 2007
BtLibSdpServiceRecordCreate 2050
BtLibSdpServiceRecordDestroy 2051
BtLibSdpServiceRecordGetAttribute 2052
BtLibSdpServiceRecordGetNumList Entries 2054
BtLibSdpServiceRecordGetNumLists 2056
BtLibSdpServiceRecordGetRawAttribute 2058
BtLibSdpServiceRecordGetSizeOfRaw

Attribute 2060
BtLibSdpServiceRecordGetStringOrURL

Length 2062
BtLibSdpServiceRecordMapRemote 2064
BtLibSdpServiceRecordSetAttribute 2065
BtLibSdpServiceRecordSetAttributesFor

Socket 2067
BtLibSdpServiceRecordSetRawAttribute 2068
BtLibSdpServiceRecordsGetByService Class 2070
BtLibSdpServiceRecordStartAdvertising 2072
BtLibSdpServiceRecordStopAdvertising 2073
BtLibSdpUuidInitialize 2074
BtLibSdpUuidSizeEnum 2007
BtLibSdpUuidType 2008
BtLibSdpVerifyRawDataElement 2075

2366 Palm OS Programmer’s API Reference

BtLibSecurityFindTrustedDeviceRecord 1926
BtLibSecurityGetTrustedDeviceRecordInfo 1927
BtLibSecurityNumTrustedDeviceRecords 1928
BtLibSecurityRemoveTrustedDevice Record 1929
BtLibServiceClose 2297
BtLibServiceIndicateSessionStart 2297
BtLibServiceOpen 2297
BtLibServicePlaySound 2297
BtLibSetGeneralPreference 1985
btLibSlaveRole 1946
BtLibSleep 2297
btLibSniffMode 1953
BtLibSocketAdvanceCredit 2024
BtLibSocketCallback 2076
BtLibSocketClose 2025
BtLibSocketConnect 2026
BtLibSocketConnectInfoType 2027
BtLibSocketCreate 2029
btLibSocketEventConnectedInbound 2012
btLibSocketEventConnectedOutbound 2012
btLibSocketEventConnectRequest 2013
btLibSocketEventData 2013
btLibSocketEventDisconnected 2014
btLibSocketEventSdpGetAttribute 2014
btLibSocketEventSdpGetNumListEntries 2017
btLibSocketEventSdpGetNumLists 2017
btLibSocketEventSdpGetPsmByUuid 2021
btLibSocketEventSdpGetRawAttribute 2018
btLibSocketEventSdpGetRawAttributeSize 2019
btLibSocketEventSdpGetServerChannelBy

Uuid 2020
btLibSocketEventSdpGetStringLen 2016
btLibSocketEventSdpServiceRecordHandle 2014
btLibSocketEventSendComplete 2022
BtLibSocketEventType 2010
BtLibSocketGetInfo 2031
btLibSocketInfo_L2CapChannel 2033
btLibSocketInfo_L2CapPsm 2033
btLibSocketInfo_MaxRxSize 2033
btLibSocketInfo_MaxTxSize 2033
btLibSocketInfo_Protocol 2033
btLibSocketInfo_RemoteDeviceAddress 2033
btLibSocketInfo_RfCommOutstandingCredits 203

4

btLibSocketInfo_RfCommServerId 2034
btLibSocketInfo_SdpServiceRecordHandle 2034
btLibSocketInfo_SendPending 2034
BtLibSocketInfoEnum 2032
BtLibSocketListen 2034
BtLibSocketListenInfoType 2036
BtLibSocketRef 2010
BtLibSocketRespondToConnection 2038
BtLibSocketSend 2040
BtLibStartInquiry 1987
BtLibStringType 2011
BtLibUnload 2297
BtLibUnregisterManagementNotification 1988
BtLibUrlType 2011
BtLibWake 2297
BufferedReuse SSL Attribute 2189
busy bit 619
ButtonFrameType 157
buttons (silk-screened buttons) 56
byteAttrFirst 998
byteAttrLast 998
byteAttrMiddle 998
byteAttrSingle 998

C
calibrating the pen 825
canceling alarms 507
capsLockMask 57
card number 777
categories, setting label 313
category

DmSeekRecordInCategory 631
moving records 603

Category Constants 133
Category Data Structures 133
Category Functions 133
CategoryCreateList 136, 142, 2306
CategoryCreateListV10 138
categoryDefaultEditCategoryString 135, 137, 139,

147, 2329
categoryDefaultEditString 137, 148
CategoryEdit 139, 2306
CategoryEditV10 141

Palm OS Programmer’s API Reference 2367

CategoryEditV20 140
CategoryFind 141
CategoryFreeList 142, 2306
CategoryFreeListV10 143
CategoryGetName 144
CategoryGetNext 145
categoryHideEditCategory 135, 137, 148, 2329
CategoryInitialize 134, 146
CategorySelect 147, 2306
CategorySelectV10 149
CategorySetName 150
CategorySetTriggerLabel 151
CategoryTruncateName 152
cCountryName constants 767
character attribute functions 555–559
character encodings 1003, 1021, 1028, 1035
characters

See Also multi-byte characters
attributes 1000, 1004, 1005, 1006, 1008, 1009,

1010, 1011, 1013
converting 1036
drawable 1011
drawing in window 1174
erasing 1181
graphic 1006
inverting 1198
printable 1009
size 1012
sorting text 559
valid 1011

CharAttr.h 555
charAttrAlNum 1000
charAttrAlpha 1000
charAttrCntrl 1000
charAttrDelim 1001
charAttrGraph 1001
charAttrPrint 1000
charAttrSpace 1000
charEncoding... constants 766
CharEncodingType 765, 997
charEncodingUnknown 1029
checkboxFont 717
checkboxTableItem 424
ChrHorizEllipsis 555, 2313

ChrIsHardKey 556
ChrNumericSpace 556, 2313
chunks

card number 777
disposing of chunk 778
heap ID 779, 793
locking 779
size 782
unlocking 783, 797

CipherSuite SSL Attribute 2190
CipherSuiteInfo SSL Attribute 2190
CipherSuites SSL Attribute 2191
clipboard 205, 206, 226
Clipboard.h 153
ClipboardAddItem 154
ClipboardAppendItem 155
ClipboardFormatType 153
ClipboardGetItem 156
Clipper application 2318
clipping rectangle 1233
closing net library 1424, 1438
CncAddProfile 1273
CncDefineParamID 1275
CncDefineParamId 1272
CncDeleteProfile 1277
CncGetParamType 1272, 1278
CncGetProfileInfo 1278
CncGetProfileList 1280
CncGetSystemFlagBitnum 1283
CncGetTrueParamID 1283
CncIsFixedLengthParamType 1284
CncIsSystemFlags 1284
CncIsSystemRange 1285
CncIsThirdPartiesRange 1285
CncIsVariableLengthParamType 1286
cncNotifyProfileEvent 75
CncProfileCloseDB 1286
CncProfileCount 1287
CncProfileCreate 1275, 1288
CncProfileDelete 1288
CncProfileGetIDFromIndex 1263, 1290
CncProfileGetIDFromName 1263, 1291
CncProfileGetIndex 1291
CncProfileID 1263

2368 Palm OS Programmer’s API Reference

CncProfileNotifyDetailsType 76
CncProfileOpenDB 1292
CncProfileSetCurrent 1293
CncProfileSettingGet 1270, 1273, 1294
CncProfileSettingSet 1270, 1295
ColorTableEntries 554
ColorTableType 531
commandChr 372, 381, 383, 384, 388
commandKeyMask 57
compacting heaps 784
comparing memory blocks 776
Compat SSL Attribute 2192
compatibility 2303–??
connect 1508
connection manager 2322
ConnectionMgr.h 1263
constantRscType 501
ContrastAdjust 490, 2327
control objects

and pen tracking 62
drawing 167
erasing 168
selection in a group 285
structure 157

Control.h 157
ControlAttrType 158
controlKeyMask 57
ControlPtr 159
ControlStyleType 160, 1897
ControlType 44, 45, 161
coordinates, display-relative vs. window-

relative 1172
CoreTraps.h 979, 990
CountryType 763, 811
CPM and AP Constants 2082
CPMLibGenerateKey 2116
Crc.h 1247
Crc16CalcBlock 1247
creating active window 1170
creating modal window 1170
creator ID 30
CtlDrawControl 159, 167
CtlEnabled 158, 168
ctlEnterEvent 44, 45, 171, 298

CtlEraseControl 159, 168
ctlExitEvent 44, 45, 171
CtlGetLabel 162, 169
CtlGetSliderValues 169
CtlGetValue 159, 166, 170
CtlGlueGetFont 1897
CtlGlueGetGraphics 1898
CtlGlueNewSliderControl 1899
CtlGlueSetFont 1900
CtlGlueSetLeftAnchor 1901
CtlHandleEvent 44, 45, 171
CtlHideControl 158, 172
CtlHitControl 172
CtlNewControl 173
CtlNewGraphicControl 173, 175
CtlNewSliderControl 173
ctlRepeatEvent 44, 171, 298, 2328
ctlSelectEvent 44, 45, 298, 2328
CtlSetEnabled 158, 178
CtlSetGraphics 163, 164, 179
CtlSetLabel 162, 180
CtlSetSliderValues 181
CtlSetUsable 158, 182
CtlSetValue 159, 166, 182
CtlShowControl 158, 183
CtlValidatePointer 184
current time 35
custom fill patterns, getting 1192
CustomPatternType 1147
customTableItem 424, 425, 476

D
data manager error codes 566–569, 594
data storage heap 792

handles 778
database ID 587
databases

closing 574
creating 575
cutting and pasting 573
deleting. See Also DmDatabaseProtect
overlays 613
SysCreateDataBaseList 970

DataMgr.h 561

Palm OS Programmer’s API Reference 2369

date 188
date system resource 185
DateAdjust 1055
DateDaysToDate 1056
DateGlueTemplateToAscii 1060, 1892
DateGlueToDOWDMFormat 1064, 1892
DatePtr 1049
DateSecondsToDate 1056
dateStringLength 1061
dateTableItem 424
DateTemplateToAscii 1057
DateTime.h 1045
DateTimePtr 1048
DateTimeType 1048
DateToAscii 1061
DateToDays 1062
DateToDOWDMFormat 1063
DateType 1049
day selector object 46
Day.h 185
DayDrawDays 186
DayDrawDaySelector 187
DayHandleEvent 187
DayOfMonth 1051, 1064
DayOfWeek 1065
DayOfWeekType 1053
daySelectEvent 46
DaysInMonth 1066
debugging and MemHeapScramble 787
debugging mode 777, 798
defaultAlarmSoundLevel 840
defaultAlarmSoundVolume 840
defaultAutoLockTime 840
defaultAutoLockTimeFlag 840
defaultAutoLockType 840
defaultAutoOffDuration 830, 840
defaultAutoOffDurationSecs 835, 840
defaultBoldFont 1903
defaultGameSoundLevel 840
defaultGameSoundVolume 840
defaultLargeFont 1902
defaultSmallFont 1902
defaultSysSoundLevel 840

defaultSysSoundVolume 840
defaultSystemFont 1902
delete bit 582, 585
delete callback function 1352
DeleteProc 1315, 1317, 1352
deleting databases See Also DmDatabaseProtect
deleting records 584
DensityType 531
DeviceInfoType 1572
DeviceInfoType structure 1551
dialogs

Edit Categories 139
digitizer

and PenResetCalibration function 826
and penUpEvent 63
EvtProcessSoftKeyStroke 956

DirectionType 229
DlkCallAppReplyParamType 1249
DlkControl 1248
DlkGetSyncInfo 1251
DLServer.h 1247
dmAllCategories 142, 563, 611
dmAllHdrAttrs 565
dmAllRecAttrs 563
DmArchiveRecord 571
DmAttachRecord 572
DmAttachResource 573
dmCategoryLength 133, 144, 563
DmCloseDatabase 574
DmComparF 590, 602, 621, 640
DmCreateDatabase 575
DmCreateDatabaseFromImage 577
DmDatabaseInfo 577
DmDatabaseProtect 574, 580
DmDatabaseSize 581
dmDBNameLength 570, 575, 633
DmDeleteCategory 582
DmDeleteDatabase 574, 583
DmDeleteRecord 584
DmDetachRecord 585
DmDetachResource 586
dmErrDatabaseNotProtected 567
dmErrRecordArchived 568
DmFindDatabase 576, 584, 587

2370 Palm OS Programmer’s API Reference

DmFindRecordByID 587
DmFindResource 588
DmFindResourceType 589
DmFindSortPosition 590, 2306
DmFindSortPositionV10 591
DmGet1Resource 601, 602, 609
DmGetAppInfoID 592
DmGetDatabase 584, 593
DmGetDatabaseLockState 593
DmGetLastErr 594, 595
DmGetNextDatabaseByTypeCreator 596
DmGetRecord 599
DmGetResource 600, 601
DmGetResourceIndex 601
dmHdrAttrAppInfoDirty 565
dmHdrAttrBackup 565
dmHdrAttrBundle 565
dmHdrAttrCopyPrevention 565
dmHdrAttrHidden 565
dmHdrAttrLaunchableData 566
dmHdrAttrOKToInstallNewer 566
dmHdrAttrOpen 566
dmHdrAttrReadOnly 566
dmHdrAttrRecyclable 574
dmHdrAttrResDB 566
dmHdrAttrResetAfterInstall 566
dmHdrAttrStream 566
DmInsertionSort 602
dmMaxRecordIndex 563, 572, 607
dmModeExclusive 570
dmModeLeaveOpen 570
dmModeReadOnly 570
dmModeReadWrite 570
dmModeShowSecret 570
dmModeWrite 570
DmMoveCategory 603
DmMoveRecord 605
DmNewHandle 606
DmNewRecord 607
DmNewResource 608
DmNextOpenDatabase 609
DmNextOpenResDatabase 609
DmNumDatabases 610

DmNumRecords 611
DmNumRecordsInCategory 611
DmNumResources 612
DmOpenDatabase 570, 613
DmOpenDatabaseByTypeCreator 615
DmOpenDatabaseInfo 616
DmOpenDBNoOverlay 570, 617
DmOpenRef 561
DmPositionInCategory 618
DmQueryNextInCategory 619
DmQueryRecord 620
DmQuickSort 621
dmRecAttrBusy 563
dmRecAttrCategoryMask 563, 604
dmRecAttrDelete 563
dmRecAttrDirty 563
dmRecAttrSecret 563
dmRecNumCategories 133, 563
DmRecordInfo 622
DmReleaseRecord 599, 607, 623
DmReleaseResource 608, 623
DmRemoveRecord 624
DmRemoveResource 625
DmRemoveSecretRecords 626
DmResID 561
DmResizeRecord 626
DmResizeResource 627
DmResourceInfo 628
DmResType 562
DmSearchRecord 629
DmSearchResource 601, 629
DmSearchStatePtr 596
DmSearchStateType 596
dmSeekBackward 631
dmseekForward 631
DmSeekRecordInCategory 631
DmSet 632
DmSetDatabaseInfo 633
DmSetRecordInfo 635
DmSetResourceInfo 636
DmStrCopy 637
dmSysOnlyHdrAttrs 566
dmSysOnlyRecAttrs 563

Palm OS Programmer’s API Reference 2371

dmUnfiledCategory 563, 1323
DmWrite 638
DmWriteCheck 639
DontSendShutdown SSL Attribute 2193
DontWaitForShutdown SSL Attribute 2193
doubleTapKeyMask 57
dowDateStringLength 1063
dowLongDateStrLength 1063
doze mode

SysTaskDelay 992
Dragonball EZ 2313
draw window 1235
drawable characters 1011
drawDetail structure 108
drawing rectangular frame 1176, 1179, 1208
drawItemsCallback 343, 355
drawList structure 109
DrawStateType 1147
DrvEntryPoint

for virtual driver 1538
DrvrInfoType structure 1523
DrvrRcvQType structure 1525
DrvrStatusEnum 1526
dynamic heap

adding chunk 780
allocating chunk 794
moving memory 790
reinitializing 989
test 784

dynamic heap handles 778
dynamic scrolling 66

E
Edit Categories dialog 139
editingStrID 137, 147
enabling windows 1171
erasing characters 1181
erasing lines in window 1182
erasing rectangle 1183
ErrAlert 644
ErrCatch 645, 650
ErrDisplay 646
ErrDisplayFileLineMsg 647
ErrEndCatch 647, 650

ErrExceptionList 648
ErrExceptionType 644
ErrFatalDisplayIf 648
errNone 1322, 1585
ErrNonFatalDisplayIf 649
error code from data manager call 594
error manager 643–650
Error SSL Attribute 2194
ERROR_CHECK_FULL 643
ERROR_CHECK_LEVEL 643, 646, 649
ERROR_CHECK_NONE 643
ERROR_CHECK_PARTIAL 643
ErrorBase.h 643
ErrorMgr.h 643
ErrThrow 650
ErrTry 650
event queue, adding event 942
Event.H 941
Event.h 39, 2328
EventPtr 43
events 39, 69
eventsEnum 40
EventType 39–69, 2327
EvtAddEventToQueue 942
EvtAddUniqueEventToQueue 942
EvtCopyEvent 944
EvtDequeuePenPoint 945
EvtDequeuePenStrokeInfo 945
EvtEnableGraffiti 946
EvtEnqueueKey 946
EvtEventAvail 947
EvtFlushKeyQueue 948
EvtFlushNextPenStroke 948
EvtFlushPenQueue 949
EvtGetEvent 62, 804, 805
EvtGetPen 950
EvtGetPenBtnList 951
EvtGetPenNative 952
EvtKeyQueueEmpty 955
EvtKeyQueueSize 955
EvtPenQueueSize 956
EvtProcessSoftKeyStroke 956
EvtResetAutoOffTimer 957

2372 Palm OS Programmer’s API Reference

EvtSetAutoOffCmd 958
EvtSysEventAvail 959
evtWaitForever 62, 949, 1643, 1644
EvtWakeup 960, 1591
EvtWakeupWithoutNilEvent 960
exchange manager 1297, 2310
ExgAccept 21, 22, 1309, 1317, 1320, 1342
exgAskCancel 18
exgAskOk 18
ExgAskParamType 19
ExgAskResultType 1297
exgBeamPrefix 1308
exgBeamScheme 1308, 1309
ExgConnect 1310, 1320
ExgControl 1313
ExgDBDeleteProcPtr 659, 1122, 1315
ExgDBRead 1315, 1353
ExgDBReadProcPtr 1353
ExgDBWrite 1318
ExgDBWriteProcPtr 660, 1129, 1318
ExgDialogInfoType 1322, 1323
ExgDisconnect 19, 21, 1312, 1319, 1326, 1340, 1342,

1350
ExgDoDialog 18, 1298, 1322, 1335, 1337
exgErrNoKnownTarget 1327, 1332, 1333, 1335,

1337, 1338, 1351
exgErrNotSupported 1302, 1335
ExgGet 1312, 1320, 1325, 1326, 1342
exgGet 1337
ExgGetDefaultApplication 1327
ExgGetRegisteredApplications 1328
ExgGetRegisteredTypes 1330
ExgGetTargetApplication 1331, 1336, 1337
ExgGoToType 1298
ExgLibAccept 1357
exgLibAPIVersion 1314
ExgLibClose 1358
ExgLibConnect 1359
ExgLibControl 1360
exgLibCtlGetPreview 1314
exgLibCtlGetTitle 1314
exgLibCtlGetVersion 1314
exgLibCtlSpecificOp 1315
ExgLibDisconnect 1362

ExgLibGet 1363
ExgLibHandleEvent 1364
ExgLibOpen 1365
ExgLibPut 1366
ExgLibReceive 1368
ExgLibRequest 1369
ExgLibSend 1370
ExgLibSleep 1371
exgLibSmsIncompleteDeleteOp 2233
exgLibSmsIncompleteGetCountOp 2233
exgLibSmsPrefDisplayOp 2233
exgLibSmsPrefGetDefaultOp 2233
exgLibSmsPrefGetOp 2233
exgLibSmsPrefSetOp 2233
ExgLibWake 1372
ExgLocalLib.h 1297
exgLocalOpAccept 1300
exgLocalOpGet 1300
exgLocalOpGetSender 1300
exgLocalOpNone 1300
exgLocalOpPut 1300
ExgLocalOpType 1299
exgLocalPrefix 1305, 1309
exgLocalScheme 1308, 1309
ExgLocalSocketInfoType 1299
exgMaxDescriptionLength 1329, 1343
exgMaxTitleLen 1329
exgMaxTypeLength 1329, 1330, 1343
exgMemError 1331, 1344
ExgMgr.h 653, 1297
exgNoAsk 1337
ExgNotifyGoto 1320, 1321, 1334, 1339
ExgNotifyPreview 1301, 1323, 1335
ExgNotifyReceive 1333, 1334, 1336
exgPreviewDialog 20, 1301
exgPreviewDraw 20, 1301
exgPreviewFirstUser 21, 1302
ExgPreviewInfoType 1300, 1301, 1335
exgPreviewLastUser 21, 1302
exgPreviewLongString 20, 1301
exgPreviewQuery 20, 1302
exgPreviewShortString 1302
ExgPut 19, 1312, 1319, 1320, 1339, 1350

Palm OS Programmer’s API Reference 2373

ExgReceive 21, 22, 1312, 1317, 1326, 1341, 1353
exgRegCreatorID 1307, 1345
exgRegExtensionID 1307, 1327
ExgRegisterData 28
ExgRegisterDatatype 1342
ExgRegisterDataV35 1347
exgRegSchemeID 1307, 1328, 1346
exgRegTypeID 1307, 1345
ExgRequest 27, 1348
ExgSend 19, 1312, 1319, 1340, 1349, 1355
exgSendBeamPrefix 1309
exgSendPrefix 1308
exgSendScheme 1308, 1309, 1346
ExgSetDefaultApplication 1345, 1346, 1350
ExgSocketType 19, 656, 1298, 1303, 1315, 1318
exgTitleBufferSize 1314
exgUnwrap 1337, 1338, 1344
Expansion Manager 79, 80, 653
expCapabilityHasStorage 654
expCapabilityReadOnly 654
expCapabilitySerial 654
ExpCardGetSerialPort 656
ExpCardInfo 657
ExpCardInfoType 653
ExpCardPresent 658
expErrCardBadSector 655
expErrCardNoSectorReadWrite 655
expErrCardNotPresent 654
expErrCardProtectedSector 655
expErrCardReadOnly 655
expErrEnumerationEmpty 655
expErrIncompatibleAPIVer 655
expErrInvalidSlotRefNum 655
expErrNotEnoughPower 654
expErrNotOpen 655
expErrSlotDeallocated 655
expErrStillOpen 655
expErrUnimplemented 655
expErrUnsupportedOperation 654
expHandledSound 80
expHandledVolume 80
expMediaType_Any 656
expMediaType_CompactFlash 656

expMediaType_MacSim 656
expMediaType_MemoryStick 656
expMediaType_MultiMediaCard 656
expMediaType_PoserHost 656
expMediaType_RAMDisk 656
expMediaType_SecureDigital 656
expMediaType_SmartMedia 656
ExpSlotDriverInstall 659
ExpSlotDriverRemove 660
ExpSlotEnumerate 661
ExpSlotLibFind 662
extended font resource (nfnt) 721
extended gadget 259, 318, 327
EZ Dragonball 2313

