
i iIntro to Cracking and Unpacking

Nathan Rittenhouse – nathan_@mit.edu

Keygenning

T k thi k• Take this crackme:
– http://crackmes.de/users/moofy/crackme_2
– Write a key generator

Process

W t h h d t i i tt d• Watch where user data is inputted
– Easy to see since there’s only one dialogue box, but

you have to discern which GetDlgItemTextA()
corresponds to the name inputcorresponds to the name input

• Follow all operations that are done based on the string
– Decompile it into C or some other language
– You could also rip their assembly– You could also rip their assembly

• Seriously, in this case, it’s *that* easy
• Mention hilarious flaw in algorithm

Unpacking

T k k d • Take packed program
• Unpack it into its original form
• Target is on SIPB IAP page

Process

N ti ll t “j O O R t”• Notice calls to “jmpOneOverRet”
– inc [esp]
– ret

N ti t i t ti ft ll d ’t l k i ht• Notice next instruction after call doesn’t look right
• Do a hex dump
• First

ll j O O 0 8 4 b ff f i– call jmpOneOverRet: 0xE8 <4 byte offset to function>
– 0xFF
– <real instruction>

• This simply jumps over the 0xFF

But…

Thi i i t d f t ll b t ld • This is annoying to defeat manually, but yes, you could
do it

• IDAPython / IdaRub are perfect for this
I forgot to install IdaRub– I forgot to install IdaRub

• Scan the entire segment for 0xE8 <4 byte offset to
jmpOneOverRet>
– Note this offset is relative the address of the – Note, this offset is relative the address of the

instruction AFTER the call
• When one is hit, NOP it, including the 0xFF
• Hide that portion for better readabilityHide that portion for better readability

Programmatic Obfuscation

L t f h ll d t d t t• Lots of shellcode type code constructs
– Program parsing its own PE headers, etc – ominous
– Even a z0mbie style hashing function, which is a

dead giveawaydead giveaway
• Finds addresses for various addresses such as

GetProcAddress, LoadLibraryA and stores them in a
local data structure (esi+offset)local data structure (esi offset)

Anti-Debugging

C ll t NtQ I f ti P• Call to NtQueryInformationProcess
– With parameter of 7
– Quick look at MSDN shows that this is ‘DebugPort’

Ob i l ti d b i• Obviously anti-debugging
• Uses the value returned by this to decrypt/decode stuff
• When this function returns, null out the value

 b i d b d– -1 = being debugged
– 0 = not being debugged

More Anti-Debugging

P t h Db UiR t B ki ()• Patches DbgUiRemoteBreakin()
• Why?

– This function is run every time that
DebugActiveProcess() is called via DebugActiveProcess() is called via
CreateRemoteThread()

• It’s how that breakpoint shows up when you
attach a debuggerattach a debugger

– Normal code:
• If(isDebugged()){

– asm{ int3 }__asm{ int3 }
– }

More Anti-Debugging

W t h t t d Vi t lP t t()’ th f ti • Watch as protected.exe VirtualProtect()’s the function
to be writable

• Then proceeds to build a jmp [ptr_ExitProcess]
• This means if one tries to attach with olly while the • This means if one tries to attach with olly while the

program is running, it will simply exit
– Advanced olly can defeat this, but for learning

purposes, we can simply avoid using this techniquepurposes, we can simply avoid using this technique

More Unpacking

P i f PE h d d th H C t ()’ d • Parsing of PE headers and then HeapCreate()’s done
based off of the size of the executable
– These executables are ntdll.dll and kernel32.dll

Oh and a section of the exe called ‘ lex’– Oh, and a section of the exe called .lex
• Provides a lookup table (hash style) for the

values to fix up the relative calls with
• Contents of these are copied into the new memory• Contents of these are copied into the new memory

Decryption

V l f d b h k i d i f • Value from debugger check is used in process of
decrypting (done by xor)

• No sanity checking
This means if your executable doesn’t decrypt – This means if your executable doesn t decrypt
correctly, you’ll jump into garbage code later

Address Fixups

R b th lib i ?• Remember the library copies?
• Program searches through .lex for relative call / jmp

sequences
• Usually look something like: 0xE8 0xEE 0xEE 0xEE 0xEE• Usually look something like: 0xE8 0xEE 0xEE 0xEE 0xEE

– Looks for this signature
• Once it’s found, the address of the call is hashed and

then used as an index into an array to find out what to then used as an index into an array to find out what to
replace the 0xEE’s with

• After this, jump right into the original code

Removing Anti-Debugging

Thi b b d ll• This can be bypassed manually
– Set the output buffer to 0’s instead of the 0xFF’s
– But it’s a pain to do it every time

P t h NtQ I f ti P b f i ‘ h 0’ • Patch NtQueryInformationProcess by forcing a ‘push 0’
(see disassembly) and replacing the call with an ‘add
esp, 0x14’
– Yay tricks I picked up from breaking ZoneAlarm!– Yay tricks I picked up from breaking ZoneAlarm!

Cracking

Th d i l t d th h j t i • The new code is located on the heap, so just using
ollydump / LordPE to dump the executable space and
rewrite the OEP isn’t an option

• Why not modify the unpacker?• Why not modify the unpacker?
– Tell the program to put code in a new section in the

executable instead of on the heap
• Open up LordPE and create two new sections – one for Open up LordPE and create two new sections one for

the first copy and one for the second
• Then, set the addresses of the ‘code migration pointers’

to them
• Break on the last jmp [realProgram] and then dump

memory, fix up OEP

Cracking

N th t h d d d t fi th • Now that we have a dumped exe, we need to fix the
imports
– Rebuild the import table so that the IAT will contain

valid pointers to library callsvalid pointers to library calls
– Sometimes, impRec will find the IAT automatically

and rebuild from that, but it’s often wrong
– Search memory for 0xFF 0x25 (jmp dword ptr [ptr]) or Search memory for 0xFF 0x25 (jmp dword ptr [ptr]) or

just find a call that uses the IAT and then look around
the area that the jmp points to

• It’s usually easy to look at a pointer and tell if it is
really pointing to something

– Then, correct impRec’s base address and size, then
fix the dump

End

C k d i t f fi di k• Crackmes.de is great for finding… crackmes…
• Openrce.org for good win32 reversing related articles
• Uninformed.org

