Solving linear systems of equations on a quantum computer
 arXiv:0811.3171
 PRL 15:150502 (2009)

Aram Harrow ${ }^{1} \quad$ Avinatan Hassidim ${ }^{2}$ Seth Lloyd ${ }^{2}$

${ }^{1}$ University of Bristol

$$
{ }^{2} \mathrm{MIT}
$$

Rutgers
April 9, 2010

Outline

- The problem.
- Classical solutions.
- Our quantum solution.
- How it works.
- BQP-completeness / (near-)optimality
- Related work / extensions / applications.

Goal: solving linear systems of equations

- We are given A, a Hermitian $N \times N$ matrix.
- $\vec{b} \in \mathbb{C}^{N}$ is also given as input.
- We want to (approximately) find $\vec{x} \in \mathbb{C}^{N}$ such that $A \vec{x}=\vec{b}$.
- If A is not Hermitian or square, we can use $\left(\begin{array}{cc}0 & A \\ A^{\dagger} & 0\end{array}\right)$. Why? Because

$$
\left(\begin{array}{cc}
0 & A \\
A^{\dagger} & 0
\end{array}\right)\binom{0}{\vec{x}}=\binom{\vec{b}}{0}
$$

- Some weaker goals are to estimate $\vec{x}^{\dagger} M \vec{x}$ (for some matrix M) or sample from the probability distribution $\operatorname{Pr}[i] \propto\left|x_{i}\right|^{2}$.

Application: linear regression

Goal: find the best fit line, low-degree polynomial, etc.

Technically we choose \vec{x} to minimise $\|A \vec{x}-\vec{b}\|^{2}$.

Application: partial differential equations

Approximate a continuous function with a finite element model.

$$
\frac{\partial^{2}}{\partial t^{2}} \rightarrow\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

A is a discretised PDE, \vec{b} specifies boundary conditions. \vec{x} gives solution to boundary-value problem.

Classical algorithms

- The LU decomposition finds \vec{x} in time $O\left(N^{2.376}\right.$ poly $\left.(\log (\kappa / \epsilon))\right)$.
- Here " 2.376 " is the matrix-multiplication exponent. (By contrast, Gaussian elimination takes time $O\left(N^{3}\right)$.)
- ϵ is a bound on error in \vec{x}.
- κ is the condition number.

$$
\kappa=\|A\| \cdot\left\|A^{-1}\right\|=\frac{\sigma_{1}(A)}{\sigma_{N}(A)}
$$

Here $\sigma_{i}(A)$ is the $i^{\text {th }}$ singular value and $\|\boldsymbol{A}\|=\sigma_{1}(\boldsymbol{A})$. κ measures how hard A is to invert, or equivalently, how sensitively A^{-1} depends on changes in A.

- Iterative methods (e.g. conjugate gradient) require $O(\sqrt{\kappa} \log (1 / \epsilon))$ matrix-vector multiplications.
- If A is s-sparse (i.e. has $\leq s$ nonzero entries per row) then the total time is $O(N s \sqrt{\kappa} \log (1 / \epsilon))$.
- |support $(\vec{b}) \mid \cdot(s / \epsilon)^{O(\sqrt{\kappa})} \cdot \operatorname{poly}(\log (N))$ is also possible.

Quantum computing review

	Classical		
basic unit of information	bit: $b \in\{0,1\}$	$\begin{aligned} & \text { distribution } \\ & p \in \mathbb{R}^{2} \\ & p_{0}+p_{1}=1 \end{aligned}$	qubit $\|\psi\rangle \in \mathbb{C}^{2}$ $\left\|\psi_{0}\right\|^{2}+\left\|\psi_{1}\right\|^{2}=1$
n bits	2^{n} states	2^{n} dimensions	2^{n} dimensions
basic unit of computation	$\begin{aligned} & \text { NAND, XOR, } \\ & \text { etc. } \end{aligned}$	stochastic matrices	unitary matrices
poly-time	P	BPP	BQP
measurement	no problem	Bayes' rule	collapses state