F
fatal alert 418
FatalAlert.h 417
fcntl 1501
FeatureMgr.h 665
features See functions starting with Ftr
fgetc 899
fgets 900
field objects

and text height 218
modifying 208
structure 198

Field.h 195
FieldAttrType 195
FieldPtr 198
FieldType 198
file mode constants 673, 674
file streaming 2309
FileClearerr 675
FileClose 675
FileControl 676
FileDelete 680
FileDmRead 681
FileEOF 682
FileError 683
FileFlush 683
FileGetLastError 684
FileInfoType 1075

2374 Palm OS Programmer’s API Reference

FileOpen 685
FileOpEnum 677
FileOriginEnum 689
FileRead 687
FileRef 1076
FileRewind 688
FileSeek 688
FileStream.h 673
FileTell 689
FileTruncate 690
FileWrite 691
fill patterns

getting 1192
setting 1238

Find (global find) 22, 26, 249–253
saving data 33

Find (lookup) 31
Find icon 56
Find.h 249
FindDrawHeader 25, 249
FindGetLineBounds 250
FindParamsType 22, 23
FindSaveMatch 24, 27, 250
FindStrInStr 24, 252
flags, launch flags 36
FldCalcFieldHeight 204
fldChangedEvent 47, 230, 2306
FldCompactText 205
FldCopy 205
FldCut 206
FldDelete 207
FldDirty 208
FldDrawField 208
fldEnterEvent 47, 221, 298
FldEraseField 209
FldFreeMemory 210
FldGetAttributes 211
FldGetBounds 211
FldGetFont 212
FldGetInsPtPosition 212
FldGetMaxChars 213
FldGetNumberOfBlankLines 213
FldGetScrollPosition 214
FldGetScrollValues 214

FldGetSelection 215
FldGetTextAllocatedSize 216
FldGetTextHandle 217
FldGetTextHeight 218
FldGetTextLength 219
FldGetTextPtr 219
FldGetVisibleLines 220
FldGrabFocus 220, 446
FldHandleEvent 47, 48, 221
fldHeightChangedEvent 48, 223, 231, 298
FldInsert 222
FldMakeFullyVisible 223
FldNewField 224
FldPaste 226
FldRecalculateField 227
FldReleaseFocus 228
FldScrollable 228
FldScrollField 229
FldSendChangeNotification 230
FldSendHeightChangeNotification 231
FldSetAttributes 231
FldSetBounds 232
FldSetDirty 234
FldSetFont 235
FldSetInsertionPoint 235
FldSetInsPtPosition 236
FldSetMaxChars 237
FldSetMaxVisibleLines 237
FldSetScrollPosition 238
FldSetSelection 239
FldSetText 240
FldSetTextAllocatedSize 242
FldSetTextHandle 243
FldSetTextPtr 245
FldSetUsable 246
FldUndo 246
FldWordWrap 247
FloatMgr.h 695
FloatMgr.h (Palm OS 1.0) 2355
FloatMgrOld.h 2355
flushing pen queue 949
fntAppCustomBase 712
FntAverageCharWidth 713, 716, 723

Palm OS Programmer’s API Reference 2375

FntBaseLine 714, 716, 723
FntCharHeight 713, 716, 724
FntCharsInWidth 724
FntCharsWidth 725
FntCharWidth 710, 714, 716, 726
FntDefineFont 727
FntDescenderHeight 714, 716, 728
fntExtendedFormatMask 715, 717
FntGetFont 711, 728
FntGetFontPtr 729
FntGetScrollValues 729
FntGlueGetDefaultFontID 736, 1902
FntGlueWCharWidth 726, 733, 1892
FntGlueWidthToOffset 734, 1892
FntLineHeight 714, 716, 731
FntLineWidth 731
fntMissingChar 717
FntSetFont 711, 732
fntTabChrWidth 717
FntWCharWidth 710, 714, 716, 726, 732
FntWidthToOffset 725, 733
FntWordWrap 734
FntWordWrapReverseNLines 735
focus

and modal window 1201
FrmGetFocus 287
FrmSetFocus 316

font resource (NFNT) 718
font resource, extended (nfnt) 721
Font.h 709
FontCharInfoPtr 709
FontCharInfoType 709, 714, 716
FontDefaultType 1902
FontDensityType 710, 717
FontID 711, 727
FontPtr 712
fonts

and FldGetFont 212
FontSelect 736
FontSelect.h 709
FontType 712, 719
FontTypeV2 710, 714, 721
form objects

FormType structure 271

functions 274–325
form, active 284, 285
Form.h 255
FormActiveStateType 310, 312
FormAttrType 255
FormBitmapType 257
FormCheckResponseFuncType 274, 279, 325
FormEventHandlerType 272, 327
FormFrameType 257
FormGadgetAttrType 258
formGadgetDeleteCmd 280, 283, 327
formGadgetDrawCmd 322, 328
formGadgetEraseCmd 301, 328
formGadgetHandleEventCmd 328
FormGadgetHandlerType 49, 50, 280, 283, 301,

322, 327
FormGadgetType 49, 51, 261, 327
FormGadgetTypeInCallback 262
FormLabelType 263
FormLineType 264
FormObjAttrType 265
FormObjectKind 265
FormObjectType 267
FormObjListType 268
FormPopupType 269
FormPtr 270
FormRectangleType 270
FormTitleType 271
FormType 271, 1906
FplAdd 2355
FplAToF 2356
FplBase10Info 2356
FplDiv 2357
FplFloatToLong 2357
FplFloatToULong 2358
FplFree 2358
FplFToA 2359
FplInit 2359
FplLongToFloat 2360
FplMul 2360
FplSub 2360
fprintf 900
fputc 901

2376 Palm OS Programmer’s API Reference

fputs 902
frame type constants 1152
FrameBitsType 1151
frames

drawing in window 1176, 1179, 1208
FrameType 1152
FrmAlert 275
FrmCloseAllForms 49, 276
frmCloseEvent 49, 276, 296, 298
FrmCopyLabel 276
FrmCopyTitle 277
FrmCustomAlert 278
FrmCustomResponseAlert 279
FrmDeleteForm 280, 327
FrmDispatchEvent 281, 297
FrmDoDialog 281
FrmDrawForm 282, 299, 328
FrmEraseForm 54, 283
frmGadgetEnterEvent 49, 298, 329
frmGadgetMiscEvent 50, 298, 329
FrmGetActiveField 284
FrmGetActiveForm 284
FrmGetActiveFormID 285
FrmGetControlGroupSelection 285
FrmGetControlValue 286
FrmGetFirstForm 287
FrmGetFocus 287
FrmGetFormBounds 288
FrmGetFormId 288
FrmGetFormPtr 289
FrmGetGadgetData 261, 289
FrmGetLabel 290
FrmGetNumberOfObjects 290
FrmGetObjectBounds 162, 163, 165, 291
FrmGetObjectId 291
FrmGetObjectIndex 292
FrmGetObjectPosition 294
FrmGetObjectPtr 294
FrmGetObjectType 295
FrmGetTitle 295
FrmGetWindowHandle 296
FrmGlueGetActiveField 1904
FrmGlueGetDefaultButtonID 1904

FrmGlueGetHelpID 1905
FrmGlueGetLabelFont 1905
FrmGlueGetMenuBarID 1906
FrmGlueSetDefaultButtonID 1907
FrmGlueSetHelpID 1907
FrmGlueSetLabelFont 1908
frmGotoEvent 51
FrmGotoForm 49, 52, 296
FrmGraffitiStateType 273
FrmHandleEvent 49, 53, 63, 297, 328
FrmHelp 300
FrmHideObject 169, 172, 259, 301, 328
FrmInitForm 302
frmInvalidObjectId 292
frmLoadEvent 52, 296
FrmNewBitmap 303
FrmNewForm 304
FrmNewGadget 305
FrmNewGsi 306
FrmNewLabel 307
frmNoSelectedControl 274, 285
frmOpenEvent 51, 52, 272, 281, 282, 296, 309
FrmPointInTitle 308
FrmPopupForm 52, 309
frmRedrawUpdateCode 55, 274, 322
FrmRemoveObject 309
frmResponseCreate 274, 326
frmResponseQuit 274, 326
FrmRestoreActiveState 310, 312
FrmReturnToForm 311
FrmSaveActiveState 310, 312
FrmSaveAllForms 53, 312
frmSaveEvent 53, 312
FrmSetActiveForm 68, 313
FrmSetCategoryLabel 313
FrmSetControlGroupSelection 314
FrmSetControlValue 315
FrmSetEventHandler 316
FrmSetFocus 316, 446
FrmSetGadgetData 261, 317
FrmSetGadgetHandler 261, 318
FrmSetMenu 319, 379, 385, 386
FrmSetObjectBounds 162, 163, 165, 319

Palm OS Programmer’s API Reference 2377

FrmSetObjectPosition 320
FrmSetTitle 320
FrmShowObject 184, 259, 321, 328
frmTitleEnterEvent 53, 298
frmTitleSelectEvent 53, 298, 2328
frmUpdateEvent 54, 274, 282, 299, 322
FrmUpdateForm 54, 55, 322
FrmUpdateScrollers 323
FrmValidatePtr 323
FrmVisible 325
ftrErrNoSuchFeature 665, 666, 667, 669, 670, 671
FtrGet 665
FtrGetByIndex 666
FtrPtrFree 667
FtrPtrNew 667
FtrPtrResize 669
FtrSet 670
FtrUnregister 670

G
gadget resource 259, 317

extended 259, 318, 327
getchar 902
GetCharAttr 557
GetCharCaselessValue 558
GetCharSortValue 559
gethostname 1481
gets 903
GetSize 1546
GetSpace 1547
global find 22, 26, 249–253, 1022, 1914, 1918

FindDrawHeader 249
FindGetLineBounds 250
saving data 33

gotIt structure 110
goto (global find) 26
GoToParamsType 26
Graffiti

Command shortcuts 60
enabling and disabling 946

Graffiti manager
functions 737–747

Graffiti recognizer
EvtDequeuPenPoint 945

Graffiti Reference Dialog 418
Graffiti Shift

functions 331–333
Graffiti.h 737
GraffitiReference.h 417
GraffitiShift.h 331
GraffitiUI.h 417
graphic characters 1006
GraphicControlType 162, 167
GraphicStatePtr 1159
GrfAddMacro 737
GrfAddPoint 738
GrfCleanState 738
GrfDeleteMacro 739
GrfFilterPoints 739
GrfFindBranch 740
GrfFlushPoints 740
GrfGetAndExpandMacro 741
GrfGetGlyphMapping 741
GrfGetMacro 742
GrfGetMacroName 742
GrfGetNumPoints 743
GrfGetPoint 743
GrfGetState 744
GrfInitState 745
GrfMatch 745
GrfMatchGlyph 746
GrfProcessStroke 746
GrfSetState 747
groups of controls 285
GsiEnable 331
GsiEnabled 332
GsiInitialize 332
GsiSetLocation 332
GsiSetShiftState 333

H
hard reset 35
header line for global find 249
heap ID 786, 793

of chunk 779
heaps

compacting 784

2378 Palm OS Programmer’s API Reference

free bytes 785
ROM based 785

height of text in field 218
Helper API 749
Helper.h 749
HelperNotifyEnumerateListType 749
HelperNotifyEventType 749, 751, 754
HelperNotifyExecuteType 752, 755, 756
HelperNotifyValidateType 754
HelperServiceClass.h 749
HelperServiceEMailDetailsType 754, 755
HelperServiceSMSDetailsType 754
HelperServiceSMSDetailType 756
HostControl.h 980
hostent 1414
HostGremlinIsRunning 980
HotSync and sysAppLaunchCmdSyncNotify 34
HotSync operation 101
HsState SSL Attribute 2194

I
icons 56
iconType 535
ID

databases 587
heap 786

iMessenger application 2318
IndexedColorType 1153
INetCacheEntryType 1856
INetCacheInfoType 1854
inetCfgName... constants 1850–1851
inetCompressionType... constants 1840
INetCompressionTypeEnum 1839
INetConfigNameType 1840
inetContentType... constants 1841
INetContentTypeEnum 1841
inetHTTPAttr... constants 1843–1844
INetHTTPAttrEnum 1841
INetLibCacheGetObject 1853
INetLibCacheList 1854
INetLibCheckAntennaState 1856
INetLibClose 1857
INetLibConfigAliasGet 1858

INetLibConfigAliasSet 1859
INetLibConfigDelete 1860
INetLibConfigIndexFromName 1861
INetLibConfigList 1862
INetLibConfigMakeActive 1863
INetLibConfigRename 1864
INetLibConfigSaveAs 1865
INetLibGetEvent 1866
INetLibOpen 1867
INetLibSettingGet 1868
INetLibSettingSet 1869
INetLibSockClose 1870
INetLibSockConnect 1871
INetLibSockHTTPAttrGet 1872
INetLibSockHTTPAttrSet 1873
INetLibSockHTTPReqCreate 1874
INetLibSockHTTPReqSend 1875
INetLibSockOpen 1877
INetLibSockRead 1878
INetLibSockSettingGet 1879
INetLibSockSettingSet 1880
INetLibSockStatus 1881
INetLibURLCrack 1882
INetLibURLGetInfo 1884
INetLibURLOpen 1885
INetLibURLsAdd 1886
INetLibWiCmd 1888
INetMgr.h 39, 1839, 2237
inetOpenURLFlag... constants 1852
inetScheme... constants 1844–1845
INetSchemeEnum 1844
inetSetting... constants 1846–1847
INetSettingEnum 1845
inetSockReadyEvent 55
inetSockSetting... constants 1848–1849
INetSockSettingEnum 1847
inetSockStatusChangeEvent 56
inetStatus... constants 1850
INetStatusEnum 1849
InetURLInfo type 1884
inetURLInfoFlag... constants 1852
InetURLType 1883
InfoInterest SSL Attribute 2196

Palm OS Programmer’s API Reference 2379

initialization 30
insertion point functions 335–338
insertion points

and FldGetInsPtPosition 212
and FldGrabFocus 220
and FldReleaseFocus 228
and FldSetInsertionPoint 235
displayed in field 209

insertion sort 983
InsPoint.h 335
InsPtEnable 335
InsPtEnabled 336
InsPtGetHeight 336
InsPtGetLocation 337
InsPtSetHeight 337
InsPtSetLocation 338
international manager 2316
Internet library 1839
intlErrInvalidSelector 1256
IntlGetRoutineAddress 1255, 1256
IntlGlue.h 1909
IntlGlueGetRoutineAddress 1908
IntlMgr.h 1247, 1255, 1256, 1908
IntlSetRoutineAddress 1256
inverting characters in draw window 1198
inverting line in draw window 1199
IoFlags SSL Attribute 2197
IoStruct SSL Attribute 2198
IoTimeout SSL Attribute 2197
IR Library 2310
IR manager 1373
IrAdvanceCredit 1383
IrBind 1384
IrCallbackParms 1377
IrClose 1385
IrConnectIrLap 1385
IrConnectReq 1386
IrConnectRsp 1388
IrDataReq 1389
IrDisconnectIrLap 1390
IrDiscoverReq 1391
irGetScanningMode 1378
irGetStatistics 1378
IrIAS_Add 1400

IrIAS_GetInteger 1401
IrIAS_GetIntLsap 1401
IrIAS_GetObjectID 1402
IrIAS_GetOctetString 1403
IrIAS_GetOctetStringLen 1403
IrIAS_GetType 1404
IrIAS_GetUserString 1404
IrIAS_GetUserStringCharSet 1404
IrIAS_GetUserStringLen 1405
IrIAS_Next 1406
IrIAS_Query 1406
IrIAS_SetDeviceName 1408
IrIAS_StartResult 1409
IrIasQueryCallback 1409
IrIsIrLapConnected 1392
IrIsMediaBusy 1392
IrIsNoProgress 1393
IrIsRemoteBusy 1393
irlib.h 1373
IrLocalBusy 1393
IrMaxRxSize 1394
IrMaxTxSize 1395
IrOpen 1395
irRestoreScanning 1378
irSetBaudMask 1379
IrSetConTypeLMP 1396
IrSetConTypeTTP 1397
IrSetDeviceInfo 1397
irSetScanningMode 1379
irSetSerialMode 1380
irSetSupported 1380
irSuppressScanning 1380
IrTestReq 1398
IrUnbind 1399
ISO 639 767
iterate structure 111

J
Japanese feature set 2318

K
kAttnCommandCustomEffect 106
kAttnCommandDrawDetail 106

2380 Palm OS Programmer’s API Reference

kAttnCommandDrawList 106
kAttnCommandGoThere 106
kAttnCommandGotIt 106
kAttnCommandIterate 107
kAttnCommandPlaySound 106
kAttnCommandSnooze 107
kAttnFlagsAllBits 112
kAttnFlagsAlwaysCustomEffect 112
kAttnFlagsAlwaysLED 112
kAttnFlagsAlwaysSound 112
kAttnFlagsAlwaysVibrate 112
kAttnFlagsCapabilitiesMask 117
kAttnFlagsCustomEffectBit 112
kAttnFlagsEverything 113
kAttnFlagsHasCustomEffect 118
kAttnFlagsHasLED 118
kAttnFlagsHasSound 118
kAttnFlagsHasVibrate 118
kAttnFlagsLEDBit 112
kAttnFlagsNoCustomEffect 113
kAttnFlagsNoLED 113
kAttnFlagsNoSound 113
kAttnFlagsNothing 113
kAttnFlagsNoVibrate 113
kAttnFlagsSoundBit 112
kAttnFlagsUserSettingsMask 117
kAttnFlagsUserWantsCustomEffect 118, 837
kAttnFlagsUserWantsLED 118, 837
kAttnFlagsUserWantsSound 118, 837
kAttnFlagsUserWantsVibrate 118, 837
kAttnFlagsUseUserSettings 112
kAttnFlagsVibrateBit 112
kAttnFtrCapabilities 117
kAttnFtrCreator 117
kAttnLevelInsistent 115
kAttnLevelSubtle 115
kCncDeviceKindLocalNetwork 1272
kCncDeviceKindModem 1272
kCncDeviceKindPhone 1272
kCncDeviceKindSerial 1272
kCncErrDBAccessFailed 1289, 1290, 1291, 1292,

1293, 1294, 1295
kCncErrProfileParamNotFound 1289, 1290, 1291,

1292, 1296

kCncFtrCncMgrVersion 2323
kCncMgrVersion 2323
kCncNotifyCreateRequest 76
kCncNotifyDeleteRequest 76
kCncNotifyModifyRequest 76
kCncNotifyUpdateListRequest 77
kCncParam_PSDCreator 1268, 1271
kCncParam_PSDName 1268, 1271
kCncParam_PSDParameterBuffer 1268
kCncParam_PSDType 1268, 1271
kCncParamBaud 1264, 1270
kCncParamBluetoothDeviceAddr 1264, 1270
kCncParamBluetoothDeviceName 1264, 1270
kCncParamBuffer 1273
kCncParamCountryIndex 1264, 1265, 1270
kCncParamDeviceKind 1264, 1265, 1271
kCncParamDialingMode 1264, 1265, 1271
kCncParamFlowControl 1271
kCncParamInitString 1271
kCncParamIntlModemCountryStringList 1266
kCncParamIntlModemResetStringList 1266, 1269
kCncParamInvisible 1267, 1271
kCncParamLocked 1267, 1271
kCncParamName 1267, 1271
kCncParamNoDetails 1267, 1271
kCncParamNonEditable 1268, 1271
kCncParamPort 1268, 1271
kCncParamReadOnly 1269, 1271
kCncParamReceiveTimeOut 1269, 1271
kCncParamResetString 1269, 1271
kCncParamSerialPortFlags 1269
kCncParamString 1273
kCncParamSystemFlag 1273, 1276
kCncParamSystemFlags 1269, 1271, 1273
kCncParamThirdPartiesRange 1275
kCncParamTimeOut 1269, 1271
kCncParamTTCreator 1270, 1272
kCncParamTTType 1270, 1272
kCncParamUInt16 1273
kCncParamUInt32 1273
kCncParamUInt8 1273
kCncParamVersion 1270, 1272
kCncParamVolume 1270, 1272

Palm OS Programmer’s API Reference 2381

kCncProfileClassicResetStringSize 1271
kCncProfileNameSize 1271
kCncProfileUsualInitStringSize 1271
kCncProfileUsualResetStringSize 1271
kCncProfileVersion 1270
kCoordinatesDouble 1163
kCoordinatesNative 1163
kCoordinatesOneAndAHalf 1163
kCoordinatesQuadruple 1163
kCoordinatesStandard 1163
kCoordinatesTriple 1163
kDensityDouble 710, 714
kDensityLow 710, 714
kDrvrVersion 1535
kDrvrVersion3 1535
kDrvrVersion4 1535
key manager functions 759–761
key queue

size 955
keyBitPageDown 759
keyBitPageUp 759
keyBitPower 759
keyboard display 984
KeyCurrentState 759
keyDownEvent 56, 99, 221, 272, 299, 362, 375, 382,

383, 946, 2314
KeyMgr.h 759
KeyRates 760
KeySetMask 761
kHelperNotifyActionCodeEnumerate 749, 752
kHelperNotifyActionCodeExecute 752
kHelperNotifyActionCodeValidate 752, 754
kHelperServiceClassIDEMail 754, 755, 757
kHelperServiceClassIDFax 754, 757
kHelperServiceClassIDSMS 754, 756, 757
kHelperServiceClassIDVoiceDial 754, 757
kMaxCountryNameLen 768, 770
kMaxCurrencyNameLen 768, 770
kMaxCurrencySymbolLen 768, 770, 771

L
labelTableItem 425
LanguageType 763, 811

largeBoldFont 712, 736, 1903, 2308
largeFont 711, 736, 1903
LastAlert SSL Attribute 2198
LastApi SSL Attribute 2199
LastIO SSL Attribute 2200
launch codes

summary 3, 71, 749
SysBroadcastActionCode 968

launch flags 36
Launcher.h 417
ledFont 712
LEVENT_DATA_IND 1381
LEVENT_DISCOVERY_CNF 1381
LEVENT_LAP_CON_CNF 1381
LEVENT_LAP_CON_IND 1381
LEVENT_LAP_DISCON_IND 1381
LEVENT_LM_CON_CNF 1381
LEVENT_LM_CON_IND 1381
LEVENT_LM_DISCON_IND 1382
LEVENT_PACKET_HANDLED 1382
LEVENT_STATUS_IND 1382
LEVENT_TEST_CNF 1382
LEVENT_TEST_IND 1382
libEvtHookKeyMask 57
libPalmOSGlue.a 1891
LineInfoPtr 202
LineInfoType 203
lines

erasing 1182
inverting 1199

list objects
and pen tracking 62
creating category list 136
drawItemsCallback 343, 355
fields 341
functions 343–355
structure 340

