de Finetti theorems and

 PCP conjecturesAram Harrow (MIT)
DAMTP, 26 Mar 2013
based on arXiv:1210.6367 + arXiv:13??.???? joint work with Fernando Brandão (UCL)

Symmetric States

$\rho^{A B_{1} \ldots B_{n}}$ is permutation symmetric in the B subsystems if for every permutation π, $\rho^{A B_{1} \ldots B_{n}}=\rho^{A B_{\pi(1)} \ldots B_{\pi(n)}}$
$\rho^{A B_{1} \ldots B_{n}}$
$\begin{array}{rl}A \quad B_{1} & B \\ & \text { II }\end{array}$
$\rho^{A B_{1} \ldots B_{n}}$
$\begin{array}{lllllll}A & B_{1} & B_{2} & B_{3} & B_{4} & B_{n-1} & B_{n}\end{array}$

Quantum de Finetti Theorem

Theorem [Christandl, Koenig, Mitchison, Renner '06]

Given a state $\rho^{A B_{1} \ldots B_{n}}$ symmetric under exchange of $\mathrm{B}_{1} \ldots \mathrm{~B}_{n}$, there exists μ such that
$\left\|\rho^{A B_{1} \ldots B_{k}}-\int \mu(\mathrm{d} \sigma) \rho_{\sigma} \otimes \sigma^{\otimes k}\right\|_{1} \leq \frac{d^{2} k}{n}$
builds on work by [Størmer '69], [Hudson, Moody '76], [Raggio, Werner '89] [Caves, Fuchs, Schack '01], [Koenig, Renner '05]

Proof idea:

Perform an informationally complete measurement of n-k B systems.
Applications:
information theory: tomography, QKD, hypothesis testing algorithms: approximating separable states, mean-field theory

Quantum de Finetti Theorem as

Monogamy of Entanglement

Definition: $\rho^{A B}$ is n-extendable if there exists an extension

$$
\rho^{A B_{1}} \ldots B_{n} \text { with } \rho^{A B}=\rho^{A B_{i}} \text { for each i. }
$$

all quantum states (= 1-extendable)
2-extendable

100-extendable
separable = ∞-extendable

Algorithms: Can search/optimize over n-extendable states in time $\mathrm{d}^{\mathrm{O}(n)}$. Question: How close are n-extendable states to separable states?

Quantum de Finetti theorem

Theorem [Christandl, Koenig, Mitchison, Renner '06]
Given a state $\rho^{A B_{1} \ldots B_{n}}$ symmetric under exchange of $\mathrm{B}_{1} \ldots \mathrm{~B}_{n}$, there exists μ such that

$$
\left\|\rho^{A B_{1} \ldots B_{k}}-\int \mu(d \sigma) \rho_{\sigma} \otimes \sigma^{\otimes k}\right\|_{1} \leq \frac{d^{2} k}{n}
$$

Difficulty:

1. Parameters are, in many cases, too weak.
2. They are also essentially tight.

Way forward:

1. Change definitions (of error or i.i.d.)
2. Obtain better scaling

relaxed/improved versions

Two examples known:

1. Exponential de Finetti Theorem: [Renner '07] error term $\exp (-\Omega(n-k))$.
Target state convex combination of "almost i.i.d." states.
2. measure error in 1-LOCC norm [Brandão, Christandl, Yard '10] For error ε and $k=1$, requires $n \sim \varepsilon^{-2} \log |A|$.
$\frac{\text { This talk }}{\text { improved de Finetti theorems for local }}$
measurements

main idea use information theory

$\log |A| \geq$
$I\left(A: B_{1} \ldots B_{n}\right)=I\left(A: B_{1}\right)+I\left(A: B_{2} \mid B_{1}\right)+\ldots+I\left(A: B_{n} \mid B_{1} \ldots B_{n-1}\right)$
repeatedly uses chain rule: $I(A: B C)=I(A: B)+I(A: C \mid B)$
$\rightarrow I\left(A: B_{\dagger} \mid B_{1} \ldots B_{t-1}\right) \leq \log (|A|) / n$ for some $t \leq n$.
If $B_{1} \ldots B_{n}$ were classical, then we would have

$$
\rho^{A B}=\rho^{A B_{t}}=\sum_{i} \pi_{i} \rho_{i}^{A B} \quad \approx \text { separable }
$$

Answer: measure!

