Erasing correlations, destroying entanglement and other new challenges for quantum information theory

quant-ph/0511219

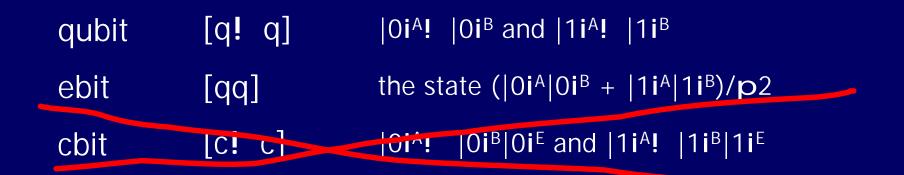
Aram Harrow, Bristol Peter Shor, MIT

QIP, 19 Jan 2006

outline

- General rules for reversing protocols
- Coherent erasure of classical correlations
- Disentangling power of quantum operations

Everything is a resource

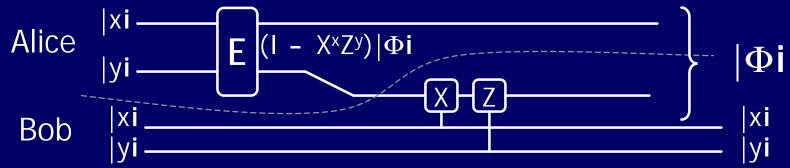


cobit [q! qq] |0i^A! |0i^A|0i^B and |1i^A! |1i^A|1i^B resource inequalities

super-dense coding: [q! q] + [qq] > 2[c! c] 2 [q! qq] In fact, [q! q] + [qq] = 2 [q! qq]

Undoing things is also a		
resource		
reversal		meaning
[q! q] ^y =	[q Ã q]	(relation between time-reversal and exchange symmetry)
[qq] ^y =	-[qq]	(disentangling power)
[d i dd] _À =	[q Ã qq] (?)	0i ^A 0i ^B ! 0i ^A and 1i ^A 1i ^B ! 1i ^A (coherent erasure??)

What good is coherent erasure? $\alpha |0i^{A} + \beta| |1i^{A}| = \alpha |0i^{A}| |0i^{B} + \beta| |1i^{A}| |1i^{B}$ (using [q! qq]) $\alpha |0i^{B} + \beta |1i^{B}$ (using [qq! q]) $[q! qq] + [qq! q] = \frac{1}{2} [q! q]$ $[qq! q] \times [q! q] - [q! qq]$ = [q! qq] - [qq]entanglement-assisted communication only = ([q! q] - [qq]) / 2



application to unitary gates

U is a bipartite unitary gate (e.g. CNOT) Known:

U > C[c! c] implies U > C[q! qq]

Time reversal means: $U^{y} > C [q\widetilde{A}qq]$ $= C [qq\widetilde{A}q] - C [qq]$

Corollary: If entanglement is free then $C_{I}^{E}(U) = C_{\tilde{A}}^{E}(U^{y})$.

The quest for asymmetric unitary gate capacities

<u>Problem:</u> If U is nonlocal, it has nonzero quantum capacities in both directions. Are they equal?

<u>Yes,</u> if U is 2£2.

<u>No</u>, in general, but for a dramatic separation we will need a gate that violates time-reversal symmetry.

the construction:

(U_m acts on $2^m \pounds 2^m$ dimensions)

$$\begin{split} & U_{m} |xi^{A}| 0i^{B} = |xi^{A}| xi^{B} & \text{for } 0 \ \mathbf{6} \ x < 2^{m} \\ & U_{m} |xi^{A}| yi^{B} = |xi^{A}| y \cdot 1i^{B} & \text{for } 0 < y \ \mathbf{6} \ x < 2^{m} \\ & U_{m} |xi^{A}| yi^{B} = |xi^{A}| yi^{B} & \text{for } 0 \ \mathbf{6} \ x < y < 2^{m} \end{split}$$

et voilà l'asymétrie!

 $\begin{aligned} U_{m} |xi^{A}| 0i^{B} &= |xi^{A}| xi^{B} & \text{for } 0 \ \mathbf{6} \ x < 2^{m} \\ U_{m} |xi^{A}| yi^{B} &= |xi^{A}| y - 1i^{B} & \text{for } 0 < y \ \mathbf{6} \ x < 2^{m} \end{aligned}$

 $U_{m}|xi^{A}|yi^{B} = |xi^{A}|yi^{B}$ for 0 6 x < y < 2^m

 $\mathbf{U}_{m}[\mathbf{X}\mathbf{I}^{n}]\mathbf{y}\mathbf{I}^{n} = [\mathbf{X}\mathbf{I}^{n}]\mathbf{y}\mathbf{I}^{n}$ 101 0 **O** X <

U_m > m[q! qq]

Upper bound by simulation: m[q! qq] + O((log m)(log m/ ε)) ([q! q] + [q \tilde{A} q]) & U_m

Similarly, $U_m^y > m[q\tilde{A}qq]$ and $m[q\tilde{A}qq] + O((\log m)(\log m/\epsilon)) ([q! q] + [q\tilde{A}q]) \& U_m^y$

Meaning: U_m ¼ m [q! qq]

and U_my ¼ m [qÃqq] (almost worthless w/o ent. assistance!)

disentanglement

clean resource inequalities:

 $\stackrel{\rm clean}{\geq}\beta$

means that α^{-n} can be asymptotically converted to β^{-n} while discarding only o(n) entanglement.

(equivalently: while generating a sublinear amount of local entropy.)

Example: [q! q] > [qq] and [q! q] > -[qq]Example: $U_m^{clean} m[qq]$, but can only destroy O(log²m) [qq] $U_m^{clean} -m[qq]$, but can only create O(log²m) [qq]

You can't just throw it away

Q: Why not?

A: Given unlimited EPR pairs, try creating the state $\frac{1}{\sqrt{2}} \left(|00\rangle_{AB}^{\otimes n} + |\Phi_{-}\rangle_{AB}^{\otimes n} \right)$

Hayden & Winter [quant-ph/0204092] proved that this requires ¼n bits of communication.

more relevant examples

Entanglement dilution:

 $|\psi i_{AB}$ is partially entangled. $E = S(\psi^{A})$. $|\Phi i^{-nE+o(n)}! |\psi i^{-n}|$

Even $|\Phi i^{-1}| |\psi i^{-n}$ requires $\Omega(n^{\frac{1}{2}})$ cbits (in either direction). OR a size $O(n^{\frac{1}{2}}/\epsilon)$ embezzling state [q-ph/0205100, Hayden-van Dam]

Quantum Reverse Shannon Theorem for general inputs[Bennett,
Devetak,
Harrow,
Shor,Input ρ^{-n} requires I(A;B) $_{\rho}$ [c! c] + H(N(ρ)) [qq].[Bennett,
Devetak,
Harrow,
Shor,

Winter]

Superpositions of different ρ^{-n} mean consuming superpositions of different amounts of entanglement: we need either extra cbits, embezzling, or another source of entanglement spread.

summary

- new ideas
 - coherent erasure
 - clean protocols
 - entanglement spread
- new results
 - asymmetric unitary gate capacities
 - QRST and other converses
- new directions
 - formalizing entanglement spread
 - clean protocols involving noisy resources (cbits?)

READ ALL ABOUT IT! quant-ph/0511219