Group representations and quantum information theory

Aram Harrow (Bristol)
NII, Tokyo 5 Feb, 2007

outline

- Types in classical information theory
- A quantum analogue: Schur duality
- Joint types
- Applications

The method of types

Given a string $\mathrm{x}^{\mathrm{n}}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in[\mathrm{d}]^{\mathrm{n}}$
define the type of x^{n} to be the letter frequency distribution:
$\mathrm{t}=\mathrm{T}\left(\mathrm{x}^{\mathrm{n}}\right)=\left(\mathrm{t} \mid, \ldots, \mathrm{t}_{\mathrm{d}}\right)$
where $\mathrm{t}_{\mathrm{c}}:=\left|\left\{\mathrm{j}: \mathrm{x}_{\mathrm{j}}=\mathrm{c}\right\}\right|$.

For a type t , the type class of t is the set of strings with type t : $\mathcal{T}_{\mathrm{t}}=\left\{\mathrm{x}^{\mathrm{n}}: \mathrm{T}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{t}\right\}$

Example:

T(babcba) $=(2, I, 3)$
$\mathcal{T}_{(2,3,1)}=\{a a b b b c, a b a b b c, a b c a a b, c b b a a a, \ldots\}$

Properties of types

I. Size of type classes is given by entropic expression

$$
\begin{aligned}
& \left|\mathcal{T}_{t}\right|=\binom{n}{t}=\frac{n!}{t_{1}!\ldots t_{d}!} \\
& (n+1)^{-d} \exp (n H(\bar{t})) \leq\left|\mathcal{T}_{t}\right| \leq \exp (n H(\bar{t}))
\end{aligned}
$$

2. Number of types is polynomial

$$
\begin{aligned}
& \binom{n+d-1}{d-1} \leq(n+1)^{d} \sim \operatorname{poly}(n) \quad D(\bar{t} \| p):=\sum_{i=1}^{d} \bar{t}_{i} \log \frac{\bar{t}_{i}}{p_{i}} \\
& \text { i.d. sources }
\end{aligned}
$$

3. i.i.d. sources
$p^{\otimes n}\left(x^{n}\right):=p\left(x_{1}\right) \cdots p\left(x_{n}\right)=p(1)^{t_{1}} \cdots p(d)^{t_{d}}$

$$
=\exp \left(\sum_{i=1}^{d} t_{i} \log p_{i}\right)=\exp (-n[(H(\bar{t})+D(\bar{t} \| p)])
$$

types and i.i.d. sources

Further note that:
I. $p^{\otimes n}\left(x^{n}\right)$ depends only on the type of x^{n}
(i.e. conditional on the type, x^{n} is uniformly distributed)
2. The observed type t is closely concentrated near p.

$$
p^{\otimes n}\left(\mathcal{I}_{t}\right):=\sum_{x^{n} \in \mathcal{I}_{t}} p^{\otimes n}\left(x^{n}\right) \leq \exp (-n D(\bar{t} \| p))
$$

Application: randomness concentration
Given x^{n} distributed according to $\mathrm{p}^{\otimes n}$,
we would like to extract a uniformly distributed random variable.
Algorithm:
Condition on the type of x^{n}.
This yields $\approx n H(p)$ random bits w.h.p.

Applications of types

Data compression:
Given a string x^{n} drawn from an i.i.d. source $p^{\otimes n}$, represent it using $\approx n H(p)$ bits.
Algorithm:
I. Transmit the type t using $O(\log n)$ bits.
2. Transmit the index of the string within \mathcal{T}_{t} using

$$
\log \left|\mathcal{I}_{t}\right| \leq n H(\bar{t}) \approx n H(p) \text { bits. }
$$

Alternate perspective on types

Divide a type $t(e . g . t=(2,5,2,3))$ into
a list of frequences λ (e.g. $\lambda=(5,3,2,2))$ and a list of corresponding letters q (e.g. q $=(\mathrm{b}, \mathrm{d}, \mathrm{a}, \mathrm{c})$).

