Understanding Common Security
Exploits

Sam Hartman

Tom Yu

29 January 2004

Today’s Topics
e Countermeasures

e Advanced Technigues

Countermeasures

noexec user stack (Solaris)
e Kernel-based protection.
e Prevents execution of code on stack.
Weaknesses:
e Not necessary to execute shellcode from stack.
e Can still overwrite stack.

e Non-stack exploits still work.

StackGuard (Linux)

e Inserts “canary” values between stack items.
e Checks canary values in function epilogue.
Weaknesses:

e Early versions didn’t prevent overwriting adjacent locals in same stack
frame.

e Can still do targeted overwrites of stack.

e Non-stack exploits still work.

PaX

Makes all writable pages non-executable.

Injected code inherently un-runnable; enforced by kernel.

Recent versions use Address Space Layout Randomization (ASLR).

Makes returning into libc harder, but not impossible.

Advanced Techniques

Advanced Techniques
e Format Strings
e Return into libc

e Heap Overflows

Format Strings

Format String Vulnerabillity

void f(void)

{
char str[1024];

net_read(str, sizeof(str));
printf(str);

e Any printf() directives in str get interpreted.

e More correct is
printf("%s", str);

e Similar functions such as syslog() are vulnerable.

Using printf() to Read

Inject printf() directives to examine stack.
e Use more printf() directives than arguments given to printf()
call.

e %Xto get frame pointers, return addresses, etc.

e %sto get a string whose start address is on the stack somewhere.

e Sometimes, reading is useful: passwords, cryptographic keys, etc.

10

Writing to Memory
Little-known directive %n
Treats its argument as pointer to integer; writes character count there.
Can choose value to be written, e.g., by using %.9999d%n

Can use %m%$n (POSIX.1 extension) to choose which argument to
overwrite, allowing chaining and more leverage.

Overwrite return return address, frame pointer, function pointers, etc.

11

Format String References
e gera, “Advances in format string exploitation,” Phrack 59, 2002.

e Tim Newsham, “Format String Attacks,” Bugtraqg, 2000.

12

Return into libc

13

Return into libc

e Overwrite return address to point to function in libc.

e Overwrite nearby values in stack to provide “arguments” to libc
function that’s being called.

e Can chain multiple libc calls (e.g., setuid(0) followed by exec())
by fabricating multiple stack frames, including frame pointers.

14

Return into libc References

e anonymous, “Bypassing PaX ASLR protection,” Phrack 59, 2002.

e Nergal, “The advanced return-into-lib(c) exploits,” Phrack 58, 2001.

15

Heap Overflows

16

The Heap

Typically, the operating system provides a way for a process to
expand its data segment dynamically.

Implementations of malloc() and related functions usually hide this
detail from the programmer.

These functions typically take exclusive control of extending of the
data segment

The managed part of data segment is called the heap.

17

Exploiting the Heap

Historically, the importance of heap overflow vulnerabilities has been
downplayed.

Even a small heap buffer overflow may lead to arbitrary code
execution.

Function pointers stored in the heap can be overwritten.

Many malloc() implementations share features that make them
vulnerable to exploitation in case of overflows.

18

Heaps and Function Pointers

e Function pointers can be stored in data structures on the heap or
stack.

e A buffer overflow can replace one of these function pointers.

e The hard problem is knowing where the function pointer should point;
It can point to the stack, to a buffer on the heap, or to a function in
existing code.

19

Function Pointer Example

PAM uses a callback structure similar to the following to track module
data.

struct pam_data {
char name[32];
void *data;
void (*cleanup)(pam_handle_t *pamh, void *data,
Int error_status);

struct pam_data *next;

20

Common Features of malloc() Implementations
¢ In-band storage of management information.

e Overwriting this in-band management information can lead to
misbehavior of the malloc() implementation.

e Typically, the management information for a chunk immediately
precedes the address returned to the caller.

21

GNU libc’s malloc() implementation (dimalloc)
e Implementation by Doug Lea (hence “dI”).

e dimalloc uses a “boundary tag” method of managing allocated
chunks.

The boundary tag is declared like:

struct malloc_chunk {
[* Size of previous chunk (if free). */

INTERNAL SIZE T prev_size;
[* Size in bytes, including overhead. */
INTERNAL SIZE T size;

[* double links -- used only if free. */
struct malloc_chunk* fd;
struct malloc_chunk* bk;

22

Quirks of Boundary Tag Use

struct malloc_chunk {
INTERNAL SIZE T prev_size;
INTERNAL_SIZE T size;
struct malloc_chunk* fd;
struct malloc_chunk* bk;

}
e In an allocated chunk, user data begins at fd and also overwrites bk.

e If the previous chunk is allocated, its user data is allowed overwrite
prev_size of the current chunk.

e The least significant bit of size is set if the previous chunk is in use.
This is possible due to alignment requirements on size .

e fd and bk link freed chunks into doubly-linked circular lists.

23

Exploiting dimalloc

e Overflowing a buffer allocated by malloc() will overwrite the
boundary tag of the following chunk.

e Overwriting the fd or bk pointers of a freed chunk can cause
malloc() to write to arbitrary memory when it attempts to allocate
that chunk.

e Under certain circumstances, a single byte overflow may be sufficient
to allow for exploitation.

24

Single-Byte Overflows

struct malloc_chunk {
INTERNAL _SIZE T prev_size; [* O */
INTERNAL_SIZE T size;
struct malloc_chunk* fd; /* O */
struct malloc_chunk* bk; /* O */
I3

[* O -> user data allowed to overwrite */

e On little-endian architectures, overflowing a chunk by one byte
overwrites least significant byte of size for following chunk.

e Least significant bit of a chunk’s size s set if the previous chunk is in
use.

e Writing a byte that clears the “in-use” bit causes malloc()
Implementation to treat the previous chunk as free.

25

Single-Byte Overflows (cont'd)

struct malloc_chunk {
INTERNAL_SIZE T prev_size; [* O */
INTERNAL_SIZE T size;
struct malloc_chunk* fd; /* O */
struct malloc_chunk* bk; /* O */

%

[* O -> user data allowed to overwrite */
e dimalloc consolidates freed chunks to avoid fragmentation.

e Last four bytes of overflowed chunk’s data overlap prev_size of
following chunk; prev_size determines location of “freed” chunk’s

boundary tag.

e Fabricate bogus boundary tag data for overflowed chunk, including
bogus fd and bk pointers.

26

Heap Exploitation References
e anonymous, “Once upon a free() ,” Phrack 57, 2001.
e jp, “Advanced Doug lea’s malloc exploits,” Phrack 61, 2003.

e Michel “MaxXX” Kaempf, “VYudo malloc tricks,” Phrack 57, 2001.

27

Additional Resources

Bugtraqg: http://www.securityfocus.com/

Phrack: http://www.phrack.org/

grsecurity (PaXx): http://grsecurity.net/

These slides are available at
http://www.mit.edu/iap/exploits/exploits02.pdf
Course Home Page:
http://www.mit.edu/iap/exploits/

28