Fix a measurement $M: B \rightarrow Y$.
$I\left(A: B_{+} \mid B_{1} \ldots B_{t-1}\right) \leq \varepsilon$ for the measured state $\left(\right.$ id $\left.\otimes M^{\oplus n}\right)(\rho)$.

Then

- $\rho^{A B}$ is hard to distinguish from $\sigma \in$ Sep if we first apply (id $\otimes M$)
- $\|(\mathrm{id} \otimes \mathrm{M})(\rho-\sigma)\| \leq$ small for some $\sigma \in$ Sep.

Theorem
Given a state $\rho^{A B_{1} \ldots B_{n}}$
symmetric under exchange of $B_{1} \ldots B_{n}$, and $\left\{\Lambda_{r}\right\}$ a collection of operations from $A \rightarrow X$,

$$
\min _{\sigma \in \operatorname{Sep}} \max _{M} \mathbb{E}_{r}\left\|\left(\Lambda_{r}^{A} \otimes M^{B}\right)\left(\rho^{A B}-\sigma^{A B}\right)\right\|_{1} \leq \sqrt{\frac{2 \ln |X|}{n}}
$$

Cor: setting Λ =id recovers [Brandão, Christandl, Yard '10] 1-LOCC result.
beware:
X is quantum

the proof

Friendly advice: You can find these equations in 1210.6367.

$$
\pi^{X Y_{1} \ldots Y_{n} R}=\underset{r}{\mathbb{E}}\left(\Lambda_{r}^{A \rightarrow X} \otimes M_{1}^{B_{1} \rightarrow Y_{1}} \otimes \cdots M_{n}^{B_{n} \rightarrow Y_{n}}\right)\left(\rho^{A B_{1} \ldots B_{n}}\right) \otimes|r\rangle\left\langle\left. r\right|^{R}\right.
$$

$$
\log |X| \geq \max _{M_{1}, \ldots, M_{n}} I\left(X: Y_{1} \ldots Y_{n} \mid R\right)_{\pi}
$$

$$
=\max _{M_{1}, \ldots, M_{n}}\left(I\left(X: Y_{1} \mid R\right)_{\pi}+\cdots+I\left(X: Y_{n} \mid Y_{1} \ldots Y_{n-1} R\right)_{\pi}\right)
$$

$$
=\max _{M_{1}, \ldots, M_{n-1}}\left(I\left(X: Y_{1} \mid R\right)_{\pi}+\cdots+I\left(X: Y_{n-1} \mid Y_{1} \ldots Y_{n-2} R\right)_{\pi}\right.
$$

$$
\left.+\max _{M_{n}} I\left(X: Y_{n} \mid Y_{1} \ldots Y_{n-1} R\right)_{\pi}\right)
$$

$$
=\max _{M_{n}} \mathbb{E}_{r} \mathbb{E}_{\vec{y}=\left(y_{1}, \ldots, y_{n-1}\right)} I\left(X: Y_{n}\right)_{\pi_{r, \vec{y}}}
$$

$$
\geq \max _{M} \underset{r}{\mathbb{E}} \underset{\vec{y}}{\mathbb{E}} \frac{1}{2}\left\|\left(\Lambda_{r} \otimes M\right)\left(\rho^{A B}-\rho_{\vec{y}}^{A} \otimes \rho_{\vec{y}}^{B}\right)\right\|_{1}^{2}
$$

$$
\geq \min _{\sigma \in \operatorname{Sep}} \max _{M} \mathbb{E}_{r} \frac{1}{2} \|\left(\Lambda_{r} \otimes M\right)\left(\rho^{A B}-\sigma^{A B} \|_{1}^{2}\right.
$$

