Group representations and quantum information theory

Aram Harrow (Bristol) NII,Tokyo 5 Feb, 2007

outline

- Types in classical information theory
- A quantum analogue: Schur duality
- Joint types
- Applications

The method of types

Given a string $x^n = (x_1,...,x_n) \in [d]^n$ [d]:={1, ..., d}

define the type of x^n to be the letter frequency distribution: $t = T(x^n) = (t_1, ..., t_d)$ where $t_c := | \{ j : x_j = c \} |$.

For a type t, the type class of t is the set of strings with type t: $\mathcal{T}_t = \{x^n : T(x^n) = t\}$

-Total of <u>6</u>!

strings

Example: T(babcba) = (2, 1, 3) $T_{(2,3,1)} = \{aabbbc, ababbc, abcaab, cbbaaa, ...\}$

Properties of types

I. Size of type classes is given by entropic expression

$$|\mathcal{T}_t| = \binom{n}{t} = \frac{n!}{t_1! \dots t_d!}$$

$$\overline{t} := t/n$$

 $(n+1)^{-d}\exp(nH(\bar{t})) \le |\mathcal{T}_t| \le \exp(nH(\bar{t}))$

2. Number of types is polynomial

$$\binom{n+d-1}{d-1} \le (n+1)^d \sim \operatorname{poly}(n)$$

 $D(\bar{t}||p) := \sum_{i=1}^{d} \bar{t}_i \log \frac{\bar{t}_i}{p_i}$

3. i.i.d. sources

$$p^{\otimes n}(x^{n}) := p(x_{1}) \cdots p(x_{n}) = p(1)^{t_{1}} \cdots p(d)^{t_{d}}$$
$$= \exp\left(\sum_{i=1}^{d} t_{i} \log p_{i}\right) = \exp\left(-n\left[(H(\bar{t}) + D(\bar{t}||p)]\right)\right)$$

types and i.i.d. sources

Further note that:

I. $p^{\otimes n}(x^n)$ depends only on the type of x^n

(i.e. conditional on the type, x^n is uniformly distributed)

2. The observed type t is closely concentrated near p.

$$p^{\otimes n}(\mathcal{T}_t) := \sum_{x^n \in \mathcal{T}_t} p^{\otimes n}(x^n) \le \exp\left(-nD(\bar{t}||p)\right)$$

Application: randomness concentration Given x^n distributed according to $p^{\otimes n}$,

we would like to extract a uniformly distributed random variable.

Algorithm: Condition on the type of x^n .

This yields \approx nH(p) random bits w.h.p.

Applications of types

Data compression:

Given a string x^n drawn from an i.i.d. source $p^{\otimes n}$,

represent it using $\approx nH(p)$ bits.

Algorithm: I.Transmit the type t using O(log n) bits. 2.Transmit the index of the string within \mathcal{T}_t using $\log |\mathcal{T}_t| \le nH(\bar{t}) \approx nH(p)$ bits.

Alternate perspective on types

Divide a type t (e.g. t = (2,5,2,3)) into a list of frequences λ (e.g. $\lambda = (5,3,2,2)$) and a list of corresponding letters q (e.g. q = (b, d, a, c)).

Note that: I. Each xⁿ can be uniquely written as (λ , q, p), where $1 \le p \le \binom{n}{\lambda}$

2. The range of λ and q is $\leq poly(n)$.

3. S_d acts on q, while S_n acts on p. Both leave λ unchanged.

symmetries of (ℂd)⊗n $\bigcup \in \mathcal{U}_{\mathsf{d}} \to \bigcup \otimes \bigcup \otimes \bigcup \otimes \bigcup$ $(\mathbb{C}^{d})^{\otimes 4} = \mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d}$ $(1324)\in\mathcal{S}_{4} \rightarrow$

