
1 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Crash Course in XSLT
Beginning XSLT
Jan. 17, 2007
David Z. Maze

2 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Last Time...
* XML syntax
* XML namespaces
* XPath

3 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

A Trivial Stylesheet
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/">
<xsl:copy-of select="/"/>

</xsl:template>
</xsl:stylesheet>

4 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Making It Go
* Command-line processor, like xsltproc
* xsltproc stylesheet.xsl input.xml
* Java javax.xml infrastructure
* xml-stylesheet PI plus Web browser
* <?xml-stylesheet type="text/xml"
href="foo.xsl"?>

5 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

What Do You Get Out?
* <xsl:output method="xml" indent="no"/>
* Possible output methods: xml, html, text
* XHTML is "xml"; default is either "xml" or "html" depending on

name of root element
* Some other options, but probably bad form to depend on them

6 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Templates
* <xsl:template match="foo:bar" mode="baz">
* Think "subroutine"
* Can take parameters, have local variables, contains XSLT

"statements"
* Optional mode controls when the template is invoked
* match attribute is restricted XPath expression with child or

attribute axes, // and | operators, and arbitrary predicates

7 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Easy Ways To Get Output
* <number>42</number> (literal result element): non-XSLT XML

(or text) is copied to output
* <xsl:text>foo</xsl:text>
* <xsl:copy-of select="..."/> copies entire selected

subtree(s) (if any)
* <xsl:value-of select="..."/> evaluates expression,

takes string value (discarding XML tags), and outputs that

8 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Counting Things
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/">
<counts>
<count item="slides">
<xsl:value-of
select="count(//slide:slide)"
xmlns:slide=
"http://www.mit.edu/~dmaze/slide"/>

</count>
<count item="graphics">
<xsl:value-of select="count(//svg:svg)"
xmlns:svg="http://www.w3.org/2000/svg"/>

</count>
</counts>

</xsl:template>
</xsl:stylesheet>

9 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Applying Templates
* <xsl:apply-templates select="*" mode="baz"/>
* There's always a context node
* "Apply templates": find some set of other nodes by XPath

expression; then invoke the matching template, but only if the
mode matches

* Could do nothing if no nodes match
* Default for text is to copy to output

10 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Matching Multiple Templates
<xsl:template match="xhtml:p"/>
<xsl:template match="xhtml:*"/>
* What do you do if multiple templates match?
* Top-level stylesheet first
* Highest priority (explicit xsl:template/@priority) wins
* Default priority: 0 for child/attribute full-name match; -0.25 for

child/attribute namespace match (pfx:*); -0.5 for child/element
kind match (child::text()); 0.5 for anything else

* Still a tie? "Error", but last one in stylesheet wins

11 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

HTML to XSL:FO
<p>Text with <i>italic</i> word</p>

<xsl:template match="p">
<fo:block>
<xsl:apply-templates/>

</fo:block>
</xsl:template>
<xsl:template match="i">
<fo:inline font-style="italic">
<xsl:apply-templates/>

</fo:inline>
</xsl:template>

<fo:block>
Text with
<fo:inline font-style="italic">italic</fo:inline>
word
</fo:block>

12 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Modes
* Sometimes, just want to copy an element; other times, want to do

full processing; other times...
* Can create/invoke template with named mode
* <xsl:template match="..." mode="...">
* <xsl:apply-templates select="..." mode="..."/>
* Defaults to no mode at all

13 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Let's go backwards!
<xsl:template match="*">
<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:apply-templates select="*[last()]"/>

</xsl:copy>
<xsl:apply-templates
select="preceding-sibling::*[1]"/>

</xsl:template>

14 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Named templates
* Templates can have names as well as match expressions
* <xsl:call-template name="..."/>
* Context node same as in caller

15 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Let's go backwards! (again)
<xsl:template name="attr-children">
<xsl:copy-of select="@*"/>
<xsl:apply-templates select="*[last()]"/>

</xsl:template>
<xsl:template match="*" mode="child">
<xsl:call-template name="attr-children">

</xsl:template>
<xsl:template match="*">
<xsl:call-template name="attr-children">
<xsl:apply-templates
select="preceding-sibling::*"
mode="child"/>

</xsl:template>

16 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Attribute value templates (AVTs)
<xsl:template match="x">
<x count="{count(child::*)}">
<xsl:apply-templates/>

</x>
</xsl:template>
* Any XPath expression can go inside curly braces in many

contexts
* (Including attribute values in LREs)