advantages/extensions

Theorem
Given a state
$\rho B_{1} \ldots B_{n}$ symmetric under exchange of $B_{1} \ldots B_{n}$, and $\left\{\Lambda_{r}\right\}$ a collection of operations from $A \rightarrow X$,

$$
\min _{\sigma \in \operatorname{Sep}} \max _{M} \mathbb{E}_{r}\left\|\left(\Lambda_{r}^{A} \otimes M^{B}\right)\left(\rho^{A B}-\sigma^{A B}\right)\right\|_{1} \leq \sqrt{\frac{2 \ln |X|}{n}}
$$

1. Simpler proof and better constants
2. Bound depends on $|X|$ instead of $|A|$ (A can be ∞-dim)
3. Applies to general non-signalling distributions
4. There is a multipartite version (multiply error by k)
5. Efficient "rounding" (i.e. σ is explicit)
6. Symmetry isn't required

applications

- nonlocal games

Adding symmetric provers "immunizes" against entanglement / non-signalling boxes. (Caveat: needs uncorrelated questions.) Conjectured improvement would yield NP-hardness for 4 players.

- BellQMA(poly) = QMA

Proves Chen-Drucker SAT \in BellQMA $_{\log (n)}(\sqrt{ } n)$ protocol is optimal.

- pretty good tomography [Aaronson '06] on permutation-symmetric states (instead of product states)
- convergence of Lasserre hierarchy for polynomial optimization see also 1205.4484 for connections to small-set expansion

non-local games

Classical value: $\quad \omega_{c}(G)=\max _{x, y} \underset{(r, q) \sim \pi}{\mathbb{E}} V(x(r), y(q) \mid r, q)$
Quantum value: $\omega_{e}(G)=\sup \underset{(r, q) \sim \pi}{\mathbb{E}} \sum_{x, y} V(x(r), y(q) \mid r, q)\langle\psi| L_{x}^{r} \otimes M_{y}^{q}|\psi\rangle$

$$
\sum_{x} L_{x}^{r}=I \quad \sum_{y} M_{y}^{q}=I
$$

sup over measurements and $|\psi\rangle$ of unbounded dim

previous results

- [Bell '64]

There exist G with $\omega_{e}(G)>\omega_{c}(G)$

- PCP theorem [Arora et al '98 and Raz '98] For any $\varepsilon>0$, it is NP-complete to determine whether $\omega_{c}<\varepsilon$ or $\omega_{c}>1-\varepsilon$ (even for XOR games).
- [Cleve, Høyer, Toner, Watrous '04]

Poly-time algorithm to compute ω_{e} for two-player XOR games.

- [Kempe, Kobayashi, Matsumoto, Toner, Vidick '07]

NP-hard to distinguish $\omega_{e}(G)=1$ from $\omega_{e}(G)<1-1 /$ poly $(|G|)$

- [Ito-Vidick '12 and Vidick '13]

NP-hard to distinguish $\omega_{e}(G)>1-\varepsilon$ from $\omega_{e}(G)<1 / 2+\varepsilon$ for three-player XOR games

immunizing against entanglement

complexity of non-local games

Cor: Let $G(\pi, V)$ be a 2-player free game with questions in $R \times Q$ and answers in $X \times Y$, where $\pi=\pi^{R} \otimes \pi^{Q}$. Then there exists an ($n+1$)-player game $G^{\prime}\left(\pi^{\prime}, V^{\prime}\right)$ with questions in $R \times\left(Q_{1} \times \ldots \times Q_{n}\right)$ and answers in $X \times\left(Y_{1} \times \ldots \times Y_{n}\right)$, such that

$$
\omega_{c}(G) \leq \omega_{e}\left(G^{\prime}\right) \leq \omega_{c}(G)+\sqrt{\frac{\ln |X|}{2 n}}
$$

Implies:

1. an $\exp (\log (|X|) \log (|Y|))$ algo for approximating ω_{c}
2. ω_{e} is hard to approximate for free games.

why free games?

