Solving linear systems of equations on a quantum computer arXiv:0811.3171 PRL 15:150502 (2009)

Aram Harrow¹ Avinatan Hassidim² Seth Lloyd²

¹University of Bristol

²MIT

Rutgers April 9, 2010

Aram	Harrow
0811	.3171v3

Slide 1/18

Outline

- The problem.
- Classical solutions.
- Our quantum solution.
- How it works.
- BQP-completeness / (near-)optimality
- Related work / extensions / applications.

Goal: solving linear systems of equations

- We are given A, a Hermitian $N \times N$ matrix.
- $\vec{b} \in \mathbb{C}^N$ is also given as input.
- We want to (approximately) find $\vec{x} \in \mathbb{C}^N$ such that $A\vec{x} = \vec{b}$.
- ► If *A* is not Hermitian or square, we can use $\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix}$. Why? Because

$$\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \vec{x} \end{pmatrix} = \begin{pmatrix} \vec{b} \\ 0 \end{pmatrix}$$

Some weaker goals are to estimate $\vec{x}^{\dagger}M\vec{x}$ (for some matrix *M*) or sample from the probability distribution $\Pr[i] \propto |x_i|^2$.

Application: linear regression

Goal: find the best fit line, low-degree polynomial, etc.

Technically we choose \vec{x} to minimise $||A\vec{x} - \vec{b}||^2$.

Slide 4/18

Application: partial differential equations

Approximate a continuous function with a finite element model.

$$\frac{\partial}{\partial t} \to \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$
$$\frac{\partial^2}{\partial t^2} \to \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

A is a discretised PDE, \vec{b} specifies boundary conditions. \vec{x} gives solution to boundary-value problem.

Classical algorithms

- The LU decomposition finds \vec{x} in time $O(N^{2.376} \operatorname{poly}(\log(\kappa/\epsilon)))$.
 - Here "2.376" is the matrix-multiplication exponent. (By contrast, Gaussian elimination takes time O(N³).)
 - ϵ is a bound on error in \vec{x} .
 - κ is the condition number.

$$\kappa = \|\boldsymbol{A}\| \cdot \|\boldsymbol{A}^{-1}\| = \frac{\sigma_1(\boldsymbol{A})}{\sigma_N(\boldsymbol{A})}$$

Here $\sigma_i(A)$ is the *i*th singular value and $||A|| = \sigma_1(A)$. κ measures how hard A is to invert, or equivalently, how sensitively A^{-1} depends on changes in A.

- Iterative methods (e.g. conjugate gradient) require O(√k log(1/ε)) matrix-vector multiplications.
 - If A is s-sparse (i.e. has ≤ s nonzero entries per row) then the total time is O(Ns√k log(1/ε)).
 - ▶ $|\text{support}(\vec{b})| \cdot (s/\epsilon)^{O(\sqrt{\kappa})} \cdot \text{poly}(\log(N)) \text{ is also possible.}$

Quantum computing review

	Classical	Randomised	Quantum
basic unit of information	bit: $b \in \{0, 1\}$	distribution $p \in \mathbb{R}^2$ $p_0 + p_1 = 1$	qubit $ \psi\rangle \in \mathbb{C}^2$ $ \psi_0 ^2 + \psi_1 ^2 = 1$
<i>n</i> bits	2 ⁿ states	2^n dimensions	2^n dimensions
basic unit of computation	NAND, XOR, etc.	stochastic ma- trices	unitary matrices
poly-time	Р	BPP	BQP
measurement	no problem	Bayes' rule	collapses state

Aram Harrow 0811.3171v3

University of BRISTOL

Our results

Quantum Algorithm. Suppose that

- $|b\rangle = \sum_{i=1}^{N} b_i |i\rangle$ is a unit vector that can be prepared in time T_B ;
- ► *A* is *s*-sparse, efficiently row-computable and $\kappa^{-1}I \le |A| \le I$

•
$$|x'\rangle = A^{-1} |b\rangle$$
 and $|x\rangle = \frac{|x'\rangle}{\||x'\rangle\|}$

Then our (quantum) algorithm produces $|x\rangle$ and $\langle x'|x'\rangle$, both up to error ϵ , in time

$$\tilde{O}(\kappa T_B + \log(N)s^4\kappa^2/\epsilon).$$

Reminder: classical algorithms output the entire vector \vec{x} in time $\tilde{O}(\min(N^{2.376}, Ns\sqrt{\kappa}, (s/\epsilon)^{O(\sqrt{\kappa})}))$. This is exponentially slower when s = O(1) and $\kappa = \text{poly} \log(N)$.

Optimality. Given plausible complexity-theoretic assumptions, these run-times (both quantum and classical) cannot be improved by much. Argument is based on BQP-hardness of the matrix inversion problem.

