Quantum de Finetti

 theorems far loorl IUEN LUJJ JUN TIEusuirements methods to analyzeSDP hierarchies

Fernando Brandão (UCL) Aram Harrow (MIT)
arXiv:1210.6367

motivation/warmup

nonlinear optimization --> convex optimization

$$
\begin{aligned}
\max _{x \in S^{n}} & \sum_{i, j=1}^{n} M_{i, j} x_{i} x_{j} \\
& =\max _{x \in S^{n}}\left\langle M, x^{T}\right\rangle \\
& =\max _{\rho \in D(n)}\langle M, \rho\rangle
\end{aligned}
$$

$D(n)=\operatorname{conv}\left\{x x^{\top}: x \in S^{n}\right\}=$ density matrices

a harder problem

$$
\begin{aligned}
\max _{x \in S^{n}} & \sum_{i_{1}, i_{2}, j_{1}, j_{2}} M_{i_{1} i_{2}, j_{1} j_{2}} x_{i_{1}} x_{i_{2}} x_{j_{1}} x_{j_{2}} \\
= & \max _{x \in S^{n}}\left\langle M, x x^{T} \otimes \overleftrightarrow{\left.x x^{T}\right\rangle}=A_{i_{1} i_{2}, j_{1} j_{2}}\right. \\
= & \max \left\{\langle M, \sigma\rangle: \sigma \in \operatorname{Sep} B_{i_{1}} B_{i_{2}, j_{2}}\right. \\
& =\underset{\operatorname{Sem}(n, n)\}}{ }
\end{aligned}
$$

$\operatorname{SepSym}(n, n)=\operatorname{conv}\left\{x x^{\top} \otimes x x^{\top}: x \in S^{n}\right\}$
$\subset \operatorname{Sep}(n, n)=\operatorname{conv}\left\{x x^{\top} \otimes y y^{\top}: x, y \in S^{n}\right\} \subset D\left(n^{2}\right)$

polynomial optimization

$$
D(n)_{n}=\operatorname{conv}\left\{x x^{\top}: x \in S^{n}\right\}
$$

EASY
$\operatorname{SepSym}(n, n)=\operatorname{conv}\left\{x x^{\top} \otimes x x^{\top}: x \in S^{n}\right\}$ HARD
\approx tensor norms $\approx 2->4$ norm \approx small-set expansion
need to find relaxation!

k-extendable relaxation

want $\sigma \in \operatorname{SepSym}(n, n)=\operatorname{conv}\left\{x x^{\top} \otimes x x^{\top}: x \in \operatorname{S}^{n}\right\}$
relax to $\tilde{\rho} \in D\left(n^{k}\right)$
$\tilde{\rho}_{i_{1} \ldots i_{k}, j_{1} \ldots j_{k}}=\tilde{\rho}_{i_{\pi(1)} \ldots i_{\pi(k)}, j_{\pi^{\prime}(1)} \ldots j_{\pi^{\prime}(k)} \quad \forall \pi, \pi^{\prime} \in \mathrm{S}_{k}}$
ideally $\tilde{\rho}_{i_{1} \ldots i_{k}, j_{1} \ldots j_{k}}=x_{i_{1}} \cdots x_{i_{k}} x_{j_{1}} \cdots x_{j_{k}}$
recover $\rho \in D\left(n^{2}\right)$

$$
\rho_{i_{1} i_{2}, j_{1} j_{2}}=\sum_{i_{3}, \ldots, i_{k}} \tilde{\rho}_{i_{1} i_{2} i_{3} \ldots i_{k}, j_{1} j_{2} i_{3} \ldots i_{k}}
$$

why?

1. partial trace $=$ quantum analogue of marginal distribution
2. using $\Sigma_{i} x_{i}^{2}=1$ constraint

why should this work?

physics explanation:
"monogamy of entanglement" only separable states are infinitely sharable
math explanation:

$$
\begin{aligned}
\tilde{\rho} & =\sum_{i}\left(x_{i} x_{i}^{T}\right)^{\otimes k} \\
\rho & =\sum_{i, j}^{i} x_{i} x_{j}^{T} \otimes x_{i} x_{j}^{T}\left\langle x_{i}, x_{j}\right\rangle^{2(k-2)} \\
& \rightarrow \sum_{i} x_{i} x_{i}^{T} \otimes x_{i} x_{i}^{T} \quad \text { as } \mathrm{k} \rightarrow \infty
\end{aligned}
$$

convergence rate

run-time $=n^{O(k)}$
$\operatorname{dist}(k-e x t e n d a b l e, \operatorname{SepSym}(n, n))=f(k, n)=? ?$
trace $\operatorname{dist}(\rho, \sigma)=\max _{0 \leq M \leq I}\langle M, \rho-\sigma\rangle \sim n / k \quad \rightarrow n^{O(n)}$ time
[Brandão, Christandl, Yard; STOC '11] distance $\sim(\log (n) / k)^{1 / 2}$ for M that are 1-LOCC \rightarrow time $\mathrm{n}^{\mathrm{O}(\log (n))}$

$$
\begin{aligned}
& \text { Def of } 1-L O C C \\
& M=\Sigma_{i} A_{i} \otimes B_{i} \text { such that } \\
& 0 \leq A_{i} \leq I \\
& 0 \leq B_{i} \\
& \Sigma_{i} B_{i}=I
\end{aligned}
$$