Schur duality

The Schur Transform $|i_{|}\rangle$ $|\lambda angle$ $|i_2\rangle$ $|Q\rangle$ $\mathsf{U}_{\mathsf{Sch}}$ $\mathbf{u} \in \mathcal{U}_d$ $|\mathsf{P}\rangle$ $\pi \in \mathcal{S}_n$ $|\mathbf{i}_{n}\rangle$ \mathbf{R}_{λ} is a U_d-irrep \mathcal{R}_{λ} is a S_n-irrep U U $\mathbf{R}_{\lambda}(\mathbf{u})$ π U_Sch U_Sch • • $\mathcal{R}_{\lambda}(\pi)$ U

Properties of the Schur basis

- $||Par(n,d)| \le (n+1)^d \sim poly(n)$
- 2. dim $\mathcal{Q}^d_\lambda \leq (n+1)^{d^2}$

3. $\frac{1}{\operatorname{poly}(n)} \exp(nH(\overline{\lambda})) \le \dim \mathcal{P}_{\lambda} \le \exp(nH(\overline{\lambda}))$

4. i.i.d. sources:
(a) The P_λ register of ρ^{⊗n} is maximally mixed.
(b) tr Π_λρ^{⊗n} ≤ exp(-nD(λ
||spec ρ))

Summary:

Most of the dimensions are in the P_{λ} register. There the spectrum is flat for i.i.d. sources and the dimension is controlled by λ , which is tightly concentrated.

Schur duality applications

Entanglement concentration:

Given $|\psi_{AB}\rangle^{\otimes n}$, Alice and Bob both perform the Schur transform, measure λ , discard Q_{λ} and are left with a maximally entangled state in \mathcal{P}_{λ} (by Schur's Lemma) equivalent to log dim $\mathcal{P}_{\lambda} \approx nS(\psi^{A})$ EPR pairs.

Hayashi and Matsumoto, Universal entanglement concentration. quant-ph/0509140

Universal data compression: Given $\rho^{\otimes n}$, perform the Schur transform, weakly measure λ , and we obtain \mathcal{P}_{λ} with dimension $\approx \exp(nS(\rho))$. (λ and \mathcal{Q}_{λ} can be sent uncompressed.) Hayashi and Matsumoto, quant-ph/0209124 and references therein.

State estimation:

Given $\rho^{\otimes n}$, estimate the spectrum of ρ , or estimate ρ , or test to see whether the state is $\sigma^{\otimes n}$. λ is related to the spectrum, Q_{λ} to the eigenbasis, and \mathcal{P}_{λ} is maximally mixed.

Keyl, quant-ph/0412053 and references therein.

Joint types

Classical noisy channel:

$$X \longrightarrow N(y|x) \longrightarrow Y$$

 $t_x=T(x^n)$ is the type of the input $t_y=T(y^n)$ is the type of the output $t_{xy}=T(x_1y_1,...,x_ny_n)$ is the joint type

Properties of joint types:

I. For each N, n, $\epsilon > 0$, there is a set of feasible joint types, which can occur with probability $\geq \epsilon$ on some inputs. These correspond roughly to the feasible pairs (p, N(p)).

2. $N^{\otimes n}(y^n|x^n)$ depends only on t_{xy} .

Classical Reverse Shannon Theorem

Goal:

Simulate **n** uses of a noisy channel **N** using shared randomness and an optimal ($\approx n \max_{P(X)} I(X;Y)$) rate of communication.

Approach:

I. On input x_n , Alice first simulates $N^{\otimes n}$ to obtain a joint type t_{xy} .

2. She sends t_{xy} to Bob using $O(\log n)$ bits.

3. Conditioned on t_{xy} , the action of $N^{\otimes n}$ is easy to describe and to simulate, using the appropriate amount of communication.

Bennett et al., quant-ph/0106052. Winter, quant-ph/0208131.

quantum channels

Church of the Larger Hilbert space: Purify the input and output of a channel to obtain a tripartite pure state.