Our results

- Quantum Algorithm. Suppose that
- $|b\rangle=\sum_{i=1}^{N} b_{i}|i\rangle$ is a unit vector that can be prepared in time T_{B};
- A is s-sparse, efficiently row-computable and $\kappa^{-1} I \leq|A| \leq I$
- $\left|x^{\prime}\right\rangle=A^{-1}|b\rangle$ and $|x\rangle=\frac{\left|x^{\prime}\right\rangle}{\|\left|x^{\prime}\right\rangle \|}$.

Then our (quantum) algorithm produces $|x\rangle$ and $\left\langle x^{\prime} \mid x^{\prime}\right\rangle$, both up to error ϵ, in time

$$
\tilde{O}\left(\kappa T_{B}+\log (N) s^{4} \kappa^{2} / \epsilon\right)
$$

Reminder: classical algorithms output the entire vector \vec{x} in time $\tilde{O}\left(\min \left(N^{2.376}, N s \sqrt{\kappa},(s / \epsilon)^{O(\sqrt{\kappa})}\right)\right)$. This is exponentially slower when $s=O(1)$ and $\kappa=\operatorname{poly} \log (N)$.

- Optimality. Given plausible complexity-theoretic assumptions, these run-times (both quantum and classical) cannot be improved by much. Argument is based on BQP-hardness of the matrix inversion problem.

Algorithm idea: diagonal case

- Suppose A is diagonal:

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & & \\
\vdots & & \ddots & \\
0 & & & \lambda_{N}
\end{array}\right)
$$

Then our task is called filtering.

- Our desired transform is the non-unitary operation:
$|i\rangle \rightarrow \lambda_{i}^{-1}|i\rangle$.
- This can be achieved probabilistically by

1. Choosing c such that $c\left|\lambda^{-1}\right| \leq 1$.
2. Mapping $|i\rangle \rightarrow\left(\sqrt{1-c^{2}\left|\lambda_{i}\right|^{-2}}|0\rangle+c \lambda_{i}^{-1}|1\rangle\right) \otimes|i\rangle$
3. Measuring the first qubit and hoping we get outcome " 1 ".

The resulting state is proportional to $A^{-1}|b\rangle$.

Algorithm idea: general case

- If we could work within the eigenbasis of A, then we could use the diagonal algorithm.
- Finding the eigenbasis of A is done with two primitives:
- Hamiltonian simulation. We can apply $e^{i A t}$ in time $\tilde{O}\left(t s^{4} \log (N)\right)$. (Uses fancy versions of $e^{i\left(A_{1}+A_{2}\right) \epsilon} \approx e^{i A_{1} \epsilon} e^{i A_{2} \epsilon}$.) ${ }^{1}$
- Phase estimation. Applying $e^{i \lambda t}$ for a carefully chosen superposition ${ }^{2}$ of times from 0 to t_{0} can be used to produce $\tilde{\lambda} \approx \lambda \pm O\left(1 / t_{0}\right)$.
- Phase estimation on $e^{i A t}$ automatically resolves $|b\rangle$ into the eigenbasis of A by (approximately) measuring λ.
- Doing this coherently can (approximately) map $|b\rangle$ to

$$
|0\rangle \otimes \sqrt{I-c^{2} A^{-2}}|b\rangle+|1\rangle \otimes c A^{-1}|b\rangle
$$

where c is chosen so that $\left\|c A^{-1}\right\| \leq 1$.

- Measure the first qubit. Upon outcome "1" we are left with $|x\rangle$.
${ }^{1}$ D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum algorithms for sparse Hamiltonians. CMP 2007, quant-ph/0508139.
${ }^{2}$ V. Buzek. R. Derka and S. Massar. Optimal quantum clocks. PRL 1999.

