Quantum algorithms for testing probability distributions

Sergey Bravyi¹ Aram Harrow² Avinatan Hassidim³

¹IBM

²University of Bristol

³MIT

STACS 4 March. 2010

Aram Harrow Distribution testing

Slide 1/1

The problem: testing probability distributions

- ▶ We are given samples of [N] drawn according to p.
- The goal is to determine some (often symmetric) property of *p*. For example:
 - Entropy: $H(p) = \sum_{i=1}^{N} p_i \log \frac{1}{p_i}$.
 - Distance from uniform distribution:

$$\frac{1}{2}\|p - u\| = \frac{1}{2}\sum_{i=1}^{N} \left|p_i - \frac{1}{N}\right|$$

- Alternatively, we can draw samples according to p or q.
 - Statistical distance: Given thresholds 0 ≤ α < β ≤ 1, determine whether ¹/₂ ||p − q||₁ ≤ α or ¹/₂ ||p − q||₁ ≥ β.
 - Special cases include when α = 0 (determining whether p = q) and when β = 1 (determining whether p and q have orthogonal support.)

Motivation

This is a basic example of property testing.

It is a primitive in other tasks, such as testing whether a graph is bipartite.

Estimating trace distance is a complete problem for SZK. Quantum computers can speedup the naive algorithm for solving problems in NP. Can they do the same for SZK?

What it means to sample on a quantum computer

There is no canonical answer. Let $p \in \mathbb{R}^N$ be a probability distribution. Here are three possibilities, in order of increasing strength.

ModelCost of uniformity testingThe ability to prepare an $N \times N$ density $\Theta(N)$ matrix ρ with spec $\rho = p$ \sqrt{N} classically,The existence of an efficient classical
circuit that can sample from p. \sqrt{N} classically,
 $N^{1/3}$ quantumlyThe ability to prepare $\sum_{i=1}^{N} \sqrt{p_i} |i\rangle$.O(1)

Scenario 1 is weaker and scenario 3 is stronger.

In this talk, we will focus on scenario 2.

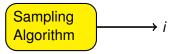
1

2

3

Defining sampling oracles

We want to treat the classical algorithm creating samples of *p* as a black box.



with probability p_i

However, this model is too restrictive.

Random seed

$$r \in \{0,1\}^m \longrightarrow$$
 Sampling
Algorithm $i = f(r)$ where $p_i = \frac{|f^{-1}(i)|}{2^m}$

Our quantum algorithm will make use of oracle access to f.

Aram Ha	rrow
Distribution	testing

Classical results

The symmetric case was mostly solved by [Valiant, STOC '08].

Canonical tester

- 1. Draw *M* samples according to *p*.
- 2. Suppose that item *i* appears s(i) times.
- 3. If $s(i) \ge \theta$, then estimate $\hat{p}_i = s(i)/M$. Otherwise, consider the range $\hat{p}_i \in [0, \frac{\theta}{M}]$.
- 4. Hope that \hat{p} gives an unambiguous answer.

Applications

- Estimating trace distance in general requires $N^{1-o(1)}$ samples.
- Determining whether p = q or ½ ||p − q||₁ ≥ ε requires Θ(N^{2/3}) samples.

Previous quantum results

- The first example of quantum advantage is Grover's 1996 search algorithm. (Proved optimal by BBBV in 1994!)
- For any subset S ⊂ [N], let π = ∑_{i∈S} p_i. Grover's algorithm can determine whether π = 0 or π ≥ θ in time O(1/√θ).
- This can be used distinguish 1-1 functions from 2-1 functions in time O(N^{1/3}). [Brassard, Høyer, Tapp; quant-ph/9705002]
- ► More generally, we can output $\pi \pm O(\epsilon)$ in time $O(\sqrt{\pi}/\epsilon)$. [Brassard, Høyer, Mosca, Tapp; quant-ph/0005055] Compare with $O(\pi/\epsilon^2)$ for classical sampling.
- [Aaronson and Ambainis; arXiv:0911.0996] prove that for symmetric problems, any *Q*-query quantum algorithm can be turned into an O(Q⁹)-query randomized algorithm.

Our results

Given two distributions p, q and constants $0 < \epsilon \le \theta \le 1$ we consider three problems.

Goal	to distinguish	
Uniformity testing	p = u	$\frac{1}{2}\ \boldsymbol{p}-\boldsymbol{u}\ _1 \geq \epsilon$
Statistical distance	$\frac{1}{2}\ \boldsymbol{p}-\boldsymbol{q}\ _{1} \leq \theta - \epsilon$	
Orthogonality	$\frac{1}{2}\ \boldsymbol{p}-\boldsymbol{q}\ _{1} \leq 1-\epsilon$	$\frac{1}{2} \ p - q \ _1 = 1$

(*u* denotes the uniform distribution on [*N*].)

Results:

Goal	Classical	Quantum
Uniformity testing	$\Theta(N^{1/2})$	$\Theta(N^{1/3})$
Statistical distance	$N^{1-o(1)}$	$O(N^{1/2})$
Orthogonality	$\Theta(N^{1/2})$	$\Theta(N^{1/3})$

(Uniformity lower bound from [Chakraborty et. al, unpublished].)

Distribution testing protocols

Algorithm for statistical distance

Consider the r.v. *X* which equals $\frac{|p_i-q_i|}{p_i+q_i}$ with probability $\frac{1}{2}(p_i+q_i)$.

$$\blacktriangleright \mathbb{E}(X) = \frac{1}{2} \|p - q\|_1$$

- $Var(X) \leq \mathbb{E}(X^2) \leq 1$
- ► Estimating X to constant multiplicative accuracy requires $O(\sqrt{N/\delta})$ quantum queries when $\max(p_i, q_i) \ge \delta/2N$. This happens with probability $\ge 1 - \delta$.
- Therefore $O(\sqrt{N})$ queries suffice.

Algorithm for fidelity: $\sum_{i=1}^{N} \sqrt{p_i q_i}$

Now let X equal $\sqrt{p_i/q_i}$ with probability q_i .

- $\mathbb{E}(X) = \sum_{i=1}^{N} \sqrt{p_i q_i}$ $Var(X) \le \mathbb{E}(X^2) = \sum_{i=1}^{N} p_i = 1$
- Again $O(\sqrt{N})$ queries suffice.

Distribution testing protocols

Algorithm for uniformity testing

- ► Take *M* ~ *N*^{1/3}.
- Sample $S = \{i_1, \ldots, i_M\}$ according to p.
- If there is a collision, then output "not uniform."

• Let
$$p_S = p_{i_1} + \ldots + p_{i_M}$$
.

► Estimate p_S to constant accuracy and output "uniform" iff p_S ≈ M/N.

Algorithm for orthogonality testing

- Take $M \sim N^{1/3}$.
- Sample $S = (i_1, \ldots, i_M)$ according to p, ignoring duplicates.
- Estimate $q_S = q_{i_1} + \ldots + q_{i_M}$ and output "orthogonal" iff the estimate is 0.

Discussion

Unlike the classical "canonical tester," there are many different quantum approaches.

It is unknown whether there is a general framework that encompasses all optimal quantum algorithms for testing symmetric properties of distributions.

The only general purpose lower bound is the Aaronson-Ambainis result. It is probably not tight, and does not suggest a canonical algorithm.

One other subtlety: what if we have a quantum algorithm that can generate samples according to *p*? Now there is no seed, but the subroutine to estimate probabilities still works. Is this ever a weaker primitive?