List.h 339
ListAttrType 339
ListDrawDataFuncType 355
ListPtr 343
lists

setting items 974
ListType structure 340

2382 Palm OS Programmer’s API Reference

lLanguageName constants 767
lmAnyCountry 773
lmAnyLanguage 194, 773, 1071
lmChoice... constants 770
lmErrBadLocaleIndex 769
lmErrBadLocaleSettingChoice 769
lmErrSettingDataOverflow 769
lmErrUnknownLocale 773
LmGetLocaleSetting 772, 773
LmGlueGetLocaleSetting 771, 1892
LmGlueGetNumLocales 772, 1892
LmGlueLocaleToIndex 774, 1892
LmLocaleType 764, 770, 773, 837
local ID 788, 796

from chunk handle 782
locale 837
LocaleMgr.h 763
Localize.h 763, 1247
LocGetNumberSeparators 16, 765, 1257
locking chunk 779
locking system 34
longDateStrLength 1061
lookup 31

example 31
LstDrawList 343
lstEnterEvent 57, 58, 299, 347
LstEraseList 344
lstExitEvent 58
LstGetNumberOfItems 344
LstGetSelection 345
LstGetSelectionText 345
LstGetTopItem 346
LstGetVisibleItems 346
LstGlueGetFont 1910
LstGlueGetItemsText 1910
LstGlueGetTopItem 1892
LstGlueSetFont 1911
LstGlueSetIncrementalSearch 1911
LstHandleEvent 57, 58, 347
LstMakeItemVisible 348
LstNewList 349
LstPopupList 350
LstScrollList 351
lstSelectEvent 58

LstSetDrawFunction 351
LstSetHeight 352
LstSetListChoices 352
LstSetPosition 353
LstSetSelection 354
LstSetTopItem 355

M
maxFieldLines 224
maxFieldTextLen 237
maxStrIToALen 925
MdmDial 1411
mdmErrBusy 1411
mdmErrCmdError 1411
mdmErrNoDCD 1411
mdmErrNoTone 1411
mdmErrUserCan 1411
MdmHangUp 1412
MeasurementSystemType 770
MemCardInfo 775
MemCmp 776
MemDebugMode 777
memErrChunkLocked 781
memErrInvalidParam 668, 669, 780, 783, 793
memErrNotEnoughSpace 155, 668, 669, 670, 780,

962, 968, 1464, 1600
MemHandleCardNo 777
MemHandleDataStorage 778
MemHandleFree 778
MemHandleHeapID 779
MemHandleLock 779
MemHandleNew 780
MemHandleResize 780
MemHandleSetOwner 781
MemHandleSize 782
MemHandleSsetOwner 781
MemHandleToLocalID 782
MemHandleUnlock 783
MemHeapCheck 783, 784
MemHeapCompact 784
MemHeapDynamic 784
memHeapFlagReadOnly 785
MemHeapFlags 785

Palm OS Programmer’s API Reference 2383

MemHeapFreeBytes 785
MemHeapID 786
MemHeapScramble 787
MemHeapSize 787
MemLocalIDKind 788
MemLocalIDToGlobal 788
MemLocalIDToGlobalNear 788
MemLocalIDToLockedPtr 789
MemLocalIDToPtr 789
MemMove 790
MemNumCards 790
MemNumHeaps 786, 791
MemNumRAMHeaps 791
memory

and FldCompactText 205
and FldFreeMemory 210
and FldSetText 241, 244

memory blocks, comparing 776
memory card information 775
memory manager

debugging mode 777, 798
MemoryMgr.h 775
MemPtrCardNo 792
MemPtrDataStorage 792
MemPtrFree 793
MemPtrHeapID 793
MemPtrNew 794
MemPtrRecoverHandle 794
MemPtrResize 795
MemPtrSetOwner 795
MemPtrSize 796
MemPtrSsetOwner 795
MemPtrToLocalID 796
MemPtrUnlock 797
MemSet 797
MemSetDebugMode 798
MemStoreInfo 799
Menu Item Object fields 368
menu objects

 See Also menus 365
fields 365
structure 365

menu pulldown object 369
Menu.h 359

MenuAddItem 367, 371, 375
MenuBarAttrType 359
MenuBarPtr 364
MenuBarType 365, 372
menuButtonCause 61, 383
menuChr 372, 381, 383, 384, 388
menuCloseEvent 59
MenuCmdBarAddButton 59, 95, 361, 372, 373
MenuCmdBarButtonType 360, 362
MenuCmdBarDisplay 376
MenuCmdBarGetButtonData 376
menuCmdBarMaxTextLength 377
menuCmdBarOnLeft 372
menuCmdBarOnRight 372
menuCmdBarOpenEvent 59, 95, 222, 299, 373, 376,

377, 383
menuCmdBarResultMenuItem 375
MenuCmdBarResultType 362
MenuCmdBarType 360, 363, 366
menuCommandCause 61, 383
MenuDispose 378
MenuDrawMenu 360, 378
MenuEraseStatus 363, 377, 380
menuErrNoMenu 371
menuErrNotFound 372
menuErrOutOfMemory 373
menuErrSameId 372
menuErrTooManyItems 373
menuEvent 54, 60, 299, 362, 375, 382, 383
MenuGetActiveMenu 381
MenuHandleEvent 59, 60, 95, 360, 375, 378, 382
MenuHideItem 384
MenuInit 385
MenuItemType 367, 372
menuOpenEvent 60, 372, 383, 384, 388
MenuPullDownPtr 369
MenuPullDownType 367, 369
menus

FrmSetMenu 319
functions 371–386

MenuSeparatorChar 368, 370, 371
MenuSetActiveMenu 385
MenuSetActiveMenuRscID 386
MenuShowItem 387

2384 Palm OS Programmer’s API Reference

missing character symbol 725
modal window 350, 1170, 1201
Mode SSL Attribute 2200
modem 1411
ModemMgr.h 1411
modified field objects 208
multi-byte characters 998, 1001, 1023, 1024, 1025,

1030, 1032
attributes 1013
comparison 999, 1014
converting 1036
encodings support 997–1040
searching 1022, 1914, 1918
size 1012

multiple preferences 847

N
narrowTextTableItem 427, 433, 434, 451
net library

closing 1424, 1438
open count 1466
opening 1463, 1464

netCfgNameCTPWireless 1420
netCfgNameCTPWireline 1420
netCfgNameDefault 1420
netCfgNameDefWireless 1420
netCfgNameDefWireline 1420
netConfigIndexCurSettings 1466
NetConfigNamePtr 1413
NetConfigNameType 1413
netErrAlreadyOpen 1463, 1465
netErrAlreadyOpenWithAnotherConfig 1465
netErrAuthFailure 1459
netErrBadScript 1458
netErrBufTooSmall 1433, 1436, 1450, 1465, 1479
netErrBufWrongSize 1450, 1457, 1479, 1483
netErrConfigAliasErr 1433, 1465
netErrConfigBadName 1434, 1435
netErrConfigCantDelete 1433, 1434, 1465
netErrConfigCantPointToAlias 1427
netErrConfigEmpty 1433, 1465
netErrConfigNotAlias 1426, 1427
netErrConfigNotFound 1430, 1433, 1465
netErrConfigTooMany 1435

netErrDNSAborted 1440, 1442, 1444
netErrDNSAllocationFailure 1440, 1441, 1443
netErrDNSBadName 1440, 1441, 1443
netErrDNSBadProtocol 1440, 1442, 1444
netErrDNSFormat 1440, 1441, 1443
netErrDNSImpossible 1440, 1442, 1444
netErrDNSIrrelevant 1440, 1442, 1444
netErrDNSLabelTooLong 1440, 1441, 1443
netErrDNSNameTooLong 1440, 1441, 1443
netErrDNSNIY 1440, 1442, 1443
netErrDNSNonexistantName 1440, 1442, 1443
netErrDNSNoPort 1440, 1442, 1444
netErrDNSNoRecursion 1440, 1442, 1444
netErrDNSNoRRS 1440, 1442, 1444
netErrDNSNotInLocalCache 1440, 1442, 1444
netErrDNSRefused 1440, 1442, 1443
netErrDNSServerFailure 1440, 1441, 1443
netErrDNSTimeout 1440, 1441, 1443
netErrDNSTruncated 1440, 1442, 1444
netErrDNSUnreachable 1440, 1441, 1443
netErrInterfaceDown 1475, 1477
netErrInterfaceNotFound 1446, 1447, 1448, 1450,

1457, 1458, 1465, 1475, 1477
netErrInternal 1491, 1492
netErrInvalidInterface 1449
netErrInvalidSettingSize 1483, 1496, 1498
netErrIPCantFragment 1475, 1477
netErrIPktOverflow 1475, 1477
netErrIPNoDst 1475, 1477
netErrIPNoRoute 1475, 1477
netErrIPNoSrc 1475, 1477
netErrMessageTooBig 1475, 1477
netErrNoInterfaces 1436, 1463, 1465, 1490, 1492
netErrNoMoreSockets 1494
netErrNoMultiPacketAddr 1502
netErrNoMultiPktAddr 1475, 1477
netErrNotOpen 1425, 1438, 1440, 1441, 1443, 1445,

1448, 1458, 1460, 1468, 1469, 1472, 1474, 1477,
1485, 1486, 1488, 1489, 1490, 1492, 1493, 1496,
1497, 1501, 1502, 1503

netErrOutOfCmdBlocks 1426, 1427, 1429, 1430,
1431, 1433, 1434, 1435, 1436, 1465, 1475, 1477,
1488, 1489, 1491, 1492, 1494, 1502

netErrOutOfMemory 1438, 1463, 1465, 1494

Palm OS Programmer’s API Reference 2385

netErrOutOfPackets 1475, 1477
netErrOutOfResources 1492
netErrParamErr 1426, 1427, 1429, 1433, 1434, 1438,

1460, 1465, 1468, 1469, 1474, 1477, 1485, 1486,
1488, 1489, 1490, 1492, 1494, 1496, 1497, 1502

netErrPortInUse 1490, 1492
netErrPPPAddressRefused 1459
netErrPPPTimeout 1458
netErrPrefNotFound 1433, 1449, 1450, 1457, 1463,

1465, 1479
netErrQuietTimeNotElapsed 1490, 1492
netErrReadOnlySetting 1457, 1483
netErrSocketAlreadyConnected 1488, 1491, 1492
netErrSocketBusy 1490, 1492
netErrSocketClosedByRemote 1475, 1477, 1485,

1487, 1488, 1491, 1492
netErrSocketInputShutdown 1502
netErrSocketNotConnected 1475, 1477, 1485
netErrSocketNotListening 1485
netErrSocketNotOpen 1438, 1468, 1469, 1474, 1477,

1485, 1487, 1488, 1489, 1490, 1492, 1496, 1497,
1502

netErrStillOpen 1425
netErrTimeout 1438, 1439, 1440, 1441, 1443, 1445,

1465, 1468, 1469, 1474, 1477, 1485, 1486, 1488,
1489, 1490, 1492, 1493, 1496, 1497, 1501

netErrTooManyInterfaces 1446
netErrTooManyTCPConnections 1491
netErrUnimplemented 1450, 1457, 1460, 1485,

1496, 1497
netErrUnknownProtocol 1445
netErrUnknownService 1445
netErrUnknownSetting 1450, 1457, 1479, 1483
netErrUnreachableDest 1475, 1477
netErrUserCancel 1438, 1458, 1468
netErrWouldBlock 1438, 1468, 1470, 1475, 1477,

1491
netErrWrongSocketType 1485, 1491, 1492, 1496,

1498
netFDIsSet 1472
netFDSet 1472
netFDSetSize 1473
NetFDSetType 1471
netFDZero 1472

NetHostInfoBufType 1414
NetHostInfoType 1414
NetHToNL 1422
NetHToNS 1423
netIFMediaDown 96
netIFMediaUp 96
NetIFSettingEnum 1450, 1451, 1457
netIOFlagDontRoute 1421
netIOFlagOutOfBand 1421
netIOFlagPeek 1421
NetIOParamType 1470
NetIOVecPtr 1470
NetIOVecType 1470
NetIPAddr 1414, 1423, 1424
NetLibAddrAToIN 1423
NetLibAddrINToA 1424
NetLibClose 1424
NetLibConfigAliasGet 1426
NetLibConfigAliasSet 1427
NetLibConfigDelete 1429
NetLibConfigIndexFromName 1430
NetLibConfigList 1431
NetLibConfigMakeActive 1432
NetLibConfigRename 1434
NetLibConfigSaveAs 1435
NetLibConnectionRefresh 1436
NetLibDmReceive 1437
NetLibFinishCloseWait 1438
NetLibGetHostByAddr 1439
NetLibGetHostByName 1441
NetLibGetMailExchangeByName 1442
NetLibGetServByName 1444
NetLibIFAttach 1446
NetLibIFDetach 1447
NetLibIFDown 1448
NetLibIFGet 1449
NetLibIFSettingGet 1450
NetLibIFSettingSet 1457
NetLibIFUp 1458
NetLibMaster 1459
NetLibOpen 1463
NetLibOpenConfig 1464
NetLibOpenCount 1466

2386 Palm OS Programmer’s API Reference

NetLibReceive 1467, 1508
NetLibReceivePB 1469
NetLibSelect 1471
NetLibSend 1474, 1509
NetLibSendPB 1476
NetLibSettingGet 1479
NetLibSettingSet 1483
NetLibSocketAccept 1484, 1485
NetLibSocketAddr 1486
NetLibSocketBind 1487
NetLibSocketClose 1489
NetLibSocketConnect 1490, 1508
NetLibSocketListen 1491, 1492
NetLibSocketOpen 1493, 1508
NetLibSocketOptionGet 1495
NetLibSocketOptionSet 1497
NetLibSocketShutdown 1501
NetLibTracePrintF 1502
NetLibTracePutS 1503
NetMasterEnum 1459
netMasterICMPStats command 1462
netMasterInterfaceInfo command 1460
netMasterInterfaceStats command 1461
netMasterIPStats command 1462
NetMasterPBPtr 1459
netMasterTCPStats command 1462
netMasterTraceEventGet command 1462
netMasterUDPStats command 1462
NetMgr.h 1413
NetNToHL 1504
NetNToHS 1504
NetServInfoBufType 1416
NetServInfoType 1416
NetSettingEnum 1479, 1483
NetSocket.c 1507
NetSocketAddrEnum 1417
netSocketAddrINET 1494
NetSocketAddrINType 1417
netSocketAddrRaw 1494
NetSocketAddrRawType 1418
NetSocketAddrType 1419
netSocketDirBoth 1501
NetSocketDirEnum 1501

netSocketDirInput 1501
netSocketDirOutput 1501
NetSocketLingerType 1499
NetSocketOptEnum 1495, 1497, 1498
NetSocketOptLevelEnum 1495, 1497, 1498
netSocketProtoIPRAW 1493
netSocketProtoIPTCP 1493
netSocketProtoIPUDP 1493
NetSocketRef 1493
NetSocketTypeEnum 1419
netTracingAppMsgs 1421
netTracingAppPktIP 1421
netTracingData 1422
netTracingData40 1422
netTracingErrors 1421
netTracingFuncs 1421
netTracingIFHi 1422
netTracingIFLow 1422
netTracingIFMid 1422
netTracingMsgs 1421
netTracingPkts 1421
NetUReadN 1507
NetUTCPOpen 1508
NetUWriteN 1509
new serial manager 2320, 2321
NFNT resource 718
nfnt resource 721
nilEvent 62, 959, 960
noFocus 272, 274, 287, 317
noListSelection 345
noMenuItemSelection 366, 370
noMenuSelection 366, 370
noPreferenceFound 841, 843
noteTextTableItem 434
notification manager 2330
notifyDetailsP 94
NotifyMgr.h 71, 801
NumberFormatType 764, 770
numericGraffitiSilkscreenArea 954
numericTableItem 425
numLockMask 57
numUneditableCategories 136, 139, 147

Palm OS Programmer’s API Reference 2387

O
off-screen windows 1168
olume Constants 884
omErrBadOverlayDBName 819
omErrBaseRequiresOverlay 569
omErrDatabaseRequiresOverlay 614
omErrInvalidLocaleIndex 814
omErrNoNextSystemLocale 815
omErrUnknownLocale 569, 818, 819
omFtrCreator 812
omFtrDefaultLocale 812
omFtrShowErrorsFlag 812
OmGetCurrentLocale 813
OmGetIndexedLocale 814
OmGetNextSystemLocale 815
OmGetRoutineAddress 816
OmGetSystemLocale 773, 817
OmGlueGetCurrentLocale 813, 1892
OmGlueGetSystemLocale 817, 1892
OmLocaleToOverlayDBName 818
OmLocaleType 764, 811
OmOverlayDBNameToLocale 819
omOverlayDBType 613
omOverlayRscID 812
omOverlayRscType 812
OmSelector 816
OmSetSystemLocale 820
open count of net library 1466
opening net library 1463, 1464
optionKeyMask 57
OverlayMgr.h 811, 816
overlays 613

P
Palm OS 2.0 feature set 2304
Palm OS 3.0 feature set 2308
Palm OS 3.1 feature set 2312
Palm OS 3.2 feature set 2315
Palm OS 3.5 feature set 2324, 2330, 2342, 2346, 2351
PalmLocale.h 763, 765, 767
PalmOSGlue.lib 1891, 2313, 2316
panel list (SysCreatePanelList) 972
password functions 823

Password.h 823
PatternType 1153
PceNativeCall 1258
PdiDefineReaderDictionary 2253
PdiDefineResizing 2254
PdiDefineWriterDictionary 2255
PdiEnterObject 2256
PdiLibClose 2257
PdiLibOpen 2257
PdiParameterPairTest 2258
PdiReaderDelete 2259
PdiReaderNew 2259
PdiReaderType 2238
PdiReadParameter 2260
PdiReadProperty 2261
PdiReadPropertyField 2262
PdiReadPropertyName 2264
PdiSetCharset 2265
PdiSetEncoding 2266
PdiWriteBeginObject 2266
PdiWriteEndObject 2267
PdiWriteParameter 2268
PdiWriteParameterStr 2270
PdiWriteProperty 2271
PdiWritePropertyBinaryValue 2272
PdiWritePropertyFields 2273
PdiWritePropertyStr 2274
PdiWritePropertyValue 2275
PdiWriterDelete 2276
PdiWriterNew 2276
PdiWriterType 2240
PeerCert SSL Attribute 2202
PeerCommonName SSL Attribute 2202
pen

current status 950
pen manager functions 825–826
pen queue

flushing 949
size 956

PenBtnInfoType 951
PenCalibrate 825
penDownEvent 44, 47, 49, 53, 57, 62, 66, 171, 221,

299, 347, 382, 412
PenMgr.h 825

2388 Palm OS Programmer’s API Reference

penMoveEvent 62
PenResetCalibration 826
penUpEvent 63, 945
PhoneLookup.h 493
PhoneNumberLookup 498
PhoneNumberLookupCustom 499
PilotMain 995
PixelFormatType 533
PluginCallbackProcType 1511
PluginCmdPtr 1512
PluginCmdType 1512
PluginExecCmdType 1513, 1515
PluginInfoPtr 1514
PluginInfoType 1514, 1515
pluginMaxNumOfCmds 1514
pluginNetLibCallUIProc 1516, 1519, 1521
pluginNetLibCheckCancelStatus 1516, 1520
pluginNetLibConnLog 1516, 1521
pluginNetLibDoNothing 1516, 1519
pluginNetLibGetSerLibRefNum 1517, 1521
pluginNetLibGetUserName 1516, 1520
pluginNetLibGetUserPwd 1516, 1520
pluginNetLibPromptUser 1516, 1520
pluginNetLibReadBytes 1516, 1519
pluginNetLibWriteBytes 1516, 1520
PointType 853
popSelectEvent 63, 298, 299
popup list 350
popupTriggerTableItem 425
port... constants 1537
poweredOnKeyMask 57
prefAlarmSoundVolume 875
preferenceDataVer2 841
preferenceDataVer3 841
preferenceDataVer4 841
preferenceDataVer5 841
preferenceDataVer6 841
preferenceDataVer8 841
preferenceDataVer9 841
preferenceDataVerLatest 841, 2314
preferenceDataVersion 2314
preferences

changing with launch codes 32
multiple application preferences 847

Preferences.h 763, 764, 827
prefGameSoundVolume 875
PrefGetAppPreferences 842, 2306
PrefGetAppPreferencesV10 844
PrefGetPreference 94, 845
PrefGetPreferences 845
PrefOpenPreferenceDB 846
PrefOpenPreferenceDBV10 847
PrefSetAppPreferences 847
PrefSetAppPreferencesV10 849
PrefSetPreference 850
PrefSetPreferences 850
prefShowPrivateRecords 390, 391
prefSysSoundVolume 875
prefTimeZone 194
PrgCallbackData 400
PrgCallbackFunc 400
PrgHandleEvent 393
PrgStartDialog 394
PrgStartDialogV31 396
PrgStopDialog 397
PrgUpdateDialog 398
PrgUserCancel 399
printable characters 1009
printf 903
PrivateRecords.h 389
privateRecordViewEnum 389, 835
procedure alarms 508
progress manager 2309
Progress Manager callback function 400
Progress.h 393
ProtocolVersion SSL Attribute 2203
putc 904
putchar 904
puts 905
PwdExists 823
PwdRemove 823
PwdSet 824
PwdVerify 824

Q
query callback function 1409

Palm OS Programmer’s API Reference 2389

R
RAM-based heaps 791
RbufSize SSL Attribute 2204
RctCopyRectangle 854
RctGetIntersection 854
RctInsetRectangle 855
RctOffsetRectangle 856
RctPtInRectangle 857
RctSetRectangle 857
read callback function 1353
ReadBufPending SSL Attribute 2204
ReadOutstanding SSL Attribute 2205
ReadProc 1315
ReadRecPending SSL Attribute 2205
ReadStreaming SSL Attribute 2205
records

deleting 584
detaching 585
ID 587
retrieving information 622

Rect.h 853
RectanglePtr 855
rectangles

copying 854
erasing 1183
intersecting 854
moving 856
resizing 855
scrolling 1229

RectangleType 853, 855
reinitializing dynamic memory heap 989
repeat control object

and ctlRepeatEvent 44
repeating button 44
reset 35, 989
ResGlueLoadConstant 501, 1892
ResLoadConstant 501
ResLoadForm 502
ResLoadMenu 502
resource database (SysCurAppDatabase) 973
resource ID 561
resource type 562, 589
resources

retrieving 600

retrieving information 628
searching for 629

resumeSleepChr 99, 100
RGBColorType 534
ROM-based heaps 785, 791
ROM-based records 618, 620

S
Sampled Sound Application-Defined

Functions 896
Sampled Sound Functions 884
Sampled Sound Structures, Constants, and Data

Types 879
SclDrawScrollBar 410
sclEnterEvent 64, 300, 412
sclExitEvent 65, 412
SclGetScrollBar 410
SclHandleEvent 64, 65, 411
sclRepeatEvent 65, 300, 412

and sclExitEvent 65
SclSetScrollBar 412
scptLaunchCmdDoNothing 1515
scptLaunchCmdExecuteCmd 3, 1513, 1515
scptLaunchCmdListCmds 3, 1514, 1515
ScrDisplayMode 1228, 2311, 2327
ScrDisplayModeOperation 1228
ScreenAttrType 1222
ScriptPlugin.h 1511
ScriptPluginLaunchCodesEnum 1515
ScriptPluginSelectorProcPtr 1518
scroll arrows

FrmUpdateScrollers 323
scroll position in field 214
scrollbar functions 410–415
scrollbar objects

fields 407
in tables 448
structure 407

ScrollBar.h 405
ScrollBarAttrType 405
ScrollBarPtr 406
ScrollBarRegionType 406
ScrollBarType 407
scrolling rectangle in window 1229