Analysis of the algorithm

- The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp (O(\sqrt{\log (1 / \epsilon)}))=\epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}\left((\log N) s^{4} t_{0}\right)$.
- Phase estimation produces error of $O\left(1 / t_{0}\right)$ with tail probability dying off fast enough to not bother us.
- An additive error of $1 / t_{0}$ in λ translates into an error in λ^{-1} of $\lambda^{-2} / t_{0} \leq \kappa^{2} / t_{0}$. Thus, we can take $t_{0} \sim \kappa^{2} / \epsilon$.
- We can take $C=1 / 2 \kappa$ to guarantee that $\left\|C A^{-1}\right\| \leq 1 / 2$. ($C=1 / \kappa$ should work, but the analysis is more painful.)
- Thus post-selection succeeds with probability at least $O\left(1 / \kappa^{2}\right)$ and blows up error by at most $O(\kappa)$. With enough algebra, the run-time magically stays at $O\left(\kappa^{2} / \epsilon\right)$.
- Our best lower bound for the run-time is κ.

How large is κ ?

- For many practical problems, it is N^{C}, in which case our speedup ranges from polynomial to not a speedup.
- There are many classical techniques used to reduce condition number to $N^{0(1)}$ or even poly $\log (N)$, e.g. multi-scale methods and preconditioners [D. Spielman and S.-H. Teng.
"Nearly-Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems" arXiv:cs/0607105]. However, their applicability to quantum algorithms is not obvious.
- For random Hermitian matrices, $\kappa=N^{O(1)}$. But if A is chosen independently of \vec{x}, then \vec{b} will have low overlap with the small eigenvalues, and we can find $|x\rangle$ up to error ϵ in time poly $(\log (N) / \epsilon)$.
- Finite-element models have extremely wide application. If we take lattice spacing h in d dimensions, then we have $N=h^{d}$, $s \sim d$ and $\kappa \sim d h$. For best results, fix h and let d grow.

Q-sampling $|x\rangle$ vs. computing \vec{x}

Types of solutions: roughly from strongest to weakest

1. Output $\vec{x}=\left(x_{1}, \ldots, x_{N}\right)$.
2. Produce $|x\rangle=\sum_{i=1}^{N} x_{i}|i\rangle$.

Our algorithm
3. Sample i according to $p_{i} \sim|\langle i \mid x\rangle|^{2}$.
4. Estimate $\langle x| M|x\rangle$ for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.

- They work with a sample drawn from $\vec{p}=\left(p_{1}, \ldots, p_{N}\right)$.
- If A is stochastic and sparse then $\vec{p} \mapsto A \vec{p}$ is efficient.
- If $-1 \leq m_{1}, \ldots, m_{N} \leq 1$, then $\sum_{i=1}^{N} m_{i} p_{i}$ can be estimated to error ϵ using $O\left(1 / \epsilon^{2}\right)$ samples.

Is matrix inversion easier if we only need to estimate $\vec{X}^{\dagger} M \vec{x}$?

BQP-hardness of matrix inversion

Consider a quantum circuit on n qubits that starts in the state $|0\rangle^{\otimes n}$, applies two-qubit gates U_{1}, \ldots, U_{T} and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to estimating $\langle x| M|x\rangle$ where M is diagonal, $A \vec{x}=\vec{b}, \vec{b}=|0\rangle$, A has dimension $N=O\left(T 2^{n}\right)$ and $\kappa=O(T)$.

Corollary

- A classical poly $(\log (N), \kappa)$ algorithm for estimating $\langle x| M|x\rangle$ to constant accuracy would imply BPP=BQP (i.e. randomized algorithms are as strong as quantum algorithms).
- If we allow only black-box access to A, then no quantum algorithm can run in time $\kappa^{1-\delta} \cdot \operatorname{poly} \log (N)$ or poly $(\kappa) \cdot(N / \epsilon)^{o(1)}$.

