
SIPB’s IAP

Caffeinated Crash

Course in C

The classic
#include <stdio.h>

main()
{
 printf("Hello, world!\n");
}

A typical interaction
with gcc, the GNU C
compiler and a
timeless classic in the
history of C
compilation.

athena% gcc hello-world.c -o hello-world
hello-world.c: In function ’main’:
hello-world.c:6: error: expected ’;’ before ’}’ token

[editing]

athena% gcc hello-world.c -o hello-world
athena% ./hello-world
Hello, world!
athena%

The C Preprocessor

The preprocessor is responsible for
trimming your comments.

 - Comments are understood to be
 between /* and */

 - Comments are not between //
 and the end of the line

 - Some compilers will support
 this latter comment style, but it
 can adversely affect the
 portability of your code

/* nothing in here is
 * going to be seen by the
 * compiler */

/* nor in here */

#include interprets the requested
file

 - Files between < and > will be
 sought amongst the system
 header files

 - Files between " and " should be
 in the include path, which can
 passed to the compiler

 - However, the include path by
 default will include the current
 directory

#include <stdlib.h>

#include "my-header.h"

#define defines macro
substitutions

 - These can be simpled ’defined’
 or ’not defined’

 - Or they can be scalar values

 - Alternatively, they can be
 functions with parameters

 - These macro substitutions are
 recursively evaluated

#define _STRING_H

#define NULL (void *)0

#define SUM(a,b) ((a) + (b))

 - Code between #if and #endif
 will be conditionally compiled

 - #defined(SYMBOL) will
 evaluate true or false,
 depending on whether
 SYMBOL is defined or not

 - The !, ||, and && operators
 work as expected

 - Code to be skipped is replaced
 with blank lines

 - Terminated with #endif

#if defined(MSDOS) || defined(OS2) || defined(WINDOWS)
if !defined(__GNUC__) && !defined(__FLAT__)

 /* conditionally compiled code goes here */

endif
#endif

#ifdef and #ifndef are convenient
interfaces to common
functionality:

 - #ifdef SYMBOL is equivalent to
 #if defined(SYMBOL)

 - #ifndef SYMBOL is similarly
 equivalent to #if
 !defined(SYMBOL)

#ifndef SYS16BIT
define SYS16BIT
#endif

#if 0 is a convenient way to
comment out large swaths of
code, particularly those that
embedded comments. This
latter point, because C
comments are not recursive.

:-(

#if 0
include <sys/types.h> /* for off_t */
include <unistd.h> /* for SEEK_* and off_t */
ifdef VMS
include <unixio.h> /* for off_t */
endif
define z_off_t off_t
#endif

#pragma is used to use
compiler implementation
specific parameters and
language extensions in a
minimally standard way

#pragma warning(disable: 4035) /* no return value */

#pragma map(deflateInit_,"DEIN")

#pragma message("LIBPNG reserved macros; \
use PNG_USER_PRIVATEBUILD instead.")

Language Structure

There are five different
kinds of integer:

 - char

 - short

 - int

 - long

 - long long

These can be either:

 - signed (the default)

 - unsigned

char i_8; /* -128 to 127 */
unsigned char ui_8; /* 0 to 255 */

short i_16; /* -32768 to 32767 */
unsigned short ui_16; /* 0 to 65536 */

int i_32; /* -2147483648 to 2147483647 */
unsigned int ui_32; /* 0 to 4294967295U */

long i_arch; /* architecture
unsigned ui_arch; * dependent */

long long i64; /* -9223372036854775808L to
 * 9223372036854775807LL */
unsigned long long ui64; /* 0 to 18446744073709551615ULL */

There are two different
kinds of floating point
value:

 - float

 - double

float f_32; /* roughly 3x10^-39 to
 * roughly 3x10^39 */

double f_64; /* roughly 1x10^-308 to
 * roughly 1x10^308 */

Additionally, C
understands strings
and characters:

char zero = ’0’;

char *one_as_string = "One";

char *stuff = "I think I see "
 "Bob Marley "
 "in my cornflakes!\n";

Types can be operated
on with:

 - Arithmetic
 operators

 - Bitwise operators

 - Boolean operators

 - Assignment
 operators

/* arithmetic operators:
 * + - * / : add, subtract, multiply, divide
 * % : mod
 * ++a, --a : increment/decrement and return
 * : new values
 * a++, a-- : increment/decrement and return
 * : old values
 *
 * bitwise operators:
 * & | ^ ! : and or xor not
 * >> << : bitshift left and right
 *
 * boolean operators:
 * > >= : greater than, greater than or
 * : equal to
 * < <= : less than, less than or equal to
 * == != : equal, not equal
 * && || ^^ : and or xor
 *
 * assignment operators:
 * = : assignment
 * += -= *= /= : add, sub, mul, div and assign
 */

Flow control is
achieved with:

 - if contructs

 - if/else if/else
 contructs

if(a > b) {

 /* only case */
}

if(a > b) {

 /* first case */

}
else if(b > c) {

 /* second case */

}
else {

 /* default case */

}

Some looping contructs
are available:

 - for

 - while

 - do ... while

The looping action can
be regulated with:

 - break

 - continue

for(i=0;i<count;i++) {

 /* do something with i here */

 if(weird_case(i))
 continue;

}

while(predicate()) {

 /* do something here */

}

do {

 if(bored_p(i))
 break;

} while(predicate());

And the too often
feared, and too often
misunderstood, goto

 /*
 * goto is great for getting out of nested loops
 * quickly and cleanly; other applications are
 * advised against
 */

 for(y=0;y<height;y++) {
 for(x=0;x<width;x++) {

 if(super_badness_p(x,y))
 goto eject;

 }
 }

eject:

The building block of
computation in C is the
function; all
computation must
occur inside one

/* start by declaring:
 * - the return type
 * - the function name
 * - the types and names of the function parameters */

int sum_of_squares(int a,
 int b)
{
 int c; /* first come variable
 * declarations */

 c = (a * a) + (b * b); /* then statements; each
 * statement should end with
 * a semicolon */

 return c; /* return a value, if we said
 * we would */
}

int pythagorean_p(int a,
 int b,
 int c)
{
 double v1,v2;

 v1 = sum_of_squares(a,b); /* calling functions occurs
 * in the usual fashion */
 v2 = c * c;

 if(v1 == v2)
 return(1);
 else
 return(0);
}

/* main() is the entry point for program execution; define
 * it if you want your program to run */

int main()
{
 if(pythagorean_p(3,4,5))
 printf("3:4:5 is a pythagorean triple\n");
 else
 printf("3:4:5 is NOT a pythagorean triple\n");

 return(0);
}

Arrays, and Pointers

XXX arrays The right side is empty.

XXX pointers The right side is empty.

XXX arrays vs.
pointers

The right side is empty.

