
Understanding Common Security

Exploits

Sam Hartman

Tom Yu

29 January 2004

Today’s Topics

• Countermeasures

• Advanced Techniques

1

Countermeasures

2

noexec user stack (Solaris)

• Kernel-based protection.

• Prevents execution of code on stack.

Weaknesses:

• Not necessary to execute shellcode from stack.

• Can still overwrite stack.

• Non-stack exploits still work.

3

StackGuard (Linux)

• Inserts “canary” values between stack items.

• Checks canary values in function epilogue.

Weaknesses:

• Early versions didn’t prevent overwriting adjacent locals in same stack
frame.

• Can still do targeted overwrites of stack.

• Non-stack exploits still work.

4

PaX

• Makes all writable pages non-executable.

• Injected code inherently un-runnable; enforced by kernel.

• Recent versions use Address Space Layout Randomization (ASLR).

• Makes returning into libc harder, but not impossible.

5

Advanced Techniques

6

Advanced Techniques

• Format Strings

• Return into libc

• Heap Overflows

7

Format Strings

8

Format String Vulnerability

void f(void)

{

char str[1024];

net_read(str, sizeof(str));

printf(str);

}

• Any printf() directives in str get interpreted.

• More correct is
printf("%s", str);

• Similar functions such as syslog() are vulnerable.

9

Using printf() to Read

Inject printf() directives to examine stack.

• Use more printf() directives than arguments given to printf()

call.

• %x to get frame pointers, return addresses, etc.

• %s to get a string whose start address is on the stack somewhere.

• Sometimes, reading is useful: passwords, cryptographic keys, etc.

10

Writing to Memory

• Little-known directive %n

• Treats its argument as pointer to integer; writes character count there.

• Can choose value to be written, e.g., by using %.9999d%n

• Can use %n$n (POSIX.1 extension) to choose which argument to
overwrite, allowing chaining and more leverage.

• Overwrite return return address, frame pointer, function pointers, etc.

11

Format String References

• gera, “Advances in format string exploitation,” Phrack 59, 2002.

• Tim Newsham, “Format String Attacks,” Bugtraq, 2000.

12

Return into libc

13

Return into libc

• Overwrite return address to point to function in libc.

• Overwrite nearby values in stack to provide “arguments” to libc
function that’s being called.

• Can chain multiple libc calls (e.g., setuid(0) followed by exec())
by fabricating multiple stack frames, including frame pointers.

14

Return into libc References

• anonymous, “Bypassing PaX ASLR protection,” Phrack 59, 2002.

• Nergal, “The advanced return-into-lib(c) exploits,” Phrack 58, 2001.

15

Heap Overflows

16

The Heap

• Typically, the operating system provides a way for a process to
expand its data segment dynamically.

• Implementations of malloc() and related functions usually hide this
detail from the programmer.

• These functions typically take exclusive control of extending of the
data segment

• The managed part of data segment is called the heap.

17

Exploiting the Heap

• Historically, the importance of heap overflow vulnerabilities has been
downplayed.

• Even a small heap buffer overflow may lead to arbitrary code
execution.

• Function pointers stored in the heap can be overwritten.

• Many malloc() implementations share features that make them
vulnerable to exploitation in case of overflows.

18

Heaps and Function Pointers

• Function pointers can be stored in data structures on the heap or
stack.

• A buffer overflow can replace one of these function pointers.

• The hard problem is knowing where the function pointer should point;
it can point to the stack, to a buffer on the heap, or to a function in
existing code.

19

Function Pointer Example

PAM uses a callback structure similar to the following to track module
data.

struct pam_data {

char name[32];

void *data;

void (*cleanup)(pam_handle_t *pamh, void *data,

int error_status);

struct pam_data *next;

};

20

Common Features of malloc() Implementations

• In-band storage of management information.

• Overwriting this in-band management information can lead to
misbehavior of the malloc() implementation.

• Typically, the management information for a chunk immediately
precedes the address returned to the caller.

21

GNU libc’s malloc() implementation (dlmalloc)

• Implementation by Doug Lea (hence “dl”).

• dlmalloc uses a “boundary tag” method of managing allocated
chunks.

The boundary tag is declared like:

struct malloc_chunk {
/* Size of previous chunk (if free). */
INTERNAL_SIZE_T prev_size;
/* Size in bytes, including overhead. */
INTERNAL_SIZE_T size;

/* double links -- used only if free. */
struct malloc_chunk* fd;
struct malloc_chunk* bk;

};

22

Quirks of Boundary Tag Use

struct malloc_chunk {
INTERNAL_SIZE_T prev_size;
INTERNAL_SIZE_T size;
struct malloc_chunk* fd;
struct malloc_chunk* bk;

};

• In an allocated chunk, user data begins at fd and also overwrites bk .

• If the previous chunk is allocated, its user data is allowed overwrite
prev_size of the current chunk.

• The least significant bit of size is set if the previous chunk is in use.
This is possible due to alignment requirements on size .

• fd and bk link freed chunks into doubly-linked circular lists.

23

Exploiting dlmalloc

• Overflowing a buffer allocated by malloc() will overwrite the
boundary tag of the following chunk.

• Overwriting the fd or bk pointers of a freed chunk can cause
malloc() to write to arbitrary memory when it attempts to allocate
that chunk.

• Under certain circumstances, a single byte overflow may be sufficient
to allow for exploitation.

24

Single-Byte Overflows

struct malloc_chunk {
INTERNAL_SIZE_T prev_size; /* O */
INTERNAL_SIZE_T size;
struct malloc_chunk* fd; /* O */
struct malloc_chunk* bk; /* O */

};
/* O -> user data allowed to overwrite */

• On little-endian architectures, overflowing a chunk by one byte
overwrites least significant byte of size for following chunk.

• Least significant bit of a chunk’s size is set if the previous chunk is in
use.

• Writing a byte that clears the “in-use” bit causes malloc()
implementation to treat the previous chunk as free.

25

Single-Byte Overflows (cont’d)

struct malloc_chunk {
INTERNAL_SIZE_T prev_size; /* O */
INTERNAL_SIZE_T size;
struct malloc_chunk* fd; /* O */
struct malloc_chunk* bk; /* O */

};
/* O -> user data allowed to overwrite */

• dlmalloc consolidates freed chunks to avoid fragmentation.

• Last four bytes of overflowed chunk’s data overlap prev_size of
following chunk; prev_size determines location of “freed” chunk’s
boundary tag.

• Fabricate bogus boundary tag data for overflowed chunk, including
bogus fd and bk pointers.

26

Heap Exploitation References

• anonymous, “Once upon a free() ,” Phrack 57, 2001.

• jp, “Advanced Doug lea’s malloc exploits,” Phrack 61, 2003.

• Michel “MaXX” Kaempf, “Vudo malloc tricks,” Phrack 57, 2001.

27

Additional Resources

Bugtraq: http://www.securityfocus.com/

Phrack: http://www.phrack.org/

grsecurity (PaX): http://grsecurity.net/

These slides are available at
http://www.mit.edu/iap/exploits/exploits02.pdf

Course Home Page:
http://www.mit.edu/iap/exploits/

28

