
Understanding Common Security

Exploits

Sam Hartman

Tom Yu

22 January 2004

Outline of Schedule

Day One: Why security exploits of stack buffer overflows are possible

Day Two: Heap buffer overflows, etc.

1

Course Resources

Web Page: http://www.mit.edu/iap/exploits/

Mailing List: Add yourself to exploits-students@mit.edu , or ask
us to add you.

Zephyr: Consider subscribing to the iap-exploits zephyr class for
discussion of the problem sets.

2

Scope of Course

• This is about understanding, not exploiting.

• We won’t tell you enough to avoid getting caught.

• Disclaimer: MIT, SIPB, and the instructors neither
encourage nor condone the illegal or unethical exercise of
any techniques presented here.

3

Today’s Topics

• Buffer Overflows

• Stacks

• Application Binary Interfaces (ABIs)

• Stack Frames

• Anatomy of a Function Call

4

Today’s Topics (cont’d)

• i386 ABI Details

• SPARC ABI Details

• Shell Code

• Writing an Exploit

• Useful Tools

5

Buffer Overflows

6

Why are Buffer Overflows Possible?

• Nonexistent or incorrect length checking leads to overflows.

• Integer overflows (signed vs unsigned) or failure to understand C
arithmetic result in erroneous length checking.

7

Example of No Length Checking

Many functions such as strcpy or sprintf will fill a buffer without
checking the length. Some functions such as gets will even read
arbitrary length data from a user.

char buffer[12];

gets(buffer);

8

Why Overflows are Harmful

Note that if too many characters are read, the input may change the saved
user ID, allowing privilege escalation.

char buffer[16];

uid_t saved_uid;

9

Stacks

10

Why Stacks?

• Computer programs need temporary space for local variables, saved
copies of register and where to go when the current task is finished.

• This space needs to be dynamically allocated to allow for recursion.

• A stack fills this role.

11

A Simple Call Stack

• Basic requirement: store return addresses.

• Procedure call instructions put the address on the stack.

• Return instructions remove the address.

• In practice, functions additionally need arguments and local variables.

12

Stack Properties

• Like a cafeteria stack of plates.

• Last-In, First-Out (LIFO) structure.

• Top of stack: most recent item added to (“pushed” onto) stack.

• Bottom of stack: oldest item pushed onto stack.

• A register (stack pointer) contains the current position on the stack.

13

Which Way is Up?

• Most architectures locate “bottom” of stack in “high” memory.

• High addresses: earlier items in stack.

• Low addresses: recent items in stack.

• Stack grows downwards, towards lower addresses.

• Memory diagrams usually draw high addresses at top of page.

• Debuggers usually print lower addresses first.

14

Application Binary Interfaces (ABIs)

15

Application Binary Interfaces (ABIs)

• Allow applications to access operating system services, typically via
(dynamically loaded) system libraries.

• Explicit specifications for procedure-call conventions, including stack
layouts.

• Explicit list of entry points for provided system services.

• Allow compiled application binaries to run on multiple systems
providing the same ABI.

16

Examples We’ll Use

• SPARC (CPUs in Sun workstations and servers) running Solaris.

• i386 (a.k.a. x86, Intel386: PC CPUs such as Intel 80386, Pentium,
etc.) running Linux.

We’ll look at the System V ABI for these CPU architectures.

• Solaris is mostly System V

• Linux ABI calling conventions are like System V.

17

Stack Frames

18

i386 Stack Details

• pushl pushes a word onto stack.

• popl pops a word off the stack.

• call pushes return address before jumping to target procedure.

• %esp register points to current top of stack (most recently pushed).

19

The Need for Stack Frames

• Accessing local variables without popping them into a register
requires addressing relative to some register pointing into the stack.

• Using stack pointer is problematic: offsets relative to stack pointer
change after each push.

• A frame pointer register (%ebpon i386) points to top (highest
address) of stack frame for the current procedure.

• Locals and arguments addressed relative to frame pointer %ebp.

20

Anatomy of a Function Call

21

Example Function Call (C)

extern void f(int, int);

void g(void)

{

f(1, 2);

}

22

Example Function Call (i386 Assembly)

g:

; save caller’s frame pointer

pushl %ebp

; set up new frame pointer

movl %esp, %ebp

; set up local space

subl $8, %esp

; push arguments

pushl $2

pushl $1

call f

; "pop" outgoing arguments

addl $8, %esp

; restore %ebp

leave

ret
23

At Beginning of g()

Base Offset Contents
. . . High addresses

%esp +0 return address
. . . Low addresses

24

After Pushing Caller’s %ebp

Base Offset Contents
. . . High addresses

%esp +4 return address
%esp +0 caller’s %ebp

. . . Low addresses

25

After Setting Up Local Space

Base Offset Contents
. . . High addresses

%ebp +4 return address
%ebp +0 caller’s %ebp
%ebp −4 locals. . .
%ebp −8 locals. . . ⇐%esp
%esp −4 . . . Low addresses

26

After Argument Push

Base Offset Contents
. . . High addresses

%ebp +4 return address
%ebp +0 caller’s %ebp
%ebp −4 locals. . .
%ebp −8 locals. . .
%esp +4 2
%esp +0 1
%esp −4 . . . Low addresses

27

Stack Frames and Buffer Overflows

• Stack grows down from the top of memory.