Two definitions of feasible joint types: I. (Spec ψ^A , Spec ψ^B , Spec ψ^E) if $|\psi\rangle^{ABE}$ is the output of one use of \mathcal{N} . 2. (λ_A , λ_B , λ_E) such that $\langle \psi | \Pi_{\lambda_A} \otimes \Pi_{\lambda_B} \otimes \Pi_{\lambda_E} | \psi \rangle \geq \varepsilon$ for some $|\psi\rangle^{ABE}$ resulting from *n* uses of \mathcal{N} .

quantum joint types

Two definitions of feasible joint types: I. (Spec ψ^A , Spec ψ^B , Spec ψ^E) if $|\psi\rangle^{ABE}$ is the output of one use of \mathcal{N} . 2. (λ_A , λ_B , λ_E) such that $\langle \psi | \Pi_{\lambda_A} \otimes \Pi_{\lambda_B} \otimes \Pi_{\lambda_E} | \psi \rangle \geq \varepsilon$ for some $|\psi\rangle^{ABE}$ resulting from *n* uses of \mathcal{N} .

Results:

I. These two definitions are approximately equivalent.

2. There is a sense in which conditioning on a joint type makes all transition probabilities equal.

References: H., PhD thesis, 2005; quant-ph/05122255. Christandl, H., Mitchison, "On nonzero Kronecker coefficients and their consequences for spectra." CMP 2007; quant-ph/0511029.

normal form of i.i.d. channels B A E $|\lambda_{\mathsf{B}} angle$ $|\lambda_{\mathsf{A}} angle$ $|\lambda_{\mathsf{E}} angle$ $|\mathbf{q}_{\mathsf{B}}\rangle$ \mathcal{N} $|q_{E}\rangle$ $|q_A\rangle$ \mathcal{S}_{n} $|\mu\rangle$ $|\mathbf{p}_{\mathsf{B}}\rangle$ inverse $|\mathbf{p}_{\mathsf{A}}\rangle$ $|\mathbf{p}_{\mathsf{E}}\rangle$ $|\mu\rangle \in (\mathcal{P}_{\lambda_A} \otimes \mathcal{P}_{\lambda_B} \otimes \mathcal{P}_{\lambda_E})^{\mathcal{S}_n}$ CG

Tripartite S_n-invariant pure states

Obtained e.g. by purifying $(\rho^{AB})^{\otimes n}$.

 $\overline{\lambda}_{A}, \overline{\lambda}_{B}, \overline{\lambda}_{E}; \mu$

$$\begin{split} |\psi\rangle^{ABE} &= \sum_{\substack{\lambda_A \in \operatorname{Par}(n, d_A) \\ \lambda_B \in \operatorname{Par}(n, d_B) \\ \lambda_E \in \operatorname{Par}(n, d_B) \\ \lambda_E \in \operatorname{Par}(n, d_B) \\ q_B \in \mathcal{Q}_{\lambda_B}^{d_B}} } \sum_{\substack{\mu \in (\mathcal{P}_{\lambda_A} \otimes \mathcal{P}_{\lambda_B} \otimes \mathcal{P}_{\lambda_E})^{S_n} \\ q_E \in \mathcal{Q}_{\lambda_E}^{d_E}} \\ C_{\lambda}^{q_A, q_B, q_E} & |\lambda_A, q_A\rangle^A |\lambda_B, q_B\rangle^B |\lambda_E, q_E\rangle^E |\mu\rangle^{ABD} \end{split}$$

Interpretation: This is almost completely general! Except that μ^{A} , μ^{B} and μ^{E} are each maximally mixed (by Schur's Lemma). Application: additivity of minimum output entropy $S_{min}(\mathcal{N}) := \min_{\Psi} S(\mathcal{N}(\Psi))$

Additivity question: Does $S_{\min}(\mathcal{N}_1 \otimes \mathcal{N}_2) = S_{\min}(\mathcal{N}_1) + S_{\min}(\mathcal{N}_2)$?

Equivalently: Does $\lim_{n\to\infty} S_{\min}(N^{\otimes n}) / n = S_{\min}(N)$?

