Understanding Common Security
Exploits

Sam Hartman

Tom Yu

22 January 2004

Qutline of Schedule

Day One: Why security exploits of stack buffer overflows are possible

Day Two: Heap buffer overflows, etc.

Course Resources

Web Page: http://www.mit.edu/iap/exploits/

Mailing List: Add yourself to exploits-students@mit.edu , Or ask
us to add you.

Zephyr: Consider subscribing to the iap-exploits zephyr class for
discussion of the problem sets.

Scope of Course
e This is about understanding, not exploiting.

e We won't tell you enough to avoid getting caught.

e Disclaimer: MIT, SIPB, and the instructors neither
encourage nor condone the illegal or unethical exercise of
any techniques presented here.

Today’s Topics
Buffer Overflows
Stacks
Application Binary Interfaces (ABIS)
Stack Frames

Anatomy of a Function Call

Today’s Topics (cont’d)
1386 ABI Detalls
SPARC ABI Details
Shell Code
Writing an Exploit

Useful Tools

Buffer Overflows

Why are Buffer Overflows Possible?
e Nonexistent or incorrect length checking leads to overflows.

e Integer overflows (signed vs unsigned) or failure to understand C
arithmetic result in erroneous length checking.

Example of No Length Checking

Many functions such as strcpy or sprintf will fill a buffer without
checking the length. Some functions such as gets will even read
arbitrary length data from a user.

char buffer[12];
gets(buffer);

Why Overflows are Harmful

Note that if too many characters are read, the input may change the saved
user ID, allowing privilege escalation.

char buffer[16];
uid_t saved uid;

Stacks

10

Why Stacks?

e Computer programs need temporary space for local variables, saved
copies of register and where to go when the current task is finished.

e This space needs to be dynamically allocated to allow for recursion.

e A stack fills this role.

11

A Simple Call Stack

Basic requirement: store return addresses.
Procedure call instructions put the address on the stack.
Return instructions remove the address.

In practice, functions additionally need arguments and local variables.

12

Stack Properties
Like a cafeteria stack of plates.
Last-In, First-Out (LIFO) structure.
Top of stack: most recent item added to (“pushed” onto) stack.
Bottom of stack: oldest item pushed onto stack.

A register (stack pointer) contains the current position on the stack.

13

Which Way Is Up?
Most architectures locate “bottom” of stack in “high” memory.
High addresses: earlier items in stack.
Low addresses: recent items in stack.

Stack grows downwards, towards lower addresses.

Memory diagrams usually draw high addresses at top of page.

Debuggers usually print lower addresses first.

14

Application Binary Interfaces (ABIs)

15

Application Binary Interfaces (ABISs)

e Allow applications to access operating system services, typically via
(dynamically loaded) system libraries.

e EXplicit specifications for procedure-call conventions, including stack
layouts.

e EXxplicit list of entry points for provided system services.

e Allow compiled application binaries to run on multiple systems
providing the same ABI.

16

Examples We'll Use

e SPARC (CPUs in Sun workstations and servers) running Solaris.

e 1386 (a.k.a. x86, Intel386: PC CPUs such as Intel 80386, Pentium,
etc.) running Linux.

We'll look at the System V ABI for these CPU architectures.
e Solaris is mostly System V

e Linux ABI calling conventions are like System V.

17

Stack Frames

18

1386 Stack Detalls

pushl pushes a word onto stack.

popl pops a word off the stack.

call pushes return address before jumping to target procedure.

%esp register points to current top of stack (most recently pushed).

19

The Need for Stack Frames

Accessing local variables without popping them into a register
requires addressing relative to some register pointing into the stack.

Using stack pointer is problematic: offsets relative to stack pointer
change after each push.

A frame pointer register (%ebpon i386) points to top (highest
address) of stack frame for the current procedure.

Locals and arguments addressed relative to frame pointer %ebp.

20

Anatomy of a Function Call

21

Example Function Call (C)

extern void f(int, int);
void g(void)
{
f(1, 2);
}

22

Example Function Call (1386 Assembly)

g

,; save caller's frame pointer
pushl %ebp

, set up new frame pointer
mov! %esp, %ebp

; set up local space
subl $8, %esp

; push arguments

pushl $2
pushl $1
call f

. "pop" outgoing arguments
add| $8, %esp
, restore %ebp
leave
ret

At Beginning of g()

Base Offset

cContents

%esp

+0

return address

High addresses

Low addresses

24

After Pushing Caller’'s %ebp

Base Offset

cContents

%esp
%esp

+4
+0

return address

caller’'s %ebp

High addresses

Low addresses

25

After Setting Up Local Space

Base Offset Contents
e High addresses
%ebp +4 | return address
%ebp +0 | caller's %ebp
%ebp —4 locals. ..
%ebp —8 locals. .. <=%esp
%esp —4 e Low addresses

26

After Argument Push

Base Offset

cContents

%ebp
%ebp
%ebp
%ebp
%esp
%esp
%esp

+4
+0
4
-8
+4
+0
—4

return address

caller’'s %ebp

locals. ..

locals. ..

