Quantum information and the monogamy of entanglement

Brown SUMS
March 9, 2013

Quantum mechanics

Blackbody radiation paradox: How much power does a hot object emit at wavelength λ ?

Classical theory (1900): const / λ^{4}

Quantum theory (1900-1924): c_{1}

$$
\overline{\lambda^{5}\left(e^{c_{2} / \lambda}-1\right)}
$$

Bose-Einstein condensate (1995)

QM has also explained:

- the stability of atoms
- the photoelectric effect
- everything else we've looked at

Difficulties of quantum mechanics

© Heisenberg's uncertainty principle
© Topological effects
© Entanglement
© Exponential complexity: Simulating N objects requires effort $\sim \exp (N)$

The doctrine of quantum information

(1) Abstract away physics to device-independent fundamentals: "qubits"
(2) operational rather than foundational statements: Not "what is quantum information" but "what can we do with quantum information."

example: photon polarization

Photon polarization states:

Measurement: Questions of the form
"Are you

Rule: $\operatorname{Pr}[\uparrow \mid \uparrow]=\cos ^{2}(\theta)$
Uncertainty principle: No photon will yield a definite answer to both measurements.

Quantum key distribution

Protocol:

1. Alice chooses a random sequence of bits and encodes each one using either

2. Bob randomly chooses to measure with either

3. They publically reveal their choice of axes and discard pairs that don't match.
4. If remaining bits are perfectly correlated, then they are also secret.

Quantum Axioms

Classical probability

$$
p=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{N}
\end{array}\right) \in \mathbb{R}_{+}^{N}
$$

$$
N
$$

$$
\sum_{i=1} p_{i}=1 \quad p_{i} \geq 0
$$

Quantum mechanics

$$
\begin{gathered}
\alpha=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{N}
\end{array}\right) \in \mathbb{C}^{N} \\
\sum_{i=1}^{N}\left|\alpha_{i}\right|^{2}=1
\end{gathered}
$$

Measurement

Quantum state: $\in C^{N}$

Measurement: An orthonormal basis

Outcome:

$$
\operatorname{Pr}\left[v_{\mathrm{i}} \mid \alpha\right]=\left|\left\langle v_{\mathrm{i}}, \alpha\right\rangle\right|^{2}
$$

More generally, if M is Hermitian, then $\langle\alpha, M \alpha\rangle$ is observable.

Example:
$v_{1}=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right), v_{2}=\left(\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right), \ldots$

$$
\operatorname{Pr}\left[v_{i} \mid \alpha\right]=\left|\alpha_{i}\right|^{2}
$$

Product and entangled states

state of system A
$\binom{\alpha_{1}}{\alpha_{2}} \quad\binom{\beta_{1}}{\beta_{2}}$
state of
system B
joint state of A and B
$\binom{\alpha_{1}}{\alpha_{2}} \otimes\binom{\beta_{1}}{\beta_{2}}=$
probability analogue:
independent random variables

Entanglement
"Not product" := "entangled" ~ correlated random variables
e.g. $\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)$

The power of [quantum] computers
One qubit $\equiv \mathbb{C}^{2}$
n qubits $\equiv \mathbb{C}^{2^{n}}$

Measuring entangled states

Rule: $\operatorname{Pr}[A$ observes \rrbracket and B observes $\]=\cos ^{2}(\theta) / 2$

General rule: $\operatorname{Pr}[A, B$ observe $v, w \mid$ state $]=|\langle v \otimes w, \alpha\rangle|^{2}$ Instantaneous signalling?
Alice measures $\left\{v_{1}, v_{2}\right\}$, Bob measures $\left\{w_{1}, w_{2}\right\}$.
$\begin{array}{ll}\operatorname{Pr}\left[w_{1} \mid v_{1}\right]=\cos ^{2}(\theta) & \operatorname{Pr}\left[v_{1}\right]=1 / 2 \\ \operatorname{Pr}\left[w_{1} \mid v_{2}\right]=\sin ^{2}(\theta) & \operatorname{Pr}\left[v_{2}\right]=1 / 2\end{array}$
$\operatorname{Pr}\left[w_{1} \mid\right.$ Alice measures $\left.\left\{v_{1}, v_{2}\right\}\right]=\cos ^{2}(\theta) / 2+\sin ^{2}(\theta) / 2=1 / 2$

CHSH game

a	b	x, y
0	0	same
0	1	same
1	0	same
1	1	different

Goal: $x \oplus y=a b$

Max win probability is $3 / 4$. Randomness doesn't help.

CHSH with entanglement

 Alice and Bob share state $\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)$Alice measures

Bob measures
win prob $\cos ^{2}(\pi / 8)$
≈ 0.854
$a=1$

CHSH with entanglement

Monogamy of entanglement

$\max \operatorname{Pr}[A B$ win $]+\operatorname{Pr}[A C$ win] $=$ $\max \operatorname{Pr}[x \oplus y=a b]+\operatorname{Pr}[x \oplus z=a c]$ $<2 \cos ^{2}(\pi / 8)$

Marginal quantum states

$\left.\begin{array}{c}\text { Given a } \\ \text { state of } \\ \mathrm{A}, \mathrm{B}, \mathrm{C} \\ \alpha= \\ \alpha_{000} \\ \alpha_{001} \\ \alpha_{010} \\ \alpha_{011} \\ \alpha_{100} \\ \alpha_{101} \\ \alpha_{110} \\ \alpha_{111}\end{array}\right)$
$Q:$ What is the state of $A B$? or $A C$?
A: Measure C.
Outcomes $\{0,1\}$ have probability
$p_{x}=\left|\alpha_{00 x}\right|^{2}+\left|\alpha_{01 x}\right|^{2}+\left|\alpha_{10 x}\right|^{2}+\left|\alpha_{11 x}\right|^{2}$
AB are
left with
$\sqrt{p_{0}}$$\left(\begin{array}{l}\alpha_{000} \\ \alpha_{010} \\ \alpha_{100} \\ \alpha_{110}\end{array}\right) \quad$ or $\frac{1}{\sqrt{p_{1}}}\left(\begin{array}{l}\alpha_{001} \\ \alpha_{011} \\ \alpha_{101} \\ \alpha_{111}\end{array}\right)$

General monogamy relation:
The distributions over $A B$ and $A C$ cannot both be very entangled.

More general bounds from considering $A B_{1} B_{2} \ldots B_{k}$.

Application to optimization

Given a Hermitian matrix M :

- $\max _{\alpha}\langle, M\rangle$ is easy
- $\max _{\alpha, \beta}\langle\otimes, M \otimes\rangle$ is hard

Approximate with $\max _{\alpha}\left\langle\alpha, \frac{M^{A B_{1}}+\cdots+M^{A B_{k}}}{k} \alpha\right\rangle$

For more information

General quantum information:

- M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.
- google "David Mermin lecture notes"
- M. M. Wilde, From Classical to Quantum Shannon Theory, arxiv.org/abs/1106.1445

Monogamy of Entanglement: arxiv.org/abs/1210.6367
Application to Optimization: arxiv.org/abs/1205.4484

