NAND Flash Storage: The Restricted RAM
Solution

Jessica McKellar

January 26, 2009



1 Fun With Math

a2 +b?=c?

2 Introduction

This paper describes a NAND flash storage system which meets the user’s
expectations in a restricted RAM environment - one in which the amount
of RAM is a) significantly smaller than the size of an erase block and thus
insufficient for functioning as swap space when a sector needs to be overwrit-
ten, and b) too small to hold a full mapping of sectors to pages, necessitating
keeping at least part of a pointer table structure, if one were to exist, in flash
memory.

I don’t really have anything to quote, here but if I did, “the scheme de-
scribed in this paper meets these performance demands by maximizing the
use of the limited RAM as a way to store particularly frequently updated
information without taking an erase penalty.” Meanwhile, the generous size
of the flash memory is exploited in conjunction with a wear leveling strat-
egy that accounts for keeping frequently updated sector-to-page mappings
in flash memory.

3 Data Structures

Define reserved flash as the erase blocks currently constituting the pointer
table (L2 table). All other erase blocks are available for the storage of user
data and thus termed data-writable.

Level 1 Table (L1): This table is held within RAM and contains 92 en-
tries; each entry has a pointer to the beginning of a page map block the
size of an erase block containing pointers to the locations of sector data.
The 92 page map blocks together comprise the level 2 table. For example,
the first entry in the level 1 table is a pointer to the start of page block
0, which is a page map block in the level 2-designated part of flash which
contains the addresses for the data for sectors 0 through 43647. The second
entry in the level 1 table is a pointer to page block 1, which contains the ad-
dresses for sectors 43648 through 87295, and so on up through page block 92.



Pointer Cache: This cache is held within RAM and in fact consumes all
remaining unallocated RAM after accounting for the L1 table and 3 point-
ers. Each entry must encode a sector and its corresponding page, at 3 bytes
each. The cache can thus contain up to 6619 6-byte sector-to-page mapping.
The pointer cache is empty after initialization.

4 Algorithms

4.1 Pointer Cache Flush

When the pointer cache has 6619 sector-to-page mappings and is thus full,
the L2 table in flash is updated to reflect the status of the sector-to-page
mapping contained in the cache so that the cache can be cleared. The
pointer cache clearing process is as follows:

1. Examine the first pointer in the cache.

2. Collect at the top of the cache all pointers that would be on the same
L2 block as that pointer.

3. Read the contents of the first mapping page of the L2 block that needs
to receive an updated pointer.

4. Insert the subset of the collected pointers that belong on that page at
the appropriate lines in the buffer.

5. Write that buffered page to the corresponding page of the next clean
block in front of the frontier pointer.

6. Repeat steps 2-5 until all the collected pointers for that block have
been updated (64 reads, 64 writes total per page).

7. Remove the pointers that have just been written to their new L2 from
the cache.

8. Repeat steps 1-7 until the cache is empty.

9. Move the reserve pointer to the start of the new L2 table location.



4.2 Wear Leveling: Cycling Reserved Blocks

A data-writable block is erased once per cycle of the queue through the
flash, namely when it is in the tailing 104 blocks being consolidated during
garbage collection. Similarly, because the L2 table blocks are moved to the
front of the queue after every pointer cache flush, a data-writable block only
functions as an L2 block once per cycle of the queue through the flash. This
shuffling results in an even distribution of erases across blocks.

4.3 Garbage Collection

Garbage collection on the tail of the data queue occurs directly after every
pointer cache flush. In this implementation, the goals were twofold:

e clear invalid pages in small enough chunks that the process doesn’t
create unreasonably long halts during data transfer

e keep all of the valid data consolidated within the queue and all of the
empty blocks consolidated in front of the queue
4.4 Speed
4.4.1 Reads

Sequential and random reads take the same amount of time because sectors
are remapped regardless. Fetching a sector’s data requires either:

e 1 read because the pointer to the corresponding page is located in the
pointer cache and the page can be sought and read directly, plus 1
write to the meta data of the old page to tag it as invalid.

e 2 reads because the pointer had to be read from a page in the L2 table
before the contents could be fetched

e 2 reads because the pointer had to be read from a page in the L2 table
before the contents could be fetched, plus 1 write to the meta data of
the old page to tag it as invalid.

Thus in the worst case a read request requires 2 reads and a write, for .28 ms



4.4.2 Writes

Sequential and random writes also take the same amount of time because a
sector’s data will be written to the first free page at the front of the queue
and cause an update to the pointer cache regardless of write type.

At worst, 6619 writes happen before the pointer cache becomes full (at best
a small set of sectors are overwritten frequently and thus result in updates to
the cache rather than new entries). At that point the pointer cache updates
must be written to flash, followed by garbage collection.

4.5 Lifetime

As discussed above, the simple L2 shuffle wear-leveling strategy allows for at
least 52 percent of the maximum possible usage of 100,000 writes per page.
This corresponds to 218103808000 page-writes or 446676 GB of data-writes.

5 Summary

This restricted RAM flash storage solution maximizes the size of the data-
writable flash without significant penalty to read and write performance but
with the cost of a factor of two in lifetime. Retaining only half of the maxi-
mum possible writes before wearing out the system is a reasonable trade-off
considering the huge (400,000+ GB) amount of data transfer still permitted.