Theorem
Given a state $\rho^{A B_{1} \ldots B_{n}}$ symmetric under exchange of $B_{1} \ldots B_{n^{\prime}}$ and $\left\{\Lambda_{r}\right\}$ a collection of operations from $A \rightarrow X$, $\min _{\sigma \in \operatorname{Sep}} \max _{M} \underset{r}{\mathbb{E}}\left\|\left(\Lambda_{r}^{A} \otimes M^{B}\right)\left(\rho^{A B}-\sigma^{A B}\right)\right\|_{1} \leq \sqrt{\frac{2 \ln |X|}{n}}$

Conjecture $\rho^{A B_{1} \ldots B_{n}}$ Given a state ρ symmetric under exchange of $B_{1} \ldots B_{n}$ and $\left\{\Lambda_{r}\right\}$ a collection of operations from $A \rightarrow X$,

$$
\min _{\sigma \in \operatorname{Sep}} \underset{r}{\mathbb{E}} \max _{M}\left\|\left(\Lambda_{r}^{A} \otimes M^{B}\right)\left(\rho^{A B}-\sigma^{A B}\right)\right\|_{1} \leq \sqrt{\frac{2 \ln |X|}{n}}
$$

- Would give alternate proof of Vidick result.
- FALSE for non-signalling distributions.

QCC...C de Finetti

Theorem If $\rho A_{1}, \ldots, A_{n}$ k there exists μ s.t.
$\max _{M_{2}, \ldots, M_{k}} \|\left(\operatorname{id} \otimes M_{2} \otimes \cdots \otimes M_{k}\right)\left(\rho^{A_{1} \ldots A_{k}}-\int \mu(\sigma) \sigma^{\otimes k} \|_{1} \leq \sqrt{\frac{2 k^{2} \ln |A|}{n-k}}\right.$

Applications

- QMA = QMA with multiple provers and Bell measurements
- convergence of sum-of-squares hierarchy for polynomial optimization
- Aaronson's pretty-good tomography with symmetric states

de Finetti without symmetry

Theorem [Christandl, Koenig, Mitchison, Renner '05]
Given a state $\rho^{A B_{1} \ldots B_{n}}$, there exists μ such that

$$
\left\|\underset{i_{1}, \ldots, i_{k}}{\mathbb{E}} \rho^{A B_{i_{1}} \ldots B_{i_{k}}}-\int \mu(\mathrm{d} \sigma) \rho_{\sigma} \otimes \sigma^{\otimes k}\right\|_{1} \leq \frac{d^{2} k}{n}
$$

Theorem
For ρ a state on $A_{1} A_{2} \ldots A_{n}$ and any $\dagger \leq n-k$, there exists $m \leq t$ such that

$$
\underset{i_{1}, \ldots, i_{k}}{\mathbb{E}} \underset{\substack{j_{1}, \ldots, j_{m} \\ a_{1}, \ldots, a_{m}}}{\mathbb{E}}\left\|\sigma^{A_{i_{1}} \cdots A_{i_{k}}}-\sigma^{A_{i_{1}}} \otimes \cdots \otimes \sigma^{A_{i_{k}}}\right\|_{1} \lesssim \frac{d^{k}}{n-k}
$$

where σ is the state resulting from measuring j_{1}, \ldots, j_{m} and obtaining outcomes a_{1}, \ldots, a_{m}.