• Locals on the stack grow up.

• Overflows of locals overwrite previously allocated stack space.

• Return address stored on stack. You can overwite the return address
to “return” to malicious code.

28

i386 ABI Details

29

i386 General-Purpose Register Usage (System V

ABI)

Name Usage “Owner”
%eax Return value
%edx Dividend register (divide operations) callee
%ecx Count register (shift / string operations)
%ebx Local register variable
%ebp Frame pointer
%esi Local register variable caller
%edi Local register variable
%esp Stack pointer

30

i386 Stack Layout (System V C ABI)

Base Offset Contents Frame
%ebp 4n+8 argument word n High addresses

. . .
%ebp +8 argument word 0 Previous
%ebp +4 return address
%ebp +0 caller’s %ebp
%ebp −4 x words local space

. . .
%ebp −4x e.g. automatic variables
%esp +8 caller’s %edi Current
%esp +4 caller’s %esi
%esp +0 caller’s %ebx Low addresses

31

SPARC ABI Details

32

SPARC General-Purpose Registers

• SPARC has 32 general-purpose integer registers visible at once.

• %r0 through %r7 are global registers %g0through %g7.

• %r8 through %r15 are outgoing registers %o0through %o7.

• %r16 through %r23 are local registers %l0 through %l7 .

• %r24 through %r31 are incoming registers %i0 through %i7 .

33

Register Windows

• %r8 through %r31 are windowed in each procedure.

• Outgoing registers %o0through %o7of calling procedure are usually
incoming registers %i0 through %i7 of called procedure.

• Local registers %l0 through %l7 are local to each procedure.

• save and restore instructions shift register windows.

• Procedure call itself does not cause window shift.

• Leaf procedures need not perform save and restore .

34

Register Windows (cont’d)

• Finite number of windows.

• Exhaustion triggers spill/fill traps.

• OS responsible for handling window spills/fills by flushing windows to
stack.

• Each procedure needs to reserve stack space for window save area.

35

Register Windows Illustrated

Caller
%i7 (%r31)
. . . ins
%i0 (%r24)
%l7 (%r23)
. . . locals
%l0 (%r16) Callee
%o7 (%r15) %i7 (%r31)
. . . outs . . . ins
%o0 (%r8) %i0 (%r24)

%l7 (%r23)
. . . locals
%l0 (%r16)
%o7 (%r15)
. . . outs
%o0 (%r8)

36

Uses of Specific Registers

• %g0always reads zero, and writes to it are ignored.

• The call instruction stores its own address into %o7.

• Due to windowing, %i7 contains address of caller’s call instruction.

37

SPARC System V ABI Register Usage

• %o6and %i6 are %sp (stack pointer) and %fp (frame pointer).

• %spmust point to a 16-word window save area.

• %l0 ,. . . , %l7 , %i0 ,. . . , %i7 written to window save area by system
during a spill trap; restored during fill trap.

• Windowing causes caller’s %sp to be the callee’s %fp.

• %i0 is the return value (%i0 becomes the caller’s %o0).

• %g5through %g7reserved for the system.

38

SPARC Stack Frame (System V C ABI)

Base Offset Contents Frame
%fp +92 callee’s arguments 6, . . . High

argument dump addresses
%fp +68 for callee’s %i0–%i5
%fp +64 struct / union return pointer Previous
%fp +60 spilled %i7 (return address −8) (caller)
%fp +56 spilled %i6 (%fp)

spilled %l1 ,. . . , %l7 , %i0 ,. . . , %i5
%fp +0 spilled %l0
%fp −4 y words local space

. . .
%fp −4y e.g. automatic variables
%sp +88+4x x words compiler scratch space

. . . Current
%sp +92 outgoing arguments 6, . . . (callee)
%sp +68 outgoing arguments 0–5
%sp +64 struct / union return pointer Low
%sp +0 16-word window save area addresses

39

Register Window Complications for Exploits

• Return address (in window save area) is lower in memory than locals.

• Even then, only written to stack during window spills.

• To exploit a procedure, overwrite caller’s return address by
overflowing locals into caller’s window save area.

• Even then, fails if caller’s register window not flushed yet.

40

Shell Code

41

Shell Code

• Compact machine code you can stick into a buffer.