2

1

High addresses

Low addresses

27

Stack Frames and Buffer Overflows

Stack grows down from the top of memory.

Locals on the stack grow up.

Overflows of locals overwrite previously allocated stack space.

Return address stored on stack. You can overwite the return address

to “return” to malicious code.

28

1386 ABI Detalls

29

1386 General-Purpose Register Usage (System V

ABI)
Name Usage “Owner”
%eax | Return value
%edx | Dividend register (divide operations) callee
%ecx | Count register (shift / string operations)
%ebx | Local register variable
%ebp | Frame pointer
%esi | Local register variable caller
%edi | Local register variable
%esp | Stack pointer

30

1386 Stack Layout (System V C ABI)

Base Offset Contents Frame

%ebp 4n+8 argument word n High addresses
%ebp +8 argument word O Previous

%ebp +4 return address

%ebp +0 caller's %ebp

%ebp —4 X words local space

%ebp —4x | e.g. automatic variables

%esp +8 caller’s %edi Current

%esp +4 caller’s %esi

%esp +0 caller’s %ebx Low addresses

31

SPARC ABI Detalls

32

SPARC General-Purpose Registers

SPARC has 32 general-purpose integer registers visible at once.

%r0 through %r7 are global registers %g0through %g?7.

%r8 through %r15 are outgoing registers %00through %07.

%r16 through %r23 are local registers %I0 through %l7 .

%r24 through %r31 are incoming registers %i0 through %i7 .

33

Register Windows
%r8 through %r31 are windowed in each procedure.

Outgoing registers %o00through %07 of calling procedure are usually
Incoming registers %i0 through %i7 of called procedure.

Local registers %I0 through %l7 are local to each procedure.
save and restore instructions shift register windows.
Procedure call itself does not cause window shift.

Leaf procedures need not perform save and restore

34

Register Windows (cont’d)
e Finite number of windows.
e Exhaustion triggers spill/fill traps.

e OS responsible for handling window spills/fills by flushing windows to
stack.

e Each procedure needs to reserve stack space for window save area.

35

Register Windows lllustrated

Caller
%i7 (%r31)
NS
%i0 (%r24)
%I7 (%r23)
locals
%I0 (%rl16) Callee
%07 (%rl5) %i7 (%r31)
outs NS
%00 (%r8) %i0 (%r24)
%17 (%r23)
locals
%I0 (%rl16)
%07 (%rl5)
outs

%00 (%r38)

Uses of Specific Registers
e %gOalways reads zero, and writes to it are ignored.
e The call instruction stores its own address into %0Y.

e Due to windowing, %I7 contains address of caller’s call instruction.

37

SPARC System V ABI Register Usage

%o06and %i6 are %sp (stack pointer) and %fp (frame pointer).
%sp must point to a 16-word window save area.

%lI0,..., %l7, %Ii0,..., %i7 written to window save area by system
during a spill trap; restored during fill trap.

Windowing causes caller’'s %spto be the callee’s %fp.
%I0 is the return value (%0 becomes the caller’'s %00.

%g5through %g7reserved for the system.

38

SPARC Stack Frame (System V C ABI)

Base Offset Contents Frame
%fp +92 callee’s arguments 6, ... High

argument dump addresses
%fp +68 for callee’s %i0—%i5
%fp +64 | struct /union return pointer | Previous
%fp +60 | spilled %i7 (return address —8) | (caller)
%fp +56 spilled %i6 (%fp)

spilled %l1,..., %l7, %i0,..., %i5
%fp +0 spilled %I0
%fp —4 y words local space
%fp —4y e.g. automatic variables
%sp +88+4x | xwords compiler scratch space
e Current

%sp +92 outgoing arguments 6, ... (callee)
%sp +68 outgoing arguments 0-5
%sp +64 | struct /union return pointer Low
%sp +0 16-word window save area addresses

39

Register Window Complications for Exploits

Return address (in window save area) is lower in memory than locals.

Even then, only written to stack during window spills.

To exploit a procedure, overwrite caller’s return address by
overflowing locals into caller's window save area.

Even then, fails if caller’s register window not flushed yet.

40

Shell Code

41

Shell Code

e Compact machine code you can stick into a buffer.

e Called “shell code” because traditionally, when executed, starts a new
Unix command shell.