2390 Palm OS Programmer’s API Reference

ScrOperation 1162
searching for string 252
secret records, removing 626
SecSelectViewStatus 390
Security application 34
SecurityAutoLockType 827
SecVerifyPW 391
SelDay.h 185
SelectDay 188, 2306
selectDayByDay 188
selectDayByMonth 188
selectDayByWeek 188
SelectDayV10 189
selection in field 215
SelectOneTime 189
SelectTime 191
SelectTimeZone 193
SelTime.h 185
SelTimeZone.h 185
separatorItemSelection 370
SerClearErr 1595, 1598
SerClose 1596
SerControl 1597
serCtlBreakStatus (in SerCtlEnum) 1594
serCtlEmuSetBlockingHook (in SerCtlEnum) 1594
SerCtlEnum 1593
serCtlFirstReserved (in SerCtlEnum) 1593
serCtlHandshakeThreshold (in SerCtlEnum) 1594
serCtlLAST (in SerCtlEnum) 1594
serCtlMaxBaud (in SerCtlEnum) 1594
serCtlStartBreak (in SerCtlEnum) 1593
serCtlStartLocalLoopback (in SerCtlEnum) 1594
serCtlStopBreak (in SerCtlEnum) 1593
serCtlStopLocalLoopback (in SerCtlEnum) 1594
serDev... constants 1559
serErrAlreadyOpen 1596, 1600
serErrBadParam 1597, 1600, 1609
serErrBadPort 1585
serErrConfigurationFailed 1578, 1585
serErrLineErr 1595, 1596, 1599, 1601, 1602, 1603,

1604
serErrNotOpen 1585, 1586, 1587, 1596, 1597, 1598,

1609
serErrNotSupported 1585, 1586, 1587

serErrStillOpen 1596
serErrTimeOut 1585, 1601, 1602, 1604, 1605, 1606,

1607
serFncConsole 1529, 1556
serFncDebugger 1529, 1556
serFncHotSync 1529, 1556
serFncPPPSession 1529, 1556
serFncSLIPSession 1529, 1556
serFncTelephony 1529, 1556
serFncUndefined 1529, 1556
SerGetSettings 1598
SerGetStatus 1598
serial capabilities constants 1559
Serial Library 1600
serial port feature constants 1537
serial settings constants 1560
serial status constants 1562
SerialDrvr.h 1523
SerialLinkMgr.h 1611
SerialMgr.h 1551
SerialMgrOld.h 1593
SerialVdrv.h 1523
serLineError... constants 1599
SerOpen 1599
serPortConsolePort 1557
serPortCradlePort 1557
serPortCradleRS232Port 1558
serPortCradleUSBPort 1558
serPortIrPort 1557
serPortLocalHotSync 1557
SerReceive 1601
SerReceive10 1602
SerReceiveCheck 1603
SerReceiveFlush 1603, 1604
SerReceiveWait 1604
SerSend 1605
SerSend10 1606
SerSendFlush 1607
SerSendWait 1607
SerSetReceiveBuffer 1608
SerSetSettings 1608
SerSettingsType 1594
servent 1416

Palm OS Programmer’s API Reference 2391

SessionReused SSL Attribute 2206
sethostname 1481
shiftKeyMask 57
silk-screen buttons

EvtGetPenBtnList 951
SilkscreenAreaType 953
silkscreenRectGraffiti 954
silkscreenRectScreen 954
SioAddCommand 905
SioClearScreen 915
SioExecCommand 915
Siofgetc 899, 902, 906
Siofgets 900, 906
Siofprintf 900, 907
Siofputc 901, 904, 908
Siofputs 902, 908
SioFree 916
Siogets 903, 909
SioHandleEvent 916
SioInit 917
SioMain 918
Sioprintf 903, 909
Sioputs 905, 910
Siosystem 910, 912
Siovfprintf 911, 913
SleepEventParamType 100
SliderControlType 164
SlkClose 1611
SlkCloseSocket 1612
slkErrAlreadyOpen 1613
slkErrBadParam 1617
slkErrBuffer 1615
slkErrChecksum 1615
slkErrNotOpen 1611
slkErrOutOfSockets 1614
slkErrSocketNotOpen 1612, 1613, 1615, 1616, 1617,

1618, 1619
slkErrTimeOut 1615, 1616
slkErrWrongDestSocket 1615
SlkFlushSocket 1612
SlkOpen 1613
SlkOpenSocket 1614
SlkPktHeaderType 1618
SlkReceivePacket 1615

SlkSendPacket 1616
SlkSetSocketListener 1617
SlkSocketListenType 1617, 1618
SlkSocketPortID 1618
SlkSocketSetTimeout 1619
SlkWriteDataType 1617
slLib 2164
SmsLib.h 2219
SmsParamsType 2219
SmsPrefType 2222
SmsReceiveCDMAParamsType 2223
SmsReceiveGSMParamsType 2225
SmsReceiveParamsType 2225
SmsReceiveTDMAParamsType 2227
SMSReportParamsType 2227
SmsSendCDMAParamsType 2228
SMSSendParamsType 2230
SmsSendTDMAParamsType 2232
sndAlarm 876
sndAlarmVolume 884
SndBlockingFuncType 877
SndCallbackInfoType 860
sndClick 876
sndCmdFreqDurationAmp 870
sndCmdFrqOn 870
SndCmdIDType 861
sndCmdNoteOn 871
sndCmdQuiet 871
SndCommandType 861
SndComplFuncType 878
sndConfirmation 876
SndCreateMidiList 868
SndDoCmd 869
sndError 876
sndFlagAsync 883
sndFlagNormal 883
sndFlagSync 883
sndFloat 880
sndFloatBig 880
sndFloatLittle 880
sndFloatOpposite 880
sndGameVolume 884
SndGetDefaultVolume 871

2392 Palm OS Programmer’s API Reference

sndInfo 876
sndInput 882
sndInt16 880
sndInt16Big 880
sndInt16Little 880
sndInt16Opposite 880
sndInt32 880
sndInt32Big 880
sndInt32Little 880
sndInt32Opposite 880
sndInt8 880
SndInterruptSmfIrregardless 872
sndMaxAmp 833, 862
SndMidiListItemType 862
sndMidiNameLength 863
SndMidiRecHdrType 863
sndMidiRecSignature 864
sndMono 883
sndOutput 882
sndPanCenter 883
sndPanFullLeft 883
sndPanFullRight 883
SndPlayResource 884
SndPlaySMF 872
SndPlaySmfIrregardless 874
SndPlaySmfResource 875
SndPlaySmfResourceIrregardless 876
SndPlaySystemSound 876
SndPtr 879
SndSampleType 879
SndSampleTypeTag 880
SndSetDefaultVolume 877
SndSmfCallbacksType 864
SndSmfChanRangeType 865
SndSmfCmdEnum 865
SndSmfOptionsType 865
sndSmfPlayAllMilliSec 867
sndStartUp 876
sndStereo 883
SndStreamBufferCallback 896
SndStreamDelete 889
SndStreamGetPan 890
SndStreamGetVolume 890

SndStreamMode 881
SndStreamModeTag 881
SndStreamPause 891
SndStreamRef 882
SndStreamSetVolume 893
SndStreamStart 894
SndStreamStop 895
SndStreamWidth 882
SndStreamWidthTag 882
SndSysBeepType 867
sndSystemVolume 884
sndUInt8 880
sndWarning 876
sockaddr 1419
sockaddr_in 1417
socket 1508
socket listener 1616
socket listener procedure 1616, 1617, 1618
Socket SSL Attribute 2207
soft reset 35, 989
sorting array elements 983
sorting text 559
SortRecordInfoType 562
Sound Manager 859
sound manager 2309
Sound Resource Playback Flags 883
SoundMgr.h 859
sprintf 912
sprintf (StrPrintF) 934
SrmClearErr 1563
SrmClose 1563
SrmControl 1552, 1558, 1560, 1564, 1569
srmControlCustom 1567
SrmCtlEnum 1552, 1564
SrmCustomControl 1567
srmDefaultCTSTimeout 1569
SrmExtOpen 1557, 1568, 1570, 1575
SrmExtOpenBackground 1557, 1570, 1576
SrmGetDeviceCount 1571
SrmGetDeviceInfo 1551, 1572
SrmGetStatus 1562, 1573, 1578, 1579, 1581
SrmOpen 1557, 1570, 1574
SrmOpenBackground 1557, 1575

Palm OS Programmer’s API Reference 2393

SrmOpenConfigType 1555, 1568, 1570
SrmPrimeWakeupHandler 1576, 1590
SrmRcvQType 1527
SrmReceive 1577, 1582, 1584, 1590
SrmReceiveCheck 1579, 1582
SrmReceiveFlush 1579
SrmReceiveWait 1581, 1584
SrmReceiveWindowClose 1582, 1591
SrmReceiveWindowOpen 1583, 1591
SrmSend 1584, 1587
SrmSendCheck 1585
SrmSendFlush 1586
SrmSendWait 1587
SrmSetReceiveBuffer 1569, 1581, 1588
srmSettings... constants 1560
SrmSetWakeupHandler 1577, 1589, 1590
srmStatus... constants 1562
SSL Alerts 2214
SSL Attribute Data Types 2182
SSL Attributes 2187
SSL Attributes and Macros 2181
SSL Certificate Errors 2216
SSL Cryptography Errors 2215
SSL Data Types 2163
SSL Function Protocol Errors 2213
SSL Handshake Errors 2215
SSL Illegal Message Errors 2216
SSL Macro Names 2181
SSL Structures 2166
SSL Structures and Data Types 2163
SslAttribute 2163
SslCallback 2166
SslCipherSuiteInfo 2167
SslContext 2163
SslContextGet_AppInt32 2187
SslContextGet_AppPtr 2188
SslContextGet_AutoFlush 2188
SslContextGet_BufferedReuse 2189
SslContextGet_CipherSuite 2190
SslContextGet_CipherSuiteInfo 2190
SslContextGet_CipherSuites 2191
SslContextGet_Compat 2192
SslContextGet_DontSendShutdown 2193

SslContextGet_DontWaitForShutdown 2193
SslContextGet_Error 2194
SslContextGet_HsState 2194
SslContextGet_InfoCallback 2195
SslContextGet_IoFlags 2197
SslContextGet_IoStruct 2198
SslContextGet_IoTimeout 2197
SslContextGet_LastAlert 2198
SslContextGet_LastApi 2199
SslContextGet_LastIO 2200
SslContextGet_Mode 2201
SslContextGet_PeerCert 2202
SslContextGet_ProtocolVersio 2203
SslContextGet_RbufSize 2204
SslContextGet_ReadBufPending 2204
SslContextGet_ReadOutstanding 2205
SslContextGet_ReadRecPending 2205
SslContextGet_ReadStreaming 2206
SslContextGet_SessionReused 2206
SslContextGet_Socket 2207
SslContextGet_SslSession 2208
SslContextGet_SslVerify 2208
SslContextGet_Streaming 2209
SslContextGet_VerifyCallback 2209
SslContextGet_WbufSize 2210
SslContextGet_WriteBufPending 2210
SslContextSet_AppInt32 2187
SslContextSet_AppPtr 2188
SslContextSet_AutoFlush 2188
SslContextSet_CipherSuites 2191
SslContextSet_Compat 2192
SslContextSet_DontSendShutdown 2193
SslContextSet_DontWaitForShutdown 2193
SslContextSet_Error 2194
SslContextSet_InfoCallback 2195
SslContextSet_IoFlags 2197
SslContextSet_IoStruct 2198
SslContextSet_IoTimeout 2197
SslContextSet_Mode 2201
SslContextSet_ProtocolVersion 2203
SslContextSet_RbufSize 2204
SslContextSet_ReadStreaming 2206
SslContextSet_Socket 2207

2394 Palm OS Programmer’s API Reference

SslContextSet_VerifyCallback 2209
SslContextSet_WbufSize 2210
sslErrBadArgument 2213
sslErrBadDecode 2216
sslErrBadLength 2214
sslErrBadOption 2214
sslErrBadPeerFinished 2215
sslErrBadSignature 2216
sslErrBufferTooSmall 2214
sslErrCbAbort 2214
sslErrCert 2216
sslErrCertDecodeError 2216
sslErrCsp 2215
sslErrDivByZero 2215
sslErrEof 2214
sslErrExtraHandshakeData 2215
sslErrFailed 2214
sslErrFatalAlert 2214
sslErrHandshakeEncoding 2215
sslErrHandshakeProtocol 2215
sslErrIo 2214
sslErrNoModInverse 2215
sslErrNoRandom 2215
sslErrNullArg 2214
sslErrOutOfMemory 2214
sslErrReadAppData 2215
sslErrRecordError 2216
sslErrUnexpectedRecord 2216
sslErrUnsupportedCertType 2216
sslErrUnsupportedSignatureType 2216
sslErrVerifyBadSignature 2216
sslErrVerifyConstraintViolation 2216
sslErrVerifyNotAfter 2216
sslErrVerifyNotBefore 2217
sslErrVerifyNoTrustedRoot 2217
sslErrVerifyUnknownCriticalExtension 2217
sslErrWrongMessage 2216
SslExtendedItem 2169
SslExtendedItems 2171
SslIoBuf 2172
SslLibCallback 2166, 2173, 2174
SslLibGet_AppInt32 2187
SslLibGet_AppPtr 2188

SslLibGet_AutoFlush 2188
SslLibGet_CipherSuites 2191
SslLibGet_Compat 2192
SslLibGet_DontSendShutdown 2193
SslLibGet_DontWaitForShutdown 2193
SslLibGet_InfoCallback 2195
SslLibGet_Mode 2201
SslLibGet_ProtocolVersion 2203
SslLibGet_RbufSize 2204
SslLibGet_ReadStreaming 2206
SslLibGet_VerifyCallback 2209
SslLibGet_WbufSize 2210
SslLibSet_AppInt32 2187
SslLibSet_AppPtr 2188
SslLibSet_AutoFlush 2188
SslLibSet_CipherSuites 2191
SslLibSet_Compat 2192
SslLibSet_DontSendShutdown 2193
SslLibSet_DontWaitForShutdown 2193
SslLibSet_InfoCallback 2195
SslLibSet_Mode 2201
SslLibSet_ProtocolVersion 2203
SslLibSet_RbufSize 2204
SslLibSet_ReadStreaming 2206
SslLibSet_VerifyCallback 2209
SslLibSet_WbufSize 2210
SslSession 2174
SslSession SSL Attribute 2207
SslSocket 2176
SslVerify 2177
SslVerify SSL Attribute 2208
standard IO functions 899
StartApplication

and PrefGetPreferences 846
stat 690
stdFont 711, 736, 1903
StdIOPalm.h 899
StdIOProvider.h 899
Stereo Pan Constants 883
StrAToI 919
StrCaselessCompare 920
StrCat 921
strcat function substitute (StrCat) 921

Palm OS Programmer’s API Reference 2395

StrChr 921
strchr function substitute (StrChr) 921
strcmp function substitute (StrCompare) 922
StrCompare 922
StrCompareAscii 923
StrCopy 924
strcpy function substitute (StrCopy) 924
StrDelocalizeNumber 924
StrDelocalizeNumber, and launch code 16
Streaming SSL Attribute 2209
stricmp function substitute

(StrCaselessCompare) 920
string manager 919–940
string resource

copying 969
string searching 252
StringMgr.h 919
StrIToA 925
StrIToH 926
StrLen 926
strlen function substitute (StrLen) 926
StrLocalizeNumber 927

launch code 16
StrNCaselessCompare 929
StrNCat 930
strncat function substitute (StrNCat) 930
strncmp 932
StrNCompare 931
StrNCompareAscii 932
StrNCopy 933
strokes, translating 956
StrPrintF 912, 934
StrStr 935
strstr function substitute (StrStr) 935
StrToLower 935
structure of field object 198
StrVPrintF 914, 936
summary of launch codes 3, 71, 749
symbol11Font 712
symbol7Font 712
symbolFont 711
sys_socket.h 1507
SysAlarmTriggeredParamType 9, 510
SysAppLaunch 962

sysAppLaunchCmdAddRecord 6
sysAppLaunchCmdAlarmTriggered 9, 17, 507
sysAppLaunchCmdCardLaunch 15
SysAppLaunchCmdCardType 16
sysAppLaunchCmdCountryChange 16
sysAppLaunchCmdDisplayAlarm 9, 16, 507
sysAppLaunchCmdExgAskUser 17, 19, 1297,

1322, 1335, 1337, 2308
sysAppLaunchCmdExgGetData 19
sysAppLaunchCmdExgPreview 19, 22, 1310, 1323,

1336, 1342
sysAppLaunchCmdExgReceiveData 21, 22, 1310,

1317, 1320, 1323, 1342, 2308
sysAppLaunchCmdFind 22, 1918
sysAppLaunchCmdGoto 23, 26, 51, 1298, 1320,

1334, 2308
sysAppLaunchCmdGoToURL 27, 1349
sysAppLaunchCmdHandleSyncCallApp 28
sysAppLaunchCmdHandleSyncCallAppType 29
sysAppLaunchCmdInitDatabase 30
sysAppLaunchCmdLookup 31, 2304
sysAppLaunchCmdNotify 31, 74, 807
sysAppLaunchCmdOpenDB 32
sysAppLaunchCmdPanelCalledFromApp 32, 33,

2304
sysAppLaunchCmdReturnFromPanel 32, 33, 2304
sysAppLaunchCmdSaveData 23, 33
sysAppLaunchCmdSyncNotify 34, 1344
sysAppLaunchCmdSystemLock 34, 2304
sysAppLaunchCmdSystemReset 35, 97
sysAppLaunchCmdTimeChange 35
sysAppLaunchCmdURLParams 36
SysAppLauncherDialog 417
sysAppLaunchFlagNewGlobals 26
sysAppLaunchFlagNewGlobals launch flag 37
sysAppLaunchFlagSubCal launch flag 37
sysAppLaunchFlagUIApp launch flag 37
SysBatteryInfo 963, 2311
SysBatteryInfoV20 964
SysBatteryKind 831
SysBinarySearch 966
SysBroadcastActionCode 968
SysCopyStringResource 969
SysCreateDataBaseList 970

2396 Palm OS Programmer’s API Reference

SysCreatePanelList 972
SysCurAppDatabase 973
SysDBListItemType 970
SysDisplayAlarmParamType 17
sysErrLibNotFound 985, 986
sysErrNoFreeLibSlots 986
sysErrNoFreeRAM 986
sysErrOutOfOwnerID 962
sysErrOutOfOwnerIDs 968
sysErrParamErr 962, 968, 987
SysErrString 973
SysEvent.h 39, 2328
SysEvtMgr.h 941
sysExternalConnectorAttachEvent 77
sysExternalConnectorDetachEvent 77
SysFatalAlert 418
sysFileCBtConnectPanelHelper 1559
sysFileCSmsLib 2220
sysFileCUart328 1558
sysFileCUart328EZ 1558
sysFileCUart650 1558
sysFileCVirtIrComm 1559
sysFileCVirtRfComm 1559
sysFileDescStdIn 1472
SysFormPointerArrayToStrings 974, 1329, 1330
sysFtrNewSerialPresent 2321
sysFtrNewSerialVersion 2322
sysFtrNumEncoding 2318
sysFtrNumIntlMgr 2316
sysFtrNumNotifyMgrVersion 802, 2330
sysFtrNumProcessor328 2314
sysFtrNumProcessorEZ 2314
sysFtrNumProcessorID 2314
sysFtrNumProcessorIs68K 975
sysFtrNumProcessorIsARM 976
sysFtrNumProcessorMask 2314
sysFtrNumROMVersion 2304, 2308, 2312
SysGetOSVersionString 977, 2311
SysGetROMToken 977
SysGetRomToken 2311
SysGetStackInfo 978, 2311
SysGetTrapAddress 979
SysGlueGetTrapAddress 979, 1892

SysGlueTrapExists 1912
SysGraffitiReferenceDialog 418
SysGremlins 980, 2311
SysHandleEvent 78, 89, 93, 98, 99, 808, 981
SysInsertionSort 981
SysKeyboardDialog 984, 2306
SysKeyboardDialogV10 984
SysLibFind 985
SysLibInstall 985
SysLibLoad 986
SysLibRemove 987
sysNotifyAntennaRaisedEvent 78
SysNotifyBroadcast 802
SysNotifyBroadcastDeferred 362, 804
sysNotifyBroadcasterCode 75, 801
SysNotifyBroadcastFromInterrupt 805
sysNotifyCardInsertedEvent 79
sysNotifyCardRemovedEvent 80
sysNotifyDBChangedEvent 82
SysNotifyDBChangedType 83
sysNotifyDBCreatedEvent 81
SysNotifyDBCreatedType 81
sysNotifyDBDeletedEvent 85, 583
SysNotifyDBDeletedType 85
sysNotifyDBDirtyEvent 86
SysNotifyDBDirtyType 87
SysNotifyDBInfoType 88
sysNotifyDefaultQueueSize 801, 803
sysNotifyDeleteProtectedEvent 87
sysNotifyDeviceUnlocked 88, 93
SysNotifyDisplayChangeDetailsType 89
sysNotifyDisplayChangeEvent 88, 1213
sysNotifyEarlyWakeupEvent 89
sysNotifyErrBroadcastBusy 802
sysNotifyErrDuplicateEntry 807
sysNotifyErrEntryNotFound 809
sysNotifyErrNoStackSpace 802
sysNotifyErrQueueFull 804, 805
sysNotifyForgotPasswordEvent 90
sysNotifyGotUsersAttention 91
sysNotifyHelperEvent 91, 749, 751
sysNotifyIrDASniffEvent 73
sysNotifyLateWakeupEvent 88, 93

Palm OS Programmer’s API Reference 2397

sysNotifyLocaleChangedEvent 94
SysNotifyLocaleChangedType 94
sysNotifyMenuCmdBarOpenEvent 59, 95, 299,

373, 377
sysNotifyNetLibIFMediaEvent 95
SysNotifyNetLibIFMediaType 96
sysNotifyNoDatabaseID 801
sysNotifyNormalPriority 802, 807
SysNotifyParamType 32, 74, 78, 751, 807
sysNotifyPhoneEvent 73
sysNotifyPOSEMountEvent 73
SysNotifyProcPtr 806, 808, 810
SysNotifyRegister 806
sysNotifyResetFinishedEvent 97
sysNotifyRetryEnqueueKey 97
sysNotifySleepNotifyEvent 98, 99
sysNotifySleepRequestEvent 98, 99
sysNotifySyncFinishEvent 34, 101
sysNotifySyncStartEvent 34, 101
sysNotifyTimeChangeEvent 35, 101, 1069
SysNotifyUnregister 809
sysNotifyVersionNum 802
sysNotifyVolumeMountedEvent 102
sysNotifyVolumeUnmountedEvent 103
SysQSort 987
SysRandom 989
sysRandomMax 989
SysReset 989
sysResIDExtPrefs 614
sysResTExtPrefs 614
SysSetAutoOffTime 990
SysSetTrapAddress 990
sysSleepAutoOff 100
sysSleepPowerButton 100
sysSleepResumed 100
sysSleepUnknown 100
SysStringByIndex 991
SysTaskDelay 992
system 912
system events

checking availability 959
system keyboard display 984
SystemMgr.h 3, 961
SystemPreferencesChoice 829, 837

SystemPreferencesType 829
SystemResources.h 1551
SysTicksPerSecond 992
sysTrap.... 979, 990
SysTraps.h 979, 990
SysUIAppSwitch 993
SysUtils.h 961

