B

Nathan Rittenhouse — nathan_@mit.edu

MS08-067 —

NETPRPATHCANONICALIZE

Importance

Used for the Downadup worm

Affects almost every version of NT based

Windows systems

Background on DCERPC

Two main binary RPC protocols —
SunRPC/ONCRPC and DCERPC

* Both are open specs

DCERPC got adopted by Microsoft

SunRPC got adopted on Unix based platforms

DCERPC/COM /DCOM

Reason for COM’s existence
* Decouple interfaces from implementations
Example

*+ Take two different DLLs written in C++ with different
compilers

* Have one attempt to import/create an instance of a
class in the other

+ Attempt to call a member function of that class
* Look for the Dr. Watson screen

What'COM attempts to fix

There isn't a standard C++ calling convention

There aren’t standard calling conventions
between multiple languages

COM intends to fix that

* If alanguage supports COM, any COM object created
can be used by any other language that supports COM

DCERPC’s role

DCERPCis the transport mechanism for DCOM
DCOM is Distributed COM

The interface and implementation are *so*
decoupled, function calls over a network are
possible

* Without the programmer having to do anything
different

DCERPC is the network transport protocol

DCERPC internals

Microsoft uses SMB as a transport mechanism
for DCERPC

* SMB can run on top of UDP/TCP

* Originally chosen because SMB was versatile and
could run on top of many different protocols
* Including Microsoft’s NetBEUI

* Also provides authentication, allows remote user
Impersonation

Comparison of SunRPC and

DCERPC

Closed source vs. open source difference

Both have languages for specifying definitions

SunRPC apps
‘rpcgen,’ whic
* Does marshal

nave interfaces generated via
n simply spits out some C files

ing INSIDE of the target app

+ XDR encoding method

DCERPC

DCERPC based apps are easier to RE if there’s
only binary
* Format strings which describe the interface AND its

member functions, arguments, data types are
embedded IN THE BINARY

* RPCRT4.DLL parses these and marshals data to
interfaces/functions accordingly

Uses NDR marshalling method

Whyis DCERPC awesome?

A LOT of the work of figuring out an application’s
interface is taken out

* Enables us to write fuzzers that can extract an IDL
from another app and talk to it correctly

Many assume since they don’t give out the IDL
for their app, no one can talk to it

* Wrong ©

Stepsto RE a Microsoft Patch

Look at the security bulletin:
http://www.microsoft.com/technet/security/Bull
etin/MS08-067.mspx

Look at the KB article:
http://support.microsoft.com/?kbid=958644

Note which files are patched

Notes

“Server service”

+ srvsvce.dll

“"RPC request”

* Means there’s a vulnerable RPC function

Bindiffing

Use Bindiff or Binary Diffing Studio
+ Bindiff is MUCH nicer

We will cover Bindiff, since BDS has caused me
lots of pain in the past

Bindiffing

Load both patched and unpatched versions into
IDA

Tell Bindiff to run its algorithm against the two

* This may take some time

ebx , ebx
short 5B8788481loc_5BE78848

5h86a2h0

azbo
azb3
azhe

éBRBevi1B1uck

5h878831

8831 lea
88234 mov

eax, [esi+d]
ecx,esi

push
push
call
Pop
pop
moyv.

eax; wchar_t *
ecx; wchar_t *
ds :5BBE1268__ imp__wcscpy
ecx

ecx

-ecx, [ebprarg 0]
5B86A2B010C_SBE6AZEO

SEE0NARY)

5hB878853

8852 mov
BB56 test
8858 jnz

5hB7885a

885a lea
885d mov

eax, [edi+4]
ecy ,edi

ecx, [ebp+var_4]
ecx,ecx
short SB87885Floc_5BE&

3hB7885f

885f
8862

cmp
jnb

ecx , [ebp+var_g]
5B87175110c_5B871751

|

4

|

I p I

[]

|4

Vulnerable control flow

Notice the addition of a 'jnb’ instruction before a
string copy

Notice wcscpy -> StringCchCopy

Findingthe interface

Load both srvsvc.dll and netapi32.dll into IDA
Run mIDA

Notice no RPCinterfaces found in netapi32.dll

+ All are contained in srvsvc.dll

Findingthe RPC function

Use xref feature in IDA
* Track back to CanonicalizePathName
* Then _NetpwPathCanonicalize

Examine imports of srvsvc, search for this
function

* Match to NetprPathCanonicalize

Hittingthe endpoint
Use similar method to samba vulnerability
Notice the nacn_np, note other UUID info