42

Shell Code Considerations

e Needs to be small to fit in buffer without crashing the application.

e Needs to be location independent.

e Should be properly aligned.

43

Landing Pads
e Exact location of start of shell code possibly not known.

e Landing pad allows execution to safely start anywhere within a range
of addresses.

e Use “no operation” (NOOP) opcodes or short relative jJumps in
landing pad.

44

Location Independent Code

e Make syscalls directly rather than using library functions. Calling
library functions requires access to the linker.

e Use addresses relative to instruction pointer or stack pointer.

e Avoid any relocations for data references.

45

Sample Location Independent code
This code points %eax at the string foo . (It then proceeds to crash.)

call mark
mark: pop %eax

addl $(foo-mark), %eax
foo: .string "foo"

46

Writing Direct Syscalls

Write a simple C program that calls the syscall you want to make.

Compile the program and link statically against the C library.

Step through the debugger looking at generated assembly.

Understand what the registers and stack are when the code traps into

the kernel.

47

Advanced Shell Code Considerations

e You may need to avoid using certain characters such as control
characters or certain characters special to the protocol you attack.

e Some shells such as Solaris /bin/sh require that all uids be the
same. If exploiting a set-uid program you may need to call
setuid(0)

48

Writing an Exploit

49

Exploiting a Buffer Overflow

e Insert shell code somewhere and point the return address so that
control flow intersects your shell code.

e If buffer large enough, can cause the shell code to end up in buffer
and just overwrite the return address.

e Otherwise, may be able to put the shell code higher on the stack than
the buffer.

50

Getting Shell Code in the Buffer

Interact with the program enough to get shell code into buffer.

May involve encoding shell code in some network protocol.

May involve participating in protocol up to the point where buffer will

be read into.

Common encodings: URL escaping and MIME.

51

Finding the New Return Address

e Start by running the program in the debugger and finding the address
of the buffer. Adjust depending on where your shell code is placed.

e Note that the top of the stack may change somewhat between runs of
the program.

e If you don’'t have access to run the program in a debugger, you can
guess and work down from top of stack.

52

Useful Tools

53

Displaying Instruction in GDB
e (gdb) disp/i $pc

e Then every time GDB stops you find the current instruction:

Breakpoint 1, 0x10d34 in main ()
1: x/i $pc 0x10d34 <main+8>. add %g2, 0x224, %ol

e Use si to move forward one instruction.

54

Getting Assembly From Compiler

gcc -S file.c
e Look at file.s for assembly language outpuit.
e Optimization settings significantly influence compiler output.
e With gcc, sometimes the output when using gcc -O is more

readable than unoptimized output.

55

Using Objdump to Disassemble

objdump -] .text -d overflow.o
00000014 <main>:

14: 55 push %ebp

15: 89 e5 mov %esp,%ebp
17: 83 ec 08 sub $0x8,%esp
la: e8 fc ff ff ff call 1b <main+0x7>
1f: c9 leave

20: c3 ret

Extracting Binary with Objcopy

Once you have shell code, you can use objcopy to extract the
processor instructions from the object file.

objcopy -] .text -O binary infile.o outfile.bin
Test using objdump -D -b binary -m architecture outfile.bin

May also have to give endianness flag (-EL or -EB) to objdump.

57

Resources

58

CPU Architecture References

e SPARC International, Inc., The SPARC Architecture Manual,
Version 9, Prentice-Hall, Inc., 2000. Downloadable from
http://www.sparc.org/

e Intel Corporation, Pentium Processor Family Developer’s Manual,
Volume 3: Architecture and Programming Manual, Intel, 1996.

59

System V ABI References

System V ABI documentation may be obtained from The Santa Cruz
Operation, Inc., http://www.sco.com/

e The Santa Cruz Operation, Inc., System V Application Binary
Interface, Intel386 Architecture Processor Supplement, Fourth
Edition, SCO, 1996.

e The Santa Cruz Operation, Inc., System V Application Binary
Interface, SPARC Processor Supplement, Third Edition, SCO, 1996.

60

Additional Resources

Intel Corporation: http://www.intel.com/

Sparc International, Inc.: http://www.sparc.org/

Bugtraq: http://www.securityfocus.com/

Phrack: http://www.phrack.org/

SIPB’s documentation archive:
http://www.mit.edu/afs/sipb.mit.edu/contrib/doc/
In particular, look at specs/hardware/ic/cpu/
and specs/software/sysv-abi/

61

Additional Resources (cont’d)

These slides are available at
http://www.mit.edu/iap/exploits/exploitsOl1.pdf
Problem Set 1
http://www.mit.edu/iap/exploits/psl.pdf
Course Home Page:
http://www.mit.edu/iap/exploits/

62

