Quantum de Finetti theorems under local measurements

Aram Harrow (MIT) QIP 2013

based on arXiv:1210.6367
joint work with Fernando Brandão (ETH)

Symmetric States

$\rho^{A B_{1} \ldots B_{n}}$ is permutation symmetric in the B subsystems if for every permutation π, $\rho^{A B_{1} \ldots B_{n}}=\rho^{A B_{\pi(1)} \ldots B_{\pi(n)}}$
$\rho^{A B_{1} \ldots B_{n}}$
$\begin{array}{rl}A \quad B_{1} & B \\ & \text { II }\end{array}$
$\rho^{A B_{1} \ldots B_{n}}$
$\begin{array}{lllllll}A & B_{1} & B_{2} & B_{3} & B_{4} & B_{n-1} & B_{n}\end{array}$

Quantum de Finetti Theorem

Theorem [Christandl, Koenig, Mitchison, Renner '06]

Given a state $\rho^{A B_{1} \ldots B_{n}}$ symmetric under exchange of $\mathrm{B}_{1} \ldots \mathrm{~B}_{n}$, there exists μ such that
$\left\|\rho^{A B_{1} \ldots B_{k}}-\int \mu(\mathrm{d} \sigma) \rho_{\sigma} \otimes \sigma^{\otimes k}\right\|_{1} \leq \frac{d^{2} k}{n}$
builds on work by [Størmer '69], [Hudson, Moody '76], [Raggio, Werner '89] [Caves, Fuchs, Schack '01], [Koenig, Renner '05]

Proof idea:

Perform an informationally complete measurement of n-k B systems.
Applications:
information theory: tomography, QKD, hypothesis testing algorithms: approximating separable states, mean-field theory

Quantum de Finetti Theorem as

Monogamy of Entanglement

Definition: $\rho^{A B}$ is n-extendable if there exists an extension

$$
\rho^{A B_{1}} \ldots B_{n} \text { with } \rho^{A B}=\rho^{A B_{i}} \text { for each i. }
$$

all quantum states (= 1-extendable)
2-extendable

100-extendable
separable = ∞-extendable

Algorithms: Can search/optimize over n-extendable states in time $\mathrm{d}^{\mathrm{O}(n)}$. Question: How close are n-extendable states to separable states?

Quantum de Finetti theorem

Theorem [Christandl, Koenig, Mitchison, Renner '06]
Given a state $\rho^{A B_{1} \ldots B_{n}}$ symmetric under exchange of $\mathrm{B}_{1} \ldots \mathrm{~B}_{n}$, there exists μ such that

$$
\left\|\rho^{A B_{1} \ldots B_{k}}-\int \mu(d \sigma) \rho_{\sigma} \otimes \sigma^{\otimes k}\right\|_{1} \leq \frac{d^{2} k}{n}
$$

Difficulty:

1. Parameters are, in many cases, too weak.
2. They are also essentially tight.

Way forward:

1. Change definitions (of error or i.i.d.)
2. Obtain better scaling

relaxed/improved versions

Two examples known:

1. Exponential de Finetti Theorem: [Renner '07] error term $\exp (-\Omega(n-k))$.
Target state convex combination of "almost i.i.d." states.
2. measure error in 1-LOCC norm [Brandão, Christandl, Yard '10] For error ε and $k=1$, requires $n \sim \varepsilon^{-2} \log |A|$.
$\frac{\text { This talk }}{\text { improved de Finetti theorems for local }}$
measurements

main idea use information theory

$\log |A| \geq$
$I\left(A: B_{1} \ldots B_{n}\right)=I\left(A: B_{1}\right)+I\left(A: B_{2} \mid B_{1}\right)+\ldots+I\left(A: B_{n} \mid B_{1} \ldots B_{n-1}\right)$
repeatedly uses chain rule: $I(A: B C)=I(A: B)+I(A: C \mid B)$
$\rightarrow I\left(A: B_{\dagger} \mid B_{1} \ldots B_{t-1}\right) \leq \log (|A|) / n$ for some $t \leq n$.
If $B_{1} \ldots B_{n}$ were classical, then we would have

$$
\rho^{A B}=\rho^{A B_{t}}=\sum_{i} \pi_{i} \rho_{i}^{A B} \quad \approx \text { separable }
$$

Answer: measure!

Fix a measurement $M: B \rightarrow Y$.
$I\left(A: B_{+} \mid B_{1} \ldots B_{t-1}\right) \leq \varepsilon$ for the measured state $\left(\right.$ id $\left.\otimes M^{\oplus n}\right)(\rho)$.

Then

- $\rho^{A B}$ is hard to distinguish from $\sigma \in$ Sep if we first apply (id $\otimes M$)
- $\|(i d \otimes M)(\rho-\sigma)\| \leq$ small for some $\sigma \in$ Sep.

Theorem
Given a state $\rho^{A B_{1} \ldots B_{n}}$ and $\left\{\Lambda_{i}\right\}$ a collection of operations from $A \rightarrow X$,
$\min _{\sigma \in \operatorname{Sep}} \max _{M} \mathbb{E}_{i}\left\|\left(\Lambda_{i}^{A} \otimes M^{B}\right)\left(\rho^{A B}-\sigma^{A B}\right)\right\|_{1} \leq \sqrt{\frac{2 \ln |X|}{n}}$

Cor: setting Λ =id recovers [Brandão, Christandl, Yard '10] 1-LOCC result.

advantages/extensions

Theorem

Given a state $\rho^{A B_{1} \ldots B_{n}}$ $\left\{\Lambda_{i}\right\}$ a collection of operations from $A \rightarrow X$,
$\min _{\sigma \in \operatorname{Sep}} \max _{M} \mathbb{E}_{i}^{\mathbb{E}}\left\|\left(\Lambda_{i}^{A} \otimes M^{B}\right)\left(\rho^{A B}-\sigma^{A B}\right)\right\|_{1} \leq \sqrt{\frac{2 \ln |X|}{n}}$

1. Simpler proof and better constants
2. Bound depends on $|X|$ instead of $|A|$ (can be ∞ dim)
3. Applies to general non-signalling distributions
4. There is a multipartite version (multiply error by k)
5. Efficient "rounding" (i.e. σ is explicit)
6. Symmetry isn't required (see Fernando's talk on Thursday)

applications

- nonlocal games

Adding symmetric provers "immunizes" against entanglement / non-signalling boxes. (Caveat: needs uncorrelated questions.) Conjectured improvement would yield NP-hardness for 4 players.

- BellQMA(poly) = QMA

Proves Chen-Drucker SAT \in BellQMA $_{\log (n)}(\sqrt{ } n)$ protocol is optimal.

- pretty good tomography [Aaronson '06] on permutation-symmetric states (instead of product states)
- convergence of Lasserre hierarchy for polynomial optimization see also 1205.4484 for connections to small-set expansion

open questions

 (Would follow from replacing 1-LOCC with SEP-YES.)

- Can we reorder our quantifiers to obtain
$\min _{\sigma \in \operatorname{Sep}} \mathbb{E}_{i} \max _{M}\left\|\left(\Lambda_{i}^{A} \otimes M^{B}\right)\left(\rho^{A B}-\sigma^{A B}\right)\right\|_{1} \leq \sqrt{\frac{2 \ln |X|}{n}} ?$
(no-signalling analogue is FALSE assuming $P \neq N P$)
- The usual de Finetti questions:
- better counter-examples
- how much does it help to add PPT constraints?

