Nathan Rittenhouse — nathan_@mit.edu




N

Why are you here?

® Obvious interest in making software go ‘boom’
® Reverse engineering software
e Cracking some (non-copyrighted) software
* Exploitation on many different platforms
e Windows
e Linux
e OSX
* Mostly basics for each OS covered



W

Why aren’t you here?

® LaTeX presentations

* Defeating the *latest™ memory protection methods
e Those will be covered, just few/no examples with them

* Walking out a Mark Dowd/Neel Mehta/Optyx/HD
Moore/Matt Miller/Skape

® ‘Linux always has better security than Windows’
* ‘security models’ (see above)



W

Tools - Disassemblers

* Take in programs in a variety of binary file formats,
convert the machine instructions into mnemonics that
are quasi-human readable

® Objdump

e Decent if on a random Unix based system
® Dumpbin

e Equivalent to objdump for Windows



P e

IDA Pro

®* Hands down the best disassembler
® Runs on Linux and Windows
e Linux version is curses...
® Free version and commercial version
e Academic licensing is available

* Powerful plugin interface, many plugins written
e Bindiff/Hex-rays/mIDA/x86emu/CollabREate

® Can be scripted in IDC/Python/Ruby/Perl
® Pretty graphing interface



IDA Pro

* Define data structures a program uses
® Code highlighting

®* Code commenting
® Save to portable database

* Remotely debug on MANY different OSes and
architectures



Tools - Debuggers

* Allow one to step through a program, analyze what
happens at run time

e What modules get loaded

e Disassembly of executing code

e Register states

e Breakpoints

e Symbol resolution (sometimes)

e Limited tracking of operations to data



Tools - Debuggers

* GDB
e Source oriented debugger for Unix based OSes

* Yes, there is a Windows port, but.. No

e Quite robust for source debugging, quite poor for binary
analysis

* Ollydbg
e Reverse engineering debugger for Windows
e ‘Pretty’ but somewhat unstable
e Many reverse engineering oriented plugins
e Better data visualization, easier to use than...



Tools - Debuggers

* WinDbg
e Binary and source debugger written by Microsoft

e Incredibly well written, robust, has a steep learning curve
« Great documentation

e Supports remote/some local ring 0 debugging
e Rich COM based plugin architecture
e Mixture of command line and (poor) GUI interface



P————

Tools — packet sniffer

® This is REALLY important when dealing with different
protocols

* Read Wireshark’s protocol dissectors

* Let Wireshark do hard work for you occasionally (with its
protocol dissectors)



Tools - virtualization

® Do as MUCH work as you can in a VM as possible

® Bare metal machines are harder to recover
®* Malware analysis can go horribly wrong
e Even with a VM

* ‘Enterprise software’ — code words for ‘so bloated you’d
NEVER want to put this on a real system’

* Allows for multiple snapshots
e Can be for different service packs, different projects
e Don’t have to revert to original state



e

.
- E = = g - —_— = e

r
—

Your first stack based buffer overflow on Linux




W

The stack

® A data structure that grows downward in address space in
LIFO format

e Think of a stack of plates
® Used for temporary variable storage
* Holds certain control flow information
int function(char * userlnput){
int blah;
char array[400];
strcpy(array, userinput);



Translation to x86

OtherFunction:
call function
test eax, eax ; <- return address points here

Function:

mov edi, edi
push ebp

mov ebp, esp
sub esp, 0d404
mov eax, esp
push [ebp+8]
push eax

call strcpy



StaCk Iayo Ut Pointer to userinput

string
int function(char * userlnput){ Return agaress to

. instruction after function
int blah; ol

char array[400];
Saved EBP

strcpy(array, userinput);

} char array[400]




The vulnerability

® strcpy will not stop copying data until there is a NULL byte
reached

e |f this input is taken from the user, this means that we can
input arbitrarily long strings to the program

e If this is the case, we can overwrite EBP and the saved
return address

®* We can then point the return address at any arbitrary
code that we want



Where IS the return address?

® One of two options

e Reverse engineer the program and look at stack math
e Be lazy and use pattern_create from Metasploit



Shellcode

® Shellcode does stuff
e |t's the exploit’s payload
e Shellcode is NOT the vulnerability
® Shellcode can
e Send a shell to a remote attacker
e Load more code from a remote system
e Create another backdoor (depends on permissions of user)
e Anything the attacker wants



Shellcode

¢ ..also must evade certain ‘bad chars’

e A ‘bad char’ causes the shellcode not to be copied fully or
get modified in a way not desired by the attacker

® Examples
e Must avoid NULL bytes in the previous example

e Must avoid uppercase characters if there is a tolower()
conversion

e Same if there is a toupper() conversion

e Usually any control characters for what protocol you're
exploiting under



Standard Linux shellcode

® Control flow

e Listen for connection
e Accept connection

e Set stdin/stdout/stderr to be ‘hooked up’ to the new
connection instead

e execve /bin/sh



Where am |?

® 32bit x86 doesn’t allow [EIP+Xx]
e EIP can’t be directly read, either
* Needed for finding the address of a string

* Also for creating temporary variable storage

« Using raw “push’/’pop’ instructions can overwrite shellcode —
remember we are EXECUTING on the stack



GetEIP — call, pop

call end
startShellcode:

end:
pop esi
jmp startShellcode



GetEIP — jmp/call

® Avoids having a null byte

jmp end
trampoline:

pop esi

jmp startShellcode
end:

call trampoline
startShellcode:



GetEIP — FPU

® Short, no null bytes

* ‘fstenv' dumps context of last FPU instruction
fldz

fstenv [esp-0x0c]

pop esi

®* From the Intel manual

DEST[FPUControlWord) FPUControlWord;
DEST[FPUStatusWord) FPUStatusWord;
DEST[FPUTagWord) FPUTagWord;
DEST[FPUDataPointer) FPUDataPointer;
DEST[FPUInstructionPointer) FPUInstructionPointer;
DEST[FPULastInstructionOpcode) FPULastInstructionOpcode;




P————

GetEIP — Gera’s trick

® As long as FPU method, but this is interesting
® At start

O: [E8 FF FF FF FF] call Ox4

5: [C3] ret

6: [58] pop eax

At Start

® Becomes

4: [FF C3] inc ebx

5: [58] pop eax ;eax contains EIP




The return address

® Set return right to stack address

e Unreliable — standard 2.6.x kernels randomize stack base

® Set to a location inside a binary loaded at a fixed address

e Mainline kernel does not have ASLR turned on by default..
most binaries aren’t compiled —fPIC

* Analyze the crash, see what registers you ‘control’
e core-file core in GDB



The return address

* Msfelfscan finds byte sequences that translate to x86 that
will transfer control to a register you specify



References

o <- note this is
intended to be run on 2.4.x kernels with zero protection
mechanisms

e Also available on phrack.org