PCP theorem

Classical k-CSPs:
Given constraints $C=\{C$,$\} , choose an assignment \sigma$ mapping n variables to an alphabet Σ to minimize the fraction of unsatisfied constraints.

$$
\operatorname{UNSAT}(C)=\min _{\sigma} \operatorname{Pr}_{i}\left[\sigma \text { fails to satisfy } C_{i}\right]
$$

```
Example: 3-SAT: NP-hard to determine if UNSAT(C) \(=0\) or \(\operatorname{UNSAT}(C) \geq 1 / n^{3}\)
```

PCP (probabilistically checkable proof) theorem: NP-hard to determine if UNSAT(C)=0 or $\operatorname{UNSAT}(C) \geq 0.1$

Local Hamiltonian problem

LOCAL-HAM: k-local Hamiltonian ground-state energy estimation Let $H=\mathbb{E}_{i} H_{i}$, with each H_{i} acting on k qubits, and $\left\|H_{i}\right\| \leq 1$
i.e. $H_{i}=H_{i, 1} \otimes H_{i, 2} \otimes \ldots \otimes H_{i, n}$ with $\#\left\{j: H_{i, j} \neq I\right\} \leq k$

Goal:
Estimate $\mathrm{E}_{0}=\min _{\psi}\langle\psi| H|\psi\rangle=\min _{\rho} \operatorname{tr} \mathrm{H} \rho$

Hardness

- Includes $\mathrm{K}-\mathrm{CSPs}$, so ± 0.1 error is NP-hard by PCP theorem.
- QMA-complete with $1 / p o l y(n)$ error [Kitaev '99] QMA = quantum proof, bounded-error polytime quantum verifier

Quantum PCP conjecture LOCAL-HAM is QMA-hard for some constant error $\varepsilon>0$. Can assume k=2 WLOG [Bravyi, DiVincenzo, Terhal, Loss `08]

high-degree in NP

Theorem

It is NP-complete to estimate E_{0} for n qudits on a D-regular graph to additive error $\sim d / D^{1 / 8}$.

Idea: use product states
$\mathrm{E}_{0} \approx \min \operatorname{tr} \mathrm{H}\left(\psi_{1} \otimes \ldots \otimes \psi_{n}\right)-\mathrm{O}\left(\mathrm{d} / \mathrm{D}^{1 / 8}\right)$

By constrast
2-CSPs are NP-hard to approximate to error $|\Sigma|^{\alpha} / D^{\beta}$ for any $\alpha_{1} \beta>0$

intuition: mean-field theory

1-D

2-D

Proof of PCP no-go theorem

1. Measure $\varepsilon \mathrm{n}$ qudits and condition on outcomes. Incur error ε.
2. Most pairs of other qudits would have mutual information $\leq \log (\mathrm{d}) / \varepsilon D$ if measured.
3. Thus their state is within distance $d^{3}(\log (d) / \varepsilon D)^{1 / 2}$ of product.
4. Witness is a global product state. Total error is $\varepsilon+d^{3}(\log (d) / \varepsilon D)^{1 / 2}$.
Choose ε to balance these terms.

other applications

PTAS for Dense k-local Hamiltonians improves on $1 / d^{k-1}+\varepsilon$ approximation from [Gharibian-Kempe '11]

PTAS for planar graphs Builds on [Bansal, Bravyi, Terhal '07] PTAS for bounded-degree planar graphs

Algorithms for graphs with low threshold rank Extends result of [Barak, Raghavendra, Steurer '11]. run-time for ε-approximation is $\exp (\log (n)$ poly $(d / \varepsilon) \cdot \#\{$ eigs of adj. matrix $\geq \operatorname{poly}(\varepsilon / d)\})$

open questions

- Is QMA $(2)=$ QMA? Is SAT \in QMA $(2)_{1,1 / 2}$ optimal? (Would follow from replacing 1-LOCC with SEP-YES.)
- Can we reorder our quantifiers to get a dimensionindependent bound for correlated local measurements?
- (Especially if your name is Graeme Mitchison) Representation theory results \rightarrow de Finetti theorems What about the other direction?
- The usual de Finetti questions:
- better counter-examples
- how much does it help to add PPT constraints?
 whether $\max \{+r M \rho: \rho \in \operatorname{Sep}\}$ is $\geq c_{1} / d$ or $\leq c_{2} / d$ for $c_{1}>c_{2} \gg 1$ and M a LO measurement. Can we get an algorithm for this using de Finetti?
- Weak additivity? The Quantum PCP conjecture?