Modify an existing Metasploit exploit to hit this
function

Use NDR encoding rules found at TippingPoint
website

* Could ‘reverse’ them from other Metasploit exploits
* Orreverse RPCRT4.dll

1 M

loc_SREGAL2D: 3 check iF we hawe *\..®
lea ean, [esi+?]
My dx, [eax]
i Fip s, ".°
jnz loc_SERVEVLE
1
¥
HHL.
Lea vax, [esi+h] ; check if we have *%_.%°
may b, [eax]
cap bx, '\
jz short loc_SHHEGRWAG
I
BN
test by, by
jnz shart loc SES6H&T1
11
N
Loc_SBEGAMAL
Lesk edi, edi
jz wnrEaRindExit
[
[BEHL.
push rax ; wchar_t =
push edl i wehar_t o«
call dsz__inp_ woscpy
test b, b
pop L1
pop (143
jnz loc_ SHETERYIC
1
HHNL
; START OF FUHGTION GHOHK FOR patchedFunction
loc_SBETRTIC:
mOy [pt||;uI.'ltm:t!:],nsrlx'rrinq], pdi
mau esi, edi
lea eax, [edi-2]
jmp short loc SHATRTAD
N L. N L.
lac_SRETA7CR: loc_SRETE7AD:

L] dx, '\ P word ptr [eax], '\
jnz short loc SHATRIFR) jnz short loc SHATETAG
11 11

¥
HHL. HHL. HHL.
test ehx, b
1oc_SBETRTFB; jinz short loc SBEVETED Loc_SEETATRG :
Lest dx, dx CAp eax, [ebp+wehar _modified prefix]
jnz loc SHEGART iz short loc SHETBTE3

Graph overview

; START OF FUHCTION GCHUHK FOR patchedFunction

anbackslashs

lea eax, [esi-2]

[by, Eax

jz short xorEaxAndExit

HHNL. N L. N L.
test ebx, ebx
loc_SHEFEFF B jnz short loc SEH7ETEL loc_SERFETIG:
test dx, dx CEp eax, [ebp+wchar modified prefFix]
inz loc SBAGA%TT iz short Lloc SHETRTRI
¥ ; [X!
BN BN BN [ENL. ENL. HN
tesk ehx, b Lira rax, [esi+h] dir: IR my
jz short loc SBRVETFF my ecx, es5i loc_SBETETEC: loc_SODETETEI : idec PaX oLl
oy ecx, ebx my di, [eax) jmp
jq] shart evilBlock L] EE)G, [ebpruchar _modified prefix]
sub i, 5Ch
i di
shib edi, edl
not rdi
and edl, eax
imp log_ SHEGAN1
3 YYYYYY
B HL. E L
w0y e5i, ebx
loc_SBR&ANTT:
ine esi
inc es5i

R (K
HHL.
loc_SBETETFF 1oc_SOBGANTE:
anid ward ptr [esi], @ ax, [esi]
end_1 ax, au
: EMD OF FUHETIOH CHUME FOR patchedFunctinm short end 1
]
I
[¥ 1 l : | i 4‘ L RK;
M NL. HNL.
L] ehx, [ehp+latestElashitring]
jﬂ:l short loc SEESANED ®OPEaxAndEXLiL 2
Bak, Bax xar Pax, Pax
BAK end
7 EHD OF FUKETIOH GHUWE FOR patchedFunction
|

pap rdi
pop esi
pap rhx
leave

retn Ll

patchedFunction endp

Vulnerability

Not a straight stack overflow

Due to an unbound searching loop for a '\’
character

* Then concatenating the result with something else
* A string can become much longer than intended

Done on stack, so stack smash
* If no other '\’ exists before the loop, stack overflow

edi, edi
worEaxfindExit

Pax wchar_t =
edi wehar_t =
ds:__inp__ woscpy

bx, bx

BLH

BCH

Lloc SHEFRTOL

¥

STRART OF FUHCTIOH CHUHE FOR patchedFunckion

loc_SEEFETIL:
[ebp+latestslashstring], edi
esi, edi
eax, [edi-2]
shart loc SHESHSAD

vard pbi [eax], '%°
short loc SEEVHEIAG

¥

loc SBEEFETAG X

CRp gax, [ebpruchar_nodified prefix]
iz short loc SEEVHIRG

vy

[H L.

loc_ SBEETE7OI:

Y di, [pax]

o ecx, [ebp+wchar modified_prefix]
sub di, %Ch

i di

shi edl, edi

nok el

and edi, eax

imp loc SHEG&GANIA

Links

Full exploit (done by Metasploit, not me)

* http://metasploit.com/svn/framework3/trunk/modules/exp
loits/windows/smb/mso8 067 netapi.rb

Using pyMSRPC to trigger this

+ http://dvlabs.tippingpoint.com/blog/2008/11/06/using-
pymsrpc-to-trigger-mso8-067

TippingPoint NDR encoding examples

* http://dvlabs.tippingpoint.com/blog/2007/11/24/msrpc-
ndr-types

Technical analysis
* http://www.dontstuffbeansupyournose.com/?p=35