T
table functions 433–475
table objects

fields 430
structure 430

Table.h 419
TableAttrType 419
TableColumnAttrType 420
TableDrawItemFuncPtr 433, 451
TableDrawItemFuncType 475
TableItemPtr 422
TableItemStyleType 424
TableItemType 422
TableLoadDataFuncType 433, 451, 476
tableMaxTextItemSize 424
TablePtr 427
TableRowAttrType 428
tables

setting load data callback 467
setting save data callback 473

TableSaveDataFuncType 478
TableType 430
tAIB 535
taif 535
TblDrawTable 433
TblEditing 434
tblEnterEvent 66, 67, 300
TblEraseTable 435
tblExitEvent 67, 68
TblFindRowData 435
TblFindRowID 436
TblGetBounds 436
TblGetColumnSpacing 437
TblGetColumnWidth 437
TblGetCurrentField 438, 446

2398 Palm OS Programmer’s API Reference

TblGetItemBounds 438
TblGetItemFont 439, 2311
TblGetItemInt 440
TblGetItemPtr 440
TblGetLastUsableRow 441
TblGetNumberOfRows 442
TblGetRowData 443
TblGetRowHeight 443
TblGetRowID 444
TblGetSelection 444
TblGlueGetColumnMasked 1912
TblGlueGetNumberOfColumns 442, 1893
TblGlueGetTopRow 445, 1893
TblGlueSetSelection 474, 1893
TblGrabFocus 445
TblHandleEvent 66, 67, 447
TblHasScrollBar 448
TblInsertRow 449
TblMarkRowInvalid 450
TblMarkTableInvalid 450
TblRedrawTable 451
TblReleaseFocus 452
TblRemoveRow 453
TblRowInvalid 453
TblRowMasked 454
TblRowSelectable 455
TblRowUsable 455
tblSelectEvent 67, 448
TblSelectItem 456
TblSetBounds 457
TblSetColumnEditIndicator 457
TblSetColumnMasked 458
TblSetColumnSpacing 459
TblSetColumnUsable 460
TblSetColumnWidth 460
TblSetCustomDrawProcedure 461
TblSetItemFont 462, 2311
TblSetItemInt 463
TblSetItemPtr 464
TblSetItemStyle 465
TblSetLoadDataProcedure 467
TblSetRowData 467
TblSetRowHeight 468

TblSetRowID 469
TblSetRowMasked 470
TblSetRowSelectable 471
TblSetRowStaticHeight 472
TblSetRowUsable 472
TblSetSaveDataProcedure 473
TblUnhighlightSelection 475
tblUnusableRow 441
tbmf 535
Tbmp 535
TelCallStateType 1625
TelCancel 1638
TelCfgGetPhoneNumber 1685
TelCfgGetPhoneNumberType 1681
TelCfgGetSmsCenterType 1682
TelCfgSetSmsCenter 1688
TelCgfGetSmsCenter 1687
TelClose 1639
TelClosePhoneConnection 1640
TelDataCallNumberType 1715
TelDtcCallNumber 1720
TelDtcCloseLine 1722
TelDtcReceiveData 1723
TelDtcReceiveDataType 1716
TelDtcSendData 1724
TelDtcSendDataType 1717
TelEmcCall 1726
TelEmcCloseLine 1728
TelEmcGetNumber 1729
TelEmcGetNumberType 1717
TelEmcSelectNumber 1732
TelEmcSetNumber 1734
TelEmcSetNumberType 1718
TelephonyMgr.h 2224, 2228, 2229
TelEventType 1623
TelGetCallState 1641
TelGetEvent 1643
TelGetNumberCount 1731
TelGetTelephonyEvent 1644
TelInfGetInformation 1645
TelInformationType 1627
TelIsCfgServiceAvailable 1647
TelIsDtcServiceAvailable 1648

Palm OS Programmer’s API Reference 2399

TelIsEmcServiceAvailable 1649
TelIsInfServiceAvailable 1650
TelIsNwkServiceAvailable 1652
TelIsOemServiceAvailable 1653
TelIsPhbServiceAvailable 1654
TelIsPhoneConnected 1655
TelIsPowServiceAvailable 1656
TelIsSmsServiceAvailable 1658
TelIsSndServiceAvailable 1659
TelIsSpcServiceAvailable 1660
TelIsStyServiceAvailable 1661
TelMatchPhoneDriver 1663
TelNwkGetLocation 1699
TelNwkGetLocationType 1695
TelNwkGetNetworkName 1701
TelNwkGetNetworkNameType 1696
TelNwkGetNetworks 1703
TelNwkGetNetworksType 1697
TelNwkGetNetworkType 1705
TelNwkGetSearchMode 1706
TelNwkGetSelectedNetwork 1269, 1707
TelNwkGetSignalLevel 1709
TelNwkSelectNetwork 1711
TelNwkSetSearchMode 1712
TelOemCall 1664
TelOemCallType 1628
TelOpen 1665
TelOpenPhoneConnection 1666
TelPhbAddEntry 1821
TelPhbDeleteEntry 1823
TelPhbEntryType 1815
TelPhbGetAvailablePhonebooks 1824
TelPhbGetAvailablePhonebooksType 1817
TelPhbGetEntries 1826
TelPhbGetEntriesType 1818
TelPhbGetEntry 1828
TelPhbGetEntryCount 1830
TelPhbGetEntryCountType 1819
TelPhbGetEntryMaxSizes 1832
TelPhbGetEntryMaxSizesType 1819
TelPhbGetSelectedPhonebook 1833
TelPhbSelectPhonebook 1835
TelPowGetBatteryStatus 1667

TelPowGetPowerLevel 1669
TelPowSetPhonePower 1670
TelSendCommandString 1671
TelSendCommandStringType 1628
TelSmsDateTimeType 1755
TelSmsDeleteMessage 1785
TelSmsDeleteMessageType 1756
TelSmsDeliveryAdvancedCDMAType 1757
TelSmsDeliveryAdvancedGSMType 1758
TelSmsDeliveryAdvancedTDMAType 1759
TelSmsDeliveryMessageType 1761
TelSmsExtensionType 1764, 1768, 1769, 1780
TelSmsGetAvailableStorage 1786
TelSmsGetAvailableStorageType 1765
TelSmsGetDataMaxSize 1788
TelSmsGetMessageCount 1790
TelSmsGetMessageCountType 1766
TelSmsGetSelectedStorage 1792
TelSmsGetUniquePartId 1793
TelSmsManualAckType 1767
TelSmsReadMessage 1795
TelSmsReadMessages 1798
TelSmsReadMessagesType 1769
TelSmsReadReport 1800
TelSmsReadReports 1802
TelSmsReadReportsType 1770
TelSmsReadSubmittedMessage 1804
TelSmsReadSubmittedMessages 1806
TelSmsReadSubmittedMessagesType 1771
TelSmsReportType 1772
TelSmsSelectStorage 1808
TelSmsSendManualAcknowledge 1809
TelSmsSendMessage 1811
TelSmsSendMessageType 1774
TelSmsSubmitAdvancedCDMAType 1774
TelSmsSubmitAdvancedGSMType 1775
TelSmsSubmitAdvancedTDMAType 1777
TelSmsSubmitMessageType 1778
TelSmsSubmittedMessageType 1780
TelSndMute 1672
TelSndPlayKeyTone 1673
TelSndPlayKeyToneType 1629
TelSndStopKeyTone 1675

2400 Palm OS Programmer’s API Reference

TelSpcAcceptCall 1735
TelSpcCallNumber 1737
TelSpcCloseLine 1739
TelSpcConference 1741
TelSpcGetCallerNumber 1742
TelSpcGetCallerNumberType 1718
TelSpcHoldLine 1744
TelSpcPlayDTMF 1745
TelSpcPlayDTMFType 1719
TelSpcRejectCall 1747
TelSpcRetrieveHeldLine 1748
TelSpcSelectLine 1749
TelSpcSendBurstDTMF 1750
TelSpcStartContinuousDTMF 1752
TelSpcStopContinuousDTMF 1753
TelStyChangeAuthenticationCode 1690
TelStyChangeAuthenticationType 1683
TelStyEnterAuthenticationCode 1691
TelStyGetAuthenticationState 1693
text clipboard 206
text manager 997–1040, 2317
text, finding with GetCharCaselessValue 558
TextMgr.h 997
textTableItem 426, 433, 434, 451
textWithNoteTableItem 426, 433, 434, 451
TimAdjust 1066
TimDateTimeToSeconds 1067
time manager

structures 1045
time system resource 185
time, displaying and selecting 191
TimePtr 1054
timeTableItem 427
TimeToAscii 1070
TimeType 1054
timeZoneStringLength 1071
TimGetSeconds 1067
TimGetTicks 1068
TimSecondsToDateTime 1068
TimSetSeconds 101, 1069
TimTimeZoneToUTC 1072
TimUTCToTimeZone 1073
tint 501

titles
active area 53
copying form title 277

transliteration 1036
translitOpLowerCase 1037
translitOpPreprocess 1037
TranslitOpType 1037
translitOpUpperCase 1037
TsmGlueGetFepMode 1892
TsmGlueSetFepMode 1892
TxtByteAttr 998
TxtCaselessCompare 999

and StrCaselessCompare 920, 922, 929, 931
TxtCharAttr 1000
TxtCharBounds 1001
TxtCharEncoding 1003
TxtCharIsAlNum 1004
TxtCharIsAlpha 1004
TxtCharIsCntrl 1005
TxtCharIsDelim 1005
TxtCharIsDigit 1006
TxtCharIsGraph 1006
TxtCharIsHardKey 1007
TxtCharIsHex 1008
TxtCharIsLower 1008
TxtCharIsPrint 1009
TxtCharIsPunct 1010
TxtCharIsSpace 1010
TxtCharIsUpper 1011
TxtCharIsValid 1011
TxtCharSize 1012
TxtCharWidth 1013
TxtCharXAttr 1013
TxtCompare 1014
TxtConvertEncoding 1017
TxtEncodingName 1021
txtErrConvertOverflow 1018
txtErrTranslitOverflow 1037
txtErrTranslitOverrun 1037
txtErrTranslitUnderflow 1037
txtErrUnknownEncoding 1019
txtErrUnknownTranslitOp 1037
TxtFindString 24, 1022, 1914

and FindStrInStr 252

Palm OS Programmer’s API Reference 2401

TxtGetChar 1023
TxtGetNextChar 1024, 1030
TxtGetPreviousChar 1025
TxtGetTruncationOffset 1027
TxtGetWordWrapOffset 1027
TxtGlueByteAttr 998, 1893
TxtGlueCaselessCompare 1000, 1893
TxtGlueCharAttr 1001, 1893
TxtGlueCharBounds 1002, 1893
TxtGlueCharEncoding 1004, 1893
TxtGlueCharIsAlNum 1004, 1893
TxtGlueCharIsAlpha 1005, 1893
TxtGlueCharIsCntrl 1005, 1893
TxtGlueCharIsDelim 1006, 1893
TxtGlueCharIsDigit 1006, 1893
TxtGlueCharIsGraph 1007, 1893
TxtGlueCharIsHex 1008, 1893
TxtGlueCharIsLower 1008, 1893
TxtGlueCharIsPrint 1009, 1893
TxtGlueCharIsPunct 1010, 1893
TxtGlueCharIsSpace 1010, 1893
TxtGlueCharIsUpper 1011, 1893
TxtGlueCharIsValid 1012, 1893
TxtGlueCharIsVirtual 1913
TxtGlueCharSize 1012, 1893
TxtGlueCharWidth 1893
TxtGlueCharXAttr 1014, 1894
TxtGlueCompare 1016, 1894
TxtGlueEncodingName 1021, 1894
TxtGlueFindString 24, 252
TxtGlueGetChar 1024, 1894
TxtGlueGetHorizEllipsisChar 1915, 2313
TxtGlueGetNextChar 1025, 1894
TxtGlueGetNumericSpaceChar 1916, 2313
TxtGlueGetPreviousChar 1026, 1894
TxtGlueGetTruncationOffset 1027, 1894
TxtGlueLowerChar 1916
TxtGlueLowerStr 1917
TxtGlueMaxEncoding 1029, 1894
TxtGlueNextCharSize 1031, 1894
TxtGlueParamString 1032, 1894
TxtGluePrepFindString 1022, 1914, 1918
TxtGluePreviousCharSize 1033, 1894

TxtGlueReplaceStr 1034, 1894
TxtGlueSetNextChar 1035, 1894
TxtGlueStrEncoding 1036, 1894
TxtGlueStripSpaces 1919
TxtGlueTransliterate 1038, 1894
TxtGlueTruncateString 1920
TxtGlueUpperChar 1921
TxtGlueUpperStr 1922
TxtGlueWordBounds 1039, 1894
TxtMaxEncoding 1028
TxtNameToEncoding 1029
TxtNextCharSize 1030
TxtParamString 1031
TxtPreviousCharSize 1032
TxtReplaceStr 1033
TxtSetNextChar 1034
TxtStrEncoding 1035
TxtTransliterate 1036
TxtWordBounds 1039

U
UDABufferSize 2279
UDAControl 2284
UDADelete 2286
UDAEndOfReader 2286
UDAExchangeReaderNew 2291
UDAExchangeWriterNew 2291
UDAFilterJoin 2287
UDAFilterType 2280
UDAInitiateWrite 2287
UDAMemoryReaderNew 2284, 2292
UDAMoreData 2288
UDAObjectType 2280
UDARead 2288
UDAReaderType 2281
UDAWriterFlush 2289
UDAWriterJoin 2290
UDAWriterType 2282
UIBrightnessAdjust 489
UIColor.h 479
UIColorGetTableEntryIndex 483
UIColorGetTableEntryRGB 485
UIColorSetTableEntry 487

2402 Palm OS Programmer’s API Reference

UIColorTableEntries 479
UICommon.h 493
UIContrastAdjust 490
UIControls.h 489
UIPickColor 490
UIPickColorStartPalette 491
UIPickColorStartRGB 491
UIPickColorStartType 490
UIResources.h 374
UIResources.r 614
UnderlineModeType 197, 1154
unitsEnglish 827
unitsMetric 827
user name

obtaining 1251

V
valid characters 1011
vchrCommand 372, 381, 383, 384, 388
vchrHardAntenna 2320
vchrMenu 299, 372, 381, 383, 384, 388, 2328
vchrRadioCoverageFail 2320
vchrRadioCoverageOK 2320
VdrvAPIType structure 1527
VDrvClose 1539
VdrvConfigType 1528
VDrvControl 1540
VdrvCtlOpCodeEnum 1530
VDrvCustomControl 1542
VDrvOpen 1543
VDrvStatus 1545
VDrvWrite 1545
VerifyCallback SSL Attribute 2209
vfprintf 913
VFS Manager 1075
VFSAnyMountParamType 103, 1076
VFSCustomControl 1085
VFSDirCreate 1087
VFSDirEntryEnumerate 1088
vfsErrBadData 1083
vfsErrBadName 1083
vfsErrBufferOverflow 1083
vfsErrDirectoryNotFound 1083

vfsErrDirNotEmpty 1083
vfsErrFileAlreadyExists 1084
vfsErrFileBadRef 1084
vfsErrFileEOF 1084
vfsErrFileGeneric 1084
vfsErrFileNotFound 1084
vfsErrFilePermissionDenied 1084
vfsErrFileStillOpen 1084
vfsErrIsADirectory 1084
vfsErrNameShortened 1084
vfsErrNoFileSystem 1084
vfsErrNotADirectory 1084
vfsErrVolumeBadRef 1084
vfsErrVolumeFull 1085
vfsErrVolumeStillMounted 1085
VFSExportDatabaseToFile 1090
VFSExportDatabaseToFileCustom 1091
VFSExportProcPtr 1145
vfsFileAttrArchive 1082
vfsFileAttrDirectory 1082
vfsFileAttrHidden 1082
vfsFileAttrLink 1082
vfsFileAttrReadOnly 1082
vfsFileAttrSystem 1082
vfsFileAttrVolumeLabel 1082
VFSFileClose 1093
VFSFileCreate 1094
VFSFileDBGetRecord 1095
VFSFileDBGetResource 1097
VFSFileDBInfo 1099
VFSFileDelete 1102
VFSFileEOF 1103
VFSFileGetAttributes 1104
VFSFileGetDate 1105
VFSFileOpen 1106
VFSFileRead 1108
VFSFileReadData 1109
VFSFileRename 1111
VFSFileResize 1113
VFSFileSeek 1114
VFSFileSetAttributes 1115
VFSFileSetDate 1117
VFSFileSize 1118

Palm OS Programmer’s API Reference 2403

vfsFilesystemType_AFS 1080
vfsFilesystemType_EXT2 1080
vfsFilesystemType_FAT 1080
vfsFilesystemType_FFS 1080
vfsFilesystemType_HFS 1080
vfsFilesystemType_HFSPlus 1080
vfsFilesystemType_HPFS 1080
vfsFilesystemType_MFS 1080
vfsFilesystemType_NFS 1080
vfsFilesystemType_Novell 1080
vfsFilesystemType_NTFS 1080
vfsFilesystemType_VFAT 1080
VFSFileTell 1119
VFSFileWrite 1120
VFSGetDefaultDirectory 1121
vfsHandledStartPrc 102
vfsHandledUIAppSwitch 102
VFSImportDatabaseFromFile 1123
VFSImportDatabaseFromFileCustom 1124
VFSImportProcPtr 1146
VFSInstallFSLib 1127
vfsModeCreate 1081
vfsModeExclusive 1081
vfsModeLeaveOpen 1081
vfsModeRead 1081
vfsModeReadWrite 1081
vfsModeTruncate 1081
vfsModeVFSLayerOnly 1081
vfsModeWrite 1081
vfsMountClass_POSE 1083
vfsMountClass_Simulator 1083
vfsMountClass_SlotDriver 1083
VFSPOSEMountParamType 1078
VFSRegisterDefaultDirectory 1128
VFSRemoveFSLib 1130
VFSSlotMountParamType 1077
VFSUnregisterDefaultDirectory 1131
vfsVolumeAttrHidden 1082
vfsVolumeAttrReadOnly 1082
vfsVolumeAttrSlotBased 1082
VFSVolumeEnumerate 1132
VFSVolumeFormat 1134
VFSVolumeGetLabel 1137

VFSVolumeInfo 1138
VFSVolumeMount 1139
VFSVolumeSetLabel 1142
VFSVolumeSize 1143
VFSVolumeUnmount 1144
Viewer application 2318
virtual character 1913
virtual driver 2321
virtual driver functions 1538
virtual driver queue functions 1546
Virtual File System Manager 1075
voltage warning threshold 963, 965
VolumeInfoType 1078
vsprintf 914
vsprintf (StrVPrintF) 936

W
WakeupHandlerProc 1590
WakeupHandlerProcPtr 1589
WbufSize SSL Attribute 2210
Web Clipping Application Viewer 2318
wiCmd... constants 1889
WiCmdEnum 1888
WinClipRectangle 1164
WinCopyRectangle 1165
WinCreateBitmapWindow 1166
WinCreateOffscreenWindow 1168
WinCreateWindow 1170
WinDeleteWindow 1171
WinDirectionType 1229
WinDisplayToWindowPt 1172
window list 287
Window.h 1147
WindowFlagsType 1155
WindowFormatType 1157, 1168
windows 1147–1245

active window 68
structure 1157

WindowType structure 1157
WinDrawBitmap 1172
WinDrawChar 1173
WinDrawChars 1174
WinDrawGrayLine 1175

2404 Palm OS Programmer’s API Reference

WinDrawGrayRectangleFrame 1176
WinDrawInvertedChars 1176
WinDrawLine 1177
WinDrawOperation 1160
WinDrawPixel 1178
WinDrawRectangle 1178
WinDrawRectangleFrame 1179
WinDrawTruncChars 1180
winEnterEvent 68, 69, 313
WinEraseChars 1181
WinEraseLine 1182
WinErasePixel 1182
WinEraseRectangle 1183
WinEraseRectangleFrame 1184
WinEraseWindow 1184
winExitEvent 69
WinFillLine 1185
WinFillRectangle 1185
WinGetActiveWindow 1186
WinGetBitmap 1186
WinGetClip 1188
WinGetCoordinateSystem 1188
WinGetDisplayExtent 1189
WinGetDisplayWindow 1189
WinGetDrawWindow 1190
WinGetFirstWindow 1191
WinGetFramesRectangle 1191
WinGetPattern 1192
WinGetPatternType 1193
WinGetPixel 1193
WinGetPixelRGB 1194
WinGetSupportedDensity 1195
WinGetWindowBounds 1187
WinGetWindowExtent 1196
WinGetWindowFrameRect 1197
WinGlueDrawChar 1174, 1894
WinGlueDrawTruncChars 1181, 1894
WinGlueGetFrameType 1923
WinGlueSetFrameType 1923
WinHandle 1162
WinIndexToRGB 1197
WinInvertChars 1198
WinInvertLine 1199

WinInvertPixel 1199
WinInvertRectangle 1200
WinInvertRectangleFrame 1201
WinLineType 1162
WinLockInitType 1223
WinModal 1201
WinPaintBitmap 1202
WinPaintChar 1203
WinPaintChars 1204
WinPaintLine 1205
WinPaintLines 1205
WinPaintPixel 1206
WinPaintPixels 1207
WinPaintRectangle 1207
WinPaintRectangleFrame 1208
WinPaintRoundedRectangleFrame 1209
WinPaintTiledBitmap 1210
WinPalette 89, 1211
WinPopDrawState 1213
WinPtr 1163
WinPushDrawState 1214
WinResetClip 1214
WinRestoreBits 1215
WinRGBToIndex 1215
WinSaveBits 1217
WinScaleCoord 1218
WinScalePoint 1219
WinScaleRectangle 1220
WinScreenGetAttribute 1221
WinScreenLock 1223
WinScreenMode 89, 1224
WinScreenModeOperation 1224
WinScreenUnlock 1229
WinScrollRectangle 1229
WinSetActiveWindow 68, 1230
WinSetBackColor 1231
WinSetBackColorRGB 1232
WinSetBounds 1233
WinSetClip 1233
WinSetCoordinateSystem 1234
WinSetDrawMode 1234
WinSetDrawWindow 1235
WinSetForeColor 1236

Palm OS Programmer’s API Reference 2405

WinSetForeColorRGB 1237
WinSetPattern 1238
WinSetPatternType 1238
WinSetTextColor 1239
WinSetTextColorRGB 1240
WinSetUnderlineMode 1241
WinUnscaleCoord 1241
WinUnscalePoint 1242
WinUnscaleRectangle 1243
WinUseTableIndexes 1212

WinValidateHandle 1244
WinWindowToDisplayPt 1245
wireless internet feature set 2318
WirelessIndicator.h 1888
word wrap 734
write callback function 1354
WriteBlock 1548
WriteBufPending SSL Attribute 2210
WriteByte 1548
WriteProc 1318, 1354

2406 Palm OS Programmer’s API Reference

	Palm OS® Programmer’s API Reference
	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Volume Contains
	Additional Resources
	Conventions Used in This Guide

	Part I: User Interface
	Application Launch Codes
	Launch Codes
	sysAppLaunchCmdAddRecord
	sysAppLaunchCmdAlarmTriggered
	sysAppLaunchCmdAttention
	sysAppLaunchCmdCardLaunch
	sysAppLaunchCmdCountryChange
	sysAppLaunchCmdDisplayAlarm
	sysAppLaunchCmdExgAskUser
	sysAppLaunchCmdExgGetData
	sysAppLaunchCmdExgPreview
	sysAppLaunchCmdExgReceiveData
	sysAppLaunchCmdFind
	sysAppLaunchCmdGoto
	sysAppLaunchCmdGoToURL
	sysAppLaunchCmdHandleSyncCallApp
	sysAppLaunchCmdInitDatabase
	sysAppLaunchCmdLookup
	sysAppLaunchCmdNotify
	sysAppLaunchCmdOpenDB
	sysAppLaunchCmdPanelCalledFromApp
	sysAppLaunchCmdReturnFromPanel
	sysAppLaunchCmdSaveData
	sysAppLaunchCmdSyncNotify
	sysAppLaunchCmdSystemLock
	sysAppLaunchCmdSystemReset
	sysAppLaunchCmdTimeChange
	sysAppLaunchCmdURLParams