Note that:
Note that:
I. Each x^{n} can be uniquely written as $(\lambda, \mathrm{q}, \mathrm{p})$, where $1 \leq p \leq\binom{ n}{\lambda}$
2. The range of λ and q is $\leq \operatorname{poly}(\mathrm{n})$.
3. S_{d} acts on q, while S_{n} acts on p. Both leave λ unchanged.

symmetries of $\left(\mathbb{C}^{d}\right)^{\otimes n}$

$$
\begin{aligned}
& \mathrm{U} \in \mathcal{U}_{\mathrm{d}} \rightarrow \mathrm{U} \otimes \mathrm{U} \otimes \mathrm{U} \otimes \mathrm{U} \\
& \left(\mathbb{C}^{\mathrm{d}}\right)^{\otimes 4}=\mathbb{C}^{\mathbb{C}^{\mathrm{d}} \otimes \mathbb{C}^{\mathrm{d}} \otimes \mathbb{C}^{\mathrm{d}} \otimes \mathbb{C}^{\mathrm{d}}} \\
& (1324) \in \mathcal{S}_{4} \rightarrow
\end{aligned}
$$

Schur duality

$$
\left(\mathbb{C}^{d}\right)^{\otimes n} \cong \bigoplus_{\lambda \in \operatorname{Par}(\mathrm{n}, \mathrm{~d})} Q_{\lambda}^{d} \otimes \mathcal{P}_{\lambda}
$$

The Schur Transform

R_{λ} is a U_{d}-irrep
\mathcal{R}_{λ} is a S_{n}-irrep
π

Properties of the Schur

basis

I. $|\operatorname{Par}(\mathrm{n}, \mathrm{d})| \leq(\mathrm{n}+\mathrm{I})^{\mathrm{d}} \sim \operatorname{poly}(\mathrm{n})$
2. $\operatorname{dim} \mathcal{Q}_{\lambda}^{d} \leq(n+1)^{d^{2}}$
3. $\frac{1}{\operatorname{poly}(n)} \exp (n H(\bar{\lambda})) \leq \operatorname{dim} \mathcal{P}_{\lambda} \leq \exp (n H(\bar{\lambda}))$
4. i.i.d. sources:
(a) The P_{λ} register of $\rho^{\otimes n}$ is maximally mixed.
(b) $\operatorname{tr} \Pi_{\lambda} \rho^{\otimes n} \leq \exp (-n D(\bar{\lambda} \| \operatorname{spec} \rho))$

Summary:

Most of the dimensions are in the P_{λ} register.
There the spectrum is flat for i.i.d. sources and the dimension is controlled by λ, which is tightly concentrated.

Schur duality applications

Entanglement concentration:

Given $\left|\psi_{\mathrm{AB}}\right\rangle^{\otimes n}$, Alice and Bob both perform the Schur transform, measure λ, discard Q_{λ} and are left with a maximally entangled state in
\mathcal{P}_{λ} (by Schur's Lemma) equivalent to $\log \operatorname{dim} \mathcal{P}_{\lambda} \approx \mathrm{nS}\left(\psi^{\mathrm{A}}\right)$ EPR pairs.
Hayashi and Matsumoto, Universal entanglement concentration. quant-ph/0509।40
Universal data compression:
Given $\rho^{\otimes n}$, perform the Schur transform, weakly measure λ, and we obtain \mathcal{P}_{λ} with dimension $\approx \exp (\mathrm{nS}(\rho))$. (λ and \mathcal{Q}_{λ} can be sent uncompressed.)
Hayashi and Matsumoto, quant-ph/0209I24 and references therein.

State estimation:

Given $\rho^{\otimes n}$, estimate the spectrum of ρ, or estimate ρ, or test to see whether the state is $\sigma^{\otimes \mathrm{n}} . \lambda$ is related to the spectrum, Q_{λ} to the eigenbasis, and \mathcal{P}_{λ} is maximally mixed.

Keyl, quant-ph/04I2053 and references therein.

Joint types

Classical noisy channel:

$\mathrm{t}_{\mathrm{x}}=\mathrm{T}\left(\mathrm{x}^{\mathrm{n}}\right)$ is the type of the input $\mathrm{t}_{\mathrm{y}}=\mathrm{T}\left(\mathrm{y}^{\mathrm{n}}\right)$ is the type of the output $t_{x y}=T\left(x_{\mid} y_{1}, \ldots, x_{n} y_{n}\right)$ is the joint type

Properties of joint types:

I. For each $\mathrm{N}, \mathrm{n}, \epsilon>0$, there is a set of feasible joint types, which can occur with probability $\geq \epsilon$ on some inputs. These correspond roughly to the feasible pairs ($p, N(p)$).
2. $N^{8 n}\left(y^{n} \mid x^{n}\right)$ depends only on $t_{x y}$.

Classical Reverse

Shannon Theorem

Goal:

Simulate n uses of a noisy channel N using shared randomness and an optimal ($\approx \mathrm{n} \max _{\mathrm{p}}(\mathrm{X}) \mathrm{I}(\mathrm{X} ; \mathrm{Y})$) rate of communication.

