Limitations on quantum PCPs

Aram Harrow
based on joint work with Fernando G.S.L. Brandão (ETHZ->Imperial)

PCP theorem

Classical k-CSPs:
Given constraints $C=\{C$,$\} , choose an assignment \sigma$ mapping n variables to an alphabet Σ to minimize the fraction of unsatisfied constraints.

$$
\operatorname{UNSAT}(C)=\min _{\sigma} \operatorname{Pr}_{i}\left[\sigma \text { fails to satisfy } C_{i}\right]
$$

```
Example: 3-SAT: NP-hard to determine if UNSAT(C) \(=0\) or \(\operatorname{UNSAT}(C) \geq 1 / n^{3}\)
```

PCP (probabilistically checkable proof) theorem: NP-hard to determine if UNSAT(C)=0 or $\operatorname{UNSAT}(C) \geq 0.1$

quantum background

Density matrices

A quantum state on n quits is described by a $2^{n} \times 2^{n}$ [density] matrix ρ satisfying $\rho \geq 0$ and $\operatorname{tr} \rho=1$.

Classical analogue:

Diagonal density matrices \cong probability distributions
Tensor product:

$$
\left(\rho^{X_{1}} \otimes \cdots \otimes \rho^{X_{n}}\right)_{\left(i_{1}, \ldots, i_{n}\right),\left(j_{1}, \ldots, j_{n}\right)}=\rho_{i_{1}, j_{1}}^{X_{1}} \rho_{i_{2}, j_{2}}^{X_{2}} \cdots \rho_{i_{n}, j_{n}}^{X_{n}}
$$

Local Hamiltonian problem

LOCAL-HAM: k-local Hamiltonian ground-state energy estimation Let $H=\mathbb{E}_{i} H_{i}$, with each H_{i} acting on k qubits, and $\left\|H_{i}\right\| \leq 1$
i.e. $H_{i}=H_{i, 1} \otimes H_{i, 2} \otimes \ldots \otimes H_{i, n \prime}$ with $\#\left\{j: H_{i, j} \neq I\right\} \leq k$

Goal:
Estimate $\mathrm{E}_{\mathrm{O}}=\min _{\rho} \operatorname{tr} \mathrm{H} \rho$

Hardness

- Includes $\mathrm{K}-\mathrm{CSPs}$, so ± 0.1 error is NP-hard by PCP theorem.
- QMA-complete with $1 / p o l y(n)$ error [Kitaev '99] QMA = quantum proof, bounded-error polytime quantum verifier

Quantum PCP conjecture LOCAL-HAM is QMA-hard for some constant error $\varepsilon>0$. Can assume k=2 WLOG [Bravyi, DiVincenzo, Terhal, Loss `08]

high-degree in NP

Theorem

It is NP-complete to estimate E_{0} for n qudits on a D-regular graph $(k=2)$ to additive error $\sim d / D^{1 / 8}$.

Idea: use product states
$E_{0} \approx \min \operatorname{tr} H\left(\rho_{1} \otimes \ldots \otimes \rho_{n}\right)-O\left(d / D^{1 / 8}\right)$

By constrast
2-CSPs are NP-hard to approximate to error $|\Sigma|^{\alpha} / D^{\beta}$ for any $\alpha_{1} \beta>0$

mean-field theory

1-D

2-D

3-D

Folk theorem

 high-degree interaction graph \rightarrow symmetric ground state \approx tensor power ground state
quantum de Finetti theorem

Theorem [Christandl, Koenig, Mitchison, Renner '06]
Given a state $\rho^{A B_{1} \ldots B_{n}}$, there exists μ such that
$\left\|\underset{i_{1}, \ldots, i_{k}}{\mathbb{E}} \rho^{A B_{i_{1}} \ldots B_{i_{k}}}-\int \mu(\mathrm{d} \sigma) \rho_{\sigma} \otimes \sigma^{\otimes k}\right\|_{1} \leq \frac{d^{2} k}{n}$
builds on work by [Størmer '69], [Hudson, Moody '76], [Raggio, Werner '89] [Caves, Fuchs, Sachs `01], [Koenig, Renner '05]

Proof idea:
Perform an informationally complete measurement of $n-k B$ systems.