Algorithm idea: diagonal case

Suppose *A* is diagonal:

$$A = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \\ \vdots & & \ddots & \\ 0 & & & \lambda_N \end{pmatrix}$$

Then our task is called filtering.

- Our desired transform is the non-unitary operation: $|i\rangle \rightarrow \lambda_i^{-1} |i\rangle$.
- This can be achieved probabilistically by
 - 1. Choosing *c* such that $c|\lambda^{-1}| \leq 1$.
 - 2. Mapping $|i\rangle \rightarrow (\sqrt{1-c^2|\lambda_i|^{-2}} |0\rangle + c\lambda_i^{-1} |1\rangle) \otimes |i\rangle$
 - 3. Measuring the first qubit and hoping we get outcome "1".

The resulting state is proportional to $A^{-1} | b \rangle$.

Algorithm idea: general case

- If we could work within the eigenbasis of A, then we could use the diagonal algorithm.
- Finding the eigenbasis of *A* is done with two primitives:
 - ► Hamiltonian simulation. We can apply e^{iAt} in time $\tilde{O}(ts^4 \log(N))$. (Uses fancy versions of $e^{i(A_1+A_2)\epsilon} \approx e^{iA_1\epsilon} e^{iA_2\epsilon}$.)¹
 - ▶ Phase estimation. Applying $e^{i\lambda t}$ for a carefully chosen superposition² of times from 0 to t_0 can be used to produce $\tilde{\lambda} \approx \lambda \pm O(1/t_0)$.
- Phase estimation on e^{iAt} automatically resolves |b⟩ into the eigenbasis of A by (approximately) measuring λ.
- Doing this coherently can (approximately) map $|b\rangle$ to

$$\left|0
ight
angle\otimes\sqrt{\mathit{I}-\mathit{c}^{2}\mathit{A}^{-2}}\left|\mathit{b}
ight
angle+\left|1
ight
angle\otimes\mathit{c}\mathit{A}^{-1}\left|\mathit{b}
ight
angle,$$

where *c* is chosen so that $||cA^{-1}|| \le 1$.

• Measure the first qubit. Upon outcome "1" we are left with $|x\rangle$.

¹D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum algorithms for sparse Hamiltonians. *CMP 2007*, quant-ph/0508139.

²V. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999.

Analysis of the algorithm

- The Hamiltonian simulation produces negligible error. (Error *ϵ* incurs overhead of exp(O(√log(1/ϵ))) = ϵ^{-o(1)}.) Recall that it takes time Õ((log N)s⁴t₀).
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.
- ► An additive error of $1/t_0$ in λ translates into an error in λ^{-1} of $\lambda^{-2}/t_0 \le \kappa^2/t_0$. Thus, we can take $t_0 \sim \kappa^2/\epsilon$.
- We can take $C = 1/2\kappa$ to guarantee that $||CA^{-1}|| \le 1/2$. ($C = 1/\kappa$ should work, but the analysis is more painful.)
- Thus post-selection succeeds with probability at least O(1/κ²) and blows up error by at most O(κ). With enough algebra, the run-time magically stays at O(κ²/ε).
- Our best lower bound for the run-time is κ .

How large is κ ?

- For many practical problems, it is N^c, in which case our speedup ranges from polynomial to not a speedup.
- There are many classical techniques used to reduce condition number to N^{o(1)} or even poly log(N), e.g. multi-scale methods and preconditioners [D. Spielman and S.-H. Teng. "Nearly-Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems" arXiv:cs/0607105]. However, their applicability to quantum algorithms is not obvious.
- For random Hermitian matrices, κ = N^{O(1)}. But if A is chosen independently of x, then b will have low overlap with the small eigenvalues, and we can find |x⟩ up to error ε in time poly(log(N)/ε).
- Finite-element models have extremely wide application. If we take lattice spacing *h* in *d* dimensions, then we have N = h^d, s ~ d and κ ~ dh. For best results, fix h and let d grow.

Q-sampling $|x\rangle$ vs. computing \vec{x}

Types of solutions: roughly from strongest to weakest

1. Output
$$\vec{x} = (x_1, ..., x_N)$$
.

2. Produce
$$|x\rangle = \sum_{i=1}^{N} x_i |i\rangle$$
.

Classical algorithms Our algorithm

- 3. Sample *i* according to $p_i \sim |\langle i | x \rangle|^2$.
- 4. Estimate $\langle x | M | x \rangle$ for some (perhaps diagonal) matrix *M*.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.