17 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

I don't know my name
* <xsl:element name="..." namespace="...">
* <xsl:attribute name="..." namespace="...">
* Contents of element/attribute used as contents of

element/attribute
* Name and namespace attributes are both AVTs
* This is also useful for only maybe generating attributes
* Can't use xsl:attribute after first child has been output

18 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Picking a namespace
<xsl:element name="..." namespace="...">
* Is namespace present? Use its value (possibly empty)
* Does name have a prefix? Use its namespace from the

stylesheet
* Otherwise? Use the null namespace
* The generated element will have no prefix if in the null

namespace, or otherwise the processor's choice of namespace
(possibly the one in name)

19 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Comments In The Output
<!-- Comment in the stylesheet -->
<xsl:comment>in the output</xsl:comment>

20 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

What if...
<xsl:if test="...">
...

</xsl:if>
* If/then, without an "else"
* test is any (boolean) XPath expression
* Contents are evaluated if test is true (non-empty)

21 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

But what if...
<xsl:choose>
<xsl:when test="...">...</xsl:when>
<xsl:when test="...">...</xsl:when>
<xsl:otherwise>...</xsl:otherwise>

</xsl:choose>
* If first xsl:when is true, do that; otherwise, if second is true, do

that, otherwise...
* Only way to have "else"

22 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

How many is many?
<xsl:attribute name="quantity">
<xsl:choose>
<xsl:when test="count(*)=0">none</xsl:when>
<xsl:when test="count(*)=1">one</xsl:when>
<xsl:when test="count(*)<8">some</xsl:when>
<xsl:otherwise>many</xsl:otherwise>

</xsl:choose>
</xsl:attribute>

<xsl:if test="*">
<xsl:attribute .../>

</xsl:if>

23 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Variables
<xsl:variable name="..." select="..."/>
<xsl:variable name="...">...</xsl:variable>
* Defines a variable for all following things in the same template,

plus their descendants
* No duplicate variables in the same template (might shadow

globals)
* select form can have arbitrary XPath
* Otherwise create result tree fragment with root node and

specified contents
* <xsl:copy-of select="$variable"/>
* No content? Defaults to empty string
* select="/.." for empty nodeset
* Get value later using XPath $name

24 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

How many is many?
<xsl:variable name="children"

select="*[@on='yes']"/>
<xsl:variable name="count"

select="count($children)"/>
<xsl:attribute name="quantity">
<xsl:choose>
<xsl:when test="$count=0">none</xsl:when>
<xsl:when test="$count=1">one</xsl:when>
<xsl:when test="$count<8">some</xsl:when>
<xsl:otherwise>many</xsl:otherwise>

</xsl:choose>
</xsl:attribute>

25 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Parameters
<xsl:param name="..." select="..."/>
<xsl:param name="...">...</xsl:param>
<xsl:apply-templates>
<xsl:with-param name="..." select="..."/>
<xsl:with-param name="...">...</xsl:with-param>

</xsl:apply-templates>
* Just like xsl:variable, but...
* Must appear first in template content
* xsl:param's value is only the default value
* Callers may specify xsl:with-param to provide their own

values

26 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Backwards (yet again)
<xsl:template match="*">
<xsl:param name="pos" select="count(*)"/>
<xsl:variable name="item" select="*[$pos]"/>
<xsl:element name="{local-name($item)}">
<xsl:apply-templates select="$item"/>

</xsl:element>
<xsl:if test="$pos>1">
<xsl:apply-templates select=".">
<xsl:with-param name="pos" select="$pos-1"/>

</xsl:apply-templates>
</xsl:if>

</xsl:template>

27 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Globals
* You can define global xsl:variable and xsl:param
* Put them before the first template
* They can depend on input
* Global params can usually be set externally
* xsltproc --param foo "'bar'"

28 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

For-each
<xsl:for-each select="...">
...

</xsl:for-each>
* Evaluates contents for each node in select node-set
* Context node changes

29 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Sorting
<xsl:apply-templates>
<xsl:sort select="@name"/>

</xsl:apply-templates
* Specify an order besides document order for
xsl:apply-templates and xsl:for-each

* order="ascending" (or descending)
* data-type="text" (or number)
* Multiple sorts fine, first is "more important"

30 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Modularizing
<xsl:include href="..."/>
<xsl:import href="..."/>
* Stylesheets you include can include other stylesheets
* Circular includes are illegal
* xsl:include is "the same stylesheet", xsl:import isn't

31 Crash Course in XSLT: Beginning XSLT Jan. 17, 2007

Next Time
* Gory details!
* XPath types, function library
* Extension elements and EXSLT