Proof of BQP-hardness

An idea that almost works

- Our quantum circuit is $U_{T} \cdots U_{1}$.
- On the space $\mathbb{C}^{T} \otimes \mathbb{C}^{2^{n}}$ define

$$
\begin{array}{lrl}
V & =\sum_{t=1}^{T}|t+1(\bmod T)\rangle\langle t| \otimes U_{t} . & \text { is unitary } \\
A & =I-e^{-\frac{1}{T}} V & \text { has } \kappa \leq 2 T
\end{array}
$$

- Expand

$$
A^{-1}=\sum_{k=0}^{\infty} e^{-\frac{k}{T}} V^{k}
$$

So that $\kappa^{-1} A^{-1}|1\rangle|\psi\rangle$ has $\Omega(1 / T)$ overlap with

$$
V^{T}|1\rangle|\psi\rangle=|1\rangle U_{T} \cdots U_{1}|\psi\rangle .
$$

But undesirable terms contribute too.

Proof of BQP-hardness

The correct version

- Define

$$
\begin{aligned}
U_{T+1} & =\ldots=U_{2 T}=l^{\otimes n} \\
U_{2 T+1} & =U_{T}^{\dagger}, \ldots, U_{3 T}=U_{1}^{\dagger}
\end{aligned}
$$

so that $U_{3 T} \ldots U_{1}=I^{\otimes n}$ and $U_{t} \ldots U_{1}=U_{T} \ldots U_{1}$ whenever $T \leq t<2 T$.

- Now define (on the space $\mathbb{C}^{3 T} \otimes \mathbb{C}^{2^{n}}$) the operators

$$
\begin{aligned}
V & =\sum_{t=1}^{3 T}|t+1(\bmod 3 T)\rangle\langle t| \otimes U_{t} \\
A & =I-e^{-\frac{1}{T}} V
\end{aligned}
$$

- This time $\kappa^{-1} A^{-1}|1\rangle|\psi\rangle$ has $\Omega(1)$ overlap with successful computations (i.e. $|t\rangle \otimes U_{T} \ldots U_{1}|\psi\rangle$ for $T \leq t<2 T$) and there is no extra error from wrap-around.

Related work

- [L. Sheridan, D. Maslov and M. Mosca. Approximating Fractional Time Quantum Evolution. 0810.3843] show how access to U can be used to simulate U^{t} for non-integer t.
- [S.K. Leyton and T.J. Osborne. A quantum algorithm to solve nonlinear differential equations. 0812.4423] requires time poly log(number of variables) • exp(integration time).
- [Szkopek et al., Eigenvalue Estimation of Differential Operators with a Quantum Algorithm, quant-ph/0408137] has similar scaling, and also resembles our application to finite-element methods.
- [S. P. Jordan and P. Wocjan. Efficient quantum circuits for arbitrary sparse unitaries. 0904.2211] is also based on Hamiltonian simulation.
- [D. Janzing and P. Wocjan. Estimating diagonal entries of powers of sparse symmetric matrices is BQP-complete. quant-ph/0606229] is similar to our BQP-hardness result.

Extensions: known and unknown

(Mostly unknown)

- If A is ill-conditioned, we can choose κ arbitrarily, invert the part with eigenvalues $\gg 1 / \kappa$ and flag the bad part with eigenvalues $\ll 1 / \kappa$ (with some gray area around the $1 / \kappa$ threshold).
- If $\|A\| \gg 1$, then we should be able to rescale A and disregard large eigenvalues of A that contribute very little to A^{-1}. This raises a Hamiltonian simulation problem of independent interest: how costly is it to simulate a high-energy theory on low-energy states?
- B is a preconditioner if $\kappa(A B) \ll \kappa(A)$. If B is sparse, then $B A$ is as well, and we can apply $(B A)^{-1}$ to $B|b\rangle$. Preconditioners are crucial to practical (classical) iterative methods and we would like to make use of them with our algorithm.
- More applications, please! Candidates are deconvolution, solving elliptical PDE's and speeding up linear programming.