	Launch Flags

	Palm OS Events
	Event Data Structures
	eventsEnum
	EventType
	EventPtr

	Event Reference
	appStopEvent
	ctlEnterEvent
	ctlExitEvent
	ctlRepeatEvent
	ctlSelectEvent
	daySelectEvent
	fldChangedEvent
	fldEnterEvent
	fldHeightChangedEvent
	frmCloseEvent
	frmGadgetEnterEvent
	frmGadgetMiscEvent
	frmGotoEvent
	frmLoadEvent
	frmOpenEvent
	frmSaveEvent
	frmTitleEnterEvent
	frmTitleSelectEvent
	frmUpdateEvent
	inetSockReadyEvent
	inetSockStatusChangeEvent
	keyDownEvent
	lstEnterEvent
	lstExitEvent
	lstSelectEvent
	menuCloseEvent
	menuCmdBarOpenEvent
	menuEvent
	menuOpenEvent
	nilEvent
	penDownEvent
	penMoveEvent
	penUpEvent
	popSelectEvent
	sclEnterEvent
	sclExitEvent
	sclRepeatEvent
	tblEnterEvent
	tblExitEvent
	tblSelectEvent
	winEnterEvent
	winExitEvent

	Notifications
	Notification Data Structures
	SysNotifyParamType

	Notification Reference
	cncNotifyProfileEvent
	sysExternalConnectorAttachEvent
	sysExternalConnectorDetachEvent
	sysNotifyAntennaRaisedEvent
	sysNotifyAppLaunchingEvent
	sysNotifyAppQuittingEvent
	sysNotifyCardInsertedEvent
	sysNotifyCardRemovedEvent
	New sysNotifyDBCreatedEvent
	New sysNotifyDBChangedEvent
	sysNotifyDBDeletedEvent
	New sysNotifyDBDirtyEvent
	sysNotifyDeleteProtectedEvent
	sysNotifyDeviceUnlocked
	sysNotifyDisplayChangeEvent
	sysNotifyEarlyWakeupEvent
	sysNotifyEventDequeuedEvent
	sysNotifyForgotPasswordEvent
	sysNotifyGotUsersAttention
	sysNotifyHelperEvent
	sysNotifyIdleTimeEvent
	sysNotifyInsPtEnableEvent
	sysNotifyKeyboardDialogEvent
	sysNotifyLateWakeupEvent
	sysNotifyLocaleChangedEvent
	sysNotifyMenuCmdBarOpenEvent
	sysNotifyNetLibIFMediaEvent
	sysNotifyProcessPenStrokeEvent
	sysNotifyResetFinishedEvent
	sysNotifyRetryEnqueueKey
	sysNotifySleepNotifyEvent
	sysNotifySleepRequestEvent
	sysNotifySyncFinishEvent
	sysNotifySyncStartEvent
	sysNotifyTimeChangeEvent
	sysNotifyVirtualCharHandlingEvent
	sysNotifyVolumeMountedEvent
	sysNotifyVolumeUnmountedEvent

	Attention Manager
	Attention Manager Data Structures
	AttnCommandType
	AttnCommandArgsType
	AttnFlagsType
	AttnLaunchCodeArgsType
	AttnLevelType

	Attention Manager Constants
	Error Code Constants
	Attention Manager Drawing Constants
	Attention Manager Feature Constants

	Attention Manager Functions
	AttnDoSpecialEffects
	AttnForgetIt
	AttnGetAttention
	AttnGetCounts
	AttnIndicatorEnable
	AttnIndicatorEnabled
	AttnIterate
	AttnListOpen
	AttnUpdate

	Application-Defined Functions
	AttnCallbackProc

	Categories
	Category Data Structures
	AppInfoPtr
	AppInfoType

	Category Constants
	Category Functions
	CategoryCreateList
	CategoryCreateListV10
	CategoryEdit
	CategoryEditV20
	CategoryEditV10
	CategoryFind
	CategoryFreeList
	CategoryFreeListV10
	CategoryGetName
	CategoryGetNext
	CategoryInitialize
	CategorySelect
	CategorySelectV10
	CategorySetName
	CategorySetTriggerLabel
	CategoryTruncateName

	Clipboard
	Clipboard Data Structures
	ClipboardFormatType

	Clipboard Functions
	ClipboardAddItem
	ClipboardAppendItem
	ClipboardGetItem

	Controls
	Control Data Structures
	ButtonFrameType
	ControlAttrType
	ControlPtr
	ControlStyleType
	ControlType
	GraphicControlType
	SliderControlType

	Control Resources
	Control Functions
	CtlDrawControl
	CtlEnabled
	CtlEraseControl
	CtlGetLabel
	CtlGetSliderValues
	CtlGetValue
	CtlHandleEvent
	CtlHideControl
	CtlHitControl
	CtlNewControl
	CtlNewGraphicControl
	CtlNewSliderControl
	CtlSetEnabled
	CtlSetGraphics
	CtlSetLabel
	CtlSetSliderValues
	CtlSetUsable
	CtlSetValue
	CtlShowControl
	CtlValidatePointer

	Date and Time Selector
	Date and Time Selections Data Structures
	SelectDayType
	DaySelectorType
	HMSTime

	Date and Time Selection Functions
	DayDrawDays
	DayDrawDaySelector
	DayHandleEvent
	SelectDay
	SelectDayV10
	SelectOneTime
	SelectTime
	SelectTimeV33
	SelectTimeZone

	Fields
	Field Data Structures
	FieldAttrType
	FieldPtr
	FieldType
	LineInfoPtr
	LineInfoType

	Field Resources
	Field Functions
	FldCalcFieldHeight
	FldCompactText
	FldCopy
	FldCut
	FldDelete
	FldDirty
	FldDrawField
	FldEraseField
	FldFreeMemory
	FldGetAttributes
	FldGetBounds
	FldGetFont
	FldGetInsPtPosition
	FldGetMaxChars
	FldGetNumberOfBlankLines
	FldGetScrollPosition
	FldGetScrollValues
	FldGetSelection
	FldGetTextAllocatedSize
	FldGetTextHandle
	FldGetTextHeight
	FldGetTextLength
	FldGetTextPtr
	FldGetVisibleLines
	FldGrabFocus
	FldHandleEvent
	FldInsert
	FldMakeFullyVisible
	FldNewField
	FldPaste
	FldRecalculateField
	FldReleaseFocus
	FldScrollable
	FldScrollField
	FldSendChangeNotification
	FldSendHeightChangeNotification
	FldSetAttributes
	FldSetBounds
	FldSetDirty
	FldSetFont
	FldSetInsertionPoint
	FldSetInsPtPosition
	FldSetMaxChars
	FldSetMaxVisibleLines
	FldSetScrollPosition
	FldSetSelection
	FldSetText
	FldSetTextAllocatedSize
	FldSetTextHandle
	FldSetTextPtr
	FldSetUsable
	FldUndo
	FldWordWrap

	Find
	Find Functions
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr

	Forms
	Form Data Structures
	FormAttrType
	FormBitmapType
	FormFrameType
	FormGadgetAttrType
	FormGadgetType
	FormGadgetTypeInCallback
	FormLabelType
	FormLineType
	FormObjAttrType
	FormObjectKind
	FormObjectType
	FormObjListType
	FormPopupType
	FormPtr
	FormRectangleType
	FormTitleType
	FormType
	FrmGraffitiStateType

	Form Constants
	Form Resources
	Form Functions
	FrmAlert
	FrmCloseAllForms
	FrmCopyLabel
	FrmCopyTitle
	FrmCustomAlert
	FrmCustomResponseAlert
	FrmDeleteForm
	FrmDispatchEvent
	FrmDoDialog
	FrmDrawForm
	FrmEraseForm
	FrmGetActiveField
	FrmGetActiveForm
	FrmGetActiveFormID
	FrmGetControlGroupSelection
	FrmGetControlValue
	FrmGetFirstForm
	FrmGetFocus
	FrmGetFormBounds
	FrmGetFormId
	FrmGetFormPtr
	FrmGetGadgetData
	FrmGetLabel
	FrmGetNumberOfObjects
	FrmGetObjectBounds
	FrmGetObjectId
	FrmGetObjectIndex
	FrmGetObjectIndexFromPtr
	FrmGetObjectPosition
	FrmGetObjectPtr
	FrmGetObjectType
	FrmGetTitle
	FrmGetWindowHandle
	FrmGotoForm
	FrmHandleEvent
	FrmHelp
	FrmHideObject
	FrmInitForm
	FrmNewBitmap
	FrmNewForm
	FrmNewGadget
	FrmNewGsi
	FrmNewLabel
	FrmPointInTitle
	FrmPopupForm
	FrmRemoveObject
	FrmRestoreActiveState
	FrmReturnToForm
	FrmSaveActiveState
	FrmSaveAllForms
	FrmSetActiveForm
	FrmSetCategoryLabel
	FrmSetControlGroupSelection
	FrmSetControlValue
	FrmSetEventHandler
	FrmSetFocus
	FrmSetGadgetData
	FrmSetGadgetHandler
	FrmSetMenu
	FrmSetObjectBounds
	FrmSetObjectPosition
	FrmSetTitle
	FrmShowObject
	FrmUpdateForm
	FrmUpdateScrollers
	FrmValidatePtr
	FrmVisible

	Application-Defined Functions
	FormCheckResponseFuncType
	FormEventHandlerType
	FormGadgetHandlerType

	Graffiti Shift
	GraffitiShift Functions
	GsiEnable
	GsiEnabled
	GsiInitialize
	GsiSetLocation
	GsiSetShiftState

	Insertion Point
	Insertion Point Functions
	InsPtEnable
	InsPtEnabled
	InsPtGetHeight
	InsPtGetLocation
	InsPtSetHeight
	InsPtSetLocation

	Lists
	List Data Structures
	ListAttrType
	ListType

	List Resources
	List Functions
	LstDrawList
	LstEraseList
	LstGetNumberOfItems
	LstGetSelection
	LstGetSelectionText
	LstGetTopItem
	LstGetVisibleItems
	LstHandleEvent
	LstMakeItemVisible
	LstNewList
	LstPopupList
	LstScrollList
	LstSetDrawFunction
	LstSetHeight
	LstSetListChoices
	LstSetPosition
	LstSetSelection
	LstSetTopItem

	Application-Defined Function
	ListDrawDataFuncType

	Menus
	Menu Data Structures
	MenuBarAttrType
	MenuCmdBarButtonType
	MenuCmdBarResultType
	MenuCmdBarType
	MenuBarPtr
	MenuBarType
	MenuItemType
	MenuPullDownPtr
	MenuPullDownType

	Menu Constants
	Menu Resources
	Menu Functions
	MenuAddItem
	MenuCmdBarAddButton
	MenuCmdBarDisplay
	MenuCmdBarGetButtonData
	MenuDispose
	MenuDrawMenu
	MenuEraseStatus
	MenuGetActiveMenu
	MenuHandleEvent
	MenuHideItem
	MenuInit
	MenuSetActiveMenu
	MenuSetActiveMenuRscID
	MenuShowItem

	Private Records
	Private Record Data Structures
	privateRecordViewEnum

	Private Record Functions
	SecSelectViewStatus
	SecVerifyPW

	Progress Manager
	Progress Manager Functions
	PrgHandleEvent
	PrgStartDialog
	PrgStartDialogV31
	PrgStopDialog
	PrgUpdateDialog
	PrgUserCancel

	Application-Defined Functions
	PrgCallbackFunc

	Scroll Bars
	Scroll Bar Data Structures
	ScrollBarAttrType
	ScrollBarPtr
	ScrollBarType

	Scroll Bar Resources
	Scroll Bar Functions
	SclDrawScrollBar
	SclGetScrollBar
	SclHandleEvent
	SclSetScrollBar

	System Dialogs
	System Dialog Functions
	SysAppLauncherDialog
	SysFatalAlert
	SysGraffitiReferenceDialog

	Tables
	Table Data Structures
	TableAttrType
	TableColumnAttrType
	TableItemPtr
	TableItemType
	TablePtr
	TableRowAttrType
	TableType

	Table Constants
	Table Resource
	Table Functions
	TblDrawTable
	TblEditing
	TblEraseTable
	TblFindRowData
	TblFindRowID
	TblGetBounds
	TblGetColumnSpacing
	TblGetColumnWidth
	TblGetCurrentField
	TblGetItemBounds
	TblGetItemFont
	TblGetItemInt
	TblGetItemPtr
	TblGetLastUsableRow
	TblGetNumberOfColumns
	TblGetNumberOfRows
	TblGetRowData
	TblGetRowHeight
	TblGetRowID
	TblGetSelection
	TblGetTopRow
	TblGrabFocus
	TblHandleEvent
	TblHasScrollBar
	TblInsertRow
	TblMarkRowInvalid
	TblMarkTableInvalid
	TblRedrawTable
	TblReleaseFocus
	TblRemoveRow
	TblRowInvalid
	TblRowMasked
	TblRowSelectable
	TblRowUsable
	TblSelectItem
	TblSetBounds
	TblSetColumnEditIndicator
	TblSetColumnMasked
	TblSetColumnSpacing
	TblSetColumnUsable
	TblSetColumnWidth
	TblSetCustomDrawProcedure
	TblSetItemFont
	TblSetItemInt
	TblSetItemPtr
	TblSetItemStyle
	TblSetLoadDataProcedure
	TblSetRowData
	TblSetRowHeight
	TblSetRowID
	TblSetRowMasked
	TblSetRowSelectable
	TblSetRowStaticHeight
	TblSetRowUsable
	TblSetSaveDataProcedure
	TblSetSelection
	TblUnhighlightSelection

	Application-Defined Functions
	TableDrawItemFuncType
	TableLoadDataFuncType
	TableSaveDataFuncType

	UI Color List
	UI Color Data Types
	UIColorTableEntries

	UI Color Functions
	UIColorGetTableEntryIndex
	UIColorGetTableEntryRGB
	UIColorSetTableEntry

	UI Controls
	UI Control Functions
	UIBrightnessAdjust
	UIContrastAdjust
	UIPickColor

	Miscellaneous User Interface Functions
	Miscellaneous User Interface Data Structures
	AddressLookupFields
	AddrLookupParamsType

	Miscellaneous User Interface Functions
	PhoneNumberLookup
	PhoneNumberLookupCustom
	ResLoadConstant
	ResLoadForm
	ResLoadMenu

	Part II: System Management
	Alarm Manager
	Alarm Manager Functions
	AlmGetAlarm
	AlmGetProcAlarm
	AlmSetAlarm
	AlmSetProcAlarm

	Application-Defined Functions
	AlmAlarmProcPtr

	Bitmaps
	Bitmap Data Structures
	BitmapCompressionType
	BitmapDirectInfoType
	BitmapFlagsType
	BitmapPtr
	BitmapType
	New BitmapTypeV0
	New BitmapTypeV1
	New BitmapTypeV2
	New BitmapTypeV3
	ColorTableType
	New DensityType
	New PixelFormatType
	RGBColorType

	Bitmap Constants
	Bitmap Resources
	Bitmap Functions
	BmpBitsSize
	BmpColortableSize
	BmpCompress
	BmpCreate
	New BmpCreateBitmapV3
	BmpDelete
	BmpGetBits
	BmpGetBitDepth
	BmpGetColortable
	New BmpGetCompressionType
	New BmpGetDensity
	BmpGetDimensions
	BmpGetNextBitmap
	New BmpGetNextBitmapAnyDensity
	BmpGetSizes
	New BmpGetTransparentValue
	New BmpGetVersion
	New BmpSetDensity
	New BmpSetTransparentValue
	BmpSize
	ColorTableEntries

	Character Attributes
	Character Attribute Functions
	ChrHorizEllipsis
	ChrIsHardKey
	ChrNumericSpace
	GetCharAttr
	GetCharCaselessValue
	GetCharSortValue

	Data and Resource Manager
	Data Manager Data Structures
	DmOpenRef
	DmResID
	DmResType
	SortRecordInfoType

	Data Manager Constants
	Category Constants
	Record Attribute Constants
	Database Attribute Constants
	Error Codes
	Open Mode Constants
	Miscellaneous Constants

	Data Manager Functions
	DmArchiveRecord
	DmAttachRecord
	DmAttachResource
	DmCloseDatabase
	DmCreateDatabase
	DmCreateDatabaseFromImage
	DmDatabaseInfo
	DmDatabaseProtect
	DmDatabaseSize
	DmDeleteCategory
	DmDeleteDatabase
	DmDeleteRecord
	DmDetachRecord
	DmDetachResource
	DmFindDatabase
	DmFindRecordByID
	DmFindResource
	DmFindResourceType
	DmFindSortPosition
	DmFindSortPositionV10
	DmGetAppInfoID
	DmGetDatabase
	DmGetDatabaseLockState
	DmGetLastErr
	DmGetNextDatabaseByTypeCreator
	DmGetRecord
	DmGetResource
	DmGetResourceIndex
	DmGet1Resource
	DmInsertionSort
	DmMoveCategory
	DmMoveRecord
	DmNewHandle
	DmNewRecord
	DmNewResource
	DmNextOpenDatabase
	DmNextOpenResDatabase
	DmNumDatabases
	DmNumRecords
	DmNumRecordsInCategory
	DmNumResources
	DmOpenDatabase
	DmOpenDatabaseByTypeCreator
	DmOpenDatabaseInfo
	DmOpenDBNoOverlay
	DmPositionInCategory
	DmQueryNextInCategory
	DmQueryRecord
	DmQuickSort
	DmRecordInfo
	DmReleaseRecord
	DmReleaseResource
	DmRemoveRecord
	DmRemoveResource
	DmRemoveSecretRecords
	DmResizeRecord
	DmResizeResource
	DmResourceInfo
	DmSearchRecord
	DmSearchResource
	DmSeekRecordInCategory
	DmSet
	DmSetDatabaseInfo
	DmSetRecordInfo
	DmSetResourceInfo
	DmStrCopy
	DmWrite
	DmWriteCheck

	Application-Defined Functions
	DmComparF

	Error Manager
	ERROR_CHECK_LEVEL Define
	Error Manager Data Structures
	ErrExceptionType

	Error Manager Functions
	ErrAlert
	ErrCatch
	ErrDisplay
	ErrDisplayFileLineMsg
	ErrEndCatch
	ErrExceptionList
	ErrFatalDisplayIf
	ErrNonFatalDisplayIf
	ErrThrow
	ErrTry

	Expansion Manager
	Expansion Manager Data Structures
	ExpCardInfoType

	Expansion Manager Constants
	Error Codes
	Defined Media Types

	Expansion Manager Functions
	ExpCardGetSerialPort
	ExpCardInfo
	ExpCardPresent
	ExpSlotDriverInstall
	ExpSlotDriverRemove
	ExpSlotEnumerate
	ExpSlotLibFind

	Feature Manager
	Feature Manager Functions
	FtrGet
	FtrGetByIndex
	FtrPtrFree
	FtrPtrNew
	FtrPtrResize
	FtrSet
	FtrUnregister

	File Streaming
	File Streaming Constants
	Primary Open Mode Constants
	Secondary Open Mode Constants

	File Streaming Functions
	FileClearerr
	FileClose
	FileControl
	FileDelete
	FileDmRead
	FileEOF
	FileError
	FileFlush
	FileGetLastError
	FileOpen
	FileRead
	FileRewind
	FileSeek
	FileTell
	FileTruncate
	FileWrite

	File Streaming Error Codes

	Float Manager
	Float Manager Data Structures
	FlpCompDouble
	FlpDoubleBits

	Float Manager Functions
	FlpAToF
	FlpBase10Info
	FlpBufferAToF
	FlpBufferCorrectedAdd
	FlpBufferCorrectedSub
	FlpCorrectedAdd
	FlpCorrectedSub
	FlpFToA
	FlpGetExponent
	FlpGetSign
	FlpIsZero
	FlpNegate
	FlpSetNegative
	FlpSetPositive
	FlpVersion

	Fonts
	Font Data Structures
	FontCharInfoPtr
	FontCharInfoType
	New FontDensityType
	FontID
	FontPtr
	FontType
	New FontTypeV2

	Font Constants
	Font Resources
	Font Resource
	New Extended Font Resource

	Font Functions
	FntAverageCharWidth
	FntBaseLine
	FntCharHeight
	FntCharsInWidth
	FntCharsWidth
	FntCharWidth
	FntDefineFont
	FntDescenderHeight
	FntGetFont
	FntGetFontPtr
	FntGetScrollValues
	FntIsAppDefined
	FntLineHeight
	FntLineWidth
	FntSetFont
	FntWCharWidth
	FntWidthToOffset
	FntWordWrap
	FntWordWrapReverseNLines
	FontSelect

	Graffiti Manager
	Graffiti Manager Functions
	GrfAddMacro
	GrfAddPoint
	GrfCleanState
	GrfDeleteMacro
	GrfFilterPoints
	GrfFindBranch
	GrfFlushPoints
	GrfGetAndExpandMacro
	GrfGetGlyphMapping
	GrfGetMacro
	GrfGetMacroName
	GrfGetNumPoints
	GrfGetPoint
	GrfGetState
	GrfInitState
	GrfMatch
	GrfMatchGlyph
	GrfProcessStroke
	GrfSetState

	Helper API
	Helper Data Structures
	HelperNotifyEnumerateListType
	HelperNotifyEventType
	HelperNotifyExecuteType
	HelperNotifyValidateType
	HelperServiceEMailDetailsType
	HelperServiceSMSDetailsType

	Helper Constants
	Helper Service Class IDs

	Key Manager
	Key Manager Functions
	KeyCurrentState
	KeyRates
	KeySetMask

	Locale Manager
	Locale Manager Data Types
	CountryType
	LanguageType
	LmLocaleType
	NumberFormatType

	Locale Manager Constants
	Character Encoding Constants
	Country Constants
	Language Constants
	Locale Manager Size Constants

	Locale Manager Functions
	LmGetLocaleSetting
	LmGetNumLocales
	LmLocaleToIndex

	Memory Manager
	Memory Manager Functions
	MemCardInfo
	MemCmp
	MemDebugMode
	MemHandleCardNo
	MemHandleDataStorage
	MemHandleFree
	MemHandleHeapID
	MemHandleLock
	MemHandleNew
	MemHandleResize
	MemHandleSetOwner
	MemHandleSize
	MemHandleToLocalID
	MemHandleUnlock
	MemHeapCheck
	MemHeapCompact
	MemHeapDynamic
	MemHeapFlags
	MemHeapFreeBytes
	MemHeapID
	MemHeapScramble
	MemHeapSize
	MemLocalIDKind
	MemLocalIDToGlobal
	MemLocalIDToLockedPtr
	MemLocalIDToPtr
	MemMove
	MemNumCards
	MemNumHeaps
	MemNumRAMHeaps
	MemPtrCardNo
	MemPtrDataStorage
	MemPtrFree
	MemPtrHeapID
	MemPtrNew
	MemPtrRecoverHandle
	MemPtrResize
	MemPtrSetOwner
	MemPtrSize
	MemPtrToLocalID
	MemPtrUnlock
	MemSet
	MemSetDebugMode
	MemStoreInfo