$\operatorname{Pr}[$ accept $\mid i]=$
$\left\langle\mathrm{A}_{\mathrm{i}} \otimes \mathrm{B}_{\mathrm{i}}, \rho\right\rangle / \operatorname{Pr}[\mathrm{i}]$

$\operatorname{Pr}[i]=$
$\left\langle\mathrm{I} \otimes \mathrm{B}_{\mathrm{i}}, \rho\right\rangle$

our results

1. simpler proof of BCY 1-LOCC bound
2. extension to multipartite states
3. dimension-independent bounds if Alice is non-adaptive
4. extension to non-signaling distributions
5. explicit rounding scheme
6. (next talk) version without symmetry

applications

1. optimal algorithm for degree- $\sqrt{ }$ n poly optimization (assuming ETH)
2. optimal algorithm for approximating value of free games
3. hardness of entangled games
4. $\mathrm{QMA}=\mathrm{QMA}$ with poly (n) unentangled Merlins \& 1-LOCC measurements
5. "pretty good tomography" without independence assumptions
6. convergence of Lasserre
7. multipartite separability testing

proof sketch

Further restrict to LO measurements

$$
\begin{gathered}
M=\sum_{a, b} Y_{a b} A_{a} \otimes B_{b} \\
0 \leq Y_{a b} \leq 1 \\
\Sigma_{a} A_{a}=I \\
\Sigma_{b} B_{b}=I
\end{gathered}
$$

Goal: $\max \Sigma_{a, b} \operatorname{Pr}[a, b] \gamma_{a, b}$
exact solutions ($\rho \in$ SepSym): $\operatorname{Pr}[a, b]=\sum \lambda_{i} q_{i}(a) r_{i}(b)$
$\operatorname{Pr}[a c c e p t \mid a, b]=\gamma_{a b}$
$\operatorname{Pr}[a, b]=\left\langle\rho, A_{a} \otimes B_{b}\right\rangle$ rounding

Goal: $\max \Sigma_{a, b} \operatorname{Pr}[a, b] \gamma_{a, b}$ exact solutions ($\rho \in$ SepSym): $\operatorname{Pr}[a, b]=\sum \lambda_{i} q_{i}(a) r_{i}(b)$
relaxation
$\operatorname{Pr}[a, b]=\sum_{b_{2}, \ldots, b_{k}} p_{a, b, b_{2}, \ldots, b_{k}}$
$p_{a, b_{1}, \ldots, b_{k}}=$
$\left\langle\tilde{\rho}, A_{a} \otimes B_{b_{1}} \otimes \cdots \otimes B_{b_{k}}\right\rangle$
proof idea

- good approximation if $\operatorname{Pr}\left[a, b_{1}\right] \approx_{\varepsilon} \operatorname{Pr}[a] \cdot \operatorname{Pr}\left[b_{1}\right]$
- otherwise $H\left(a \mid b_{1}\right)<H(a)-\varepsilon^{2}$

$$
\begin{gathered}
M=\Sigma_{a, b} Y_{a b} A_{a} \otimes B_{b} \\
0 \leq Y_{a b} \leq 1 \\
\Sigma_{a} A_{a}=I \\
\Sigma_{b} B_{b}=I
\end{gathered}
$$

"C'mon, c'mon - it's either one or the other."

information theory

[Raghavendra-Tan, SODA '12]

$$
\begin{aligned}
& \log (n) \geq I\left(a: b_{1} \ldots b_{k}\right) \\
& =I\left(a: b_{1}\right)+I\left(a: b_{2} \mid b_{1}\right)+\ldots+I\left(a: b_{k} \mid b_{1} \ldots b_{k-1}\right)
\end{aligned}
$$

$\therefore I\left(a: b_{j} \mid b_{1} \ldots b_{j-1}\right) \leq \log (n) / k$ for some j
$\therefore \rho \approx$ Sep for this particular measurement

Note: Brandão-Christandl-Yard based on quantum version of $I(a: b \mid c)$.

open questions

1. Improve 1-LOCC to SEP would imply QMA = QMA with poly(n) Merlins and quasipolynomial-time algorithms for tensor problems
2. Better algorithms for small-set expansion / unique games
3. Make use of "partial transpose" symmetry
4. Understand quantum conditional mutual information
5. extension to entangled games that would yield NEXP \subseteq MIP*. (see paper)
6. More counter-examples / integrality gaps.