• Called “shell code” because traditionally, when executed, starts a new
Unix command shell.

42

Shell Code Considerations

• Needs to be small to fit in buffer without crashing the application.

• Needs to be location independent.

• Should be properly aligned.

43

Landing Pads

• Exact location of start of shell code possibly not known.

• Landing pad allows execution to safely start anywhere within a range
of addresses.

• Use “no operation” (NOOP) opcodes or short relative jumps in
landing pad.

44

Location Independent Code

• Make syscalls directly rather than using library functions. Calling
library functions requires access to the linker.

• Use addresses relative to instruction pointer or stack pointer.

• Avoid any relocations for data references.

45

Sample Location Independent code

This code points %eax at the string foo . (It then proceeds to crash.)

call mark

mark: pop %eax

addl $(foo-mark), %eax

foo: .string "foo"

46

Writing Direct Syscalls

• Write a simple C program that calls the syscall you want to make.

• Compile the program and link statically against the C library.

• Step through the debugger looking at generated assembly.

• Understand what the registers and stack are when the code traps into
the kernel.

47

Advanced Shell Code Considerations

• You may need to avoid using certain characters such as control
characters or certain characters special to the protocol you attack.

• Some shells such as Solaris /bin/sh require that all uids be the
same. If exploiting a set-uid program you may need to call
setuid(0) .

48

Writing an Exploit

49

Exploiting a Buffer Overflow

• Insert shell code somewhere and point the return address so that
control flow intersects your shell code.

• If buffer large enough, can cause the shell code to end up in buffer
and just overwrite the return address.

• Otherwise, may be able to put the shell code higher on the stack than
the buffer.

50

Getting Shell Code in the Buffer

• Interact with the program enough to get shell code into buffer.

• May involve encoding shell code in some network protocol.

• May involve participating in protocol up to the point where buffer will
be read into.

• Common encodings: URL escaping and MIME.

51

Finding the New Return Address

• Start by running the program in the debugger and finding the address
of the buffer. Adjust depending on where your shell code is placed.

• Note that the top of the stack may change somewhat between runs of
the program.

• If you don’t have access to run the program in a debugger, you can
guess and work down from top of stack.

52

Useful Tools

53

Displaying Instruction in GDB

• (gdb) disp/i $pc

• Then every time GDB stops you find the current instruction:

Breakpoint 1, 0x10d34 in main ()

1: x/i $pc 0x10d34 <main+8>: add %g2, 0x224, %o1

• Use si to move forward one instruction.

54

Getting Assembly From Compiler

gcc -S file.c

• Look at file.s for assembly language output.

• Optimization settings significantly influence compiler output.

• With gcc , sometimes the output when using gcc -O is more
readable than unoptimized output.

55

Using Objdump to Disassemble

objdump -j .text -d overflow.o

00000014 <main>:

14: 55 push %ebp

15: 89 e5 mov %esp,%ebp

17: 83 ec 08 sub $0x8,%esp

1a: e8 fc ff ff ff call 1b <main+0x7>

1f: c9 leave

20: c3 ret

56

Extracting Binary with Objcopy

• Once you have shell code, you can use objcopy to extract the
processor instructions from the object file.

• objcopy -j .text -O binary infile.o outfile.bin

• Test using objdump -D -b binary -m architecture outfile.bin

• May also have to give endianness flag (-EL or -EB) to objdump.

57

Resources

58

CPU Architecture References

• SPARC International, Inc., The SPARC Architecture Manual,
Version 9, Prentice-Hall, Inc., 2000. Downloadable from
http://www.sparc.org/

• Intel Corporation, Pentium Processor Family Developer’s Manual,
Volume 3: Architecture and Programming Manual, Intel, 1996.

59

System V ABI References

System V ABI documentation may be obtained from The Santa Cruz
Operation, Inc., http://www.sco.com/

• The Santa Cruz Operation, Inc., System V Application Binary
Interface, Intel386 Architecture Processor Supplement, Fourth
Edition, SCO, 1996.

• The Santa Cruz Operation, Inc., System V Application Binary
Interface, SPARC Processor Supplement, Third Edition, SCO, 1996.

60

Additional Resources

Intel Corporation: http://www.intel.com/

Sparc International, Inc.: http://www.sparc.org/

Bugtraq: http://www.securityfocus.com/

Phrack: http://www.phrack.org/

SIPB’s documentation archive:
http://www.mit.edu/afs/sipb.mit.edu/contrib/doc/

in particular, look at specs/hardware/ic/cpu/

and specs/software/sysv-abi/

61

Additional Resources (cont’d)

These slides are available at
http://www.mit.edu/iap/exploits/exploits01.pdf

Problem Set 1
http://www.mit.edu/iap/exploits/ps1.pdf

Course Home Page:
http://www.mit.edu/iap/exploits/

62