Approach:
I. On input x_{n}, Alice first simulates $N^{\otimes n}$ to obtain a joint type $t_{x y}$.
2. She sends $t_{x y}$ to Bob using $O(\log n)$ bits.
3. Conditioned on t_{xy}, the action of $\mathrm{N}^{\otimes \mathrm{n}}$ is easy to describe and to simulate, using the appropriate amount of communication.

Bennett et al., quant-ph/0 I 06052. Winter, quant-ph/0208I3I.

quantum channels

Church of the Larger Hilbert space:
Purify the input and output of a channel to obtain a tripartite pure state.

Two definitions of feasible joint types:
I. (Spec ψ^{A}, Spec ψ^{B}, Spec $\left.\psi^{E}\right)$ if $|\psi\rangle^{A B E}$ is the output of one use of \mathcal{N}.
2. $\left(\lambda_{A}, \lambda_{B}, \lambda_{E}\right)$ such that $\langle\psi| \Pi_{\lambda_{A}} \otimes \Pi_{\lambda_{B}} \otimes \Pi_{\lambda_{E}}|\psi\rangle \geq \epsilon$ for some $|\psi\rangle^{A B E}$ resulting from n uses of \mathcal{N}.

quantum joint types

Two definitions of feasible joint types:
I. (Spec ψ^{A}, Spec ψ^{B}, Spec $\left.\psi^{E}\right)$ if $|\psi\rangle^{A B E}$ is the output of one use of \mathcal{N}. 2. $\left(\lambda_{A}, \lambda_{B}, \lambda_{E}\right)$ such that $\langle\psi| \Pi_{\lambda_{A}} \otimes \Pi_{\lambda_{B}} \otimes \Pi_{\lambda_{E}}|\psi\rangle \geq \epsilon$ for some $\left.|\psi\rangle\right\rangle^{A B E}$ resulting from n uses of \mathcal{N}.

Results:
I.These two definitions are approximately equivalent.
2. There is a sense in which conditioning on a joint type makes all transition probabilities equal.

References:
H., PhD thesis, 2005; quant-ph/05 I 22255.

Christandl, H., Mitchison, "On nonzero Kronecker coefficients and their consequences for spectra." CMP 2007; quant-ph/05 I I 029.

normal form of i.i.d. channels

Tripartite S_{n}-invariant pure states

Obtained e.g. by purifying $\left(\rho^{A B}\right)^{\otimes n}$.

$$
\begin{aligned}
&|\psi\rangle^{A B E}= \sum_{\substack{\lambda_{A} \in \operatorname{Par}\left(n, d_{A}\right) \\
\lambda_{B} \in \operatorname{Par}\left(n, d_{B}\right) \\
\lambda_{E} \in \operatorname{Par}\left(n, d_{B}\right)}} \sum_{\substack{q_{B} \in \mathcal{Q}_{\lambda_{A}}^{d_{A} \in \mathcal{Q}_{\lambda_{B}}^{d_{B}}}}} \sum_{\mu \in\left(\mathcal{P}_{\lambda_{A}} \otimes \mathcal{P}_{\lambda_{B}} \otimes \mathcal{P}_{\lambda_{E}}\right)^{s_{n}}} \\
& q_{E} \in \mathcal{Q}_{\lambda_{E}}^{d_{E}} \\
& C_{\lambda_{A}, \lambda_{B}, \lambda_{E} ; \mu}^{q_{A}, q_{B}, q_{E}}\left|\lambda_{A}, q_{A}\right\rangle^{A}\left|\lambda_{B}, q_{B}\right\rangle^{B}\left|\lambda_{E}, q_{E}\right\rangle^{E}|\mu\rangle^{A B E}
\end{aligned}
$$

Interpretation:
This is almost completely general!
Except that $\mu^{\mathrm{A}}, \mu^{\mathrm{B}}$ and μ^{E} are each maximally mixed (by Schur's Lemma).

Application: additivity of minimum output entropy

$S_{\min }(\mathcal{N}):=\min _{\psi} S(\mathcal{N}(\Psi))$
Additivity question: Does $S_{\min }\left(\mathcal{N}_{1} \otimes \mathcal{N}_{2}\right)=S_{\min }\left(\mathcal{N}_{1}\right)+S_{\min }\left(\mathcal{N}_{2}\right)$?
Equivalently: Does $\lim _{n \rightarrow \infty} S_{\min }\left(\mathcal{N}^{\otimes n}\right) / n=S_{\min }(\mathcal{N})$?
Our result: $\min |\psi\rangle \in \operatorname{Sym}_{\mathbb{C}}{ }^{d} \geq \mathrm{n} S_{\min }(\mathcal{N})-o(n)$
where $\operatorname{Sym}^{n} \mathbb{C}^{d}=\left\{|\psi\rangle: \Pi|\psi\rangle=|\psi\rangle \forall \Pi \in S_{n}\right\}$
Proof: Most of the entropy is in the $|\mu\rangle$ register. If λ_{A} is trivial then $P_{\lambda_{B}}$ and $P_{\lambda_{E}}$ are maximally entangled, so Bob's entropy $\approx \log \operatorname{dim} P_{\lambda_{B}} \approx n H\left(\lambda_{B}\right)$.
Finally, λ_{B} is ϵ-feasible $\Leftrightarrow \exists$ a nearby feasible single-copy state.
joint work with P. Hayden and A. Winter.