Our result: $\min_{|\Psi\rangle \in Sym} n_{\mathbb{C}} d \ge n S_{\min}(\mathcal{N}) - o(n)$

where Symⁿ $\mathbb{C}^{d} = \{ |\psi\rangle : \pi |\psi\rangle = |\psi\rangle \ \forall \pi \in S_{n} \}$

Proof: Most of the entropy is in the $|\mu\rangle$ register. If λ_A is trivial then $P_{\lambda B}$ and $P_{\lambda E}$ are maximally entangled, so Bob's entropy $\approx \log \dim P_{\lambda B} \approx nH(\lambda_B)$. Finally, λ_B is ϵ -feasible $\Leftrightarrow \exists$ a nearby feasible single-copy state.

joint work with P. Hayden and A. Winter.

Application: Quantum Reverse Shannon Theorem

Goal: Simulate $N^{\otimes n}$ using an optimal rate of communication.

Establish qualitative equivalence of all channels.

Idea: Previously constructions were known for i.i.d. input, or for inputs restricted to a single value of λ_A and q_A . To generalize, Alice splits her input according to λ_A and q_A and simulates $V^n_{\mathcal{N}}$ locally to generate λ_B , q_B , λ_E , q_E and μ .

- μ is simple, and easily compressible.
- λ_B , q_B are small, and can be sent uncompressed.

Subtlety: Different values of λ_B require different amounts of entanglement.

joint work with C. Bennett, I. Devetak, P. Shor and A. Winter.

Entropy-increasing quantum channels

Result: If $S(\mathcal{N}(\rho)) > S(\rho)$ for all ρ then $\mathcal{N}^{\otimes n} \approx \sum_{\nu} p_{\nu} V_{\nu}$, where $\{p_{\nu}\}$ is

a probability distribution and $\{V_{\nu}\}$ are isometries.

Related to quantum Birkhoff conjecture: If \mathcal{N} is unital (i.e. $\mathcal{N}(I/d)=I/d$, or equivalently, $d_A=d_B$ and $S(\mathcal{N}(\rho))\geq S(\rho)$ for all ρ) then $\mathcal{N}^{\otimes n} \approx \sum_{\nu} p_{\nu} V_{\nu}$,

where $\{p_{\nu}\}$ is a probability distribution and $\{V_{\nu}\}$ are unitaries.

Noisy state analogue: For any state ρ_{AB} , one can decompose $\rho_{AB}^{\otimes n}$ as a

mixture of pure states with average entanglement \approx n min(S(ρ_A), S(ρ_B)).

Proof idea for states: If dim $P_{\lambda B} \gg \text{dim } P_{\lambda A}$, then a random measurement on $P_{\lambda C}$ will leave $P_{\lambda A}$ nearly maximally mixed w.h.p.

Proof idea for channels: Consider the Jamiolkowski state obtained from inputting $\sum_{\lambda_A} |\lambda_A\rangle \langle \lambda_A| / |Par(n,d_A)| \otimes I/\dim Q_{\lambda_A} \otimes I/\dim P_{\lambda_A}$ to $\mathcal{N}^{\otimes n}$.

[Smolin-Verstraete-Winter, quant-ph/0505038]

joint work with A. Childs

Future research directions

I.The quantum Birkhoff conjecture.

2. Applying the Schur basis to core questions of quantum information theory: additivity, strong converse of HSW theorem, coding.

3. Analyzing product states, e.g. in HSW coding.

4. Performing more protocols efficiently.

References

H., Ph.D thesis, 2005. quant-ph/0512255 Christandl, Ph.D thesis, 2006. quant-ph/0604183 Christandl, H., Mitchison, "On nonzero Kronecker..." q-ph/0511029 Mitchison, "A dual de Finetti theorem." q-ph/0701064 Hayashi and Matsumoto. q-ph/0202001, q-ph/0209030, q-ph/0209124, qph/0509140 Hayashi. q-ph/9704040, q-ph/0107004, q-ph/0202002, q-ph/0208020. Keyl and Werner. q-ph/0102027. Keyl. q-ph/0412053