	Notification Manager
	Notification Constants
	Miscellaneous Constants

	Notification Functions
	SysNotifyBroadcast
	SysNotifyBroadcastDeferred
	SysNotifyBroadcastFromInterrupt
	SysNotifyRegister
	SysNotifyUnregister

	Application-Defined Functions
	SysNotifyProcPtr

	Overlay Manager
	Overlay Manager Data Structures
	OmLocaleType

	Overlay Manager Constants
	Overlay Manager Functions
	OmGetCurrentLocale
	OmGetIndexedLocale
	OmGetNextSystemLocale
	OmGetRoutineAddress
	OmGetSystemLocale
	OmLocaleToOverlayDBName
	OmOverlayDBNameToLocale
	OmSetSystemLocale

	Password
	Password Functions
	PwdExists
	PwdRemove
	PwdSet
	PwdVerify

	Pen Manager
	Pen Manager Functions
	PenCalibrate
	PenResetCalibration

	Preferences
	Preferences Data Types
	MeasurementSystemType
	SecurityAutoLockType
	SoundLevelTypeV20
	SystemPreferencesChoice

	Preferences Constants
	Preferences Functions
	PrefGetAppPreferences
	PrefGetAppPreferencesV10
	PrefGetPreference
	PrefGetPreferences
	PrefOpenPreferenceDB
	PrefOpenPreferenceDBV10
	PrefSetAppPreferences
	PrefSetAppPreferencesV10
	PrefSetPreference
	PrefSetPreferences

	Rectangles
	Rectangle Data Structures
	PointType
	RectangleType

	Rectangle Functions
	RctCopyRectangle
	RctGetIntersection
	RctInsetRectangle
	RctOffsetRectangle
	RctPtInRectangle
	RctSetRectangle

	Sound Manager
	Overview
	Simple Sound Structures and Constants
	SndCallbackInfoType
	SndCmdIDTag
	SndCommandType
	sndMaxAmp
	SndMidiListItemType
	sndMidiNameLength
	SndMidiRecHdrType
	sndMidiRecSignature
	SndSmfCallbacksType
	SndSmfChanRangeType
	SndSmfCmdEnum
	SndSmfOptionsType
	sndSmfPlayAllMilliSec
	SndSysBeepTag

	Simple Sound Functions
	SndCreateMidiList
	SndDoCmd
	SndGetDefaultVolume
	SndInterruptSmfIrregardless
	SndPlaySmf
	SndPlaySmfIrregardless
	SndPlaySmfResource
	SndPlaySmfResourceIrregardless
	SndPlaySystemSound
	SndSetDefaultVolume

	Simple Sound Application-Defined Functions
	SndBlockingFuncType
	SndComplFuncType

	Sampled Sound Structures, Constants, and Data Types
	New SndPtr
	New SndSampleType
	New SndSampleTypeTag
	New SndStreamMode
	New SndStreamModeTag
	New SndStreamRef
	New SndStreamWidth
	New SndStreamWidthTag
	New Sound Resource Playback Flags
	New Stereo Pan Constants
	New Volume Constants

	Sampled Sound Functions
	New SndPlayResource
	New SndStreamCreate
	New SndStreamDelete
	New SndStreamGetPan
	New SndStreamGetVolume
	New SndStreamPause
	New SndStreamSetPan
	New SndStreamSetVolume
	New SndStreamStart
	New SndStreamStop

	Sampled Sound Application-Defined Functions
	New SndStreamBufferCallback

	Standard IO
	Standard IO Functions
	fgetc
	fgets
	fprintf
	fputc
	fputs
	getchar
	gets
	printf
	putc
	putchar
	puts
	SioAddCommand
	Siofgetc
	Siofgets
	Siofprintf
	Siofputc
	Siofputs
	Siogets
	Sioprintf
	Sioputs
	Siosystem
	Siovfprintf
	sprintf
	system
	vfprintf
	vsprintf

	Standard IO Provider Functions
	SioClearScreen
	SioExecCommand
	SioFree
	SioHandleEvent
	SioInit

	Application-Defined Function
	SioMain

	String Manager
	String Manager Functions
	StrAToI
	StrCaselessCompare
	StrCat
	StrChr
	StrCompare
	StrCompareAscii
	StrCopy
	StrDelocalizeNumber
	StrIToA
	StrIToH
	StrLen
	StrLocalizeNumber
	StrNCaselessCompare
	StrNCat
	StrNCompare
	StrNCompareAscii
	StrNCopy
	StrPrintF
	StrStr
	StrToLower
	StrVPrintF

	System Event Manager
	System Event Manager Data Structures
	System Event Manager Functions
	EvtAddEventToQueue
	EvtAddUniqueEventToQueue
	EvtCopyEvent
	EvtDequeuePenPoint
	EvtDequeuePenStrokeInfo
	EvtEnableGraffiti
	EvtEnqueueKey
	EvtEventAvail
	EvtFlushKeyQueue
	EvtFlushNextPenStroke
	EvtFlushPenQueue
	EvtGetEvent
	EvtGetPen
	EvtGetPenBtnList
	New EvtGetPenNative
	EvtGetSilkscreenAreaList
	EvtKeydownIsVirtual
	EvtKeyQueueEmpty
	EvtKeyQueueSize
	EvtPenQueueSize
	EvtProcessSoftKeyStroke
	EvtResetAutoOffTimer
	EvtSetAutoOffTimer
	EvtSetNullEventTick
	EvtSysEventAvail
	EvtWakeup
	EvtWakeupWithoutNilEvent

	System Manager
	System Manager Data Structures
	SysDBListItemType

	System Functions
	SysAppLaunch
	SysBatteryInfo
	SysBatteryInfoV20
	SysBinarySearch
	SysBroadcastActionCode
	SysCopyStringResource
	SysCreateDataBaseList
	SysCreatePanelList
	SysCurAppDatabase
	SysErrString
	SysFormPointerArrayToStrings
	New sysFtrNumProcessorIs68K
	New sysFtrNumProcessorIsARM
	SysGetOSVersionString
	SysGetROMToken
	SysGetStackInfo
	SysGetTrapAddress
	SysGremlins
	SysHandleEvent
	SysInsertionSort
	SysKeyboardDialog
	SysKeyboardDialogV10
	SysLibFind
	SysLibInstall
	SysLibLoad
	SysLibRemove
	SysQSort
	SysRandom
	SysReset
	SysSetAutoOffTime
	SysSetTrapAddress
	SysStringByIndex
	SysTaskDelay
	SysTicksPerSecond
	SysUIAppSwitch

	Application-Defined Functions
	PilotMain

	Text Manager
	Text Manager Data Structures
	CharEncodingType

	Text Manager Functions
	TxtByteAttr
	TxtCaselessCompare
	TxtCharAttr
	TxtCharBounds
	TxtCharEncoding
	TxtCharIsAlNum
	TxtCharIsAlpha
	TxtCharIsCntrl
	TxtCharIsDelim
	TxtCharIsDigit
	TxtCharIsGraph
	TxtCharIsHardKey
	TxtCharIsHex
	TxtCharIsLower
	TxtCharIsPrint
	TxtCharIsPunct
	TxtCharIsSpace
	TxtCharIsUpper
	TxtCharIsValid
	TxtCharSize
	TxtCharWidth
	TxtCharXAttr
	TxtCompare
	TxtConvertEncoding
	TxtEncodingName
	TxtFindString
	TxtGetChar
	TxtGetNextChar
	TxtGetPreviousChar
	TxtGetTruncationOffset
	TxtGetWordWrapOffset
	TxtMaxEncoding
	TxtNameToEncoding
	TxtNextCharSize
	TxtParamString
	TxtPreviousCharSize
	TxtReplaceStr
	TxtSetNextChar
	TxtStrEncoding
	TxtTransliterate
	TxtWordBounds

	Text Services Manager
	Text Services Manager Data Structures
	TsmFepModeType

	Text Services Manager Functions
	TsmGetFepMode
	TsmSetFepMode

	Time Manager
	Time Manager Data Structures
	DateFormatType
	DateTimeType
	DateType
	DaylightSavingsTypes
	DayOfMonthType
	TimeFormatType
	TimeType

	Time Manager Constants
	Time Manager Functions
	DateAdjust
	DateDaysToDate
	DateSecondsToDate
	DateTemplateToAscii
	DateToAscii
	DateToDays
	DateToDOWDMFormat
	DayOfMonth
	DayOfWeek
	DaysInMonth
	TimAdjust
	TimDateTimeToSeconds
	TimGetSeconds
	TimGetTicks
	TimSecondsToDateTime
	TimSetSeconds
	TimeToAscii
	TimeZoneToAscii
	TimTimeZoneToUTC
	TimUTCToTimeZone

	Virtual File System Manager
	VFS Manager Data Structures
	FileInfoType
	FileRef
	VFSAnyMountParamType
	VFSSlotMountParamType
	VFSPOSEMountParamType
	VolumeInfoType

	VFS Manager Constants
	Defined File Systems
	Open Mode Constants
	File and Directory Attributes
	Volume Attributes
	Volume Mount Classes
	Error Codes

	VFS Manager Functions
	VFSCustomControl
	VFSDirCreate
	VFSDirEntryEnumerate
	VFSExportDatabaseToFile
	VFSExportDatabaseToFileCustom
	VFSFileClose
	VFSFileCreate
	VFSFileDBGetRecord
	VFSFileDBGetResource
	VFSFileDBInfo
	VFSFileDelete
	VFSFileEOF
	VFSFileGetAttributes
	VFSFileGetDate
	VFSFileOpen
	VFSFileRead
	VFSFileReadData
	VFSFileRename
	VFSFileResize
	VFSFileSeek
	VFSFileSetAttributes
	VFSFileSetDate
	VFSFileSize
	VFSFileTell
	VFSFileWrite
	VFSGetDefaultDirectory
	VFSImportDatabaseFromFile
	VFSImportDatabaseFromFileCustom
	VFSInstallFSLib
	VFSRegisterDefaultDirectory
	VFSRemoveFSLib
	VFSUnregisterDefaultDirectory
	VFSVolumeEnumerate
	VFSVolumeFormat
	VFSVolumeGetLabel
	VFSVolumeInfo
	VFSVolumeMount
	VFSVolumeSetLabel
	VFSVolumeSize
	VFSVolumeUnmount

	Application-Defined Functions
	VFSExportProcPtr
	VFSImportProcPtr

	Windows
	Window Data Structures
	CustomPatternType
	DrawStateType
	FrameBitsType
	FrameType
	IndexedColorType
	PatternType
	UnderlineModeType
	WindowFlagsType
	WindowFormatType
	WindowType
	WinDrawOperation
	WinHandle
	WinLineType
	WinPtr

	Window Constants
	New Window Coordinate System Constants

	Window Functions
	WinClipRectangle
	WinCopyRectangle
	WinCreateBitmapWindow
	WinCreateOffscreenWindow
	WinCreateWindow
	WinDeleteWindow
	WinDisplayToWindowPt
	WinDrawBitmap
	WinDrawChar
	WinDrawChars
	WinDrawGrayLine
	WinDrawGrayRectangleFrame
	WinDrawInvertedChars
	WinDrawLine
	WinDrawPixel
	WinDrawRectangle
	WinDrawRectangleFrame
	WinDrawTruncChars
	WinEraseChars
	WinEraseLine
	WinErasePixel
	WinEraseRectangle
	WinEraseRectangleFrame
	WinEraseWindow
	WinFillLine
	WinFillRectangle
	WinGetActiveWindow
	WinGetBitmap
	WinGetBounds
	WinGetClip
	New WinGetCoordinateSystem
	WinGetDisplayExtent
	WinGetDisplayWindow
	WinGetDrawWindow
	WinGetDrawWindowBounds
	WinGetFirstWindow
	WinGetFramesRectangle
	WinGetPattern
	WinGetPatternType
	WinGetPixel
	WinGetPixelRGB
	New WinGetSupportedDensity
	WinGetWindowExtent
	WinGetWindowFrameRect
	WinIndexToRGB
	WinInvertChars
	WinInvertLine
	WinInvertPixel
	WinInvertRectangle
	WinInvertRectangleFrame
	WinModal
	WinPaintBitmap
	WinPaintChar
	WinPaintChars
	WinPaintLine
	WinPaintLines
	WinPaintPixel
	WinPaintPixels
	WinPaintRectangle
	WinPaintRectangleFrame
	New WinPaintRoundedRectangleFrame
	New WinPaintTiledBitmap
	WinPalette
	WinPopDrawState
	WinPushDrawState
	WinResetClip
	WinRestoreBits
	WinRGBToIndex
	WinSaveBits
	New WinScaleCoord
	New WinScalePoint
	New WinScaleRectangle
	New WinScreenGetAttribute
	WinScreenLock
	WinScreenMode
	WinScreenUnlock
	WinScrollRectangle
	WinSetActiveWindow
	WinSetBackColor
	WinSetBackColorRGB
	WinSetBounds
	WinSetClip
	WinSetDrawMode
	New WinSetCoordinateSystem
	WinSetDrawWindow
	WinSetForeColor
	WinSetForeColorRGB
	WinSetPattern
	WinSetPatternType
	WinSetTextColor
	WinSetTextColorRGB
	WinSetUnderlineMode
	New WinUnscaleCoord
	New WinUnscalePoint
	New WinUnscaleRectangle
	WinValidateHandle
	WinWindowToDisplayPt

	Miscellaneous System Functions
	Crc16CalcBlock
	DlkControl
	DlkGetSyncInfo
	IntlGetRoutineAddress
	IntlSetRoutineAddress
	LocGetNumberSeparators
	New PceNativeCall

	Part III: Communications
	Connection Manager
	Connection Manager Data Types
	CncProfileID

	Connection Manager Constants
	Profile Parameter Constants
	Profile Parameter Size Constants
	Device Kind Constants
	Profile Parameter Types

	Connection Manager Functions
	CncAddProfile
	CncDefineParamID
	CncDeleteProfile
	CncGetParamType
	CncGetProfileInfo
	CncGetProfileList
	CncGetSystemFlagBitnum
	CncGetTrueParamID
	CncIsFixedLengthParamType
	CncIsSystemFlags
	CncIsSystemRange
	CncIsThirdPartiesRange
	CncIsVariableLengthParamType
	CncProfileCloseDB
	CncProfileCount
	CncProfileCreate
	CncProfileDelete
	CncProfileGetCurrent
	CncProfileGetIDFromIndex
	CncProfileGetIDFromName
	CncProfileGetIndex
	CncProfileOpenDB
	CncProfileSetCurrent
	CncProfileSettingGet
	CncProfileSettingSet

	Exchange Manager
	Exchange Manager Data Structures
	ExgAskResultType
	ExgGoToType
	ExgLocalSocketInfoType
	ExgPreviewInfoType
	ExgSocketType

	Exchange Manager Constants
	Registry ID Constants
	Predefined URL Schemes
	Predefined URL Prefixes

	Exchange Manager Functions
	ExgAccept
	ExgConnect
	ExgControl
	ExgDBRead
	ExgDBWrite
	ExgDisconnect
	ExgDoDialog
	ExgGet
	ExgGetDefaultApplication
	ExgGetRegisteredApplications
	ExgGetRegisteredTypes
	ExgGetTargetApplication
	ExgNotifyGoto
	ExgNotifyPreview
	ExgNotifyReceive
	ExgPut
	ExgReceive
	ExgRegisterDatatype
	ExgRegisterData
	ExgRequest
	ExgSend
	ExgSetDefaultApplication

	Application-Defined Functions
	ExgDBDeleteProcPtr
	ExgDBReadProcPtr
	ExgDBWriteProcPtr

	Exchange Library
	Exchange Library Functions
	ExgLibAccept
	ExgLibClose
	ExgLibConnect
	ExgLibControl
	ExgLibDisconnect
	ExgLibGet
	ExgLibHandleEvent
	ExgLibOpen
	ExgLibPut
	ExgLibReceive
	ExgLibRequest
	ExgLibSend
	ExgLibSleep
	ExgLibWake

	IR Library
	IR Library Data Structures
	IrConnect
	IrPacket
	IrIASObject
	IrIasQuery
	IrCallbackParms
	IrStatsType

	IR Library Constants
	IR Control Constants

	IR Stack Callback Events
	LEVENT_DATA_IND
	LEVENT_DISCOVERY_CNF
	LEVENT_LAP_CON_CNF
	LEVENT_LAP_CON_IND
	LEVENT_LAP_DISCON_IND
	LEVENT_LM_CON_CNF
	LEVENT_LM_CON_IND
	LEVENT_LM_DISCON_IND
	LEVENT_PACKET_HANDLED
	LEVENT_STATUS_IND
	LEVENT_TEST_CNF
	LEVENT_TEST_IND

	IR Library Functions
	IrAdvanceCredit
	IrBind
	IrClose
	IrConnectIrLap
	IrConnectReq
	IrConnectRsp
	IrDataReq
	IrDisconnectIrLap
	IrDiscoverReq
	IrIsIrLapConnected
	IrIsMediaBusy
	IrIsNoProgress
	IrIsRemoteBusy
	IrLocalBusy
	IrMaxRxSize
	IrMaxTxSize
	IrOpen
	IrSetConTypeLMP
	IrSetConTypeTTP
	IrSetDeviceInfo
	IrTestReq
	IrUnbind

	IAS Functions
	IrIAS_Add
	IrIAS_GetInteger
	IrIAS_GetIntLsap
	IrIAS_GetObjectID
	IrIAS_GetOctetString
	IrIAS_GetOctetStringLen
	IrIAS_GetType
	IrIAS_GetUserString
	IrIAS_GetUserStringCharSet
	IrIAS_GetUserStringLen
	IrIAS_Next
	IrIAS_Query
	IrIAS_SetDeviceName
	IrIAS_StartResult

	Application-Defined Functions
	IrIasQueryCallBack

	Modem Manager
	Modem Manager Functions
	MdmDial
	MdmHangUp

	Net Library
	Net Library Data Structures
	New NetConfigNameType
	NetHostInfoBufType
	NetHostInfoType
	NetServInfoBufType
	NetServInfoType
	NetSocketAddrEnum
	NetSocketAddrINType
	NetSocketAddrRawType
	NetSocketAddrType
	NetSocketRef
	NetSocketTypeEnum

	Net Library Constants
	New Configuration Aliases
	I/O Flags
	Tracing Bits

	Net Library Functions
	NetHToNL
	NetHToNS
	NetLibAddrAToIN
	NetLibAddrINToA
	NetLibClose
	New NetLibConfigAliasGet
	New NetLibConfigAliasSet
	New NetLibConfigDelete
	New NetLibConfigIndexFromName
	New NetLibConfigList
	New NetLibConfigMakeActive
	New NetLibConfigRename
	New NetLibConfigSaveAs
	NetLibConnectionRefresh
	NetLibDmReceive
	NetLibFinishCloseWait
	NetLibGetHostByAddr
	NetLibGetHostByName
	NetLibGetMailExchangeByName
	NetLibGetServByName
	NetLibIFAttach
	NetLibIFDetach
	NetLibIFDown
	NetLibIFGet
	NetLibIFSettingGet
	NetLibIFSettingSet
	NetLibIFUp
	NetLibMaster
	NetLibOpen
	New NetLibOpenConfig
	NetLibOpenCount
	NetLibReceive
	NetLibReceivePB
	NetLibSelect
	NetLibSend
	NetLibSendPB
	NetLibSettingGet
	NetLibSettingSet
	NetLibSocketAccept
	NetLibSocketAddr
	NetLibSocketBind
	NetLibSocketClose
	NetLibSocketConnect
	NetLibSocketListen
	NetLibSocketOpen
	NetLibSocketOptionGet
	NetLibSocketOptionSet
	NetLibSocketShutdown
	NetLibTracePrintF
	NetLibTracePutS
	NetNToHL
	NetNToHS

	Network Utilities
	Network Utility Functions
	NetUReadN
	NetUTCPOpen
	NetUWriteN

	Script Plugin
	Script Plugin Data Types
	PluginCallbackProcType
	PluginCmdPtr
	PluginCmdType
	PluginExecCmdType
	PluginInfoPtr
	PluginInfoType
	ScriptPluginLaunchCodesEnum

	Script Plugin Constants
	Command Constants
	Size Constants

	Script Plugin Functions
	ScriptPluginSelectorProc

	Virtual Drivers
	Driver Data Structures
	DrvrInfoType
	DrvrRcvQType
	DrvrStatusEnum
	SrmRcvQType
	VdrvAPIType
	VdrvConfigType
	VdrvCtlOpCodeEnum

	Driver Constants
	Driver Version Constants
	Port Feature Constants

	Virtual Driver-Defined Functions
	DrvEntryPointProcPtr
	VdrvCloseProcPtr
	VdrvControlProcPtr
	VdrvControlCustomProcPtr
	VdrvOpenProcPtr
	VdrvOpenProcV4Ptr
	VdrvStatusProcPtr
	VdrvWriteProcPtr

	Serial Manager Queue Functions
	GetSizeProcPtr
	GetSpaceProcPtr
	SignalCheckPtr
	WriteBlockProcPtr
	WriteByteProcPtr

	Serial Manager
	Serial Manager Data Structures
	DeviceInfoType
	SrmCtlEnum
	SrmOpenConfigType

	Serial Manager Constants
	Port Constants
	Serial Capabilities Constants
	Serial Settings Constants
	Status Constants
	Line Error Constants

	Serial Manager Functions
	SrmClearErr
	SrmClose
	SrmControl
	SrmCustomControl
	SrmExtOpen
	SrmExtOpenBackground
	SrmGetDeviceCount
	SrmGetDeviceInfo
	SrmGetStatus
	SrmOpen
	SrmOpenBackground
	SrmPrimeWakeupHandler
	SrmReceive
	SrmReceiveCheck
	SrmReceiveFlush
	SrmReceiveWait
	SrmReceiveWindowClose
	SrmReceiveWindowOpen
	SrmSend
	SrmSendCheck
	SrmSendFlush
	SrmSendWait
	SrmSetReceiveBuffer
	SrmSetWakeupHandler

	Serial Manager Application-Defined Functions
	WakeupHandlerProcPtr

	Old Serial Manager
	Serial Manager Data Structures
	SerCtlEnum
	SerSettingsType

	Serial Manager Functions
	SerClearErr
	SerClose
	SerControl
	SerGetSettings
	SerGetStatus
	SerOpen
	SerReceive
	SerReceive10
	SerReceiveCheck
	SerReceiveFlush
	SerReceiveWait
	SerSend
	SerSend10
	SerSendFlush
	SerSendWait
	SerSetReceiveBuffer
	SerSetSettings

	Serial Link Manager
	Serial Link Manager Functions
	SlkClose
	SlkCloseSocket
	SlkFlushSocket
	SlkOpen
	SlkOpenSocket
	SlkReceivePacket
	SlkSendPacket
	SlkSetSocketListener
	SlkSocketPortID
	SlkSocketSetTimeout

	Telephony Basic Services
	Telephony Service Types
	Telephony Data Structures
	TelEventType
	TelCallStateType
	TelInfGetformationType
	TelOemCallType
	TelSendCommandStringType
	TelSndPlayKeyToneType

