Computing with adversarial noise

Aram Harrow (UW -> MIT) Matt Hastings (Duke/MSR) Anup Rao (UW)

The origins of determinism

<u>Theorem [von Neumann]</u>: There exists a constant p>0 such that for any circuit C there exists a circuit C' such that

- size(C') ≤ size(C) * poly log(size(C))
- If C' is implemented with noise p at every gate, then it will implement C correctly with probability ≥0.99.

Theorem [Shor `95]: Same is true for quantum computers

Assumptions of FTC

- 1. parallel operations, i.e. $\Omega(n)$ operations per time step. (Assuming that NOP is noisy.)
- 2. irreversibility / ability to cool bits i.e. $\Omega(n)$ fresh '0' bits per time step
- 3. -i.i.d. noise model

decaying correlations: e.g. Pr(bits flipped in set S) ≤ exp(-c |S|)

Q: How far can we relax this assumption?

Adversarial noise

Computation model is deterministic circuits, with constant fan-in and fan-out.

- Number of bits (n) is either static or dynamic.
- In every time step, the adversary chooses ≤np bits to flip.
- Input and outputs are assumed to be encoded in a linear-distance ECC.
- Goals:
 - memory
 - Computation

Existing constructions fail

- \circledast von Neumann FT (with any code) cannot store $\omega(1/p)$ bits.
- Bits arranged in k-D fails for any constant k.
 More generally, if gates are constrained to be local w.r.t. any easy-to-partition graph, then memory is impossible.

	·							
J	0	0	1	0	0	0	0	0
	0	1	1	0	1	0	0	0
	0	1	0	0	0	0	0	0
	0	0	1	1	1	1	1	0
	0	0	0	0	1	0	1	0
	1	1	1	0	0	0	0	0

Results

Goal	Noise rate	Size overhead
memory	constant	constant
computation	constant	exp(o(s))
computation	$(1/\log(s))^{O(1/\delta)}$	$s^{1+\delta}$
quantum memory	constant	conjectured impossible

The 1->n repetition code

<u>Repeatedly:</u> Partition into random blocks of size 3 and majority vote

0000011111100000000

<u>Claim:</u> Starting with an $e \le 0.1$ fraction of errors, we replace this with $e' \le 0.9 e + O(p)$

Computation with the repetition code

If $p \sim 1/k$, then k bits can be encoded. Gates can be performed transversally. Example: $(a^n, b^n) \rightarrow (a^n, (a \oplus b)^n)$

The Hadamard code

<u>Definition</u>: k -> n=2^k bits $x \in \mathbb{F}_2^k \mapsto (a \cdot x)_{a \in \mathbb{F}_2^k}$

Example:

Parallel extraction: Can obtain O(n) copies of any bit.

To replace x_1 with $f(x_2, x_3)$:

- 1. Extract x_1 , x_2 , x_3 into repetition codes
- 2. Compute $x_1 \oplus f(x_2, x_3)$ transversally
- 3. XOR this with the appropriate locations in the code

Locally correctable codes

<u>Definition:</u>

Given a codeword corrupted in a $\leq \delta$ fraction of positions, there is a randomized method to recover any coordinate of the original codeword, using q queries and giving a wrong answer with probability $\leq \rho$.

<u>Theorem:</u> Any systematic LCC can be used to make a circuit FT against adversarial noise. Conversely, in any scheme capable of protecting arbitrary circuits against adversarial noise, the input encoding is a LDC.

<u>Parameters:</u>

q, δ , ρ constant: k bits into exp(o(k)) bits q=log^{c+1}(k), δ , ρ constant: k bits into k^{1+1/c+o(1)} bits

FT memory

<u>Iterative decoding</u> Flip variables who have a majority of unsatisfied neighbors.

Key properties

1. Can perform one round of decoding in constant depth. 2. Maps error rate e to e' \leq 0.9 e + O(p). 3. Good code (i.e. k/n = $\Omega(1)$)

Quantum computing?

<u>Quantum states</u> n qubits described by a unit vector in ${\mathbb C}^{2^n}$

Immediate difficulties

1. No repetition code:

- $|\psi
 angle\mapsto |\psi
 angle\,\otimes\,|\psi
 angle\,\otimes\,|\psi
 angle$ is unphysical
- no analogue of majority-voting correction
- cannot correct small errors

2. Parallel extraction impossible / no LDCs

Stabilizer (linear) QECCs $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \quad iY = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 $\frac{\mathsf{n-qubit}\ \mathsf{Pauli}\ \mathsf{matrices}}{\mathsf{P}_1\otimes ...\otimes \mathsf{P}_n}, \text{ for } \mathsf{P}_1..., \mathsf{P}_n \in \{\mathsf{I}, \mathsf{X}, \mathsf{iY}, \mathsf{Z}\}$

stabilizer code Given commuting Pauli matrices {s₁, ..., s_{n-k}} define the code space V = { $|\psi\rangle$: s_i $|\psi\rangle$ = $|\psi\rangle$ for i=1,...,n-k} rate = (log dim V)/n = k/n

distance

Let S = <s₁, ..., s_{n-k}> and N(S) = {P : sP=Ps for all $s \in S$ } Distance = min weight of an element of N(S)\S

Related quantum open question

- Do there exist stabilizer codes of constant weight and linear distance?
- The only known linear-distance codes have linear-weight generators; the only known constant-weight codes have distance O(n^{1/2} log(n)).
- Homology codes appear unpromising.

Open questions

- QC with adversarial noise?
- Can classical FTC be made more efficient?
- Even against i.i.d. noise, is linear overhead possible?
- Is code deformation of classical codes possible? What if we had a quantum computer?