measurement

M is informationally complete $\Leftrightarrow M$ is injective

information theory tools

1. Mutual information:
$I(X: Y)_{p}=\sum_{x, y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}=D\left(p^{X Y} \| p^{X} \otimes p^{Y}\right)$
2. Pinsker's inequality:

$$
I(X: Y)_{p} \geq \frac{1}{2 \ln 2}\left\|p^{X Y}-p^{X} \otimes p^{Y}\right\|_{1}^{2}
$$

3. Conditional mutual information:
$I(X: Y \mid Z)=I(X: Y Z)-I(X: Z)$
4. Chain rule:
$I\left(X: Y_{1} \ldots Y_{k}\right)=I\left(X: Y_{1}\right)+I\left(X: Y_{2} \mid Y_{1}\right)+\ldots+I\left(X: Y_{k} \mid Y_{1} \ldots Y_{k-1}\right)$ $\rightarrow I\left(X: Y_{+} \mid Y_{1} \ldots Y_{t-1}\right) \leq \log (|X|) / k$ for some $t \leq k$.

conditioning decouples

Idea that almost works: [c.f. Raghavendra-Tan '11]

1. Choose $\mathrm{i}, \mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{k}}$ at random from $\{1, \ldots, n\}$

Then there exists $t<k$ such that

$$
\underset{i, j, j_{1}, \ldots, j_{t}}{\mathbb{E}} I\left(X_{i}: X_{j} \mid X_{j_{1}} \ldots X_{j_{t}}\right) \leq \frac{\log (d)}{k}
$$

2. Discarding systems j_{1}, \ldots, j_{+}causes error $\leq k / n$ and leaves a distribution q for which

$$
\begin{aligned}
& \underset{i, j}{\mathbb{E}} I\left(X_{i}: X_{j}\right)_{q} \leq \frac{\log (d)}{k} \\
& \underset{i \sim j}{\mathbb{E}} I\left(X_{i}: X_{j}\right)_{q} \leq \frac{n}{D} \frac{\log (d)}{k} \\
& \underset{i \sim j}{\mathbb{E}}\left\|q^{X Y}-q^{X} \otimes q^{Y}\right\|_{1} \leq \sqrt{\frac{1}{2 \ln 2} \frac{n}{D} \frac{\log (d)}{k}}
\end{aligned}
$$

quantum information?

Nature isn't classical, dammit, and you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

Good news

- $I(A: B), I(A: B \mid C)$, etc. still defined
- Pinsker, chain rule, etc. still hold
- $\mathrm{I}(\mathrm{A}: \mathrm{B} \mid C)_{\rho}=0 \leftrightarrow \rho$ is separable

Good news we can use:
Informationally-complete measurement M satisfies

$$
d^{-3}\|\rho-\sigma\|_{1} \leq\|M(\rho)-M(\sigma)\|_{1} \leq\|\rho-\sigma\|_{1}
$$

proof overview

1. Measure εn qudits and condition on outcomes. Incur error ε.
2. Most pairs of other qudits would have mutual information
$\leq \log (d) / \varepsilon D$ if measured.
3.. . their state is within distance $d^{3}(\log (d) / \varepsilon D)^{1 / 2}$ of product.
3. Witness is a global product state. Total error is $\varepsilon+d^{3}(\log (d) / \varepsilon D)^{1 / 2}$.
Choose ε to balance these terms.

other applications

PTAS for Dense k-local Hamiltonians improves on $1 / d^{k-1}+\varepsilon$ approximation from [Gharibian-Kempe '11]

PTAS for planar graphs Builds on [Bansal, Bravyi, Terhal '07] PTAS for bounded-degree planar graphs

Algorithms for graphs with low threshold rank Extends result of [Barak, Raghavendra, Steurer '11]. run-time for ε-approximation is $\exp (\log (\mathrm{n}) \operatorname{poly}(\mathrm{d} / \varepsilon) \cdot \#\{$ eigs of adj. matrix $\geq \operatorname{poly}(\varepsilon / d)\}$

quantum Lasserre

Previously proposed by [Barthel-Hübener '11], [Baumgartz-Plenio '11] building on [Erdahl '78], [Yasuda-Nakatsuji '97], [Nakatsuji-Yasuda '04], [Mazziotti '04]

$$
\operatorname{tr} H \rho=\underset{i}{\mathbb{E}} \operatorname{tr} H_{i} \rho=\underset{i}{\mathbb{E}} \operatorname{tr} H_{i}^{S_{i}} \rho^{S_{i}}
$$

$$
S_{i}=\text { set of } \leq k \text { systems acted on by } H_{i}
$$

First attempt:
Variables are r-body marginals ρ^{s} with $|S| \leq k$.
Enforce consistency constraints on overlapping $\mathrm{S}_{1}, \mathrm{~S}_{2}$.
Global PSD constraint:
For $k / 2$ - local Hermitian operators X, Y, define $\langle X, Y\rangle:=\operatorname{tr} \rho X Y$.
Require that $\langle\cdot, \cdot\rangle$ be PSD.
(Classical analogue = covariance matrix.)