- They work with a sample drawn from $\vec{p} = (p_1, \dots, p_N)$.
- If *A* is stochastic and sparse then $\vec{p} \mapsto A\vec{p}$ is efficient.
- If −1 ≤ m₁,..., m_N ≤ 1, then ∑^N_{i=1} m_ip_i can be estimated to error ε using O(1/ε²) samples.

Is matrix inversion easier if we only need to estimate $\vec{x}^{\dagger}M\vec{x}$?

BQP-hardness of matrix inversion

Consider a quantum circuit on *n* qubits that starts in the state $|0\rangle^{\otimes n}$, applies two-qubit gates U_1, \ldots, U_T and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to estimating $\langle x | M | x \rangle$ where *M* is diagonal, $A\vec{x} = \vec{b}, \vec{b} = |0\rangle$, *A* has dimension $N = O(T2^n)$ and $\kappa = O(T)$.

Corollary

- A classical poly(log(N), κ) algorithm for estimating (x | M | x) to constant accuracy would imply BPP=BQP (i.e. randomized algorithms are as strong as quantum algorithms).
- If we allow only black-box access to A, then no quantum algorithm can run in time κ^{1−δ} · poly log(N) or poly(κ) · (N/ε)^{o(1)}.

Proof of BQP-hardness

An idea that almost works

- Our quantum circuit is $U_T \cdots U_1$.
- On the space $\mathbb{C}^T \otimes \mathbb{C}^{2^n}$ define

$$V = \sum_{t=1}^{T} |t+1 \pmod{T}\rangle \langle t| \otimes U_t.$$
 is unitary
$$A = I - e^{-\frac{1}{T}}V$$
 has $\kappa \leq 2T$

Expand

$$A^{-1} = \sum_{k=0}^{\infty} e^{-\frac{k}{T}} V^k$$

So that $\kappa^{-1}A^{-1} |1\rangle |\psi\rangle$ has $\Omega(1/T)$ overlap with $V^T |1\rangle |\psi\rangle = |1\rangle U_T \cdots U_1 |\psi\rangle$.

But undesirable terms contribute too.

Proof of BQP-hardness

The correct version

Define

$$U_{T+1} = \dots = U_{2T} = I^{\otimes n}$$
$$U_{2T+1} = U_T^{\dagger}, \dots, U_{3T} = U_1^{\dagger}$$
so that $U_{3T} \dots U_1 = I^{\otimes n}$ and $U_t \dots U_1 = U_T \dots U_1$ whenever $T \leq t < 2T$.
Now define (on the space $\mathbb{C}^{3T} \otimes \mathbb{C}^{2^n}$) the operators

$$V = \sum_{t=1}^{3T} |t+1 \pmod{3T}\rangle \langle t| \otimes U_t$$
$$A = I - e^{-\frac{1}{T}}V$$

This time κ⁻¹A⁻¹ |1⟩ |ψ⟩ has Ω(1) overlap with successful computations (i.e. |t⟩ ⊗ U_T... U₁ |ψ⟩ for T ≤ t < 2T) and there is no extra error from wrap-around.</p>

Related work

- ► [L. Sheridan, D. Maslov and M. Mosca. Approximating Fractional Time Quantum Evolution. 0810.3843] show how access to *U* can be used to simulate *U*^t for non-integer *t*.
- [S.K. Leyton and T.J. Osborne. A quantum algorithm to solve nonlinear differential equations. 0812.4423] requires time poly log(number of variables) · exp(integration time).
- [Szkopek et al., Eigenvalue Estimation of Differential Operators with a Quantum Algorithm, quant-ph/0408137] has similar scaling, and also resembles our application to finite-element methods.
- [S. P. Jordan and P. Wocjan. Efficient quantum circuits for arbitrary sparse unitaries. 0904.2211] is also based on Hamiltonian simulation.
- [D. Janzing and P. Wocjan. Estimating diagonal entries of powers of sparse symmetric matrices is BQP-complete. quant-ph/0606229] is similar to our BQP-hardness result.

Extensions: known and unknown

(Mostly unknown)

- If A is ill-conditioned, we can choose κ arbitrarily, invert the part with eigenvalues ≫ 1/κ and flag the bad part with eigenvalues ≪ 1/κ (with some gray area around the 1/κ threshold).
- If ||A|| ≫ 1, then we should be able to rescale A and disregard large eigenvalues of A that contribute very little to A⁻¹. This raises a Hamiltonian simulation problem of independent interest: how costly is it to simulate a high-energy theory on low-energy states?
- B is a preconditioner if κ(AB) ≪ κ(A). If B is sparse, then BA is as well, and we can apply (BA)⁻¹ to B |b⟩. Preconditioners are crucial to practical (classical) iterative methods and we would like to make use of them with our algorithm.
- More applications, please! Candidates are deconvolution, solving elliptical PDE's and speeding up linear programming.