	Telephony Constants
	Battery Status Constants
	Telephone Call State Constants
	Telephone Call Type Constants
	Telephone Call Service Type Constants
	Error Code Constants
	Information Type Constants
	Keycode Constants
	Key Sound Type Constants
	Message Identifier Constants
	Service Set Constants

	Telephony Functions
	TelCancel
	TelClose
	TelClosePhoneConnection
	TelGetCallState
	TelGetEvent
	TelGetTelephonyEvent
	TelInfGetInformation
	TelIsCfgServiceAvailable
	TelIsDtcServiceAvailable
	TelIsEmcServiceAvailable
	TelIsInfServiceAvailable
	TelIsNwkServiceAvailable
	TelIsOemServiceAvailable
	TelIsPhbServiceAvailable
	TelIsPhoneConnected
	TelIsPowServiceAvailable
	TelIsSmsServiceAvailable
	TelIsSndServiceAvailable
	TelIsSpcServiceAvailable
	TelIsStyServiceAvailable
	TelMatchPhoneDriver
	TelOemCall
	TelOpen
	TelOpenPhoneConnection
	TelPowGetBatteryStatus
	TelPowGetPowerLevel
	TelPowSetPhonePower
	TelSendCommandString
	TelSndMute
	TelSndPlayKeyTone
	TelSndStopKeyTone

	Feature Support Functions
	TelIs<FunctionName>Supported
	TelIs<ServiceSet>Available

	Telephony Security and Configuration
	Telephony Security and Configuration Data Structures
	TelCfgGetPhoneNumberType
	TelCfgGetSmsCenterType
	TelStyChangeAuthenticationType

	Telephony Security and Configuration Constants
	Authentication State Constants

	Telephony Security and Configuration Functions
	TelCfgGetPhoneNumber
	TelCfgGetSmsCenter
	TelCfgSetSmsCenter
	TelStyChangeAuthenticationCode
	TelStyEnterAuthenticationCode
	TelStyGetAuthenticationState

	Telephony Network
	Telephony Network Data Structures
	TelNwkGetLocationType
	TelNwkGetNetworkNameType
	TelNwkGetNetworksType

	Telephony Network Constants
	Network Type Constants
	Network Search Mode Constants

	Telephony Network Functions
	TelNwkGetLocation
	TelNwkGetNetworkName
	TelNwkGetNetworks
	TelNwkGetNetworkType
	TelNwkGetSearchMode
	TelNwkGetSelectedNetwork
	TelNwkGetSignalLevel
	TelNwkSelectNetwork
	TelNwkSetSearchMode

	Telephony Calls
	Telephony Calls Data Structures
	TelDtcCallNumberType
	TelDtcReceiveDataType
	TelDtcSendDataType
	TelEmcGetNumberType
	TelEmcSetNumberType
	TelSpcGetCallerNumberType
	TelSpcPlayDTMFType

	Telephony Calls Functions
	TelDtcCallNumber
	TelDtcCloseLine
	TelDtcReceiveData
	TelDtcSendData
	TelEmcCall
	TelEmcCloseLine
	TelEmcGetNumber
	TelEmcGetNumberCount
	TelEmcSelectNumber
	TelEmcSetNumber
	TelSpcAcceptCall
	TelSpcCallNumber
	TelSpcCloseLine
	TelSpcConference
	TelSpcGetCallerNumber
	TelSpcHoldLine
	TelSpcPlayDTMF
	TelSpcRejectCall
	TelSpcRetrieveHeldLine
	TelSpcSelectLine
	TelSpcSendBurstDTMF
	TelSpcStartContinuousDTMF
	TelSpcStopContinuousDTMF

	Telephony SMS
	Telephony SMS Data Structures
	TelSmsDateTimeType
	TelSmsDeleteMessageType
	TelSmsDeliveryAdvancedCDMAType
	TelSmsDeliveryAdvancedGSMType
	TelSmsDeliveryAdvancedTDMAType
	TelSmsDeliveryMessageType
	TelSmsExtensionType
	TelSmsGetAvailableStorageType
	TelSmsGetMessageCountType
	TelSmsManualAckType
	TelSmsMultiPartExtensionType
	TelSmsNbsExtensionType
	TelSmsReadMessagesType
	TelSmsReadReportsType
	TelSmsReadSubmittedMessagesType
	TelSmsReportType
	TelSmsSendMessageType
	TelSmsSubmitAdvancedCDMAType
	TelSmsSubmitAdvancedGSMType
	TelSmsSubmitAdvancedTDMAType
	TelSmsSubmitMessageType
	TelSmsSubmittedMessageType
	TelSmsUserExtensionType

	Telephony SMS Constants
	SMS Extension Type Constants
	SMS Message Type Constants
	SMS Message Transport Protocol Constants
	SMS Storage ID Constants
	SMS Data Coding Scheme Constants
	SMS Message Urgency Constants
	SMS Message Privacy Constants

	Telephony SMS Functions
	TelSmsDeleteMessage
	TelSmsGetAvailableStorage
	TelSmsGetDataMaxSize
	TelSmsGetMessageCount
	TelSmsGetSelectedStorage
	TelSmsGetUniquePartId
	TelSmsReadMessage
	TelSmsReadMessages
	TelSmsReadReport
	TelSmsReadReports
	TelSmsReadSubmittedMessage
	TelSmsReadSubmittedMessages
	TelSmsSelectStorage
	TelSmsSendManualAcknowledge
	TelSmsSendMessage

	Telephony Phone Book
	Telephony Phone Book Data Structures
	TelPhbEntryType
	TelPhbGetAvailablePhonebooksType
	TelPhbGetEntriesType
	TelPhbGetEntryCountType
	TelPhbGetEntryMaxSizesType

	Telephony Phone Book Constants
	Phone Book Type Constants

	Telephony Phone Book Functions
	TelPhbAddEntry
	TelPhbDeleteEntry
	TelPhbGetAvailablePhonebooks
	TelPhbGetEntries
	TelPhbGetEntry
	TelPhbGetEntryCount
	TelPhbGetEntryMaxSizes
	TelPhbGetSelectedPhonebook
	TelPhbSelectPhonebook

	Part IV: Libraries
	Internet Library
	Internet Library Data Structures
	INetCompressionTypeEnum
	INetConfigNameType
	INetContentTypeEnum
	INetHTTPAttrEnum
	INetSchemeEnum
	INetSettingEnum
	INetSockSettingEnum
	INetStatusEnum

	Internet Library Constants
	Configuration Aliases
	URL Info Constants
	URL Open Constants

	Internet Library Functions
	INetLibCacheGetObject
	INetLibCacheList
	INetLibCheckAntennaState
	INetLibClose
	INetLibConfigAliasGet
	INetLibConfigAliasSet
	INetLibConfigDelete
	INetLibConfigIndexFromName
	INetLibConfigList
	INetLibConfigMakeActive
	INetLibConfigRename
	INetLibConfigSaveAs
	INetLibGetEvent
	INetLibOpen
	INetLibSettingGet
	INetLibSettingSet
	INetLibSockClose
	INetLibSockConnect
	INetLibSockHTTPAttrGet
	INetLibSockHTTPAttrSet
	INetLibSockHTTPReqCreate
	INetLibSockHTTPReqSend
	INetLibSockOpen
	INetLibSockRead
	INetLibSockSettingGet
	INetLibSockSettingSet
	INetLibSockStatus
	INetLibURLCrack
	INetLibURLGetInfo
	INetLibURLOpen
	INetLibURLsAdd
	INetLibWiCmd

	PalmOSGlue Library
	PalmOSGlue Functions
	BmpGlueGetCompressionType
	BmpGlueGetTransparentValue
	BmpGlueSetTransparentValue
	CtlGlueGetControlStyle
	CtlGlueGetFont
	CtlGlueGetGraphics
	CtlGlueNewSliderControl
	CtlGlueSetFont
	CtlGlueSetLeftAnchor
	FldGlueGetLineInfo
	FntGlueGetDefaultFontID
	FrmGlueGetActiveField
	FrmGlueGetDefaultButtonID
	FrmGlueGetHelpID
	FrmGlueGetLabelFont
	FrmGlueGetMenuBarID
	FrmGlueGetObjectUsable
	FrmGlueSetDefaultButtonID
	FrmGlueSetHelpID
	FrmGlueSetLabelFont
	IntlGlueGetRoutineAddress
	LstGlueGetFont
	LstGlueGetItemsText
	LstGlueSetFont
	LstGlueSetIncrementalSearch
	SysGlueTrapExists
	TblGlueGetColumnMasked
	TxtGlueCharIsVirtual
	TxtGlueFindString
	TxtGlueGetHorizEllipsisChar
	TxtGlueGetNumericSpaceChar
	TxtGlueLowerChar
	TxtGlueLowerStr
	TxtGluePrepFindString
	TxtGlueStripSpaces
	TxtGlueTruncateString
	TxtGlueUpperChar
	TxtGlueUpperStr
	WinGlueGetFrameType
	WinGlueSetFrameType

	Bluetooth Library: General Functions
	Security Functions
	New BtLibSecurityFindTrustedDeviceRecord
	New BtLibSecurityGetTrustedDeviceRecordInfo
	New BtLibSecurityNumTrustedDeviceRecords
	New BtLibSecurityRemoveTrustedDevice Record

	Utility Functions
	New BtLibAddrAToBtd
	New BtLibAddrBtdToA
	New BtLibL2CapHToNL
	New BtLibL2CapHToNS
	New BtLibL2CapNToHL
	New BtLibL2CapNToHS
	New BtLibRfCommHToNL
	New BtLibRfCommHToNS
	New BtLibRfCommNToHL
	New BtLibRfCommNToHS
	New BtLibSdpHToNL
	New BtLibSdpHToNS
	New BtLibSdpNToHL
	New BtLibSdpNToHS

	Bluetooth Library: Management
	Bluetooth Management Data Structures
	New BtLibAccessibleModeEnum
	New BtLibClassOfDeviceType
	New BtLibConnectionRoleEnum
	New BtLibDeviceAddressType
	New BtLibFriendlyNameType
	New BtLibManagementEventType

	Management Callback Events
	btLibManagementEventAccessibilityChange
	btLibManagementEventAclConnectInbound
	btLibManagementEventAclConnectOutbound
	btLibManagementEventAclDisconnect
	btLibManagementEventAuthentication Complete
	btLibManagementEventEncryptionChange
	btLibManagementEventInquiryCanceled
	btLibManagementEventInquiryComplete
	btLibManagementEventInquiryResult
	btLibManagementEventLocalNameChange
	btLibManagementEventModeChange
	btLibManagementEventNameResult
	btLibManagementEventPasskeyRequest
	btLibManagementEventPasskeyRequestCompl ete
	btLibManagementEventPiconetCreated
	btLibManagementEventPiconetDestroyed
	btLibManagementEventRadioState
	btLibManagementEventRoleChange

	Management Event Status Codes
	Library Management Functions
	New BtLibClose
	New BtLibOpen

	Management Functions
	New BtLibCancelInquiry
	New BtLibDiscoverMultipleDevices
	New BtLibDiscoverSingleDevice
	New BtLibGetGeneralPreference
	New BtLibGetRemoteDeviceName
	New BtLibGetSelectedDevices
	New BtLibLinkConnect
	New BtLibLinkDisconnect
	New BtLibLinkGetState
	New BtLibLinkSetState
	New BtLibPiconetCreate
	New BtLibPiconetDestroy
	New BtLibPiconetLockInbound
	New BtLibPiconetUnlockInbound
	New BtLibRegisterManagementNotification
	New BtLibSetGeneralPreference
	New BtLibStartInquiry
	New BtLibUnregisterManagementNotification

	Application-Defined Functions
	New BtLibManagementCallback

	Bluetooth Library: Sockets and Service Discovery
	Socket-Related Data Structures
	New BtLibL2CapPsmType
	New BtLibLanguageBaseTripletType
	New BtLibProfileDescriptorListEntryType
	New BtLibProtocolDescriptorListEntryType
	New BtLibRfCommServerIdType
	New BtLibSdpAttributeDataType
	New BtLibSdpAttributeIdType
	New BtLibSdpRecordHandle
	New BtLibSdpRemoteServiceRecordHandle
	New BtLibSdpUuidSizeEnum
	New BtLibSdpUuidType
	New BtLibSocketEventType
	New BtLibSocketRef
	New BtLibStringType
	New BtLibUrlType

	Socket Callback Events
	btLibSocketEventConnectedInbound
	btLibSocketEventConnectedOutbound
	btLibSocketEventConnectRequest
	btLibSocketEventData
	btLibSocketEventDisconnected
	btLibSocketEventSdpServiceRecordHandle
	btLibSocketEventSdpGetAttribute
	btLibSocketEventSdpGetStringLen
	btLibSocketEventSdpGetNumListEntries
	btLibSocketEventSdpGetNumLists
	btLibSocketEventSdpGetRawAttribute
	btLibSocketEventSdpGetRawAttributeSize
	btLibSocketEventSdpGetServerChannelBy Uuid
	btLibSocketEventSdpGetPsmByUuid
	btLibSocketEventSendComplete

	Socket Disconnection Error Codes
	Socket Functions
	New BtLibSocketAdvanceCredit
	New BtLibSocketClose
	New BtLibSocketConnect
	New BtLibSocketCreate
	New BtLibSocketGetInfo
	New BtLibSocketListen
	New BtLibSocketRespondToConnection
	New BtLibSocketSend

	Service Discovery Protocol Functions
	New BtLibSdpCompareUuids
	New BtLibSdpGetPSMByUuid
	New BtLibSdpGetRawDataElementSize
	New BtLibSdpGetRawDataElementType
	New BtLibSdpGetServerChannelByUuid
	New BtLibSdpParseRawDataElement
	New BtLibSdpServiceRecordCreate
	New BtLibSdpServiceRecordDestroy
	New BtLibSdpServiceRecordGetAttribute
	New BtLibSdpServiceRecordGetNumListEntrie s
	New BtLibSdpServiceRecordGetNumLists
	New BtLibSdpServiceRecordGetRawAttribute
	New BtLibSdpServiceRecordGetSizeOfRaw Attribute
	New BtLibSdpServiceRecordGetStringOrUrlLen gth
	New BtLibSdpServiceRecordMapRemote
	New BtLibSdpServiceRecordSetAttribute
	New BtLibSdpServiceRecordSetAttributesForS ocket
	New BtLibSdpServiceRecordSetRawAttribute
	New BtLibSdpServiceRecordsGetByServiceCla ss
	New BtLibSdpServiceRecordStartAdvertising
	New BtLibSdpServiceRecordStopAdvertising
	New BtLibSdpUuidInitialize
	New BtLibSdpVerifyRawDataElement

	Application-Defined Functions
	New BtLibSocketCallback

	Cryptography Provider Manager
	The Default Provider
	Fundamental CPM Functions
	Using the Crypto-Info Structures
	Using the Export Functions
	CPM and AP Constants
	New AP Capability Constants
	New Block Encryption Mode Constants
	New Cipher Algorithm Constants
	New Export Encoding Constants
	New Hashing Algorithm Constants
	New Key Class Constants
	New Key Usage Constants
	New Plaintext Padding Constants

	CPM and AP Structures and Data Types
	New APCipherInfoStruct
	New APHashInfoStruct
	New APKeyInfoStruct
	New APProviderContextStruct
	New APProviderInfoStruct
	New APVerifyInfoStruct
	New CPMInfoStruct

	CPM Functions
	New CPMLibDecrypt
	New CPMLibDecryptFinal
	New CPMLibDecryptInit
	New CPMLibDecryptUpdate
	New CPMLibEncrypt
	New CPMLibEncryptFinal
	New CPMLibEncryptInit
	New CPMLibEncryptUpdate
	New CPMLibExportCipherInfo
	New CPMLibExportHashInfo
	New CPMLibExportKeyInfo
	New CPMLibExportVerifyInfo
	New CPMLibGenerateKey
	New CPMLibGetInfo
	New CPMLibGetProviderInfo
	New CPMLibHash
	New CPMLibHashFinal
	New CPMLibHashInit
	New CPMLibHashUpdate
	New CPMLibImportCipherInfo
	New CPMLibImportHashInfo
	New CPMLibImportKeyInfo
	New CPMLibImportVerifyInfo
	New CPMLibReleaseCipherInfo
	New CPMLibReleaseHashInfo
	New CPMLibReleaseKeyInfo
	New CPMLibReleaseVerifyInfo
	New CPMLibVerify
	New CPMLibVerifyFinal
	New CPMLibVerifyInit
	New CPMLibVerifyUpdate

	CPM Error Codes

	SSL Functions
	SSL Attribute Functions and Macros
	A Note on the Function Names
	SSL Library Functions
	New SslClose
	New SslConsume
	New SslContextCreate
	New SslContextDestroy
	New SslContextGetLong
	New SslContextGetPtr
	New SslContextSetLong
	New SslContextSetPtr
	New SslFlush
	New SslLibClose
	New SslLibCreate
	New SslLibDestroy
	New SslLibOpen
	New SslLibGetLong
	New SslLibGetPtr
	New SslLibSetLong
	New SslLibSetPtr
	New SslOpen
	New SslPeek
	New SslRead
	New SslReceive
	New SslSend
	New SslWrite

	Application-Defined Functions
	New SslCallbackFunc

	SSL Structures and Data Types
	SSL Data Types
	New SslAttribute
	New SslContext
	New SslLib

	SSL Structures
	New SslCallback
	New SslCipherSuiteInfo
	New SslExtendedItem
	New SslExtendedItems
	New SslIoBuf
	New SslLibCallback
	New SslSession
	New SslSocket
	New SslVerify

	SSL Attributes and Macros
	SSL Macro Names
	SSL Attribute Data Types
	SSL Macro Pseudo-Protocol
	New SslContextGet_Attribute (integer version)
	New SslContextGet_Attribute (pointer version)
	New SslLibSet_Attribute (integer version)
	New SslContextSet_Attribute (pointer version)
	New SslLibGet_Attribute (integer version)
	New SslLibGet_Attribute (pointer version)
	New SslLibSet_Attribute (integer version)
	New SslLibSet_Attribute (pointer version)

	SSL Attributes
	New AppInt32
	New AppPtr
	New AutoFlush
	New BufferedReuse
	New CipherSuite
	New CipherSuiteInfo
	New CipherSuites
	New Compat
	New DontSendShutdown
	New DontWaitForShutdown
	New Error
	New HsState
	New InfoCallback
	New InfoInterest
	New IoTimeout
	New IoFlags
	New IoStruct
	New LastAlert
	New LastApi
	New LastIO
	New Mode
	New PeerCert
	New PeerCommonName
	New ProtocolVersion
	New RbufSize
	New ReadBufPending
	New ReadOutstanding
	New ReadRecPending
	New ReadStreaming
	New SessionReused
	New Socket
	New SslSession
	New SslVerify
	New Streaming
	New VerifyCallback
	New WbufSize
	New WriteBufPending

	SSL Attribute Constants

	SSL Error Codes
	SSL Function Protocol Errors
	SSL Alerts
	SSL Handshake Errors
	SSL Cryptography Errors
	SSL Illegal Message Errors
	SSL Certificate Errors

	SMS Exchange Library
	SMS Exchange Library Data Structures
	SmsParamsType
	SmsPrefType
	SmsReceiveCDMAParamsType
	SmsReceiveGSMParamsType
	SmsReceiveParamsType
	SmsReceiveTDMAParamsType
	SmsReportParamsType
	SmsSendCDMAParamsType
	SmsSendGSMParamsType
	SMSSendParamsType
	SmsSendTDMAParamsType

	SMS Exchange Library Constants
	SMS Control Constants
	SMS Data Coding Scheme Constants
	SMS Network Type Constants
	SMS Message Type Constants
	SMS Converter Constants

	Personal Data Interchange Library
	PDI Library Data Structures
	PdiDictionary
	PdiReaderType
	PdiWriterType

	PDI Library Constants
	Buffer Management Constants
	Encoding Type Constants
	Error Code Constants
	Parameter Name Constants
	Parameter Value Constants
	Property Name Constants
	Property Type Constants
	Property Value Field Constants
	Property Value Format Constants
	Reader and Writer Options Constants
	Reader Event Constants
	Value Type Constants

	PDI Library Functions
	PdiDefineReaderDictionary
	PdiDefineResizing
	PdiDefineWriterDictionary
	PdiEnterObject
	PdiLibClose
	PdiLibOpen
	PdiParameterPairTest
	PdiReaderDelete
	PdiReaderNew
	PdiReadParameter
	PdiReadProperty
	PdiReadPropertyField
	PdiReadPropertyName
	PdiSetCharset
	PdiSetEncoding
	PdiWriteBeginObject
	PdiWriteEndObject
	PdiWriteParameter
	PdiWriteParameterStr
	PdiWriteProperty
	PdiWritePropertyBinaryValue
	PdiWritePropertyFields
	PdiWritePropertyStr
	PdiWritePropertyValue
	PdiWriterDelete
	PdiWriterNew

	Unified Data Access Manager
	UDA Manager Data Structures
	UDABufferSize
	UDAObjectType
	UDAFilterType
	UDAReaderType
	UDAWriterType

	UDA Manager Constants
	Control Flags
	Error Constants
	Object Option Flags
	Miscellaneous Constants

	UDA Manager Functions
	UDAControl
	UDADelete
	UDAEndOfReader
	UDAFilterJoin
	UDAInitiateWrite
	UDAMoreData
	UDARead
	UDAWriterFlush
	UDAWriterJoin

	UDA Object Creation Functions
	UDAExchangeReaderNew
	UDAExchangeWriterNew
	UDAMemoryReaderNew

	Part V: Appendixes
	System Use Only Functions
	Compatibility Guide
	2.0 New Feature Set
	Launch Codes
	Functions
	Existing Functions that Changed
	Other Changes

	3.0 New Feature Set
	Launch Codes
	Font
	Functions
	Existing Functions that Changed
	Other Changes

	3.1 New Feature Set
	Functions
	Changes to the Character Encoding
	Other Changes in 3.1

	3.2 New Feature Set
	Functions
	Existing Functions that Changed
	Other Changes in 3.2

	International Feature Set
	Functions

	Japanese Feature Set
	Wireless Internet Feature Set
	Launch Codes
	Events
	Functions

	New Serial Manager Feature Set
	New Serial Manager Feature Set Version 1
	New Serial Manager Feature Set Version 2

	Connection Manager Feature Set
	Functions

	3.5 New Feature Set
	Launch Codes
	Events
	Functions
	Existing Functions that Changed
	New Data Types
	Changes to Events
	Other Changes

	Notification Feature Set
	4.0 New Feature Set
	Launch Codes
	Notifications
	Functions
	Existing Functions that Changed

	Expansion Manager Feature Set
	Functions

	VFS Manager Feature Set
	Functions

	Bluetooth Library Feature Set
	Functions

	High-Density Display Feature Set
	New Data Types
	Functions

	Sound Stream Feature Set
	Sound Stream Data Structures and Types
	Sound Stream Enums and Constants
	Sound Stream Functions

	5.0 New Feature Set
	Notifications
	Functions
	Functions and Traps not Supported by PACE

	5.1 New Feature Set
	Net Library Interface Settings
	CPM Library
	SSL Library

	1.0 Float Manager
	Float Manager Functions
	FplAdd
	FplAToF
	FplBase10Info
	FplDiv
	FplFloatToLong
	FplFloatToULong
	FplFree
	FplFToA
	FplInit
	FplLongToFloat
	FplMul
	FplSub

	Index