BRS11 analysis + local measurement \Rightarrow suffices to take
$r \geq \operatorname{poly}(d / \varepsilon) \cdot \#\{$ eigs of adj. matrix $\geq \operatorname{poly}(\varepsilon / d)\}$

Open questions

1. The Quantum PCP conjecture! Gap amplification, commuting case, thermal states Better ansatzes
2. Quantum Lasserre for analogue of unique games?
3. better de Finetti/monogamy-of-entanglement theorems hoping to prove
a) QMA(2 provers, m qubits) \subseteq QMA(1 prover, m^{2} qubits)
b) MIP* \subseteq NEXP. [cf. Ito-Vidick '12]
c) $\exp (p o l y \log (n))$ algorithm for small-set expansion

de Finetti without symmetry

Theorem [Christandl, Koenig, Mitchison, Renner '05]
Given a state $\rho^{A B_{1} \ldots B_{n}}$, there exists μ such that

$$
\left\|\underset{i_{1}, \ldots, i_{k}}{\mathbb{E}} \rho^{A B_{i_{1}} \ldots B_{i_{k}}}-\int \mu(\mathrm{d} \sigma) \rho_{\sigma} \otimes \sigma^{\otimes k}\right\|_{1} \leq \frac{d^{2} k}{n}
$$

Theorem
For ρ a state on $A_{1} A_{2} \ldots A_{n}$ and any $\dagger \leq n-k$, there exists $m \leq t$ such that

$$
\underset{i_{1}, \ldots, i_{k}}{\mathbb{E}} \underset{\substack{j_{1}, \ldots, j_{m} \\ a_{1}, \ldots, a_{m}}}{\mathbb{E}}\left\|\sigma^{A_{i_{1}} \cdots A_{i_{k}}}-\sigma^{A_{i_{1}}} \otimes \cdots \otimes \sigma^{A_{i_{k}}}\right\|_{1} \lesssim \frac{d^{k}}{n-k}
$$

where σ is the state resulting from measuring j_{1}, \ldots, j_{m} and obtaining outcomes a_{1}, \ldots, a_{m}.

QC de Finetti theorems

Idea

Everything works if at most one system is quantum. Or if all systems are non-signalling (NS) boxes.

Theorem

If $\rho^{A B}$ has an extension $\tilde{\rho}^{A B_{1} \ldots B_{n}}$ on the B_{1}, \ldots, B_{n} systems, and $\left\{\Lambda_{A, m}\right\}_{m}$ is a distribution over maps with a d-dimensional output, then

$$
\min _{\sigma \in \operatorname{Sep}(\mathrm{A}: \mathrm{B})} \max _{M_{B}} \underset{m}{\mathbb{E}}\left\|\left(\Lambda_{A, m} \otimes M_{B}\right)\left(\rho^{A B}-\sigma^{A B}\right)\right\|_{1} \leq \sqrt{\frac{2 \ln d}{n}}
$$

Corollary [cf Brandao-Christandl-Yard '10]

$$
\left\|\rho^{A B}-\sigma^{A B}\right\|_{1-\text { LOCC }} \leq \sqrt{\frac{2 \ln |A|}{n}}
$$

QCC...C de Finetti

Theorem If $\rho A_{1}, \ldots, A_{n}$ k there exists μ s.t.
$\max _{M_{2}, \ldots, M_{k}} \|\left(\mathrm{id} \otimes M_{2} \otimes \cdots \otimes M_{k}\right)\left(\rho^{A_{1} \ldots A_{k}}-\int \mu(\sigma) \sigma^{\otimes k} \|_{1} \leq \sqrt{\frac{2 k^{2} \ln |A|}{n-k}}\right.$

Applications

- QMA = QMA with multiple provers and Bell measurements
- free non-local games are easy
- convergence of sum-of-squares hierarchy for polynomial optimization
- Aaronson's pretty-good tomography with symmetric states

