Quantum information and the monogamy of entanglement

Aram Harrow (MIT) Brown SUMS March 9, 2013

Quantum mechanics

Blackbody radiation paradox:

How much power does a hot object emit at wavelength λ ?

Classical theory (1900): const / λ^4 Quantum theory (1900 – 1924): C_1

Bose-Einstein condensate (1995)

QM has also explained:

- the stability of atoms
- the photoelectric effect
- everything else we've looked at

Difficulties of quantum mechanics

- Heisenberg's uncertainty principle
- Topological effects
- Entanglement
- Exponential complexity:
 Simulating N objects
 requires effort ~exp(N)

The doctrine of quantum information

- Abstract away physics to device-independent fundamentals: "qubits"
- Operational rather than foundational statements: Not "what is quantum information" but "what can we do with quantum information."

example: photon polarization

Photon polarization states:

Measurement: Questions of the form "Are you / or </br>

Rule: $\Pr[$ | \uparrow] = $\cos^2(\theta)$

Uncertainty principle: No photon will yield a definite answer to both measurements.

Quantum key distribution

State	Measurement	Outcome
\$	\leftrightarrow	\$
\leftrightarrow	<	\leftrightarrow
2	\leftrightarrow	🚺 or 🔶
	\leftrightarrow	🚺 or 🛶
\$	X	or
\leftrightarrow	X	or
2	X	Z
	X	

Protocol:

1. Alice chooses a random sequence of bits and encodes each one using either

2. Bob randomly chooses to measure with either

⇒ or 🔀

or 🔀

3. They publically reveal their choice of axes and discard pairs that don't match.

4. If remaining bits are perfectly correlated, then they are also secret.

Quantum Axioms

 α

N

Classical probability

 $\sum p_i = 1 \quad p_i \ge 0$

N

i=1

 $\begin{pmatrix} p_1 \\ p_2 \\ \vdots \end{pmatrix} \in \mathbb{R}^N_+$

Quantum mechanics

 $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \end{pmatrix} \in \mathbb{C}^N$

 $lpha_N$

 $\sum |\alpha_i|^2 = 1$

Measurement

Quantum state: $\alpha \in C^N$

Measurement: An orthonormal basis $\{v_1, ..., v_N\}$

Outcome: $Pr[v_i | \alpha] = |\langle v_i, \alpha \rangle|^2$

More generally, if M is Hermitian, then $\langle \alpha, M \alpha \rangle$ is observable.

 $\Pr[\mathbf{v}_{i} \mid \boldsymbol{\alpha}] = |\boldsymbol{\alpha}_{i}|^{2}$

Product and entangled states

state of system A

state of

joint state of A and B

probability analoque: independent random variables

Entanglement "Not product" := "entangled" \sim correlated random variables e.g. $\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$

The power of [quantum] computers One qubit $\equiv \mathbb{C}^2$ n qubits $\equiv \mathbb{C}^{2^n}$

Measuring entangled states

 $A \qquad \qquad \text{joint state} \quad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

Rule: Pr[A observes \int and B observes \int] = cos²(θ) / 2 General rule: Pr[A,B observe v,w | state α] = $|\langle v \otimes w, \alpha \rangle|^2$ Instantaneous signalling? Alice measures $\{v_1, v_2\}$, Bob measures $\{w_1, w_2\}$. Pr[$w_1 | v_1$] = cos²(θ) Pr[v_1] = 1/2 Pr[$w_1 | v_2$] = sin²(θ) Pr[v_2] = 1/2 Pr[w_1 | Alice measures $\{v_1, v_2\}$] = cos²(θ)/2 + sin²(θ)/2 = 1/2

Max win probability is 3/4. Randomness doesn't help.

CHSH with entanglement

0 0

 $\frac{1}{\sqrt{2}}$

Alice and Bob share state

CHSH with entanglement

Monogamy of entanglement

max Pr[AB win] + Pr[AC win] =max $Pr[x \oplus y = ab] + Pr[x \oplus z = ac]$ < 2 $cos^2(\pi/8)$

Marginal quantum states

General monogamy relation:

The distributions over AB and AC cannot both be very entangled.

More general bounds from considering $AB_1B_2...B_k$.

Application to optimization

Given a Hermitian matrix M:

- $\max_{\alpha} \langle \alpha, M \alpha \rangle$ is easy
- $\max_{\alpha,\beta} \langle \alpha \otimes \beta, M \ \alpha \otimes \beta \rangle$ is hard

Approximate with $\max_{\alpha} \langle lpha, \frac{M^{AB_1} + \dots + M^{AB_k}}{k} lpha
angle$

 M^{AB_1} M^{AB_2} M^{AB_3} M^{AB_4} M^{AB_4} M^{AB_4} B_1 B_2 B_3 B_4

A

Computational effort: N^{O(k)}

Key question: approximation error as a function of k and N

For more information

General quantum information:

- M.A. Nielsen and I.L. Chuang, *Quantum Computation and Quantum Information*, Cambridge University Press, 2000.
- google "David Mermin lecture notes"
- M. M. Wilde, From Classical to Quantum Shannon Theory, arxiv.org/abs/1106.1445

Monogamy of Entanglement: arxiv.org/abs/1210.6367

Application to Optimization: arxiv.org/abs/1205.4484