Application: Quantum Reverse Shannon Theorem

Goal: Simulate $\mathcal{N}^{\otimes n}$ using an optimal rate of communication.
Establish qualitative equivalence of all channels.
Idea: Previously constructions were known for i.i.d. input, or for inputs restricted to a single value of λ_{A} and q_{A}.
To generalize, Alice splits her input according to λ_{A} and q_{A} and simulates $\mathrm{V}^{\mathrm{n}}{ }_{\mathcal{N}}$ locally to generate $\lambda_{\mathrm{B}}, \mathrm{q}_{\mathrm{B}}, \lambda_{\mathrm{E}}, \mathrm{q}_{\mathrm{E}}$ and μ.

- μ is simple, and easily compressible.
- λ_{B}, q_{B} are small, and can be sent uncompressed.

Subtlety: Different values of λ_{B} require different amounts of entanglement.
joint work with C. Bennett, I. Devetak, P. Shor and A.Winter.

Entropy-increasing quantum channels

 Result: If $S(\mathcal{N}(\rho))>S(\rho)$ for all ρ then $\mathcal{N}^{\theta_{\mathrm{n}}} \approx \sum v \mathrm{Pv}_{\mathrm{v}} \mathrm{V}_{\mathrm{v}}$, where $\{\mathrm{pv}\}$ is a probability distribution and $\left\{\mathrm{V}_{\mathrm{v}}\right\}$ are isometries.Related to quantum Birkhoff conjecture: If \mathcal{N} is unital (i.e. $\mathcal{N}(1 / d)=1 / d$, or equivalently, $d_{A}=d_{B}$ and $S(\mathcal{N}(\rho)) \geq S(\rho)$ for all $\left.\rho\right)$ then $\mathcal{N}^{\otimes_{n}} \approx \sum v p_{v} V_{v}$, where $\left\{p_{v}\right\}$ is a probability distribution and $\left\{\mathrm{V}_{v}\right\}$ are unitaries.

Noisy state analogue: For any state $\rho_{A B}$, one can decompose $\rho_{A B}{ }^{\otimes n}$ as a mixture of pure states with average entanglement $\approx \mathrm{n} \min \left(\mathrm{S}\left(\rho_{\mathrm{A}}\right), \mathrm{S}\left(\rho_{\mathrm{B}}\right)\right)$.

Proof idea for states: If $\operatorname{dim} P_{\lambda_{B}} \gg \operatorname{dim} P_{\lambda_{A}}$, then a random measurement on $P_{\lambda_{c}}$ will leave $P_{\lambda_{A}}$ nearly maximally mixed w.h.p.

Proof idea for channels: Consider the Jamiolkowski state obtained from inputting $\sum \lambda_{A}\left|\lambda_{A}\right\rangle\left\langle\lambda_{A}\right| /\left|\operatorname{Par}\left(\mathrm{n}, \mathrm{d}_{\mathrm{A}}\right)\right| \otimes I / \operatorname{dim} \mathrm{Q}_{\lambda_{A}} \otimes I / \operatorname{dim} \mathrm{P}_{\lambda_{A}}$ to $\mathcal{N}^{\otimes_{\mathrm{n}}}$.

Future research directions

I.The quantum Birkhoff conjecture.
2. Applying the Schur basis to core questions of quantum information theory: additivity, strong converse of HSW theorem, coding.
3.Analyzing product states, e.g. in HSW coding.
4. Performing more protocols efficiently.

References

H., Ph.D thesis, 2005. quant-ph/05 I 2255

Christandl, Ph.D thesis, 2006. quant-ph/0604183
Christandl, H., Mitchison, "On nonzero Kronecker..." q-ph/05 I I 029
Mitchison, "A dual de Finetti theorem." q-ph/070I064
Hayashi and Matsumoto. q-ph/020200 I, q-ph/0209030, q-ph/0209l24, qph/0509l40
Hayashi. q-ph/9704040, q-ph/0107004, q-ph/0202002, q-ph/0208020.
Keyl and Werner. q-ph/0I02027. Keyl. q-ph/04I2053

